aws-sdk-sagemaker 1.29.0 → 1.30.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 9c19988bef342087b3fd441de43ef217d6d10dc3
4
- data.tar.gz: 0ae5677809a6e0f3ead34d79f79bee75782cd400
3
+ metadata.gz: f17d10920228d1232d2a1d1857df1f558a10755a
4
+ data.tar.gz: 9a1fda00238b038a0ba10ebc12193436b259d3cf
5
5
  SHA512:
6
- metadata.gz: 508b6f0be8c6cc51e9ebdbffb8a3897f07d987b43a4a1f2c41f4e4b5dc8d713f3e0ad93a52cd6aab7a33657cc511ff2e3cf6eb6224073299d0874d001ad76522
7
- data.tar.gz: bbaabb1c885d037ba0f7ad6f019a76cdf1515362b77f1df5782e0ef42cd9e920de2c609fa69c651dbf900d845add99cc72f40880cf533a81c205fb7c2e05c42a
6
+ metadata.gz: 7910395b4be26ab28479cbf4c599cfc2b7b3d511103046a0a9768a2201f9bbe176f633b683fa733cea7ef21e5b726aa161099342e35d8ab01350a98e3369c222
7
+ data.tar.gz: b2c331943fa9ce819c501751f22e1e71af6e0445d0c81b9641f8628ee05b3577677acdb84fb84d52a831198c5bdc02782fc6707f59206375e08b71659a22b508
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.29.0'
46
+ GEM_VERSION = '1.30.0'
47
47
 
48
48
  end
@@ -913,7 +913,7 @@ module Aws::SageMaker
913
913
  # resp = client.create_hyper_parameter_tuning_job({
914
914
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
915
915
  # hyper_parameter_tuning_job_config: { # required
916
- # strategy: "Bayesian", # required, accepts Bayesian
916
+ # strategy: "Bayesian", # required, accepts Bayesian, Random
917
917
  # hyper_parameter_tuning_job_objective: { # required
918
918
  # type: "Maximize", # required, accepts Maximize, Minimize
919
919
  # metric_name: "MetricName", # required
@@ -928,6 +928,7 @@ module Aws::SageMaker
928
928
  # name: "ParameterKey", # required
929
929
  # min_value: "ParameterValue", # required
930
930
  # max_value: "ParameterValue", # required
931
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
931
932
  # },
932
933
  # ],
933
934
  # continuous_parameter_ranges: [
@@ -935,6 +936,7 @@ module Aws::SageMaker
935
936
  # name: "ParameterKey", # required
936
937
  # min_value: "ParameterValue", # required
937
938
  # max_value: "ParameterValue", # required
939
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
938
940
  # },
939
941
  # ],
940
942
  # categorical_parameter_ranges: [
@@ -2961,7 +2963,7 @@ module Aws::SageMaker
2961
2963
  #
2962
2964
  # resp.hyper_parameter_tuning_job_name #=> String
2963
2965
  # resp.hyper_parameter_tuning_job_arn #=> String
2964
- # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian"
2966
+ # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
2965
2967
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
2966
2968
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
2967
2969
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
@@ -2970,10 +2972,12 @@ module Aws::SageMaker
2970
2972
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
2971
2973
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
2972
2974
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].max_value #=> String
2975
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
2973
2976
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges #=> Array
2974
2977
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].name #=> String
2975
2978
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
2976
2979
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
2980
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
2977
2981
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges #=> Array
2978
2982
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String
2979
2983
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array
@@ -4142,7 +4146,7 @@ module Aws::SageMaker
4142
4146
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
4143
4147
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
4144
4148
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
4145
- # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian"
4149
+ # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
4146
4150
  # resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
4147
4151
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
4148
4152
  # resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
@@ -5810,7 +5814,7 @@ module Aws::SageMaker
5810
5814
  params: params,
5811
5815
  config: config)
5812
5816
  context[:gem_name] = 'aws-sdk-sagemaker'
5813
- context[:gem_version] = '1.29.0'
5817
+ context[:gem_version] = '1.30.0'
5814
5818
  Seahorse::Client::Request.new(handlers, context)
5815
5819
  end
5816
5820
 
@@ -195,6 +195,7 @@ module Aws::SageMaker
195
195
  GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
196
196
  HumanTaskConfig = Shapes::StructureShape.new(name: 'HumanTaskConfig')
197
197
  HyperParameterAlgorithmSpecification = Shapes::StructureShape.new(name: 'HyperParameterAlgorithmSpecification')
198
+ HyperParameterScalingType = Shapes::StringShape.new(name: 'HyperParameterScalingType')
198
199
  HyperParameterSpecification = Shapes::StructureShape.new(name: 'HyperParameterSpecification')
199
200
  HyperParameterSpecifications = Shapes::ListShape.new(name: 'HyperParameterSpecifications')
200
201
  HyperParameterTrainingJobDefinition = Shapes::StructureShape.new(name: 'HyperParameterTrainingJobDefinition')
@@ -646,6 +647,7 @@ module Aws::SageMaker
646
647
  ContinuousParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
647
648
  ContinuousParameterRange.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
648
649
  ContinuousParameterRange.add_member(:max_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MaxValue"))
650
+ ContinuousParameterRange.add_member(:scaling_type, Shapes::ShapeRef.new(shape: HyperParameterScalingType, location_name: "ScalingType"))
649
651
  ContinuousParameterRange.struct_class = Types::ContinuousParameterRange
650
652
 
651
653
  ContinuousParameterRangeSpecification.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
@@ -1269,6 +1271,7 @@ module Aws::SageMaker
1269
1271
  IntegerParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
1270
1272
  IntegerParameterRange.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
1271
1273
  IntegerParameterRange.add_member(:max_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MaxValue"))
1274
+ IntegerParameterRange.add_member(:scaling_type, Shapes::ShapeRef.new(shape: HyperParameterScalingType, location_name: "ScalingType"))
1272
1275
  IntegerParameterRange.struct_class = Types::IntegerParameterRange
1273
1276
 
1274
1277
  IntegerParameterRangeSpecification.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
@@ -923,6 +923,7 @@ module Aws::SageMaker
923
923
  # name: "ParameterKey", # required
924
924
  # min_value: "ParameterValue", # required
925
925
  # max_value: "ParameterValue", # required
926
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
926
927
  # }
927
928
  #
928
929
  # @!attribute [rw] name
@@ -940,12 +941,50 @@ module Aws::SageMaker
940
941
  # tuning.
941
942
  # @return [String]
942
943
  #
944
+ # @!attribute [rw] scaling_type
945
+ # The scale that hyperparameter tuning uses to search the
946
+ # hyperparameter range. For information about choosing a
947
+ # hyperparameter scale, see [Hyperparameter Range Scaling][1]. One of
948
+ # the following values:
949
+ #
950
+ # Auto
951
+ #
952
+ # : Amazon SageMaker hyperparameter tuning chooses the best scale for
953
+ # the hyperparameter.
954
+ #
955
+ # Linear
956
+ #
957
+ # : Hyperparameter tuning searches the values in the hyperparameter
958
+ # range by using a linear scale.
959
+ #
960
+ # Logarithmic
961
+ #
962
+ # : Hyperparemeter tuning searches the values in the hyperparameter
963
+ # range by using a logarithmic scale.
964
+ #
965
+ # Logarithmic scaling works only for ranges that have only values
966
+ # greater than 0.
967
+ #
968
+ # ReverseLogarithmic
969
+ #
970
+ # : Hyperparemeter tuning searches the values in the hyperparameter
971
+ # range by using a reverse logarithmic scale.
972
+ #
973
+ # Reverse logarithmic scaling works only for ranges that are
974
+ # entirely within the range 0<=x<1.0.
975
+ #
976
+ #
977
+ #
978
+ # [1]: http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
979
+ # @return [String]
980
+ #
943
981
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContinuousParameterRange AWS API Documentation
944
982
  #
945
983
  class ContinuousParameterRange < Struct.new(
946
984
  :name,
947
985
  :min_value,
948
- :max_value)
986
+ :max_value,
987
+ :scaling_type)
949
988
  include Aws::Structure
950
989
  end
951
990
 
@@ -1481,7 +1520,7 @@ module Aws::SageMaker
1481
1520
  # {
1482
1521
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
1483
1522
  # hyper_parameter_tuning_job_config: { # required
1484
- # strategy: "Bayesian", # required, accepts Bayesian
1523
+ # strategy: "Bayesian", # required, accepts Bayesian, Random
1485
1524
  # hyper_parameter_tuning_job_objective: { # required
1486
1525
  # type: "Maximize", # required, accepts Maximize, Minimize
1487
1526
  # metric_name: "MetricName", # required
@@ -1496,6 +1535,7 @@ module Aws::SageMaker
1496
1535
  # name: "ParameterKey", # required
1497
1536
  # min_value: "ParameterValue", # required
1498
1537
  # max_value: "ParameterValue", # required
1538
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
1499
1539
  # },
1500
1540
  # ],
1501
1541
  # continuous_parameter_ranges: [
@@ -1503,6 +1543,7 @@ module Aws::SageMaker
1503
1543
  # name: "ParameterKey", # required
1504
1544
  # min_value: "ParameterValue", # required
1505
1545
  # max_value: "ParameterValue", # required
1546
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
1506
1547
  # },
1507
1548
  # ],
1508
1549
  # categorical_parameter_ranges: [
@@ -5584,7 +5625,7 @@ module Aws::SageMaker
5584
5625
  # data as a hash:
5585
5626
  #
5586
5627
  # {
5587
- # strategy: "Bayesian", # required, accepts Bayesian
5628
+ # strategy: "Bayesian", # required, accepts Bayesian, Random
5588
5629
  # hyper_parameter_tuning_job_objective: { # required
5589
5630
  # type: "Maximize", # required, accepts Maximize, Minimize
5590
5631
  # metric_name: "MetricName", # required
@@ -5599,6 +5640,7 @@ module Aws::SageMaker
5599
5640
  # name: "ParameterKey", # required
5600
5641
  # min_value: "ParameterValue", # required
5601
5642
  # max_value: "ParameterValue", # required
5643
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
5602
5644
  # },
5603
5645
  # ],
5604
5646
  # continuous_parameter_ranges: [
@@ -5606,6 +5648,7 @@ module Aws::SageMaker
5606
5648
  # name: "ParameterKey", # required
5607
5649
  # min_value: "ParameterValue", # required
5608
5650
  # max_value: "ParameterValue", # required
5651
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
5609
5652
  # },
5610
5653
  # ],
5611
5654
  # categorical_parameter_ranges: [
@@ -5619,8 +5662,15 @@ module Aws::SageMaker
5619
5662
  # }
5620
5663
  #
5621
5664
  # @!attribute [rw] strategy
5622
- # Specifies the search strategy for hyperparameters. Currently, the
5623
- # only valid value is `Bayesian`.
5665
+ # Specifies how hyperparameter tuning chooses the combinations of
5666
+ # hyperparameter values to use for the training job it launches. To
5667
+ # use the Bayesian search stategy, set this to `Bayesian`. To randomly
5668
+ # search, set it to `Random`. For information about search strategies,
5669
+ # see [How Hyperparameter Tuning Works][1].
5670
+ #
5671
+ #
5672
+ #
5673
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
5624
5674
  # @return [String]
5625
5675
  #
5626
5676
  # @!attribute [rw] hyper_parameter_tuning_job_objective
@@ -6021,6 +6071,7 @@ module Aws::SageMaker
6021
6071
  # name: "ParameterKey", # required
6022
6072
  # min_value: "ParameterValue", # required
6023
6073
  # max_value: "ParameterValue", # required
6074
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
6024
6075
  # }
6025
6076
  #
6026
6077
  # @!attribute [rw] name
@@ -6035,12 +6086,42 @@ module Aws::SageMaker
6035
6086
  # The maximum value of the hyperparameter to search.
6036
6087
  # @return [String]
6037
6088
  #
6089
+ # @!attribute [rw] scaling_type
6090
+ # The scale that hyperparameter tuning uses to search the
6091
+ # hyperparameter range. For information about choosing a
6092
+ # hyperparameter scale, see [Hyperparameter Range Scaling][1]. One of
6093
+ # the following values:
6094
+ #
6095
+ # Auto
6096
+ #
6097
+ # : Amazon SageMaker hyperparameter tuning chooses the best scale for
6098
+ # the hyperparameter.
6099
+ #
6100
+ # Linear
6101
+ #
6102
+ # : Hyperparameter tuning searches the values in the hyperparameter
6103
+ # range by using a linear scale.
6104
+ #
6105
+ # Logarithmic
6106
+ #
6107
+ # : Hyperparemeter tuning searches the values in the hyperparameter
6108
+ # range by using a logarithmic scale.
6109
+ #
6110
+ # Logarithmic scaling works only for ranges that have only values
6111
+ # greater than 0.
6112
+ #
6113
+ #
6114
+ #
6115
+ # [1]: http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
6116
+ # @return [String]
6117
+ #
6038
6118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/IntegerParameterRange AWS API Documentation
6039
6119
  #
6040
6120
  class IntegerParameterRange < Struct.new(
6041
6121
  :name,
6042
6122
  :min_value,
6043
- :max_value)
6123
+ :max_value,
6124
+ :scaling_type)
6044
6125
  include Aws::Structure
6045
6126
  end
6046
6127
 
@@ -8834,6 +8915,7 @@ module Aws::SageMaker
8834
8915
  # name: "ParameterKey", # required
8835
8916
  # min_value: "ParameterValue", # required
8836
8917
  # max_value: "ParameterValue", # required
8918
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
8837
8919
  # },
8838
8920
  # ],
8839
8921
  # continuous_parameter_ranges: [
@@ -8841,6 +8923,7 @@ module Aws::SageMaker
8841
8923
  # name: "ParameterKey", # required
8842
8924
  # min_value: "ParameterValue", # required
8843
8925
  # max_value: "ParameterValue", # required
8926
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
8844
8927
  # },
8845
8928
  # ],
8846
8929
  # categorical_parameter_ranges: [
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.29.0
4
+ version: 1.30.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2019-03-08 00:00:00.000000000 Z
11
+ date: 2019-03-14 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.39.0
22
+ version: 3.47.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,21 +29,21 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.39.0
32
+ version: 3.47.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement
36
36
  requirements:
37
37
  - - "~>"
38
38
  - !ruby/object:Gem::Version
39
- version: '1.0'
39
+ version: '1.1'
40
40
  type: :runtime
41
41
  prerelease: false
42
42
  version_requirements: !ruby/object:Gem::Requirement
43
43
  requirements:
44
44
  - - "~>"
45
45
  - !ruby/object:Gem::Version
46
- version: '1.0'
46
+ version: '1.1'
47
47
  description: Official AWS Ruby gem for Amazon SageMaker Service (SageMaker). This
48
48
  gem is part of the AWS SDK for Ruby.
49
49
  email: