aws-sdk-sagemaker 1.29.0 → 1.30.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +8 -4
- data/lib/aws-sdk-sagemaker/client_api.rb +3 -0
- data/lib/aws-sdk-sagemaker/types.rb +89 -6
- metadata +6 -6
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: f17d10920228d1232d2a1d1857df1f558a10755a
|
4
|
+
data.tar.gz: 9a1fda00238b038a0ba10ebc12193436b259d3cf
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 7910395b4be26ab28479cbf4c599cfc2b7b3d511103046a0a9768a2201f9bbe176f633b683fa733cea7ef21e5b726aa161099342e35d8ab01350a98e3369c222
|
7
|
+
data.tar.gz: b2c331943fa9ce819c501751f22e1e71af6e0445d0c81b9641f8628ee05b3577677acdb84fb84d52a831198c5bdc02782fc6707f59206375e08b71659a22b508
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -913,7 +913,7 @@ module Aws::SageMaker
|
|
913
913
|
# resp = client.create_hyper_parameter_tuning_job({
|
914
914
|
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
|
915
915
|
# hyper_parameter_tuning_job_config: { # required
|
916
|
-
# strategy: "Bayesian", # required, accepts Bayesian
|
916
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
917
917
|
# hyper_parameter_tuning_job_objective: { # required
|
918
918
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
919
919
|
# metric_name: "MetricName", # required
|
@@ -928,6 +928,7 @@ module Aws::SageMaker
|
|
928
928
|
# name: "ParameterKey", # required
|
929
929
|
# min_value: "ParameterValue", # required
|
930
930
|
# max_value: "ParameterValue", # required
|
931
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
931
932
|
# },
|
932
933
|
# ],
|
933
934
|
# continuous_parameter_ranges: [
|
@@ -935,6 +936,7 @@ module Aws::SageMaker
|
|
935
936
|
# name: "ParameterKey", # required
|
936
937
|
# min_value: "ParameterValue", # required
|
937
938
|
# max_value: "ParameterValue", # required
|
939
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
938
940
|
# },
|
939
941
|
# ],
|
940
942
|
# categorical_parameter_ranges: [
|
@@ -2961,7 +2963,7 @@ module Aws::SageMaker
|
|
2961
2963
|
#
|
2962
2964
|
# resp.hyper_parameter_tuning_job_name #=> String
|
2963
2965
|
# resp.hyper_parameter_tuning_job_arn #=> String
|
2964
|
-
# resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian"
|
2966
|
+
# resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
|
2965
2967
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
|
2966
2968
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
|
2967
2969
|
# resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
|
@@ -2970,10 +2972,12 @@ module Aws::SageMaker
|
|
2970
2972
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
|
2971
2973
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
|
2972
2974
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].max_value #=> String
|
2975
|
+
# resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
|
2973
2976
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges #=> Array
|
2974
2977
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].name #=> String
|
2975
2978
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
|
2976
2979
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
|
2980
|
+
# resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
|
2977
2981
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges #=> Array
|
2978
2982
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String
|
2979
2983
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array
|
@@ -4142,7 +4146,7 @@ module Aws::SageMaker
|
|
4142
4146
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
|
4143
4147
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
|
4144
4148
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
4145
|
-
# resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian"
|
4149
|
+
# resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
|
4146
4150
|
# resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
|
4147
4151
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
|
4148
4152
|
# resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
|
@@ -5810,7 +5814,7 @@ module Aws::SageMaker
|
|
5810
5814
|
params: params,
|
5811
5815
|
config: config)
|
5812
5816
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
5813
|
-
context[:gem_version] = '1.
|
5817
|
+
context[:gem_version] = '1.30.0'
|
5814
5818
|
Seahorse::Client::Request.new(handlers, context)
|
5815
5819
|
end
|
5816
5820
|
|
@@ -195,6 +195,7 @@ module Aws::SageMaker
|
|
195
195
|
GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
|
196
196
|
HumanTaskConfig = Shapes::StructureShape.new(name: 'HumanTaskConfig')
|
197
197
|
HyperParameterAlgorithmSpecification = Shapes::StructureShape.new(name: 'HyperParameterAlgorithmSpecification')
|
198
|
+
HyperParameterScalingType = Shapes::StringShape.new(name: 'HyperParameterScalingType')
|
198
199
|
HyperParameterSpecification = Shapes::StructureShape.new(name: 'HyperParameterSpecification')
|
199
200
|
HyperParameterSpecifications = Shapes::ListShape.new(name: 'HyperParameterSpecifications')
|
200
201
|
HyperParameterTrainingJobDefinition = Shapes::StructureShape.new(name: 'HyperParameterTrainingJobDefinition')
|
@@ -646,6 +647,7 @@ module Aws::SageMaker
|
|
646
647
|
ContinuousParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
|
647
648
|
ContinuousParameterRange.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
|
648
649
|
ContinuousParameterRange.add_member(:max_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MaxValue"))
|
650
|
+
ContinuousParameterRange.add_member(:scaling_type, Shapes::ShapeRef.new(shape: HyperParameterScalingType, location_name: "ScalingType"))
|
649
651
|
ContinuousParameterRange.struct_class = Types::ContinuousParameterRange
|
650
652
|
|
651
653
|
ContinuousParameterRangeSpecification.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
|
@@ -1269,6 +1271,7 @@ module Aws::SageMaker
|
|
1269
1271
|
IntegerParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
|
1270
1272
|
IntegerParameterRange.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
|
1271
1273
|
IntegerParameterRange.add_member(:max_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MaxValue"))
|
1274
|
+
IntegerParameterRange.add_member(:scaling_type, Shapes::ShapeRef.new(shape: HyperParameterScalingType, location_name: "ScalingType"))
|
1272
1275
|
IntegerParameterRange.struct_class = Types::IntegerParameterRange
|
1273
1276
|
|
1274
1277
|
IntegerParameterRangeSpecification.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
|
@@ -923,6 +923,7 @@ module Aws::SageMaker
|
|
923
923
|
# name: "ParameterKey", # required
|
924
924
|
# min_value: "ParameterValue", # required
|
925
925
|
# max_value: "ParameterValue", # required
|
926
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
926
927
|
# }
|
927
928
|
#
|
928
929
|
# @!attribute [rw] name
|
@@ -940,12 +941,50 @@ module Aws::SageMaker
|
|
940
941
|
# tuning.
|
941
942
|
# @return [String]
|
942
943
|
#
|
944
|
+
# @!attribute [rw] scaling_type
|
945
|
+
# The scale that hyperparameter tuning uses to search the
|
946
|
+
# hyperparameter range. For information about choosing a
|
947
|
+
# hyperparameter scale, see [Hyperparameter Range Scaling][1]. One of
|
948
|
+
# the following values:
|
949
|
+
#
|
950
|
+
# Auto
|
951
|
+
#
|
952
|
+
# : Amazon SageMaker hyperparameter tuning chooses the best scale for
|
953
|
+
# the hyperparameter.
|
954
|
+
#
|
955
|
+
# Linear
|
956
|
+
#
|
957
|
+
# : Hyperparameter tuning searches the values in the hyperparameter
|
958
|
+
# range by using a linear scale.
|
959
|
+
#
|
960
|
+
# Logarithmic
|
961
|
+
#
|
962
|
+
# : Hyperparemeter tuning searches the values in the hyperparameter
|
963
|
+
# range by using a logarithmic scale.
|
964
|
+
#
|
965
|
+
# Logarithmic scaling works only for ranges that have only values
|
966
|
+
# greater than 0.
|
967
|
+
#
|
968
|
+
# ReverseLogarithmic
|
969
|
+
#
|
970
|
+
# : Hyperparemeter tuning searches the values in the hyperparameter
|
971
|
+
# range by using a reverse logarithmic scale.
|
972
|
+
#
|
973
|
+
# Reverse logarithmic scaling works only for ranges that are
|
974
|
+
# entirely within the range 0<=x<1.0.
|
975
|
+
#
|
976
|
+
#
|
977
|
+
#
|
978
|
+
# [1]: http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
|
979
|
+
# @return [String]
|
980
|
+
#
|
943
981
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContinuousParameterRange AWS API Documentation
|
944
982
|
#
|
945
983
|
class ContinuousParameterRange < Struct.new(
|
946
984
|
:name,
|
947
985
|
:min_value,
|
948
|
-
:max_value
|
986
|
+
:max_value,
|
987
|
+
:scaling_type)
|
949
988
|
include Aws::Structure
|
950
989
|
end
|
951
990
|
|
@@ -1481,7 +1520,7 @@ module Aws::SageMaker
|
|
1481
1520
|
# {
|
1482
1521
|
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
|
1483
1522
|
# hyper_parameter_tuning_job_config: { # required
|
1484
|
-
# strategy: "Bayesian", # required, accepts Bayesian
|
1523
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
1485
1524
|
# hyper_parameter_tuning_job_objective: { # required
|
1486
1525
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
1487
1526
|
# metric_name: "MetricName", # required
|
@@ -1496,6 +1535,7 @@ module Aws::SageMaker
|
|
1496
1535
|
# name: "ParameterKey", # required
|
1497
1536
|
# min_value: "ParameterValue", # required
|
1498
1537
|
# max_value: "ParameterValue", # required
|
1538
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
1499
1539
|
# },
|
1500
1540
|
# ],
|
1501
1541
|
# continuous_parameter_ranges: [
|
@@ -1503,6 +1543,7 @@ module Aws::SageMaker
|
|
1503
1543
|
# name: "ParameterKey", # required
|
1504
1544
|
# min_value: "ParameterValue", # required
|
1505
1545
|
# max_value: "ParameterValue", # required
|
1546
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
1506
1547
|
# },
|
1507
1548
|
# ],
|
1508
1549
|
# categorical_parameter_ranges: [
|
@@ -5584,7 +5625,7 @@ module Aws::SageMaker
|
|
5584
5625
|
# data as a hash:
|
5585
5626
|
#
|
5586
5627
|
# {
|
5587
|
-
# strategy: "Bayesian", # required, accepts Bayesian
|
5628
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
5588
5629
|
# hyper_parameter_tuning_job_objective: { # required
|
5589
5630
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
5590
5631
|
# metric_name: "MetricName", # required
|
@@ -5599,6 +5640,7 @@ module Aws::SageMaker
|
|
5599
5640
|
# name: "ParameterKey", # required
|
5600
5641
|
# min_value: "ParameterValue", # required
|
5601
5642
|
# max_value: "ParameterValue", # required
|
5643
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
5602
5644
|
# },
|
5603
5645
|
# ],
|
5604
5646
|
# continuous_parameter_ranges: [
|
@@ -5606,6 +5648,7 @@ module Aws::SageMaker
|
|
5606
5648
|
# name: "ParameterKey", # required
|
5607
5649
|
# min_value: "ParameterValue", # required
|
5608
5650
|
# max_value: "ParameterValue", # required
|
5651
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
5609
5652
|
# },
|
5610
5653
|
# ],
|
5611
5654
|
# categorical_parameter_ranges: [
|
@@ -5619,8 +5662,15 @@ module Aws::SageMaker
|
|
5619
5662
|
# }
|
5620
5663
|
#
|
5621
5664
|
# @!attribute [rw] strategy
|
5622
|
-
# Specifies
|
5623
|
-
#
|
5665
|
+
# Specifies how hyperparameter tuning chooses the combinations of
|
5666
|
+
# hyperparameter values to use for the training job it launches. To
|
5667
|
+
# use the Bayesian search stategy, set this to `Bayesian`. To randomly
|
5668
|
+
# search, set it to `Random`. For information about search strategies,
|
5669
|
+
# see [How Hyperparameter Tuning Works][1].
|
5670
|
+
#
|
5671
|
+
#
|
5672
|
+
#
|
5673
|
+
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
|
5624
5674
|
# @return [String]
|
5625
5675
|
#
|
5626
5676
|
# @!attribute [rw] hyper_parameter_tuning_job_objective
|
@@ -6021,6 +6071,7 @@ module Aws::SageMaker
|
|
6021
6071
|
# name: "ParameterKey", # required
|
6022
6072
|
# min_value: "ParameterValue", # required
|
6023
6073
|
# max_value: "ParameterValue", # required
|
6074
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
6024
6075
|
# }
|
6025
6076
|
#
|
6026
6077
|
# @!attribute [rw] name
|
@@ -6035,12 +6086,42 @@ module Aws::SageMaker
|
|
6035
6086
|
# The maximum value of the hyperparameter to search.
|
6036
6087
|
# @return [String]
|
6037
6088
|
#
|
6089
|
+
# @!attribute [rw] scaling_type
|
6090
|
+
# The scale that hyperparameter tuning uses to search the
|
6091
|
+
# hyperparameter range. For information about choosing a
|
6092
|
+
# hyperparameter scale, see [Hyperparameter Range Scaling][1]. One of
|
6093
|
+
# the following values:
|
6094
|
+
#
|
6095
|
+
# Auto
|
6096
|
+
#
|
6097
|
+
# : Amazon SageMaker hyperparameter tuning chooses the best scale for
|
6098
|
+
# the hyperparameter.
|
6099
|
+
#
|
6100
|
+
# Linear
|
6101
|
+
#
|
6102
|
+
# : Hyperparameter tuning searches the values in the hyperparameter
|
6103
|
+
# range by using a linear scale.
|
6104
|
+
#
|
6105
|
+
# Logarithmic
|
6106
|
+
#
|
6107
|
+
# : Hyperparemeter tuning searches the values in the hyperparameter
|
6108
|
+
# range by using a logarithmic scale.
|
6109
|
+
#
|
6110
|
+
# Logarithmic scaling works only for ranges that have only values
|
6111
|
+
# greater than 0.
|
6112
|
+
#
|
6113
|
+
#
|
6114
|
+
#
|
6115
|
+
# [1]: http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
|
6116
|
+
# @return [String]
|
6117
|
+
#
|
6038
6118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/IntegerParameterRange AWS API Documentation
|
6039
6119
|
#
|
6040
6120
|
class IntegerParameterRange < Struct.new(
|
6041
6121
|
:name,
|
6042
6122
|
:min_value,
|
6043
|
-
:max_value
|
6123
|
+
:max_value,
|
6124
|
+
:scaling_type)
|
6044
6125
|
include Aws::Structure
|
6045
6126
|
end
|
6046
6127
|
|
@@ -8834,6 +8915,7 @@ module Aws::SageMaker
|
|
8834
8915
|
# name: "ParameterKey", # required
|
8835
8916
|
# min_value: "ParameterValue", # required
|
8836
8917
|
# max_value: "ParameterValue", # required
|
8918
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
8837
8919
|
# },
|
8838
8920
|
# ],
|
8839
8921
|
# continuous_parameter_ranges: [
|
@@ -8841,6 +8923,7 @@ module Aws::SageMaker
|
|
8841
8923
|
# name: "ParameterKey", # required
|
8842
8924
|
# min_value: "ParameterValue", # required
|
8843
8925
|
# max_value: "ParameterValue", # required
|
8926
|
+
# scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
|
8844
8927
|
# },
|
8845
8928
|
# ],
|
8846
8929
|
# categorical_parameter_ranges: [
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.30.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-03-
|
11
|
+
date: 2019-03-14 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|
@@ -19,7 +19,7 @@ dependencies:
|
|
19
19
|
version: '3'
|
20
20
|
- - ">="
|
21
21
|
- !ruby/object:Gem::Version
|
22
|
-
version: 3.
|
22
|
+
version: 3.47.0
|
23
23
|
type: :runtime
|
24
24
|
prerelease: false
|
25
25
|
version_requirements: !ruby/object:Gem::Requirement
|
@@ -29,21 +29,21 @@ dependencies:
|
|
29
29
|
version: '3'
|
30
30
|
- - ">="
|
31
31
|
- !ruby/object:Gem::Version
|
32
|
-
version: 3.
|
32
|
+
version: 3.47.0
|
33
33
|
- !ruby/object:Gem::Dependency
|
34
34
|
name: aws-sigv4
|
35
35
|
requirement: !ruby/object:Gem::Requirement
|
36
36
|
requirements:
|
37
37
|
- - "~>"
|
38
38
|
- !ruby/object:Gem::Version
|
39
|
-
version: '1.
|
39
|
+
version: '1.1'
|
40
40
|
type: :runtime
|
41
41
|
prerelease: false
|
42
42
|
version_requirements: !ruby/object:Gem::Requirement
|
43
43
|
requirements:
|
44
44
|
- - "~>"
|
45
45
|
- !ruby/object:Gem::Version
|
46
|
-
version: '1.
|
46
|
+
version: '1.1'
|
47
47
|
description: Official AWS Ruby gem for Amazon SageMaker Service (SageMaker). This
|
48
48
|
gem is part of the AWS SDK for Ruby.
|
49
49
|
email:
|