aws-sdk-sagemaker 1.65.0 → 1.70.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 1a1c931c2dc95bba468a38e688ee465d1e8599e7611b0b3c0c79a447079d10fb
4
- data.tar.gz: e177c68cc1945756067ac07cbe72e922ec5c2c8e5730ea0ecc5b95983fa56bf6
3
+ metadata.gz: 25c8ad1c84f784c05b8e8a1c7ab40c927b85177f54dbdcfd1b3a690d4eb75003
4
+ data.tar.gz: 4d951953dd6f6f44b113696e2409df8b71058b9264e820f624b2a8979a37ec13
5
5
  SHA512:
6
- metadata.gz: 983ea0dd343d800edb0b11e78fa7361f05d63e581b0eab87743e1bf3f1863b0c5a460955c9839c8fa49928024bc4c78ee26616060af23f50d04b1376a74024f8
7
- data.tar.gz: 8c516283745189e247a21e14a84a263c5fd510ea29b77790112896b72d34dd379c03ed51a8d7aafbe1753bf15aea84e751e4ebe2567950240d21b6cdd779c1cc
6
+ metadata.gz: 4c1b054af1a10a5190579037e6bcb7be93e3fc909c7b8105c8e85408f3bba51af737b5cb9d2f3fccdc26954f9ef38d7516d1ab0d6cfd44a164b75b974b957476
7
+ data.tar.gz: 3e1fb935f7b6f9368ab687ee70bf12bc96b82c046968a4b281fb007597cb395e8b2e4f55a95229027926ac7754f11263b4fa4af1afe8f5c1bca66d63a9026879
@@ -7,6 +7,7 @@
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
10
+
10
11
  require 'aws-sdk-core'
11
12
  require 'aws-sigv4'
12
13
 
@@ -45,9 +46,9 @@ require_relative 'aws-sdk-sagemaker/customizations'
45
46
  #
46
47
  # See {Errors} for more information.
47
48
  #
48
- # @service
49
+ # @!group service
49
50
  module Aws::SageMaker
50
51
 
51
- GEM_VERSION = '1.65.0'
52
+ GEM_VERSION = '1.70.0'
52
53
 
53
54
  end
@@ -85,13 +85,28 @@ module Aws::SageMaker
85
85
  # * `Aws::Credentials` - Used for configuring static, non-refreshing
86
86
  # credentials.
87
87
  #
88
+ # * `Aws::SharedCredentials` - Used for loading static credentials from a
89
+ # shared file, such as `~/.aws/config`.
90
+ #
91
+ # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
92
+ #
93
+ # * `Aws::AssumeRoleWebIdentityCredentials` - Used when you need to
94
+ # assume a role after providing credentials via the web.
95
+ #
96
+ # * `Aws::SSOCredentials` - Used for loading credentials from AWS SSO using an
97
+ # access token generated from `aws login`.
98
+ #
99
+ # * `Aws::ProcessCredentials` - Used for loading credentials from a
100
+ # process that outputs to stdout.
101
+ #
88
102
  # * `Aws::InstanceProfileCredentials` - Used for loading credentials
89
103
  # from an EC2 IMDS on an EC2 instance.
90
104
  #
91
- # * `Aws::SharedCredentials` - Used for loading credentials from a
92
- # shared file, such as `~/.aws/config`.
105
+ # * `Aws::ECSCredentials` - Used for loading credentials from
106
+ # instances running in ECS.
93
107
  #
94
- # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
108
+ # * `Aws::CognitoIdentityCredentials` - Used for loading credentials
109
+ # from the Cognito Identity service.
95
110
  #
96
111
  # When `:credentials` are not configured directly, the following
97
112
  # locations will be searched for credentials:
@@ -101,10 +116,10 @@ module Aws::SageMaker
101
116
  # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
102
117
  # * `~/.aws/credentials`
103
118
  # * `~/.aws/config`
104
- # * EC2 IMDS instance profile - When used by default, the timeouts are
105
- # very aggressive. Construct and pass an instance of
106
- # `Aws::InstanceProfileCredentails` to enable retries and extended
107
- # timeouts.
119
+ # * EC2/ECS IMDS instance profile - When used by default, the timeouts
120
+ # are very aggressive. Construct and pass an instance of
121
+ # `Aws::InstanceProfileCredentails` or `Aws::ECSCredentials` to
122
+ # enable retries and extended timeouts.
108
123
  #
109
124
  # @option options [required, String] :region
110
125
  # The AWS region to connect to. The configured `:region` is
@@ -733,7 +748,7 @@ module Aws::SageMaker
733
748
  #
734
749
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
735
750
  # Similar to InputDataConfig supported by Tuning. Format(s) supported:
736
- # CSV. Minimum of 1000 rows.
751
+ # CSV. Minimum of 500 rows.
737
752
  #
738
753
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
739
754
  # Similar to OutputDataConfig supported by Tuning. Format(s) supported:
@@ -970,7 +985,7 @@ module Aws::SageMaker
970
985
  # },
971
986
  # output_config: { # required
972
987
  # s3_output_location: "S3Uri", # required
973
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
988
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
974
989
  # target_platform: {
975
990
  # os: "ANDROID", # required, accepts ANDROID, LINUX
976
991
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -997,26 +1012,66 @@ module Aws::SageMaker
997
1012
  req.send_request(options)
998
1013
  end
999
1014
 
1000
- # Creates a `Domain` used by SageMaker Studio. A domain consists of an
1001
- # associated directory, a list of authorized users, and a variety of
1002
- # security, application, policy, and Amazon Virtual Private Cloud (VPC)
1003
- # configurations. An AWS account is limited to one domain per region.
1004
- # Users within a domain can share notebook files and other artifacts
1005
- # with each other.
1015
+ # Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
1016
+ # of an associated Amazon Elastic File System (EFS) volume, a list of
1017
+ # authorized users, and a variety of security, application, policy, and
1018
+ # Amazon Virtual Private Cloud (VPC) configurations. An AWS account is
1019
+ # limited to one domain per region. Users within a domain can share
1020
+ # notebook files and other artifacts with each other.
1021
+ #
1022
+ # When a domain is created, an EFS volume is created for use by all of
1023
+ # the users within the domain. Each user receives a private home
1024
+ # directory within the EFS volume for notebooks, Git repositories, and
1025
+ # data files.
1026
+ #
1027
+ # **VPC configuration**
1028
+ #
1029
+ # All SageMaker Studio traffic between the domain and the EFS volume is
1030
+ # through the specified VPC and subnets. For other Studio traffic, you
1031
+ # can specify the `AppNetworkAccessType` parameter.
1032
+ # `AppNetworkAccessType` corresponds to the network access type that you
1033
+ # choose when you onboard to Studio. The following options are
1034
+ # available:
1035
+ #
1036
+ # * `PublicInternetOnly` - Non-EFS traffic goes through a VPC managed by
1037
+ # Amazon SageMaker, which allows internet access. This is the default
1038
+ # value.
1039
+ #
1040
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
1041
+ # subnets. Internet access is disabled by default. To allow internet
1042
+ # access, you must specify a NAT gateway.
1043
+ #
1044
+ # When internet access is disabled, you won't be able to train or
1045
+ # host models unless your VPC has an interface endpoint (PrivateLink)
1046
+ # or a NAT gateway and your security groups allow outbound
1047
+ # connections.
1048
+ #
1049
+ # <b> <code>VpcOnly</code> network access type</b>
1006
1050
  #
1007
- # When a domain is created, an Amazon Elastic File System (EFS) volume
1008
- # is also created for use by all of the users within the domain. Each
1009
- # user receives a private home directory within the EFS for notebooks,
1010
- # Git repositories, and data files.
1051
+ # When you choose `VpcOnly`, you must specify the following:
1011
1052
  #
1012
- # All traffic between the domain and the EFS volume is communicated
1013
- # through the specified subnet IDs. All other traffic goes over the
1014
- # Internet through an Amazon SageMaker system VPC. The EFS traffic uses
1015
- # the NFS/TCP protocol over port 2049.
1053
+ # * Security group inbound and outbound rules to allow NFS traffic over
1054
+ # TCP on port 2049 between the domain and the EFS volume
1016
1055
  #
1017
- # NFS traffic over TCP on port 2049 needs to be allowed in both inbound
1018
- # and outbound rules in order to launch a SageMaker Studio app
1019
- # successfully.
1056
+ # * Security group inbound and outbound rules to allow traffic between
1057
+ # the JupyterServer app and the KernelGateway apps
1058
+ #
1059
+ # * Interface endpoints to access the SageMaker API and SageMaker
1060
+ # runtime
1061
+ #
1062
+ # For more information, see:
1063
+ #
1064
+ # * [Security groups for your VPC][1]
1065
+ #
1066
+ # * [VPC with public and private subnets (NAT)][2]
1067
+ #
1068
+ # * [Connect to SageMaker through a VPC interface endpoint][3]
1069
+ #
1070
+ #
1071
+ #
1072
+ # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
1073
+ # [2]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
1074
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html
1020
1075
  #
1021
1076
  # @option params [required, String] :domain_name
1022
1077
  # A name for the domain.
@@ -1028,11 +1083,11 @@ module Aws::SageMaker
1028
1083
  # The default user settings.
1029
1084
  #
1030
1085
  # @option params [required, Array<String>] :subnet_ids
1031
- # The VPC subnets to use for communication with the EFS volume.
1086
+ # The VPC subnets that Studio uses for communication.
1032
1087
  #
1033
1088
  # @option params [required, String] :vpc_id
1034
- # The ID of the Amazon Virtual Private Cloud (VPC) to use for
1035
- # communication with the EFS volume.
1089
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for
1090
+ # communication.
1036
1091
  #
1037
1092
  # @option params [Array<Types::Tag>] :tags
1038
1093
  # Tags to associated with the Domain. Each tag consists of a key and an
@@ -1043,6 +1098,16 @@ module Aws::SageMaker
1043
1098
  # The AWS Key Management Service (KMS) encryption key ID. Encryption
1044
1099
  # with a customer master key (CMK) is not supported.
1045
1100
  #
1101
+ # @option params [String] :app_network_access_type
1102
+ # Specifies the VPC used for non-EFS traffic. The default value is
1103
+ # `PublicInternetOnly`.
1104
+ #
1105
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
1106
+ # Amazon SageMaker, which allows direct internet access
1107
+ #
1108
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
1109
+ # subnets
1110
+ #
1046
1111
  # @return [Types::CreateDomainResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1047
1112
  #
1048
1113
  # * {Types::CreateDomainResponse#domain_arn #domain_arn} => String
@@ -1089,6 +1154,7 @@ module Aws::SageMaker
1089
1154
  # },
1090
1155
  # ],
1091
1156
  # home_efs_file_system_kms_key_id: "KmsKeyId",
1157
+ # app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
1092
1158
  # })
1093
1159
  #
1094
1160
  # @example Response structure
@@ -2078,6 +2144,9 @@ module Aws::SageMaker
2078
2144
  # s3_data_source: {
2079
2145
  # manifest_s3_uri: "S3Uri", # required
2080
2146
  # },
2147
+ # sns_data_source: {
2148
+ # sns_topic_arn: "SnsTopicArn", # required
2149
+ # },
2081
2150
  # },
2082
2151
  # data_attributes: {
2083
2152
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -2086,6 +2155,7 @@ module Aws::SageMaker
2086
2155
  # output_config: { # required
2087
2156
  # s3_output_path: "S3Uri", # required
2088
2157
  # kms_key_id: "KmsKeyId",
2158
+ # sns_topic_arn: "SnsTopicArn",
2089
2159
  # },
2090
2160
  # role_arn: "RoleArn", # required
2091
2161
  # label_category_config_s3_uri: "S3Uri",
@@ -2827,6 +2897,12 @@ module Aws::SageMaker
2827
2897
  # This operation can only be called when the authentication mode equals
2828
2898
  # IAM.
2829
2899
  #
2900
+ # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` is
2901
+ # valid only for 5 minutes. If you try to use the URL after the 5-minute
2902
+ # limit expires, you are directed to the AWS console sign-in page.
2903
+ #
2904
+ # </note>
2905
+ #
2830
2906
  # @option params [required, String] :domain_id
2831
2907
  # The domain ID.
2832
2908
  #
@@ -5070,7 +5146,7 @@ module Aws::SageMaker
5070
5146
  # resp.input_config.data_input_config #=> String
5071
5147
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE"
5072
5148
  # resp.output_config.s3_output_location #=> String
5073
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
5149
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml"
5074
5150
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
5075
5151
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
5076
5152
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -5107,6 +5183,7 @@ module Aws::SageMaker
5107
5183
  # * {Types::DescribeDomainResponse#subnet_ids #subnet_ids} => Array&lt;String&gt;
5108
5184
  # * {Types::DescribeDomainResponse#url #url} => String
5109
5185
  # * {Types::DescribeDomainResponse#vpc_id #vpc_id} => String
5186
+ # * {Types::DescribeDomainResponse#app_network_access_type #app_network_access_type} => String
5110
5187
  #
5111
5188
  # @example Request syntax with placeholder values
5112
5189
  #
@@ -5143,6 +5220,7 @@ module Aws::SageMaker
5143
5220
  # resp.subnet_ids[0] #=> String
5144
5221
  # resp.url #=> String
5145
5222
  # resp.vpc_id #=> String
5223
+ # resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
5146
5224
  #
5147
5225
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomain AWS API Documentation
5148
5226
  #
@@ -5693,10 +5771,12 @@ module Aws::SageMaker
5693
5771
  # resp.labeling_job_arn #=> String
5694
5772
  # resp.label_attribute_name #=> String
5695
5773
  # resp.input_config.data_source.s3_data_source.manifest_s3_uri #=> String
5774
+ # resp.input_config.data_source.sns_data_source.sns_topic_arn #=> String
5696
5775
  # resp.input_config.data_attributes.content_classifiers #=> Array
5697
5776
  # resp.input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
5698
5777
  # resp.output_config.s3_output_path #=> String
5699
5778
  # resp.output_config.kms_key_id #=> String
5779
+ # resp.output_config.sns_topic_arn #=> String
5700
5780
  # resp.role_arn #=> String
5701
5781
  # resp.label_category_config_s3_uri #=> String
5702
5782
  # resp.stopping_conditions.max_human_labeled_object_count #=> Integer
@@ -7280,7 +7360,7 @@ module Aws::SageMaker
7280
7360
  # resp.compilation_job_summaries[0].creation_time #=> Time
7281
7361
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
7282
7362
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
7283
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
7363
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml"
7284
7364
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
7285
7365
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7286
7366
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -7844,6 +7924,7 @@ module Aws::SageMaker
7844
7924
  # resp.labeling_job_summary_list[0].labeling_job_output.output_dataset_s3_uri #=> String
7845
7925
  # resp.labeling_job_summary_list[0].labeling_job_output.final_active_learning_model_arn #=> String
7846
7926
  # resp.labeling_job_summary_list[0].input_config.data_source.s3_data_source.manifest_s3_uri #=> String
7927
+ # resp.labeling_job_summary_list[0].input_config.data_source.sns_data_source.sns_topic_arn #=> String
7847
7928
  # resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers #=> Array
7848
7929
  # resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
7849
7930
  # resp.next_token #=> String
@@ -10973,7 +11054,7 @@ module Aws::SageMaker
10973
11054
  params: params,
10974
11055
  config: config)
10975
11056
  context[:gem_name] = 'aws-sdk-sagemaker'
10976
- context[:gem_version] = '1.65.0'
11057
+ context[:gem_version] = '1.70.0'
10977
11058
  Seahorse::Client::Request.new(handlers, context)
10978
11059
  end
10979
11060
 
@@ -37,6 +37,7 @@ module Aws::SageMaker
37
37
  AppInstanceType = Shapes::StringShape.new(name: 'AppInstanceType')
38
38
  AppList = Shapes::ListShape.new(name: 'AppList')
39
39
  AppName = Shapes::StringShape.new(name: 'AppName')
40
+ AppNetworkAccessType = Shapes::StringShape.new(name: 'AppNetworkAccessType')
40
41
  AppSortKey = Shapes::StringShape.new(name: 'AppSortKey')
41
42
  AppSpecification = Shapes::StructureShape.new(name: 'AppSpecification')
42
43
  AppStatus = Shapes::StringShape.new(name: 'AppStatus')
@@ -468,6 +469,7 @@ module Aws::SageMaker
468
469
  LabelingJobOutputConfig = Shapes::StructureShape.new(name: 'LabelingJobOutputConfig')
469
470
  LabelingJobResourceConfig = Shapes::StructureShape.new(name: 'LabelingJobResourceConfig')
470
471
  LabelingJobS3DataSource = Shapes::StructureShape.new(name: 'LabelingJobS3DataSource')
472
+ LabelingJobSnsDataSource = Shapes::StructureShape.new(name: 'LabelingJobSnsDataSource')
471
473
  LabelingJobStatus = Shapes::StringShape.new(name: 'LabelingJobStatus')
472
474
  LabelingJobStoppingConditions = Shapes::StructureShape.new(name: 'LabelingJobStoppingConditions')
473
475
  LabelingJobSummary = Shapes::StructureShape.new(name: 'LabelingJobSummary')
@@ -770,6 +772,7 @@ module Aws::SageMaker
770
772
  SharingSettings = Shapes::StructureShape.new(name: 'SharingSettings')
771
773
  ShuffleConfig = Shapes::StructureShape.new(name: 'ShuffleConfig')
772
774
  SingleSignOnUserIdentifier = Shapes::StringShape.new(name: 'SingleSignOnUserIdentifier')
775
+ SnsTopicArn = Shapes::StringShape.new(name: 'SnsTopicArn')
773
776
  SortBy = Shapes::StringShape.new(name: 'SortBy')
774
777
  SortExperimentsBy = Shapes::StringShape.new(name: 'SortExperimentsBy')
775
778
  SortOrder = Shapes::StringShape.new(name: 'SortOrder')
@@ -1288,6 +1291,7 @@ module Aws::SageMaker
1288
1291
  CreateDomainRequest.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, required: true, location_name: "VpcId"))
1289
1292
  CreateDomainRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1290
1293
  CreateDomainRequest.add_member(:home_efs_file_system_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "HomeEfsFileSystemKmsKeyId"))
1294
+ CreateDomainRequest.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
1291
1295
  CreateDomainRequest.struct_class = Types::CreateDomainRequest
1292
1296
 
1293
1297
  CreateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
@@ -1801,6 +1805,7 @@ module Aws::SageMaker
1801
1805
  DescribeDomainResponse.add_member(:subnet_ids, Shapes::ShapeRef.new(shape: Subnets, location_name: "SubnetIds"))
1802
1806
  DescribeDomainResponse.add_member(:url, Shapes::ShapeRef.new(shape: String1024, location_name: "Url"))
1803
1807
  DescribeDomainResponse.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, location_name: "VpcId"))
1808
+ DescribeDomainResponse.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
1804
1809
  DescribeDomainResponse.struct_class = Types::DescribeDomainResponse
1805
1810
 
1806
1811
  DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
@@ -2477,6 +2482,7 @@ module Aws::SageMaker
2477
2482
  LabelingJobDataAttributes.struct_class = Types::LabelingJobDataAttributes
2478
2483
 
2479
2484
  LabelingJobDataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: LabelingJobS3DataSource, location_name: "S3DataSource"))
2485
+ LabelingJobDataSource.add_member(:sns_data_source, Shapes::ShapeRef.new(shape: LabelingJobSnsDataSource, location_name: "SnsDataSource"))
2480
2486
  LabelingJobDataSource.struct_class = Types::LabelingJobDataSource
2481
2487
 
2482
2488
  LabelingJobForWorkteamSummary.add_member(:labeling_job_name, Shapes::ShapeRef.new(shape: LabelingJobName, location_name: "LabelingJobName"))
@@ -2499,6 +2505,7 @@ module Aws::SageMaker
2499
2505
 
2500
2506
  LabelingJobOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
2501
2507
  LabelingJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
2508
+ LabelingJobOutputConfig.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SnsTopicArn"))
2502
2509
  LabelingJobOutputConfig.struct_class = Types::LabelingJobOutputConfig
2503
2510
 
2504
2511
  LabelingJobResourceConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
@@ -2507,6 +2514,9 @@ module Aws::SageMaker
2507
2514
  LabelingJobS3DataSource.add_member(:manifest_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "ManifestS3Uri"))
2508
2515
  LabelingJobS3DataSource.struct_class = Types::LabelingJobS3DataSource
2509
2516
 
2517
+ LabelingJobSnsDataSource.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, required: true, location_name: "SnsTopicArn"))
2518
+ LabelingJobSnsDataSource.struct_class = Types::LabelingJobSnsDataSource
2519
+
2510
2520
  LabelingJobStoppingConditions.add_member(:max_human_labeled_object_count, Shapes::ShapeRef.new(shape: MaxHumanLabeledObjectCount, location_name: "MaxHumanLabeledObjectCount"))
2511
2521
  LabelingJobStoppingConditions.add_member(:max_percentage_of_input_dataset_labeled, Shapes::ShapeRef.new(shape: MaxPercentageOfInputDatasetLabeled, location_name: "MaxPercentageOfInputDatasetLabeled"))
2512
2522
  LabelingJobStoppingConditions.struct_class = Types::LabelingJobStoppingConditions
@@ -1455,7 +1455,7 @@ module Aws::SageMaker
1455
1455
  # @!attribute [rw] s3_data_source
1456
1456
  # The Amazon S3 location of the input data.
1457
1457
  #
1458
- # <note markdown="1"> The input data must be in CSV format and contain at least 1000 rows.
1458
+ # <note markdown="1"> The input data must be in CSV format and contain at least 500 rows.
1459
1459
  #
1460
1460
  # </note>
1461
1461
  # @return [Types::AutoMLS3DataSource]
@@ -2356,13 +2356,15 @@ module Aws::SageMaker
2356
2356
  # @return [String]
2357
2357
  #
2358
2358
  # @!attribute [rw] image
2359
- # The Amazon EC2 Container Registry (Amazon ECR) path where inference
2360
- # code is stored. If you are using your own custom algorithm instead
2361
- # of an algorithm provided by Amazon SageMaker, the inference code
2362
- # must meet Amazon SageMaker requirements. Amazon SageMaker supports
2363
- # both `registry/repository[:tag]` and `registry/repository[@digest]`
2364
- # image path formats. For more information, see [Using Your Own
2365
- # Algorithms with Amazon SageMaker][1]
2359
+ # The path where inference code is stored. This can be either in
2360
+ # Amazon EC2 Container Registry or in a Docker registry that is
2361
+ # accessible from the same VPC that you configure for your endpoint.
2362
+ # If you are using your own custom algorithm instead of an algorithm
2363
+ # provided by Amazon SageMaker, the inference code must meet Amazon
2364
+ # SageMaker requirements. Amazon SageMaker supports both
2365
+ # `registry/repository[:tag]` and `registry/repository[@digest]` image
2366
+ # path formats. For more information, see [Using Your Own Algorithms
2367
+ # with Amazon SageMaker][1]
2366
2368
  #
2367
2369
  #
2368
2370
  #
@@ -2371,9 +2373,9 @@ module Aws::SageMaker
2371
2373
  #
2372
2374
  # @!attribute [rw] image_config
2373
2375
  # Specifies whether the model container is in Amazon ECR or a private
2374
- # Docker registry in your Amazon Virtual Private Cloud (VPC). For
2375
- # information about storing containers in a private Docker registry,
2376
- # see [Use a Private Docker Registry for Real-Time Inference
2376
+ # Docker registry accessible from your Amazon Virtual Private Cloud
2377
+ # (VPC). For information about storing containers in a private Docker
2378
+ # registry, see [Use a Private Docker Registry for Real-Time Inference
2377
2379
  # Containers][1]
2378
2380
  #
2379
2381
  #
@@ -2393,6 +2395,11 @@ module Aws::SageMaker
2393
2395
  # algorithms. For more information on built-in algorithms, see [Common
2394
2396
  # Parameters][1].
2395
2397
  #
2398
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
2399
+ # region as the model or endpoint you are creating.
2400
+ #
2401
+ # </note>
2402
+ #
2396
2403
  # If you provide a value for this parameter, Amazon SageMaker uses AWS
2397
2404
  # Security Token Service to download model artifacts from the S3 path
2398
2405
  # you provide. AWS STS is activated in your IAM user account by
@@ -2907,7 +2914,7 @@ module Aws::SageMaker
2907
2914
  #
2908
2915
  # @!attribute [rw] input_data_config
2909
2916
  # Similar to InputDataConfig supported by Tuning. Format(s) supported:
2910
- # CSV. Minimum of 1000 rows.
2917
+ # CSV. Minimum of 500 rows.
2911
2918
  # @return [Array<Types::AutoMLChannel>]
2912
2919
  #
2913
2920
  # @!attribute [rw] output_data_config
@@ -3033,7 +3040,7 @@ module Aws::SageMaker
3033
3040
  # },
3034
3041
  # output_config: { # required
3035
3042
  # s3_output_location: "S3Uri", # required
3036
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
3043
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
3037
3044
  # target_platform: {
3038
3045
  # os: "ANDROID", # required, accepts ANDROID, LINUX
3039
3046
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -3166,6 +3173,7 @@ module Aws::SageMaker
3166
3173
  # },
3167
3174
  # ],
3168
3175
  # home_efs_file_system_kms_key_id: "KmsKeyId",
3176
+ # app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
3169
3177
  # }
3170
3178
  #
3171
3179
  # @!attribute [rw] domain_name
@@ -3181,12 +3189,12 @@ module Aws::SageMaker
3181
3189
  # @return [Types::UserSettings]
3182
3190
  #
3183
3191
  # @!attribute [rw] subnet_ids
3184
- # The VPC subnets to use for communication with the EFS volume.
3192
+ # The VPC subnets that Studio uses for communication.
3185
3193
  # @return [Array<String>]
3186
3194
  #
3187
3195
  # @!attribute [rw] vpc_id
3188
- # The ID of the Amazon Virtual Private Cloud (VPC) to use for
3189
- # communication with the EFS volume.
3196
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
3197
+ # for communication.
3190
3198
  # @return [String]
3191
3199
  #
3192
3200
  # @!attribute [rw] tags
@@ -3200,6 +3208,17 @@ module Aws::SageMaker
3200
3208
  # with a customer master key (CMK) is not supported.
3201
3209
  # @return [String]
3202
3210
  #
3211
+ # @!attribute [rw] app_network_access_type
3212
+ # Specifies the VPC used for non-EFS traffic. The default value is
3213
+ # `PublicInternetOnly`.
3214
+ #
3215
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
3216
+ # Amazon SageMaker, which allows direct internet access
3217
+ #
3218
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
3219
+ # subnets
3220
+ # @return [String]
3221
+ #
3203
3222
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDomainRequest AWS API Documentation
3204
3223
  #
3205
3224
  class CreateDomainRequest < Struct.new(
@@ -3209,7 +3228,8 @@ module Aws::SageMaker
3209
3228
  :subnet_ids,
3210
3229
  :vpc_id,
3211
3230
  :tags,
3212
- :home_efs_file_system_kms_key_id)
3231
+ :home_efs_file_system_kms_key_id,
3232
+ :app_network_access_type)
3213
3233
  SENSITIVE = []
3214
3234
  include Aws::Structure
3215
3235
  end
@@ -3998,6 +4018,9 @@ module Aws::SageMaker
3998
4018
  # s3_data_source: {
3999
4019
  # manifest_s3_uri: "S3Uri", # required
4000
4020
  # },
4021
+ # sns_data_source: {
4022
+ # sns_topic_arn: "SnsTopicArn", # required
4023
+ # },
4001
4024
  # },
4002
4025
  # data_attributes: {
4003
4026
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -4006,6 +4029,7 @@ module Aws::SageMaker
4006
4029
  # output_config: { # required
4007
4030
  # s3_output_path: "S3Uri", # required
4008
4031
  # kms_key_id: "KmsKeyId",
4032
+ # sns_topic_arn: "SnsTopicArn",
4009
4033
  # },
4010
4034
  # role_arn: "RoleArn", # required
4011
4035
  # label_category_config_s3_uri: "S3Uri",
@@ -7517,7 +7541,7 @@ module Aws::SageMaker
7517
7541
  # @return [String]
7518
7542
  #
7519
7543
  # @!attribute [rw] subnet_ids
7520
- # Security setting to limit to a set of subnets.
7544
+ # The VPC subnets that Studio uses for communication.
7521
7545
  # @return [Array<String>]
7522
7546
  #
7523
7547
  # @!attribute [rw] url
@@ -7525,7 +7549,19 @@ module Aws::SageMaker
7525
7549
  # @return [String]
7526
7550
  #
7527
7551
  # @!attribute [rw] vpc_id
7528
- # The ID of the Amazon Virtual Private Cloud.
7552
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
7553
+ # for communication.
7554
+ # @return [String]
7555
+ #
7556
+ # @!attribute [rw] app_network_access_type
7557
+ # Specifies the VPC used for non-EFS traffic. The default value is
7558
+ # `PublicInternetOnly`.
7559
+ #
7560
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
7561
+ # Amazon SageMaker, which allows direct internet access
7562
+ #
7563
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
7564
+ # subnets
7529
7565
  # @return [String]
7530
7566
  #
7531
7567
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomainResponse AWS API Documentation
@@ -7545,7 +7581,8 @@ module Aws::SageMaker
7545
7581
  :home_efs_file_system_kms_key_id,
7546
7582
  :subnet_ids,
7547
7583
  :url,
7548
- :vpc_id)
7584
+ :vpc_id,
7585
+ :app_network_access_type)
7549
7586
  SENSITIVE = []
7550
7587
  include Aws::Structure
7551
7588
  end
@@ -10655,12 +10692,13 @@ module Aws::SageMaker
10655
10692
  # @return [Integer]
10656
10693
  #
10657
10694
  # @!attribute [rw] task_availability_lifetime_in_seconds
10658
- # The length of time that a task remains available for labeling by
10659
- # human workers.
10695
+ # The length of time that a task remains available for review by human
10696
+ # workers.
10660
10697
  # @return [Integer]
10661
10698
  #
10662
10699
  # @!attribute [rw] task_time_limit_in_seconds
10663
- # The amount of time that a worker has to complete a task.
10700
+ # The amount of time that a worker has to complete a task. The default
10701
+ # value is 3,600 seconds (1 hour)
10664
10702
  # @return [Integer]
10665
10703
  #
10666
10704
  # @!attribute [rw] task_keywords
@@ -12479,7 +12517,8 @@ module Aws::SageMaker
12479
12517
  end
12480
12518
 
12481
12519
  # Specifies whether the model container is in Amazon ECR or a private
12482
- # Docker registry in your Amazon Virtual Private Cloud (VPC).
12520
+ # Docker registry accessible from your Amazon Virtual Private Cloud
12521
+ # (VPC).
12483
12522
  #
12484
12523
  # @note When making an API call, you may pass ImageConfig
12485
12524
  # data as a hash:
@@ -12493,7 +12532,7 @@ module Aws::SageMaker
12493
12532
  #
12494
12533
  # * `Platform` - The model image is hosted in Amazon ECR.
12495
12534
  #
12496
- # * `VPC` - The model image is hosted in a private Docker registry in
12535
+ # * `Vpc` - The model image is hosted in a private Docker registry in
12497
12536
  # your VPC.
12498
12537
  # @return [String]
12499
12538
  #
@@ -12672,6 +12711,76 @@ module Aws::SageMaker
12672
12711
  # [1,3,224,224]]`
12673
12712
  #
12674
12713
  # * `XGBOOST`\: input data name and shape are not needed.
12714
+ #
12715
+ # `DataInputConfig` supports the following parameters for `CoreML`
12716
+ # OutputConfig$TargetDevice (ML Model format):
12717
+ #
12718
+ # * `shape`\: Input shape, for example `\{"input_1": \{"shape":
12719
+ # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
12720
+ # converter supports Flexible input shapes:
12721
+ #
12722
+ # * Range Dimension. You can use the Range Dimension feature if you
12723
+ # know the input shape will be within some specific interval in
12724
+ # that dimension, for example: `\{"input_1": \{"shape": ["1..10",
12725
+ # 224, 224, 3]\}\}`
12726
+ #
12727
+ # * Enumerated shapes. Sometimes, the models are trained to work
12728
+ # only on a select set of inputs. You can enumerate all supported
12729
+ # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
12730
+ # 224, 3], [1, 160, 160, 3]]\}\}`
12731
+ #
12732
+ # * `default_shape`\: Default input shape. You can set a default shape
12733
+ # during conversion for both Range Dimension and Enumerated Shapes.
12734
+ # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
12735
+ # "default_shape": [1, 224, 224, 3]\}\}`
12736
+ #
12737
+ # * `type`\: Input type. Allowed values: `Image` and `Tensor`. By
12738
+ # default, the converter generates an ML Model with inputs of type
12739
+ # Tensor (MultiArray). User can set input type to be Image. Image
12740
+ # input type requires additional input parameters such as `bias` and
12741
+ # `scale`.
12742
+ #
12743
+ # * `bias`\: If the input type is an Image, you need to provide the
12744
+ # bias vector.
12745
+ #
12746
+ # * `scale`\: If the input type is an Image, you need to provide a
12747
+ # scale factor.
12748
+ #
12749
+ # CoreML `ClassifierConfig` parameters can be specified using
12750
+ # OutputConfig$CompilerOptions. CoreML converter supports Tensorflow
12751
+ # and PyTorch models. CoreML conversion examples:
12752
+ #
12753
+ # * Tensor type input:
12754
+ #
12755
+ # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
12756
+ # [1,160,160,3]], "default_shape": [1,224,224,3]\}\}`
12757
+ #
12758
+ # ^
12759
+ #
12760
+ # * Tensor type input without input name (PyTorch):
12761
+ #
12762
+ # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
12763
+ # "default_shape": [1,3,224,224]\}]`
12764
+ #
12765
+ # ^
12766
+ #
12767
+ # * Image type input:
12768
+ #
12769
+ # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
12770
+ # [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
12771
+ # "bias": [-1,-1,-1], "scale": 0.007843137255\}\}`
12772
+ #
12773
+ # * `"CompilerOptions": \{"class_labels":
12774
+ # "imagenet_labels_1000.txt"\}`
12775
+ #
12776
+ # * Image type input without input name (PyTorch):
12777
+ #
12778
+ # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
12779
+ # "default_shape": [1,3,224,224], "type": "Image", "bias":
12780
+ # [-1,-1,-1], "scale": 0.007843137255\}]`
12781
+ #
12782
+ # * `"CompilerOptions": \{"class_labels":
12783
+ # "imagenet_labels_1000.txt"\}`
12675
12784
  # @return [String]
12676
12785
  #
12677
12786
  # @!attribute [rw] framework
@@ -12928,10 +13037,10 @@ module Aws::SageMaker
12928
13037
  # @return [String]
12929
13038
  #
12930
13039
  # @!attribute [rw] initial_active_learning_model_arn
12931
- # At the end of an auto-label job Amazon SageMaker Ground Truth sends
12932
- # the Amazon Resource Nam (ARN) of the final model used for
12933
- # auto-labeling. You can use this model as the starting point for
12934
- # subsequent similar jobs by providing the ARN of the model here.
13040
+ # At the end of an auto-label job Ground Truth sends the Amazon
13041
+ # Resource Name (ARN) of the final model used for auto-labeling. You
13042
+ # can use this model as the starting point for subsequent similar jobs
13043
+ # by providing the ARN of the model here.
12935
13044
  # @return [String]
12936
13045
  #
12937
13046
  # @!attribute [rw] labeling_job_resource_config
@@ -12975,6 +13084,18 @@ module Aws::SageMaker
12975
13084
 
12976
13085
  # Provides information about the location of input data.
12977
13086
  #
13087
+ # You must specify at least one of the following: `S3DataSource` or
13088
+ # `SnsDataSource`.
13089
+ #
13090
+ # Use `SnsDataSource` to specify an SNS input topic for a streaming
13091
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
13092
+ # Truth will create a one-time labeling job.
13093
+ #
13094
+ # Use `S3DataSource` to specify an input manifest file for both
13095
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
13096
+ # optional if you use `SnsDataSource` to create a streaming labeling
13097
+ # job.
13098
+ #
12978
13099
  # @note When making an API call, you may pass LabelingJobDataSource
12979
13100
  # data as a hash:
12980
13101
  #
@@ -12982,16 +13103,24 @@ module Aws::SageMaker
12982
13103
  # s3_data_source: {
12983
13104
  # manifest_s3_uri: "S3Uri", # required
12984
13105
  # },
13106
+ # sns_data_source: {
13107
+ # sns_topic_arn: "SnsTopicArn", # required
13108
+ # },
12985
13109
  # }
12986
13110
  #
12987
13111
  # @!attribute [rw] s3_data_source
12988
13112
  # The Amazon S3 location of the input data objects.
12989
13113
  # @return [Types::LabelingJobS3DataSource]
12990
13114
  #
13115
+ # @!attribute [rw] sns_data_source
13116
+ # An Amazon SNS data source used for streaming labeling jobs.
13117
+ # @return [Types::LabelingJobSnsDataSource]
13118
+ #
12991
13119
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
12992
13120
  #
12993
13121
  class LabelingJobDataSource < Struct.new(
12994
- :s3_data_source)
13122
+ :s3_data_source,
13123
+ :sns_data_source)
12995
13124
  SENSITIVE = []
12996
13125
  include Aws::Structure
12997
13126
  end
@@ -13045,6 +13174,9 @@ module Aws::SageMaker
13045
13174
  # s3_data_source: {
13046
13175
  # manifest_s3_uri: "S3Uri", # required
13047
13176
  # },
13177
+ # sns_data_source: {
13178
+ # sns_topic_arn: "SnsTopicArn", # required
13179
+ # },
13048
13180
  # },
13049
13181
  # data_attributes: {
13050
13182
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -13096,6 +13228,7 @@ module Aws::SageMaker
13096
13228
  # {
13097
13229
  # s3_output_path: "S3Uri", # required
13098
13230
  # kms_key_id: "KmsKeyId",
13231
+ # sns_topic_arn: "SnsTopicArn",
13099
13232
  # }
13100
13233
  #
13101
13234
  # @!attribute [rw] s3_output_path
@@ -13129,11 +13262,22 @@ module Aws::SageMaker
13129
13262
  # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
13130
13263
  # @return [String]
13131
13264
  #
13265
+ # @!attribute [rw] sns_topic_arn
13266
+ # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
13267
+ #
13268
+ # When workers complete labeling tasks, Ground Truth will send
13269
+ # labeling task output data to the SNS output topic you specify here.
13270
+ #
13271
+ # You must provide a value for this parameter if you provide an Amazon
13272
+ # SNS input topic in `SnsDataSource` in `InputConfig`.
13273
+ # @return [String]
13274
+ #
13132
13275
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
13133
13276
  #
13134
13277
  class LabelingJobOutputConfig < Struct.new(
13135
13278
  :s3_output_path,
13136
- :kms_key_id)
13279
+ :kms_key_id,
13280
+ :sns_topic_arn)
13137
13281
  SENSITIVE = []
13138
13282
  include Aws::Structure
13139
13283
  end
@@ -13192,6 +13336,32 @@ module Aws::SageMaker
13192
13336
  include Aws::Structure
13193
13337
  end
13194
13338
 
13339
+ # An Amazon SNS data source used for streaming labeling jobs.
13340
+ #
13341
+ # @note When making an API call, you may pass LabelingJobSnsDataSource
13342
+ # data as a hash:
13343
+ #
13344
+ # {
13345
+ # sns_topic_arn: "SnsTopicArn", # required
13346
+ # }
13347
+ #
13348
+ # @!attribute [rw] sns_topic_arn
13349
+ # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
13350
+ # ARN of the input topic you will use to send new data objects to a
13351
+ # streaming labeling job.
13352
+ #
13353
+ # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
13354
+ # you must specify a value for `SnsTopicArn` in `OutputConfig`.
13355
+ # @return [String]
13356
+ #
13357
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
13358
+ #
13359
+ class LabelingJobSnsDataSource < Struct.new(
13360
+ :sns_topic_arn)
13361
+ SENSITIVE = []
13362
+ include Aws::Structure
13363
+ end
13364
+
13195
13365
  # A set of conditions for stopping a labeling job. If any of the
13196
13366
  # conditions are met, the job is automatically stopped. You can use
13197
13367
  # these conditions to control the cost of data labeling.
@@ -16213,6 +16383,11 @@ module Aws::SageMaker
16213
16383
  # The Amazon S3 path where the model artifacts, which result from
16214
16384
  # model training, are stored. This path must point to a single `gzip`
16215
16385
  # compressed tar archive (`.tar.gz` suffix).
16386
+ #
16387
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
16388
+ # region as the model package.
16389
+ #
16390
+ # </note>
16216
16391
  # @return [String]
16217
16392
  #
16218
16393
  # @!attribute [rw] product_id
@@ -17599,7 +17774,7 @@ module Aws::SageMaker
17599
17774
  #
17600
17775
  # {
17601
17776
  # s3_output_location: "S3Uri", # required
17602
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
17777
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
17603
17778
  # target_platform: {
17604
17779
  # os: "ANDROID", # required, accepts ANDROID, LINUX
17605
17780
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -17673,7 +17848,7 @@ module Aws::SageMaker
17673
17848
  # @!attribute [rw] compiler_options
17674
17849
  # Specifies additional parameters for compiler options in JSON format.
17675
17850
  # The compiler options are `TargetPlatform` specific. It is required
17676
- # for NVIDIA accelerators and highly recommended for CPU compliations.
17851
+ # for NVIDIA accelerators and highly recommended for CPU compilations.
17677
17852
  # For any other cases, it is optional to specify `CompilerOptions.`
17678
17853
  #
17679
17854
  # * `CPU`\: Compilation for CPU supports the following compiler
@@ -17715,6 +17890,16 @@ module Aws::SageMaker
17715
17890
  #
17716
17891
  # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
17717
17892
  # compiling for ARM 32-bit platform with NEON support.
17893
+ #
17894
+ # * `CoreML`\: Compilation for the CoreML OutputConfig$TargetDevice
17895
+ # supports the following compiler options:
17896
+ #
17897
+ # * `class_labels`\: Specifies the classification labels file name
17898
+ # inside input tar.gz file. For example, `\{"class_labels":
17899
+ # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
17900
+ # be separated by newlines.
17901
+ #
17902
+ # ^
17718
17903
  # @return [String]
17719
17904
  #
17720
17905
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputConfig AWS API Documentation
@@ -19762,8 +19947,7 @@ module Aws::SageMaker
19762
19947
  #
19763
19948
  # @!attribute [rw] s3_output_path
19764
19949
  # When `NotebookOutputOption` is `Allowed`, the Amazon S3 bucket used
19765
- # to save the notebook cell output. If `S3OutputPath` isn't
19766
- # specified, a default bucket is used.
19950
+ # to save the notebook cell output.
19767
19951
  # @return [String]
19768
19952
  #
19769
19953
  # @!attribute [rw] s3_kms_key_id
@@ -19835,6 +20019,11 @@ module Aws::SageMaker
19835
20019
  # The Amazon S3 path where the model artifacts, which result from
19836
20020
  # model training, are stored. This path must point to a single `gzip`
19837
20021
  # compressed tar archive (`.tar.gz` suffix).
20022
+ #
20023
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
20024
+ # region as the algorithm.
20025
+ #
20026
+ # </note>
19838
20027
  # @return [String]
19839
20028
  #
19840
20029
  # @!attribute [rw] algorithm_name
@@ -22029,7 +22218,7 @@ module Aws::SageMaker
22029
22218
  # @return [Types::ProcessingJob]
22030
22219
  #
22031
22220
  # @!attribute [rw] transform_job
22032
- # Information about a transform job that's the source of the trial
22221
+ # Information about a transform job that's the source of a trial
22033
22222
  # component.
22034
22223
  # @return [Types::TransformJob]
22035
22224
  #
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.65.0
4
+ version: 1.70.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-08-14 00:00:00.000000000 Z
11
+ date: 2020-10-08 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.99.0
22
+ version: 3.109.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.99.0
32
+ version: 3.109.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement