aws-sdk-sagemaker 1.254.0 → 1.256.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 9b3abcef61e3060d494a77a2dd243af0c59265d51ec0d9e196aa3baf1a7fb15a
4
- data.tar.gz: beecd2f32c0dbd29bdf12ba230715b88322eb5555d1322eaaa139f73992367a2
3
+ metadata.gz: e7c513c5ec62b6be1600325edc43c719e82113a74aa7821056a4959ec94b9428
4
+ data.tar.gz: 908362dc45eaf534e33b55070ef08d118d7fe9d14e1704656e9fa7afb50ffd75
5
5
  SHA512:
6
- metadata.gz: 0a95a25e5ae6221dfcc6ae2190101d8811023f8d78d8091152528c49fde8d1a8d16cdd681358367c7728882b74208d1970a5f7d2db5834ecc7247e6b410c690c
7
- data.tar.gz: 1fbd265a1977cbeb7ff113cbb1cdd94f99dd36ac99a367fc733ce8c93eb0194cc6463e15ca8ff39188947ac84f550ebd0606978892b7c3cc12faa812b0475208
6
+ metadata.gz: 114668ef484da86036f5dfe8766d6973a6edf2fcb2e5d9af1f2d582b9c154905604f4e5f96c3c8f4b50c51b8f93272e797f18857f7040e085f4a0e9b14028f9e
7
+ data.tar.gz: 6f45e0e93b305f1f8148e30a180a5d779a66794357d8535768cd0f017978f7d86f95091acd1e09c62ea97ec93997bc5619e920d5278f14395ecc7a707c3c9fbb
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.256.0 (2024-08-12)
5
+ ------------------
6
+
7
+ * Feature - Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas.
8
+
9
+ 1.255.0 (2024-08-01)
10
+ ------------------
11
+
12
+ * Feature - This release adds support for Amazon EMR Serverless applications in SageMaker Studio for running data processing jobs.
13
+
4
14
  1.254.0 (2024-07-18)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.254.0
1
+ 1.256.0
@@ -1309,8 +1309,27 @@ module Aws::SageMaker
1309
1309
  # Creates an Autopilot job also referred to as Autopilot experiment or
1310
1310
  # AutoML job.
1311
1311
  #
1312
- # <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][1] and
1313
- # [DescribeAutoMLJobV2][2], which offer backward compatibility.
1312
+ # An AutoML job in SageMaker is a fully automated process that allows
1313
+ # you to build machine learning models with minimal effort and machine
1314
+ # learning expertise. When initiating an AutoML job, you provide your
1315
+ # data and optionally specify parameters tailored to your use case.
1316
+ # SageMaker then automates the entire model development lifecycle,
1317
+ # including data preprocessing, model training, tuning, and evaluation.
1318
+ # AutoML jobs are designed to simplify and accelerate the model building
1319
+ # process by automating various tasks and exploring different
1320
+ # combinations of machine learning algorithms, data preprocessing
1321
+ # techniques, and hyperparameter values. The output of an AutoML job
1322
+ # comprises one or more trained models ready for deployment and
1323
+ # inference. Additionally, SageMaker AutoML jobs generate a candidate
1324
+ # model leaderboard, allowing you to select the best-performing model
1325
+ # for deployment.
1326
+ #
1327
+ # For more information about AutoML jobs, see
1328
+ # [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
1329
+ # in the SageMaker developer guide.
1330
+ #
1331
+ # <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][2] and
1332
+ # [DescribeAutoMLJobV2][3], which offer backward compatibility.
1314
1333
  #
1315
1334
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
1316
1335
  # those of its previous version `CreateAutoMLJob`, as well as
@@ -1319,20 +1338,21 @@ module Aws::SageMaker
1319
1338
  #
1320
1339
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1321
1340
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1322
- # CreateAutoMLJobV2][3].
1341
+ # CreateAutoMLJobV2][4].
1323
1342
  #
1324
1343
  # </note>
1325
1344
  #
1326
1345
  # You can find the best-performing model after you run an AutoML job by
1327
- # calling [DescribeAutoMLJobV2][2] (recommended) or
1328
- # [DescribeAutoMLJob][4].
1346
+ # calling [DescribeAutoMLJobV2][3] (recommended) or
1347
+ # [DescribeAutoMLJob][5].
1329
1348
  #
1330
1349
  #
1331
1350
  #
1332
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1333
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1334
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1335
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1351
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1352
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1353
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1354
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1355
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1336
1356
  #
1337
1357
  # @option params [required, String] :auto_ml_job_name
1338
1358
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1488,8 +1508,32 @@ module Aws::SageMaker
1488
1508
  # Creates an Autopilot job also referred to as Autopilot experiment or
1489
1509
  # AutoML job V2.
1490
1510
  #
1491
- # <note markdown="1"> [CreateAutoMLJobV2][1] and [DescribeAutoMLJobV2][2] are new versions
1492
- # of [CreateAutoMLJob][3] and [DescribeAutoMLJob][4] which offer
1511
+ # An AutoML job in SageMaker is a fully automated process that allows
1512
+ # you to build machine learning models with minimal effort and machine
1513
+ # learning expertise. When initiating an AutoML job, you provide your
1514
+ # data and optionally specify parameters tailored to your use case.
1515
+ # SageMaker then automates the entire model development lifecycle,
1516
+ # including data preprocessing, model training, tuning, and evaluation.
1517
+ # AutoML jobs are designed to simplify and accelerate the model building
1518
+ # process by automating various tasks and exploring different
1519
+ # combinations of machine learning algorithms, data preprocessing
1520
+ # techniques, and hyperparameter values. The output of an AutoML job
1521
+ # comprises one or more trained models ready for deployment and
1522
+ # inference. Additionally, SageMaker AutoML jobs generate a candidate
1523
+ # model leaderboard, allowing you to select the best-performing model
1524
+ # for deployment.
1525
+ #
1526
+ # For more information about AutoML jobs, see
1527
+ # [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
1528
+ # in the SageMaker developer guide.
1529
+ #
1530
+ # AutoML jobs V2 support various problem types such as regression,
1531
+ # binary, and multiclass classification with tabular data, text and
1532
+ # image classification, time-series forecasting, and fine-tuning of
1533
+ # large language models (LLMs) for text generation.
1534
+ #
1535
+ # <note markdown="1"> [CreateAutoMLJobV2][2] and [DescribeAutoMLJobV2][3] are new versions
1536
+ # of [CreateAutoMLJob][4] and [DescribeAutoMLJob][5] which offer
1493
1537
  # backward compatibility.
1494
1538
  #
1495
1539
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
@@ -1499,24 +1543,25 @@ module Aws::SageMaker
1499
1543
  #
1500
1544
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1501
1545
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1502
- # CreateAutoMLJobV2][5].
1546
+ # CreateAutoMLJobV2][6].
1503
1547
  #
1504
1548
  # </note>
1505
1549
  #
1506
1550
  # For the list of available problem types supported by
1507
- # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][6].
1551
+ # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][7].
1508
1552
  #
1509
1553
  # You can find the best-performing model after you run an AutoML job V2
1510
- # by calling [DescribeAutoMLJobV2][2].
1554
+ # by calling [DescribeAutoMLJobV2][3].
1511
1555
  #
1512
1556
  #
1513
1557
  #
1514
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1515
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1516
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1517
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1518
- # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1519
- # [6]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1558
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1559
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1560
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1561
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1562
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1563
+ # [6]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1564
+ # [7]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1520
1565
  #
1521
1566
  # @option params [required, String] :auto_ml_job_name
1522
1567
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1614,6 +1659,9 @@ module Aws::SageMaker
1614
1659
  #
1615
1660
  # </note>
1616
1661
  #
1662
+ # @option params [Types::AutoMLComputeConfig] :auto_ml_compute_config
1663
+ # Specifies the compute configuration for the AutoML job V2.
1664
+ #
1617
1665
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1618
1666
  #
1619
1667
  # * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1755,6 +1803,11 @@ module Aws::SageMaker
1755
1803
  # data_split_config: {
1756
1804
  # validation_fraction: 1.0,
1757
1805
  # },
1806
+ # auto_ml_compute_config: {
1807
+ # emr_serverless_compute_config: {
1808
+ # execution_role_arn: "RoleArn", # required
1809
+ # },
1810
+ # },
1758
1811
  # })
1759
1812
  #
1760
1813
  # @example Response structure
@@ -2604,6 +2657,10 @@ module Aws::SageMaker
2604
2657
  # generative_ai_settings: {
2605
2658
  # amazon_bedrock_role_arn: "RoleArn",
2606
2659
  # },
2660
+ # emr_serverless_settings: {
2661
+ # execution_role_arn: "RoleArn",
2662
+ # status: "ENABLED", # accepts ENABLED, DISABLED
2663
+ # },
2607
2664
  # },
2608
2665
  # code_editor_app_settings: {
2609
2666
  # default_resource_spec: {
@@ -2643,6 +2700,10 @@ module Aws::SageMaker
2643
2700
  # repository_url: "RepositoryUrl", # required
2644
2701
  # },
2645
2702
  # ],
2703
+ # emr_settings: {
2704
+ # assumable_role_arns: ["RoleArn"],
2705
+ # execution_role_arns: ["RoleArn"],
2706
+ # },
2646
2707
  # },
2647
2708
  # space_storage_settings: {
2648
2709
  # default_ebs_storage_settings: {
@@ -2665,7 +2726,7 @@ module Aws::SageMaker
2665
2726
  # },
2666
2727
  # ],
2667
2728
  # studio_web_portal_settings: {
2668
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
2729
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
2669
2730
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
2670
2731
  # },
2671
2732
  # },
@@ -2761,6 +2822,10 @@ module Aws::SageMaker
2761
2822
  # repository_url: "RepositoryUrl", # required
2762
2823
  # },
2763
2824
  # ],
2825
+ # emr_settings: {
2826
+ # assumable_role_arns: ["RoleArn"],
2827
+ # execution_role_arns: ["RoleArn"],
2828
+ # },
2764
2829
  # },
2765
2830
  # space_storage_settings: {
2766
2831
  # default_ebs_storage_settings: {
@@ -7935,7 +8000,7 @@ module Aws::SageMaker
7935
8000
  # output_name: "String", # required
7936
8001
  # s3_output: {
7937
8002
  # s3_uri: "S3Uri", # required
7938
- # local_path: "ProcessingLocalPath", # required
8003
+ # local_path: "ProcessingLocalPath",
7939
8004
  # s3_upload_mode: "Continuous", # required, accepts Continuous, EndOfJob
7940
8005
  # },
7941
8006
  # feature_store_output: {
@@ -9335,6 +9400,10 @@ module Aws::SageMaker
9335
9400
  # generative_ai_settings: {
9336
9401
  # amazon_bedrock_role_arn: "RoleArn",
9337
9402
  # },
9403
+ # emr_serverless_settings: {
9404
+ # execution_role_arn: "RoleArn",
9405
+ # status: "ENABLED", # accepts ENABLED, DISABLED
9406
+ # },
9338
9407
  # },
9339
9408
  # code_editor_app_settings: {
9340
9409
  # default_resource_spec: {
@@ -9374,6 +9443,10 @@ module Aws::SageMaker
9374
9443
  # repository_url: "RepositoryUrl", # required
9375
9444
  # },
9376
9445
  # ],
9446
+ # emr_settings: {
9447
+ # assumable_role_arns: ["RoleArn"],
9448
+ # execution_role_arns: ["RoleArn"],
9449
+ # },
9377
9450
  # },
9378
9451
  # space_storage_settings: {
9379
9452
  # default_ebs_storage_settings: {
@@ -9396,7 +9469,7 @@ module Aws::SageMaker
9396
9469
  # },
9397
9470
  # ],
9398
9471
  # studio_web_portal_settings: {
9399
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
9472
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
9400
9473
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
9401
9474
  # },
9402
9475
  # },
@@ -11765,6 +11838,7 @@ module Aws::SageMaker
11765
11838
  # * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
11766
11839
  # * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
11767
11840
  # * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
11841
+ # * {Types::DescribeAutoMLJobV2Response#auto_ml_compute_config #auto_ml_compute_config} => Types::AutoMLComputeConfig
11768
11842
  #
11769
11843
  # @example Request syntax with placeholder values
11770
11844
  #
@@ -11897,6 +11971,7 @@ module Aws::SageMaker
11897
11971
  # resp.security_config.vpc_config.security_group_ids[0] #=> String
11898
11972
  # resp.security_config.vpc_config.subnets #=> Array
11899
11973
  # resp.security_config.vpc_config.subnets[0] #=> String
11974
+ # resp.auto_ml_compute_config.emr_serverless_compute_config.execution_role_arn #=> String
11900
11975
  #
11901
11976
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
11902
11977
  #
@@ -12496,6 +12571,8 @@ module Aws::SageMaker
12496
12571
  # resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
12497
12572
  # resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
12498
12573
  # resp.default_user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
12574
+ # resp.default_user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
12575
+ # resp.default_user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
12499
12576
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
12500
12577
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
12501
12578
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
@@ -12520,6 +12597,10 @@ module Aws::SageMaker
12520
12597
  # resp.default_user_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
12521
12598
  # resp.default_user_settings.jupyter_lab_app_settings.code_repositories #=> Array
12522
12599
  # resp.default_user_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
12600
+ # resp.default_user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
12601
+ # resp.default_user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
12602
+ # resp.default_user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
12603
+ # resp.default_user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
12523
12604
  # resp.default_user_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
12524
12605
  # resp.default_user_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
12525
12606
  # resp.default_user_settings.default_landing_uri #=> String
@@ -12530,7 +12611,7 @@ module Aws::SageMaker
12530
12611
  # resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
12531
12612
  # resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
12532
12613
  # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
12533
- # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
12614
+ # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
12534
12615
  # resp.default_user_settings.studio_web_portal_settings.hidden_app_types #=> Array
12535
12616
  # resp.default_user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
12536
12617
  # resp.domain_settings.security_group_ids #=> Array
@@ -12593,6 +12674,10 @@ module Aws::SageMaker
12593
12674
  # resp.default_space_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
12594
12675
  # resp.default_space_settings.jupyter_lab_app_settings.code_repositories #=> Array
12595
12676
  # resp.default_space_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
12677
+ # resp.default_space_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
12678
+ # resp.default_space_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
12679
+ # resp.default_space_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
12680
+ # resp.default_space_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
12596
12681
  # resp.default_space_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
12597
12682
  # resp.default_space_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
12598
12683
  # resp.default_space_settings.custom_posix_user_config.uid #=> Integer
@@ -16573,6 +16658,8 @@ module Aws::SageMaker
16573
16658
  # resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
16574
16659
  # resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
16575
16660
  # resp.user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
16661
+ # resp.user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
16662
+ # resp.user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
16576
16663
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
16577
16664
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
16578
16665
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
@@ -16597,6 +16684,10 @@ module Aws::SageMaker
16597
16684
  # resp.user_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
16598
16685
  # resp.user_settings.jupyter_lab_app_settings.code_repositories #=> Array
16599
16686
  # resp.user_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
16687
+ # resp.user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
16688
+ # resp.user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
16689
+ # resp.user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
16690
+ # resp.user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
16600
16691
  # resp.user_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
16601
16692
  # resp.user_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
16602
16693
  # resp.user_settings.default_landing_uri #=> String
@@ -16607,7 +16698,7 @@ module Aws::SageMaker
16607
16698
  # resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
16608
16699
  # resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
16609
16700
  # resp.user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
16610
- # resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
16701
+ # resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
16611
16702
  # resp.user_settings.studio_web_portal_settings.hidden_app_types #=> Array
16612
16703
  # resp.user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
16613
16704
  #
@@ -24928,6 +25019,10 @@ module Aws::SageMaker
24928
25019
  # generative_ai_settings: {
24929
25020
  # amazon_bedrock_role_arn: "RoleArn",
24930
25021
  # },
25022
+ # emr_serverless_settings: {
25023
+ # execution_role_arn: "RoleArn",
25024
+ # status: "ENABLED", # accepts ENABLED, DISABLED
25025
+ # },
24931
25026
  # },
24932
25027
  # code_editor_app_settings: {
24933
25028
  # default_resource_spec: {
@@ -24967,6 +25062,10 @@ module Aws::SageMaker
24967
25062
  # repository_url: "RepositoryUrl", # required
24968
25063
  # },
24969
25064
  # ],
25065
+ # emr_settings: {
25066
+ # assumable_role_arns: ["RoleArn"],
25067
+ # execution_role_arns: ["RoleArn"],
25068
+ # },
24970
25069
  # },
24971
25070
  # space_storage_settings: {
24972
25071
  # default_ebs_storage_settings: {
@@ -24989,7 +25088,7 @@ module Aws::SageMaker
24989
25088
  # },
24990
25089
  # ],
24991
25090
  # studio_web_portal_settings: {
24992
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
25091
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
24993
25092
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
24994
25093
  # },
24995
25094
  # },
@@ -25074,6 +25173,10 @@ module Aws::SageMaker
25074
25173
  # repository_url: "RepositoryUrl", # required
25075
25174
  # },
25076
25175
  # ],
25176
+ # emr_settings: {
25177
+ # assumable_role_arns: ["RoleArn"],
25178
+ # execution_role_arns: ["RoleArn"],
25179
+ # },
25077
25180
  # },
25078
25181
  # space_storage_settings: {
25079
25182
  # default_ebs_storage_settings: {
@@ -27135,6 +27238,10 @@ module Aws::SageMaker
27135
27238
  # generative_ai_settings: {
27136
27239
  # amazon_bedrock_role_arn: "RoleArn",
27137
27240
  # },
27241
+ # emr_serverless_settings: {
27242
+ # execution_role_arn: "RoleArn",
27243
+ # status: "ENABLED", # accepts ENABLED, DISABLED
27244
+ # },
27138
27245
  # },
27139
27246
  # code_editor_app_settings: {
27140
27247
  # default_resource_spec: {
@@ -27174,6 +27281,10 @@ module Aws::SageMaker
27174
27281
  # repository_url: "RepositoryUrl", # required
27175
27282
  # },
27176
27283
  # ],
27284
+ # emr_settings: {
27285
+ # assumable_role_arns: ["RoleArn"],
27286
+ # execution_role_arns: ["RoleArn"],
27287
+ # },
27177
27288
  # },
27178
27289
  # space_storage_settings: {
27179
27290
  # default_ebs_storage_settings: {
@@ -27196,7 +27307,7 @@ module Aws::SageMaker
27196
27307
  # },
27197
27308
  # ],
27198
27309
  # studio_web_portal_settings: {
27199
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
27310
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
27200
27311
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
27201
27312
  # },
27202
27313
  # },
@@ -27478,7 +27589,7 @@ module Aws::SageMaker
27478
27589
  params: params,
27479
27590
  config: config)
27480
27591
  context[:gem_name] = 'aws-sdk-sagemaker'
27481
- context[:gem_version] = '1.254.0'
27592
+ context[:gem_version] = '1.256.0'
27482
27593
  Seahorse::Client::Request.new(handlers, context)
27483
27594
  end
27484
27595
 
@@ -91,6 +91,7 @@ module Aws::SageMaker
91
91
  AssociationEntityArn = Shapes::StringShape.new(name: 'AssociationEntityArn')
92
92
  AssociationSummaries = Shapes::ListShape.new(name: 'AssociationSummaries')
93
93
  AssociationSummary = Shapes::StructureShape.new(name: 'AssociationSummary')
94
+ AssumableRoleArns = Shapes::ListShape.new(name: 'AssumableRoleArns')
94
95
  AsyncInferenceClientConfig = Shapes::StructureShape.new(name: 'AsyncInferenceClientConfig')
95
96
  AsyncInferenceConfig = Shapes::StructureShape.new(name: 'AsyncInferenceConfig')
96
97
  AsyncInferenceNotificationConfig = Shapes::StructureShape.new(name: 'AsyncInferenceNotificationConfig')
@@ -121,6 +122,7 @@ module Aws::SageMaker
121
122
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
122
123
  AutoMLChannel = Shapes::StructureShape.new(name: 'AutoMLChannel')
123
124
  AutoMLChannelType = Shapes::StringShape.new(name: 'AutoMLChannelType')
125
+ AutoMLComputeConfig = Shapes::StructureShape.new(name: 'AutoMLComputeConfig')
124
126
  AutoMLContainerDefinition = Shapes::StructureShape.new(name: 'AutoMLContainerDefinition')
125
127
  AutoMLContainerDefinitions = Shapes::ListShape.new(name: 'AutoMLContainerDefinitions')
126
128
  AutoMLDataSource = Shapes::StructureShape.new(name: 'AutoMLDataSource')
@@ -808,6 +810,9 @@ module Aws::SageMaker
808
810
  EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
809
811
  Edges = Shapes::ListShape.new(name: 'Edges')
810
812
  EfsUid = Shapes::StringShape.new(name: 'EfsUid')
813
+ EmrServerlessComputeConfig = Shapes::StructureShape.new(name: 'EmrServerlessComputeConfig')
814
+ EmrServerlessSettings = Shapes::StructureShape.new(name: 'EmrServerlessSettings')
815
+ EmrSettings = Shapes::StructureShape.new(name: 'EmrSettings')
811
816
  EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
812
817
  EnableInfraCheck = Shapes::BooleanShape.new(name: 'EnableInfraCheck')
813
818
  EnableIotRoleAlias = Shapes::BooleanShape.new(name: 'EnableIotRoleAlias')
@@ -848,6 +853,7 @@ module Aws::SageMaker
848
853
  EnvironmentParameters = Shapes::ListShape.new(name: 'EnvironmentParameters')
849
854
  EnvironmentValue = Shapes::StringShape.new(name: 'EnvironmentValue')
850
855
  ExcludeFeaturesAttribute = Shapes::StringShape.new(name: 'ExcludeFeaturesAttribute')
856
+ ExecutionRoleArns = Shapes::ListShape.new(name: 'ExecutionRoleArns')
851
857
  ExecutionRoleIdentityConfig = Shapes::StringShape.new(name: 'ExecutionRoleIdentityConfig')
852
858
  ExecutionStatus = Shapes::StringShape.new(name: 'ExecutionStatus')
853
859
  ExitMessage = Shapes::StringShape.new(name: 'ExitMessage')
@@ -2544,6 +2550,8 @@ module Aws::SageMaker
2544
2550
  AssociationSummary.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
2545
2551
  AssociationSummary.struct_class = Types::AssociationSummary
2546
2552
 
2553
+ AssumableRoleArns.member = Shapes::ShapeRef.new(shape: RoleArn)
2554
+
2547
2555
  AsyncInferenceClientConfig.add_member(:max_concurrent_invocations_per_instance, Shapes::ShapeRef.new(shape: MaxConcurrentInvocationsPerInstance, location_name: "MaxConcurrentInvocationsPerInstance"))
2548
2556
  AsyncInferenceClientConfig.struct_class = Types::AsyncInferenceClientConfig
2549
2557
 
@@ -2619,6 +2627,9 @@ module Aws::SageMaker
2619
2627
  AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
2620
2628
  AutoMLChannel.struct_class = Types::AutoMLChannel
2621
2629
 
2630
+ AutoMLComputeConfig.add_member(:emr_serverless_compute_config, Shapes::ShapeRef.new(shape: EmrServerlessComputeConfig, location_name: "EmrServerlessComputeConfig"))
2631
+ AutoMLComputeConfig.struct_class = Types::AutoMLComputeConfig
2632
+
2622
2633
  AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
2623
2634
  AutoMLContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, required: true, location_name: "ModelDataUrl"))
2624
2635
  AutoMLContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
@@ -2822,6 +2833,7 @@ module Aws::SageMaker
2822
2833
  CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
2823
2834
  CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
2824
2835
  CanvasAppSettings.add_member(:generative_ai_settings, Shapes::ShapeRef.new(shape: GenerativeAiSettings, location_name: "GenerativeAiSettings"))
2836
+ CanvasAppSettings.add_member(:emr_serverless_settings, Shapes::ShapeRef.new(shape: EmrServerlessSettings, location_name: "EmrServerlessSettings"))
2825
2837
  CanvasAppSettings.struct_class = Types::CanvasAppSettings
2826
2838
 
2827
2839
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -3216,6 +3228,7 @@ module Aws::SageMaker
3216
3228
  CreateAutoMLJobV2Request.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
3217
3229
  CreateAutoMLJobV2Request.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
3218
3230
  CreateAutoMLJobV2Request.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
3231
+ CreateAutoMLJobV2Request.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
3219
3232
  CreateAutoMLJobV2Request.struct_class = Types::CreateAutoMLJobV2Request
3220
3233
 
3221
3234
  CreateAutoMLJobV2Response.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -4421,6 +4434,7 @@ module Aws::SageMaker
4421
4434
  DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
4422
4435
  DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
4423
4436
  DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
4437
+ DescribeAutoMLJobV2Response.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
4424
4438
  DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
4425
4439
 
4426
4440
  DescribeClusterNodeRequest.add_member(:cluster_name, Shapes::ShapeRef.new(shape: ClusterNameOrArn, required: true, location_name: "ClusterName"))
@@ -5646,6 +5660,17 @@ module Aws::SageMaker
5646
5660
 
5647
5661
  Edges.member = Shapes::ShapeRef.new(shape: Edge)
5648
5662
 
5663
+ EmrServerlessComputeConfig.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleARN"))
5664
+ EmrServerlessComputeConfig.struct_class = Types::EmrServerlessComputeConfig
5665
+
5666
+ EmrServerlessSettings.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "ExecutionRoleArn"))
5667
+ EmrServerlessSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
5668
+ EmrServerlessSettings.struct_class = Types::EmrServerlessSettings
5669
+
5670
+ EmrSettings.add_member(:assumable_role_arns, Shapes::ShapeRef.new(shape: AssumableRoleArns, location_name: "AssumableRoleArns"))
5671
+ EmrSettings.add_member(:execution_role_arns, Shapes::ShapeRef.new(shape: ExecutionRoleArns, location_name: "ExecutionRoleArns"))
5672
+ EmrSettings.struct_class = Types::EmrSettings
5673
+
5649
5674
  EnableSagemakerServicecatalogPortfolioInput.struct_class = Types::EnableSagemakerServicecatalogPortfolioInput
5650
5675
 
5651
5676
  EnableSagemakerServicecatalogPortfolioOutput.struct_class = Types::EnableSagemakerServicecatalogPortfolioOutput
@@ -5738,6 +5763,8 @@ module Aws::SageMaker
5738
5763
 
5739
5764
  EnvironmentParameters.member = Shapes::ShapeRef.new(shape: EnvironmentParameter)
5740
5765
 
5766
+ ExecutionRoleArns.member = Shapes::ShapeRef.new(shape: RoleArn)
5767
+
5741
5768
  Experiment.add_member(:experiment_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "ExperimentName"))
5742
5769
  Experiment.add_member(:experiment_arn, Shapes::ShapeRef.new(shape: ExperimentArn, location_name: "ExperimentArn"))
5743
5770
  Experiment.add_member(:display_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "DisplayName"))
@@ -6441,6 +6468,7 @@ module Aws::SageMaker
6441
6468
  JupyterLabAppSettings.add_member(:custom_images, Shapes::ShapeRef.new(shape: CustomImages, location_name: "CustomImages"))
6442
6469
  JupyterLabAppSettings.add_member(:lifecycle_config_arns, Shapes::ShapeRef.new(shape: LifecycleConfigArns, location_name: "LifecycleConfigArns"))
6443
6470
  JupyterLabAppSettings.add_member(:code_repositories, Shapes::ShapeRef.new(shape: CodeRepositories, location_name: "CodeRepositories"))
6471
+ JupyterLabAppSettings.add_member(:emr_settings, Shapes::ShapeRef.new(shape: EmrSettings, location_name: "EmrSettings"))
6444
6472
  JupyterLabAppSettings.struct_class = Types::JupyterLabAppSettings
6445
6473
 
6446
6474
  JupyterServerAppSettings.add_member(:default_resource_spec, Shapes::ShapeRef.new(shape: ResourceSpec, location_name: "DefaultResourceSpec"))
@@ -8665,7 +8693,7 @@ module Aws::SageMaker
8665
8693
  ProcessingS3Input.struct_class = Types::ProcessingS3Input
8666
8694
 
8667
8695
  ProcessingS3Output.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
8668
- ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, required: true, location_name: "LocalPath"))
8696
+ ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, location_name: "LocalPath"))
8669
8697
  ProcessingS3Output.add_member(:s3_upload_mode, Shapes::ShapeRef.new(shape: ProcessingS3UploadMode, required: true, location_name: "S3UploadMode"))
8670
8698
  ProcessingS3Output.struct_class = Types::ProcessingS3Output
8671
8699
 
@@ -2082,6 +2082,46 @@ module Aws::SageMaker
2082
2082
  include Aws::Structure
2083
2083
  end
2084
2084
 
2085
+ # <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
2086
+ # cannot be used in other contexts at the moment.
2087
+ #
2088
+ # </note>
2089
+ #
2090
+ # Specifies the compute configuration for an AutoML job V2.
2091
+ #
2092
+ # @!attribute [rw] emr_serverless_compute_config
2093
+ # The configuration for using [ EMR Serverless][1] to run the AutoML
2094
+ # job V2.
2095
+ #
2096
+ # To allow your AutoML job V2 to automatically initiate a remote job
2097
+ # on EMR Serverless when additional compute resources are needed to
2098
+ # process large datasets, you need to provide an
2099
+ # `EmrServerlessComputeConfig` object, which includes an
2100
+ # `ExecutionRoleARN` attribute, to the `AutoMLComputeConfig` of the
2101
+ # AutoML job V2 input request.
2102
+ #
2103
+ # By seamlessly transitioning to EMR Serverless when required, the
2104
+ # AutoML job can handle datasets that would otherwise exceed the
2105
+ # initially provisioned resources, without any manual intervention
2106
+ # from you.
2107
+ #
2108
+ # EMR Serverless is available for the tabular and time series problem
2109
+ # types. We recommend setting up this option for tabular datasets
2110
+ # larger than 5 GB and time series datasets larger than 30 GB.
2111
+ #
2112
+ #
2113
+ #
2114
+ # [1]: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
2115
+ # @return [Types::EmrServerlessComputeConfig]
2116
+ #
2117
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLComputeConfig AWS API Documentation
2118
+ #
2119
+ class AutoMLComputeConfig < Struct.new(
2120
+ :emr_serverless_compute_config)
2121
+ SENSITIVE = []
2122
+ include Aws::Structure
2123
+ end
2124
+
2085
2125
  # A list of container definitions that describe the different containers
2086
2126
  # that make up an AutoML candidate. For more information, see [
2087
2127
  # ContainerDefinition][1].
@@ -2520,7 +2560,7 @@ module Aws::SageMaker
2520
2560
  # @return [String]
2521
2561
  #
2522
2562
  # @!attribute [rw] s3_output_path
2523
- # The Amazon S3 output path. Must be 128 characters or less.
2563
+ # The Amazon S3 output path. Must be 512 characters or less.
2524
2564
  # @return [String]
2525
2565
  #
2526
2566
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLOutputDataConfig AWS API Documentation
@@ -3331,6 +3371,11 @@ module Aws::SageMaker
3331
3371
  # The generative AI settings for the SageMaker Canvas application.
3332
3372
  # @return [Types::GenerativeAiSettings]
3333
3373
  #
3374
+ # @!attribute [rw] emr_serverless_settings
3375
+ # The settings for running Amazon EMR Serverless data processing jobs
3376
+ # in SageMaker Canvas.
3377
+ # @return [Types::EmrServerlessSettings]
3378
+ #
3334
3379
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
3335
3380
  #
3336
3381
  class CanvasAppSettings < Struct.new(
@@ -3340,7 +3385,8 @@ module Aws::SageMaker
3340
3385
  :identity_provider_o_auth_settings,
3341
3386
  :direct_deploy_settings,
3342
3387
  :kendra_settings,
3343
- :generative_ai_settings)
3388
+ :generative_ai_settings,
3389
+ :emr_serverless_settings)
3344
3390
  SENSITIVE = []
3345
3391
  include Aws::Structure
3346
3392
  end
@@ -5603,6 +5649,10 @@ module Aws::SageMaker
5603
5649
  # </note>
5604
5650
  # @return [Types::AutoMLDataSplitConfig]
5605
5651
  #
5652
+ # @!attribute [rw] auto_ml_compute_config
5653
+ # Specifies the compute configuration for the AutoML job V2.
5654
+ # @return [Types::AutoMLComputeConfig]
5655
+ #
5606
5656
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
5607
5657
  #
5608
5658
  class CreateAutoMLJobV2Request < Struct.new(
@@ -5615,7 +5665,8 @@ module Aws::SageMaker
5615
5665
  :security_config,
5616
5666
  :auto_ml_job_objective,
5617
5667
  :model_deploy_config,
5618
- :data_split_config)
5668
+ :data_split_config,
5669
+ :auto_ml_compute_config)
5619
5670
  SENSITIVE = []
5620
5671
  include Aws::Structure
5621
5672
  end
@@ -12620,6 +12671,10 @@ module Aws::SageMaker
12620
12671
  # VPC settings.
12621
12672
  # @return [Types::AutoMLSecurityConfig]
12622
12673
  #
12674
+ # @!attribute [rw] auto_ml_compute_config
12675
+ # The compute configuration used for the AutoML job V2.
12676
+ # @return [Types::AutoMLComputeConfig]
12677
+ #
12623
12678
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
12624
12679
  #
12625
12680
  class DescribeAutoMLJobV2Response < Struct.new(
@@ -12644,7 +12699,8 @@ module Aws::SageMaker
12644
12699
  :model_deploy_config,
12645
12700
  :model_deploy_result,
12646
12701
  :data_split_config,
12647
- :security_config)
12702
+ :security_config,
12703
+ :auto_ml_compute_config)
12648
12704
  SENSITIVE = []
12649
12705
  include Aws::Structure
12650
12706
  end
@@ -19302,6 +19358,99 @@ module Aws::SageMaker
19302
19358
  include Aws::Structure
19303
19359
  end
19304
19360
 
19361
+ # <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
19362
+ # cannot be used in other contexts at the moment.
19363
+ #
19364
+ # </note>
19365
+ #
19366
+ # Specifies the compute configuration for the EMR Serverless job.
19367
+ #
19368
+ # @!attribute [rw] execution_role_arn
19369
+ # The ARN of the IAM role granting the AutoML job V2 the necessary
19370
+ # permissions access policies to list, connect to, or manage EMR
19371
+ # Serverless jobs. For detailed information about the required
19372
+ # permissions of this role, see "How to configure AutoML to initiate
19373
+ # a remote job on EMR Serverless for large datasets" in [Create a
19374
+ # regression or classification job for tabular data using the AutoML
19375
+ # API][1] or [Create an AutoML job for time-series forecasting using
19376
+ # the API][2].
19377
+ #
19378
+ #
19379
+ #
19380
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
19381
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params
19382
+ # @return [String]
19383
+ #
19384
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessComputeConfig AWS API Documentation
19385
+ #
19386
+ class EmrServerlessComputeConfig < Struct.new(
19387
+ :execution_role_arn)
19388
+ SENSITIVE = []
19389
+ include Aws::Structure
19390
+ end
19391
+
19392
+ # The settings for running Amazon EMR Serverless jobs in SageMaker
19393
+ # Canvas.
19394
+ #
19395
+ # @!attribute [rw] execution_role_arn
19396
+ # The Amazon Resource Name (ARN) of the Amazon Web Services IAM role
19397
+ # that is assumed for running Amazon EMR Serverless jobs in SageMaker
19398
+ # Canvas. This role should have the necessary permissions to read and
19399
+ # write data attached and a trust relationship with EMR Serverless.
19400
+ # @return [String]
19401
+ #
19402
+ # @!attribute [rw] status
19403
+ # Describes whether Amazon EMR Serverless job capabilities are enabled
19404
+ # or disabled in the SageMaker Canvas application.
19405
+ # @return [String]
19406
+ #
19407
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessSettings AWS API Documentation
19408
+ #
19409
+ class EmrServerlessSettings < Struct.new(
19410
+ :execution_role_arn,
19411
+ :status)
19412
+ SENSITIVE = []
19413
+ include Aws::Structure
19414
+ end
19415
+
19416
+ # The configuration parameters that specify the IAM roles assumed by the
19417
+ # execution role of SageMaker (assumable roles) and the cluster
19418
+ # instances or job execution environments (execution roles or runtime
19419
+ # roles) to manage and access resources required for running Amazon EMR
19420
+ # clusters or Amazon EMR Serverless applications.
19421
+ #
19422
+ # @!attribute [rw] assumable_role_arns
19423
+ # An array of Amazon Resource Names (ARNs) of the IAM roles that the
19424
+ # execution role of SageMaker can assume for performing operations or
19425
+ # tasks related to Amazon EMR clusters or Amazon EMR Serverless
19426
+ # applications. These roles define the permissions and access policies
19427
+ # required when performing Amazon EMR-related operations, such as
19428
+ # listing, connecting to, or terminating Amazon EMR clusters or Amazon
19429
+ # EMR Serverless applications. They are typically used in
19430
+ # cross-account access scenarios, where the Amazon EMR resources
19431
+ # (clusters or serverless applications) are located in a different
19432
+ # Amazon Web Services account than the SageMaker domain.
19433
+ # @return [Array<String>]
19434
+ #
19435
+ # @!attribute [rw] execution_role_arns
19436
+ # An array of Amazon Resource Names (ARNs) of the IAM roles used by
19437
+ # the Amazon EMR cluster instances or job execution environments to
19438
+ # access other Amazon Web Services services and resources needed
19439
+ # during the runtime of your Amazon EMR or Amazon EMR Serverless
19440
+ # workloads, such as Amazon S3 for data access, Amazon CloudWatch for
19441
+ # logging, or other Amazon Web Services services based on the
19442
+ # particular workload requirements.
19443
+ # @return [Array<String>]
19444
+ #
19445
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrSettings AWS API Documentation
19446
+ #
19447
+ class EmrSettings < Struct.new(
19448
+ :assumable_role_arns,
19449
+ :execution_role_arns)
19450
+ SENSITIVE = []
19451
+ include Aws::Structure
19452
+ end
19453
+
19305
19454
  # @api private
19306
19455
  #
19307
19456
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EnableSagemakerServicecatalogPortfolioInput AWS API Documentation
@@ -24841,13 +24990,22 @@ module Aws::SageMaker
24841
24990
  # users for cloning in the JupyterLab application.
24842
24991
  # @return [Array<Types::CodeRepository>]
24843
24992
  #
24993
+ # @!attribute [rw] emr_settings
24994
+ # The configuration parameters that specify the IAM roles assumed by
24995
+ # the execution role of SageMaker (assumable roles) and the cluster
24996
+ # instances or job execution environments (execution roles or runtime
24997
+ # roles) to manage and access resources required for running Amazon
24998
+ # EMR clusters or Amazon EMR Serverless applications.
24999
+ # @return [Types::EmrSettings]
25000
+ #
24844
25001
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterLabAppSettings AWS API Documentation
24845
25002
  #
24846
25003
  class JupyterLabAppSettings < Struct.new(
24847
25004
  :default_resource_spec,
24848
25005
  :custom_images,
24849
25006
  :lifecycle_config_arns,
24850
- :code_repositories)
25007
+ :code_repositories,
25008
+ :emr_settings)
24851
25009
  SENSITIVE = []
24852
25010
  include Aws::Structure
24853
25011
  end
@@ -36966,6 +37124,18 @@ module Aws::SageMaker
36966
37124
  # environment is compatible with specific software requirements, such
36967
37125
  # as CUDA driver versions, Linux kernel versions, or Amazon Web
36968
37126
  # Services Neuron driver versions.
37127
+ #
37128
+ # The AMI version names, and their configurations, are the following:
37129
+ #
37130
+ # al2-ami-sagemaker-inference-gpu-2
37131
+ # : * Accelerator: GPU
37132
+ #
37133
+ # * NVIDIA driver version: 535.54.03
37134
+ #
37135
+ # * CUDA driver version: 12.2
37136
+ #
37137
+ # * Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*,
37138
+ # ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
36969
37139
  # @return [String]
36970
37140
  #
36971
37141
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.254.0'
56
+ GEM_VERSION = '1.256.0'
57
57
 
58
58
  end
data/sig/client.rbs CHANGED
@@ -678,6 +678,11 @@ module Aws
678
678
  },
679
679
  ?data_split_config: {
680
680
  validation_fraction: ::Float?
681
+ },
682
+ ?auto_ml_compute_config: {
683
+ emr_serverless_compute_config: {
684
+ execution_role_arn: ::String
685
+ }?
681
686
  }
682
687
  ) -> _CreateAutoMLJobV2ResponseSuccess
683
688
  | (Hash[Symbol, untyped] params, ?Hash[Symbol, untyped] options) -> _CreateAutoMLJobV2ResponseSuccess
@@ -1041,6 +1046,10 @@ module Aws
1041
1046
  }?,
1042
1047
  generative_ai_settings: {
1043
1048
  amazon_bedrock_role_arn: ::String?
1049
+ }?,
1050
+ emr_serverless_settings: {
1051
+ execution_role_arn: ::String?,
1052
+ status: ("ENABLED" | "DISABLED")?
1044
1053
  }?
1045
1054
  }?,
1046
1055
  code_editor_app_settings: {
@@ -1080,7 +1089,11 @@ module Aws
1080
1089
  {
1081
1090
  repository_url: ::String
1082
1091
  },
1083
- ]?
1092
+ ]?,
1093
+ emr_settings: {
1094
+ assumable_role_arns: Array[::String]?,
1095
+ execution_role_arns: Array[::String]?
1096
+ }?
1084
1097
  }?,
1085
1098
  space_storage_settings: {
1086
1099
  default_ebs_storage_settings: {
@@ -1103,7 +1116,7 @@ module Aws
1103
1116
  },
1104
1117
  ]?,
1105
1118
  studio_web_portal_settings: {
1106
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
1119
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
1107
1120
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
1108
1121
  }?
1109
1122
  },
@@ -1198,7 +1211,11 @@ module Aws
1198
1211
  {
1199
1212
  repository_url: ::String
1200
1213
  },
1201
- ]?
1214
+ ]?,
1215
+ emr_settings: {
1216
+ assumable_role_arns: Array[::String]?,
1217
+ execution_role_arns: Array[::String]?
1218
+ }?
1202
1219
  }?,
1203
1220
  space_storage_settings: {
1204
1221
  default_ebs_storage_settings: {
@@ -3475,7 +3492,7 @@ module Aws
3475
3492
  output_name: ::String,
3476
3493
  s3_output: {
3477
3494
  s3_uri: ::String,
3478
- local_path: ::String,
3495
+ local_path: ::String?,
3479
3496
  s3_upload_mode: ("Continuous" | "EndOfJob")
3480
3497
  }?,
3481
3498
  feature_store_output: {
@@ -4072,6 +4089,10 @@ module Aws
4072
4089
  }?,
4073
4090
  generative_ai_settings: {
4074
4091
  amazon_bedrock_role_arn: ::String?
4092
+ }?,
4093
+ emr_serverless_settings: {
4094
+ execution_role_arn: ::String?,
4095
+ status: ("ENABLED" | "DISABLED")?
4075
4096
  }?
4076
4097
  }?,
4077
4098
  code_editor_app_settings: {
@@ -4111,7 +4132,11 @@ module Aws
4111
4132
  {
4112
4133
  repository_url: ::String
4113
4134
  },
4114
- ]?
4135
+ ]?,
4136
+ emr_settings: {
4137
+ assumable_role_arns: Array[::String]?,
4138
+ execution_role_arns: Array[::String]?
4139
+ }?
4115
4140
  }?,
4116
4141
  space_storage_settings: {
4117
4142
  default_ebs_storage_settings: {
@@ -4134,7 +4159,7 @@ module Aws
4134
4159
  },
4135
4160
  ]?,
4136
4161
  studio_web_portal_settings: {
4137
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
4162
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
4138
4163
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
4139
4164
  }?
4140
4165
  }
@@ -4794,6 +4819,7 @@ module Aws
4794
4819
  def model_deploy_result: () -> Types::ModelDeployResult
4795
4820
  def data_split_config: () -> Types::AutoMLDataSplitConfig
4796
4821
  def security_config: () -> Types::AutoMLSecurityConfig
4822
+ def auto_ml_compute_config: () -> Types::AutoMLComputeConfig
4797
4823
  end
4798
4824
  # https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SageMaker/Client.html#describe_auto_ml_job_v2-instance_method
4799
4825
  def describe_auto_ml_job_v2: (
@@ -8170,6 +8196,10 @@ module Aws
8170
8196
  }?,
8171
8197
  generative_ai_settings: {
8172
8198
  amazon_bedrock_role_arn: ::String?
8199
+ }?,
8200
+ emr_serverless_settings: {
8201
+ execution_role_arn: ::String?,
8202
+ status: ("ENABLED" | "DISABLED")?
8173
8203
  }?
8174
8204
  }?,
8175
8205
  code_editor_app_settings: {
@@ -8209,7 +8239,11 @@ module Aws
8209
8239
  {
8210
8240
  repository_url: ::String
8211
8241
  },
8212
- ]?
8242
+ ]?,
8243
+ emr_settings: {
8244
+ assumable_role_arns: Array[::String]?,
8245
+ execution_role_arns: Array[::String]?
8246
+ }?
8213
8247
  }?,
8214
8248
  space_storage_settings: {
8215
8249
  default_ebs_storage_settings: {
@@ -8232,7 +8266,7 @@ module Aws
8232
8266
  },
8233
8267
  ]?,
8234
8268
  studio_web_portal_settings: {
8235
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
8269
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
8236
8270
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
8237
8271
  }?
8238
8272
  },
@@ -8316,7 +8350,11 @@ module Aws
8316
8350
  {
8317
8351
  repository_url: ::String
8318
8352
  },
8319
- ]?
8353
+ ]?,
8354
+ emr_settings: {
8355
+ assumable_role_arns: Array[::String]?,
8356
+ execution_role_arns: Array[::String]?
8357
+ }?
8320
8358
  }?,
8321
8359
  space_storage_settings: {
8322
8360
  default_ebs_storage_settings: {
@@ -9237,6 +9275,10 @@ module Aws
9237
9275
  }?,
9238
9276
  generative_ai_settings: {
9239
9277
  amazon_bedrock_role_arn: ::String?
9278
+ }?,
9279
+ emr_serverless_settings: {
9280
+ execution_role_arn: ::String?,
9281
+ status: ("ENABLED" | "DISABLED")?
9240
9282
  }?
9241
9283
  }?,
9242
9284
  code_editor_app_settings: {
@@ -9276,7 +9318,11 @@ module Aws
9276
9318
  {
9277
9319
  repository_url: ::String
9278
9320
  },
9279
- ]?
9321
+ ]?,
9322
+ emr_settings: {
9323
+ assumable_role_arns: Array[::String]?,
9324
+ execution_role_arns: Array[::String]?
9325
+ }?
9280
9326
  }?,
9281
9327
  space_storage_settings: {
9282
9328
  default_ebs_storage_settings: {
@@ -9299,7 +9345,7 @@ module Aws
9299
9345
  },
9300
9346
  ]?,
9301
9347
  studio_web_portal_settings: {
9302
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
9348
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
9303
9349
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
9304
9350
  }?
9305
9351
  }
data/sig/types.rbs CHANGED
@@ -302,6 +302,11 @@ module Aws::SageMaker
302
302
  SENSITIVE: []
303
303
  end
304
304
 
305
+ class AutoMLComputeConfig
306
+ attr_accessor emr_serverless_compute_config: Types::EmrServerlessComputeConfig
307
+ SENSITIVE: []
308
+ end
309
+
305
310
  class AutoMLContainerDefinition
306
311
  attr_accessor image: ::String
307
312
  attr_accessor model_data_url: ::String
@@ -565,6 +570,7 @@ module Aws::SageMaker
565
570
  attr_accessor direct_deploy_settings: Types::DirectDeploySettings
566
571
  attr_accessor kendra_settings: Types::KendraSettings
567
572
  attr_accessor generative_ai_settings: Types::GenerativeAiSettings
573
+ attr_accessor emr_serverless_settings: Types::EmrServerlessSettings
568
574
  SENSITIVE: []
569
575
  end
570
576
 
@@ -1022,6 +1028,7 @@ module Aws::SageMaker
1022
1028
  attr_accessor auto_ml_job_objective: Types::AutoMLJobObjective
1023
1029
  attr_accessor model_deploy_config: Types::ModelDeployConfig
1024
1030
  attr_accessor data_split_config: Types::AutoMLDataSplitConfig
1031
+ attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
1025
1032
  SENSITIVE: []
1026
1033
  end
1027
1034
 
@@ -2627,6 +2634,7 @@ module Aws::SageMaker
2627
2634
  attr_accessor model_deploy_result: Types::ModelDeployResult
2628
2635
  attr_accessor data_split_config: Types::AutoMLDataSplitConfig
2629
2636
  attr_accessor security_config: Types::AutoMLSecurityConfig
2637
+ attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
2630
2638
  SENSITIVE: []
2631
2639
  end
2632
2640
 
@@ -4119,6 +4127,23 @@ module Aws::SageMaker
4119
4127
  SENSITIVE: []
4120
4128
  end
4121
4129
 
4130
+ class EmrServerlessComputeConfig
4131
+ attr_accessor execution_role_arn: ::String
4132
+ SENSITIVE: []
4133
+ end
4134
+
4135
+ class EmrServerlessSettings
4136
+ attr_accessor execution_role_arn: ::String
4137
+ attr_accessor status: ("ENABLED" | "DISABLED")
4138
+ SENSITIVE: []
4139
+ end
4140
+
4141
+ class EmrSettings
4142
+ attr_accessor assumable_role_arns: ::Array[::String]
4143
+ attr_accessor execution_role_arns: ::Array[::String]
4144
+ SENSITIVE: []
4145
+ end
4146
+
4122
4147
  class EnableSagemakerServicecatalogPortfolioInput < Aws::EmptyStructure
4123
4148
  end
4124
4149
 
@@ -5012,6 +5037,7 @@ module Aws::SageMaker
5012
5037
  attr_accessor custom_images: ::Array[Types::CustomImage]
5013
5038
  attr_accessor lifecycle_config_arns: ::Array[::String]
5014
5039
  attr_accessor code_repositories: ::Array[Types::CodeRepository]
5040
+ attr_accessor emr_settings: Types::EmrSettings
5015
5041
  SENSITIVE: []
5016
5042
  end
5017
5043
 
@@ -8707,7 +8733,7 @@ module Aws::SageMaker
8707
8733
  end
8708
8734
 
8709
8735
  class StudioWebPortalSettings
8710
- attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]
8736
+ attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]
8711
8737
  attr_accessor hidden_app_types: ::Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]
8712
8738
  SENSITIVE: []
8713
8739
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.254.0
4
+ version: 1.256.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-07-18 00:00:00.000000000 Z
11
+ date: 2024-08-12 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core