aws-sdk-sagemaker 1.65.0 → 1.70.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +3 -2
- data/lib/aws-sdk-sagemaker/client.rb +113 -32
- data/lib/aws-sdk-sagemaker/client_api.rb +10 -0
- data/lib/aws-sdk-sagemaker/types.rb +225 -36
- metadata +4 -4
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 25c8ad1c84f784c05b8e8a1c7ab40c927b85177f54dbdcfd1b3a690d4eb75003
|
4
|
+
data.tar.gz: 4d951953dd6f6f44b113696e2409df8b71058b9264e820f624b2a8979a37ec13
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 4c1b054af1a10a5190579037e6bcb7be93e3fc909c7b8105c8e85408f3bba51af737b5cb9d2f3fccdc26954f9ef38d7516d1ab0d6cfd44a164b75b974b957476
|
7
|
+
data.tar.gz: 3e1fb935f7b6f9368ab687ee70bf12bc96b82c046968a4b281fb007597cb395e8b2e4f55a95229027926ac7754f11263b4fa4af1afe8f5c1bca66d63a9026879
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
# WARNING ABOUT GENERATED CODE
|
9
9
|
|
10
|
+
|
10
11
|
require 'aws-sdk-core'
|
11
12
|
require 'aws-sigv4'
|
12
13
|
|
@@ -45,9 +46,9 @@ require_relative 'aws-sdk-sagemaker/customizations'
|
|
45
46
|
#
|
46
47
|
# See {Errors} for more information.
|
47
48
|
#
|
48
|
-
#
|
49
|
+
# @!group service
|
49
50
|
module Aws::SageMaker
|
50
51
|
|
51
|
-
GEM_VERSION = '1.
|
52
|
+
GEM_VERSION = '1.70.0'
|
52
53
|
|
53
54
|
end
|
@@ -85,13 +85,28 @@ module Aws::SageMaker
|
|
85
85
|
# * `Aws::Credentials` - Used for configuring static, non-refreshing
|
86
86
|
# credentials.
|
87
87
|
#
|
88
|
+
# * `Aws::SharedCredentials` - Used for loading static credentials from a
|
89
|
+
# shared file, such as `~/.aws/config`.
|
90
|
+
#
|
91
|
+
# * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
|
92
|
+
#
|
93
|
+
# * `Aws::AssumeRoleWebIdentityCredentials` - Used when you need to
|
94
|
+
# assume a role after providing credentials via the web.
|
95
|
+
#
|
96
|
+
# * `Aws::SSOCredentials` - Used for loading credentials from AWS SSO using an
|
97
|
+
# access token generated from `aws login`.
|
98
|
+
#
|
99
|
+
# * `Aws::ProcessCredentials` - Used for loading credentials from a
|
100
|
+
# process that outputs to stdout.
|
101
|
+
#
|
88
102
|
# * `Aws::InstanceProfileCredentials` - Used for loading credentials
|
89
103
|
# from an EC2 IMDS on an EC2 instance.
|
90
104
|
#
|
91
|
-
# * `Aws::
|
92
|
-
#
|
105
|
+
# * `Aws::ECSCredentials` - Used for loading credentials from
|
106
|
+
# instances running in ECS.
|
93
107
|
#
|
94
|
-
# * `Aws::
|
108
|
+
# * `Aws::CognitoIdentityCredentials` - Used for loading credentials
|
109
|
+
# from the Cognito Identity service.
|
95
110
|
#
|
96
111
|
# When `:credentials` are not configured directly, the following
|
97
112
|
# locations will be searched for credentials:
|
@@ -101,10 +116,10 @@ module Aws::SageMaker
|
|
101
116
|
# * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
|
102
117
|
# * `~/.aws/credentials`
|
103
118
|
# * `~/.aws/config`
|
104
|
-
# * EC2 IMDS instance profile - When used by default, the timeouts
|
105
|
-
# very aggressive. Construct and pass an instance of
|
106
|
-
# `Aws::InstanceProfileCredentails`
|
107
|
-
# timeouts.
|
119
|
+
# * EC2/ECS IMDS instance profile - When used by default, the timeouts
|
120
|
+
# are very aggressive. Construct and pass an instance of
|
121
|
+
# `Aws::InstanceProfileCredentails` or `Aws::ECSCredentials` to
|
122
|
+
# enable retries and extended timeouts.
|
108
123
|
#
|
109
124
|
# @option options [required, String] :region
|
110
125
|
# The AWS region to connect to. The configured `:region` is
|
@@ -733,7 +748,7 @@ module Aws::SageMaker
|
|
733
748
|
#
|
734
749
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
735
750
|
# Similar to InputDataConfig supported by Tuning. Format(s) supported:
|
736
|
-
# CSV. Minimum of
|
751
|
+
# CSV. Minimum of 500 rows.
|
737
752
|
#
|
738
753
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
739
754
|
# Similar to OutputDataConfig supported by Tuning. Format(s) supported:
|
@@ -970,7 +985,7 @@ module Aws::SageMaker
|
|
970
985
|
# },
|
971
986
|
# output_config: { # required
|
972
987
|
# s3_output_location: "S3Uri", # required
|
973
|
-
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
|
988
|
+
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
|
974
989
|
# target_platform: {
|
975
990
|
# os: "ANDROID", # required, accepts ANDROID, LINUX
|
976
991
|
# arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
|
@@ -997,26 +1012,66 @@ module Aws::SageMaker
|
|
997
1012
|
req.send_request(options)
|
998
1013
|
end
|
999
1014
|
|
1000
|
-
# Creates a `Domain` used by SageMaker Studio. A domain consists
|
1001
|
-
# associated
|
1002
|
-
# security, application, policy, and
|
1003
|
-
# configurations. An AWS account is
|
1004
|
-
# Users within a domain can share
|
1005
|
-
# with each other.
|
1015
|
+
# Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
|
1016
|
+
# of an associated Amazon Elastic File System (EFS) volume, a list of
|
1017
|
+
# authorized users, and a variety of security, application, policy, and
|
1018
|
+
# Amazon Virtual Private Cloud (VPC) configurations. An AWS account is
|
1019
|
+
# limited to one domain per region. Users within a domain can share
|
1020
|
+
# notebook files and other artifacts with each other.
|
1021
|
+
#
|
1022
|
+
# When a domain is created, an EFS volume is created for use by all of
|
1023
|
+
# the users within the domain. Each user receives a private home
|
1024
|
+
# directory within the EFS volume for notebooks, Git repositories, and
|
1025
|
+
# data files.
|
1026
|
+
#
|
1027
|
+
# **VPC configuration**
|
1028
|
+
#
|
1029
|
+
# All SageMaker Studio traffic between the domain and the EFS volume is
|
1030
|
+
# through the specified VPC and subnets. For other Studio traffic, you
|
1031
|
+
# can specify the `AppNetworkAccessType` parameter.
|
1032
|
+
# `AppNetworkAccessType` corresponds to the network access type that you
|
1033
|
+
# choose when you onboard to Studio. The following options are
|
1034
|
+
# available:
|
1035
|
+
#
|
1036
|
+
# * `PublicInternetOnly` - Non-EFS traffic goes through a VPC managed by
|
1037
|
+
# Amazon SageMaker, which allows internet access. This is the default
|
1038
|
+
# value.
|
1039
|
+
#
|
1040
|
+
# * `VpcOnly` - All Studio traffic is through the specified VPC and
|
1041
|
+
# subnets. Internet access is disabled by default. To allow internet
|
1042
|
+
# access, you must specify a NAT gateway.
|
1043
|
+
#
|
1044
|
+
# When internet access is disabled, you won't be able to train or
|
1045
|
+
# host models unless your VPC has an interface endpoint (PrivateLink)
|
1046
|
+
# or a NAT gateway and your security groups allow outbound
|
1047
|
+
# connections.
|
1048
|
+
#
|
1049
|
+
# <b> <code>VpcOnly</code> network access type</b>
|
1006
1050
|
#
|
1007
|
-
# When
|
1008
|
-
# is also created for use by all of the users within the domain. Each
|
1009
|
-
# user receives a private home directory within the EFS for notebooks,
|
1010
|
-
# Git repositories, and data files.
|
1051
|
+
# When you choose `VpcOnly`, you must specify the following:
|
1011
1052
|
#
|
1012
|
-
#
|
1013
|
-
#
|
1014
|
-
# Internet through an Amazon SageMaker system VPC. The EFS traffic uses
|
1015
|
-
# the NFS/TCP protocol over port 2049.
|
1053
|
+
# * Security group inbound and outbound rules to allow NFS traffic over
|
1054
|
+
# TCP on port 2049 between the domain and the EFS volume
|
1016
1055
|
#
|
1017
|
-
#
|
1018
|
-
#
|
1019
|
-
#
|
1056
|
+
# * Security group inbound and outbound rules to allow traffic between
|
1057
|
+
# the JupyterServer app and the KernelGateway apps
|
1058
|
+
#
|
1059
|
+
# * Interface endpoints to access the SageMaker API and SageMaker
|
1060
|
+
# runtime
|
1061
|
+
#
|
1062
|
+
# For more information, see:
|
1063
|
+
#
|
1064
|
+
# * [Security groups for your VPC][1]
|
1065
|
+
#
|
1066
|
+
# * [VPC with public and private subnets (NAT)][2]
|
1067
|
+
#
|
1068
|
+
# * [Connect to SageMaker through a VPC interface endpoint][3]
|
1069
|
+
#
|
1070
|
+
#
|
1071
|
+
#
|
1072
|
+
# [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
|
1073
|
+
# [2]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
|
1074
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html
|
1020
1075
|
#
|
1021
1076
|
# @option params [required, String] :domain_name
|
1022
1077
|
# A name for the domain.
|
@@ -1028,11 +1083,11 @@ module Aws::SageMaker
|
|
1028
1083
|
# The default user settings.
|
1029
1084
|
#
|
1030
1085
|
# @option params [required, Array<String>] :subnet_ids
|
1031
|
-
# The VPC subnets
|
1086
|
+
# The VPC subnets that Studio uses for communication.
|
1032
1087
|
#
|
1033
1088
|
# @option params [required, String] :vpc_id
|
1034
|
-
# The ID of the Amazon Virtual Private Cloud (VPC)
|
1035
|
-
# communication
|
1089
|
+
# The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for
|
1090
|
+
# communication.
|
1036
1091
|
#
|
1037
1092
|
# @option params [Array<Types::Tag>] :tags
|
1038
1093
|
# Tags to associated with the Domain. Each tag consists of a key and an
|
@@ -1043,6 +1098,16 @@ module Aws::SageMaker
|
|
1043
1098
|
# The AWS Key Management Service (KMS) encryption key ID. Encryption
|
1044
1099
|
# with a customer master key (CMK) is not supported.
|
1045
1100
|
#
|
1101
|
+
# @option params [String] :app_network_access_type
|
1102
|
+
# Specifies the VPC used for non-EFS traffic. The default value is
|
1103
|
+
# `PublicInternetOnly`.
|
1104
|
+
#
|
1105
|
+
# * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
|
1106
|
+
# Amazon SageMaker, which allows direct internet access
|
1107
|
+
#
|
1108
|
+
# * `VpcOnly` - All Studio traffic is through the specified VPC and
|
1109
|
+
# subnets
|
1110
|
+
#
|
1046
1111
|
# @return [Types::CreateDomainResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1047
1112
|
#
|
1048
1113
|
# * {Types::CreateDomainResponse#domain_arn #domain_arn} => String
|
@@ -1089,6 +1154,7 @@ module Aws::SageMaker
|
|
1089
1154
|
# },
|
1090
1155
|
# ],
|
1091
1156
|
# home_efs_file_system_kms_key_id: "KmsKeyId",
|
1157
|
+
# app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
|
1092
1158
|
# })
|
1093
1159
|
#
|
1094
1160
|
# @example Response structure
|
@@ -2078,6 +2144,9 @@ module Aws::SageMaker
|
|
2078
2144
|
# s3_data_source: {
|
2079
2145
|
# manifest_s3_uri: "S3Uri", # required
|
2080
2146
|
# },
|
2147
|
+
# sns_data_source: {
|
2148
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
2149
|
+
# },
|
2081
2150
|
# },
|
2082
2151
|
# data_attributes: {
|
2083
2152
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -2086,6 +2155,7 @@ module Aws::SageMaker
|
|
2086
2155
|
# output_config: { # required
|
2087
2156
|
# s3_output_path: "S3Uri", # required
|
2088
2157
|
# kms_key_id: "KmsKeyId",
|
2158
|
+
# sns_topic_arn: "SnsTopicArn",
|
2089
2159
|
# },
|
2090
2160
|
# role_arn: "RoleArn", # required
|
2091
2161
|
# label_category_config_s3_uri: "S3Uri",
|
@@ -2827,6 +2897,12 @@ module Aws::SageMaker
|
|
2827
2897
|
# This operation can only be called when the authentication mode equals
|
2828
2898
|
# IAM.
|
2829
2899
|
#
|
2900
|
+
# <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` is
|
2901
|
+
# valid only for 5 minutes. If you try to use the URL after the 5-minute
|
2902
|
+
# limit expires, you are directed to the AWS console sign-in page.
|
2903
|
+
#
|
2904
|
+
# </note>
|
2905
|
+
#
|
2830
2906
|
# @option params [required, String] :domain_id
|
2831
2907
|
# The domain ID.
|
2832
2908
|
#
|
@@ -5070,7 +5146,7 @@ module Aws::SageMaker
|
|
5070
5146
|
# resp.input_config.data_input_config #=> String
|
5071
5147
|
# resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE"
|
5072
5148
|
# resp.output_config.s3_output_location #=> String
|
5073
|
-
# resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
|
5149
|
+
# resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml"
|
5074
5150
|
# resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
|
5075
5151
|
# resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
|
5076
5152
|
# resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
|
@@ -5107,6 +5183,7 @@ module Aws::SageMaker
|
|
5107
5183
|
# * {Types::DescribeDomainResponse#subnet_ids #subnet_ids} => Array<String>
|
5108
5184
|
# * {Types::DescribeDomainResponse#url #url} => String
|
5109
5185
|
# * {Types::DescribeDomainResponse#vpc_id #vpc_id} => String
|
5186
|
+
# * {Types::DescribeDomainResponse#app_network_access_type #app_network_access_type} => String
|
5110
5187
|
#
|
5111
5188
|
# @example Request syntax with placeholder values
|
5112
5189
|
#
|
@@ -5143,6 +5220,7 @@ module Aws::SageMaker
|
|
5143
5220
|
# resp.subnet_ids[0] #=> String
|
5144
5221
|
# resp.url #=> String
|
5145
5222
|
# resp.vpc_id #=> String
|
5223
|
+
# resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
|
5146
5224
|
#
|
5147
5225
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomain AWS API Documentation
|
5148
5226
|
#
|
@@ -5693,10 +5771,12 @@ module Aws::SageMaker
|
|
5693
5771
|
# resp.labeling_job_arn #=> String
|
5694
5772
|
# resp.label_attribute_name #=> String
|
5695
5773
|
# resp.input_config.data_source.s3_data_source.manifest_s3_uri #=> String
|
5774
|
+
# resp.input_config.data_source.sns_data_source.sns_topic_arn #=> String
|
5696
5775
|
# resp.input_config.data_attributes.content_classifiers #=> Array
|
5697
5776
|
# resp.input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
|
5698
5777
|
# resp.output_config.s3_output_path #=> String
|
5699
5778
|
# resp.output_config.kms_key_id #=> String
|
5779
|
+
# resp.output_config.sns_topic_arn #=> String
|
5700
5780
|
# resp.role_arn #=> String
|
5701
5781
|
# resp.label_category_config_s3_uri #=> String
|
5702
5782
|
# resp.stopping_conditions.max_human_labeled_object_count #=> Integer
|
@@ -7280,7 +7360,7 @@ module Aws::SageMaker
|
|
7280
7360
|
# resp.compilation_job_summaries[0].creation_time #=> Time
|
7281
7361
|
# resp.compilation_job_summaries[0].compilation_start_time #=> Time
|
7282
7362
|
# resp.compilation_job_summaries[0].compilation_end_time #=> Time
|
7283
|
-
# resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
|
7363
|
+
# resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml"
|
7284
7364
|
# resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
|
7285
7365
|
# resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
|
7286
7366
|
# resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
|
@@ -7844,6 +7924,7 @@ module Aws::SageMaker
|
|
7844
7924
|
# resp.labeling_job_summary_list[0].labeling_job_output.output_dataset_s3_uri #=> String
|
7845
7925
|
# resp.labeling_job_summary_list[0].labeling_job_output.final_active_learning_model_arn #=> String
|
7846
7926
|
# resp.labeling_job_summary_list[0].input_config.data_source.s3_data_source.manifest_s3_uri #=> String
|
7927
|
+
# resp.labeling_job_summary_list[0].input_config.data_source.sns_data_source.sns_topic_arn #=> String
|
7847
7928
|
# resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers #=> Array
|
7848
7929
|
# resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
|
7849
7930
|
# resp.next_token #=> String
|
@@ -10973,7 +11054,7 @@ module Aws::SageMaker
|
|
10973
11054
|
params: params,
|
10974
11055
|
config: config)
|
10975
11056
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
10976
|
-
context[:gem_version] = '1.
|
11057
|
+
context[:gem_version] = '1.70.0'
|
10977
11058
|
Seahorse::Client::Request.new(handlers, context)
|
10978
11059
|
end
|
10979
11060
|
|
@@ -37,6 +37,7 @@ module Aws::SageMaker
|
|
37
37
|
AppInstanceType = Shapes::StringShape.new(name: 'AppInstanceType')
|
38
38
|
AppList = Shapes::ListShape.new(name: 'AppList')
|
39
39
|
AppName = Shapes::StringShape.new(name: 'AppName')
|
40
|
+
AppNetworkAccessType = Shapes::StringShape.new(name: 'AppNetworkAccessType')
|
40
41
|
AppSortKey = Shapes::StringShape.new(name: 'AppSortKey')
|
41
42
|
AppSpecification = Shapes::StructureShape.new(name: 'AppSpecification')
|
42
43
|
AppStatus = Shapes::StringShape.new(name: 'AppStatus')
|
@@ -468,6 +469,7 @@ module Aws::SageMaker
|
|
468
469
|
LabelingJobOutputConfig = Shapes::StructureShape.new(name: 'LabelingJobOutputConfig')
|
469
470
|
LabelingJobResourceConfig = Shapes::StructureShape.new(name: 'LabelingJobResourceConfig')
|
470
471
|
LabelingJobS3DataSource = Shapes::StructureShape.new(name: 'LabelingJobS3DataSource')
|
472
|
+
LabelingJobSnsDataSource = Shapes::StructureShape.new(name: 'LabelingJobSnsDataSource')
|
471
473
|
LabelingJobStatus = Shapes::StringShape.new(name: 'LabelingJobStatus')
|
472
474
|
LabelingJobStoppingConditions = Shapes::StructureShape.new(name: 'LabelingJobStoppingConditions')
|
473
475
|
LabelingJobSummary = Shapes::StructureShape.new(name: 'LabelingJobSummary')
|
@@ -770,6 +772,7 @@ module Aws::SageMaker
|
|
770
772
|
SharingSettings = Shapes::StructureShape.new(name: 'SharingSettings')
|
771
773
|
ShuffleConfig = Shapes::StructureShape.new(name: 'ShuffleConfig')
|
772
774
|
SingleSignOnUserIdentifier = Shapes::StringShape.new(name: 'SingleSignOnUserIdentifier')
|
775
|
+
SnsTopicArn = Shapes::StringShape.new(name: 'SnsTopicArn')
|
773
776
|
SortBy = Shapes::StringShape.new(name: 'SortBy')
|
774
777
|
SortExperimentsBy = Shapes::StringShape.new(name: 'SortExperimentsBy')
|
775
778
|
SortOrder = Shapes::StringShape.new(name: 'SortOrder')
|
@@ -1288,6 +1291,7 @@ module Aws::SageMaker
|
|
1288
1291
|
CreateDomainRequest.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, required: true, location_name: "VpcId"))
|
1289
1292
|
CreateDomainRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
1290
1293
|
CreateDomainRequest.add_member(:home_efs_file_system_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "HomeEfsFileSystemKmsKeyId"))
|
1294
|
+
CreateDomainRequest.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
|
1291
1295
|
CreateDomainRequest.struct_class = Types::CreateDomainRequest
|
1292
1296
|
|
1293
1297
|
CreateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
|
@@ -1801,6 +1805,7 @@ module Aws::SageMaker
|
|
1801
1805
|
DescribeDomainResponse.add_member(:subnet_ids, Shapes::ShapeRef.new(shape: Subnets, location_name: "SubnetIds"))
|
1802
1806
|
DescribeDomainResponse.add_member(:url, Shapes::ShapeRef.new(shape: String1024, location_name: "Url"))
|
1803
1807
|
DescribeDomainResponse.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, location_name: "VpcId"))
|
1808
|
+
DescribeDomainResponse.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
|
1804
1809
|
DescribeDomainResponse.struct_class = Types::DescribeDomainResponse
|
1805
1810
|
|
1806
1811
|
DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
|
@@ -2477,6 +2482,7 @@ module Aws::SageMaker
|
|
2477
2482
|
LabelingJobDataAttributes.struct_class = Types::LabelingJobDataAttributes
|
2478
2483
|
|
2479
2484
|
LabelingJobDataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: LabelingJobS3DataSource, location_name: "S3DataSource"))
|
2485
|
+
LabelingJobDataSource.add_member(:sns_data_source, Shapes::ShapeRef.new(shape: LabelingJobSnsDataSource, location_name: "SnsDataSource"))
|
2480
2486
|
LabelingJobDataSource.struct_class = Types::LabelingJobDataSource
|
2481
2487
|
|
2482
2488
|
LabelingJobForWorkteamSummary.add_member(:labeling_job_name, Shapes::ShapeRef.new(shape: LabelingJobName, location_name: "LabelingJobName"))
|
@@ -2499,6 +2505,7 @@ module Aws::SageMaker
|
|
2499
2505
|
|
2500
2506
|
LabelingJobOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
|
2501
2507
|
LabelingJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
|
2508
|
+
LabelingJobOutputConfig.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SnsTopicArn"))
|
2502
2509
|
LabelingJobOutputConfig.struct_class = Types::LabelingJobOutputConfig
|
2503
2510
|
|
2504
2511
|
LabelingJobResourceConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
|
@@ -2507,6 +2514,9 @@ module Aws::SageMaker
|
|
2507
2514
|
LabelingJobS3DataSource.add_member(:manifest_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "ManifestS3Uri"))
|
2508
2515
|
LabelingJobS3DataSource.struct_class = Types::LabelingJobS3DataSource
|
2509
2516
|
|
2517
|
+
LabelingJobSnsDataSource.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, required: true, location_name: "SnsTopicArn"))
|
2518
|
+
LabelingJobSnsDataSource.struct_class = Types::LabelingJobSnsDataSource
|
2519
|
+
|
2510
2520
|
LabelingJobStoppingConditions.add_member(:max_human_labeled_object_count, Shapes::ShapeRef.new(shape: MaxHumanLabeledObjectCount, location_name: "MaxHumanLabeledObjectCount"))
|
2511
2521
|
LabelingJobStoppingConditions.add_member(:max_percentage_of_input_dataset_labeled, Shapes::ShapeRef.new(shape: MaxPercentageOfInputDatasetLabeled, location_name: "MaxPercentageOfInputDatasetLabeled"))
|
2512
2522
|
LabelingJobStoppingConditions.struct_class = Types::LabelingJobStoppingConditions
|
@@ -1455,7 +1455,7 @@ module Aws::SageMaker
|
|
1455
1455
|
# @!attribute [rw] s3_data_source
|
1456
1456
|
# The Amazon S3 location of the input data.
|
1457
1457
|
#
|
1458
|
-
# <note markdown="1"> The input data must be in CSV format and contain at least
|
1458
|
+
# <note markdown="1"> The input data must be in CSV format and contain at least 500 rows.
|
1459
1459
|
#
|
1460
1460
|
# </note>
|
1461
1461
|
# @return [Types::AutoMLS3DataSource]
|
@@ -2356,13 +2356,15 @@ module Aws::SageMaker
|
|
2356
2356
|
# @return [String]
|
2357
2357
|
#
|
2358
2358
|
# @!attribute [rw] image
|
2359
|
-
# The
|
2360
|
-
#
|
2361
|
-
#
|
2362
|
-
#
|
2363
|
-
#
|
2364
|
-
#
|
2365
|
-
#
|
2359
|
+
# The path where inference code is stored. This can be either in
|
2360
|
+
# Amazon EC2 Container Registry or in a Docker registry that is
|
2361
|
+
# accessible from the same VPC that you configure for your endpoint.
|
2362
|
+
# If you are using your own custom algorithm instead of an algorithm
|
2363
|
+
# provided by Amazon SageMaker, the inference code must meet Amazon
|
2364
|
+
# SageMaker requirements. Amazon SageMaker supports both
|
2365
|
+
# `registry/repository[:tag]` and `registry/repository[@digest]` image
|
2366
|
+
# path formats. For more information, see [Using Your Own Algorithms
|
2367
|
+
# with Amazon SageMaker][1]
|
2366
2368
|
#
|
2367
2369
|
#
|
2368
2370
|
#
|
@@ -2371,9 +2373,9 @@ module Aws::SageMaker
|
|
2371
2373
|
#
|
2372
2374
|
# @!attribute [rw] image_config
|
2373
2375
|
# Specifies whether the model container is in Amazon ECR or a private
|
2374
|
-
# Docker registry
|
2375
|
-
# information about storing containers in a private Docker
|
2376
|
-
# see [Use a Private Docker Registry for Real-Time Inference
|
2376
|
+
# Docker registry accessible from your Amazon Virtual Private Cloud
|
2377
|
+
# (VPC). For information about storing containers in a private Docker
|
2378
|
+
# registry, see [Use a Private Docker Registry for Real-Time Inference
|
2377
2379
|
# Containers][1]
|
2378
2380
|
#
|
2379
2381
|
#
|
@@ -2393,6 +2395,11 @@ module Aws::SageMaker
|
|
2393
2395
|
# algorithms. For more information on built-in algorithms, see [Common
|
2394
2396
|
# Parameters][1].
|
2395
2397
|
#
|
2398
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
2399
|
+
# region as the model or endpoint you are creating.
|
2400
|
+
#
|
2401
|
+
# </note>
|
2402
|
+
#
|
2396
2403
|
# If you provide a value for this parameter, Amazon SageMaker uses AWS
|
2397
2404
|
# Security Token Service to download model artifacts from the S3 path
|
2398
2405
|
# you provide. AWS STS is activated in your IAM user account by
|
@@ -2907,7 +2914,7 @@ module Aws::SageMaker
|
|
2907
2914
|
#
|
2908
2915
|
# @!attribute [rw] input_data_config
|
2909
2916
|
# Similar to InputDataConfig supported by Tuning. Format(s) supported:
|
2910
|
-
# CSV. Minimum of
|
2917
|
+
# CSV. Minimum of 500 rows.
|
2911
2918
|
# @return [Array<Types::AutoMLChannel>]
|
2912
2919
|
#
|
2913
2920
|
# @!attribute [rw] output_data_config
|
@@ -3033,7 +3040,7 @@ module Aws::SageMaker
|
|
3033
3040
|
# },
|
3034
3041
|
# output_config: { # required
|
3035
3042
|
# s3_output_location: "S3Uri", # required
|
3036
|
-
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
|
3043
|
+
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
|
3037
3044
|
# target_platform: {
|
3038
3045
|
# os: "ANDROID", # required, accepts ANDROID, LINUX
|
3039
3046
|
# arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
|
@@ -3166,6 +3173,7 @@ module Aws::SageMaker
|
|
3166
3173
|
# },
|
3167
3174
|
# ],
|
3168
3175
|
# home_efs_file_system_kms_key_id: "KmsKeyId",
|
3176
|
+
# app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
|
3169
3177
|
# }
|
3170
3178
|
#
|
3171
3179
|
# @!attribute [rw] domain_name
|
@@ -3181,12 +3189,12 @@ module Aws::SageMaker
|
|
3181
3189
|
# @return [Types::UserSettings]
|
3182
3190
|
#
|
3183
3191
|
# @!attribute [rw] subnet_ids
|
3184
|
-
# The VPC subnets
|
3192
|
+
# The VPC subnets that Studio uses for communication.
|
3185
3193
|
# @return [Array<String>]
|
3186
3194
|
#
|
3187
3195
|
# @!attribute [rw] vpc_id
|
3188
|
-
# The ID of the Amazon Virtual Private Cloud (VPC)
|
3189
|
-
# communication
|
3196
|
+
# The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
|
3197
|
+
# for communication.
|
3190
3198
|
# @return [String]
|
3191
3199
|
#
|
3192
3200
|
# @!attribute [rw] tags
|
@@ -3200,6 +3208,17 @@ module Aws::SageMaker
|
|
3200
3208
|
# with a customer master key (CMK) is not supported.
|
3201
3209
|
# @return [String]
|
3202
3210
|
#
|
3211
|
+
# @!attribute [rw] app_network_access_type
|
3212
|
+
# Specifies the VPC used for non-EFS traffic. The default value is
|
3213
|
+
# `PublicInternetOnly`.
|
3214
|
+
#
|
3215
|
+
# * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
|
3216
|
+
# Amazon SageMaker, which allows direct internet access
|
3217
|
+
#
|
3218
|
+
# * `VpcOnly` - All Studio traffic is through the specified VPC and
|
3219
|
+
# subnets
|
3220
|
+
# @return [String]
|
3221
|
+
#
|
3203
3222
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDomainRequest AWS API Documentation
|
3204
3223
|
#
|
3205
3224
|
class CreateDomainRequest < Struct.new(
|
@@ -3209,7 +3228,8 @@ module Aws::SageMaker
|
|
3209
3228
|
:subnet_ids,
|
3210
3229
|
:vpc_id,
|
3211
3230
|
:tags,
|
3212
|
-
:home_efs_file_system_kms_key_id
|
3231
|
+
:home_efs_file_system_kms_key_id,
|
3232
|
+
:app_network_access_type)
|
3213
3233
|
SENSITIVE = []
|
3214
3234
|
include Aws::Structure
|
3215
3235
|
end
|
@@ -3998,6 +4018,9 @@ module Aws::SageMaker
|
|
3998
4018
|
# s3_data_source: {
|
3999
4019
|
# manifest_s3_uri: "S3Uri", # required
|
4000
4020
|
# },
|
4021
|
+
# sns_data_source: {
|
4022
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
4023
|
+
# },
|
4001
4024
|
# },
|
4002
4025
|
# data_attributes: {
|
4003
4026
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -4006,6 +4029,7 @@ module Aws::SageMaker
|
|
4006
4029
|
# output_config: { # required
|
4007
4030
|
# s3_output_path: "S3Uri", # required
|
4008
4031
|
# kms_key_id: "KmsKeyId",
|
4032
|
+
# sns_topic_arn: "SnsTopicArn",
|
4009
4033
|
# },
|
4010
4034
|
# role_arn: "RoleArn", # required
|
4011
4035
|
# label_category_config_s3_uri: "S3Uri",
|
@@ -7517,7 +7541,7 @@ module Aws::SageMaker
|
|
7517
7541
|
# @return [String]
|
7518
7542
|
#
|
7519
7543
|
# @!attribute [rw] subnet_ids
|
7520
|
-
#
|
7544
|
+
# The VPC subnets that Studio uses for communication.
|
7521
7545
|
# @return [Array<String>]
|
7522
7546
|
#
|
7523
7547
|
# @!attribute [rw] url
|
@@ -7525,7 +7549,19 @@ module Aws::SageMaker
|
|
7525
7549
|
# @return [String]
|
7526
7550
|
#
|
7527
7551
|
# @!attribute [rw] vpc_id
|
7528
|
-
# The ID of the Amazon Virtual Private Cloud
|
7552
|
+
# The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
|
7553
|
+
# for communication.
|
7554
|
+
# @return [String]
|
7555
|
+
#
|
7556
|
+
# @!attribute [rw] app_network_access_type
|
7557
|
+
# Specifies the VPC used for non-EFS traffic. The default value is
|
7558
|
+
# `PublicInternetOnly`.
|
7559
|
+
#
|
7560
|
+
# * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
|
7561
|
+
# Amazon SageMaker, which allows direct internet access
|
7562
|
+
#
|
7563
|
+
# * `VpcOnly` - All Studio traffic is through the specified VPC and
|
7564
|
+
# subnets
|
7529
7565
|
# @return [String]
|
7530
7566
|
#
|
7531
7567
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomainResponse AWS API Documentation
|
@@ -7545,7 +7581,8 @@ module Aws::SageMaker
|
|
7545
7581
|
:home_efs_file_system_kms_key_id,
|
7546
7582
|
:subnet_ids,
|
7547
7583
|
:url,
|
7548
|
-
:vpc_id
|
7584
|
+
:vpc_id,
|
7585
|
+
:app_network_access_type)
|
7549
7586
|
SENSITIVE = []
|
7550
7587
|
include Aws::Structure
|
7551
7588
|
end
|
@@ -10655,12 +10692,13 @@ module Aws::SageMaker
|
|
10655
10692
|
# @return [Integer]
|
10656
10693
|
#
|
10657
10694
|
# @!attribute [rw] task_availability_lifetime_in_seconds
|
10658
|
-
# The length of time that a task remains available for
|
10659
|
-
#
|
10695
|
+
# The length of time that a task remains available for review by human
|
10696
|
+
# workers.
|
10660
10697
|
# @return [Integer]
|
10661
10698
|
#
|
10662
10699
|
# @!attribute [rw] task_time_limit_in_seconds
|
10663
|
-
# The amount of time that a worker has to complete a task.
|
10700
|
+
# The amount of time that a worker has to complete a task. The default
|
10701
|
+
# value is 3,600 seconds (1 hour)
|
10664
10702
|
# @return [Integer]
|
10665
10703
|
#
|
10666
10704
|
# @!attribute [rw] task_keywords
|
@@ -12479,7 +12517,8 @@ module Aws::SageMaker
|
|
12479
12517
|
end
|
12480
12518
|
|
12481
12519
|
# Specifies whether the model container is in Amazon ECR or a private
|
12482
|
-
# Docker registry
|
12520
|
+
# Docker registry accessible from your Amazon Virtual Private Cloud
|
12521
|
+
# (VPC).
|
12483
12522
|
#
|
12484
12523
|
# @note When making an API call, you may pass ImageConfig
|
12485
12524
|
# data as a hash:
|
@@ -12493,7 +12532,7 @@ module Aws::SageMaker
|
|
12493
12532
|
#
|
12494
12533
|
# * `Platform` - The model image is hosted in Amazon ECR.
|
12495
12534
|
#
|
12496
|
-
# * `
|
12535
|
+
# * `Vpc` - The model image is hosted in a private Docker registry in
|
12497
12536
|
# your VPC.
|
12498
12537
|
# @return [String]
|
12499
12538
|
#
|
@@ -12672,6 +12711,76 @@ module Aws::SageMaker
|
|
12672
12711
|
# [1,3,224,224]]`
|
12673
12712
|
#
|
12674
12713
|
# * `XGBOOST`\: input data name and shape are not needed.
|
12714
|
+
#
|
12715
|
+
# `DataInputConfig` supports the following parameters for `CoreML`
|
12716
|
+
# OutputConfig$TargetDevice (ML Model format):
|
12717
|
+
#
|
12718
|
+
# * `shape`\: Input shape, for example `\{"input_1": \{"shape":
|
12719
|
+
# [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
|
12720
|
+
# converter supports Flexible input shapes:
|
12721
|
+
#
|
12722
|
+
# * Range Dimension. You can use the Range Dimension feature if you
|
12723
|
+
# know the input shape will be within some specific interval in
|
12724
|
+
# that dimension, for example: `\{"input_1": \{"shape": ["1..10",
|
12725
|
+
# 224, 224, 3]\}\}`
|
12726
|
+
#
|
12727
|
+
# * Enumerated shapes. Sometimes, the models are trained to work
|
12728
|
+
# only on a select set of inputs. You can enumerate all supported
|
12729
|
+
# input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
|
12730
|
+
# 224, 3], [1, 160, 160, 3]]\}\}`
|
12731
|
+
#
|
12732
|
+
# * `default_shape`\: Default input shape. You can set a default shape
|
12733
|
+
# during conversion for both Range Dimension and Enumerated Shapes.
|
12734
|
+
# For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
|
12735
|
+
# "default_shape": [1, 224, 224, 3]\}\}`
|
12736
|
+
#
|
12737
|
+
# * `type`\: Input type. Allowed values: `Image` and `Tensor`. By
|
12738
|
+
# default, the converter generates an ML Model with inputs of type
|
12739
|
+
# Tensor (MultiArray). User can set input type to be Image. Image
|
12740
|
+
# input type requires additional input parameters such as `bias` and
|
12741
|
+
# `scale`.
|
12742
|
+
#
|
12743
|
+
# * `bias`\: If the input type is an Image, you need to provide the
|
12744
|
+
# bias vector.
|
12745
|
+
#
|
12746
|
+
# * `scale`\: If the input type is an Image, you need to provide a
|
12747
|
+
# scale factor.
|
12748
|
+
#
|
12749
|
+
# CoreML `ClassifierConfig` parameters can be specified using
|
12750
|
+
# OutputConfig$CompilerOptions. CoreML converter supports Tensorflow
|
12751
|
+
# and PyTorch models. CoreML conversion examples:
|
12752
|
+
#
|
12753
|
+
# * Tensor type input:
|
12754
|
+
#
|
12755
|
+
# * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
|
12756
|
+
# [1,160,160,3]], "default_shape": [1,224,224,3]\}\}`
|
12757
|
+
#
|
12758
|
+
# ^
|
12759
|
+
#
|
12760
|
+
# * Tensor type input without input name (PyTorch):
|
12761
|
+
#
|
12762
|
+
# * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
|
12763
|
+
# "default_shape": [1,3,224,224]\}]`
|
12764
|
+
#
|
12765
|
+
# ^
|
12766
|
+
#
|
12767
|
+
# * Image type input:
|
12768
|
+
#
|
12769
|
+
# * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
|
12770
|
+
# [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
|
12771
|
+
# "bias": [-1,-1,-1], "scale": 0.007843137255\}\}`
|
12772
|
+
#
|
12773
|
+
# * `"CompilerOptions": \{"class_labels":
|
12774
|
+
# "imagenet_labels_1000.txt"\}`
|
12775
|
+
#
|
12776
|
+
# * Image type input without input name (PyTorch):
|
12777
|
+
#
|
12778
|
+
# * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
|
12779
|
+
# "default_shape": [1,3,224,224], "type": "Image", "bias":
|
12780
|
+
# [-1,-1,-1], "scale": 0.007843137255\}]`
|
12781
|
+
#
|
12782
|
+
# * `"CompilerOptions": \{"class_labels":
|
12783
|
+
# "imagenet_labels_1000.txt"\}`
|
12675
12784
|
# @return [String]
|
12676
12785
|
#
|
12677
12786
|
# @!attribute [rw] framework
|
@@ -12928,10 +13037,10 @@ module Aws::SageMaker
|
|
12928
13037
|
# @return [String]
|
12929
13038
|
#
|
12930
13039
|
# @!attribute [rw] initial_active_learning_model_arn
|
12931
|
-
# At the end of an auto-label job
|
12932
|
-
#
|
12933
|
-
#
|
12934
|
-
#
|
13040
|
+
# At the end of an auto-label job Ground Truth sends the Amazon
|
13041
|
+
# Resource Name (ARN) of the final model used for auto-labeling. You
|
13042
|
+
# can use this model as the starting point for subsequent similar jobs
|
13043
|
+
# by providing the ARN of the model here.
|
12935
13044
|
# @return [String]
|
12936
13045
|
#
|
12937
13046
|
# @!attribute [rw] labeling_job_resource_config
|
@@ -12975,6 +13084,18 @@ module Aws::SageMaker
|
|
12975
13084
|
|
12976
13085
|
# Provides information about the location of input data.
|
12977
13086
|
#
|
13087
|
+
# You must specify at least one of the following: `S3DataSource` or
|
13088
|
+
# `SnsDataSource`.
|
13089
|
+
#
|
13090
|
+
# Use `SnsDataSource` to specify an SNS input topic for a streaming
|
13091
|
+
# labeling job. If you do not specify and SNS input topic ARN, Ground
|
13092
|
+
# Truth will create a one-time labeling job.
|
13093
|
+
#
|
13094
|
+
# Use `S3DataSource` to specify an input manifest file for both
|
13095
|
+
# streaming and one-time labeling jobs. Adding an `S3DataSource` is
|
13096
|
+
# optional if you use `SnsDataSource` to create a streaming labeling
|
13097
|
+
# job.
|
13098
|
+
#
|
12978
13099
|
# @note When making an API call, you may pass LabelingJobDataSource
|
12979
13100
|
# data as a hash:
|
12980
13101
|
#
|
@@ -12982,16 +13103,24 @@ module Aws::SageMaker
|
|
12982
13103
|
# s3_data_source: {
|
12983
13104
|
# manifest_s3_uri: "S3Uri", # required
|
12984
13105
|
# },
|
13106
|
+
# sns_data_source: {
|
13107
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13108
|
+
# },
|
12985
13109
|
# }
|
12986
13110
|
#
|
12987
13111
|
# @!attribute [rw] s3_data_source
|
12988
13112
|
# The Amazon S3 location of the input data objects.
|
12989
13113
|
# @return [Types::LabelingJobS3DataSource]
|
12990
13114
|
#
|
13115
|
+
# @!attribute [rw] sns_data_source
|
13116
|
+
# An Amazon SNS data source used for streaming labeling jobs.
|
13117
|
+
# @return [Types::LabelingJobSnsDataSource]
|
13118
|
+
#
|
12991
13119
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
|
12992
13120
|
#
|
12993
13121
|
class LabelingJobDataSource < Struct.new(
|
12994
|
-
:s3_data_source
|
13122
|
+
:s3_data_source,
|
13123
|
+
:sns_data_source)
|
12995
13124
|
SENSITIVE = []
|
12996
13125
|
include Aws::Structure
|
12997
13126
|
end
|
@@ -13045,6 +13174,9 @@ module Aws::SageMaker
|
|
13045
13174
|
# s3_data_source: {
|
13046
13175
|
# manifest_s3_uri: "S3Uri", # required
|
13047
13176
|
# },
|
13177
|
+
# sns_data_source: {
|
13178
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13179
|
+
# },
|
13048
13180
|
# },
|
13049
13181
|
# data_attributes: {
|
13050
13182
|
# content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
|
@@ -13096,6 +13228,7 @@ module Aws::SageMaker
|
|
13096
13228
|
# {
|
13097
13229
|
# s3_output_path: "S3Uri", # required
|
13098
13230
|
# kms_key_id: "KmsKeyId",
|
13231
|
+
# sns_topic_arn: "SnsTopicArn",
|
13099
13232
|
# }
|
13100
13233
|
#
|
13101
13234
|
# @!attribute [rw] s3_output_path
|
@@ -13129,11 +13262,22 @@ module Aws::SageMaker
|
|
13129
13262
|
# [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
13130
13263
|
# @return [String]
|
13131
13264
|
#
|
13265
|
+
# @!attribute [rw] sns_topic_arn
|
13266
|
+
# An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
|
13267
|
+
#
|
13268
|
+
# When workers complete labeling tasks, Ground Truth will send
|
13269
|
+
# labeling task output data to the SNS output topic you specify here.
|
13270
|
+
#
|
13271
|
+
# You must provide a value for this parameter if you provide an Amazon
|
13272
|
+
# SNS input topic in `SnsDataSource` in `InputConfig`.
|
13273
|
+
# @return [String]
|
13274
|
+
#
|
13132
13275
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
|
13133
13276
|
#
|
13134
13277
|
class LabelingJobOutputConfig < Struct.new(
|
13135
13278
|
:s3_output_path,
|
13136
|
-
:kms_key_id
|
13279
|
+
:kms_key_id,
|
13280
|
+
:sns_topic_arn)
|
13137
13281
|
SENSITIVE = []
|
13138
13282
|
include Aws::Structure
|
13139
13283
|
end
|
@@ -13192,6 +13336,32 @@ module Aws::SageMaker
|
|
13192
13336
|
include Aws::Structure
|
13193
13337
|
end
|
13194
13338
|
|
13339
|
+
# An Amazon SNS data source used for streaming labeling jobs.
|
13340
|
+
#
|
13341
|
+
# @note When making an API call, you may pass LabelingJobSnsDataSource
|
13342
|
+
# data as a hash:
|
13343
|
+
#
|
13344
|
+
# {
|
13345
|
+
# sns_topic_arn: "SnsTopicArn", # required
|
13346
|
+
# }
|
13347
|
+
#
|
13348
|
+
# @!attribute [rw] sns_topic_arn
|
13349
|
+
# The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
|
13350
|
+
# ARN of the input topic you will use to send new data objects to a
|
13351
|
+
# streaming labeling job.
|
13352
|
+
#
|
13353
|
+
# If you specify an input topic for `SnsTopicArn` in `InputConfig`,
|
13354
|
+
# you must specify a value for `SnsTopicArn` in `OutputConfig`.
|
13355
|
+
# @return [String]
|
13356
|
+
#
|
13357
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
|
13358
|
+
#
|
13359
|
+
class LabelingJobSnsDataSource < Struct.new(
|
13360
|
+
:sns_topic_arn)
|
13361
|
+
SENSITIVE = []
|
13362
|
+
include Aws::Structure
|
13363
|
+
end
|
13364
|
+
|
13195
13365
|
# A set of conditions for stopping a labeling job. If any of the
|
13196
13366
|
# conditions are met, the job is automatically stopped. You can use
|
13197
13367
|
# these conditions to control the cost of data labeling.
|
@@ -16213,6 +16383,11 @@ module Aws::SageMaker
|
|
16213
16383
|
# The Amazon S3 path where the model artifacts, which result from
|
16214
16384
|
# model training, are stored. This path must point to a single `gzip`
|
16215
16385
|
# compressed tar archive (`.tar.gz` suffix).
|
16386
|
+
#
|
16387
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
16388
|
+
# region as the model package.
|
16389
|
+
#
|
16390
|
+
# </note>
|
16216
16391
|
# @return [String]
|
16217
16392
|
#
|
16218
16393
|
# @!attribute [rw] product_id
|
@@ -17599,7 +17774,7 @@ module Aws::SageMaker
|
|
17599
17774
|
#
|
17600
17775
|
# {
|
17601
17776
|
# s3_output_location: "S3Uri", # required
|
17602
|
-
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
|
17777
|
+
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
|
17603
17778
|
# target_platform: {
|
17604
17779
|
# os: "ANDROID", # required, accepts ANDROID, LINUX
|
17605
17780
|
# arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
|
@@ -17673,7 +17848,7 @@ module Aws::SageMaker
|
|
17673
17848
|
# @!attribute [rw] compiler_options
|
17674
17849
|
# Specifies additional parameters for compiler options in JSON format.
|
17675
17850
|
# The compiler options are `TargetPlatform` specific. It is required
|
17676
|
-
# for NVIDIA accelerators and highly recommended for CPU
|
17851
|
+
# for NVIDIA accelerators and highly recommended for CPU compilations.
|
17677
17852
|
# For any other cases, it is optional to specify `CompilerOptions.`
|
17678
17853
|
#
|
17679
17854
|
# * `CPU`\: Compilation for CPU supports the following compiler
|
@@ -17715,6 +17890,16 @@ module Aws::SageMaker
|
|
17715
17890
|
#
|
17716
17891
|
# * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
|
17717
17892
|
# compiling for ARM 32-bit platform with NEON support.
|
17893
|
+
#
|
17894
|
+
# * `CoreML`\: Compilation for the CoreML OutputConfig$TargetDevice
|
17895
|
+
# supports the following compiler options:
|
17896
|
+
#
|
17897
|
+
# * `class_labels`\: Specifies the classification labels file name
|
17898
|
+
# inside input tar.gz file. For example, `\{"class_labels":
|
17899
|
+
# "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
|
17900
|
+
# be separated by newlines.
|
17901
|
+
#
|
17902
|
+
# ^
|
17718
17903
|
# @return [String]
|
17719
17904
|
#
|
17720
17905
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputConfig AWS API Documentation
|
@@ -19762,8 +19947,7 @@ module Aws::SageMaker
|
|
19762
19947
|
#
|
19763
19948
|
# @!attribute [rw] s3_output_path
|
19764
19949
|
# When `NotebookOutputOption` is `Allowed`, the Amazon S3 bucket used
|
19765
|
-
# to save the notebook cell output.
|
19766
|
-
# specified, a default bucket is used.
|
19950
|
+
# to save the notebook cell output.
|
19767
19951
|
# @return [String]
|
19768
19952
|
#
|
19769
19953
|
# @!attribute [rw] s3_kms_key_id
|
@@ -19835,6 +20019,11 @@ module Aws::SageMaker
|
|
19835
20019
|
# The Amazon S3 path where the model artifacts, which result from
|
19836
20020
|
# model training, are stored. This path must point to a single `gzip`
|
19837
20021
|
# compressed tar archive (`.tar.gz` suffix).
|
20022
|
+
#
|
20023
|
+
# <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
|
20024
|
+
# region as the algorithm.
|
20025
|
+
#
|
20026
|
+
# </note>
|
19838
20027
|
# @return [String]
|
19839
20028
|
#
|
19840
20029
|
# @!attribute [rw] algorithm_name
|
@@ -22029,7 +22218,7 @@ module Aws::SageMaker
|
|
22029
22218
|
# @return [Types::ProcessingJob]
|
22030
22219
|
#
|
22031
22220
|
# @!attribute [rw] transform_job
|
22032
|
-
# Information about a transform job that's the source of
|
22221
|
+
# Information about a transform job that's the source of a trial
|
22033
22222
|
# component.
|
22034
22223
|
# @return [Types::TransformJob]
|
22035
22224
|
#
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.70.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-08
|
11
|
+
date: 2020-10-08 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|
@@ -19,7 +19,7 @@ dependencies:
|
|
19
19
|
version: '3'
|
20
20
|
- - ">="
|
21
21
|
- !ruby/object:Gem::Version
|
22
|
-
version: 3.
|
22
|
+
version: 3.109.0
|
23
23
|
type: :runtime
|
24
24
|
prerelease: false
|
25
25
|
version_requirements: !ruby/object:Gem::Requirement
|
@@ -29,7 +29,7 @@ dependencies:
|
|
29
29
|
version: '3'
|
30
30
|
- - ">="
|
31
31
|
- !ruby/object:Gem::Version
|
32
|
-
version: 3.
|
32
|
+
version: 3.109.0
|
33
33
|
- !ruby/object:Gem::Dependency
|
34
34
|
name: aws-sigv4
|
35
35
|
requirement: !ruby/object:Gem::Requirement
|