aws-sdk-sagemaker 1.65.0 → 1.70.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 1a1c931c2dc95bba468a38e688ee465d1e8599e7611b0b3c0c79a447079d10fb
4
- data.tar.gz: e177c68cc1945756067ac07cbe72e922ec5c2c8e5730ea0ecc5b95983fa56bf6
3
+ metadata.gz: 25c8ad1c84f784c05b8e8a1c7ab40c927b85177f54dbdcfd1b3a690d4eb75003
4
+ data.tar.gz: 4d951953dd6f6f44b113696e2409df8b71058b9264e820f624b2a8979a37ec13
5
5
  SHA512:
6
- metadata.gz: 983ea0dd343d800edb0b11e78fa7361f05d63e581b0eab87743e1bf3f1863b0c5a460955c9839c8fa49928024bc4c78ee26616060af23f50d04b1376a74024f8
7
- data.tar.gz: 8c516283745189e247a21e14a84a263c5fd510ea29b77790112896b72d34dd379c03ed51a8d7aafbe1753bf15aea84e751e4ebe2567950240d21b6cdd779c1cc
6
+ metadata.gz: 4c1b054af1a10a5190579037e6bcb7be93e3fc909c7b8105c8e85408f3bba51af737b5cb9d2f3fccdc26954f9ef38d7516d1ab0d6cfd44a164b75b974b957476
7
+ data.tar.gz: 3e1fb935f7b6f9368ab687ee70bf12bc96b82c046968a4b281fb007597cb395e8b2e4f55a95229027926ac7754f11263b4fa4af1afe8f5c1bca66d63a9026879
@@ -7,6 +7,7 @@
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
10
+
10
11
  require 'aws-sdk-core'
11
12
  require 'aws-sigv4'
12
13
 
@@ -45,9 +46,9 @@ require_relative 'aws-sdk-sagemaker/customizations'
45
46
  #
46
47
  # See {Errors} for more information.
47
48
  #
48
- # @service
49
+ # @!group service
49
50
  module Aws::SageMaker
50
51
 
51
- GEM_VERSION = '1.65.0'
52
+ GEM_VERSION = '1.70.0'
52
53
 
53
54
  end
@@ -85,13 +85,28 @@ module Aws::SageMaker
85
85
  # * `Aws::Credentials` - Used for configuring static, non-refreshing
86
86
  # credentials.
87
87
  #
88
+ # * `Aws::SharedCredentials` - Used for loading static credentials from a
89
+ # shared file, such as `~/.aws/config`.
90
+ #
91
+ # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
92
+ #
93
+ # * `Aws::AssumeRoleWebIdentityCredentials` - Used when you need to
94
+ # assume a role after providing credentials via the web.
95
+ #
96
+ # * `Aws::SSOCredentials` - Used for loading credentials from AWS SSO using an
97
+ # access token generated from `aws login`.
98
+ #
99
+ # * `Aws::ProcessCredentials` - Used for loading credentials from a
100
+ # process that outputs to stdout.
101
+ #
88
102
  # * `Aws::InstanceProfileCredentials` - Used for loading credentials
89
103
  # from an EC2 IMDS on an EC2 instance.
90
104
  #
91
- # * `Aws::SharedCredentials` - Used for loading credentials from a
92
- # shared file, such as `~/.aws/config`.
105
+ # * `Aws::ECSCredentials` - Used for loading credentials from
106
+ # instances running in ECS.
93
107
  #
94
- # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
108
+ # * `Aws::CognitoIdentityCredentials` - Used for loading credentials
109
+ # from the Cognito Identity service.
95
110
  #
96
111
  # When `:credentials` are not configured directly, the following
97
112
  # locations will be searched for credentials:
@@ -101,10 +116,10 @@ module Aws::SageMaker
101
116
  # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
102
117
  # * `~/.aws/credentials`
103
118
  # * `~/.aws/config`
104
- # * EC2 IMDS instance profile - When used by default, the timeouts are
105
- # very aggressive. Construct and pass an instance of
106
- # `Aws::InstanceProfileCredentails` to enable retries and extended
107
- # timeouts.
119
+ # * EC2/ECS IMDS instance profile - When used by default, the timeouts
120
+ # are very aggressive. Construct and pass an instance of
121
+ # `Aws::InstanceProfileCredentails` or `Aws::ECSCredentials` to
122
+ # enable retries and extended timeouts.
108
123
  #
109
124
  # @option options [required, String] :region
110
125
  # The AWS region to connect to. The configured `:region` is
@@ -733,7 +748,7 @@ module Aws::SageMaker
733
748
  #
734
749
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
735
750
  # Similar to InputDataConfig supported by Tuning. Format(s) supported:
736
- # CSV. Minimum of 1000 rows.
751
+ # CSV. Minimum of 500 rows.
737
752
  #
738
753
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
739
754
  # Similar to OutputDataConfig supported by Tuning. Format(s) supported:
@@ -970,7 +985,7 @@ module Aws::SageMaker
970
985
  # },
971
986
  # output_config: { # required
972
987
  # s3_output_location: "S3Uri", # required
973
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
988
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
974
989
  # target_platform: {
975
990
  # os: "ANDROID", # required, accepts ANDROID, LINUX
976
991
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -997,26 +1012,66 @@ module Aws::SageMaker
997
1012
  req.send_request(options)
998
1013
  end
999
1014
 
1000
- # Creates a `Domain` used by SageMaker Studio. A domain consists of an
1001
- # associated directory, a list of authorized users, and a variety of
1002
- # security, application, policy, and Amazon Virtual Private Cloud (VPC)
1003
- # configurations. An AWS account is limited to one domain per region.
1004
- # Users within a domain can share notebook files and other artifacts
1005
- # with each other.
1015
+ # Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
1016
+ # of an associated Amazon Elastic File System (EFS) volume, a list of
1017
+ # authorized users, and a variety of security, application, policy, and
1018
+ # Amazon Virtual Private Cloud (VPC) configurations. An AWS account is
1019
+ # limited to one domain per region. Users within a domain can share
1020
+ # notebook files and other artifacts with each other.
1021
+ #
1022
+ # When a domain is created, an EFS volume is created for use by all of
1023
+ # the users within the domain. Each user receives a private home
1024
+ # directory within the EFS volume for notebooks, Git repositories, and
1025
+ # data files.
1026
+ #
1027
+ # **VPC configuration**
1028
+ #
1029
+ # All SageMaker Studio traffic between the domain and the EFS volume is
1030
+ # through the specified VPC and subnets. For other Studio traffic, you
1031
+ # can specify the `AppNetworkAccessType` parameter.
1032
+ # `AppNetworkAccessType` corresponds to the network access type that you
1033
+ # choose when you onboard to Studio. The following options are
1034
+ # available:
1035
+ #
1036
+ # * `PublicInternetOnly` - Non-EFS traffic goes through a VPC managed by
1037
+ # Amazon SageMaker, which allows internet access. This is the default
1038
+ # value.
1039
+ #
1040
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
1041
+ # subnets. Internet access is disabled by default. To allow internet
1042
+ # access, you must specify a NAT gateway.
1043
+ #
1044
+ # When internet access is disabled, you won't be able to train or
1045
+ # host models unless your VPC has an interface endpoint (PrivateLink)
1046
+ # or a NAT gateway and your security groups allow outbound
1047
+ # connections.
1048
+ #
1049
+ # <b> <code>VpcOnly</code> network access type</b>
1006
1050
  #
1007
- # When a domain is created, an Amazon Elastic File System (EFS) volume
1008
- # is also created for use by all of the users within the domain. Each
1009
- # user receives a private home directory within the EFS for notebooks,
1010
- # Git repositories, and data files.
1051
+ # When you choose `VpcOnly`, you must specify the following:
1011
1052
  #
1012
- # All traffic between the domain and the EFS volume is communicated
1013
- # through the specified subnet IDs. All other traffic goes over the
1014
- # Internet through an Amazon SageMaker system VPC. The EFS traffic uses
1015
- # the NFS/TCP protocol over port 2049.
1053
+ # * Security group inbound and outbound rules to allow NFS traffic over
1054
+ # TCP on port 2049 between the domain and the EFS volume
1016
1055
  #
1017
- # NFS traffic over TCP on port 2049 needs to be allowed in both inbound
1018
- # and outbound rules in order to launch a SageMaker Studio app
1019
- # successfully.
1056
+ # * Security group inbound and outbound rules to allow traffic between
1057
+ # the JupyterServer app and the KernelGateway apps
1058
+ #
1059
+ # * Interface endpoints to access the SageMaker API and SageMaker
1060
+ # runtime
1061
+ #
1062
+ # For more information, see:
1063
+ #
1064
+ # * [Security groups for your VPC][1]
1065
+ #
1066
+ # * [VPC with public and private subnets (NAT)][2]
1067
+ #
1068
+ # * [Connect to SageMaker through a VPC interface endpoint][3]
1069
+ #
1070
+ #
1071
+ #
1072
+ # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
1073
+ # [2]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
1074
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/interface-vpc-endpoint.html
1020
1075
  #
1021
1076
  # @option params [required, String] :domain_name
1022
1077
  # A name for the domain.
@@ -1028,11 +1083,11 @@ module Aws::SageMaker
1028
1083
  # The default user settings.
1029
1084
  #
1030
1085
  # @option params [required, Array<String>] :subnet_ids
1031
- # The VPC subnets to use for communication with the EFS volume.
1086
+ # The VPC subnets that Studio uses for communication.
1032
1087
  #
1033
1088
  # @option params [required, String] :vpc_id
1034
- # The ID of the Amazon Virtual Private Cloud (VPC) to use for
1035
- # communication with the EFS volume.
1089
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for
1090
+ # communication.
1036
1091
  #
1037
1092
  # @option params [Array<Types::Tag>] :tags
1038
1093
  # Tags to associated with the Domain. Each tag consists of a key and an
@@ -1043,6 +1098,16 @@ module Aws::SageMaker
1043
1098
  # The AWS Key Management Service (KMS) encryption key ID. Encryption
1044
1099
  # with a customer master key (CMK) is not supported.
1045
1100
  #
1101
+ # @option params [String] :app_network_access_type
1102
+ # Specifies the VPC used for non-EFS traffic. The default value is
1103
+ # `PublicInternetOnly`.
1104
+ #
1105
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
1106
+ # Amazon SageMaker, which allows direct internet access
1107
+ #
1108
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
1109
+ # subnets
1110
+ #
1046
1111
  # @return [Types::CreateDomainResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1047
1112
  #
1048
1113
  # * {Types::CreateDomainResponse#domain_arn #domain_arn} => String
@@ -1089,6 +1154,7 @@ module Aws::SageMaker
1089
1154
  # },
1090
1155
  # ],
1091
1156
  # home_efs_file_system_kms_key_id: "KmsKeyId",
1157
+ # app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
1092
1158
  # })
1093
1159
  #
1094
1160
  # @example Response structure
@@ -2078,6 +2144,9 @@ module Aws::SageMaker
2078
2144
  # s3_data_source: {
2079
2145
  # manifest_s3_uri: "S3Uri", # required
2080
2146
  # },
2147
+ # sns_data_source: {
2148
+ # sns_topic_arn: "SnsTopicArn", # required
2149
+ # },
2081
2150
  # },
2082
2151
  # data_attributes: {
2083
2152
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -2086,6 +2155,7 @@ module Aws::SageMaker
2086
2155
  # output_config: { # required
2087
2156
  # s3_output_path: "S3Uri", # required
2088
2157
  # kms_key_id: "KmsKeyId",
2158
+ # sns_topic_arn: "SnsTopicArn",
2089
2159
  # },
2090
2160
  # role_arn: "RoleArn", # required
2091
2161
  # label_category_config_s3_uri: "S3Uri",
@@ -2827,6 +2897,12 @@ module Aws::SageMaker
2827
2897
  # This operation can only be called when the authentication mode equals
2828
2898
  # IAM.
2829
2899
  #
2900
+ # <note markdown="1"> The URL that you get from a call to `CreatePresignedDomainUrl` is
2901
+ # valid only for 5 minutes. If you try to use the URL after the 5-minute
2902
+ # limit expires, you are directed to the AWS console sign-in page.
2903
+ #
2904
+ # </note>
2905
+ #
2830
2906
  # @option params [required, String] :domain_id
2831
2907
  # The domain ID.
2832
2908
  #
@@ -5070,7 +5146,7 @@ module Aws::SageMaker
5070
5146
  # resp.input_config.data_input_config #=> String
5071
5147
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE"
5072
5148
  # resp.output_config.s3_output_location #=> String
5073
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
5149
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml"
5074
5150
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
5075
5151
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
5076
5152
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -5107,6 +5183,7 @@ module Aws::SageMaker
5107
5183
  # * {Types::DescribeDomainResponse#subnet_ids #subnet_ids} => Array&lt;String&gt;
5108
5184
  # * {Types::DescribeDomainResponse#url #url} => String
5109
5185
  # * {Types::DescribeDomainResponse#vpc_id #vpc_id} => String
5186
+ # * {Types::DescribeDomainResponse#app_network_access_type #app_network_access_type} => String
5110
5187
  #
5111
5188
  # @example Request syntax with placeholder values
5112
5189
  #
@@ -5143,6 +5220,7 @@ module Aws::SageMaker
5143
5220
  # resp.subnet_ids[0] #=> String
5144
5221
  # resp.url #=> String
5145
5222
  # resp.vpc_id #=> String
5223
+ # resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
5146
5224
  #
5147
5225
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomain AWS API Documentation
5148
5226
  #
@@ -5693,10 +5771,12 @@ module Aws::SageMaker
5693
5771
  # resp.labeling_job_arn #=> String
5694
5772
  # resp.label_attribute_name #=> String
5695
5773
  # resp.input_config.data_source.s3_data_source.manifest_s3_uri #=> String
5774
+ # resp.input_config.data_source.sns_data_source.sns_topic_arn #=> String
5696
5775
  # resp.input_config.data_attributes.content_classifiers #=> Array
5697
5776
  # resp.input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
5698
5777
  # resp.output_config.s3_output_path #=> String
5699
5778
  # resp.output_config.kms_key_id #=> String
5779
+ # resp.output_config.sns_topic_arn #=> String
5700
5780
  # resp.role_arn #=> String
5701
5781
  # resp.label_category_config_s3_uri #=> String
5702
5782
  # resp.stopping_conditions.max_human_labeled_object_count #=> Integer
@@ -7280,7 +7360,7 @@ module Aws::SageMaker
7280
7360
  # resp.compilation_job_summaries[0].creation_time #=> Time
7281
7361
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
7282
7362
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
7283
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
7363
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml"
7284
7364
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
7285
7365
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7286
7366
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -7844,6 +7924,7 @@ module Aws::SageMaker
7844
7924
  # resp.labeling_job_summary_list[0].labeling_job_output.output_dataset_s3_uri #=> String
7845
7925
  # resp.labeling_job_summary_list[0].labeling_job_output.final_active_learning_model_arn #=> String
7846
7926
  # resp.labeling_job_summary_list[0].input_config.data_source.s3_data_source.manifest_s3_uri #=> String
7927
+ # resp.labeling_job_summary_list[0].input_config.data_source.sns_data_source.sns_topic_arn #=> String
7847
7928
  # resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers #=> Array
7848
7929
  # resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
7849
7930
  # resp.next_token #=> String
@@ -10973,7 +11054,7 @@ module Aws::SageMaker
10973
11054
  params: params,
10974
11055
  config: config)
10975
11056
  context[:gem_name] = 'aws-sdk-sagemaker'
10976
- context[:gem_version] = '1.65.0'
11057
+ context[:gem_version] = '1.70.0'
10977
11058
  Seahorse::Client::Request.new(handlers, context)
10978
11059
  end
10979
11060
 
@@ -37,6 +37,7 @@ module Aws::SageMaker
37
37
  AppInstanceType = Shapes::StringShape.new(name: 'AppInstanceType')
38
38
  AppList = Shapes::ListShape.new(name: 'AppList')
39
39
  AppName = Shapes::StringShape.new(name: 'AppName')
40
+ AppNetworkAccessType = Shapes::StringShape.new(name: 'AppNetworkAccessType')
40
41
  AppSortKey = Shapes::StringShape.new(name: 'AppSortKey')
41
42
  AppSpecification = Shapes::StructureShape.new(name: 'AppSpecification')
42
43
  AppStatus = Shapes::StringShape.new(name: 'AppStatus')
@@ -468,6 +469,7 @@ module Aws::SageMaker
468
469
  LabelingJobOutputConfig = Shapes::StructureShape.new(name: 'LabelingJobOutputConfig')
469
470
  LabelingJobResourceConfig = Shapes::StructureShape.new(name: 'LabelingJobResourceConfig')
470
471
  LabelingJobS3DataSource = Shapes::StructureShape.new(name: 'LabelingJobS3DataSource')
472
+ LabelingJobSnsDataSource = Shapes::StructureShape.new(name: 'LabelingJobSnsDataSource')
471
473
  LabelingJobStatus = Shapes::StringShape.new(name: 'LabelingJobStatus')
472
474
  LabelingJobStoppingConditions = Shapes::StructureShape.new(name: 'LabelingJobStoppingConditions')
473
475
  LabelingJobSummary = Shapes::StructureShape.new(name: 'LabelingJobSummary')
@@ -770,6 +772,7 @@ module Aws::SageMaker
770
772
  SharingSettings = Shapes::StructureShape.new(name: 'SharingSettings')
771
773
  ShuffleConfig = Shapes::StructureShape.new(name: 'ShuffleConfig')
772
774
  SingleSignOnUserIdentifier = Shapes::StringShape.new(name: 'SingleSignOnUserIdentifier')
775
+ SnsTopicArn = Shapes::StringShape.new(name: 'SnsTopicArn')
773
776
  SortBy = Shapes::StringShape.new(name: 'SortBy')
774
777
  SortExperimentsBy = Shapes::StringShape.new(name: 'SortExperimentsBy')
775
778
  SortOrder = Shapes::StringShape.new(name: 'SortOrder')
@@ -1288,6 +1291,7 @@ module Aws::SageMaker
1288
1291
  CreateDomainRequest.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, required: true, location_name: "VpcId"))
1289
1292
  CreateDomainRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1290
1293
  CreateDomainRequest.add_member(:home_efs_file_system_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "HomeEfsFileSystemKmsKeyId"))
1294
+ CreateDomainRequest.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
1291
1295
  CreateDomainRequest.struct_class = Types::CreateDomainRequest
1292
1296
 
1293
1297
  CreateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
@@ -1801,6 +1805,7 @@ module Aws::SageMaker
1801
1805
  DescribeDomainResponse.add_member(:subnet_ids, Shapes::ShapeRef.new(shape: Subnets, location_name: "SubnetIds"))
1802
1806
  DescribeDomainResponse.add_member(:url, Shapes::ShapeRef.new(shape: String1024, location_name: "Url"))
1803
1807
  DescribeDomainResponse.add_member(:vpc_id, Shapes::ShapeRef.new(shape: VpcId, location_name: "VpcId"))
1808
+ DescribeDomainResponse.add_member(:app_network_access_type, Shapes::ShapeRef.new(shape: AppNetworkAccessType, location_name: "AppNetworkAccessType"))
1804
1809
  DescribeDomainResponse.struct_class = Types::DescribeDomainResponse
1805
1810
 
1806
1811
  DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
@@ -2477,6 +2482,7 @@ module Aws::SageMaker
2477
2482
  LabelingJobDataAttributes.struct_class = Types::LabelingJobDataAttributes
2478
2483
 
2479
2484
  LabelingJobDataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: LabelingJobS3DataSource, location_name: "S3DataSource"))
2485
+ LabelingJobDataSource.add_member(:sns_data_source, Shapes::ShapeRef.new(shape: LabelingJobSnsDataSource, location_name: "SnsDataSource"))
2480
2486
  LabelingJobDataSource.struct_class = Types::LabelingJobDataSource
2481
2487
 
2482
2488
  LabelingJobForWorkteamSummary.add_member(:labeling_job_name, Shapes::ShapeRef.new(shape: LabelingJobName, location_name: "LabelingJobName"))
@@ -2499,6 +2505,7 @@ module Aws::SageMaker
2499
2505
 
2500
2506
  LabelingJobOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
2501
2507
  LabelingJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
2508
+ LabelingJobOutputConfig.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SnsTopicArn"))
2502
2509
  LabelingJobOutputConfig.struct_class = Types::LabelingJobOutputConfig
2503
2510
 
2504
2511
  LabelingJobResourceConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
@@ -2507,6 +2514,9 @@ module Aws::SageMaker
2507
2514
  LabelingJobS3DataSource.add_member(:manifest_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "ManifestS3Uri"))
2508
2515
  LabelingJobS3DataSource.struct_class = Types::LabelingJobS3DataSource
2509
2516
 
2517
+ LabelingJobSnsDataSource.add_member(:sns_topic_arn, Shapes::ShapeRef.new(shape: SnsTopicArn, required: true, location_name: "SnsTopicArn"))
2518
+ LabelingJobSnsDataSource.struct_class = Types::LabelingJobSnsDataSource
2519
+
2510
2520
  LabelingJobStoppingConditions.add_member(:max_human_labeled_object_count, Shapes::ShapeRef.new(shape: MaxHumanLabeledObjectCount, location_name: "MaxHumanLabeledObjectCount"))
2511
2521
  LabelingJobStoppingConditions.add_member(:max_percentage_of_input_dataset_labeled, Shapes::ShapeRef.new(shape: MaxPercentageOfInputDatasetLabeled, location_name: "MaxPercentageOfInputDatasetLabeled"))
2512
2522
  LabelingJobStoppingConditions.struct_class = Types::LabelingJobStoppingConditions
@@ -1455,7 +1455,7 @@ module Aws::SageMaker
1455
1455
  # @!attribute [rw] s3_data_source
1456
1456
  # The Amazon S3 location of the input data.
1457
1457
  #
1458
- # <note markdown="1"> The input data must be in CSV format and contain at least 1000 rows.
1458
+ # <note markdown="1"> The input data must be in CSV format and contain at least 500 rows.
1459
1459
  #
1460
1460
  # </note>
1461
1461
  # @return [Types::AutoMLS3DataSource]
@@ -2356,13 +2356,15 @@ module Aws::SageMaker
2356
2356
  # @return [String]
2357
2357
  #
2358
2358
  # @!attribute [rw] image
2359
- # The Amazon EC2 Container Registry (Amazon ECR) path where inference
2360
- # code is stored. If you are using your own custom algorithm instead
2361
- # of an algorithm provided by Amazon SageMaker, the inference code
2362
- # must meet Amazon SageMaker requirements. Amazon SageMaker supports
2363
- # both `registry/repository[:tag]` and `registry/repository[@digest]`
2364
- # image path formats. For more information, see [Using Your Own
2365
- # Algorithms with Amazon SageMaker][1]
2359
+ # The path where inference code is stored. This can be either in
2360
+ # Amazon EC2 Container Registry or in a Docker registry that is
2361
+ # accessible from the same VPC that you configure for your endpoint.
2362
+ # If you are using your own custom algorithm instead of an algorithm
2363
+ # provided by Amazon SageMaker, the inference code must meet Amazon
2364
+ # SageMaker requirements. Amazon SageMaker supports both
2365
+ # `registry/repository[:tag]` and `registry/repository[@digest]` image
2366
+ # path formats. For more information, see [Using Your Own Algorithms
2367
+ # with Amazon SageMaker][1]
2366
2368
  #
2367
2369
  #
2368
2370
  #
@@ -2371,9 +2373,9 @@ module Aws::SageMaker
2371
2373
  #
2372
2374
  # @!attribute [rw] image_config
2373
2375
  # Specifies whether the model container is in Amazon ECR or a private
2374
- # Docker registry in your Amazon Virtual Private Cloud (VPC). For
2375
- # information about storing containers in a private Docker registry,
2376
- # see [Use a Private Docker Registry for Real-Time Inference
2376
+ # Docker registry accessible from your Amazon Virtual Private Cloud
2377
+ # (VPC). For information about storing containers in a private Docker
2378
+ # registry, see [Use a Private Docker Registry for Real-Time Inference
2377
2379
  # Containers][1]
2378
2380
  #
2379
2381
  #
@@ -2393,6 +2395,11 @@ module Aws::SageMaker
2393
2395
  # algorithms. For more information on built-in algorithms, see [Common
2394
2396
  # Parameters][1].
2395
2397
  #
2398
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
2399
+ # region as the model or endpoint you are creating.
2400
+ #
2401
+ # </note>
2402
+ #
2396
2403
  # If you provide a value for this parameter, Amazon SageMaker uses AWS
2397
2404
  # Security Token Service to download model artifacts from the S3 path
2398
2405
  # you provide. AWS STS is activated in your IAM user account by
@@ -2907,7 +2914,7 @@ module Aws::SageMaker
2907
2914
  #
2908
2915
  # @!attribute [rw] input_data_config
2909
2916
  # Similar to InputDataConfig supported by Tuning. Format(s) supported:
2910
- # CSV. Minimum of 1000 rows.
2917
+ # CSV. Minimum of 500 rows.
2911
2918
  # @return [Array<Types::AutoMLChannel>]
2912
2919
  #
2913
2920
  # @!attribute [rw] output_data_config
@@ -3033,7 +3040,7 @@ module Aws::SageMaker
3033
3040
  # },
3034
3041
  # output_config: { # required
3035
3042
  # s3_output_location: "S3Uri", # required
3036
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
3043
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
3037
3044
  # target_platform: {
3038
3045
  # os: "ANDROID", # required, accepts ANDROID, LINUX
3039
3046
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -3166,6 +3173,7 @@ module Aws::SageMaker
3166
3173
  # },
3167
3174
  # ],
3168
3175
  # home_efs_file_system_kms_key_id: "KmsKeyId",
3176
+ # app_network_access_type: "PublicInternetOnly", # accepts PublicInternetOnly, VpcOnly
3169
3177
  # }
3170
3178
  #
3171
3179
  # @!attribute [rw] domain_name
@@ -3181,12 +3189,12 @@ module Aws::SageMaker
3181
3189
  # @return [Types::UserSettings]
3182
3190
  #
3183
3191
  # @!attribute [rw] subnet_ids
3184
- # The VPC subnets to use for communication with the EFS volume.
3192
+ # The VPC subnets that Studio uses for communication.
3185
3193
  # @return [Array<String>]
3186
3194
  #
3187
3195
  # @!attribute [rw] vpc_id
3188
- # The ID of the Amazon Virtual Private Cloud (VPC) to use for
3189
- # communication with the EFS volume.
3196
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
3197
+ # for communication.
3190
3198
  # @return [String]
3191
3199
  #
3192
3200
  # @!attribute [rw] tags
@@ -3200,6 +3208,17 @@ module Aws::SageMaker
3200
3208
  # with a customer master key (CMK) is not supported.
3201
3209
  # @return [String]
3202
3210
  #
3211
+ # @!attribute [rw] app_network_access_type
3212
+ # Specifies the VPC used for non-EFS traffic. The default value is
3213
+ # `PublicInternetOnly`.
3214
+ #
3215
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
3216
+ # Amazon SageMaker, which allows direct internet access
3217
+ #
3218
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
3219
+ # subnets
3220
+ # @return [String]
3221
+ #
3203
3222
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDomainRequest AWS API Documentation
3204
3223
  #
3205
3224
  class CreateDomainRequest < Struct.new(
@@ -3209,7 +3228,8 @@ module Aws::SageMaker
3209
3228
  :subnet_ids,
3210
3229
  :vpc_id,
3211
3230
  :tags,
3212
- :home_efs_file_system_kms_key_id)
3231
+ :home_efs_file_system_kms_key_id,
3232
+ :app_network_access_type)
3213
3233
  SENSITIVE = []
3214
3234
  include Aws::Structure
3215
3235
  end
@@ -3998,6 +4018,9 @@ module Aws::SageMaker
3998
4018
  # s3_data_source: {
3999
4019
  # manifest_s3_uri: "S3Uri", # required
4000
4020
  # },
4021
+ # sns_data_source: {
4022
+ # sns_topic_arn: "SnsTopicArn", # required
4023
+ # },
4001
4024
  # },
4002
4025
  # data_attributes: {
4003
4026
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -4006,6 +4029,7 @@ module Aws::SageMaker
4006
4029
  # output_config: { # required
4007
4030
  # s3_output_path: "S3Uri", # required
4008
4031
  # kms_key_id: "KmsKeyId",
4032
+ # sns_topic_arn: "SnsTopicArn",
4009
4033
  # },
4010
4034
  # role_arn: "RoleArn", # required
4011
4035
  # label_category_config_s3_uri: "S3Uri",
@@ -7517,7 +7541,7 @@ module Aws::SageMaker
7517
7541
  # @return [String]
7518
7542
  #
7519
7543
  # @!attribute [rw] subnet_ids
7520
- # Security setting to limit to a set of subnets.
7544
+ # The VPC subnets that Studio uses for communication.
7521
7545
  # @return [Array<String>]
7522
7546
  #
7523
7547
  # @!attribute [rw] url
@@ -7525,7 +7549,19 @@ module Aws::SageMaker
7525
7549
  # @return [String]
7526
7550
  #
7527
7551
  # @!attribute [rw] vpc_id
7528
- # The ID of the Amazon Virtual Private Cloud.
7552
+ # The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses
7553
+ # for communication.
7554
+ # @return [String]
7555
+ #
7556
+ # @!attribute [rw] app_network_access_type
7557
+ # Specifies the VPC used for non-EFS traffic. The default value is
7558
+ # `PublicInternetOnly`.
7559
+ #
7560
+ # * `PublicInternetOnly` - Non-EFS traffic is through a VPC managed by
7561
+ # Amazon SageMaker, which allows direct internet access
7562
+ #
7563
+ # * `VpcOnly` - All Studio traffic is through the specified VPC and
7564
+ # subnets
7529
7565
  # @return [String]
7530
7566
  #
7531
7567
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeDomainResponse AWS API Documentation
@@ -7545,7 +7581,8 @@ module Aws::SageMaker
7545
7581
  :home_efs_file_system_kms_key_id,
7546
7582
  :subnet_ids,
7547
7583
  :url,
7548
- :vpc_id)
7584
+ :vpc_id,
7585
+ :app_network_access_type)
7549
7586
  SENSITIVE = []
7550
7587
  include Aws::Structure
7551
7588
  end
@@ -10655,12 +10692,13 @@ module Aws::SageMaker
10655
10692
  # @return [Integer]
10656
10693
  #
10657
10694
  # @!attribute [rw] task_availability_lifetime_in_seconds
10658
- # The length of time that a task remains available for labeling by
10659
- # human workers.
10695
+ # The length of time that a task remains available for review by human
10696
+ # workers.
10660
10697
  # @return [Integer]
10661
10698
  #
10662
10699
  # @!attribute [rw] task_time_limit_in_seconds
10663
- # The amount of time that a worker has to complete a task.
10700
+ # The amount of time that a worker has to complete a task. The default
10701
+ # value is 3,600 seconds (1 hour)
10664
10702
  # @return [Integer]
10665
10703
  #
10666
10704
  # @!attribute [rw] task_keywords
@@ -12479,7 +12517,8 @@ module Aws::SageMaker
12479
12517
  end
12480
12518
 
12481
12519
  # Specifies whether the model container is in Amazon ECR or a private
12482
- # Docker registry in your Amazon Virtual Private Cloud (VPC).
12520
+ # Docker registry accessible from your Amazon Virtual Private Cloud
12521
+ # (VPC).
12483
12522
  #
12484
12523
  # @note When making an API call, you may pass ImageConfig
12485
12524
  # data as a hash:
@@ -12493,7 +12532,7 @@ module Aws::SageMaker
12493
12532
  #
12494
12533
  # * `Platform` - The model image is hosted in Amazon ECR.
12495
12534
  #
12496
- # * `VPC` - The model image is hosted in a private Docker registry in
12535
+ # * `Vpc` - The model image is hosted in a private Docker registry in
12497
12536
  # your VPC.
12498
12537
  # @return [String]
12499
12538
  #
@@ -12672,6 +12711,76 @@ module Aws::SageMaker
12672
12711
  # [1,3,224,224]]`
12673
12712
  #
12674
12713
  # * `XGBOOST`\: input data name and shape are not needed.
12714
+ #
12715
+ # `DataInputConfig` supports the following parameters for `CoreML`
12716
+ # OutputConfig$TargetDevice (ML Model format):
12717
+ #
12718
+ # * `shape`\: Input shape, for example `\{"input_1": \{"shape":
12719
+ # [1,224,224,3]\}\}`. In addition to static input shapes, CoreML
12720
+ # converter supports Flexible input shapes:
12721
+ #
12722
+ # * Range Dimension. You can use the Range Dimension feature if you
12723
+ # know the input shape will be within some specific interval in
12724
+ # that dimension, for example: `\{"input_1": \{"shape": ["1..10",
12725
+ # 224, 224, 3]\}\}`
12726
+ #
12727
+ # * Enumerated shapes. Sometimes, the models are trained to work
12728
+ # only on a select set of inputs. You can enumerate all supported
12729
+ # input shapes, for example: `\{"input_1": \{"shape": [[1, 224,
12730
+ # 224, 3], [1, 160, 160, 3]]\}\}`
12731
+ #
12732
+ # * `default_shape`\: Default input shape. You can set a default shape
12733
+ # during conversion for both Range Dimension and Enumerated Shapes.
12734
+ # For example `\{"input_1": \{"shape": ["1..10", 224, 224, 3],
12735
+ # "default_shape": [1, 224, 224, 3]\}\}`
12736
+ #
12737
+ # * `type`\: Input type. Allowed values: `Image` and `Tensor`. By
12738
+ # default, the converter generates an ML Model with inputs of type
12739
+ # Tensor (MultiArray). User can set input type to be Image. Image
12740
+ # input type requires additional input parameters such as `bias` and
12741
+ # `scale`.
12742
+ #
12743
+ # * `bias`\: If the input type is an Image, you need to provide the
12744
+ # bias vector.
12745
+ #
12746
+ # * `scale`\: If the input type is an Image, you need to provide a
12747
+ # scale factor.
12748
+ #
12749
+ # CoreML `ClassifierConfig` parameters can be specified using
12750
+ # OutputConfig$CompilerOptions. CoreML converter supports Tensorflow
12751
+ # and PyTorch models. CoreML conversion examples:
12752
+ #
12753
+ # * Tensor type input:
12754
+ #
12755
+ # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
12756
+ # [1,160,160,3]], "default_shape": [1,224,224,3]\}\}`
12757
+ #
12758
+ # ^
12759
+ #
12760
+ # * Tensor type input without input name (PyTorch):
12761
+ #
12762
+ # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
12763
+ # "default_shape": [1,3,224,224]\}]`
12764
+ #
12765
+ # ^
12766
+ #
12767
+ # * Image type input:
12768
+ #
12769
+ # * `"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
12770
+ # [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
12771
+ # "bias": [-1,-1,-1], "scale": 0.007843137255\}\}`
12772
+ #
12773
+ # * `"CompilerOptions": \{"class_labels":
12774
+ # "imagenet_labels_1000.txt"\}`
12775
+ #
12776
+ # * Image type input without input name (PyTorch):
12777
+ #
12778
+ # * `"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
12779
+ # "default_shape": [1,3,224,224], "type": "Image", "bias":
12780
+ # [-1,-1,-1], "scale": 0.007843137255\}]`
12781
+ #
12782
+ # * `"CompilerOptions": \{"class_labels":
12783
+ # "imagenet_labels_1000.txt"\}`
12675
12784
  # @return [String]
12676
12785
  #
12677
12786
  # @!attribute [rw] framework
@@ -12928,10 +13037,10 @@ module Aws::SageMaker
12928
13037
  # @return [String]
12929
13038
  #
12930
13039
  # @!attribute [rw] initial_active_learning_model_arn
12931
- # At the end of an auto-label job Amazon SageMaker Ground Truth sends
12932
- # the Amazon Resource Nam (ARN) of the final model used for
12933
- # auto-labeling. You can use this model as the starting point for
12934
- # subsequent similar jobs by providing the ARN of the model here.
13040
+ # At the end of an auto-label job Ground Truth sends the Amazon
13041
+ # Resource Name (ARN) of the final model used for auto-labeling. You
13042
+ # can use this model as the starting point for subsequent similar jobs
13043
+ # by providing the ARN of the model here.
12935
13044
  # @return [String]
12936
13045
  #
12937
13046
  # @!attribute [rw] labeling_job_resource_config
@@ -12975,6 +13084,18 @@ module Aws::SageMaker
12975
13084
 
12976
13085
  # Provides information about the location of input data.
12977
13086
  #
13087
+ # You must specify at least one of the following: `S3DataSource` or
13088
+ # `SnsDataSource`.
13089
+ #
13090
+ # Use `SnsDataSource` to specify an SNS input topic for a streaming
13091
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
13092
+ # Truth will create a one-time labeling job.
13093
+ #
13094
+ # Use `S3DataSource` to specify an input manifest file for both
13095
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
13096
+ # optional if you use `SnsDataSource` to create a streaming labeling
13097
+ # job.
13098
+ #
12978
13099
  # @note When making an API call, you may pass LabelingJobDataSource
12979
13100
  # data as a hash:
12980
13101
  #
@@ -12982,16 +13103,24 @@ module Aws::SageMaker
12982
13103
  # s3_data_source: {
12983
13104
  # manifest_s3_uri: "S3Uri", # required
12984
13105
  # },
13106
+ # sns_data_source: {
13107
+ # sns_topic_arn: "SnsTopicArn", # required
13108
+ # },
12985
13109
  # }
12986
13110
  #
12987
13111
  # @!attribute [rw] s3_data_source
12988
13112
  # The Amazon S3 location of the input data objects.
12989
13113
  # @return [Types::LabelingJobS3DataSource]
12990
13114
  #
13115
+ # @!attribute [rw] sns_data_source
13116
+ # An Amazon SNS data source used for streaming labeling jobs.
13117
+ # @return [Types::LabelingJobSnsDataSource]
13118
+ #
12991
13119
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
12992
13120
  #
12993
13121
  class LabelingJobDataSource < Struct.new(
12994
- :s3_data_source)
13122
+ :s3_data_source,
13123
+ :sns_data_source)
12995
13124
  SENSITIVE = []
12996
13125
  include Aws::Structure
12997
13126
  end
@@ -13045,6 +13174,9 @@ module Aws::SageMaker
13045
13174
  # s3_data_source: {
13046
13175
  # manifest_s3_uri: "S3Uri", # required
13047
13176
  # },
13177
+ # sns_data_source: {
13178
+ # sns_topic_arn: "SnsTopicArn", # required
13179
+ # },
13048
13180
  # },
13049
13181
  # data_attributes: {
13050
13182
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -13096,6 +13228,7 @@ module Aws::SageMaker
13096
13228
  # {
13097
13229
  # s3_output_path: "S3Uri", # required
13098
13230
  # kms_key_id: "KmsKeyId",
13231
+ # sns_topic_arn: "SnsTopicArn",
13099
13232
  # }
13100
13233
  #
13101
13234
  # @!attribute [rw] s3_output_path
@@ -13129,11 +13262,22 @@ module Aws::SageMaker
13129
13262
  # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
13130
13263
  # @return [String]
13131
13264
  #
13265
+ # @!attribute [rw] sns_topic_arn
13266
+ # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
13267
+ #
13268
+ # When workers complete labeling tasks, Ground Truth will send
13269
+ # labeling task output data to the SNS output topic you specify here.
13270
+ #
13271
+ # You must provide a value for this parameter if you provide an Amazon
13272
+ # SNS input topic in `SnsDataSource` in `InputConfig`.
13273
+ # @return [String]
13274
+ #
13132
13275
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
13133
13276
  #
13134
13277
  class LabelingJobOutputConfig < Struct.new(
13135
13278
  :s3_output_path,
13136
- :kms_key_id)
13279
+ :kms_key_id,
13280
+ :sns_topic_arn)
13137
13281
  SENSITIVE = []
13138
13282
  include Aws::Structure
13139
13283
  end
@@ -13192,6 +13336,32 @@ module Aws::SageMaker
13192
13336
  include Aws::Structure
13193
13337
  end
13194
13338
 
13339
+ # An Amazon SNS data source used for streaming labeling jobs.
13340
+ #
13341
+ # @note When making an API call, you may pass LabelingJobSnsDataSource
13342
+ # data as a hash:
13343
+ #
13344
+ # {
13345
+ # sns_topic_arn: "SnsTopicArn", # required
13346
+ # }
13347
+ #
13348
+ # @!attribute [rw] sns_topic_arn
13349
+ # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
13350
+ # ARN of the input topic you will use to send new data objects to a
13351
+ # streaming labeling job.
13352
+ #
13353
+ # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
13354
+ # you must specify a value for `SnsTopicArn` in `OutputConfig`.
13355
+ # @return [String]
13356
+ #
13357
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
13358
+ #
13359
+ class LabelingJobSnsDataSource < Struct.new(
13360
+ :sns_topic_arn)
13361
+ SENSITIVE = []
13362
+ include Aws::Structure
13363
+ end
13364
+
13195
13365
  # A set of conditions for stopping a labeling job. If any of the
13196
13366
  # conditions are met, the job is automatically stopped. You can use
13197
13367
  # these conditions to control the cost of data labeling.
@@ -16213,6 +16383,11 @@ module Aws::SageMaker
16213
16383
  # The Amazon S3 path where the model artifacts, which result from
16214
16384
  # model training, are stored. This path must point to a single `gzip`
16215
16385
  # compressed tar archive (`.tar.gz` suffix).
16386
+ #
16387
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
16388
+ # region as the model package.
16389
+ #
16390
+ # </note>
16216
16391
  # @return [String]
16217
16392
  #
16218
16393
  # @!attribute [rw] product_id
@@ -17599,7 +17774,7 @@ module Aws::SageMaker
17599
17774
  #
17600
17775
  # {
17601
17776
  # s3_output_location: "S3Uri", # required
17602
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
17777
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml
17603
17778
  # target_platform: {
17604
17779
  # os: "ANDROID", # required, accepts ANDROID, LINUX
17605
17780
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -17673,7 +17848,7 @@ module Aws::SageMaker
17673
17848
  # @!attribute [rw] compiler_options
17674
17849
  # Specifies additional parameters for compiler options in JSON format.
17675
17850
  # The compiler options are `TargetPlatform` specific. It is required
17676
- # for NVIDIA accelerators and highly recommended for CPU compliations.
17851
+ # for NVIDIA accelerators and highly recommended for CPU compilations.
17677
17852
  # For any other cases, it is optional to specify `CompilerOptions.`
17678
17853
  #
17679
17854
  # * `CPU`\: Compilation for CPU supports the following compiler
@@ -17715,6 +17890,16 @@ module Aws::SageMaker
17715
17890
  #
17716
17891
  # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
17717
17892
  # compiling for ARM 32-bit platform with NEON support.
17893
+ #
17894
+ # * `CoreML`\: Compilation for the CoreML OutputConfig$TargetDevice
17895
+ # supports the following compiler options:
17896
+ #
17897
+ # * `class_labels`\: Specifies the classification labels file name
17898
+ # inside input tar.gz file. For example, `\{"class_labels":
17899
+ # "imagenet_labels_1000.txt"\}`. Labels inside the txt file should
17900
+ # be separated by newlines.
17901
+ #
17902
+ # ^
17718
17903
  # @return [String]
17719
17904
  #
17720
17905
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputConfig AWS API Documentation
@@ -19762,8 +19947,7 @@ module Aws::SageMaker
19762
19947
  #
19763
19948
  # @!attribute [rw] s3_output_path
19764
19949
  # When `NotebookOutputOption` is `Allowed`, the Amazon S3 bucket used
19765
- # to save the notebook cell output. If `S3OutputPath` isn't
19766
- # specified, a default bucket is used.
19950
+ # to save the notebook cell output.
19767
19951
  # @return [String]
19768
19952
  #
19769
19953
  # @!attribute [rw] s3_kms_key_id
@@ -19835,6 +20019,11 @@ module Aws::SageMaker
19835
20019
  # The Amazon S3 path where the model artifacts, which result from
19836
20020
  # model training, are stored. This path must point to a single `gzip`
19837
20021
  # compressed tar archive (`.tar.gz` suffix).
20022
+ #
20023
+ # <note markdown="1"> The model artifacts must be in an S3 bucket that is in the same
20024
+ # region as the algorithm.
20025
+ #
20026
+ # </note>
19838
20027
  # @return [String]
19839
20028
  #
19840
20029
  # @!attribute [rw] algorithm_name
@@ -22029,7 +22218,7 @@ module Aws::SageMaker
22029
22218
  # @return [Types::ProcessingJob]
22030
22219
  #
22031
22220
  # @!attribute [rw] transform_job
22032
- # Information about a transform job that's the source of the trial
22221
+ # Information about a transform job that's the source of a trial
22033
22222
  # component.
22034
22223
  # @return [Types::TransformJob]
22035
22224
  #
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.65.0
4
+ version: 1.70.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-08-14 00:00:00.000000000 Z
11
+ date: 2020-10-08 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.99.0
22
+ version: 3.109.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.99.0
32
+ version: 3.109.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement