aws-sdk-sagemaker 1.62.0 → 1.67.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -475,7 +475,8 @@ module Aws::SageMaker
475
475
  include Aws::Structure
476
476
  end
477
477
 
478
- # Configures how labels are consolidated across human workers.
478
+ # Configures how labels are consolidated across human workers and
479
+ # processes output data.
479
480
  #
480
481
  # @note When making an API call, you may pass AnnotationConsolidationConfig
481
482
  # data as a hash:
@@ -486,11 +487,12 @@ module Aws::SageMaker
486
487
  #
487
488
  # @!attribute [rw] annotation_consolidation_lambda_arn
488
489
  # The Amazon Resource Name (ARN) of a Lambda function implements the
489
- # logic for annotation consolidation.
490
+ # logic for [annotation consolidation][1] and to process output data.
490
491
  #
491
- # For the built-in bounding box, image classification, semantic
492
- # segmentation, and text classification task types, Amazon SageMaker
493
- # Ground Truth provides the following Lambda functions:
492
+ # This parameter is required for all labeling jobs. For [built-in task
493
+ # types][2], use one of the following Amazon SageMaker Ground Truth
494
+ # Lambda function ARNs for `AnnotationConsolidationLambdaArn`. For
495
+ # custom labeling workflows, see [Post-annotation Lambda][3].
494
496
  #
495
497
  # **Bounding box** - Finds the most similar boxes from different
496
498
  # workers based on the Jaccard index of the boxes.
@@ -686,34 +688,244 @@ module Aws::SageMaker
686
688
  #
687
689
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
688
690
  #
689
- # **Bounding box verification** - Uses a variant of the Expectation
690
- # Maximization approach to estimate the true class of verification
691
- # judgement for bounding box labels based on annotations from
692
- # individual workers.
691
+ # **Named entity recognition** - Groups similar selections and
692
+ # calculates aggregate boundaries, resolving to most-assigned label.
693
693
  #
694
- # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox`
694
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition`
695
695
  #
696
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox`
696
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition`
697
697
  #
698
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox`
698
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition`
699
699
  #
700
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox`
700
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition`
701
701
  #
702
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox`
702
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition`
703
703
  #
704
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox`
704
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition`
705
705
  #
706
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox`
706
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition`
707
707
  #
708
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox`
708
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition`
709
709
  #
710
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox`
710
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition`
711
711
  #
712
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox`
712
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition`
713
713
  #
714
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox`
714
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition`
715
715
  #
716
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox`
716
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition`
717
+ #
718
+ # **Video Classification** - Use this task type when you need workers
719
+ # to classify videos using predefined labels that you specify. Workers
720
+ # are shown videos and are asked to choose one label for each video.
721
+ #
722
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass`
723
+ #
724
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass`
725
+ #
726
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass`
727
+ #
728
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass`
729
+ #
730
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass`
731
+ #
732
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass`
733
+ #
734
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass`
735
+ #
736
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass`
737
+ #
738
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass`
739
+ #
740
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass`
741
+ #
742
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass`
743
+ #
744
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass`
745
+ #
746
+ # **Video Frame Object Detection** - Use this task type to have
747
+ # workers identify and locate objects in a sequence of video frames
748
+ # (images extracted from a video) using bounding boxes. For example,
749
+ # you can use this task to ask workers to identify and localize
750
+ # various objects in a series of video frames, such as cars, bikes,
751
+ # and pedestrians.
752
+ #
753
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection`
754
+ #
755
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection`
756
+ #
757
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection`
758
+ #
759
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection`
760
+ #
761
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection`
762
+ #
763
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection`
764
+ #
765
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection`
766
+ #
767
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection`
768
+ #
769
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection`
770
+ #
771
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection`
772
+ #
773
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection`
774
+ #
775
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection`
776
+ #
777
+ # **Video Frame Object Tracking** - Use this task type to have workers
778
+ # track the movement of objects in a sequence of video frames (images
779
+ # extracted from a video) using bounding boxes. For example, you can
780
+ # use this task to ask workers to track the movement of objects, such
781
+ # as cars, bikes, and pedestrians.
782
+ #
783
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking`
784
+ #
785
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking`
786
+ #
787
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking`
788
+ #
789
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking`
790
+ #
791
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking`
792
+ #
793
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking`
794
+ #
795
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking`
796
+ #
797
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking`
798
+ #
799
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking`
800
+ #
801
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking`
802
+ #
803
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking`
804
+ #
805
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking`
806
+ #
807
+ # **3D point cloud object detection** - Use this task type when you
808
+ # want workers to classify objects in a 3D point cloud by drawing 3D
809
+ # cuboids around objects. For example, you can use this task type to
810
+ # ask workers to identify different types of objects in a point cloud,
811
+ # such as cars, bikes, and pedestrians.
812
+ #
813
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection`
814
+ #
815
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection`
816
+ #
817
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection`
818
+ #
819
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection`
820
+ #
821
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection`
822
+ #
823
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection`
824
+ #
825
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection`
826
+ #
827
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection`
828
+ #
829
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection`
830
+ #
831
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection`
832
+ #
833
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection`
834
+ #
835
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection`
836
+ #
837
+ # **3D point cloud object tracking** - Use this task type when you
838
+ # want workers to draw 3D cuboids around objects that appear in a
839
+ # sequence of 3D point cloud frames. For example, you can use this
840
+ # task type to ask workers to track the movement of vehicles across
841
+ # multiple point cloud frames.
842
+ #
843
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking`
844
+ #
845
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking`
846
+ #
847
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking`
848
+ #
849
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking`
850
+ #
851
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking`
852
+ #
853
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking`
854
+ #
855
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking`
856
+ #
857
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking`
858
+ #
859
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking`
860
+ #
861
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking`
862
+ #
863
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking`
864
+ #
865
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking`
866
+ #
867
+ # **3D point cloud semantic segmentation** - Use this task type when
868
+ # you want workers to create a point-level semantic segmentation masks
869
+ # by painting objects in a 3D point cloud using different colors where
870
+ # each color is assigned to one of the classes you specify.
871
+ #
872
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation`
873
+ #
874
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation`
875
+ #
876
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation`
877
+ #
878
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation`
879
+ #
880
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation`
881
+ #
882
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation`
883
+ #
884
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation`
885
+ #
886
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation`
887
+ #
888
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation`
889
+ #
890
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation`
891
+ #
892
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation`
893
+ #
894
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation`
895
+ #
896
+ # **Use the following ARNs for Label Verification and Adjustment
897
+ # Jobs**
898
+ #
899
+ # Use label verification and adjustment jobs to review and adjust
900
+ # labels. To learn more, see [Verify and Adjust Labels ][4].
901
+ #
902
+ # **Semantic segmentation adjustment** - Treats each pixel in an image
903
+ # as a multi-class classification and treats pixel adjusted
904
+ # annotations from workers as "votes" for the correct label.
905
+ #
906
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation`
907
+ #
908
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation`
909
+ #
910
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation`
911
+ #
912
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation`
913
+ #
914
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation`
915
+ #
916
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation`
917
+ #
918
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation`
919
+ #
920
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation`
921
+ #
922
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation`
923
+ #
924
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation`
925
+ #
926
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation`
927
+ #
928
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation`
717
929
  #
718
930
  # **Semantic segmentation verification** - Uses a variant of the
719
931
  # Expectation Maximization approach to estimate the true class of
@@ -744,6 +956,35 @@ module Aws::SageMaker
744
956
  #
745
957
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation`
746
958
  #
959
+ # **Bounding box verification** - Uses a variant of the Expectation
960
+ # Maximization approach to estimate the true class of verification
961
+ # judgement for bounding box labels based on annotations from
962
+ # individual workers.
963
+ #
964
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox`
965
+ #
966
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox`
967
+ #
968
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox`
969
+ #
970
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox`
971
+ #
972
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox`
973
+ #
974
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox`
975
+ #
976
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox`
977
+ #
978
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox`
979
+ #
980
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox`
981
+ #
982
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox`
983
+ #
984
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox`
985
+ #
986
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox`
987
+ #
747
988
  # **Bounding box adjustment** - Finds the most similar boxes from
748
989
  # different workers based on the Jaccard index of the adjusted
749
990
  # annotations.
@@ -772,39 +1013,154 @@ module Aws::SageMaker
772
1013
  #
773
1014
  # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox`
774
1015
  #
775
- # **Semantic segmentation adjustment** - Treats each pixel in an image
776
- # as a multi-class classification and treats pixel adjusted
777
- # annotations from workers as "votes" for the correct label.
1016
+ # **Video Frame Object Detection Adjustment** - Use this task type
1017
+ # when you want workers to adjust bounding boxes that workers have
1018
+ # added to video frames to classify and localize objects in a sequence
1019
+ # of video frames.
778
1020
  #
779
- # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation`
1021
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection`
780
1022
  #
781
- # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation`
1023
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection`
782
1024
  #
783
- # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation`
1025
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection`
784
1026
  #
785
- # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation`
1027
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection`
786
1028
  #
787
- # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation`
1029
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection`
788
1030
  #
789
- # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation`
1031
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection`
790
1032
  #
791
- # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation`
1033
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection`
792
1034
  #
793
- # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation`
1035
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection`
794
1036
  #
795
- # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation`
1037
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection`
796
1038
  #
797
- # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation`
1039
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection`
798
1040
  #
799
- # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation`
1041
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection`
800
1042
  #
801
- # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation`
1043
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection`
1044
+ #
1045
+ # **Video Frame Object Tracking Adjustment** - Use this task type when
1046
+ # you want workers to adjust bounding boxes that workers have added to
1047
+ # video frames to track object movement across a sequence of video
1048
+ # frames.
1049
+ #
1050
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking`
1051
+ #
1052
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking`
1053
+ #
1054
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking`
1055
+ #
1056
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking`
1057
+ #
1058
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking`
1059
+ #
1060
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking`
1061
+ #
1062
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking`
1063
+ #
1064
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking`
1065
+ #
1066
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking`
802
1067
  #
803
- # For more information, see [Annotation Consolidation][1].
1068
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking`
1069
+ #
1070
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking`
1071
+ #
1072
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking`
1073
+ #
1074
+ # **3D point cloud object detection adjustment** - Use this task type
1075
+ # when you want workers to adjust 3D cuboids around objects in a 3D
1076
+ # point cloud.
1077
+ #
1078
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection`
1079
+ #
1080
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection`
1081
+ #
1082
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection`
1083
+ #
1084
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection`
1085
+ #
1086
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection`
1087
+ #
1088
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection`
1089
+ #
1090
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection`
1091
+ #
1092
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection`
1093
+ #
1094
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection`
1095
+ #
1096
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection`
1097
+ #
1098
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection`
1099
+ #
1100
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection`
1101
+ #
1102
+ # **3D point cloud object tracking adjustment** - Use this task type
1103
+ # when you want workers to adjust 3D cuboids around objects that
1104
+ # appear in a sequence of 3D point cloud frames.
1105
+ #
1106
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking`
1107
+ #
1108
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking`
1109
+ #
1110
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking`
1111
+ #
1112
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking`
1113
+ #
1114
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking`
1115
+ #
1116
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking`
1117
+ #
1118
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking`
1119
+ #
1120
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking`
1121
+ #
1122
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking`
1123
+ #
1124
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking`
1125
+ #
1126
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking`
1127
+ #
1128
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking`
1129
+ #
1130
+ # **3D point cloud semantic segmentation adjustment** - Use this task
1131
+ # type when you want workers to adjust a point-level semantic
1132
+ # segmentation masks using a paint tool.
1133
+ #
1134
+ # * `arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1135
+ #
1136
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1137
+ #
1138
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1139
+ #
1140
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1141
+ #
1142
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1143
+ #
1144
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1145
+ #
1146
+ # `arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1147
+ #
1148
+ # `arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1149
+ #
1150
+ # `arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1151
+ #
1152
+ # `arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1153
+ #
1154
+ # `arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
1155
+ #
1156
+ # `arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation`
804
1157
  #
805
1158
  #
806
1159
  #
807
1160
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html
1161
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
1162
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-postlambda
1163
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
808
1164
  # @return [String]
809
1165
  #
810
1166
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AnnotationConsolidationConfig AWS API Documentation
@@ -929,7 +1285,7 @@ module Aws::SageMaker
929
1285
  include Aws::Structure
930
1286
  end
931
1287
 
932
- # An AutoPilot job will return recommendations, or candidates. Each
1288
+ # An Autopilot job returns recommendations, or candidates. Each
933
1289
  # candidate has futher details about the steps involed, and the status.
934
1290
  #
935
1291
  # @!attribute [rw] candidate_name
@@ -937,7 +1293,7 @@ module Aws::SageMaker
937
1293
  # @return [String]
938
1294
  #
939
1295
  # @!attribute [rw] final_auto_ml_job_objective_metric
940
- # The candidate result from a job.
1296
+ # The best candidate result from an AutoML training job.
941
1297
  # @return [Types::FinalAutoMLJobObjectiveMetric]
942
1298
  #
943
1299
  # @!attribute [rw] objective_status
@@ -1084,7 +1440,7 @@ module Aws::SageMaker
1084
1440
  include Aws::Structure
1085
1441
  end
1086
1442
 
1087
- # The data source for the AutoPilot job.
1443
+ # The data source for the Autopilot job.
1088
1444
  #
1089
1445
  # @note When making an API call, you may pass AutoMLDataSource
1090
1446
  # data as a hash:
@@ -1207,17 +1563,91 @@ module Aws::SageMaker
1207
1563
  include Aws::Structure
1208
1564
  end
1209
1565
 
1210
- # Applies a metric to minimize or maximize for the job's objective.
1566
+ # Specifies a metric to minimize or maximize as the objective of a job.
1211
1567
  #
1212
1568
  # @note When making an API call, you may pass AutoMLJobObjective
1213
1569
  # data as a hash:
1214
1570
  #
1215
1571
  # {
1216
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
1572
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
1217
1573
  # }
1218
1574
  #
1219
1575
  # @!attribute [rw] metric_name
1220
- # The name of the metric.
1576
+ # The name of the objective metric used to measure the predictive
1577
+ # quality of a machine learning system. This metric is optimized
1578
+ # during training to provide the best estimate for model parameter
1579
+ # values from data.
1580
+ #
1581
+ # Here are the options:
1582
+ #
1583
+ # * `MSE`\: The mean squared error (MSE) is the average of the squared
1584
+ # differences between the predicted and actual values. It is used
1585
+ # for regression. MSE values are always positive, the better a model
1586
+ # is at predicting the actual values the smaller the MSE value. When
1587
+ # the data contains outliers, they tend to dominate the MSE which
1588
+ # might cause subpar prediction performance.
1589
+ #
1590
+ # * `Accuracy`\: The ratio of the number correctly classified items to
1591
+ # the total number (correctly and incorrectly) classified. It is
1592
+ # used for binary and multiclass classification. Measures how close
1593
+ # the predicted class values are to the actual values. Accuracy
1594
+ # values vary between zero and one, one being perfect accuracy and
1595
+ # zero perfect inaccuracy.
1596
+ #
1597
+ # * `F1`\: The F1 score is the harmonic mean of the precision and
1598
+ # recall. It is used for binary classification into classes
1599
+ # traditionally referred to as positive and negative. Predictions
1600
+ # are said to be true when they match their actual (correct) class;
1601
+ # false when they do not. Precision is the ratio of the true
1602
+ # positive predictions to all positive predictions (including the
1603
+ # false positives) in a data set and measures the quality of the
1604
+ # prediction when it predicts the positive class. Recall (or
1605
+ # sensitivity) is the ratio of the true positive predictions to all
1606
+ # actual positive instances and measures how completely a model
1607
+ # predicts the actual class members in a data set. The standard F1
1608
+ # score weighs precision and recall equally. But which metric is
1609
+ # paramount typically depends on specific aspects of a problem. F1
1610
+ # scores vary between zero and one, one being the best possible
1611
+ # performance and zero the worst.
1612
+ #
1613
+ # * `AUC`\: The area under the curve (AUC) metric is used to compare
1614
+ # and evaluate binary classification by algorithms such as logistic
1615
+ # regression that return probabilities. A threshold is needed to map
1616
+ # the probabilities into classifications. The relevant curve is the
1617
+ # receiver operating characteristic curve that plots the true
1618
+ # positive rate (TPR) of predictions (or recall) against the false
1619
+ # positive rate (FPR) as a function of the threshold value, above
1620
+ # which a prediction is considered positive. Increasing the
1621
+ # threshold results in fewer false positives but more false
1622
+ # negatives. AUC is the area under this receiver operating
1623
+ # characteristic curve and so provides an aggregated measure of the
1624
+ # model performance across all possible classification thresholds.
1625
+ # The AUC score can also be interpreted as the probability that a
1626
+ # randomly selected positive data point is more likely to be
1627
+ # predicted positive than a randomly selected negative example. AUC
1628
+ # scores vary between zero and one, one being perfect accuracy and
1629
+ # one half not better than a random classifier. Values less that one
1630
+ # half predict worse than a random predictor and such consistently
1631
+ # bad predictors can be inverted to obtain better than random
1632
+ # predictors.
1633
+ #
1634
+ # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
1635
+ # classification. In this context, you have multiple classes to
1636
+ # predict. You just calculate the precision and recall for each
1637
+ # class as you did for the positive class in binary classification.
1638
+ # Then used these values to calculate the F1 score for each class
1639
+ # and average them to obtain the F1macro score. F1macro scores vary
1640
+ # between zero and one, one being the best possible performance and
1641
+ # zero the worst.
1642
+ #
1643
+ # If you do not specify a metric explicitly, the default behavior is
1644
+ # to automatically use:
1645
+ #
1646
+ # * `MSE`\: for regression.
1647
+ #
1648
+ # * `F1`\: for binary classification
1649
+ #
1650
+ # * `Accuracy`\: for multiclass classification.
1221
1651
  # @return [String]
1222
1652
  #
1223
1653
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -1251,7 +1681,7 @@ module Aws::SageMaker
1251
1681
  # @return [Time]
1252
1682
  #
1253
1683
  # @!attribute [rw] end_time
1254
- # The end time.
1684
+ # The end time of an AutoML job.
1255
1685
  # @return [Time]
1256
1686
  #
1257
1687
  # @!attribute [rw] last_modified_time
@@ -1259,7 +1689,7 @@ module Aws::SageMaker
1259
1689
  # @return [Time]
1260
1690
  #
1261
1691
  # @!attribute [rw] failure_reason
1262
- # The failure reason.
1692
+ # The failure reason of a job.
1263
1693
  # @return [String]
1264
1694
  #
1265
1695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
@@ -1694,6 +2124,47 @@ module Aws::SageMaker
1694
2124
  include Aws::Structure
1695
2125
  end
1696
2126
 
2127
+ # Use this parameter to configure your Amazon Cognito workforce. A
2128
+ # single Cognito workforce is created using and corresponds to a single
2129
+ # [ Amazon Cognito user pool][1].
2130
+ #
2131
+ #
2132
+ #
2133
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
2134
+ #
2135
+ # @note When making an API call, you may pass CognitoConfig
2136
+ # data as a hash:
2137
+ #
2138
+ # {
2139
+ # user_pool: "CognitoUserPool", # required
2140
+ # client_id: "ClientId", # required
2141
+ # }
2142
+ #
2143
+ # @!attribute [rw] user_pool
2144
+ # A [ user pool][1] is a user directory in Amazon Cognito. With a user
2145
+ # pool, your users can sign in to your web or mobile app through
2146
+ # Amazon Cognito. Your users can also sign in through social identity
2147
+ # providers like Google, Facebook, Amazon, or Apple, and through SAML
2148
+ # identity providers.
2149
+ #
2150
+ #
2151
+ #
2152
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
2153
+ # @return [String]
2154
+ #
2155
+ # @!attribute [rw] client_id
2156
+ # The client ID for your Amazon Cognito user pool.
2157
+ # @return [String]
2158
+ #
2159
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CognitoConfig AWS API Documentation
2160
+ #
2161
+ class CognitoConfig < Struct.new(
2162
+ :user_pool,
2163
+ :client_id)
2164
+ SENSITIVE = []
2165
+ include Aws::Structure
2166
+ end
2167
+
1697
2168
  # Identifies a Amazon Cognito user group. A user group can be used in on
1698
2169
  # or more work teams.
1699
2170
  #
@@ -1703,7 +2174,7 @@ module Aws::SageMaker
1703
2174
  # {
1704
2175
  # user_pool: "CognitoUserPool", # required
1705
2176
  # user_group: "CognitoUserGroup", # required
1706
- # client_id: "CognitoClientId", # required
2177
+ # client_id: "ClientId", # required
1707
2178
  # }
1708
2179
  #
1709
2180
  # @!attribute [rw] user_pool
@@ -1785,8 +2256,23 @@ module Aws::SageMaker
1785
2256
  # @return [Time]
1786
2257
  #
1787
2258
  # @!attribute [rw] compilation_target_device
1788
- # The type of device that the model will run on after compilation has
1789
- # completed.
2259
+ # The type of device that the model will run on after the compilation
2260
+ # job has completed.
2261
+ # @return [String]
2262
+ #
2263
+ # @!attribute [rw] compilation_target_platform_os
2264
+ # The type of OS that the model will run on after the compilation job
2265
+ # has completed.
2266
+ # @return [String]
2267
+ #
2268
+ # @!attribute [rw] compilation_target_platform_arch
2269
+ # The type of architecture that the model will run on after the
2270
+ # compilation job has completed.
2271
+ # @return [String]
2272
+ #
2273
+ # @!attribute [rw] compilation_target_platform_accelerator
2274
+ # The type of accelerator that the model will run on after the
2275
+ # compilation job has completed.
1790
2276
  # @return [String]
1791
2277
  #
1792
2278
  # @!attribute [rw] last_modified_time
@@ -1806,6 +2292,9 @@ module Aws::SageMaker
1806
2292
  :compilation_start_time,
1807
2293
  :compilation_end_time,
1808
2294
  :compilation_target_device,
2295
+ :compilation_target_platform_os,
2296
+ :compilation_target_platform_arch,
2297
+ :compilation_target_platform_accelerator,
1809
2298
  :last_modified_time,
1810
2299
  :compilation_job_status)
1811
2300
  SENSITIVE = []
@@ -1833,7 +2322,10 @@ module Aws::SageMaker
1833
2322
  #
1834
2323
  # {
1835
2324
  # container_hostname: "ContainerHostname",
1836
- # image: "Image",
2325
+ # image: "ContainerImage",
2326
+ # image_config: {
2327
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2328
+ # },
1837
2329
  # mode: "SingleModel", # accepts SingleModel, MultiModel
1838
2330
  # model_data_url: "Url",
1839
2331
  # environment: {
@@ -1864,19 +2356,33 @@ module Aws::SageMaker
1864
2356
  # @return [String]
1865
2357
  #
1866
2358
  # @!attribute [rw] image
1867
- # The Amazon EC2 Container Registry (Amazon ECR) path where inference
1868
- # code is stored. If you are using your own custom algorithm instead
1869
- # of an algorithm provided by Amazon SageMaker, the inference code
1870
- # must meet Amazon SageMaker requirements. Amazon SageMaker supports
1871
- # both `registry/repository[:tag]` and `registry/repository[@digest]`
1872
- # image path formats. For more information, see [Using Your Own
1873
- # Algorithms with Amazon SageMaker][1]
2359
+ # The path where inference code is stored. This can be either in
2360
+ # Amazon EC2 Container Registry or in a Docker registry that is
2361
+ # accessible from the same VPC that you configure for your endpoint.
2362
+ # If you are using your own custom algorithm instead of an algorithm
2363
+ # provided by Amazon SageMaker, the inference code must meet Amazon
2364
+ # SageMaker requirements. Amazon SageMaker supports both
2365
+ # `registry/repository[:tag]` and `registry/repository[@digest]` image
2366
+ # path formats. For more information, see [Using Your Own Algorithms
2367
+ # with Amazon SageMaker][1]
1874
2368
  #
1875
2369
  #
1876
2370
  #
1877
2371
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
1878
2372
  # @return [String]
1879
2373
  #
2374
+ # @!attribute [rw] image_config
2375
+ # Specifies whether the model container is in Amazon ECR or a private
2376
+ # Docker registry accessible from your Amazon Virtual Private Cloud
2377
+ # (VPC). For information about storing containers in a private Docker
2378
+ # registry, see [Use a Private Docker Registry for Real-Time Inference
2379
+ # Containers][1]
2380
+ #
2381
+ #
2382
+ #
2383
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html
2384
+ # @return [Types::ImageConfig]
2385
+ #
1880
2386
  # @!attribute [rw] mode
1881
2387
  # Whether the container hosts a single model or multiple models.
1882
2388
  # @return [String]
@@ -1923,6 +2429,7 @@ module Aws::SageMaker
1923
2429
  class ContainerDefinition < Struct.new(
1924
2430
  :container_hostname,
1925
2431
  :image,
2432
+ :image_config,
1926
2433
  :mode,
1927
2434
  :model_data_url,
1928
2435
  :environment,
@@ -2040,7 +2547,7 @@ module Aws::SageMaker
2040
2547
  # algorithm_name: "EntityName", # required
2041
2548
  # algorithm_description: "EntityDescription",
2042
2549
  # training_specification: { # required
2043
- # training_image: "Image", # required
2550
+ # training_image: "ContainerImage", # required
2044
2551
  # training_image_digest: "ImageDigest",
2045
2552
  # supported_hyper_parameters: [
2046
2553
  # {
@@ -2094,7 +2601,7 @@ module Aws::SageMaker
2094
2601
  # containers: [ # required
2095
2602
  # {
2096
2603
  # container_hostname: "ContainerHostname",
2097
- # image: "Image", # required
2604
+ # image: "ContainerImage", # required
2098
2605
  # image_digest: "ImageDigest",
2099
2606
  # model_data_url: "Url",
2100
2607
  # product_id: "ProductId",
@@ -2289,7 +2796,7 @@ module Aws::SageMaker
2289
2796
  # },
2290
2797
  # ],
2291
2798
  # resource_spec: {
2292
- # sage_maker_image_arn: "SageMakerImageArn",
2799
+ # sage_maker_image_arn: "ImageArn",
2293
2800
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2294
2801
  # },
2295
2802
  # }
@@ -2368,7 +2875,7 @@ module Aws::SageMaker
2368
2875
  # },
2369
2876
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
2370
2877
  # auto_ml_job_objective: {
2371
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
2878
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
2372
2879
  # },
2373
2880
  # auto_ml_job_config: {
2374
2881
  # completion_criteria: {
@@ -2396,7 +2903,7 @@ module Aws::SageMaker
2396
2903
  # }
2397
2904
  #
2398
2905
  # @!attribute [rw] auto_ml_job_name
2399
- # Identifies an AutoPilot job. Must be unique to your account and is
2906
+ # Identifies an Autopilot job. Must be unique to your account and is
2400
2907
  # case-insensitive.
2401
2908
  # @return [String]
2402
2909
  #
@@ -2417,9 +2924,11 @@ module Aws::SageMaker
2417
2924
  # @return [String]
2418
2925
  #
2419
2926
  # @!attribute [rw] auto_ml_job_objective
2420
- # Defines the job's objective. You provide a MetricName and AutoML
2421
- # will infer minimize or maximize. If this is not provided, the most
2422
- # commonly used ObjectiveMetric for problem type will be selected.
2927
+ # Defines the objective of a an AutoML job. You provide a
2928
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to
2929
+ # minimize or maximize it. If a metric is not specified, the most
2930
+ # commonly used ObjectiveMetric for problem type is automaically
2931
+ # selected.
2423
2932
  # @return [Types::AutoMLJobObjective]
2424
2933
  #
2425
2934
  # @!attribute [rw] auto_ml_job_config
@@ -2427,13 +2936,13 @@ module Aws::SageMaker
2427
2936
  # @return [Types::AutoMLJobConfig]
2428
2937
  #
2429
2938
  # @!attribute [rw] role_arn
2430
- # The ARN of the role that will be used to access the data.
2939
+ # The ARN of the role that is used to access the data.
2431
2940
  # @return [String]
2432
2941
  #
2433
2942
  # @!attribute [rw] generate_candidate_definitions_only
2434
- # This will generate possible candidates without training a model. A
2435
- # candidate is a combination of data preprocessors, algorithms, and
2436
- # algorithm parameter settings.
2943
+ # Generates possible candidates without training a model. A candidate
2944
+ # is a combination of data preprocessors, algorithms, and algorithm
2945
+ # parameter settings.
2437
2946
  # @return [Boolean]
2438
2947
  #
2439
2948
  # @!attribute [rw] tags
@@ -2526,7 +3035,13 @@ module Aws::SageMaker
2526
3035
  # },
2527
3036
  # output_config: { # required
2528
3037
  # s3_output_location: "S3Uri", # required
2529
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22
3038
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
3039
+ # target_platform: {
3040
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
3041
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
3042
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
3043
+ # },
3044
+ # compiler_options: "CompilerOptions",
2530
3045
  # },
2531
3046
  # stopping_condition: { # required
2532
3047
  # max_runtime_in_seconds: 1,
@@ -2627,19 +3142,19 @@ module Aws::SageMaker
2627
3142
  # },
2628
3143
  # jupyter_server_app_settings: {
2629
3144
  # default_resource_spec: {
2630
- # sage_maker_image_arn: "SageMakerImageArn",
3145
+ # sage_maker_image_arn: "ImageArn",
2631
3146
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2632
3147
  # },
2633
3148
  # },
2634
3149
  # kernel_gateway_app_settings: {
2635
3150
  # default_resource_spec: {
2636
- # sage_maker_image_arn: "SageMakerImageArn",
3151
+ # sage_maker_image_arn: "ImageArn",
2637
3152
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2638
3153
  # },
2639
3154
  # },
2640
3155
  # tensor_board_app_settings: {
2641
3156
  # default_resource_spec: {
2642
- # sage_maker_image_arn: "SageMakerImageArn",
3157
+ # sage_maker_image_arn: "ImageArn",
2643
3158
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
2644
3159
  # },
2645
3160
  # },
@@ -3482,9 +3997,12 @@ module Aws::SageMaker
3482
3997
  # label_attribute_name: "LabelAttributeName", # required
3483
3998
  # input_config: { # required
3484
3999
  # data_source: { # required
3485
- # s3_data_source: { # required
4000
+ # s3_data_source: {
3486
4001
  # manifest_s3_uri: "S3Uri", # required
3487
4002
  # },
4003
+ # sns_data_source: {
4004
+ # sns_topic_arn: "SnsTopicArn", # required
4005
+ # },
3488
4006
  # },
3489
4007
  # data_attributes: {
3490
4008
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -3493,6 +4011,7 @@ module Aws::SageMaker
3493
4011
  # output_config: { # required
3494
4012
  # s3_output_path: "S3Uri", # required
3495
4013
  # kms_key_id: "KmsKeyId",
4014
+ # sns_topic_arn: "SnsTopicArn",
3496
4015
  # },
3497
4016
  # role_arn: "RoleArn", # required
3498
4017
  # label_category_config_s3_uri: "S3Uri",
@@ -3577,7 +4096,13 @@ module Aws::SageMaker
3577
4096
  # The S3 URL of the file that defines the categories used to label the
3578
4097
  # data objects.
3579
4098
  #
3580
- # The file is a JSON structure in the following format:
4099
+ # For 3D point cloud task types, see [Create a Labeling Category
4100
+ # Configuration File for 3D Point Cloud Labeling Jobs][1].
4101
+ #
4102
+ # For all other [built-in task types][2] and [custom tasks][3], your
4103
+ # label category configuration file must be a JSON file in the
4104
+ # following format. Identify the labels you want to use by replacing
4105
+ # `label_1`, `label_2`,`...`,`label_n` with your label categories.
3581
4106
  #
3582
4107
  # `\{`
3583
4108
  #
@@ -3587,13 +4112,13 @@ module Aws::SageMaker
3587
4112
  #
3588
4113
  # ` \{`
3589
4114
  #
3590
- # ` "label": "label 1"`
4115
+ # ` "label": "label_1"`
3591
4116
  #
3592
4117
  # ` \},`
3593
4118
  #
3594
4119
  # ` \{`
3595
4120
  #
3596
- # ` "label": "label 2"`
4121
+ # ` "label": "label_2"`
3597
4122
  #
3598
4123
  # ` \},`
3599
4124
  #
@@ -3601,13 +4126,19 @@ module Aws::SageMaker
3601
4126
  #
3602
4127
  # ` \{`
3603
4128
  #
3604
- # ` "label": "label n"`
4129
+ # ` "label": "label_n"`
3605
4130
  #
3606
4131
  # ` \}`
3607
4132
  #
3608
4133
  # ` ]`
3609
4134
  #
3610
4135
  # `\}`
4136
+ #
4137
+ #
4138
+ #
4139
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
4140
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
4141
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
3611
4142
  # @return [String]
3612
4143
  #
3613
4144
  # @!attribute [rw] stopping_conditions
@@ -3674,7 +4205,10 @@ module Aws::SageMaker
3674
4205
  # model_name: "ModelName", # required
3675
4206
  # primary_container: {
3676
4207
  # container_hostname: "ContainerHostname",
3677
- # image: "Image",
4208
+ # image: "ContainerImage",
4209
+ # image_config: {
4210
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4211
+ # },
3678
4212
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3679
4213
  # model_data_url: "Url",
3680
4214
  # environment: {
@@ -3685,7 +4219,10 @@ module Aws::SageMaker
3685
4219
  # containers: [
3686
4220
  # {
3687
4221
  # container_hostname: "ContainerHostname",
3688
- # image: "Image",
4222
+ # image: "ContainerImage",
4223
+ # image_config: {
4224
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
4225
+ # },
3689
4226
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3690
4227
  # model_data_url: "Url",
3691
4228
  # environment: {
@@ -3804,7 +4341,7 @@ module Aws::SageMaker
3804
4341
  # containers: [ # required
3805
4342
  # {
3806
4343
  # container_hostname: "ContainerHostname",
3807
- # image: "Image", # required
4344
+ # image: "ContainerImage", # required
3808
4345
  # image_digest: "ImageDigest",
3809
4346
  # model_data_url: "Url",
3810
4347
  # product_id: "ProductId",
@@ -4501,7 +5038,14 @@ module Aws::SageMaker
4501
5038
  # @return [Array<Types::Tag>]
4502
5039
  #
4503
5040
  # @!attribute [rw] experiment_config
4504
- # Configuration for the experiment.
5041
+ # Associates a SageMaker job as a trial component with an experiment
5042
+ # and trial. Specified when you call the following APIs:
5043
+ #
5044
+ # * CreateProcessingJob
5045
+ #
5046
+ # * CreateTrainingJob
5047
+ #
5048
+ # * CreateTransformJob
4505
5049
  # @return [Types::ExperimentConfig]
4506
5050
  #
4507
5051
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateProcessingJobRequest AWS API Documentation
@@ -4833,7 +5377,14 @@ module Aws::SageMaker
4833
5377
  # @return [Types::TensorBoardOutputConfig]
4834
5378
  #
4835
5379
  # @!attribute [rw] experiment_config
4836
- # Configuration for the experiment.
5380
+ # Associates a SageMaker job as a trial component with an experiment
5381
+ # and trial. Specified when you call the following APIs:
5382
+ #
5383
+ # * CreateProcessingJob
5384
+ #
5385
+ # * CreateTrainingJob
5386
+ #
5387
+ # * CreateTransformJob
4837
5388
  # @return [Types::ExperimentConfig]
4838
5389
  #
4839
5390
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
@@ -5038,7 +5589,14 @@ module Aws::SageMaker
5038
5589
  # @return [Array<Types::Tag>]
5039
5590
  #
5040
5591
  # @!attribute [rw] experiment_config
5041
- # Configuration for the experiment.
5592
+ # Associates a SageMaker job as a trial component with an experiment
5593
+ # and trial. Specified when you call the following APIs:
5594
+ #
5595
+ # * CreateProcessingJob
5596
+ #
5597
+ # * CreateTrainingJob
5598
+ #
5599
+ # * CreateTransformJob
5042
5600
  # @return [Types::ExperimentConfig]
5043
5601
  #
5044
5602
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTransformJobRequest AWS API Documentation
@@ -5269,19 +5827,19 @@ module Aws::SageMaker
5269
5827
  # },
5270
5828
  # jupyter_server_app_settings: {
5271
5829
  # default_resource_spec: {
5272
- # sage_maker_image_arn: "SageMakerImageArn",
5830
+ # sage_maker_image_arn: "ImageArn",
5273
5831
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5274
5832
  # },
5275
5833
  # },
5276
5834
  # kernel_gateway_app_settings: {
5277
5835
  # default_resource_spec: {
5278
- # sage_maker_image_arn: "SageMakerImageArn",
5836
+ # sage_maker_image_arn: "ImageArn",
5279
5837
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5280
5838
  # },
5281
5839
  # },
5282
5840
  # tensor_board_app_settings: {
5283
5841
  # default_resource_spec: {
5284
- # sage_maker_image_arn: "SageMakerImageArn",
5842
+ # sage_maker_image_arn: "ImageArn",
5285
5843
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
5286
5844
  # },
5287
5845
  # },
@@ -5346,17 +5904,116 @@ module Aws::SageMaker
5346
5904
  include Aws::Structure
5347
5905
  end
5348
5906
 
5907
+ # @note When making an API call, you may pass CreateWorkforceRequest
5908
+ # data as a hash:
5909
+ #
5910
+ # {
5911
+ # cognito_config: {
5912
+ # user_pool: "CognitoUserPool", # required
5913
+ # client_id: "ClientId", # required
5914
+ # },
5915
+ # oidc_config: {
5916
+ # client_id: "ClientId", # required
5917
+ # client_secret: "ClientSecret", # required
5918
+ # issuer: "OidcEndpoint", # required
5919
+ # authorization_endpoint: "OidcEndpoint", # required
5920
+ # token_endpoint: "OidcEndpoint", # required
5921
+ # user_info_endpoint: "OidcEndpoint", # required
5922
+ # logout_endpoint: "OidcEndpoint", # required
5923
+ # jwks_uri: "OidcEndpoint", # required
5924
+ # },
5925
+ # source_ip_config: {
5926
+ # cidrs: ["Cidr"], # required
5927
+ # },
5928
+ # workforce_name: "WorkforceName", # required
5929
+ # tags: [
5930
+ # {
5931
+ # key: "TagKey", # required
5932
+ # value: "TagValue", # required
5933
+ # },
5934
+ # ],
5935
+ # }
5936
+ #
5937
+ # @!attribute [rw] cognito_config
5938
+ # Use this parameter to configure an Amazon Cognito private workforce.
5939
+ # A single Cognito workforce is created using and corresponds to a
5940
+ # single [ Amazon Cognito user pool][1].
5941
+ #
5942
+ # Do not use `OidcConfig` if you specify values for `CognitoConfig`.
5943
+ #
5944
+ #
5945
+ #
5946
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
5947
+ # @return [Types::CognitoConfig]
5948
+ #
5949
+ # @!attribute [rw] oidc_config
5950
+ # Use this parameter to configure a private workforce using your own
5951
+ # OIDC Identity Provider.
5952
+ #
5953
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
5954
+ # @return [Types::OidcConfig]
5955
+ #
5956
+ # @!attribute [rw] source_ip_config
5957
+ # A list of IP address ranges ([CIDRs][1]). Used to create an allow
5958
+ # list of IP addresses for a private workforce. Workers will only be
5959
+ # able to login to their worker portal from an IP address within this
5960
+ # range. By default, a workforce isn't restricted to specific IP
5961
+ # addresses.
5962
+ #
5963
+ #
5964
+ #
5965
+ # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
5966
+ # @return [Types::SourceIpConfig]
5967
+ #
5968
+ # @!attribute [rw] workforce_name
5969
+ # The name of the private workforce.
5970
+ # @return [String]
5971
+ #
5972
+ # @!attribute [rw] tags
5973
+ # An array of key-value pairs that contain metadata to help you
5974
+ # categorize and organize our workforce. Each tag consists of a key
5975
+ # and a value, both of which you define.
5976
+ # @return [Array<Types::Tag>]
5977
+ #
5978
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforceRequest AWS API Documentation
5979
+ #
5980
+ class CreateWorkforceRequest < Struct.new(
5981
+ :cognito_config,
5982
+ :oidc_config,
5983
+ :source_ip_config,
5984
+ :workforce_name,
5985
+ :tags)
5986
+ SENSITIVE = []
5987
+ include Aws::Structure
5988
+ end
5989
+
5990
+ # @!attribute [rw] workforce_arn
5991
+ # The Amazon Resource Name (ARN) of the workforce.
5992
+ # @return [String]
5993
+ #
5994
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforceResponse AWS API Documentation
5995
+ #
5996
+ class CreateWorkforceResponse < Struct.new(
5997
+ :workforce_arn)
5998
+ SENSITIVE = []
5999
+ include Aws::Structure
6000
+ end
6001
+
5349
6002
  # @note When making an API call, you may pass CreateWorkteamRequest
5350
6003
  # data as a hash:
5351
6004
  #
5352
6005
  # {
5353
6006
  # workteam_name: "WorkteamName", # required
6007
+ # workforce_name: "WorkforceName",
5354
6008
  # member_definitions: [ # required
5355
6009
  # {
5356
6010
  # cognito_member_definition: {
5357
6011
  # user_pool: "CognitoUserPool", # required
5358
6012
  # user_group: "CognitoUserGroup", # required
5359
- # client_id: "CognitoClientId", # required
6013
+ # client_id: "ClientId", # required
6014
+ # },
6015
+ # oidc_member_definition: {
6016
+ # groups: ["Group"], # required
5360
6017
  # },
5361
6018
  # },
5362
6019
  # ],
@@ -5376,13 +6033,31 @@ module Aws::SageMaker
5376
6033
  # The name of the work team. Use this name to identify the work team.
5377
6034
  # @return [String]
5378
6035
  #
6036
+ # @!attribute [rw] workforce_name
6037
+ # The name of the workforce.
6038
+ # @return [String]
6039
+ #
5379
6040
  # @!attribute [rw] member_definitions
5380
6041
  # A list of `MemberDefinition` objects that contains objects that
5381
- # identify the Amazon Cognito user pool that makes up the work team.
5382
- # For more information, see [Amazon Cognito User Pools][1].
6042
+ # identify the workers that make up the work team.
6043
+ #
6044
+ # Workforces can be created using Amazon Cognito or your own OIDC
6045
+ # Identity Provider (IdP). For private workforces created using Amazon
6046
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
6047
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
6048
+ # not provide input for both of these parameters in a single request.
6049
+ #
6050
+ # For workforces created using Amazon Cognito, private work teams
6051
+ # correspond to Amazon Cognito *user groups* within the user pool used
6052
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
6053
+ # that make up the member definition must have the same `ClientId` and
6054
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
6055
+ # worker pool, see [Adding groups to a User Pool](). For more
6056
+ # information about user pools, see [Amazon Cognito User Pools][1].
5383
6057
  #
5384
- # All of the `CognitoMemberDefinition` objects that make up the member
5385
- # definition must have the same `ClientId` and `UserPool` values.
6058
+ # For workforces created using your own OIDC IdP, specify the user
6059
+ # groups that you want to include in your private work team in
6060
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
5386
6061
  #
5387
6062
  #
5388
6063
  #
@@ -5415,6 +6090,7 @@ module Aws::SageMaker
5415
6090
  #
5416
6091
  class CreateWorkteamRequest < Struct.new(
5417
6092
  :workteam_name,
6093
+ :workforce_name,
5418
6094
  :member_definitions,
5419
6095
  :description,
5420
6096
  :notification_configuration,
@@ -5954,28 +6630,52 @@ module Aws::SageMaker
5954
6630
  include Aws::Structure
5955
6631
  end
5956
6632
 
5957
- # @note When making an API call, you may pass DeleteFlowDefinitionRequest
6633
+ # @note When making an API call, you may pass DeleteFlowDefinitionRequest
6634
+ # data as a hash:
6635
+ #
6636
+ # {
6637
+ # flow_definition_name: "FlowDefinitionName", # required
6638
+ # }
6639
+ #
6640
+ # @!attribute [rw] flow_definition_name
6641
+ # The name of the flow definition you are deleting.
6642
+ # @return [String]
6643
+ #
6644
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteFlowDefinitionRequest AWS API Documentation
6645
+ #
6646
+ class DeleteFlowDefinitionRequest < Struct.new(
6647
+ :flow_definition_name)
6648
+ SENSITIVE = []
6649
+ include Aws::Structure
6650
+ end
6651
+
6652
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteFlowDefinitionResponse AWS API Documentation
6653
+ #
6654
+ class DeleteFlowDefinitionResponse < Aws::EmptyStructure; end
6655
+
6656
+ # @note When making an API call, you may pass DeleteHumanTaskUiRequest
5958
6657
  # data as a hash:
5959
6658
  #
5960
6659
  # {
5961
- # flow_definition_name: "FlowDefinitionName", # required
6660
+ # human_task_ui_name: "HumanTaskUiName", # required
5962
6661
  # }
5963
6662
  #
5964
- # @!attribute [rw] flow_definition_name
5965
- # The name of the flow definition you are deleting.
6663
+ # @!attribute [rw] human_task_ui_name
6664
+ # The name of the human task user interface (work task template) you
6665
+ # want to delete.
5966
6666
  # @return [String]
5967
6667
  #
5968
- # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteFlowDefinitionRequest AWS API Documentation
6668
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUiRequest AWS API Documentation
5969
6669
  #
5970
- class DeleteFlowDefinitionRequest < Struct.new(
5971
- :flow_definition_name)
6670
+ class DeleteHumanTaskUiRequest < Struct.new(
6671
+ :human_task_ui_name)
5972
6672
  SENSITIVE = []
5973
6673
  include Aws::Structure
5974
6674
  end
5975
6675
 
5976
- # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteFlowDefinitionResponse AWS API Documentation
6676
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUiResponse AWS API Documentation
5977
6677
  #
5978
- class DeleteFlowDefinitionResponse < Aws::EmptyStructure; end
6678
+ class DeleteHumanTaskUiResponse < Aws::EmptyStructure; end
5979
6679
 
5980
6680
  # @note When making an API call, you may pass DeleteModelInput
5981
6681
  # data as a hash:
@@ -6190,6 +6890,29 @@ module Aws::SageMaker
6190
6890
  include Aws::Structure
6191
6891
  end
6192
6892
 
6893
+ # @note When making an API call, you may pass DeleteWorkforceRequest
6894
+ # data as a hash:
6895
+ #
6896
+ # {
6897
+ # workforce_name: "WorkforceName", # required
6898
+ # }
6899
+ #
6900
+ # @!attribute [rw] workforce_name
6901
+ # The name of the workforce.
6902
+ # @return [String]
6903
+ #
6904
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforceRequest AWS API Documentation
6905
+ #
6906
+ class DeleteWorkforceRequest < Struct.new(
6907
+ :workforce_name)
6908
+ SENSITIVE = []
6909
+ include Aws::Structure
6910
+ end
6911
+
6912
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforceResponse AWS API Documentation
6913
+ #
6914
+ class DeleteWorkforceResponse < Aws::EmptyStructure; end
6915
+
6193
6916
  # @note When making an API call, you may pass DeleteWorkteamRequest
6194
6917
  # data as a hash:
6195
6918
  #
@@ -7127,6 +7850,7 @@ module Aws::SageMaker
7127
7850
  # @return [String]
7128
7851
  #
7129
7852
  # @!attribute [rw] failure_reason
7853
+ # The reason your flow definition failed.
7130
7854
  # @return [String]
7131
7855
  #
7132
7856
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeFlowDefinitionResponse AWS API Documentation
@@ -7154,8 +7878,8 @@ module Aws::SageMaker
7154
7878
  # }
7155
7879
  #
7156
7880
  # @!attribute [rw] human_task_ui_name
7157
- # The name of the human task user interface you want information
7158
- # about.
7881
+ # The name of the human task user interface (worker task template) you
7882
+ # want information about.
7159
7883
  # @return [String]
7160
7884
  #
7161
7885
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHumanTaskUiRequest AWS API Documentation
@@ -7167,11 +7891,17 @@ module Aws::SageMaker
7167
7891
  end
7168
7892
 
7169
7893
  # @!attribute [rw] human_task_ui_arn
7170
- # The Amazon Resource Name (ARN) of the human task user interface.
7894
+ # The Amazon Resource Name (ARN) of the human task user interface
7895
+ # (worker task template).
7171
7896
  # @return [String]
7172
7897
  #
7173
7898
  # @!attribute [rw] human_task_ui_name
7174
- # The name of the human task user interface.
7899
+ # The name of the human task user interface (worker task template).
7900
+ # @return [String]
7901
+ #
7902
+ # @!attribute [rw] human_task_ui_status
7903
+ # The status of the human task user interface (worker task template).
7904
+ # Valid values are listed below.
7175
7905
  # @return [String]
7176
7906
  #
7177
7907
  # @!attribute [rw] creation_time
@@ -7187,6 +7917,7 @@ module Aws::SageMaker
7187
7917
  class DescribeHumanTaskUiResponse < Struct.new(
7188
7918
  :human_task_ui_arn,
7189
7919
  :human_task_ui_name,
7920
+ :human_task_ui_status,
7190
7921
  :creation_time,
7191
7922
  :ui_template)
7192
7923
  SENSITIVE = []
@@ -7201,7 +7932,7 @@ module Aws::SageMaker
7201
7932
  # }
7202
7933
  #
7203
7934
  # @!attribute [rw] hyper_parameter_tuning_job_name
7204
- # The name of the tuning job to describe.
7935
+ # The name of the tuning job.
7205
7936
  # @return [String]
7206
7937
  #
7207
7938
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJobRequest AWS API Documentation
@@ -8231,7 +8962,7 @@ module Aws::SageMaker
8231
8962
  # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
8232
8963
  # maximum allowed runtime.
8233
8964
  #
8234
- # * `MaxWaitTmeExceeded` - The job stopped because it exceeded the
8965
+ # * `MaxWaitTimeExceeded` - The job stopped because it exceeded the
8235
8966
  # maximum allowed wait time.
8236
8967
  #
8237
8968
  # * `Stopped` - The training job has stopped.
@@ -8394,7 +9125,14 @@ module Aws::SageMaker
8394
9125
  # @return [Types::DebugHookConfig]
8395
9126
  #
8396
9127
  # @!attribute [rw] experiment_config
8397
- # Configuration for the experiment.
9128
+ # Associates a SageMaker job as a trial component with an experiment
9129
+ # and trial. Specified when you call the following APIs:
9130
+ #
9131
+ # * CreateProcessingJob
9132
+ #
9133
+ # * CreateTrainingJob
9134
+ #
9135
+ # * CreateTransformJob
8398
9136
  # @return [Types::ExperimentConfig]
8399
9137
  #
8400
9138
  # @!attribute [rw] debug_rule_configurations
@@ -8583,7 +9321,14 @@ module Aws::SageMaker
8583
9321
  # @return [Types::DataProcessing]
8584
9322
  #
8585
9323
  # @!attribute [rw] experiment_config
8586
- # Configuration for the experiment.
9324
+ # Associates a SageMaker job as a trial component with an experiment
9325
+ # and trial. Specified when you call the following APIs:
9326
+ #
9327
+ # * CreateProcessingJob
9328
+ #
9329
+ # * CreateTrainingJob
9330
+ #
9331
+ # * CreateTransformJob
8587
9332
  # @return [Types::ExperimentConfig]
8588
9333
  #
8589
9334
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJobResponse AWS API Documentation
@@ -9276,7 +10021,14 @@ module Aws::SageMaker
9276
10021
  include Aws::Structure
9277
10022
  end
9278
10023
 
9279
- # Configuration for the experiment.
10024
+ # Associates a SageMaker job as a trial component with an experiment and
10025
+ # trial. Specified when you call the following APIs:
10026
+ #
10027
+ # * CreateProcessingJob
10028
+ #
10029
+ # * CreateTrainingJob
10030
+ #
10031
+ # * CreateTransformJob
9280
10032
  #
9281
10033
  # @note When making an API call, you may pass ExperimentConfig
9282
10034
  # data as a hash:
@@ -9288,15 +10040,18 @@ module Aws::SageMaker
9288
10040
  # }
9289
10041
  #
9290
10042
  # @!attribute [rw] experiment_name
9291
- # The name of the experiment.
10043
+ # The name of an existing experiment to associate the trial component
10044
+ # with.
9292
10045
  # @return [String]
9293
10046
  #
9294
10047
  # @!attribute [rw] trial_name
9295
- # The name of the trial.
10048
+ # The name of an existing trial to associate the trial component with.
10049
+ # If not specified, a new trial is created.
9296
10050
  # @return [String]
9297
10051
  #
9298
10052
  # @!attribute [rw] trial_component_display_name
9299
- # Display name for the trial component.
10053
+ # The display name for the trial component. If this key isn't
10054
+ # specified, the display name is the trial component name.
9300
10055
  # @return [String]
9301
10056
  #
9302
10057
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
@@ -9576,18 +10331,19 @@ module Aws::SageMaker
9576
10331
  include Aws::Structure
9577
10332
  end
9578
10333
 
9579
- # The candidate result from a job.
10334
+ # The best candidate result from an AutoML training job.
9580
10335
  #
9581
10336
  # @!attribute [rw] type
9582
- # The metric type used.
10337
+ # The type of metric with the best result.
9583
10338
  # @return [String]
9584
10339
  #
9585
10340
  # @!attribute [rw] metric_name
9586
- # The name of the metric.
10341
+ # The name of the metric with the best result. For a description of
10342
+ # the possible objective metrics, see AutoMLJobObjective$MetricName.
9587
10343
  # @return [String]
9588
10344
  #
9589
10345
  # @!attribute [rw] value
9590
- # The value of the metric.
10346
+ # The value of the metric with the best result.
9591
10347
  # @return [Float]
9592
10348
  #
9593
10349
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
@@ -9905,12 +10661,13 @@ module Aws::SageMaker
9905
10661
  # @return [Integer]
9906
10662
  #
9907
10663
  # @!attribute [rw] task_availability_lifetime_in_seconds
9908
- # The length of time that a task remains available for labeling by
9909
- # human workers.
10664
+ # The length of time that a task remains available for review by human
10665
+ # workers.
9910
10666
  # @return [Integer]
9911
10667
  #
9912
10668
  # @!attribute [rw] task_time_limit_in_seconds
9913
- # The amount of time that a worker has to complete a task.
10669
+ # The amount of time that a worker has to complete a task. The default
10670
+ # value is 3,600 seconds (1 hour)
9914
10671
  # @return [Integer]
9915
10672
  #
9916
10673
  # @!attribute [rw] task_keywords
@@ -10213,9 +10970,10 @@ module Aws::SageMaker
10213
10970
  # before a data object is sent to a human worker. Use this function to
10214
10971
  # provide input to a custom labeling job.
10215
10972
  #
10216
- # For the built-in bounding box, image classification, semantic
10217
- # segmentation, and text classification task types, Amazon SageMaker
10218
- # Ground Truth provides the following Lambda functions:
10973
+ # For [built-in task types][1], use one of the following Amazon
10974
+ # SageMaker Ground Truth Lambda function ARNs for
10975
+ # `PreHumanTaskLambdaArn`. For custom labeling workflows, see
10976
+ # [Pre-annotation Lambda][2].
10219
10977
  #
10220
10978
  # **Bounding box** - Finds the most similar boxes from different
10221
10979
  # workers based on the Jaccard index of the boxes.
@@ -10405,125 +11163,460 @@ module Aws::SageMaker
10405
11163
  #
10406
11164
  # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition`
10407
11165
  #
10408
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition`
11166
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition`
11167
+ #
11168
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition`
11169
+ #
11170
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition`
11171
+ #
11172
+ # **Video Classification** - Use this task type when you need workers
11173
+ # to classify videos using predefined labels that you specify. Workers
11174
+ # are shown videos and are asked to choose one label for each video.
11175
+ #
11176
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass`
11177
+ #
11178
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass`
11179
+ #
11180
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass`
11181
+ #
11182
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass`
11183
+ #
11184
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass`
11185
+ #
11186
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass`
11187
+ #
11188
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass`
11189
+ #
11190
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass`
11191
+ #
11192
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass`
11193
+ #
11194
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass`
11195
+ #
11196
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass`
11197
+ #
11198
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass`
11199
+ #
11200
+ # **Video Frame Object Detection** - Use this task type to have
11201
+ # workers identify and locate objects in a sequence of video frames
11202
+ # (images extracted from a video) using bounding boxes. For example,
11203
+ # you can use this task to ask workers to identify and localize
11204
+ # various objects in a series of video frames, such as cars, bikes,
11205
+ # and pedestrians.
11206
+ #
11207
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection`
11208
+ #
11209
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection`
11210
+ #
11211
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection`
11212
+ #
11213
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection`
11214
+ #
11215
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection`
11216
+ #
11217
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection`
11218
+ #
11219
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection`
11220
+ #
11221
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection`
11222
+ #
11223
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection`
11224
+ #
11225
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection`
11226
+ #
11227
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection`
11228
+ #
11229
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection`
11230
+ #
11231
+ # **Video Frame Object Tracking** - Use this task type to have workers
11232
+ # track the movement of objects in a sequence of video frames (images
11233
+ # extracted from a video) using bounding boxes. For example, you can
11234
+ # use this task to ask workers to track the movement of objects, such
11235
+ # as cars, bikes, and pedestrians.
11236
+ #
11237
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking`
11238
+ #
11239
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking`
11240
+ #
11241
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking`
11242
+ #
11243
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking`
11244
+ #
11245
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking`
11246
+ #
11247
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking`
11248
+ #
11249
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking`
11250
+ #
11251
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking`
11252
+ #
11253
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking`
11254
+ #
11255
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking`
11256
+ #
11257
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking`
11258
+ #
11259
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking`
11260
+ #
11261
+ # **3D Point Cloud Modalities**
11262
+ #
11263
+ # Use the following pre-annotation lambdas for 3D point cloud labeling
11264
+ # modality tasks. See [3D Point Cloud Task types ][3] to learn more.
11265
+ #
11266
+ # **3D Point Cloud Object Detection** - Use this task type when you
11267
+ # want workers to classify objects in a 3D point cloud by drawing 3D
11268
+ # cuboids around objects. For example, you can use this task type to
11269
+ # ask workers to identify different types of objects in a point cloud,
11270
+ # such as cars, bikes, and pedestrians.
11271
+ #
11272
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection`
11273
+ #
11274
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection`
11275
+ #
11276
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection`
11277
+ #
11278
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection`
11279
+ #
11280
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection`
11281
+ #
11282
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection`
11283
+ #
11284
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection`
11285
+ #
11286
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection`
11287
+ #
11288
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection`
11289
+ #
11290
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection`
11291
+ #
11292
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection`
11293
+ #
11294
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection`
11295
+ #
11296
+ # **3D Point Cloud Object Tracking** - Use this task type when you
11297
+ # want workers to draw 3D cuboids around objects that appear in a
11298
+ # sequence of 3D point cloud frames. For example, you can use this
11299
+ # task type to ask workers to track the movement of vehicles across
11300
+ # multiple point cloud frames.
11301
+ #
11302
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking`
11303
+ #
11304
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking`
11305
+ #
11306
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking`
11307
+ #
11308
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking`
11309
+ #
11310
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking`
11311
+ #
11312
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking`
11313
+ #
11314
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking`
11315
+ #
11316
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking`
11317
+ #
11318
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking`
11319
+ #
11320
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking`
11321
+ #
11322
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking`
11323
+ #
11324
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking`
11325
+ #
11326
+ # **3D Point Cloud Semantic Segmentation** - Use this task type when
11327
+ # you want workers to create a point-level semantic segmentation masks
11328
+ # by painting objects in a 3D point cloud using different colors where
11329
+ # each color is assigned to one of the classes you specify.
11330
+ #
11331
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation`
11332
+ #
11333
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation`
11334
+ #
11335
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation`
11336
+ #
11337
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation`
11338
+ #
11339
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation`
11340
+ #
11341
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation`
11342
+ #
11343
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation`
11344
+ #
11345
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation`
11346
+ #
11347
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation`
11348
+ #
11349
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation`
11350
+ #
11351
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation`
11352
+ #
11353
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation`
11354
+ #
11355
+ # **Use the following ARNs for Label Verification and Adjustment
11356
+ # Jobs**
11357
+ #
11358
+ # Use label verification and adjustment jobs to review and adjust
11359
+ # labels. To learn more, see [Verify and Adjust Labels ][4].
11360
+ #
11361
+ # **Bounding box verification** - Uses a variant of the Expectation
11362
+ # Maximization approach to estimate the true class of verification
11363
+ # judgement for bounding box labels based on annotations from
11364
+ # individual workers.
11365
+ #
11366
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking`
11367
+ #
11368
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking`
11369
+ #
11370
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking`
11371
+ #
11372
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking`
11373
+ #
11374
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking`
11375
+ #
11376
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking`
11377
+ #
11378
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking`
11379
+ #
11380
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking`
11381
+ #
11382
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking`
11383
+ #
11384
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking`
11385
+ #
11386
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking`
11387
+ #
11388
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking`
11389
+ #
11390
+ # **Bounding box adjustment** - Finds the most similar boxes from
11391
+ # different workers based on the Jaccard index of the adjusted
11392
+ # annotations.
11393
+ #
11394
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox`
11395
+ #
11396
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox`
11397
+ #
11398
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox`
11399
+ #
11400
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox`
11401
+ #
11402
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox`
11403
+ #
11404
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox`
11405
+ #
11406
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox`
11407
+ #
11408
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox`
11409
+ #
11410
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox`
11411
+ #
11412
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox`
11413
+ #
11414
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox`
11415
+ #
11416
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox`
11417
+ #
11418
+ # **Semantic segmentation verification** - Uses a variant of the
11419
+ # Expectation Maximization approach to estimate the true class of
11420
+ # verification judgment for semantic segmentation labels based on
11421
+ # annotations from individual workers.
11422
+ #
11423
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation`
11424
+ #
11425
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation`
11426
+ #
11427
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation`
11428
+ #
11429
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation`
11430
+ #
11431
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation`
11432
+ #
11433
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation`
11434
+ #
11435
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation`
11436
+ #
11437
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation`
11438
+ #
11439
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation`
11440
+ #
11441
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation`
11442
+ #
11443
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation`
11444
+ #
11445
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation`
11446
+ #
11447
+ # **Semantic segmentation adjustment** - Treats each pixel in an image
11448
+ # as a multi-class classification and treats pixel adjusted
11449
+ # annotations from workers as "votes" for the correct label.
11450
+ #
11451
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation`
11452
+ #
11453
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation`
11454
+ #
11455
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation`
11456
+ #
11457
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation`
11458
+ #
11459
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation`
11460
+ #
11461
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation`
11462
+ #
11463
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation`
11464
+ #
11465
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation`
11466
+ #
11467
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation`
11468
+ #
11469
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation`
11470
+ #
11471
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation`
11472
+ #
11473
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation`
11474
+ #
11475
+ # **Video Frame Object Detection Adjustment** - Use this task type
11476
+ # when you want workers to adjust bounding boxes that workers have
11477
+ # added to video frames to classify and localize objects in a sequence
11478
+ # of video frames.
11479
+ #
11480
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection`
11481
+ #
11482
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection`
11483
+ #
11484
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection`
11485
+ #
11486
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection`
11487
+ #
11488
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection`
11489
+ #
11490
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection`
11491
+ #
11492
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection`
11493
+ #
11494
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection`
11495
+ #
11496
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection`
11497
+ #
11498
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection`
11499
+ #
11500
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection`
11501
+ #
11502
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection`
11503
+ #
11504
+ # **Video Frame Object Tracking Adjustment** - Use this task type when
11505
+ # you want workers to adjust bounding boxes that workers have added to
11506
+ # video frames to track object movement across a sequence of video
11507
+ # frames.
10409
11508
  #
10410
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition`
11509
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking`
10411
11510
  #
10412
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition`
11511
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking`
10413
11512
  #
10414
- # **Bounding box verification** - Uses a variant of the Expectation
10415
- # Maximization approach to estimate the true class of verification
10416
- # judgement for bounding box labels based on annotations from
10417
- # individual workers.
11513
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking`
10418
11514
  #
10419
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox`
11515
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking`
10420
11516
  #
10421
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox`
11517
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking`
10422
11518
  #
10423
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox`
11519
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking`
10424
11520
  #
10425
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox`
11521
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking`
10426
11522
  #
10427
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox`
11523
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking`
10428
11524
  #
10429
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox`
11525
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking`
10430
11526
  #
10431
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox`
11527
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking`
10432
11528
  #
10433
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox`
11529
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking`
10434
11530
  #
10435
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox`
11531
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking`
10436
11532
  #
10437
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox`
11533
+ # **3D point cloud object detection adjustment** - Adjust 3D cuboids
11534
+ # in a point cloud frame.
10438
11535
  #
10439
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox`
11536
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection`
10440
11537
  #
10441
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox`
11538
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection`
10442
11539
  #
10443
- # **Bounding box adjustment** - Finds the most similar boxes from
10444
- # different workers based on the Jaccard index of the adjusted
10445
- # annotations.
11540
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection`
10446
11541
  #
10447
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox`
11542
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection`
10448
11543
  #
10449
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox`
11544
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection`
10450
11545
  #
10451
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox`
11546
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection`
10452
11547
  #
10453
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox`
11548
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection`
10454
11549
  #
10455
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox`
11550
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection`
10456
11551
  #
10457
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox`
11552
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection`
10458
11553
  #
10459
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox`
11554
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection`
10460
11555
  #
10461
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox`
11556
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection`
10462
11557
  #
10463
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox`
11558
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection`
10464
11559
  #
10465
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox`
11560
+ # **3D point cloud object tracking adjustment** - Adjust 3D cuboids
11561
+ # across a sequence of point cloud frames.
10466
11562
  #
10467
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox`
11563
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking`
10468
11564
  #
10469
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox`
11565
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking`
10470
11566
  #
10471
- # **Semantic segmentation verification** - Uses a variant of the
10472
- # Expectation Maximization approach to estimate the true class of
10473
- # verification judgment for semantic segmentation labels based on
10474
- # annotations from individual workers.
11567
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking`
10475
11568
  #
10476
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation`
11569
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking`
10477
11570
  #
10478
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation`
11571
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking`
10479
11572
  #
10480
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation`
11573
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking`
10481
11574
  #
10482
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation`
11575
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking`
10483
11576
  #
10484
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation`
11577
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking`
10485
11578
  #
10486
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation`
11579
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking`
10487
11580
  #
10488
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation`
11581
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking`
10489
11582
  #
10490
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation`
11583
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking`
10491
11584
  #
10492
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation`
11585
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking`
10493
11586
  #
10494
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation`
11587
+ # **3D point cloud semantic segmentation adjustment** - Adjust
11588
+ # semantic segmentation masks in a 3D point cloud.
10495
11589
  #
10496
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation`
11590
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10497
11591
  #
10498
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation`
11592
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10499
11593
  #
10500
- # **Semantic segmentation adjustment** - Treats each pixel in an image
10501
- # as a multi-class classification and treats pixel adjusted
10502
- # annotations from workers as "votes" for the correct label.
11594
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10503
11595
  #
10504
- # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation`
11596
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10505
11597
  #
10506
- # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation`
11598
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10507
11599
  #
10508
- # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation`
11600
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10509
11601
  #
10510
- # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation`
11602
+ # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10511
11603
  #
10512
- # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation`
11604
+ # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10513
11605
  #
10514
- # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation`
11606
+ # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10515
11607
  #
10516
- # * `arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation`
11608
+ # * `arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10517
11609
  #
10518
- # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation`
11610
+ # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10519
11611
  #
10520
- # * `arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation`
11612
+ # * `arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation`
10521
11613
  #
10522
- # * `arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation`
10523
11614
  #
10524
- # * `arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation`
10525
11615
  #
10526
- # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation`
11616
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
11617
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-prelambda
11618
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html
11619
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html
10527
11620
  # @return [String]
10528
11621
  #
10529
11622
  # @!attribute [rw] task_keywords
@@ -11392,6 +12485,34 @@ module Aws::SageMaker
11392
12485
  include Aws::Structure
11393
12486
  end
11394
12487
 
12488
+ # Specifies whether the model container is in Amazon ECR or a private
12489
+ # Docker registry accessible from your Amazon Virtual Private Cloud
12490
+ # (VPC).
12491
+ #
12492
+ # @note When making an API call, you may pass ImageConfig
12493
+ # data as a hash:
12494
+ #
12495
+ # {
12496
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
12497
+ # }
12498
+ #
12499
+ # @!attribute [rw] repository_access_mode
12500
+ # Set this to one of the following values:
12501
+ #
12502
+ # * `Platform` - The model image is hosted in Amazon ECR.
12503
+ #
12504
+ # * `Vpc` - The model image is hosted in a private Docker registry in
12505
+ # your VPC.
12506
+ # @return [String]
12507
+ #
12508
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
12509
+ #
12510
+ class ImageConfig < Struct.new(
12511
+ :repository_access_mode)
12512
+ SENSITIVE = []
12513
+ include Aws::Structure
12514
+ end
12515
+
11395
12516
  # Defines how to perform inference generation after a training job is
11396
12517
  # run.
11397
12518
  #
@@ -11402,7 +12523,7 @@ module Aws::SageMaker
11402
12523
  # containers: [ # required
11403
12524
  # {
11404
12525
  # container_hostname: "ContainerHostname",
11405
- # image: "Image", # required
12526
+ # image: "ContainerImage", # required
11406
12527
  # image_digest: "ImageDigest",
11407
12528
  # model_data_url: "Url",
11408
12529
  # product_id: "ProductId",
@@ -11675,7 +12796,7 @@ module Aws::SageMaker
11675
12796
  #
11676
12797
  # {
11677
12798
  # default_resource_spec: {
11678
- # sage_maker_image_arn: "SageMakerImageArn",
12799
+ # sage_maker_image_arn: "ImageArn",
11679
12800
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
11680
12801
  # },
11681
12802
  # }
@@ -11700,7 +12821,7 @@ module Aws::SageMaker
11700
12821
  #
11701
12822
  # {
11702
12823
  # default_resource_spec: {
11703
- # sage_maker_image_arn: "SageMakerImageArn",
12824
+ # sage_maker_image_arn: "ImageArn",
11704
12825
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
11705
12826
  # },
11706
12827
  # }
@@ -11815,10 +12936,10 @@ module Aws::SageMaker
11815
12936
  # @return [String]
11816
12937
  #
11817
12938
  # @!attribute [rw] initial_active_learning_model_arn
11818
- # At the end of an auto-label job Amazon SageMaker Ground Truth sends
11819
- # the Amazon Resource Nam (ARN) of the final model used for
11820
- # auto-labeling. You can use this model as the starting point for
11821
- # subsequent similar jobs by providing the ARN of the model here.
12939
+ # At the end of an auto-label job Ground Truth sends the Amazon
12940
+ # Resource Name (ARN) of the final model used for auto-labeling. You
12941
+ # can use this model as the starting point for subsequent similar jobs
12942
+ # by providing the ARN of the model here.
11822
12943
  # @return [String]
11823
12944
  #
11824
12945
  # @!attribute [rw] labeling_job_resource_config
@@ -11862,23 +12983,43 @@ module Aws::SageMaker
11862
12983
 
11863
12984
  # Provides information about the location of input data.
11864
12985
  #
12986
+ # You must specify at least one of the following: `S3DataSource` or
12987
+ # `SnsDataSource`.
12988
+ #
12989
+ # Use `SnsDataSource` to specify an SNS input topic for a streaming
12990
+ # labeling job. If you do not specify and SNS input topic ARN, Ground
12991
+ # Truth will create a one-time labeling job.
12992
+ #
12993
+ # Use `S3DataSource` to specify an input manifest file for both
12994
+ # streaming and one-time labeling jobs. Adding an `S3DataSource` is
12995
+ # optional if you use `SnsDataSource` to create a streaming labeling
12996
+ # job.
12997
+ #
11865
12998
  # @note When making an API call, you may pass LabelingJobDataSource
11866
12999
  # data as a hash:
11867
13000
  #
11868
13001
  # {
11869
- # s3_data_source: { # required
13002
+ # s3_data_source: {
11870
13003
  # manifest_s3_uri: "S3Uri", # required
11871
13004
  # },
13005
+ # sns_data_source: {
13006
+ # sns_topic_arn: "SnsTopicArn", # required
13007
+ # },
11872
13008
  # }
11873
13009
  #
11874
13010
  # @!attribute [rw] s3_data_source
11875
13011
  # The Amazon S3 location of the input data objects.
11876
13012
  # @return [Types::LabelingJobS3DataSource]
11877
13013
  #
13014
+ # @!attribute [rw] sns_data_source
13015
+ # An Amazon SNS data source used for streaming labeling jobs.
13016
+ # @return [Types::LabelingJobSnsDataSource]
13017
+ #
11878
13018
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
11879
13019
  #
11880
13020
  class LabelingJobDataSource < Struct.new(
11881
- :s3_data_source)
13021
+ :s3_data_source,
13022
+ :sns_data_source)
11882
13023
  SENSITIVE = []
11883
13024
  include Aws::Structure
11884
13025
  end
@@ -11929,9 +13070,12 @@ module Aws::SageMaker
11929
13070
  #
11930
13071
  # {
11931
13072
  # data_source: { # required
11932
- # s3_data_source: { # required
13073
+ # s3_data_source: {
11933
13074
  # manifest_s3_uri: "S3Uri", # required
11934
13075
  # },
13076
+ # sns_data_source: {
13077
+ # sns_topic_arn: "SnsTopicArn", # required
13078
+ # },
11935
13079
  # },
11936
13080
  # data_attributes: {
11937
13081
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -11983,6 +13127,7 @@ module Aws::SageMaker
11983
13127
  # {
11984
13128
  # s3_output_path: "S3Uri", # required
11985
13129
  # kms_key_id: "KmsKeyId",
13130
+ # sns_topic_arn: "SnsTopicArn",
11986
13131
  # }
11987
13132
  #
11988
13133
  # @!attribute [rw] s3_output_path
@@ -12016,11 +13161,22 @@ module Aws::SageMaker
12016
13161
  # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
12017
13162
  # @return [String]
12018
13163
  #
13164
+ # @!attribute [rw] sns_topic_arn
13165
+ # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
13166
+ #
13167
+ # When workers complete labeling tasks, Ground Truth will send
13168
+ # labeling task output data to the SNS output topic you specify here.
13169
+ #
13170
+ # You must provide a value for this parameter if you provide an Amazon
13171
+ # SNS input topic in `SnsDataSource` in `InputConfig`.
13172
+ # @return [String]
13173
+ #
12019
13174
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
12020
13175
  #
12021
13176
  class LabelingJobOutputConfig < Struct.new(
12022
13177
  :s3_output_path,
12023
- :kms_key_id)
13178
+ :kms_key_id,
13179
+ :sns_topic_arn)
12024
13180
  SENSITIVE = []
12025
13181
  include Aws::Structure
12026
13182
  end
@@ -12079,6 +13235,32 @@ module Aws::SageMaker
12079
13235
  include Aws::Structure
12080
13236
  end
12081
13237
 
13238
+ # An Amazon SNS data source used for streaming labeling jobs.
13239
+ #
13240
+ # @note When making an API call, you may pass LabelingJobSnsDataSource
13241
+ # data as a hash:
13242
+ #
13243
+ # {
13244
+ # sns_topic_arn: "SnsTopicArn", # required
13245
+ # }
13246
+ #
13247
+ # @!attribute [rw] sns_topic_arn
13248
+ # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
13249
+ # ARN of the input topic you will use to send new data objects to a
13250
+ # streaming labeling job.
13251
+ #
13252
+ # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
13253
+ # you must specify a value for `SnsTopicArn` in `OutputConfig`.
13254
+ # @return [String]
13255
+ #
13256
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
13257
+ #
13258
+ class LabelingJobSnsDataSource < Struct.new(
13259
+ :sns_topic_arn)
13260
+ SENSITIVE = []
13261
+ include Aws::Structure
13262
+ end
13263
+
12082
13264
  # A set of conditions for stopping a labeling job. If any of the
12083
13265
  # conditions are met, the job is automatically stopped. You can use
12084
13266
  # these conditions to control the cost of data labeling.
@@ -12396,8 +13578,8 @@ module Aws::SageMaker
12396
13578
  # @return [Integer]
12397
13579
  #
12398
13580
  # @!attribute [rw] next_token
12399
- # If the previous response was truncated, you will receive this token.
12400
- # Use it in your next request to receive the next set of results.
13581
+ # If the previous response was truncated, you receive this token. Use
13582
+ # it in your next request to receive the next set of results.
12401
13583
  # @return [String]
12402
13584
  #
12403
13585
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsRequest AWS API Documentation
@@ -12422,8 +13604,8 @@ module Aws::SageMaker
12422
13604
  # @return [Array<Types::AutoMLJobSummary>]
12423
13605
  #
12424
13606
  # @!attribute [rw] next_token
12425
- # If the previous response was truncated, you will receive this token.
12426
- # Use it in your next request to receive the next set of results.
13607
+ # If the previous response was truncated, you receive this token. Use
13608
+ # it in your next request to receive the next set of results.
12427
13609
  # @return [String]
12428
13610
  #
12429
13611
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobsResponse AWS API Documentation
@@ -12475,8 +13657,8 @@ module Aws::SageMaker
12475
13657
  # @return [Integer]
12476
13658
  #
12477
13659
  # @!attribute [rw] next_token
12478
- # If the previous response was truncated, you will receive this token.
12479
- # Use it in your next request to receive the next set of results.
13660
+ # If the previous response was truncated, you receive this token. Use
13661
+ # it in your next request to receive the next set of results.
12480
13662
  # @return [String]
12481
13663
  #
12482
13664
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobRequest AWS API Documentation
@@ -12498,8 +13680,8 @@ module Aws::SageMaker
12498
13680
  # @return [Array<Types::AutoMLCandidate>]
12499
13681
  #
12500
13682
  # @!attribute [rw] next_token
12501
- # If the previous response was truncated, you will receive this token.
12502
- # Use it in your next request to receive the next set of results.
13683
+ # If the previous response was truncated, you receive this token. Use
13684
+ # it in your next request to receive the next set of results.
12503
13685
  # @return [String]
12504
13686
  #
12505
13687
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJobResponse AWS API Documentation
@@ -13349,7 +14531,7 @@ module Aws::SageMaker
13349
14531
  # name_contains: "NameContains",
13350
14532
  # sort_by: "Name", # accepts Name, CreationTime, Status
13351
14533
  # sort_order: "Ascending", # accepts Ascending, Descending
13352
- # status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
14534
+ # status_equals: "Initializing", # accepts Initializing, InProgress, Completed, Failed, Stopping, Stopped
13353
14535
  # }
13354
14536
  #
13355
14537
  # @!attribute [rw] creation_time_after
@@ -14782,6 +15964,67 @@ module Aws::SageMaker
14782
15964
  include Aws::Structure
14783
15965
  end
14784
15966
 
15967
+ # @note When making an API call, you may pass ListWorkforcesRequest
15968
+ # data as a hash:
15969
+ #
15970
+ # {
15971
+ # sort_by: "Name", # accepts Name, CreateDate
15972
+ # sort_order: "Ascending", # accepts Ascending, Descending
15973
+ # name_contains: "WorkforceName",
15974
+ # next_token: "NextToken",
15975
+ # max_results: 1,
15976
+ # }
15977
+ #
15978
+ # @!attribute [rw] sort_by
15979
+ # Sort workforces using the workforce name or creation date.
15980
+ # @return [String]
15981
+ #
15982
+ # @!attribute [rw] sort_order
15983
+ # Sort workforces in ascending or descending order.
15984
+ # @return [String]
15985
+ #
15986
+ # @!attribute [rw] name_contains
15987
+ # A filter you can use to search for workforces using part of the
15988
+ # workforce name.
15989
+ # @return [String]
15990
+ #
15991
+ # @!attribute [rw] next_token
15992
+ # A token to resume pagination.
15993
+ # @return [String]
15994
+ #
15995
+ # @!attribute [rw] max_results
15996
+ # The maximum number of workforces returned in the response.
15997
+ # @return [Integer]
15998
+ #
15999
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforcesRequest AWS API Documentation
16000
+ #
16001
+ class ListWorkforcesRequest < Struct.new(
16002
+ :sort_by,
16003
+ :sort_order,
16004
+ :name_contains,
16005
+ :next_token,
16006
+ :max_results)
16007
+ SENSITIVE = []
16008
+ include Aws::Structure
16009
+ end
16010
+
16011
+ # @!attribute [rw] workforces
16012
+ # A list containing information about your workforce.
16013
+ # @return [Array<Types::Workforce>]
16014
+ #
16015
+ # @!attribute [rw] next_token
16016
+ # A token to resume pagination.
16017
+ # @return [String]
16018
+ #
16019
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforcesResponse AWS API Documentation
16020
+ #
16021
+ class ListWorkforcesResponse < Struct.new(
16022
+ :workforces,
16023
+ :next_token)
16024
+ SENSITIVE = []
16025
+ include Aws::Structure
16026
+ end
16027
+
14785
16028
  # @note When making an API call, you may pass ListWorkteamsRequest
14786
16029
  # data as a hash:
14787
16030
  #
@@ -14848,7 +16091,8 @@ module Aws::SageMaker
14848
16091
  include Aws::Structure
14849
16092
  end
14850
16093
 
14851
- # Defines the Amazon Cognito user group that is part of a work team.
16094
+ # Defines an Amazon Cognito or your own OIDC IdP user group that is part
16095
+ # of a work team.
14852
16096
  #
14853
16097
  # @note When making an API call, you may pass MemberDefinition
14854
16098
  # data as a hash:
@@ -14857,7 +16101,10 @@ module Aws::SageMaker
14857
16101
  # cognito_member_definition: {
14858
16102
  # user_pool: "CognitoUserPool", # required
14859
16103
  # user_group: "CognitoUserGroup", # required
14860
- # client_id: "CognitoClientId", # required
16104
+ # client_id: "ClientId", # required
16105
+ # },
16106
+ # oidc_member_definition: {
16107
+ # groups: ["Group"], # required
14861
16108
  # },
14862
16109
  # }
14863
16110
  #
@@ -14865,10 +16112,20 @@ module Aws::SageMaker
14865
16112
  # The Amazon Cognito user group that is part of the work team.
14866
16113
  # @return [Types::CognitoMemberDefinition]
14867
16114
  #
16115
+ # @!attribute [rw] oidc_member_definition
16116
+ # A list user groups that exist in your OIDC Identity Provider (IdP).
16117
+ # One to ten groups can be used to create a single private work team.
16118
+ # When you add a user group to the list of `Groups`, you can add that
16119
+ # user group to one or more private work teams. If you add a user
16120
+ # group to a private work team, all workers in that user group are
16121
+ # added to the work team.
16122
+ # @return [Types::OidcMemberDefinition]
16123
+ #
14868
16124
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MemberDefinition AWS API Documentation
14869
16125
  #
14870
16126
  class MemberDefinition < Struct.new(
14871
- :cognito_member_definition)
16127
+ :cognito_member_definition,
16128
+ :oidc_member_definition)
14872
16129
  SENSITIVE = []
14873
16130
  include Aws::Structure
14874
16131
  end
@@ -14990,7 +16247,7 @@ module Aws::SageMaker
14990
16247
  #
14991
16248
  # {
14992
16249
  # container_hostname: "ContainerHostname",
14993
- # image: "Image", # required
16250
+ # image: "ContainerImage", # required
14994
16251
  # image_digest: "ImageDigest",
14995
16252
  # model_data_url: "Url",
14996
16253
  # product_id: "ProductId",
@@ -16252,32 +17509,290 @@ module Aws::SageMaker
16252
17509
  include Aws::Structure
16253
17510
  end
16254
17511
 
17512
+ # Use this parameter to configure your OIDC Identity Provider (IdP).
17513
+ #
17514
+ # @note When making an API call, you may pass OidcConfig
17515
+ # data as a hash:
17516
+ #
17517
+ # {
17518
+ # client_id: "ClientId", # required
17519
+ # client_secret: "ClientSecret", # required
17520
+ # issuer: "OidcEndpoint", # required
17521
+ # authorization_endpoint: "OidcEndpoint", # required
17522
+ # token_endpoint: "OidcEndpoint", # required
17523
+ # user_info_endpoint: "OidcEndpoint", # required
17524
+ # logout_endpoint: "OidcEndpoint", # required
17525
+ # jwks_uri: "OidcEndpoint", # required
17526
+ # }
17527
+ #
17528
+ # @!attribute [rw] client_id
17529
+ # The OIDC IdP client ID used to configure your private workforce.
17530
+ # @return [String]
17531
+ #
17532
+ # @!attribute [rw] client_secret
17533
+ # The OIDC IdP client secret used to configure your private workforce.
17534
+ # @return [String]
17535
+ #
17536
+ # @!attribute [rw] issuer
17537
+ # The OIDC IdP issuer used to configure your private workforce.
17538
+ # @return [String]
17539
+ #
17540
+ # @!attribute [rw] authorization_endpoint
17541
+ # The OIDC IdP authorization endpoint used to configure your private
17542
+ # workforce.
17543
+ # @return [String]
17544
+ #
17545
+ # @!attribute [rw] token_endpoint
17546
+ # The OIDC IdP token endpoint used to configure your private
17547
+ # workforce.
17548
+ # @return [String]
17549
+ #
17550
+ # @!attribute [rw] user_info_endpoint
17551
+ # The OIDC IdP user information endpoint used to configure your
17552
+ # private workforce.
17553
+ # @return [String]
17554
+ #
17555
+ # @!attribute [rw] logout_endpoint
17556
+ # The OIDC IdP logout endpoint used to configure your private
17557
+ # workforce.
17558
+ # @return [String]
17559
+ #
17560
+ # @!attribute [rw] jwks_uri
17561
+ # The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your
17562
+ # private workforce.
17563
+ # @return [String]
17564
+ #
17565
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcConfig AWS API Documentation
17566
+ #
17567
+ class OidcConfig < Struct.new(
17568
+ :client_id,
17569
+ :client_secret,
17570
+ :issuer,
17571
+ :authorization_endpoint,
17572
+ :token_endpoint,
17573
+ :user_info_endpoint,
17574
+ :logout_endpoint,
17575
+ :jwks_uri)
17576
+ SENSITIVE = [:client_secret]
17577
+ include Aws::Structure
17578
+ end
17579
+
17580
+ # Your OIDC IdP workforce configuration.
17581
+ #
17582
+ # @!attribute [rw] client_id
17583
+ # The OIDC IdP client ID used to configure your private workforce.
17584
+ # @return [String]
17585
+ #
17586
+ # @!attribute [rw] issuer
17587
+ # The OIDC IdP issuer used to configure your private workforce.
17588
+ # @return [String]
17589
+ #
17590
+ # @!attribute [rw] authorization_endpoint
17591
+ # The OIDC IdP authorization endpoint used to configure your private
17592
+ # workforce.
17593
+ # @return [String]
17594
+ #
17595
+ # @!attribute [rw] token_endpoint
17596
+ # The OIDC IdP token endpoint used to configure your private
17597
+ # workforce.
17598
+ # @return [String]
17599
+ #
17600
+ # @!attribute [rw] user_info_endpoint
17601
+ # The OIDC IdP user information endpoint used to configure your
17602
+ # private workforce.
17603
+ # @return [String]
17604
+ #
17605
+ # @!attribute [rw] logout_endpoint
17606
+ # The OIDC IdP logout endpoint used to configure your private
17607
+ # workforce.
17608
+ # @return [String]
17609
+ #
17610
+ # @!attribute [rw] jwks_uri
17611
+ # The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your
17612
+ # private workforce.
17613
+ # @return [String]
17614
+ #
17615
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcConfigForResponse AWS API Documentation
17616
+ #
17617
+ class OidcConfigForResponse < Struct.new(
17618
+ :client_id,
17619
+ :issuer,
17620
+ :authorization_endpoint,
17621
+ :token_endpoint,
17622
+ :user_info_endpoint,
17623
+ :logout_endpoint,
17624
+ :jwks_uri)
17625
+ SENSITIVE = []
17626
+ include Aws::Structure
17627
+ end
17628
+
17629
+ # A list of user groups that exist in your OIDC Identity Provider (IdP).
17630
+ # One to ten groups can be used to create a single private work team.
17631
+ # When you add a user group to the list of `Groups`, you can add that
17632
+ # user group to one or more private work teams. If you add a user group
17633
+ # to a private work team, all workers in that user group are added to
17634
+ # the work team.
17635
+ #
17636
+ # @note When making an API call, you may pass OidcMemberDefinition
17637
+ # data as a hash:
17638
+ #
17639
+ # {
17640
+ # groups: ["Group"], # required
17641
+ # }
17642
+ #
17643
+ # @!attribute [rw] groups
17644
+ # A list of comma seperated strings that identifies user groups in
17645
+ # your OIDC IdP. Each user group is made up of a group of private
17646
+ # workers.
17647
+ # @return [Array<String>]
17648
+ #
17649
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OidcMemberDefinition AWS API Documentation
17650
+ #
17651
+ class OidcMemberDefinition < Struct.new(
17652
+ :groups)
17653
+ SENSITIVE = []
17654
+ include Aws::Structure
17655
+ end
17656
+
16255
17657
  # Contains information about the output location for the compiled model
16256
- # and the device (target) that the model runs on.
17658
+ # and the target device that the model runs on. `TargetDevice` and
17659
+ # `TargetPlatform` are mutually exclusive, so you need to choose one
17660
+ # between the two to specify your target device or platform. If you
17661
+ # cannot find your device you want to use from the `TargetDevice` list,
17662
+ # use `TargetPlatform` to describe the platform of your edge device and
17663
+ # `CompilerOptions` if there are specific settings that are required or
17664
+ # recommended to use for particular TargetPlatform.
16257
17665
  #
16258
17666
  # @note When making an API call, you may pass OutputConfig
16259
17667
  # data as a hash:
16260
17668
  #
16261
17669
  # {
16262
17670
  # s3_output_location: "S3Uri", # required
16263
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22
17671
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
17672
+ # target_platform: {
17673
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
17674
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
17675
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
17676
+ # },
17677
+ # compiler_options: "CompilerOptions",
16264
17678
  # }
16265
17679
  #
16266
17680
  # @!attribute [rw] s3_output_location
16267
- # Identifies the S3 path where you want Amazon SageMaker to store the
16268
- # model artifacts. For example, s3://bucket-name/key-name-prefix.
17681
+ # Identifies the S3 bucket where you want Amazon SageMaker to store
17682
+ # the model artifacts. For example,
17683
+ # `s3://bucket-name/key-name-prefix`.
17684
+ # @return [String]
17685
+ #
17686
+ # @!attribute [rw] target_device
17687
+ # Identifies the target device or the machine learning instance that
17688
+ # you want to run your model on after the compilation has completed.
17689
+ # Alternatively, you can specify OS, architecture, and accelerator
17690
+ # using TargetPlatform fields. It can be used instead of
17691
+ # `TargetPlatform`.
16269
17692
  # @return [String]
16270
17693
  #
16271
- # @!attribute [rw] target_device
16272
- # Identifies the device that you want to run your model on after it
16273
- # has been compiled. For example: ml\_c5.
17694
+ # @!attribute [rw] target_platform
17695
+ # Contains information about a target platform that you want your
17696
+ # model to run on, such as OS, architecture, and accelerators. It is
17697
+ # an alternative of `TargetDevice`.
17698
+ #
17699
+ # The following examples show how to configure the `TargetPlatform`
17700
+ # and `CompilerOptions` JSON strings for popular target platforms:
17701
+ #
17702
+ # * Raspberry Pi 3 Model B+
17703
+ #
17704
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM_EABIHF"\},`
17705
+ #
17706
+ # ` "CompilerOptions": \{'mattr': ['+neon']\}`
17707
+ #
17708
+ # * Jetson TX2
17709
+ #
17710
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
17711
+ # "Accelerator": "NVIDIA"\},`
17712
+ #
17713
+ # ` "CompilerOptions": \{'gpu-code': 'sm_62', 'trt-ver': '6.0.1',
17714
+ # 'cuda-ver': '10.0'\}`
17715
+ #
17716
+ # * EC2 m5.2xlarge instance OS
17717
+ #
17718
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "X86_64",
17719
+ # "Accelerator": "NVIDIA"\},`
17720
+ #
17721
+ # ` "CompilerOptions": \{'mcpu': 'skylake-avx512'\}`
17722
+ #
17723
+ # * RK3399
17724
+ #
17725
+ # `"TargetPlatform": \{"Os": "LINUX", "Arch": "ARM64",
17726
+ # "Accelerator": "MALI"\}`
17727
+ #
17728
+ # * ARMv7 phone (CPU)
17729
+ #
17730
+ # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM_EABI"\},`
17731
+ #
17732
+ # ` "CompilerOptions": \{'ANDROID_PLATFORM': 25, 'mattr':
17733
+ # ['+neon']\}`
17734
+ #
17735
+ # * ARMv8 phone (CPU)
17736
+ #
17737
+ # `"TargetPlatform": \{"Os": "ANDROID", "Arch": "ARM64"\},`
17738
+ #
17739
+ # ` "CompilerOptions": \{'ANDROID_PLATFORM': 29\}`
17740
+ # @return [Types::TargetPlatform]
17741
+ #
17742
+ # @!attribute [rw] compiler_options
17743
+ # Specifies additional parameters for compiler options in JSON format.
17744
+ # The compiler options are `TargetPlatform` specific. It is required
17745
+ # for NVIDIA accelerators and highly recommended for CPU compliations.
17746
+ # For any other cases, it is optional to specify `CompilerOptions.`
17747
+ #
17748
+ # * `CPU`\: Compilation for CPU supports the following compiler
17749
+ # options.
17750
+ #
17751
+ # * `mcpu`\: CPU micro-architecture. For example, `\{'mcpu':
17752
+ # 'skylake-avx512'\}`
17753
+ #
17754
+ # * `mattr`\: CPU flags. For example, `\{'mattr': ['+neon',
17755
+ # '+vfpv4']\}`
17756
+ #
17757
+ # * `ARM`\: Details of ARM CPU compilations.
17758
+ #
17759
+ # * `NEON`\: NEON is an implementation of the Advanced SIMD
17760
+ # extension used in ARMv7 processors.
17761
+ #
17762
+ # For example, add `\{'mattr': ['+neon']\}` to the compiler
17763
+ # options if compiling for ARM 32-bit platform with the NEON
17764
+ # support.
17765
+ #
17766
+ # * `NVIDIA`\: Compilation for NVIDIA GPU supports the following
17767
+ # compiler options.
17768
+ #
17769
+ # * `gpu_code`\: Specifies the targeted architecture.
17770
+ #
17771
+ # * `trt-ver`\: Specifies the TensorRT versions in x.y.z. format.
17772
+ #
17773
+ # * `cuda-ver`\: Specifies the CUDA version in x.y format.
17774
+ #
17775
+ # For example, `\{'gpu-code': 'sm_72', 'trt-ver': '6.0.1',
17776
+ # 'cuda-ver': '10.1'\}`
17777
+ #
17778
+ # * `ANDROID`\: Compilation for the Android OS supports the following
17779
+ # compiler options:
17780
+ #
17781
+ # * `ANDROID_PLATFORM`\: Specifies the Android API levels. Available
17782
+ # levels range from 21 to 29. For example, `\{'ANDROID_PLATFORM':
17783
+ # 28\}`.
17784
+ #
17785
+ # * `mattr`\: Add `\{'mattr': ['+neon']\}` to compiler options if
17786
+ # compiling for ARM 32-bit platform with NEON support.
16274
17787
  # @return [String]
16275
17788
  #
16276
17789
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputConfig AWS API Documentation
16277
17790
  #
16278
17791
  class OutputConfig < Struct.new(
16279
17792
  :s3_output_location,
16280
- :target_device)
17793
+ :target_device,
17794
+ :target_platform,
17795
+ :compiler_options)
16281
17796
  SENSITIVE = []
16282
17797
  include Aws::Structure
16283
17798
  end
@@ -16642,7 +18157,14 @@ module Aws::SageMaker
16642
18157
  # @return [String]
16643
18158
  #
16644
18159
  # @!attribute [rw] experiment_config
16645
- # Configuration for the experiment.
18160
+ # Associates a SageMaker job as a trial component with an experiment
18161
+ # and trial. Specified when you call the following APIs:
18162
+ #
18163
+ # * CreateProcessingJob
18164
+ #
18165
+ # * CreateTrainingJob
18166
+ #
18167
+ # * CreateTransformJob
16646
18168
  # @return [Types::ExperimentConfig]
16647
18169
  #
16648
18170
  # @!attribute [rw] processing_job_arn
@@ -17422,6 +18944,9 @@ module Aws::SageMaker
17422
18944
  # The `HumanTaskUiArn` of the worker UI that you want to render. Do
17423
18945
  # not provide a `HumanTaskUiArn` if you use the `UiTemplate`
17424
18946
  # parameter.
18947
+ #
18948
+ # See a list of available Human Ui Amazon Resource Names (ARNs) in
18949
+ # UiConfig.
17425
18950
  # @return [String]
17426
18951
  #
17427
18952
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RenderUiTemplateRequest AWS API Documentation
@@ -17501,7 +19026,8 @@ module Aws::SageMaker
17501
19026
  # The resolved attributes.
17502
19027
  #
17503
19028
  # @!attribute [rw] auto_ml_job_objective
17504
- # Applies a metric to minimize or maximize for the job's objective.
19029
+ # Specifies a metric to minimize or maximize as the objective of a
19030
+ # job.
17505
19031
  # @return [Types::AutoMLJobObjective]
17506
19032
  #
17507
19033
  # @!attribute [rw] problem_type
@@ -17702,7 +19228,7 @@ module Aws::SageMaker
17702
19228
  # data as a hash:
17703
19229
  #
17704
19230
  # {
17705
- # sage_maker_image_arn: "SageMakerImageArn",
19231
+ # sage_maker_image_arn: "ImageArn",
17706
19232
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
17707
19233
  # }
17708
19234
  #
@@ -17782,29 +19308,34 @@ module Aws::SageMaker
17782
19308
  # either a key name prefix or a manifest. For example:
17783
19309
  #
17784
19310
  # * A key name prefix might look like this:
17785
- # `s3://bucketname/exampleprefix`.
19311
+ # `s3://bucketname/exampleprefix`
17786
19312
  #
17787
19313
  # * A manifest might look like this:
17788
19314
  # `s3://bucketname/example.manifest`
17789
19315
  #
17790
- # The manifest is an S3 object which is a JSON file with the
17791
- # following format:
19316
+ # A manifest is an S3 object which is a JSON file consisting of an
19317
+ # array of elements. The first element is a prefix which is followed
19318
+ # by one or more suffixes. SageMaker appends the suffix elements to
19319
+ # the prefix to get a full set of `S3Uri`. Note that the prefix must
19320
+ # be a valid non-empty `S3Uri` that precludes users from specifying
19321
+ # a manifest whose individual `S3Uri` is sourced from different S3
19322
+ # buckets.
17792
19323
  #
17793
- # The preceding JSON matches the following `s3Uris`\:
19324
+ # The following code example shows a valid manifest format:
17794
19325
  #
17795
19326
  # `[ \{"prefix": "s3://customer_bucket/some/prefix/"\},`
17796
19327
  #
17797
- # `"relative/path/to/custdata-1",`
19328
+ # ` "relative/path/to/custdata-1",`
17798
19329
  #
17799
- # `"relative/path/custdata-2",`
19330
+ # ` "relative/path/custdata-2",`
17800
19331
  #
17801
- # `...`
19332
+ # ` ...`
17802
19333
  #
17803
- # `"relative/path/custdata-N"`
19334
+ # ` "relative/path/custdata-N"`
17804
19335
  #
17805
19336
  # `]`
17806
19337
  #
17807
- # The preceding JSON matches the following `s3Uris`\:
19338
+ # This JSON is equivalent to the following `S3Uri` list:
17808
19339
  #
17809
19340
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
17810
19341
  #
@@ -17814,8 +19345,8 @@ module Aws::SageMaker
17814
19345
  #
17815
19346
  # `s3://customer_bucket/some/prefix/relative/path/custdata-N`
17816
19347
  #
17817
- # The complete set of `s3uris` in this manifest is the input data
17818
- # for the channel for this datasource. The object that each `s3uris`
19348
+ # The complete set of `S3Uri` in this manifest is the input data for
19349
+ # the channel for this data source. The object that each `S3Uri`
17819
19350
  # points to must be readable by the IAM role that Amazon SageMaker
17820
19351
  # uses to perform tasks on your behalf.
17821
19352
  # @return [String]
@@ -18418,7 +19949,9 @@ module Aws::SageMaker
18418
19949
  end
18419
19950
 
18420
19951
  # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
18421
- # of IP addresses for a private workforce. For more information, see .
19952
+ # of IP addresses for a private workforce. Workers will only be able to
19953
+ # login to their worker portal from an IP address within this range. By
19954
+ # default, a workforce isn't restricted to specific IP addresses.
18422
19955
  #
18423
19956
  #
18424
19957
  #
@@ -18432,10 +19965,10 @@ module Aws::SageMaker
18432
19965
  # }
18433
19966
  #
18434
19967
  # @!attribute [rw] cidrs
18435
- # A list of one to four [Classless Inter-Domain Routing][1] (CIDR)
19968
+ # A list of one to ten [Classless Inter-Domain Routing][1] (CIDR)
18436
19969
  # values.
18437
19970
  #
18438
- # Maximum: Four CIDR values
19971
+ # Maximum: Ten CIDR values
18439
19972
  #
18440
19973
  # <note markdown="1"> The following Length Constraints apply to individual CIDR values in
18441
19974
  # the CIDR value list.
@@ -18742,6 +20275,7 @@ module Aws::SageMaker
18742
20275
  # @return [String]
18743
20276
  #
18744
20277
  # @!attribute [rw] listing_id
20278
+ # Marketplace product listing ID.
18745
20279
  # @return [String]
18746
20280
  #
18747
20281
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SubscribedWorkteam AWS API Documentation
@@ -18808,6 +20342,65 @@ module Aws::SageMaker
18808
20342
  include Aws::Structure
18809
20343
  end
18810
20344
 
20345
+ # Contains information about a target platform that you want your model
20346
+ # to run on, such as OS, architecture, and accelerators. It is an
20347
+ # alternative of `TargetDevice`.
20348
+ #
20349
+ # @note When making an API call, you may pass TargetPlatform
20350
+ # data as a hash:
20351
+ #
20352
+ # {
20353
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
20354
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
20355
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
20356
+ # }
20357
+ #
20358
+ # @!attribute [rw] os
20359
+ # Specifies a target platform OS.
20360
+ #
20361
+ # * `LINUX`\: Linux-based operating systems.
20362
+ #
20363
+ # * `ANDROID`\: Android operating systems. Android API level can be
20364
+ # specified using the `ANDROID_PLATFORM` compiler option. For
20365
+ # example, `"CompilerOptions": \{'ANDROID_PLATFORM': 28\}`
20366
+ # @return [String]
20367
+ #
20368
+ # @!attribute [rw] arch
20369
+ # Specifies a target platform architecture.
20370
+ #
20371
+ # * `X86_64`\: 64-bit version of the x86 instruction set.
20372
+ #
20373
+ # * `X86`\: 32-bit version of the x86 instruction set.
20374
+ #
20375
+ # * `ARM64`\: ARMv8 64-bit CPU.
20376
+ #
20377
+ # * `ARM_EABIHF`\: ARMv7 32-bit, Hard Float.
20378
+ #
20379
+ # * `ARM_EABI`\: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM
20380
+ # platform.
20381
+ # @return [String]
20382
+ #
20383
+ # @!attribute [rw] accelerator
20384
+ # Specifies a target platform accelerator (optional).
20385
+ #
20386
+ # * `NVIDIA`\: Nvidia graphics processing unit. It also requires
20387
+ # `gpu-code`, `trt-ver`, `cuda-ver` compiler options
20388
+ #
20389
+ # * `MALI`\: ARM Mali graphics processor
20390
+ #
20391
+ # * `INTEL_GRAPHICS`\: Integrated Intel graphics
20392
+ # @return [String]
20393
+ #
20394
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TargetPlatform AWS API Documentation
20395
+ #
20396
+ class TargetPlatform < Struct.new(
20397
+ :os,
20398
+ :arch,
20399
+ :accelerator)
20400
+ SENSITIVE = []
20401
+ include Aws::Structure
20402
+ end
20403
+
18811
20404
  # The TensorBoard app settings.
18812
20405
  #
18813
20406
  # @note When making an API call, you may pass TensorBoardAppSettings
@@ -18815,7 +20408,7 @@ module Aws::SageMaker
18815
20408
  #
18816
20409
  # {
18817
20410
  # default_resource_spec: {
18818
- # sage_maker_image_arn: "SageMakerImageArn",
20411
+ # sage_maker_image_arn: "ImageArn",
18819
20412
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
18820
20413
  # },
18821
20414
  # }
@@ -19101,7 +20694,14 @@ module Aws::SageMaker
19101
20694
  # @return [Types::DebugHookConfig]
19102
20695
  #
19103
20696
  # @!attribute [rw] experiment_config
19104
- # Configuration for the experiment.
20697
+ # Associates a SageMaker job as a trial component with an experiment
20698
+ # and trial. Specified when you call the following APIs:
20699
+ #
20700
+ # * CreateProcessingJob
20701
+ #
20702
+ # * CreateTrainingJob
20703
+ #
20704
+ # * CreateTransformJob
19105
20705
  # @return [Types::ExperimentConfig]
19106
20706
  #
19107
20707
  # @!attribute [rw] debug_rule_configurations
@@ -19368,7 +20968,7 @@ module Aws::SageMaker
19368
20968
  # data as a hash:
19369
20969
  #
19370
20970
  # {
19371
- # training_image: "Image", # required
20971
+ # training_image: "ContainerImage", # required
19372
20972
  # training_image_digest: "ImageDigest",
19373
20973
  # supported_hyper_parameters: [
19374
20974
  # {
@@ -19546,7 +21146,12 @@ module Aws::SageMaker
19546
21146
  # request payloads contain the entire contents of an input object. Set
19547
21147
  # the value of this parameter to `Line` to split records on a newline
19548
21148
  # character boundary. `SplitType` also supports a number of
19549
- # record-oriented binary data formats.
21149
+ # record-oriented binary data formats. Currently, the supported record
21150
+ # formats are:
21151
+ #
21152
+ # * RecordIO
21153
+ #
21154
+ # * TFRecord
19550
21155
  #
19551
21156
  # When splitting is enabled, the size of a mini-batch depends on the
19552
21157
  # values of the `BatchStrategy` and `MaxPayloadInMB` parameters. When
@@ -19586,6 +21191,186 @@ module Aws::SageMaker
19586
21191
  include Aws::Structure
19587
21192
  end
19588
21193
 
21194
+ # A batch transform job. For information about SageMaker batch
21195
+ # transform, see [Use Batch Transform][1].
21196
+ #
21197
+ #
21198
+ #
21199
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
21200
+ #
21201
+ # @!attribute [rw] transform_job_name
21202
+ # The name of the transform job.
21203
+ # @return [String]
21204
+ #
21205
+ # @!attribute [rw] transform_job_arn
21206
+ # The Amazon Resource Name (ARN) of the transform job.
21207
+ # @return [String]
21208
+ #
21209
+ # @!attribute [rw] transform_job_status
21210
+ # The status of the transform job.
21211
+ #
21212
+ # Transform job statuses are:
21213
+ #
21214
+ # * `InProgress` - The job is in progress.
21215
+ #
21216
+ # * `Completed` - The job has completed.
21217
+ #
21218
+ # * `Failed` - The transform job has failed. To see the reason for the
21219
+ # failure, see the `FailureReason` field in the response to a
21220
+ # `DescribeTransformJob` call.
21221
+ #
21222
+ # * `Stopping` - The transform job is stopping.
21223
+ #
21224
+ # * `Stopped` - The transform job has stopped.
21225
+ # @return [String]
21226
+ #
21227
+ # @!attribute [rw] failure_reason
21228
+ # If the transform job failed, the reason it failed.
21229
+ # @return [String]
21230
+ #
21231
+ # @!attribute [rw] model_name
21232
+ # The name of the model associated with the transform job.
21233
+ # @return [String]
21234
+ #
21235
+ # @!attribute [rw] max_concurrent_transforms
21236
+ # The maximum number of parallel requests that can be sent to each
21237
+ # instance in a transform job. If `MaxConcurrentTransforms` is set to
21238
+ # 0 or left unset, SageMaker checks the optional execution-parameters
21239
+ # to determine the settings for your chosen algorithm. If the
21240
+ # execution-parameters endpoint is not enabled, the default value is
21241
+ # 1. For built-in algorithms, you don't need to set a value for
21242
+ # `MaxConcurrentTransforms`.
21243
+ # @return [Integer]
21244
+ #
21245
+ # @!attribute [rw] model_client_config
21246
+ # Configures the timeout and maximum number of retries for processing
21247
+ # a transform job invocation.
21248
+ # @return [Types::ModelClientConfig]
21249
+ #
21250
+ # @!attribute [rw] max_payload_in_mb
21251
+ # The maximum allowed size of the payload, in MB. A payload is the
21252
+ # data portion of a record (without metadata). The value in
21253
+ # `MaxPayloadInMB` must be greater than, or equal to, the size of a
21254
+ # single record. To estimate the size of a record in MB, divide the
21255
+ # size of your dataset by the number of records. To ensure that the
21256
+ # records fit within the maximum payload size, we recommend using a
21257
+ # slightly larger value. The default value is 6 MB. For cases where
21258
+ # the payload might be arbitrarily large and is transmitted using HTTP
21259
+ # chunked encoding, set the value to 0. This feature works only in
21260
+ # supported algorithms. Currently, SageMaker built-in algorithms do
21261
+ # not support HTTP chunked encoding.
21262
+ # @return [Integer]
21263
+ #
21264
+ # @!attribute [rw] batch_strategy
21265
+ # Specifies the number of records to include in a mini-batch for an
21266
+ # HTTP inference request. A record is a single unit of input data that
21267
+ # inference can be made on. For example, a single line in a CSV file
21268
+ # is a record.
21269
+ # @return [String]
21270
+ #
21271
+ # @!attribute [rw] environment
21272
+ # The environment variables to set in the Docker container. We support
21273
+ # up to 16 key and values entries in the map.
21274
+ # @return [Hash<String,String>]
21275
+ #
21276
+ # @!attribute [rw] transform_input
21277
+ # Describes the input source of a transform job and the way the
21278
+ # transform job consumes it.
21279
+ # @return [Types::TransformInput]
21280
+ #
21281
+ # @!attribute [rw] transform_output
21282
+ # Describes the results of a transform job.
21283
+ # @return [Types::TransformOutput]
21284
+ #
21285
+ # @!attribute [rw] transform_resources
21286
+ # Describes the resources, including ML instance types and ML instance
21287
+ # count, to use for transform job.
21288
+ # @return [Types::TransformResources]
21289
+ #
21290
+ # @!attribute [rw] creation_time
21291
+ # A timestamp that shows when the transform Job was created.
21292
+ # @return [Time]
21293
+ #
21294
+ # @!attribute [rw] transform_start_time
21295
+ # Indicates when the transform job starts on ML instances. You are
21296
+ # billed for the time interval between this time and the value of
21297
+ # `TransformEndTime`.
21298
+ # @return [Time]
21299
+ #
21300
+ # @!attribute [rw] transform_end_time
21301
+ # Indicates when the transform job has been completed, or has stopped
21302
+ # or failed. You are billed for the time interval between this time
21303
+ # and the value of `TransformStartTime`.
21304
+ # @return [Time]
21305
+ #
21306
+ # @!attribute [rw] labeling_job_arn
21307
+ # The Amazon Resource Name (ARN) of the labeling job that created the
21308
+ # transform job.
21309
+ # @return [String]
21310
+ #
21311
+ # @!attribute [rw] auto_ml_job_arn
21312
+ # The Amazon Resource Name (ARN) of the AutoML job that created the
21313
+ # transform job.
21314
+ # @return [String]
21315
+ #
21316
+ # @!attribute [rw] data_processing
21317
+ # The data structure used to specify the data to be used for inference
21318
+ # in a batch transform job and to associate the data that is relevant
21319
+ # to the prediction results in the output. The input filter provided
21320
+ # allows you to exclude input data that is not needed for inference in
21321
+ # a batch transform job. The output filter provided allows you to
21322
+ # include input data relevant to interpreting the predictions in the
21323
+ # output from the job. For more information, see [Associate Prediction
21324
+ # Results with their Corresponding Input Records][1].
21325
+ #
21326
+ #
21327
+ #
21328
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
21329
+ # @return [Types::DataProcessing]
21330
+ #
21331
+ # @!attribute [rw] experiment_config
21332
+ # Associates a SageMaker job as a trial component with an experiment
21333
+ # and trial. Specified when you call the following APIs:
21334
+ #
21335
+ # * CreateProcessingJob
21336
+ #
21337
+ # * CreateTrainingJob
21338
+ #
21339
+ # * CreateTransformJob
21340
+ # @return [Types::ExperimentConfig]
21341
+ #
21342
+ # @!attribute [rw] tags
21343
+ # A list of tags associated with the transform job.
21344
+ # @return [Array<Types::Tag>]
21345
+ #
21346
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformJob AWS API Documentation
21347
+ #
21348
+ class TransformJob < Struct.new(
21349
+ :transform_job_name,
21350
+ :transform_job_arn,
21351
+ :transform_job_status,
21352
+ :failure_reason,
21353
+ :model_name,
21354
+ :max_concurrent_transforms,
21355
+ :model_client_config,
21356
+ :max_payload_in_mb,
21357
+ :batch_strategy,
21358
+ :environment,
21359
+ :transform_input,
21360
+ :transform_output,
21361
+ :transform_resources,
21362
+ :creation_time,
21363
+ :transform_start_time,
21364
+ :transform_end_time,
21365
+ :labeling_job_arn,
21366
+ :auto_ml_job_arn,
21367
+ :data_processing,
21368
+ :experiment_config,
21369
+ :tags)
21370
+ SENSITIVE = []
21371
+ include Aws::Structure
21372
+ end
21373
+
19589
21374
  # Defines the input needed to run a transform job using the inference
19590
21375
  # specification specified in the algorithm.
19591
21376
  #
@@ -19914,7 +21699,7 @@ module Aws::SageMaker
19914
21699
  #
19915
21700
  # `]`
19916
21701
  #
19917
- # The preceding JSON matches the following `s3Uris`\:
21702
+ # The preceding JSON matches the following `S3Uris`\:
19918
21703
  #
19919
21704
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
19920
21705
  #
@@ -20312,12 +22097,18 @@ module Aws::SageMaker
20312
22097
  # component.
20313
22098
  # @return [Types::ProcessingJob]
20314
22099
  #
22100
+ # @!attribute [rw] transform_job
22101
+ # Information about a transform job that's the source of the trial
22102
+ # component.
22103
+ # @return [Types::TransformJob]
22104
+ #
20315
22105
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrialComponentSourceDetail AWS API Documentation
20316
22106
  #
20317
22107
  class TrialComponentSourceDetail < Struct.new(
20318
22108
  :source_arn,
20319
22109
  :training_job,
20320
- :processing_job)
22110
+ :processing_job,
22111
+ :transform_job)
20321
22112
  SENSITIVE = []
20322
22113
  include Aws::Structure
20323
22114
  end
@@ -20493,7 +22284,7 @@ module Aws::SageMaker
20493
22284
  # }
20494
22285
  #
20495
22286
  # @!attribute [rw] target_objective_metric_value
20496
- # The objective metric's value.
22287
+ # The value of the objective metric.
20497
22288
  # @return [Float]
20498
22289
  #
20499
22290
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
@@ -20562,8 +22353,52 @@ module Aws::SageMaker
20562
22353
  #
20563
22354
  # @!attribute [rw] human_task_ui_arn
20564
22355
  # The ARN of the worker task template used to render the worker UI and
20565
- # tools for labeling job tasks. Do not use this parameter if you use
20566
- # UiTemplateS3Uri.
22356
+ # tools for labeling job tasks.
22357
+ #
22358
+ # Use this parameter when you are creating a labeling job for 3D point
22359
+ # cloud and video fram labeling jobs. Use your labeling job task type
22360
+ # to select one of the following ARN's and use it with this parameter
22361
+ # when you create a labeling job. Replace `aws-region` with the AWS
22362
+ # region you are creating your labeling job in.
22363
+ #
22364
+ # **3D Point Cloud HumanTaskUiArns**
22365
+ #
22366
+ # Use this `HumanTaskUiArn` for 3D point cloud object detection and 3D
22367
+ # point cloud object detection adjustment labeling jobs.
22368
+ #
22369
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection`
22370
+ #
22371
+ # ^
22372
+ #
22373
+ # Use this `HumanTaskUiArn` for 3D point cloud object tracking and 3D
22374
+ # point cloud object tracking adjustment labeling jobs.
22375
+ #
22376
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking`
22377
+ #
22378
+ # ^
22379
+ #
22380
+ # Use this `HumanTaskUiArn` for 3D point cloud semantic segmentation
22381
+ # and 3D point cloud semantic segmentation adjustment labeling jobs.
22382
+ #
22383
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation`
22384
+ #
22385
+ # ^
22386
+ #
22387
+ # **Video Frame HumanTaskUiArns**
22388
+ #
22389
+ # Use this `HumanTaskUiArn` for video frame object detection and video
22390
+ # frame object detection adjustment labeling jobs.
22391
+ #
22392
+ # * `arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection`
22393
+ #
22394
+ # ^
22395
+ #
22396
+ # Use this `HumanTaskUiArn` for video frame object tracking and video
22397
+ # frame object tracking adjustment labeling jobs.
22398
+ #
22399
+ # * `arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking`
22400
+ #
22401
+ # ^
20567
22402
  # @return [String]
20568
22403
  #
20569
22404
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UiConfig AWS API Documentation
@@ -20675,19 +22510,19 @@ module Aws::SageMaker
20675
22510
  # },
20676
22511
  # jupyter_server_app_settings: {
20677
22512
  # default_resource_spec: {
20678
- # sage_maker_image_arn: "SageMakerImageArn",
22513
+ # sage_maker_image_arn: "ImageArn",
20679
22514
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
20680
22515
  # },
20681
22516
  # },
20682
22517
  # kernel_gateway_app_settings: {
20683
22518
  # default_resource_spec: {
20684
- # sage_maker_image_arn: "SageMakerImageArn",
22519
+ # sage_maker_image_arn: "ImageArn",
20685
22520
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
20686
22521
  # },
20687
22522
  # },
20688
22523
  # tensor_board_app_settings: {
20689
22524
  # default_resource_spec: {
20690
- # sage_maker_image_arn: "SageMakerImageArn",
22525
+ # sage_maker_image_arn: "ImageArn",
20691
22526
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
20692
22527
  # },
20693
22528
  # },
@@ -21362,19 +23197,19 @@ module Aws::SageMaker
21362
23197
  # },
21363
23198
  # jupyter_server_app_settings: {
21364
23199
  # default_resource_spec: {
21365
- # sage_maker_image_arn: "SageMakerImageArn",
23200
+ # sage_maker_image_arn: "ImageArn",
21366
23201
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21367
23202
  # },
21368
23203
  # },
21369
23204
  # kernel_gateway_app_settings: {
21370
23205
  # default_resource_spec: {
21371
- # sage_maker_image_arn: "SageMakerImageArn",
23206
+ # sage_maker_image_arn: "ImageArn",
21372
23207
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21373
23208
  # },
21374
23209
  # },
21375
23210
  # tensor_board_app_settings: {
21376
23211
  # default_resource_spec: {
21377
- # sage_maker_image_arn: "SageMakerImageArn",
23212
+ # sage_maker_image_arn: "ImageArn",
21378
23213
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21379
23214
  # },
21380
23215
  # },
@@ -21423,41 +23258,55 @@ module Aws::SageMaker
21423
23258
  # source_ip_config: {
21424
23259
  # cidrs: ["Cidr"], # required
21425
23260
  # },
23261
+ # oidc_config: {
23262
+ # client_id: "ClientId", # required
23263
+ # client_secret: "ClientSecret", # required
23264
+ # issuer: "OidcEndpoint", # required
23265
+ # authorization_endpoint: "OidcEndpoint", # required
23266
+ # token_endpoint: "OidcEndpoint", # required
23267
+ # user_info_endpoint: "OidcEndpoint", # required
23268
+ # logout_endpoint: "OidcEndpoint", # required
23269
+ # jwks_uri: "OidcEndpoint", # required
23270
+ # },
21426
23271
  # }
21427
23272
  #
21428
23273
  # @!attribute [rw] workforce_name
21429
- # The name of the private workforce whose access you want to restrict.
21430
- # `WorkforceName` is automatically set to `default` when a workforce
21431
- # is created and cannot be modified.
23274
+ # The name of the private workforce that you want to update. You can
23275
+ # find your workforce name by using the operation.
21432
23276
  # @return [String]
21433
23277
  #
21434
23278
  # @!attribute [rw] source_ip_config
21435
- # A list of one to four worker IP address ranges ([CIDRs][1]) that can
23279
+ # A list of one to ten worker IP address ranges ([CIDRs][1]) that can
21436
23280
  # be used to access tasks assigned to this workforce.
21437
23281
  #
21438
- # Maximum: Four CIDR values
23282
+ # Maximum: Ten CIDR values
21439
23283
  #
21440
23284
  #
21441
23285
  #
21442
23286
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
21443
23287
  # @return [Types::SourceIpConfig]
21444
23288
  #
23289
+ # @!attribute [rw] oidc_config
23290
+ # Use this parameter to update your OIDC Identity Provider (IdP)
23291
+ # configuration for a workforce made using your own IdP.
23292
+ # @return [Types::OidcConfig]
23293
+ #
21445
23294
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateWorkforceRequest AWS API Documentation
21446
23295
  #
21447
23296
  class UpdateWorkforceRequest < Struct.new(
21448
23297
  :workforce_name,
21449
- :source_ip_config)
23298
+ :source_ip_config,
23299
+ :oidc_config)
21450
23300
  SENSITIVE = []
21451
23301
  include Aws::Structure
21452
23302
  end
21453
23303
 
21454
23304
  # @!attribute [rw] workforce
21455
- # A single private workforce, which is automatically created when you
21456
- # create your first private work team. You can create one private work
21457
- # force in each AWS Region. By default, any workforce-related API
21458
- # operation used in a specific region will apply to the workforce
21459
- # created in that region. To learn how to create a private workforce,
21460
- # see [Create a Private Workforce][1].
23305
+ # A single private workforce. You can create one private work force in
23306
+ # each AWS Region. By default, any workforce-related API operation
23307
+ # used in a specific region will apply to the workforce created in
23308
+ # that region. To learn how to create a private workforce, see [Create
23309
+ # a Private Workforce][1].
21461
23310
  #
21462
23311
  #
21463
23312
  #
@@ -21482,7 +23331,10 @@ module Aws::SageMaker
21482
23331
  # cognito_member_definition: {
21483
23332
  # user_pool: "CognitoUserPool", # required
21484
23333
  # user_group: "CognitoUserGroup", # required
21485
- # client_id: "CognitoClientId", # required
23334
+ # client_id: "ClientId", # required
23335
+ # },
23336
+ # oidc_member_definition: {
23337
+ # groups: ["Group"], # required
21486
23338
  # },
21487
23339
  # },
21488
23340
  # ],
@@ -21497,8 +23349,35 @@ module Aws::SageMaker
21497
23349
  # @return [String]
21498
23350
  #
21499
23351
  # @!attribute [rw] member_definitions
21500
- # A list of `MemberDefinition` objects that contain the updated work
21501
- # team members.
23352
+ # A list of `MemberDefinition` objects that contains objects that
23353
+ # identify the workers that make up the work team.
23354
+ #
23355
+ # Workforces can be created using Amazon Cognito or your own OIDC
23356
+ # Identity Provider (IdP). For private workforces created using Amazon
23357
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23358
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
23359
+ # You should not provide input for both of these parameters in a
23360
+ # single request.
23361
+ #
23362
+ # For workforces created using Amazon Cognito, private work teams
23363
+ # correspond to Amazon Cognito *user groups* within the user pool used
23364
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
23365
+ # that make up the member definition must have the same `ClientId` and
23366
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
23367
+ # worker pool, see [Adding groups to a User Pool](). For more
23368
+ # information about user pools, see [Amazon Cognito User Pools][1].
23369
+ #
23370
+ # For workforces created using your own OIDC IdP, specify the user
23371
+ # groups that you want to include in your private work team in
23372
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
23373
+ # that user groups that are already in the work team must also be
23374
+ # listed in `Groups` when you make this request to remain on the work
23375
+ # team. If you do not include these user groups, they will no longer
23376
+ # be associated with the work team you update.
23377
+ #
23378
+ #
23379
+ #
23380
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
21502
23381
  # @return [Array<Types::MemberDefinition>]
21503
23382
  #
21504
23383
  # @!attribute [rw] description
@@ -21607,19 +23486,19 @@ module Aws::SageMaker
21607
23486
  # },
21608
23487
  # jupyter_server_app_settings: {
21609
23488
  # default_resource_spec: {
21610
- # sage_maker_image_arn: "SageMakerImageArn",
23489
+ # sage_maker_image_arn: "ImageArn",
21611
23490
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21612
23491
  # },
21613
23492
  # },
21614
23493
  # kernel_gateway_app_settings: {
21615
23494
  # default_resource_spec: {
21616
- # sage_maker_image_arn: "SageMakerImageArn",
23495
+ # sage_maker_image_arn: "ImageArn",
21617
23496
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21618
23497
  # },
21619
23498
  # },
21620
23499
  # tensor_board_app_settings: {
21621
23500
  # default_resource_spec: {
21622
- # sage_maker_image_arn: "SageMakerImageArn",
23501
+ # sage_maker_image_arn: "ImageArn",
21623
23502
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
21624
23503
  # },
21625
23504
  # },
@@ -21756,9 +23635,7 @@ module Aws::SageMaker
21756
23635
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html
21757
23636
  #
21758
23637
  # @!attribute [rw] workforce_name
21759
- # The name of the private workforce whose access you want to restrict.
21760
- # `WorkforceName` is automatically set to `default` when a workforce
21761
- # is created and cannot be modified.
23638
+ # The name of the private workforce.
21762
23639
  # @return [String]
21763
23640
  #
21764
23641
  # @!attribute [rw] workforce_arn
@@ -21775,21 +23652,49 @@ module Aws::SageMaker
21775
23652
  # @return [Time]
21776
23653
  #
21777
23654
  # @!attribute [rw] source_ip_config
21778
- # A list of one to four IP address ranges ([CIDRs][1]) to be added to
21779
- # the workforce allow list.
23655
+ # A list of one to ten IP address ranges ([CIDRs][1]) to be added to
23656
+ # the workforce allow list. By default, a workforce isn't restricted
23657
+ # to specific IP addresses.
21780
23658
  #
21781
23659
  #
21782
23660
  #
21783
23661
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
21784
23662
  # @return [Types::SourceIpConfig]
21785
23663
  #
23664
+ # @!attribute [rw] sub_domain
23665
+ # The subdomain for your OIDC Identity Provider.
23666
+ # @return [String]
23667
+ #
23668
+ # @!attribute [rw] cognito_config
23669
+ # The configuration of an Amazon Cognito workforce. A single Cognito
23670
+ # workforce is created using and corresponds to a single [ Amazon
23671
+ # Cognito user pool][1].
23672
+ #
23673
+ #
23674
+ #
23675
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
23676
+ # @return [Types::CognitoConfig]
23677
+ #
23678
+ # @!attribute [rw] oidc_config
23679
+ # The configuration of an OIDC Identity Provider (IdP) private
23680
+ # workforce.
23681
+ # @return [Types::OidcConfigForResponse]
23682
+ #
23683
+ # @!attribute [rw] create_date
23684
+ # The date that the workforce is created.
23685
+ # @return [Time]
23686
+ #
21786
23687
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Workforce AWS API Documentation
21787
23688
  #
21788
23689
  class Workforce < Struct.new(
21789
23690
  :workforce_name,
21790
23691
  :workforce_arn,
21791
23692
  :last_updated_date,
21792
- :source_ip_config)
23693
+ :source_ip_config,
23694
+ :sub_domain,
23695
+ :cognito_config,
23696
+ :oidc_config,
23697
+ :create_date)
21793
23698
  SENSITIVE = []
21794
23699
  include Aws::Structure
21795
23700
  end
@@ -21801,13 +23706,23 @@ module Aws::SageMaker
21801
23706
  # @return [String]
21802
23707
  #
21803
23708
  # @!attribute [rw] member_definitions
21804
- # The Amazon Cognito user groups that make up the work team.
23709
+ # A list of `MemberDefinition` objects that contains objects that
23710
+ # identify the workers that make up the work team.
23711
+ #
23712
+ # Workforces can be created using Amazon Cognito or your own OIDC
23713
+ # Identity Provider (IdP). For private workforces created using Amazon
23714
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
23715
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`.
21805
23716
  # @return [Array<Types::MemberDefinition>]
21806
23717
  #
21807
23718
  # @!attribute [rw] workteam_arn
21808
23719
  # The Amazon Resource Name (ARN) that identifies the work team.
21809
23720
  # @return [String]
21810
23721
  #
23722
+ # @!attribute [rw] workforce_arn
23723
+ # The Amazon Resource Name (ARN) of the workforce.
23724
+ # @return [String]
23725
+ #
21811
23726
  # @!attribute [rw] product_listing_ids
21812
23727
  # The Amazon Marketplace identifier for a vendor's work team.
21813
23728
  # @return [Array<String>]
@@ -21840,6 +23755,7 @@ module Aws::SageMaker
21840
23755
  :workteam_name,
21841
23756
  :member_definitions,
21842
23757
  :workteam_arn,
23758
+ :workforce_arn,
21843
23759
  :product_listing_ids,
21844
23760
  :description,
21845
23761
  :sub_domain,