aws-sdk-sagemaker 1.80.0 → 1.85.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: fbfc1263b1d7efec852f01e80b43faad123b1394151ee1aa4fe4dcd1c393fda8
4
- data.tar.gz: ed8e6d54b806b5308241e627dc9f61e455a6ebce6302d2ccf191cba3d384670a
3
+ metadata.gz: 1a310c45462d28f9d02c0bb98f4098c776fafd38d8670c3838d9500dba494d0e
4
+ data.tar.gz: 8ba796f073154abc69cb52668c6cb959bd4b564aa5c306127a18886e567562bb
5
5
  SHA512:
6
- metadata.gz: c3020c3cc7204420b06f62517b0cd618df62354a5f66f493ebc8866a4519849936cf72e579fa8579ff95a826053e0bff44704f80febe3b94594d8b77d65ad7a5
7
- data.tar.gz: 46973a6d6c2f0dc50ccd5e478e6335536bd82ac30a95224e57ca8d64db121f9b6ce14269066669d9c80ac4811fbac2cab65a3cb703027918e7be3b8a9e22067d
6
+ metadata.gz: 41f700775b5172af131116d4ee826d4175442dd141231e5b40cf0a7ec6062731df247ea9d4518beea4c7cd2de06c9f745589fb7de9429daca67db0fde5be8dab
7
+ data.tar.gz: fa962da6c45b112dd8c940dc9ade2ddb21a14630253ca69c5b98aacce80a50bef7ff4acca8642f07c59b48be275e2065554042f135cebb6783a234b30ae66a14
data/CHANGELOG.md CHANGED
@@ -1,6 +1,31 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.85.0 (2021-03-30)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
8
+
9
+ 1.84.0 (2021-03-25)
10
+ ------------------
11
+
12
+ * Feature - This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
13
+
14
+ 1.83.0 (2021-03-19)
15
+ ------------------
16
+
17
+ * Feature - Adding authentication support for pulling images stored in private Docker registries to build containers for real-time inference.
18
+
19
+ 1.82.0 (2021-03-17)
20
+ ------------------
21
+
22
+ * Feature - Support new target device ml_eia2 in SageMaker CreateCompilationJob API
23
+
24
+ 1.81.0 (2021-03-10)
25
+ ------------------
26
+
27
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
28
+
4
29
  1.80.0 (2021-03-04)
5
30
  ------------------
6
31
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.80.0
1
+ 1.85.0
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.80.0'
52
+ GEM_VERSION = '1.85.0'
53
53
 
54
54
  end
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -827,11 +827,11 @@ module Aws::SageMaker
827
827
  req.send_request(options)
828
828
  end
829
829
 
830
- # Creates a running App for the specified UserProfile. Supported Apps
831
- # are JupyterServer and KernelGateway. This operation is automatically
832
- # invoked by Amazon SageMaker Studio upon access to the associated
833
- # Domain, and when new kernel configurations are selected by the user. A
834
- # user may have multiple Apps active simultaneously.
830
+ # Creates a running app for the specified UserProfile. Supported apps
831
+ # are `JupyterServer` and `KernelGateway`. This operation is
832
+ # automatically invoked by Amazon SageMaker Studio upon access to the
833
+ # associated Domain, and when new kernel configurations are selected by
834
+ # the user. A user may have multiple Apps active simultaneously.
835
835
  #
836
836
  # @option params [required, String] :domain_id
837
837
  # The domain ID.
@@ -840,7 +840,8 @@ module Aws::SageMaker
840
840
  # The user profile name.
841
841
  #
842
842
  # @option params [required, String] :app_type
843
- # The type of app.
843
+ # The type of app. Supported apps are `JupyterServer` and
844
+ # `KernelGateway`. `TensorBoard` is not supported.
844
845
  #
845
846
  # @option params [required, String] :app_name
846
847
  # The name of the app.
@@ -1025,49 +1026,55 @@ module Aws::SageMaker
1025
1026
  # Creates an Autopilot job.
1026
1027
  #
1027
1028
  # Find the best performing model after you run an Autopilot job by
1028
- # calling . Deploy that model by following the steps described in [Step
1029
- # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
1029
+ # calling .
1030
1030
  #
1031
- # For information about how to use Autopilot, see [ Automate Model
1032
- # Development with Amazon SageMaker Autopilot][2].
1031
+ # For information about how to use Autopilot, see [Automate Model
1032
+ # Development with Amazon SageMaker Autopilot][1].
1033
1033
  #
1034
1034
  #
1035
1035
  #
1036
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html
1037
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1036
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1038
1037
  #
1039
1038
  # @option params [required, String] :auto_ml_job_name
1040
- # Identifies an Autopilot job. Must be unique to your account and is
1041
- # case-insensitive.
1039
+ # Identifies an Autopilot job. The name must be unique to your account
1040
+ # and is case-insensitive.
1042
1041
  #
1043
1042
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1044
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
1045
- # CSV. Minimum of 500 rows.
1043
+ # An array of channel objects that describes the input data and its
1044
+ # location. Each channel is a named input source. Similar to
1045
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
1046
+ # 500 rows.
1046
1047
  #
1047
1048
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1048
- # Similar to OutputDataConfig supported by Tuning. Format(s) supported:
1049
+ # Provides information about encryption and the Amazon S3 output path
1050
+ # needed to store artifacts from an AutoML job. Format(s) supported:
1049
1051
  # CSV.
1050
1052
  #
1051
1053
  # @option params [String] :problem_type
1052
- # Defines the kind of preprocessing and algorithms intended for the
1053
- # candidates. Options include: BinaryClassification,
1054
- # MulticlassClassification, and Regression.
1054
+ # Defines the type of supervised learning available for the candidates.
1055
+ # Options include: BinaryClassification, MulticlassClassification, and
1056
+ # Regression. For more information, see [ Amazon SageMaker Autopilot
1057
+ # problem types and algorithm support][1].
1058
+ #
1059
+ #
1060
+ #
1061
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
1055
1062
  #
1056
1063
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1057
- # Defines the objective of a an AutoML job. You provide a
1058
- # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
1059
- # or maximize it. If a metric is not specified, the most commonly used
1060
- # ObjectiveMetric for problem type is automaically selected.
1064
+ # Defines the objective metric used to measure the predictive quality of
1065
+ # an AutoML job. You provide a AutoMLJobObjective$MetricName and
1066
+ # Autopilot infers whether to minimize or maximize it.
1061
1067
  #
1062
1068
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1063
- # Contains CompletionCriteria and SecurityConfig.
1069
+ # Contains CompletionCriteria and SecurityConfig settings for the AutoML
1070
+ # job.
1064
1071
  #
1065
1072
  # @option params [required, String] :role_arn
1066
1073
  # The ARN of the role that is used to access the data.
1067
1074
  #
1068
1075
  # @option params [Boolean] :generate_candidate_definitions_only
1069
- # Generates possible candidates without training a model. A candidate is
1070
- # a combination of data preprocessors, algorithms, and algorithm
1076
+ # Generates possible candidates without training the models. A candidate
1077
+ # is a combination of data preprocessors, algorithms, and algorithm
1071
1078
  # parameter settings.
1072
1079
  #
1073
1080
  # @option params [Array<Types::Tag>] :tags
@@ -1304,7 +1311,7 @@ module Aws::SageMaker
1304
1311
  # },
1305
1312
  # output_config: { # required
1306
1313
  # s3_output_location: "S3Uri", # required
1307
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1314
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1308
1315
  # target_platform: {
1309
1316
  # os: "ANDROID", # required, accepts ANDROID, LINUX
1310
1317
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -1651,7 +1658,14 @@ module Aws::SageMaker
1651
1658
  # The mode of authentication that members use to access the domain.
1652
1659
  #
1653
1660
  # @option params [required, Types::UserSettings] :default_user_settings
1654
- # The default user settings.
1661
+ # The default settings to use to create a user profile when
1662
+ # `UserSettings` isn't specified in the call to the `CreateUserProfile`
1663
+ # API.
1664
+ #
1665
+ # `SecurityGroups` is aggregated when specified in both calls. For all
1666
+ # other settings in `UserSettings`, the values specified in
1667
+ # `CreateUserProfile` take precedence over those specified in
1668
+ # `CreateDomain`.
1655
1669
  #
1656
1670
  # @option params [required, Array<String>] :subnet_ids
1657
1671
  # The VPC subnets that Studio uses for communication.
@@ -1663,7 +1677,7 @@ module Aws::SageMaker
1663
1677
  # @option params [Array<Types::Tag>] :tags
1664
1678
  # Tags to associated with the Domain. Each tag consists of a key and an
1665
1679
  # optional value. Tag keys must be unique per resource. Tags are
1666
- # searchable using the Search API.
1680
+ # searchable using the `Search` API.
1667
1681
  #
1668
1682
  # @option params [String] :app_network_access_type
1669
1683
  # Specifies the VPC used for non-EFS traffic. The default value is
@@ -3358,6 +3372,9 @@ module Aws::SageMaker
3358
3372
  # image: "ContainerImage",
3359
3373
  # image_config: {
3360
3374
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
3375
+ # repository_auth_config: {
3376
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
3377
+ # },
3361
3378
  # },
3362
3379
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3363
3380
  # model_data_url: "Url",
@@ -3375,6 +3392,9 @@ module Aws::SageMaker
3375
3392
  # image: "ContainerImage",
3376
3393
  # image_config: {
3377
3394
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
3395
+ # repository_auth_config: {
3396
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
3397
+ # },
3378
3398
  # },
3379
3399
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3380
3400
  # model_data_url: "Url",
@@ -4983,6 +5003,9 @@ module Aws::SageMaker
4983
5003
  # `MaxWaitTimeInSeconds` to specify how long you are willing to wait
4984
5004
  # for a managed spot training job to complete.
4985
5005
  #
5006
+ # * `Environment` - The environment variables to set in the Docker
5007
+ # container.
5008
+ #
4986
5009
  # For more information about Amazon SageMaker, see [How It Works][3].
4987
5010
  #
4988
5011
  #
@@ -5180,6 +5203,9 @@ module Aws::SageMaker
5180
5203
  # Configuration information for Debugger rules for profiling system and
5181
5204
  # framework metrics.
5182
5205
  #
5206
+ # @option params [Hash<String,String>] :environment
5207
+ # The environment variables to set in the Docker container.
5208
+ #
5183
5209
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5184
5210
  #
5185
5211
  # * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
@@ -5318,6 +5344,9 @@ module Aws::SageMaker
5318
5344
  # },
5319
5345
  # },
5320
5346
  # ],
5347
+ # environment: {
5348
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
5349
+ # },
5321
5350
  # })
5322
5351
  #
5323
5352
  # @example Response structure
@@ -7453,10 +7482,10 @@ module Aws::SageMaker
7453
7482
  req.send_request(options)
7454
7483
  end
7455
7484
 
7456
- # Returns information about an Amazon SageMaker job.
7485
+ # Returns information about an Amazon SageMaker AutoML job.
7457
7486
  #
7458
7487
  # @option params [required, String] :auto_ml_job_name
7459
- # Request information about a job using that job's unique name.
7488
+ # Requests information about an AutoML job using its unique name.
7460
7489
  #
7461
7490
  # @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
7462
7491
  #
@@ -7472,6 +7501,7 @@ module Aws::SageMaker
7472
7501
  # * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
7473
7502
  # * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
7474
7503
  # * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
7504
+ # * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array&lt;Types::AutoMLPartialFailureReason&gt;
7475
7505
  # * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
7476
7506
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
7477
7507
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
@@ -7512,6 +7542,8 @@ module Aws::SageMaker
7512
7542
  # resp.end_time #=> Time
7513
7543
  # resp.last_modified_time #=> Time
7514
7544
  # resp.failure_reason #=> String
7545
+ # resp.partial_failure_reasons #=> Array
7546
+ # resp.partial_failure_reasons[0].partial_failure_message #=> String
7515
7547
  # resp.best_candidate.candidate_name #=> String
7516
7548
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
7517
7549
  # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
@@ -7531,8 +7563,9 @@ module Aws::SageMaker
7531
7563
  # resp.best_candidate.end_time #=> Time
7532
7564
  # resp.best_candidate.last_modified_time #=> Time
7533
7565
  # resp.best_candidate.failure_reason #=> String
7566
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
7534
7567
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7535
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
7568
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
7536
7569
  # resp.generate_candidate_definitions_only #=> Boolean
7537
7570
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
7538
7571
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
@@ -7641,7 +7674,7 @@ module Aws::SageMaker
7641
7674
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7642
7675
  # resp.input_config.framework_version #=> String
7643
7676
  # resp.output_config.s3_output_location #=> String
7644
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7677
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7645
7678
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
7646
7679
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7647
7680
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -8812,6 +8845,7 @@ module Aws::SageMaker
8812
8845
  # resp.primary_container.container_hostname #=> String
8813
8846
  # resp.primary_container.image #=> String
8814
8847
  # resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
8848
+ # resp.primary_container.image_config.repository_auth_config.repository_credentials_provider_arn #=> String
8815
8849
  # resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
8816
8850
  # resp.primary_container.model_data_url #=> String
8817
8851
  # resp.primary_container.environment #=> Hash
@@ -8822,6 +8856,7 @@ module Aws::SageMaker
8822
8856
  # resp.containers[0].container_hostname #=> String
8823
8857
  # resp.containers[0].image #=> String
8824
8858
  # resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
8859
+ # resp.containers[0].image_config.repository_auth_config.repository_credentials_provider_arn #=> String
8825
8860
  # resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
8826
8861
  # resp.containers[0].model_data_url #=> String
8827
8862
  # resp.containers[0].environment #=> Hash
@@ -9863,6 +9898,7 @@ module Aws::SageMaker
9863
9898
  # * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array&lt;Types::ProfilerRuleConfiguration&gt;
9864
9899
  # * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array&lt;Types::ProfilerRuleEvaluationStatus&gt;
9865
9900
  # * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
9901
+ # * {Types::DescribeTrainingJobResponse#environment #environment} => Hash&lt;String,String&gt;
9866
9902
  #
9867
9903
  # @example Request syntax with placeholder values
9868
9904
  #
@@ -9987,6 +10023,8 @@ module Aws::SageMaker
9987
10023
  # resp.profiler_rule_evaluation_statuses[0].status_details #=> String
9988
10024
  # resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
9989
10025
  # resp.profiling_status #=> String, one of "Enabled", "Disabled"
10026
+ # resp.environment #=> Hash
10027
+ # resp.environment["TrainingEnvironmentKey"] #=> String
9990
10028
  #
9991
10029
  #
9992
10030
  # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
@@ -11127,11 +11165,13 @@ module Aws::SageMaker
11127
11165
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
11128
11166
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
11129
11167
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11130
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
11168
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
11131
11169
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
11132
11170
  # resp.auto_ml_job_summaries[0].end_time #=> Time
11133
11171
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
11134
11172
  # resp.auto_ml_job_summaries[0].failure_reason #=> String
11173
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
11174
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
11135
11175
  # resp.next_token #=> String
11136
11176
  #
11137
11177
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
@@ -11143,25 +11183,26 @@ module Aws::SageMaker
11143
11183
  req.send_request(options)
11144
11184
  end
11145
11185
 
11146
- # List the Candidates created for the job.
11186
+ # List the candidates created for the job.
11147
11187
  #
11148
11188
  # @option params [required, String] :auto_ml_job_name
11149
- # List the Candidates created for the job by providing the job's name.
11189
+ # List the candidates created for the job by providing the job's name.
11150
11190
  #
11151
11191
  # @option params [String] :status_equals
11152
- # List the Candidates for the job and filter by status.
11192
+ # List the candidates for the job and filter by status.
11153
11193
  #
11154
11194
  # @option params [String] :candidate_name_equals
11155
- # List the Candidates for the job and filter by candidate name.
11195
+ # List the candidates for the job and filter by candidate name.
11156
11196
  #
11157
11197
  # @option params [String] :sort_order
11158
- # The sort order for the results. The default is Ascending.
11198
+ # The sort order for the results. The default is `Ascending`.
11159
11199
  #
11160
11200
  # @option params [String] :sort_by
11161
- # The parameter by which to sort the results. The default is Descending.
11201
+ # The parameter by which to sort the results. The default is
11202
+ # `Descending`.
11162
11203
  #
11163
11204
  # @option params [Integer] :max_results
11164
- # List the job's Candidates up to a specified limit.
11205
+ # List the job's candidates up to a specified limit.
11165
11206
  #
11166
11207
  # @option params [String] :next_token
11167
11208
  # If the previous response was truncated, you receive this token. Use it
@@ -11208,6 +11249,7 @@ module Aws::SageMaker
11208
11249
  # resp.candidates[0].end_time #=> Time
11209
11250
  # resp.candidates[0].last_modified_time #=> Time
11210
11251
  # resp.candidates[0].failure_reason #=> String
11252
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
11211
11253
  # resp.next_token #=> String
11212
11254
  #
11213
11255
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
@@ -11372,7 +11414,7 @@ module Aws::SageMaker
11372
11414
  # resp.compilation_job_summaries[0].creation_time #=> Time
11373
11415
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
11374
11416
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
11375
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11417
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11376
11418
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
11377
11419
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
11378
11420
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -14878,6 +14920,8 @@ module Aws::SageMaker
14878
14920
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
14879
14921
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
14880
14922
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
14923
+ # resp.results[0].training_job.environment #=> Hash
14924
+ # resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
14881
14925
  # resp.results[0].training_job.tags #=> Array
14882
14926
  # resp.results[0].training_job.tags[0].key #=> String
14883
14927
  # resp.results[0].training_job.tags[0].value #=> String
@@ -15064,6 +15108,8 @@ module Aws::SageMaker
15064
15108
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
15065
15109
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
15066
15110
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
15111
+ # resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
15112
+ # resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
15067
15113
  # resp.results[0].trial_component.source_detail.training_job.tags #=> Array
15068
15114
  # resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
15069
15115
  # resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
@@ -17309,7 +17355,7 @@ module Aws::SageMaker
17309
17355
  params: params,
17310
17356
  config: config)
17311
17357
  context[:gem_name] = 'aws-sdk-sagemaker'
17312
- context[:gem_version] = '1.80.0'
17358
+ context[:gem_version] = '1.85.0'
17313
17359
  Seahorse::Client::Request.new(handlers, context)
17314
17360
  end
17315
17361
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -111,6 +111,8 @@ module Aws::SageMaker
111
111
  AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
112
112
  AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
113
113
  AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
114
+ AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
115
+ AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
114
116
  AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
115
117
  AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
116
118
  AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
@@ -127,8 +129,10 @@ module Aws::SageMaker
127
129
  BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
128
130
  Branch = Shapes::StringShape.new(name: 'Branch')
129
131
  CacheHitResult = Shapes::StructureShape.new(name: 'CacheHitResult')
132
+ CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
130
133
  CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
131
134
  CandidateName = Shapes::StringShape.new(name: 'CandidateName')
135
+ CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
132
136
  CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
133
137
  CandidateStatus = Shapes::StringShape.new(name: 'CandidateStatus')
134
138
  CandidateStepArn = Shapes::StringShape.new(name: 'CandidateStepArn')
@@ -554,6 +558,7 @@ module Aws::SageMaker
554
558
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
559
  ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
556
560
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
561
+ ExplainabilityLocation = Shapes::StringShape.new(name: 'ExplainabilityLocation')
557
562
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
558
563
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
559
564
  FeatureDefinitions = Shapes::ListShape.new(name: 'FeatureDefinitions')
@@ -1130,6 +1135,8 @@ module Aws::SageMaker
1130
1135
  RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
1131
1136
  RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
1132
1137
  RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
1138
+ RepositoryAuthConfig = Shapes::StructureShape.new(name: 'RepositoryAuthConfig')
1139
+ RepositoryCredentialsProviderArn = Shapes::StringShape.new(name: 'RepositoryCredentialsProviderArn')
1133
1140
  ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
1134
1141
  ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
1135
1142
  ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
@@ -1266,6 +1273,9 @@ module Aws::SageMaker
1266
1273
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1267
1274
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
1268
1275
  TrafficRoutingConfigType = Shapes::StringShape.new(name: 'TrafficRoutingConfigType')
1276
+ TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
1277
+ TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
1278
+ TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
1269
1279
  TrainingInputMode = Shapes::StringShape.new(name: 'TrainingInputMode')
1270
1280
  TrainingInstanceCount = Shapes::IntegerShape.new(name: 'TrainingInstanceCount')
1271
1281
  TrainingInstanceType = Shapes::StringShape.new(name: 'TrainingInstanceType')
@@ -1583,6 +1593,7 @@ module Aws::SageMaker
1583
1593
  AutoMLCandidate.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1584
1594
  AutoMLCandidate.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1585
1595
  AutoMLCandidate.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1596
+ AutoMLCandidate.add_member(:candidate_properties, Shapes::ShapeRef.new(shape: CandidateProperties, location_name: "CandidateProperties"))
1586
1597
  AutoMLCandidate.struct_class = Types::AutoMLCandidate
1587
1598
 
1588
1599
  AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
@@ -1635,12 +1646,18 @@ module Aws::SageMaker
1635
1646
  AutoMLJobSummary.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1636
1647
  AutoMLJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1637
1648
  AutoMLJobSummary.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1649
+ AutoMLJobSummary.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
1638
1650
  AutoMLJobSummary.struct_class = Types::AutoMLJobSummary
1639
1651
 
1640
1652
  AutoMLOutputDataConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
1641
1653
  AutoMLOutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
1642
1654
  AutoMLOutputDataConfig.struct_class = Types::AutoMLOutputDataConfig
1643
1655
 
1656
+ AutoMLPartialFailureReason.add_member(:partial_failure_message, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "PartialFailureMessage"))
1657
+ AutoMLPartialFailureReason.struct_class = Types::AutoMLPartialFailureReason
1658
+
1659
+ AutoMLPartialFailureReasons.member = Shapes::ShapeRef.new(shape: AutoMLPartialFailureReason)
1660
+
1644
1661
  AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
1645
1662
  AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
1646
1663
  AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
@@ -1664,6 +1681,12 @@ module Aws::SageMaker
1664
1681
  CacheHitResult.add_member(:source_pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "SourcePipelineExecutionArn"))
1665
1682
  CacheHitResult.struct_class = Types::CacheHitResult
1666
1683
 
1684
+ CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
1685
+ CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
1686
+
1687
+ CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
1688
+ CandidateProperties.struct_class = Types::CandidateProperties
1689
+
1667
1690
  CandidateSteps.member = Shapes::ShapeRef.new(shape: AutoMLCandidateStep)
1668
1691
 
1669
1692
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -2253,6 +2276,7 @@ module Aws::SageMaker
2253
2276
  CreateTrainingJobRequest.add_member(:experiment_config, Shapes::ShapeRef.new(shape: ExperimentConfig, location_name: "ExperimentConfig"))
2254
2277
  CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
2255
2278
  CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
2279
+ CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
2256
2280
  CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
2257
2281
 
2258
2282
  CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
@@ -2688,6 +2712,7 @@ module Aws::SageMaker
2688
2712
  DescribeAutoMLJobResponse.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
2689
2713
  DescribeAutoMLJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
2690
2714
  DescribeAutoMLJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
2715
+ DescribeAutoMLJobResponse.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
2691
2716
  DescribeAutoMLJobResponse.add_member(:best_candidate, Shapes::ShapeRef.new(shape: AutoMLCandidate, location_name: "BestCandidate"))
2692
2717
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_status, Shapes::ShapeRef.new(shape: AutoMLJobStatus, required: true, location_name: "AutoMLJobStatus"))
2693
2718
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_secondary_status, Shapes::ShapeRef.new(shape: AutoMLJobSecondaryStatus, required: true, location_name: "AutoMLJobSecondaryStatus"))
@@ -3257,6 +3282,7 @@ module Aws::SageMaker
3257
3282
  DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
3258
3283
  DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
3259
3284
  DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
3285
+ DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
3260
3286
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
3261
3287
 
3262
3288
  DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
@@ -3793,6 +3819,7 @@ module Aws::SageMaker
3793
3819
  Image.struct_class = Types::Image
3794
3820
 
3795
3821
  ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
3822
+ ImageConfig.add_member(:repository_auth_config, Shapes::ShapeRef.new(shape: RepositoryAuthConfig, location_name: "RepositoryAuthConfig"))
3796
3823
  ImageConfig.struct_class = Types::ImageConfig
3797
3824
 
3798
3825
  ImageDeletePropertyList.member = Shapes::ShapeRef.new(shape: ImageDeleteProperty)
@@ -5413,6 +5440,9 @@ module Aws::SageMaker
5413
5440
 
5414
5441
  RenderingErrorList.member = Shapes::ShapeRef.new(shape: RenderingError)
5415
5442
 
5443
+ RepositoryAuthConfig.add_member(:repository_credentials_provider_arn, Shapes::ShapeRef.new(shape: RepositoryCredentialsProviderArn, required: true, location_name: "RepositoryCredentialsProviderArn"))
5444
+ RepositoryAuthConfig.struct_class = Types::RepositoryAuthConfig
5445
+
5416
5446
  ResolvedAttributes.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
5417
5447
  ResolvedAttributes.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
5418
5448
  ResolvedAttributes.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
@@ -5636,6 +5666,9 @@ module Aws::SageMaker
5636
5666
  TrafficRoutingConfig.add_member(:canary_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "CanarySize"))
5637
5667
  TrafficRoutingConfig.struct_class = Types::TrafficRoutingConfig
5638
5668
 
5669
+ TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
5670
+ TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
5671
+
5639
5672
  TrainingInstanceTypes.member = Shapes::ShapeRef.new(shape: TrainingInstanceType)
5640
5673
 
5641
5674
  TrainingJob.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, location_name: "TrainingJobName"))
@@ -5672,6 +5705,7 @@ module Aws::SageMaker
5672
5705
  TrainingJob.add_member(:debug_rule_configurations, Shapes::ShapeRef.new(shape: DebugRuleConfigurations, location_name: "DebugRuleConfigurations"))
5673
5706
  TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
5674
5707
  TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
5708
+ TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
5675
5709
  TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5676
5710
  TrainingJob.struct_class = Types::TrainingJob
5677
5711