aws-sdk-sagemaker 1.29.0 → 1.30.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 9c19988bef342087b3fd441de43ef217d6d10dc3
4
- data.tar.gz: 0ae5677809a6e0f3ead34d79f79bee75782cd400
3
+ metadata.gz: f17d10920228d1232d2a1d1857df1f558a10755a
4
+ data.tar.gz: 9a1fda00238b038a0ba10ebc12193436b259d3cf
5
5
  SHA512:
6
- metadata.gz: 508b6f0be8c6cc51e9ebdbffb8a3897f07d987b43a4a1f2c41f4e4b5dc8d713f3e0ad93a52cd6aab7a33657cc511ff2e3cf6eb6224073299d0874d001ad76522
7
- data.tar.gz: bbaabb1c885d037ba0f7ad6f019a76cdf1515362b77f1df5782e0ef42cd9e920de2c609fa69c651dbf900d845add99cc72f40880cf533a81c205fb7c2e05c42a
6
+ metadata.gz: 7910395b4be26ab28479cbf4c599cfc2b7b3d511103046a0a9768a2201f9bbe176f633b683fa733cea7ef21e5b726aa161099342e35d8ab01350a98e3369c222
7
+ data.tar.gz: b2c331943fa9ce819c501751f22e1e71af6e0445d0c81b9641f8628ee05b3577677acdb84fb84d52a831198c5bdc02782fc6707f59206375e08b71659a22b508
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.29.0'
46
+ GEM_VERSION = '1.30.0'
47
47
 
48
48
  end
@@ -913,7 +913,7 @@ module Aws::SageMaker
913
913
  # resp = client.create_hyper_parameter_tuning_job({
914
914
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
915
915
  # hyper_parameter_tuning_job_config: { # required
916
- # strategy: "Bayesian", # required, accepts Bayesian
916
+ # strategy: "Bayesian", # required, accepts Bayesian, Random
917
917
  # hyper_parameter_tuning_job_objective: { # required
918
918
  # type: "Maximize", # required, accepts Maximize, Minimize
919
919
  # metric_name: "MetricName", # required
@@ -928,6 +928,7 @@ module Aws::SageMaker
928
928
  # name: "ParameterKey", # required
929
929
  # min_value: "ParameterValue", # required
930
930
  # max_value: "ParameterValue", # required
931
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
931
932
  # },
932
933
  # ],
933
934
  # continuous_parameter_ranges: [
@@ -935,6 +936,7 @@ module Aws::SageMaker
935
936
  # name: "ParameterKey", # required
936
937
  # min_value: "ParameterValue", # required
937
938
  # max_value: "ParameterValue", # required
939
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
938
940
  # },
939
941
  # ],
940
942
  # categorical_parameter_ranges: [
@@ -2961,7 +2963,7 @@ module Aws::SageMaker
2961
2963
  #
2962
2964
  # resp.hyper_parameter_tuning_job_name #=> String
2963
2965
  # resp.hyper_parameter_tuning_job_arn #=> String
2964
- # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian"
2966
+ # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
2965
2967
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
2966
2968
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
2967
2969
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
@@ -2970,10 +2972,12 @@ module Aws::SageMaker
2970
2972
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
2971
2973
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
2972
2974
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].max_value #=> String
2975
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
2973
2976
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges #=> Array
2974
2977
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].name #=> String
2975
2978
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
2976
2979
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
2980
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].scaling_type #=> String, one of "Auto", "Linear", "Logarithmic", "ReverseLogarithmic"
2977
2981
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges #=> Array
2978
2982
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String
2979
2983
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array
@@ -4142,7 +4146,7 @@ module Aws::SageMaker
4142
4146
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
4143
4147
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
4144
4148
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
4145
- # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian"
4149
+ # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
4146
4150
  # resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
4147
4151
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
4148
4152
  # resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
@@ -5810,7 +5814,7 @@ module Aws::SageMaker
5810
5814
  params: params,
5811
5815
  config: config)
5812
5816
  context[:gem_name] = 'aws-sdk-sagemaker'
5813
- context[:gem_version] = '1.29.0'
5817
+ context[:gem_version] = '1.30.0'
5814
5818
  Seahorse::Client::Request.new(handlers, context)
5815
5819
  end
5816
5820
 
@@ -195,6 +195,7 @@ module Aws::SageMaker
195
195
  GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
196
196
  HumanTaskConfig = Shapes::StructureShape.new(name: 'HumanTaskConfig')
197
197
  HyperParameterAlgorithmSpecification = Shapes::StructureShape.new(name: 'HyperParameterAlgorithmSpecification')
198
+ HyperParameterScalingType = Shapes::StringShape.new(name: 'HyperParameterScalingType')
198
199
  HyperParameterSpecification = Shapes::StructureShape.new(name: 'HyperParameterSpecification')
199
200
  HyperParameterSpecifications = Shapes::ListShape.new(name: 'HyperParameterSpecifications')
200
201
  HyperParameterTrainingJobDefinition = Shapes::StructureShape.new(name: 'HyperParameterTrainingJobDefinition')
@@ -646,6 +647,7 @@ module Aws::SageMaker
646
647
  ContinuousParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
647
648
  ContinuousParameterRange.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
648
649
  ContinuousParameterRange.add_member(:max_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MaxValue"))
650
+ ContinuousParameterRange.add_member(:scaling_type, Shapes::ShapeRef.new(shape: HyperParameterScalingType, location_name: "ScalingType"))
649
651
  ContinuousParameterRange.struct_class = Types::ContinuousParameterRange
650
652
 
651
653
  ContinuousParameterRangeSpecification.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
@@ -1269,6 +1271,7 @@ module Aws::SageMaker
1269
1271
  IntegerParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
1270
1272
  IntegerParameterRange.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
1271
1273
  IntegerParameterRange.add_member(:max_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MaxValue"))
1274
+ IntegerParameterRange.add_member(:scaling_type, Shapes::ShapeRef.new(shape: HyperParameterScalingType, location_name: "ScalingType"))
1272
1275
  IntegerParameterRange.struct_class = Types::IntegerParameterRange
1273
1276
 
1274
1277
  IntegerParameterRangeSpecification.add_member(:min_value, Shapes::ShapeRef.new(shape: ParameterValue, required: true, location_name: "MinValue"))
@@ -923,6 +923,7 @@ module Aws::SageMaker
923
923
  # name: "ParameterKey", # required
924
924
  # min_value: "ParameterValue", # required
925
925
  # max_value: "ParameterValue", # required
926
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
926
927
  # }
927
928
  #
928
929
  # @!attribute [rw] name
@@ -940,12 +941,50 @@ module Aws::SageMaker
940
941
  # tuning.
941
942
  # @return [String]
942
943
  #
944
+ # @!attribute [rw] scaling_type
945
+ # The scale that hyperparameter tuning uses to search the
946
+ # hyperparameter range. For information about choosing a
947
+ # hyperparameter scale, see [Hyperparameter Range Scaling][1]. One of
948
+ # the following values:
949
+ #
950
+ # Auto
951
+ #
952
+ # : Amazon SageMaker hyperparameter tuning chooses the best scale for
953
+ # the hyperparameter.
954
+ #
955
+ # Linear
956
+ #
957
+ # : Hyperparameter tuning searches the values in the hyperparameter
958
+ # range by using a linear scale.
959
+ #
960
+ # Logarithmic
961
+ #
962
+ # : Hyperparemeter tuning searches the values in the hyperparameter
963
+ # range by using a logarithmic scale.
964
+ #
965
+ # Logarithmic scaling works only for ranges that have only values
966
+ # greater than 0.
967
+ #
968
+ # ReverseLogarithmic
969
+ #
970
+ # : Hyperparemeter tuning searches the values in the hyperparameter
971
+ # range by using a reverse logarithmic scale.
972
+ #
973
+ # Reverse logarithmic scaling works only for ranges that are
974
+ # entirely within the range 0<=x<1.0.
975
+ #
976
+ #
977
+ #
978
+ # [1]: http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
979
+ # @return [String]
980
+ #
943
981
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContinuousParameterRange AWS API Documentation
944
982
  #
945
983
  class ContinuousParameterRange < Struct.new(
946
984
  :name,
947
985
  :min_value,
948
- :max_value)
986
+ :max_value,
987
+ :scaling_type)
949
988
  include Aws::Structure
950
989
  end
951
990
 
@@ -1481,7 +1520,7 @@ module Aws::SageMaker
1481
1520
  # {
1482
1521
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
1483
1522
  # hyper_parameter_tuning_job_config: { # required
1484
- # strategy: "Bayesian", # required, accepts Bayesian
1523
+ # strategy: "Bayesian", # required, accepts Bayesian, Random
1485
1524
  # hyper_parameter_tuning_job_objective: { # required
1486
1525
  # type: "Maximize", # required, accepts Maximize, Minimize
1487
1526
  # metric_name: "MetricName", # required
@@ -1496,6 +1535,7 @@ module Aws::SageMaker
1496
1535
  # name: "ParameterKey", # required
1497
1536
  # min_value: "ParameterValue", # required
1498
1537
  # max_value: "ParameterValue", # required
1538
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
1499
1539
  # },
1500
1540
  # ],
1501
1541
  # continuous_parameter_ranges: [
@@ -1503,6 +1543,7 @@ module Aws::SageMaker
1503
1543
  # name: "ParameterKey", # required
1504
1544
  # min_value: "ParameterValue", # required
1505
1545
  # max_value: "ParameterValue", # required
1546
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
1506
1547
  # },
1507
1548
  # ],
1508
1549
  # categorical_parameter_ranges: [
@@ -5584,7 +5625,7 @@ module Aws::SageMaker
5584
5625
  # data as a hash:
5585
5626
  #
5586
5627
  # {
5587
- # strategy: "Bayesian", # required, accepts Bayesian
5628
+ # strategy: "Bayesian", # required, accepts Bayesian, Random
5588
5629
  # hyper_parameter_tuning_job_objective: { # required
5589
5630
  # type: "Maximize", # required, accepts Maximize, Minimize
5590
5631
  # metric_name: "MetricName", # required
@@ -5599,6 +5640,7 @@ module Aws::SageMaker
5599
5640
  # name: "ParameterKey", # required
5600
5641
  # min_value: "ParameterValue", # required
5601
5642
  # max_value: "ParameterValue", # required
5643
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
5602
5644
  # },
5603
5645
  # ],
5604
5646
  # continuous_parameter_ranges: [
@@ -5606,6 +5648,7 @@ module Aws::SageMaker
5606
5648
  # name: "ParameterKey", # required
5607
5649
  # min_value: "ParameterValue", # required
5608
5650
  # max_value: "ParameterValue", # required
5651
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
5609
5652
  # },
5610
5653
  # ],
5611
5654
  # categorical_parameter_ranges: [
@@ -5619,8 +5662,15 @@ module Aws::SageMaker
5619
5662
  # }
5620
5663
  #
5621
5664
  # @!attribute [rw] strategy
5622
- # Specifies the search strategy for hyperparameters. Currently, the
5623
- # only valid value is `Bayesian`.
5665
+ # Specifies how hyperparameter tuning chooses the combinations of
5666
+ # hyperparameter values to use for the training job it launches. To
5667
+ # use the Bayesian search stategy, set this to `Bayesian`. To randomly
5668
+ # search, set it to `Random`. For information about search strategies,
5669
+ # see [How Hyperparameter Tuning Works][1].
5670
+ #
5671
+ #
5672
+ #
5673
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
5624
5674
  # @return [String]
5625
5675
  #
5626
5676
  # @!attribute [rw] hyper_parameter_tuning_job_objective
@@ -6021,6 +6071,7 @@ module Aws::SageMaker
6021
6071
  # name: "ParameterKey", # required
6022
6072
  # min_value: "ParameterValue", # required
6023
6073
  # max_value: "ParameterValue", # required
6074
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
6024
6075
  # }
6025
6076
  #
6026
6077
  # @!attribute [rw] name
@@ -6035,12 +6086,42 @@ module Aws::SageMaker
6035
6086
  # The maximum value of the hyperparameter to search.
6036
6087
  # @return [String]
6037
6088
  #
6089
+ # @!attribute [rw] scaling_type
6090
+ # The scale that hyperparameter tuning uses to search the
6091
+ # hyperparameter range. For information about choosing a
6092
+ # hyperparameter scale, see [Hyperparameter Range Scaling][1]. One of
6093
+ # the following values:
6094
+ #
6095
+ # Auto
6096
+ #
6097
+ # : Amazon SageMaker hyperparameter tuning chooses the best scale for
6098
+ # the hyperparameter.
6099
+ #
6100
+ # Linear
6101
+ #
6102
+ # : Hyperparameter tuning searches the values in the hyperparameter
6103
+ # range by using a linear scale.
6104
+ #
6105
+ # Logarithmic
6106
+ #
6107
+ # : Hyperparemeter tuning searches the values in the hyperparameter
6108
+ # range by using a logarithmic scale.
6109
+ #
6110
+ # Logarithmic scaling works only for ranges that have only values
6111
+ # greater than 0.
6112
+ #
6113
+ #
6114
+ #
6115
+ # [1]: http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type
6116
+ # @return [String]
6117
+ #
6038
6118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/IntegerParameterRange AWS API Documentation
6039
6119
  #
6040
6120
  class IntegerParameterRange < Struct.new(
6041
6121
  :name,
6042
6122
  :min_value,
6043
- :max_value)
6123
+ :max_value,
6124
+ :scaling_type)
6044
6125
  include Aws::Structure
6045
6126
  end
6046
6127
 
@@ -8834,6 +8915,7 @@ module Aws::SageMaker
8834
8915
  # name: "ParameterKey", # required
8835
8916
  # min_value: "ParameterValue", # required
8836
8917
  # max_value: "ParameterValue", # required
8918
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
8837
8919
  # },
8838
8920
  # ],
8839
8921
  # continuous_parameter_ranges: [
@@ -8841,6 +8923,7 @@ module Aws::SageMaker
8841
8923
  # name: "ParameterKey", # required
8842
8924
  # min_value: "ParameterValue", # required
8843
8925
  # max_value: "ParameterValue", # required
8926
+ # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
8844
8927
  # },
8845
8928
  # ],
8846
8929
  # categorical_parameter_ranges: [
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.29.0
4
+ version: 1.30.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2019-03-08 00:00:00.000000000 Z
11
+ date: 2019-03-14 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.39.0
22
+ version: 3.47.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,21 +29,21 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.39.0
32
+ version: 3.47.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement
36
36
  requirements:
37
37
  - - "~>"
38
38
  - !ruby/object:Gem::Version
39
- version: '1.0'
39
+ version: '1.1'
40
40
  type: :runtime
41
41
  prerelease: false
42
42
  version_requirements: !ruby/object:Gem::Requirement
43
43
  requirements:
44
44
  - - "~>"
45
45
  - !ruby/object:Gem::Version
46
- version: '1.0'
46
+ version: '1.1'
47
47
  description: Official AWS Ruby gem for Amazon SageMaker Service (SageMaker). This
48
48
  gem is part of the AWS SDK for Ruby.
49
49
  email: