aws-sdk-sagemaker 1.62.0 → 1.67.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 15eedc5a89d8933e1a00ba86a1ddd0b0226e08ad26fc63eebec870d1a5e7db5b
4
- data.tar.gz: 9b54d93c4388ac3be8d82ff8607911198d043f51d458b17bee8238277c7f6740
3
+ metadata.gz: 4ef155285a2d56e1038b5456c22b3a2c9090d3ee3945cc9d07343ecda1e801ac
4
+ data.tar.gz: 5c45e9b3ce9a6ef906ec8e385b41eac8237dffad7f6716bdd1beaf7fa5490da6
5
5
  SHA512:
6
- metadata.gz: 1eb77836dfa96aa280a38a8a28162909b694d335c0dd49d058e571ddb21415686bc03868de190852d329e5952a087ab8317bbb534c4d4563ca22d3e906fd723a
7
- data.tar.gz: 8fe2889d4f4b3bae3a50dd78b68b5aea9d796bcf56e87a787bc77cc1897b7177b2183765e3ef7a8c47dd9330a83a815ad7f6390f40e46351f4b0139c501070ae
6
+ metadata.gz: 8f441f1409e5b72b511be33589a1f5c6e732ed11004014bfd2285bebd39ae059e418e5d968068112bfdf79f0d81d60632d4451dbb70ec4d6c26e342936208383
7
+ data.tar.gz: e8f0f6ecb146d5c8c05fd86a3ae14d19ca365e6589c8433b6e10efdb02120be37b794709f1e45727ef4d135a6eca8c41edbedf9eaa5a1d1913b1236a9c2967c7
@@ -7,6 +7,7 @@
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
10
+
10
11
  require 'aws-sdk-core'
11
12
  require 'aws-sigv4'
12
13
 
@@ -45,9 +46,9 @@ require_relative 'aws-sdk-sagemaker/customizations'
45
46
  #
46
47
  # See {Errors} for more information.
47
48
  #
48
- # @service
49
+ # @!group service
49
50
  module Aws::SageMaker
50
51
 
51
- GEM_VERSION = '1.62.0'
52
+ GEM_VERSION = '1.67.0'
52
53
 
53
54
  end
@@ -85,13 +85,28 @@ module Aws::SageMaker
85
85
  # * `Aws::Credentials` - Used for configuring static, non-refreshing
86
86
  # credentials.
87
87
  #
88
+ # * `Aws::SharedCredentials` - Used for loading static credentials from a
89
+ # shared file, such as `~/.aws/config`.
90
+ #
91
+ # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
92
+ #
93
+ # * `Aws::AssumeRoleWebIdentityCredentials` - Used when you need to
94
+ # assume a role after providing credentials via the web.
95
+ #
96
+ # * `Aws::SSOCredentials` - Used for loading credentials from AWS SSO using an
97
+ # access token generated from `aws login`.
98
+ #
99
+ # * `Aws::ProcessCredentials` - Used for loading credentials from a
100
+ # process that outputs to stdout.
101
+ #
88
102
  # * `Aws::InstanceProfileCredentials` - Used for loading credentials
89
103
  # from an EC2 IMDS on an EC2 instance.
90
104
  #
91
- # * `Aws::SharedCredentials` - Used for loading credentials from a
92
- # shared file, such as `~/.aws/config`.
105
+ # * `Aws::ECSCredentials` - Used for loading credentials from
106
+ # instances running in ECS.
93
107
  #
94
- # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
108
+ # * `Aws::CognitoIdentityCredentials` - Used for loading credentials
109
+ # from the Cognito Identity service.
95
110
  #
96
111
  # When `:credentials` are not configured directly, the following
97
112
  # locations will be searched for credentials:
@@ -101,10 +116,10 @@ module Aws::SageMaker
101
116
  # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
102
117
  # * `~/.aws/credentials`
103
118
  # * `~/.aws/config`
104
- # * EC2 IMDS instance profile - When used by default, the timeouts are
105
- # very aggressive. Construct and pass an instance of
106
- # `Aws::InstanceProfileCredentails` to enable retries and extended
107
- # timeouts.
119
+ # * EC2/ECS IMDS instance profile - When used by default, the timeouts
120
+ # are very aggressive. Construct and pass an instance of
121
+ # `Aws::InstanceProfileCredentails` or `Aws::ECSCredentials` to
122
+ # enable retries and extended timeouts.
108
123
  #
109
124
  # @option options [required, String] :region
110
125
  # The AWS region to connect to. The configured `:region` is
@@ -486,7 +501,7 @@ module Aws::SageMaker
486
501
  # algorithm_name: "EntityName", # required
487
502
  # algorithm_description: "EntityDescription",
488
503
  # training_specification: { # required
489
- # training_image: "Image", # required
504
+ # training_image: "ContainerImage", # required
490
505
  # training_image_digest: "ImageDigest",
491
506
  # supported_hyper_parameters: [
492
507
  # {
@@ -540,7 +555,7 @@ module Aws::SageMaker
540
555
  # containers: [ # required
541
556
  # {
542
557
  # container_hostname: "ContainerHostname",
543
- # image: "Image", # required
558
+ # image: "ContainerImage", # required
544
559
  # image_digest: "ImageDigest",
545
560
  # model_data_url: "Url",
546
561
  # product_id: "ProductId",
@@ -652,11 +667,10 @@ module Aws::SageMaker
652
667
  end
653
668
 
654
669
  # Creates a running App for the specified UserProfile. Supported Apps
655
- # are JupyterServer, KernelGateway, and TensorBoard. This operation is
656
- # automatically invoked by Amazon SageMaker Studio upon access to the
657
- # associated Domain, and when new kernel configurations are selected by
658
- # the user. A user may have multiple Apps active simultaneously.
659
- # UserProfiles are limited to 5 concurrently running Apps at a time.
670
+ # are JupyterServer and KernelGateway. This operation is automatically
671
+ # invoked by Amazon SageMaker Studio upon access to the associated
672
+ # Domain, and when new kernel configurations are selected by the user. A
673
+ # user may have multiple Apps active simultaneously.
660
674
  #
661
675
  # @option params [required, String] :domain_id
662
676
  # The domain ID.
@@ -696,7 +710,7 @@ module Aws::SageMaker
696
710
  # },
697
711
  # ],
698
712
  # resource_spec: {
699
- # sage_maker_image_arn: "SageMakerImageArn",
713
+ # sage_maker_image_arn: "ImageArn",
700
714
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
701
715
  # },
702
716
  # })
@@ -714,15 +728,14 @@ module Aws::SageMaker
714
728
  req.send_request(options)
715
729
  end
716
730
 
717
- # Creates an AutoPilot job.
731
+ # Creates an Autopilot job.
718
732
  #
719
- # After you run an AutoPilot job, you can find the best performing model
720
- # by calling , and then deploy that model by following the steps
721
- # described in [Step 6.1: Deploy the Model to Amazon SageMaker Hosting
722
- # Services][1].
733
+ # Find the best performing model after you run an Autopilot job by
734
+ # calling . Deploy that model by following the steps described in [Step
735
+ # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
723
736
  #
724
- # For information about how to use AutoPilot, see [Use AutoPilot to
725
- # Automate Model Development][2].
737
+ # For information about how to use Autopilot, see [ Automate Model
738
+ # Development with Amazon SageMaker Autopilot][2].
726
739
  #
727
740
  #
728
741
  #
@@ -730,7 +743,7 @@ module Aws::SageMaker
730
743
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
731
744
  #
732
745
  # @option params [required, String] :auto_ml_job_name
733
- # Identifies an AutoPilot job. Must be unique to your account and is
746
+ # Identifies an Autopilot job. Must be unique to your account and is
734
747
  # case-insensitive.
735
748
  #
736
749
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
@@ -747,20 +760,21 @@ module Aws::SageMaker
747
760
  # MulticlassClassification, and Regression.
748
761
  #
749
762
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
750
- # Defines the job's objective. You provide a MetricName and AutoML will
751
- # infer minimize or maximize. If this is not provided, the most commonly
752
- # used ObjectiveMetric for problem type will be selected.
763
+ # Defines the objective of a an AutoML job. You provide a
764
+ # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
765
+ # or maximize it. If a metric is not specified, the most commonly used
766
+ # ObjectiveMetric for problem type is automaically selected.
753
767
  #
754
768
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
755
769
  # Contains CompletionCriteria and SecurityConfig.
756
770
  #
757
771
  # @option params [required, String] :role_arn
758
- # The ARN of the role that will be used to access the data.
772
+ # The ARN of the role that is used to access the data.
759
773
  #
760
774
  # @option params [Boolean] :generate_candidate_definitions_only
761
- # This will generate possible candidates without training a model. A
762
- # candidate is a combination of data preprocessors, algorithms, and
763
- # algorithm parameter settings.
775
+ # Generates possible candidates without training a model. A candidate is
776
+ # a combination of data preprocessors, algorithms, and algorithm
777
+ # parameter settings.
764
778
  #
765
779
  # @option params [Array<Types::Tag>] :tags
766
780
  # Each tag consists of a key and an optional value. Tag keys must be
@@ -792,7 +806,7 @@ module Aws::SageMaker
792
806
  # },
793
807
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
794
808
  # auto_ml_job_objective: {
795
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro
809
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
796
810
  # },
797
811
  # auto_ml_job_config: {
798
812
  # completion_criteria: {
@@ -902,8 +916,8 @@ module Aws::SageMaker
902
916
  # * The output location for the compiled model and the device (target)
903
917
  # that the model runs on
904
918
  #
905
- # * `The Amazon Resource Name (ARN) of the IAM role that Amazon
906
- # SageMaker assumes to perform the model compilation job`
919
+ # * The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
920
+ # assumes to perform the model compilation job.
907
921
  #
908
922
  # You can also provide a `Tag` to track the model compilation job's
909
923
  # resource use and costs. The response body contains the
@@ -971,7 +985,13 @@ module Aws::SageMaker
971
985
  # },
972
986
  # output_config: { # required
973
987
  # s3_output_location: "S3Uri", # required
974
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22
988
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64
989
+ # target_platform: {
990
+ # os: "ANDROID", # required, accepts ANDROID, LINUX
991
+ # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
992
+ # accelerator: "INTEL_GRAPHICS", # accepts INTEL_GRAPHICS, MALI, NVIDIA
993
+ # },
994
+ # compiler_options: "CompilerOptions",
975
995
  # },
976
996
  # stopping_condition: { # required
977
997
  # max_runtime_in_seconds: 1,
@@ -1058,19 +1078,19 @@ module Aws::SageMaker
1058
1078
  # },
1059
1079
  # jupyter_server_app_settings: {
1060
1080
  # default_resource_spec: {
1061
- # sage_maker_image_arn: "SageMakerImageArn",
1081
+ # sage_maker_image_arn: "ImageArn",
1062
1082
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
1063
1083
  # },
1064
1084
  # },
1065
1085
  # kernel_gateway_app_settings: {
1066
1086
  # default_resource_spec: {
1067
- # sage_maker_image_arn: "SageMakerImageArn",
1087
+ # sage_maker_image_arn: "ImageArn",
1068
1088
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
1069
1089
  # },
1070
1090
  # },
1071
1091
  # tensor_board_app_settings: {
1072
1092
  # default_resource_spec: {
1073
- # sage_maker_image_arn: "SageMakerImageArn",
1093
+ # sage_maker_image_arn: "ImageArn",
1074
1094
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
1075
1095
  # },
1076
1096
  # },
@@ -1373,10 +1393,10 @@ module Aws::SageMaker
1373
1393
  req.send_request(options)
1374
1394
  end
1375
1395
 
1376
- # Creates an Amazon SageMaker *experiment*. An experiment is a
1377
- # collection of *trials* that are observed, compared and evaluated as a
1378
- # group. A trial is a set of steps, called *trial components*, that
1379
- # produce a machine learning model.
1396
+ # Creates an SageMaker *experiment*. An experiment is a collection of
1397
+ # *trials* that are observed, compared and evaluated as a group. A trial
1398
+ # is a set of steps, called *trial components*, that produce a machine
1399
+ # learning model.
1380
1400
  #
1381
1401
  # The goal of an experiment is to determine the components that produce
1382
1402
  # the best model. Multiple trials are performed, each one isolating and
@@ -1992,7 +2012,13 @@ module Aws::SageMaker
1992
2012
  # The S3 URL of the file that defines the categories used to label the
1993
2013
  # data objects.
1994
2014
  #
1995
- # The file is a JSON structure in the following format:
2015
+ # For 3D point cloud task types, see [Create a Labeling Category
2016
+ # Configuration File for 3D Point Cloud Labeling Jobs][1].
2017
+ #
2018
+ # For all other [built-in task types][2] and [custom tasks][3], your
2019
+ # label category configuration file must be a JSON file in the following
2020
+ # format. Identify the labels you want to use by replacing `label_1`,
2021
+ # `label_2`,`...`,`label_n` with your label categories.
1996
2022
  #
1997
2023
  # `\{`
1998
2024
  #
@@ -2002,13 +2028,13 @@ module Aws::SageMaker
2002
2028
  #
2003
2029
  # ` \{`
2004
2030
  #
2005
- # ` "label": "label 1"`
2031
+ # ` "label": "label_1"`
2006
2032
  #
2007
2033
  # ` \},`
2008
2034
  #
2009
2035
  # ` \{`
2010
2036
  #
2011
- # ` "label": "label 2"`
2037
+ # ` "label": "label_2"`
2012
2038
  #
2013
2039
  # ` \},`
2014
2040
  #
@@ -2016,7 +2042,7 @@ module Aws::SageMaker
2016
2042
  #
2017
2043
  # ` \{`
2018
2044
  #
2019
- # ` "label": "label n"`
2045
+ # ` "label": "label_n"`
2020
2046
  #
2021
2047
  # ` \}`
2022
2048
  #
@@ -2024,6 +2050,12 @@ module Aws::SageMaker
2024
2050
  #
2025
2051
  # `\}`
2026
2052
  #
2053
+ #
2054
+ #
2055
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html
2056
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html
2057
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html
2058
+ #
2027
2059
  # @option params [Types::LabelingJobStoppingConditions] :stopping_conditions
2028
2060
  # A set of conditions for stopping the labeling job. If any of the
2029
2061
  # conditions are met, the job is automatically stopped. You can use
@@ -2058,9 +2090,12 @@ module Aws::SageMaker
2058
2090
  # label_attribute_name: "LabelAttributeName", # required
2059
2091
  # input_config: { # required
2060
2092
  # data_source: { # required
2061
- # s3_data_source: { # required
2093
+ # s3_data_source: {
2062
2094
  # manifest_s3_uri: "S3Uri", # required
2063
2095
  # },
2096
+ # sns_data_source: {
2097
+ # sns_topic_arn: "SnsTopicArn", # required
2098
+ # },
2064
2099
  # },
2065
2100
  # data_attributes: {
2066
2101
  # content_classifiers: ["FreeOfPersonallyIdentifiableInformation"], # accepts FreeOfPersonallyIdentifiableInformation, FreeOfAdultContent
@@ -2069,6 +2104,7 @@ module Aws::SageMaker
2069
2104
  # output_config: { # required
2070
2105
  # s3_output_path: "S3Uri", # required
2071
2106
  # kms_key_id: "KmsKeyId",
2107
+ # sns_topic_arn: "SnsTopicArn",
2072
2108
  # },
2073
2109
  # role_arn: "RoleArn", # required
2074
2110
  # label_category_config_s3_uri: "S3Uri",
@@ -2229,7 +2265,10 @@ module Aws::SageMaker
2229
2265
  # model_name: "ModelName", # required
2230
2266
  # primary_container: {
2231
2267
  # container_hostname: "ContainerHostname",
2232
- # image: "Image",
2268
+ # image: "ContainerImage",
2269
+ # image_config: {
2270
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2271
+ # },
2233
2272
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2234
2273
  # model_data_url: "Url",
2235
2274
  # environment: {
@@ -2240,7 +2279,10 @@ module Aws::SageMaker
2240
2279
  # containers: [
2241
2280
  # {
2242
2281
  # container_hostname: "ContainerHostname",
2243
- # image: "Image",
2282
+ # image: "ContainerImage",
2283
+ # image_config: {
2284
+ # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2285
+ # },
2244
2286
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2245
2287
  # model_data_url: "Url",
2246
2288
  # environment: {
@@ -2330,7 +2372,7 @@ module Aws::SageMaker
2330
2372
  # containers: [ # required
2331
2373
  # {
2332
2374
  # container_hostname: "ContainerHostname",
2333
- # image: "Image", # required
2375
+ # image: "ContainerImage", # required
2334
2376
  # image_digest: "ImageDigest",
2335
2377
  # model_data_url: "Url",
2336
2378
  # product_id: "ProductId",
@@ -2945,7 +2987,14 @@ module Aws::SageMaker
2945
2987
  # [1]: https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL
2946
2988
  #
2947
2989
  # @option params [Types::ExperimentConfig] :experiment_config
2948
- # Configuration for the experiment.
2990
+ # Associates a SageMaker job as a trial component with an experiment and
2991
+ # trial. Specified when you call the following APIs:
2992
+ #
2993
+ # * CreateProcessingJob
2994
+ #
2995
+ # * CreateTrainingJob
2996
+ #
2997
+ # * CreateTransformJob
2949
2998
  #
2950
2999
  # @return [Types::CreateProcessingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2951
3000
  #
@@ -3252,7 +3301,14 @@ module Aws::SageMaker
3252
3301
  # Configuration of storage locations for TensorBoard output.
3253
3302
  #
3254
3303
  # @option params [Types::ExperimentConfig] :experiment_config
3255
- # Configuration for the experiment.
3304
+ # Associates a SageMaker job as a trial component with an experiment and
3305
+ # trial. Specified when you call the following APIs:
3306
+ #
3307
+ # * CreateProcessingJob
3308
+ #
3309
+ # * CreateTrainingJob
3310
+ #
3311
+ # * CreateTransformJob
3256
3312
  #
3257
3313
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3258
3314
  #
@@ -3516,7 +3572,14 @@ module Aws::SageMaker
3516
3572
  # [1]: https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
3517
3573
  #
3518
3574
  # @option params [Types::ExperimentConfig] :experiment_config
3519
- # Configuration for the experiment.
3575
+ # Associates a SageMaker job as a trial component with an experiment and
3576
+ # trial. Specified when you call the following APIs:
3577
+ #
3578
+ # * CreateProcessingJob
3579
+ #
3580
+ # * CreateTrainingJob
3581
+ #
3582
+ # * CreateTransformJob
3520
3583
  #
3521
3584
  # @return [Types::CreateTransformJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3522
3585
  #
@@ -3830,19 +3893,19 @@ module Aws::SageMaker
3830
3893
  # },
3831
3894
  # jupyter_server_app_settings: {
3832
3895
  # default_resource_spec: {
3833
- # sage_maker_image_arn: "SageMakerImageArn",
3896
+ # sage_maker_image_arn: "ImageArn",
3834
3897
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3835
3898
  # },
3836
3899
  # },
3837
3900
  # kernel_gateway_app_settings: {
3838
3901
  # default_resource_spec: {
3839
- # sage_maker_image_arn: "SageMakerImageArn",
3902
+ # sage_maker_image_arn: "ImageArn",
3840
3903
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3841
3904
  # },
3842
3905
  # },
3843
3906
  # tensor_board_app_settings: {
3844
3907
  # default_resource_spec: {
3845
- # sage_maker_image_arn: "SageMakerImageArn",
3908
+ # sage_maker_image_arn: "ImageArn",
3846
3909
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
3847
3910
  # },
3848
3911
  # },
@@ -3862,6 +3925,112 @@ module Aws::SageMaker
3862
3925
  req.send_request(options)
3863
3926
  end
3864
3927
 
3928
+ # Use this operation to create a workforce. This operation will return
3929
+ # an error if a workforce already exists in the AWS Region that you
3930
+ # specify. You can only create one workforce in each AWS Region per AWS
3931
+ # account.
3932
+ #
3933
+ # If you want to create a new workforce in an AWS Region where a
3934
+ # workforce already exists, use the API operation to delete the existing
3935
+ # workforce and then use `CreateWorkforce` to create a new workforce.
3936
+ #
3937
+ # To create a private workforce using Amazon Cognito, you must specify a
3938
+ # Cognito user pool in `CognitoConfig`. You can also create an Amazon
3939
+ # Cognito workforce using the Amazon SageMaker console. For more
3940
+ # information, see [ Create a Private Workforce (Amazon Cognito)][1].
3941
+ #
3942
+ # To create a private workforce using your own OIDC Identity Provider
3943
+ # (IdP), specify your IdP configuration in `OidcConfig`. Your OIDC IdP
3944
+ # must support *groups* because groups are used by Ground Truth and
3945
+ # Amazon A2I to create work teams. For more information, see [ Create a
3946
+ # Private Workforce (OIDC IdP)][2].
3947
+ #
3948
+ #
3949
+ #
3950
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html
3951
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private-oidc.html
3952
+ #
3953
+ # @option params [Types::CognitoConfig] :cognito_config
3954
+ # Use this parameter to configure an Amazon Cognito private workforce. A
3955
+ # single Cognito workforce is created using and corresponds to a single
3956
+ # [ Amazon Cognito user pool][1].
3957
+ #
3958
+ # Do not use `OidcConfig` if you specify values for `CognitoConfig`.
3959
+ #
3960
+ #
3961
+ #
3962
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
3963
+ #
3964
+ # @option params [Types::OidcConfig] :oidc_config
3965
+ # Use this parameter to configure a private workforce using your own
3966
+ # OIDC Identity Provider.
3967
+ #
3968
+ # Do not use `CognitoConfig` if you specify values for `OidcConfig`.
3969
+ #
3970
+ # @option params [Types::SourceIpConfig] :source_ip_config
3971
+ # A list of IP address ranges ([CIDRs][1]). Used to create an allow list
3972
+ # of IP addresses for a private workforce. Workers will only be able to
3973
+ # login to their worker portal from an IP address within this range. By
3974
+ # default, a workforce isn't restricted to specific IP addresses.
3975
+ #
3976
+ #
3977
+ #
3978
+ # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
3979
+ #
3980
+ # @option params [required, String] :workforce_name
3981
+ # The name of the private workforce.
3982
+ #
3983
+ # @option params [Array<Types::Tag>] :tags
3984
+ # An array of key-value pairs that contain metadata to help you
3985
+ # categorize and organize our workforce. Each tag consists of a key and
3986
+ # a value, both of which you define.
3987
+ #
3988
+ # @return [Types::CreateWorkforceResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3989
+ #
3990
+ # * {Types::CreateWorkforceResponse#workforce_arn #workforce_arn} => String
3991
+ #
3992
+ # @example Request syntax with placeholder values
3993
+ #
3994
+ # resp = client.create_workforce({
3995
+ # cognito_config: {
3996
+ # user_pool: "CognitoUserPool", # required
3997
+ # client_id: "ClientId", # required
3998
+ # },
3999
+ # oidc_config: {
4000
+ # client_id: "ClientId", # required
4001
+ # client_secret: "ClientSecret", # required
4002
+ # issuer: "OidcEndpoint", # required
4003
+ # authorization_endpoint: "OidcEndpoint", # required
4004
+ # token_endpoint: "OidcEndpoint", # required
4005
+ # user_info_endpoint: "OidcEndpoint", # required
4006
+ # logout_endpoint: "OidcEndpoint", # required
4007
+ # jwks_uri: "OidcEndpoint", # required
4008
+ # },
4009
+ # source_ip_config: {
4010
+ # cidrs: ["Cidr"], # required
4011
+ # },
4012
+ # workforce_name: "WorkforceName", # required
4013
+ # tags: [
4014
+ # {
4015
+ # key: "TagKey", # required
4016
+ # value: "TagValue", # required
4017
+ # },
4018
+ # ],
4019
+ # })
4020
+ #
4021
+ # @example Response structure
4022
+ #
4023
+ # resp.workforce_arn #=> String
4024
+ #
4025
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateWorkforce AWS API Documentation
4026
+ #
4027
+ # @overload create_workforce(params = {})
4028
+ # @param [Hash] params ({})
4029
+ def create_workforce(params = {}, options = {})
4030
+ req = build_request(:create_workforce, params)
4031
+ req.send_request(options)
4032
+ end
4033
+
3865
4034
  # Creates a new work team for labeling your data. A work team is defined
3866
4035
  # by one or more Amazon Cognito user pools. You must first create the
3867
4036
  # user pools before you can create a work team.
@@ -3871,13 +4040,30 @@ module Aws::SageMaker
3871
4040
  # @option params [required, String] :workteam_name
3872
4041
  # The name of the work team. Use this name to identify the work team.
3873
4042
  #
4043
+ # @option params [String] :workforce_name
4044
+ # The name of the workforce.
4045
+ #
3874
4046
  # @option params [required, Array<Types::MemberDefinition>] :member_definitions
3875
4047
  # A list of `MemberDefinition` objects that contains objects that
3876
- # identify the Amazon Cognito user pool that makes up the work team. For
3877
- # more information, see [Amazon Cognito User Pools][1].
4048
+ # identify the workers that make up the work team.
4049
+ #
4050
+ # Workforces can be created using Amazon Cognito or your own OIDC
4051
+ # Identity Provider (IdP). For private workforces created using Amazon
4052
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
4053
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. Do
4054
+ # not provide input for both of these parameters in a single request.
3878
4055
  #
3879
- # All of the `CognitoMemberDefinition` objects that make up the member
3880
- # definition must have the same `ClientId` and `UserPool` values.
4056
+ # For workforces created using Amazon Cognito, private work teams
4057
+ # correspond to Amazon Cognito *user groups* within the user pool used
4058
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
4059
+ # that make up the member definition must have the same `ClientId` and
4060
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
4061
+ # worker pool, see [Adding groups to a User Pool](). For more
4062
+ # information about user pools, see [Amazon Cognito User Pools][1].
4063
+ #
4064
+ # For workforces created using your own OIDC IdP, specify the user
4065
+ # groups that you want to include in your private work team in
4066
+ # `OidcMemberDefinition` by listing those groups in `Groups`.
3881
4067
  #
3882
4068
  #
3883
4069
  #
@@ -3909,12 +4095,16 @@ module Aws::SageMaker
3909
4095
  #
3910
4096
  # resp = client.create_workteam({
3911
4097
  # workteam_name: "WorkteamName", # required
4098
+ # workforce_name: "WorkforceName",
3912
4099
  # member_definitions: [ # required
3913
4100
  # {
3914
4101
  # cognito_member_definition: {
3915
4102
  # user_pool: "CognitoUserPool", # required
3916
4103
  # user_group: "CognitoUserGroup", # required
3917
- # client_id: "CognitoClientId", # required
4104
+ # client_id: "ClientId", # required
4105
+ # },
4106
+ # oidc_member_definition: {
4107
+ # groups: ["Group"], # required
3918
4108
  # },
3919
4109
  # },
3920
4110
  # ],
@@ -4168,6 +4358,34 @@ module Aws::SageMaker
4168
4358
  req.send_request(options)
4169
4359
  end
4170
4360
 
4361
+ # Use this operation to delete a human task user interface (worker task
4362
+ # template).
4363
+ #
4364
+ # To see a list of human task user interfaces (work task templates) in
4365
+ # your account, use . When you delete a worker task template, it no
4366
+ # longer appears when you call `ListHumanTaskUis`.
4367
+ #
4368
+ # @option params [required, String] :human_task_ui_name
4369
+ # The name of the human task user interface (work task template) you
4370
+ # want to delete.
4371
+ #
4372
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
4373
+ #
4374
+ # @example Request syntax with placeholder values
4375
+ #
4376
+ # resp = client.delete_human_task_ui({
4377
+ # human_task_ui_name: "HumanTaskUiName", # required
4378
+ # })
4379
+ #
4380
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteHumanTaskUi AWS API Documentation
4381
+ #
4382
+ # @overload delete_human_task_ui(params = {})
4383
+ # @param [Hash] params ({})
4384
+ def delete_human_task_ui(params = {}, options = {})
4385
+ req = build_request(:delete_human_task_ui, params)
4386
+ req.send_request(options)
4387
+ end
4388
+
4171
4389
  # Deletes a model. The `DeleteModel` API deletes only the model entry
4172
4390
  # that was created in Amazon SageMaker when you called the CreateModel
4173
4391
  # API. It does not delete model artifacts, inference code, or the IAM
@@ -4418,6 +4636,37 @@ module Aws::SageMaker
4418
4636
  req.send_request(options)
4419
4637
  end
4420
4638
 
4639
+ # Use this operation to delete a workforce.
4640
+ #
4641
+ # If you want to create a new workforce in an AWS Region where a
4642
+ # workforce already exists, use this operation to delete the existing
4643
+ # workforce and then use to create a new workforce.
4644
+ #
4645
+ # If a private workforce contains one or more work teams, you must use
4646
+ # the operation to delete all work teams before you delete the
4647
+ # workforce. If you try to delete a workforce that contains one or more
4648
+ # work teams, you will recieve a `ResourceInUse` error.
4649
+ #
4650
+ # @option params [required, String] :workforce_name
4651
+ # The name of the workforce.
4652
+ #
4653
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
4654
+ #
4655
+ # @example Request syntax with placeholder values
4656
+ #
4657
+ # resp = client.delete_workforce({
4658
+ # workforce_name: "WorkforceName", # required
4659
+ # })
4660
+ #
4661
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteWorkforce AWS API Documentation
4662
+ #
4663
+ # @overload delete_workforce(params = {})
4664
+ # @param [Hash] params ({})
4665
+ def delete_workforce(params = {}, options = {})
4666
+ req = build_request(:delete_workforce, params)
4667
+ req.send_request(options)
4668
+ end
4669
+
4421
4670
  # Deletes an existing work team. This operation can't be undone.
4422
4671
  #
4423
4672
  # @option params [required, String] :workteam_name
@@ -4699,7 +4948,7 @@ module Aws::SageMaker
4699
4948
  # resp.output_data_config.kms_key_id #=> String
4700
4949
  # resp.output_data_config.s3_output_path #=> String
4701
4950
  # resp.role_arn #=> String
4702
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4951
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4703
4952
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
4704
4953
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
4705
4954
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -4716,7 +4965,7 @@ module Aws::SageMaker
4716
4965
  # resp.failure_reason #=> String
4717
4966
  # resp.best_candidate.candidate_name #=> String
4718
4967
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
4719
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4968
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4720
4969
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
4721
4970
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
4722
4971
  # resp.best_candidate.candidate_steps #=> Array
@@ -4738,7 +4987,7 @@ module Aws::SageMaker
4738
4987
  # resp.generate_candidate_definitions_only #=> Boolean
4739
4988
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
4740
4989
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
4741
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
4990
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
4742
4991
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
4743
4992
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
4744
4993
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -4840,7 +5089,11 @@ module Aws::SageMaker
4840
5089
  # resp.input_config.data_input_config #=> String
4841
5090
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE"
4842
5091
  # resp.output_config.s3_output_location #=> String
4843
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22"
5092
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
5093
+ # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
5094
+ # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
5095
+ # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
5096
+ # resp.output_config.compiler_options #=> String
4844
5097
  #
4845
5098
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJob AWS API Documentation
4846
5099
  #
@@ -5143,15 +5396,18 @@ module Aws::SageMaker
5143
5396
  req.send_request(options)
5144
5397
  end
5145
5398
 
5146
- # Returns information about the requested human task user interface.
5399
+ # Returns information about the requested human task user interface
5400
+ # (worker task template).
5147
5401
  #
5148
5402
  # @option params [required, String] :human_task_ui_name
5149
- # The name of the human task user interface you want information about.
5403
+ # The name of the human task user interface (worker task template) you
5404
+ # want information about.
5150
5405
  #
5151
5406
  # @return [Types::DescribeHumanTaskUiResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5152
5407
  #
5153
5408
  # * {Types::DescribeHumanTaskUiResponse#human_task_ui_arn #human_task_ui_arn} => String
5154
5409
  # * {Types::DescribeHumanTaskUiResponse#human_task_ui_name #human_task_ui_name} => String
5410
+ # * {Types::DescribeHumanTaskUiResponse#human_task_ui_status #human_task_ui_status} => String
5155
5411
  # * {Types::DescribeHumanTaskUiResponse#creation_time #creation_time} => Time
5156
5412
  # * {Types::DescribeHumanTaskUiResponse#ui_template #ui_template} => Types::UiTemplateInfo
5157
5413
  #
@@ -5165,6 +5421,7 @@ module Aws::SageMaker
5165
5421
  #
5166
5422
  # resp.human_task_ui_arn #=> String
5167
5423
  # resp.human_task_ui_name #=> String
5424
+ # resp.human_task_ui_status #=> String, one of "Active", "Deleting"
5168
5425
  # resp.creation_time #=> Time
5169
5426
  # resp.ui_template.url #=> String
5170
5427
  # resp.ui_template.content_sha_256 #=> String
@@ -5181,7 +5438,7 @@ module Aws::SageMaker
5181
5438
  # Gets a description of a hyperparameter tuning job.
5182
5439
  #
5183
5440
  # @option params [required, String] :hyper_parameter_tuning_job_name
5184
- # The name of the tuning job to describe.
5441
+ # The name of the tuning job.
5185
5442
  #
5186
5443
  # @return [Types::DescribeHyperParameterTuningJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5187
5444
  #
@@ -5441,7 +5698,7 @@ module Aws::SageMaker
5441
5698
  #
5442
5699
  # @example Response structure
5443
5700
  #
5444
- # resp.labeling_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
5701
+ # resp.labeling_job_status #=> String, one of "Initializing", "InProgress", "Completed", "Failed", "Stopping", "Stopped"
5445
5702
  # resp.label_counters.total_labeled #=> Integer
5446
5703
  # resp.label_counters.human_labeled #=> Integer
5447
5704
  # resp.label_counters.machine_labeled #=> Integer
@@ -5455,10 +5712,12 @@ module Aws::SageMaker
5455
5712
  # resp.labeling_job_arn #=> String
5456
5713
  # resp.label_attribute_name #=> String
5457
5714
  # resp.input_config.data_source.s3_data_source.manifest_s3_uri #=> String
5715
+ # resp.input_config.data_source.sns_data_source.sns_topic_arn #=> String
5458
5716
  # resp.input_config.data_attributes.content_classifiers #=> Array
5459
5717
  # resp.input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
5460
5718
  # resp.output_config.s3_output_path #=> String
5461
5719
  # resp.output_config.kms_key_id #=> String
5720
+ # resp.output_config.sns_topic_arn #=> String
5462
5721
  # resp.role_arn #=> String
5463
5722
  # resp.label_category_config_s3_uri #=> String
5464
5723
  # resp.stopping_conditions.max_human_labeled_object_count #=> Integer
@@ -5524,6 +5783,7 @@ module Aws::SageMaker
5524
5783
  # resp.model_name #=> String
5525
5784
  # resp.primary_container.container_hostname #=> String
5526
5785
  # resp.primary_container.image #=> String
5786
+ # resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
5527
5787
  # resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
5528
5788
  # resp.primary_container.model_data_url #=> String
5529
5789
  # resp.primary_container.environment #=> Hash
@@ -5532,6 +5792,7 @@ module Aws::SageMaker
5532
5792
  # resp.containers #=> Array
5533
5793
  # resp.containers[0].container_hostname #=> String
5534
5794
  # resp.containers[0].image #=> String
5795
+ # resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
5535
5796
  # resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
5536
5797
  # resp.containers[0].model_data_url #=> String
5537
5798
  # resp.containers[0].environment #=> Hash
@@ -6457,6 +6718,17 @@ module Aws::SageMaker
6457
6718
  # resp.workforce.last_updated_date #=> Time
6458
6719
  # resp.workforce.source_ip_config.cidrs #=> Array
6459
6720
  # resp.workforce.source_ip_config.cidrs[0] #=> String
6721
+ # resp.workforce.sub_domain #=> String
6722
+ # resp.workforce.cognito_config.user_pool #=> String
6723
+ # resp.workforce.cognito_config.client_id #=> String
6724
+ # resp.workforce.oidc_config.client_id #=> String
6725
+ # resp.workforce.oidc_config.issuer #=> String
6726
+ # resp.workforce.oidc_config.authorization_endpoint #=> String
6727
+ # resp.workforce.oidc_config.token_endpoint #=> String
6728
+ # resp.workforce.oidc_config.user_info_endpoint #=> String
6729
+ # resp.workforce.oidc_config.logout_endpoint #=> String
6730
+ # resp.workforce.oidc_config.jwks_uri #=> String
6731
+ # resp.workforce.create_date #=> Time
6460
6732
  #
6461
6733
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeWorkforce AWS API Documentation
6462
6734
  #
@@ -6491,7 +6763,10 @@ module Aws::SageMaker
6491
6763
  # resp.workteam.member_definitions[0].cognito_member_definition.user_pool #=> String
6492
6764
  # resp.workteam.member_definitions[0].cognito_member_definition.user_group #=> String
6493
6765
  # resp.workteam.member_definitions[0].cognito_member_definition.client_id #=> String
6766
+ # resp.workteam.member_definitions[0].oidc_member_definition.groups #=> Array
6767
+ # resp.workteam.member_definitions[0].oidc_member_definition.groups[0] #=> String
6494
6768
  # resp.workteam.workteam_arn #=> String
6769
+ # resp.workteam.workforce_arn #=> String
6495
6770
  # resp.workteam.product_listing_ids #=> Array
6496
6771
  # resp.workteam.product_listing_ids[0] #=> String
6497
6772
  # resp.workteam.description #=> String
@@ -6750,8 +7025,8 @@ module Aws::SageMaker
6750
7025
  # Request a list of jobs up to a specified limit.
6751
7026
  #
6752
7027
  # @option params [String] :next_token
6753
- # If the previous response was truncated, you will receive this token.
6754
- # Use it in your next request to receive the next set of results.
7028
+ # If the previous response was truncated, you receive this token. Use it
7029
+ # in your next request to receive the next set of results.
6755
7030
  #
6756
7031
  # @return [Types::ListAutoMLJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
6757
7032
  #
@@ -6818,8 +7093,8 @@ module Aws::SageMaker
6818
7093
  # List the job's Candidates up to a specified limit.
6819
7094
  #
6820
7095
  # @option params [String] :next_token
6821
- # If the previous response was truncated, you will receive this token.
6822
- # Use it in your next request to receive the next set of results.
7096
+ # If the previous response was truncated, you receive this token. Use it
7097
+ # in your next request to receive the next set of results.
6823
7098
  #
6824
7099
  # @return [Types::ListCandidatesForAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
6825
7100
  #
@@ -6845,7 +7120,7 @@ module Aws::SageMaker
6845
7120
  # resp.candidates #=> Array
6846
7121
  # resp.candidates[0].candidate_name #=> String
6847
7122
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
6848
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro"
7123
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
6849
7124
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
6850
7125
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
6851
7126
  # resp.candidates[0].candidate_steps #=> Array
@@ -7026,7 +7301,10 @@ module Aws::SageMaker
7026
7301
  # resp.compilation_job_summaries[0].creation_time #=> Time
7027
7302
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
7028
7303
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
7029
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22"
7304
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64"
7305
+ # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
7306
+ # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7307
+ # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
7030
7308
  # resp.compilation_job_summaries[0].last_modified_time #=> Time
7031
7309
  # resp.compilation_job_summaries[0].compilation_job_status #=> String, one of "INPROGRESS", "COMPLETED", "FAILED", "STARTING", "STOPPING", "STOPPED"
7032
7310
  # resp.next_token #=> String
@@ -7564,7 +7842,7 @@ module Aws::SageMaker
7564
7842
  # name_contains: "NameContains",
7565
7843
  # sort_by: "Name", # accepts Name, CreationTime, Status
7566
7844
  # sort_order: "Ascending", # accepts Ascending, Descending
7567
- # status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
7845
+ # status_equals: "Initializing", # accepts Initializing, InProgress, Completed, Failed, Stopping, Stopped
7568
7846
  # })
7569
7847
  #
7570
7848
  # @example Response structure
@@ -7574,7 +7852,7 @@ module Aws::SageMaker
7574
7852
  # resp.labeling_job_summary_list[0].labeling_job_arn #=> String
7575
7853
  # resp.labeling_job_summary_list[0].creation_time #=> Time
7576
7854
  # resp.labeling_job_summary_list[0].last_modified_time #=> Time
7577
- # resp.labeling_job_summary_list[0].labeling_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
7855
+ # resp.labeling_job_summary_list[0].labeling_job_status #=> String, one of "Initializing", "InProgress", "Completed", "Failed", "Stopping", "Stopped"
7578
7856
  # resp.labeling_job_summary_list[0].label_counters.total_labeled #=> Integer
7579
7857
  # resp.labeling_job_summary_list[0].label_counters.human_labeled #=> Integer
7580
7858
  # resp.labeling_job_summary_list[0].label_counters.machine_labeled #=> Integer
@@ -7587,6 +7865,7 @@ module Aws::SageMaker
7587
7865
  # resp.labeling_job_summary_list[0].labeling_job_output.output_dataset_s3_uri #=> String
7588
7866
  # resp.labeling_job_summary_list[0].labeling_job_output.final_active_learning_model_arn #=> String
7589
7867
  # resp.labeling_job_summary_list[0].input_config.data_source.s3_data_source.manifest_s3_uri #=> String
7868
+ # resp.labeling_job_summary_list[0].input_config.data_source.sns_data_source.sns_topic_arn #=> String
7590
7869
  # resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers #=> Array
7591
7870
  # resp.labeling_job_summary_list[0].input_config.data_attributes.content_classifiers[0] #=> String, one of "FreeOfPersonallyIdentifiableInformation", "FreeOfAdultContent"
7592
7871
  # resp.next_token #=> String
@@ -8833,9 +9112,76 @@ module Aws::SageMaker
8833
9112
  req.send_request(options)
8834
9113
  end
8835
9114
 
8836
- # Gets a list of work teams that you have defined in a region. The list
8837
- # may be empty if no work team satisfies the filter specified in the
8838
- # `NameContains` parameter.
9115
+ # Use this operation to list all private and vendor workforces in an AWS
9116
+ # Region. Note that you can only have one private workforce per AWS
9117
+ # Region.
9118
+ #
9119
+ # @option params [String] :sort_by
9120
+ # Sort workforces using the workforce name or creation date.
9121
+ #
9122
+ # @option params [String] :sort_order
9123
+ # Sort workforces in ascending or descending order.
9124
+ #
9125
+ # @option params [String] :name_contains
9126
+ # A filter you can use to search for workforces using part of the
9127
+ # workforce name.
9128
+ #
9129
+ # @option params [String] :next_token
9130
+ # A token to resume pagination.
9131
+ #
9132
+ # @option params [Integer] :max_results
9133
+ # The maximum number of workforces returned in the response.
9134
+ #
9135
+ # @return [Types::ListWorkforcesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9136
+ #
9137
+ # * {Types::ListWorkforcesResponse#workforces #workforces} => Array&lt;Types::Workforce&gt;
9138
+ # * {Types::ListWorkforcesResponse#next_token #next_token} => String
9139
+ #
9140
+ # The returned {Seahorse::Client::Response response} is a pageable response and is Enumerable. For details on usage see {Aws::PageableResponse PageableResponse}.
9141
+ #
9142
+ # @example Request syntax with placeholder values
9143
+ #
9144
+ # resp = client.list_workforces({
9145
+ # sort_by: "Name", # accepts Name, CreateDate
9146
+ # sort_order: "Ascending", # accepts Ascending, Descending
9147
+ # name_contains: "WorkforceName",
9148
+ # next_token: "NextToken",
9149
+ # max_results: 1,
9150
+ # })
9151
+ #
9152
+ # @example Response structure
9153
+ #
9154
+ # resp.workforces #=> Array
9155
+ # resp.workforces[0].workforce_name #=> String
9156
+ # resp.workforces[0].workforce_arn #=> String
9157
+ # resp.workforces[0].last_updated_date #=> Time
9158
+ # resp.workforces[0].source_ip_config.cidrs #=> Array
9159
+ # resp.workforces[0].source_ip_config.cidrs[0] #=> String
9160
+ # resp.workforces[0].sub_domain #=> String
9161
+ # resp.workforces[0].cognito_config.user_pool #=> String
9162
+ # resp.workforces[0].cognito_config.client_id #=> String
9163
+ # resp.workforces[0].oidc_config.client_id #=> String
9164
+ # resp.workforces[0].oidc_config.issuer #=> String
9165
+ # resp.workforces[0].oidc_config.authorization_endpoint #=> String
9166
+ # resp.workforces[0].oidc_config.token_endpoint #=> String
9167
+ # resp.workforces[0].oidc_config.user_info_endpoint #=> String
9168
+ # resp.workforces[0].oidc_config.logout_endpoint #=> String
9169
+ # resp.workforces[0].oidc_config.jwks_uri #=> String
9170
+ # resp.workforces[0].create_date #=> Time
9171
+ # resp.next_token #=> String
9172
+ #
9173
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListWorkforces AWS API Documentation
9174
+ #
9175
+ # @overload list_workforces(params = {})
9176
+ # @param [Hash] params ({})
9177
+ def list_workforces(params = {}, options = {})
9178
+ req = build_request(:list_workforces, params)
9179
+ req.send_request(options)
9180
+ end
9181
+
9182
+ # Gets a list of private work teams that you have defined in a region.
9183
+ # The list may be empty if no work team satisfies the filter specified
9184
+ # in the `NameContains` parameter.
8839
9185
  #
8840
9186
  # @option params [String] :sort_by
8841
9187
  # The field to sort results by. The default is `CreationTime`.
@@ -8881,7 +9227,10 @@ module Aws::SageMaker
8881
9227
  # resp.workteams[0].member_definitions[0].cognito_member_definition.user_pool #=> String
8882
9228
  # resp.workteams[0].member_definitions[0].cognito_member_definition.user_group #=> String
8883
9229
  # resp.workteams[0].member_definitions[0].cognito_member_definition.client_id #=> String
9230
+ # resp.workteams[0].member_definitions[0].oidc_member_definition.groups #=> Array
9231
+ # resp.workteams[0].member_definitions[0].oidc_member_definition.groups[0] #=> String
8884
9232
  # resp.workteams[0].workteam_arn #=> String
9233
+ # resp.workteams[0].workforce_arn #=> String
8885
9234
  # resp.workteams[0].product_listing_ids #=> Array
8886
9235
  # resp.workteams[0].product_listing_ids[0] #=> String
8887
9236
  # resp.workteams[0].description #=> String
@@ -8917,6 +9266,9 @@ module Aws::SageMaker
8917
9266
  # The `HumanTaskUiArn` of the worker UI that you want to render. Do not
8918
9267
  # provide a `HumanTaskUiArn` if you use the `UiTemplate` parameter.
8919
9268
  #
9269
+ # See a list of available Human Ui Amazon Resource Names (ARNs) in
9270
+ # UiConfig.
9271
+ #
8920
9272
  # @return [Types::RenderUiTemplateResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
8921
9273
  #
8922
9274
  # * {Types::RenderUiTemplateResponse#rendered_content #rendered_content} => String
@@ -9360,6 +9712,44 @@ module Aws::SageMaker
9360
9712
  # resp.results[0].trial_component.source_detail.processing_job.tags #=> Array
9361
9713
  # resp.results[0].trial_component.source_detail.processing_job.tags[0].key #=> String
9362
9714
  # resp.results[0].trial_component.source_detail.processing_job.tags[0].value #=> String
9715
+ # resp.results[0].trial_component.source_detail.transform_job.transform_job_name #=> String
9716
+ # resp.results[0].trial_component.source_detail.transform_job.transform_job_arn #=> String
9717
+ # resp.results[0].trial_component.source_detail.transform_job.transform_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
9718
+ # resp.results[0].trial_component.source_detail.transform_job.failure_reason #=> String
9719
+ # resp.results[0].trial_component.source_detail.transform_job.model_name #=> String
9720
+ # resp.results[0].trial_component.source_detail.transform_job.max_concurrent_transforms #=> Integer
9721
+ # resp.results[0].trial_component.source_detail.transform_job.model_client_config.invocations_timeout_in_seconds #=> Integer
9722
+ # resp.results[0].trial_component.source_detail.transform_job.model_client_config.invocations_max_retries #=> Integer
9723
+ # resp.results[0].trial_component.source_detail.transform_job.max_payload_in_mb #=> Integer
9724
+ # resp.results[0].trial_component.source_detail.transform_job.batch_strategy #=> String, one of "MultiRecord", "SingleRecord"
9725
+ # resp.results[0].trial_component.source_detail.transform_job.environment #=> Hash
9726
+ # resp.results[0].trial_component.source_detail.transform_job.environment["TransformEnvironmentKey"] #=> String
9727
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix", "AugmentedManifestFile"
9728
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.data_source.s3_data_source.s3_uri #=> String
9729
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.content_type #=> String
9730
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.compression_type #=> String, one of "None", "Gzip"
9731
+ # resp.results[0].trial_component.source_detail.transform_job.transform_input.split_type #=> String, one of "None", "Line", "RecordIO", "TFRecord"
9732
+ # resp.results[0].trial_component.source_detail.transform_job.transform_output.s3_output_path #=> String
9733
+ # resp.results[0].trial_component.source_detail.transform_job.transform_output.accept #=> String
9734
+ # resp.results[0].trial_component.source_detail.transform_job.transform_output.assemble_with #=> String, one of "None", "Line"
9735
+ # resp.results[0].trial_component.source_detail.transform_job.transform_output.kms_key_id #=> String
9736
+ # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge"
9737
+ # resp.results[0].trial_component.source_detail.transform_job.transform_resources.instance_count #=> Integer
9738
+ # resp.results[0].trial_component.source_detail.transform_job.transform_resources.volume_kms_key_id #=> String
9739
+ # resp.results[0].trial_component.source_detail.transform_job.creation_time #=> Time
9740
+ # resp.results[0].trial_component.source_detail.transform_job.transform_start_time #=> Time
9741
+ # resp.results[0].trial_component.source_detail.transform_job.transform_end_time #=> Time
9742
+ # resp.results[0].trial_component.source_detail.transform_job.labeling_job_arn #=> String
9743
+ # resp.results[0].trial_component.source_detail.transform_job.auto_ml_job_arn #=> String
9744
+ # resp.results[0].trial_component.source_detail.transform_job.data_processing.input_filter #=> String
9745
+ # resp.results[0].trial_component.source_detail.transform_job.data_processing.output_filter #=> String
9746
+ # resp.results[0].trial_component.source_detail.transform_job.data_processing.join_source #=> String, one of "Input", "None"
9747
+ # resp.results[0].trial_component.source_detail.transform_job.experiment_config.experiment_name #=> String
9748
+ # resp.results[0].trial_component.source_detail.transform_job.experiment_config.trial_name #=> String
9749
+ # resp.results[0].trial_component.source_detail.transform_job.experiment_config.trial_component_display_name #=> String
9750
+ # resp.results[0].trial_component.source_detail.transform_job.tags #=> Array
9751
+ # resp.results[0].trial_component.source_detail.transform_job.tags[0].key #=> String
9752
+ # resp.results[0].trial_component.source_detail.transform_job.tags[0].value #=> String
9363
9753
  # resp.results[0].trial_component.tags #=> Array
9364
9754
  # resp.results[0].trial_component.tags[0].key #=> String
9365
9755
  # resp.results[0].trial_component.tags[0].value #=> String
@@ -9734,19 +10124,19 @@ module Aws::SageMaker
9734
10124
  # },
9735
10125
  # jupyter_server_app_settings: {
9736
10126
  # default_resource_spec: {
9737
- # sage_maker_image_arn: "SageMakerImageArn",
10127
+ # sage_maker_image_arn: "ImageArn",
9738
10128
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
9739
10129
  # },
9740
10130
  # },
9741
10131
  # kernel_gateway_app_settings: {
9742
10132
  # default_resource_spec: {
9743
- # sage_maker_image_arn: "SageMakerImageArn",
10133
+ # sage_maker_image_arn: "ImageArn",
9744
10134
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
9745
10135
  # },
9746
10136
  # },
9747
10137
  # tensor_board_app_settings: {
9748
10138
  # default_resource_spec: {
9749
- # sage_maker_image_arn: "SageMakerImageArn",
10139
+ # sage_maker_image_arn: "ImageArn",
9750
10140
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
9751
10141
  # },
9752
10142
  # },
@@ -10363,19 +10753,19 @@ module Aws::SageMaker
10363
10753
  # },
10364
10754
  # jupyter_server_app_settings: {
10365
10755
  # default_resource_spec: {
10366
- # sage_maker_image_arn: "SageMakerImageArn",
10756
+ # sage_maker_image_arn: "ImageArn",
10367
10757
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
10368
10758
  # },
10369
10759
  # },
10370
10760
  # kernel_gateway_app_settings: {
10371
10761
  # default_resource_spec: {
10372
- # sage_maker_image_arn: "SageMakerImageArn",
10762
+ # sage_maker_image_arn: "ImageArn",
10373
10763
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
10374
10764
  # },
10375
10765
  # },
10376
10766
  # tensor_board_app_settings: {
10377
10767
  # default_resource_spec: {
10378
- # sage_maker_image_arn: "SageMakerImageArn",
10768
+ # sage_maker_image_arn: "ImageArn",
10379
10769
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge
10380
10770
  # },
10381
10771
  # },
@@ -10395,38 +10785,54 @@ module Aws::SageMaker
10395
10785
  req.send_request(options)
10396
10786
  end
10397
10787
 
10398
- # Restricts access to tasks assigned to workers in the specified
10399
- # workforce to those within specific ranges of IP addresses. You specify
10400
- # allowed IP addresses by creating a list of up to four [CIDRs][1].
10788
+ # Use this operation to update your workforce. You can use this
10789
+ # operation to require that workers use specific IP addresses to work on
10790
+ # tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP)
10791
+ # workforce configuration.
10401
10792
  #
10402
- # By default, a workforce isn't restricted to specific IP addresses. If
10403
- # you specify a range of IP addresses, workers who attempt to access
10404
- # tasks using any IP address outside the specified range are denied
10405
- # access and get a `Not Found` error message on the worker portal. After
10406
- # restricting access with this operation, you can see the allowed IP
10407
- # values for a private workforce with the operation.
10793
+ # Use `SourceIpConfig` to restrict worker access to tasks to a specific
10794
+ # range of IP addresses. You specify allowed IP addresses by creating a
10795
+ # list of up to ten [CIDRs][1]. By default, a workforce isn't
10796
+ # restricted to specific IP addresses. If you specify a range of IP
10797
+ # addresses, workers who attempt to access tasks using any IP address
10798
+ # outside the specified range are denied and get a `Not Found` error
10799
+ # message on the worker portal.
10408
10800
  #
10409
- # This operation applies only to private workforces.
10801
+ # Use `OidcConfig` to update the configuration of a workforce created
10802
+ # using your own OIDC IdP.
10803
+ #
10804
+ # You can only update your OIDC IdP configuration when there are no work
10805
+ # teams associated with your workforce. You can delete work teams using
10806
+ # the operation.
10807
+ #
10808
+ # After restricting access to a range of IP addresses or updating your
10809
+ # OIDC IdP configuration with this operation, you can view details about
10810
+ # your update workforce using the operation.
10811
+ #
10812
+ # This operation only applies to private workforces.
10410
10813
  #
10411
10814
  #
10412
10815
  #
10413
10816
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
10414
10817
  #
10415
10818
  # @option params [required, String] :workforce_name
10416
- # The name of the private workforce whose access you want to restrict.
10417
- # `WorkforceName` is automatically set to `default` when a workforce is
10418
- # created and cannot be modified.
10819
+ # The name of the private workforce that you want to update. You can
10820
+ # find your workforce name by using the operation.
10419
10821
  #
10420
10822
  # @option params [Types::SourceIpConfig] :source_ip_config
10421
- # A list of one to four worker IP address ranges ([CIDRs][1]) that can
10422
- # be used to access tasks assigned to this workforce.
10823
+ # A list of one to ten worker IP address ranges ([CIDRs][1]) that can be
10824
+ # used to access tasks assigned to this workforce.
10423
10825
  #
10424
- # Maximum: Four CIDR values
10826
+ # Maximum: Ten CIDR values
10425
10827
  #
10426
10828
  #
10427
10829
  #
10428
10830
  # [1]: https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
10429
10831
  #
10832
+ # @option params [Types::OidcConfig] :oidc_config
10833
+ # Use this parameter to update your OIDC Identity Provider (IdP)
10834
+ # configuration for a workforce made using your own IdP.
10835
+ #
10430
10836
  # @return [Types::UpdateWorkforceResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10431
10837
  #
10432
10838
  # * {Types::UpdateWorkforceResponse#workforce #workforce} => Types::Workforce
@@ -10438,6 +10844,16 @@ module Aws::SageMaker
10438
10844
  # source_ip_config: {
10439
10845
  # cidrs: ["Cidr"], # required
10440
10846
  # },
10847
+ # oidc_config: {
10848
+ # client_id: "ClientId", # required
10849
+ # client_secret: "ClientSecret", # required
10850
+ # issuer: "OidcEndpoint", # required
10851
+ # authorization_endpoint: "OidcEndpoint", # required
10852
+ # token_endpoint: "OidcEndpoint", # required
10853
+ # user_info_endpoint: "OidcEndpoint", # required
10854
+ # logout_endpoint: "OidcEndpoint", # required
10855
+ # jwks_uri: "OidcEndpoint", # required
10856
+ # },
10441
10857
  # })
10442
10858
  #
10443
10859
  # @example Response structure
@@ -10447,6 +10863,17 @@ module Aws::SageMaker
10447
10863
  # resp.workforce.last_updated_date #=> Time
10448
10864
  # resp.workforce.source_ip_config.cidrs #=> Array
10449
10865
  # resp.workforce.source_ip_config.cidrs[0] #=> String
10866
+ # resp.workforce.sub_domain #=> String
10867
+ # resp.workforce.cognito_config.user_pool #=> String
10868
+ # resp.workforce.cognito_config.client_id #=> String
10869
+ # resp.workforce.oidc_config.client_id #=> String
10870
+ # resp.workforce.oidc_config.issuer #=> String
10871
+ # resp.workforce.oidc_config.authorization_endpoint #=> String
10872
+ # resp.workforce.oidc_config.token_endpoint #=> String
10873
+ # resp.workforce.oidc_config.user_info_endpoint #=> String
10874
+ # resp.workforce.oidc_config.logout_endpoint #=> String
10875
+ # resp.workforce.oidc_config.jwks_uri #=> String
10876
+ # resp.workforce.create_date #=> Time
10450
10877
  #
10451
10878
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateWorkforce AWS API Documentation
10452
10879
  #
@@ -10464,8 +10891,35 @@ module Aws::SageMaker
10464
10891
  # The name of the work team to update.
10465
10892
  #
10466
10893
  # @option params [Array<Types::MemberDefinition>] :member_definitions
10467
- # A list of `MemberDefinition` objects that contain the updated work
10468
- # team members.
10894
+ # A list of `MemberDefinition` objects that contains objects that
10895
+ # identify the workers that make up the work team.
10896
+ #
10897
+ # Workforces can be created using Amazon Cognito or your own OIDC
10898
+ # Identity Provider (IdP). For private workforces created using Amazon
10899
+ # Cognito use `CognitoMemberDefinition`. For workforces created using
10900
+ # your own OIDC identity provider (IdP) use `OidcMemberDefinition`. You
10901
+ # should not provide input for both of these parameters in a single
10902
+ # request.
10903
+ #
10904
+ # For workforces created using Amazon Cognito, private work teams
10905
+ # correspond to Amazon Cognito *user groups* within the user pool used
10906
+ # to create a workforce. All of the `CognitoMemberDefinition` objects
10907
+ # that make up the member definition must have the same `ClientId` and
10908
+ # `UserPool` values. To add a Amazon Cognito user group to an existing
10909
+ # worker pool, see [Adding groups to a User Pool](). For more
10910
+ # information about user pools, see [Amazon Cognito User Pools][1].
10911
+ #
10912
+ # For workforces created using your own OIDC IdP, specify the user
10913
+ # groups that you want to include in your private work team in
10914
+ # `OidcMemberDefinition` by listing those groups in `Groups`. Be aware
10915
+ # that user groups that are already in the work team must also be listed
10916
+ # in `Groups` when you make this request to remain on the work team. If
10917
+ # you do not include these user groups, they will no longer be
10918
+ # associated with the work team you update.
10919
+ #
10920
+ #
10921
+ #
10922
+ # [1]: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
10469
10923
  #
10470
10924
  # @option params [String] :description
10471
10925
  # An updated description for the work team.
@@ -10487,7 +10941,10 @@ module Aws::SageMaker
10487
10941
  # cognito_member_definition: {
10488
10942
  # user_pool: "CognitoUserPool", # required
10489
10943
  # user_group: "CognitoUserGroup", # required
10490
- # client_id: "CognitoClientId", # required
10944
+ # client_id: "ClientId", # required
10945
+ # },
10946
+ # oidc_member_definition: {
10947
+ # groups: ["Group"], # required
10491
10948
  # },
10492
10949
  # },
10493
10950
  # ],
@@ -10504,7 +10961,10 @@ module Aws::SageMaker
10504
10961
  # resp.workteam.member_definitions[0].cognito_member_definition.user_pool #=> String
10505
10962
  # resp.workteam.member_definitions[0].cognito_member_definition.user_group #=> String
10506
10963
  # resp.workteam.member_definitions[0].cognito_member_definition.client_id #=> String
10964
+ # resp.workteam.member_definitions[0].oidc_member_definition.groups #=> Array
10965
+ # resp.workteam.member_definitions[0].oidc_member_definition.groups[0] #=> String
10507
10966
  # resp.workteam.workteam_arn #=> String
10967
+ # resp.workteam.workforce_arn #=> String
10508
10968
  # resp.workteam.product_listing_ids #=> Array
10509
10969
  # resp.workteam.product_listing_ids[0] #=> String
10510
10970
  # resp.workteam.description #=> String
@@ -10535,7 +10995,7 @@ module Aws::SageMaker
10535
10995
  params: params,
10536
10996
  config: config)
10537
10997
  context[:gem_name] = 'aws-sdk-sagemaker'
10538
- context[:gem_version] = '1.62.0'
10998
+ context[:gem_version] = '1.67.0'
10539
10999
  Seahorse::Client::Request.new(handlers, context)
10540
11000
  end
10541
11001