aws-sdk-sagemaker 1.254.0 → 1.256.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +139 -28
- data/lib/aws-sdk-sagemaker/client_api.rb +29 -1
- data/lib/aws-sdk-sagemaker/types.rb +175 -5
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/sig/client.rbs +57 -11
- data/sig/types.rbs +27 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e7c513c5ec62b6be1600325edc43c719e82113a74aa7821056a4959ec94b9428
|
4
|
+
data.tar.gz: 908362dc45eaf534e33b55070ef08d118d7fe9d14e1704656e9fa7afb50ffd75
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 114668ef484da86036f5dfe8766d6973a6edf2fcb2e5d9af1f2d582b9c154905604f4e5f96c3c8f4b50c51b8f93272e797f18857f7040e085f4a0e9b14028f9e
|
7
|
+
data.tar.gz: 6f45e0e93b305f1f8148e30a180a5d779a66794357d8535768cd0f017978f7d86f95091acd1e09c62ea97ec93997bc5619e920d5278f14395ecc7a707c3c9fbb
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.256.0 (2024-08-12)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas.
|
8
|
+
|
9
|
+
1.255.0 (2024-08-01)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - This release adds support for Amazon EMR Serverless applications in SageMaker Studio for running data processing jobs.
|
13
|
+
|
4
14
|
1.254.0 (2024-07-18)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.256.0
|
@@ -1309,8 +1309,27 @@ module Aws::SageMaker
|
|
1309
1309
|
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1310
1310
|
# AutoML job.
|
1311
1311
|
#
|
1312
|
-
#
|
1313
|
-
#
|
1312
|
+
# An AutoML job in SageMaker is a fully automated process that allows
|
1313
|
+
# you to build machine learning models with minimal effort and machine
|
1314
|
+
# learning expertise. When initiating an AutoML job, you provide your
|
1315
|
+
# data and optionally specify parameters tailored to your use case.
|
1316
|
+
# SageMaker then automates the entire model development lifecycle,
|
1317
|
+
# including data preprocessing, model training, tuning, and evaluation.
|
1318
|
+
# AutoML jobs are designed to simplify and accelerate the model building
|
1319
|
+
# process by automating various tasks and exploring different
|
1320
|
+
# combinations of machine learning algorithms, data preprocessing
|
1321
|
+
# techniques, and hyperparameter values. The output of an AutoML job
|
1322
|
+
# comprises one or more trained models ready for deployment and
|
1323
|
+
# inference. Additionally, SageMaker AutoML jobs generate a candidate
|
1324
|
+
# model leaderboard, allowing you to select the best-performing model
|
1325
|
+
# for deployment.
|
1326
|
+
#
|
1327
|
+
# For more information about AutoML jobs, see
|
1328
|
+
# [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
|
1329
|
+
# in the SageMaker developer guide.
|
1330
|
+
#
|
1331
|
+
# <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][2] and
|
1332
|
+
# [DescribeAutoMLJobV2][3], which offer backward compatibility.
|
1314
1333
|
#
|
1315
1334
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
1316
1335
|
# those of its previous version `CreateAutoMLJob`, as well as
|
@@ -1319,20 +1338,21 @@ module Aws::SageMaker
|
|
1319
1338
|
#
|
1320
1339
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1321
1340
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1322
|
-
# CreateAutoMLJobV2][
|
1341
|
+
# CreateAutoMLJobV2][4].
|
1323
1342
|
#
|
1324
1343
|
# </note>
|
1325
1344
|
#
|
1326
1345
|
# You can find the best-performing model after you run an AutoML job by
|
1327
|
-
# calling [DescribeAutoMLJobV2][
|
1328
|
-
# [DescribeAutoMLJob][
|
1346
|
+
# calling [DescribeAutoMLJobV2][3] (recommended) or
|
1347
|
+
# [DescribeAutoMLJob][5].
|
1329
1348
|
#
|
1330
1349
|
#
|
1331
1350
|
#
|
1332
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
1333
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1334
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/
|
1335
|
-
# [4]: https://docs.aws.amazon.com/sagemaker/latest/
|
1351
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1352
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1353
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1354
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
|
1355
|
+
# [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1336
1356
|
#
|
1337
1357
|
# @option params [required, String] :auto_ml_job_name
|
1338
1358
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1488,8 +1508,32 @@ module Aws::SageMaker
|
|
1488
1508
|
# Creates an Autopilot job also referred to as Autopilot experiment or
|
1489
1509
|
# AutoML job V2.
|
1490
1510
|
#
|
1491
|
-
#
|
1492
|
-
#
|
1511
|
+
# An AutoML job in SageMaker is a fully automated process that allows
|
1512
|
+
# you to build machine learning models with minimal effort and machine
|
1513
|
+
# learning expertise. When initiating an AutoML job, you provide your
|
1514
|
+
# data and optionally specify parameters tailored to your use case.
|
1515
|
+
# SageMaker then automates the entire model development lifecycle,
|
1516
|
+
# including data preprocessing, model training, tuning, and evaluation.
|
1517
|
+
# AutoML jobs are designed to simplify and accelerate the model building
|
1518
|
+
# process by automating various tasks and exploring different
|
1519
|
+
# combinations of machine learning algorithms, data preprocessing
|
1520
|
+
# techniques, and hyperparameter values. The output of an AutoML job
|
1521
|
+
# comprises one or more trained models ready for deployment and
|
1522
|
+
# inference. Additionally, SageMaker AutoML jobs generate a candidate
|
1523
|
+
# model leaderboard, allowing you to select the best-performing model
|
1524
|
+
# for deployment.
|
1525
|
+
#
|
1526
|
+
# For more information about AutoML jobs, see
|
1527
|
+
# [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
|
1528
|
+
# in the SageMaker developer guide.
|
1529
|
+
#
|
1530
|
+
# AutoML jobs V2 support various problem types such as regression,
|
1531
|
+
# binary, and multiclass classification with tabular data, text and
|
1532
|
+
# image classification, time-series forecasting, and fine-tuning of
|
1533
|
+
# large language models (LLMs) for text generation.
|
1534
|
+
#
|
1535
|
+
# <note markdown="1"> [CreateAutoMLJobV2][2] and [DescribeAutoMLJobV2][3] are new versions
|
1536
|
+
# of [CreateAutoMLJob][4] and [DescribeAutoMLJob][5] which offer
|
1493
1537
|
# backward compatibility.
|
1494
1538
|
#
|
1495
1539
|
# `CreateAutoMLJobV2` can manage tabular problem types identical to
|
@@ -1499,24 +1543,25 @@ module Aws::SageMaker
|
|
1499
1543
|
#
|
1500
1544
|
# Find guidelines about how to migrate a `CreateAutoMLJob` to
|
1501
1545
|
# `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
|
1502
|
-
# CreateAutoMLJobV2][
|
1546
|
+
# CreateAutoMLJobV2][6].
|
1503
1547
|
#
|
1504
1548
|
# </note>
|
1505
1549
|
#
|
1506
1550
|
# For the list of available problem types supported by
|
1507
|
-
# `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][
|
1551
|
+
# `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][7].
|
1508
1552
|
#
|
1509
1553
|
# You can find the best-performing model after you run an AutoML job V2
|
1510
|
-
# by calling [DescribeAutoMLJobV2][
|
1554
|
+
# by calling [DescribeAutoMLJobV2][3].
|
1511
1555
|
#
|
1512
1556
|
#
|
1513
1557
|
#
|
1514
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
1515
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1516
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1517
|
-
# [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/
|
1518
|
-
# [5]: https://docs.aws.amazon.com/sagemaker/latest/
|
1519
|
-
# [6]: https://docs.aws.amazon.com/sagemaker/latest/
|
1558
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1559
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1560
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1561
|
+
# [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
|
1562
|
+
# [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1563
|
+
# [6]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
|
1564
|
+
# [7]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
|
1520
1565
|
#
|
1521
1566
|
# @option params [required, String] :auto_ml_job_name
|
1522
1567
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1614,6 +1659,9 @@ module Aws::SageMaker
|
|
1614
1659
|
#
|
1615
1660
|
# </note>
|
1616
1661
|
#
|
1662
|
+
# @option params [Types::AutoMLComputeConfig] :auto_ml_compute_config
|
1663
|
+
# Specifies the compute configuration for the AutoML job V2.
|
1664
|
+
#
|
1617
1665
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1618
1666
|
#
|
1619
1667
|
# * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1755,6 +1803,11 @@ module Aws::SageMaker
|
|
1755
1803
|
# data_split_config: {
|
1756
1804
|
# validation_fraction: 1.0,
|
1757
1805
|
# },
|
1806
|
+
# auto_ml_compute_config: {
|
1807
|
+
# emr_serverless_compute_config: {
|
1808
|
+
# execution_role_arn: "RoleArn", # required
|
1809
|
+
# },
|
1810
|
+
# },
|
1758
1811
|
# })
|
1759
1812
|
#
|
1760
1813
|
# @example Response structure
|
@@ -2604,6 +2657,10 @@ module Aws::SageMaker
|
|
2604
2657
|
# generative_ai_settings: {
|
2605
2658
|
# amazon_bedrock_role_arn: "RoleArn",
|
2606
2659
|
# },
|
2660
|
+
# emr_serverless_settings: {
|
2661
|
+
# execution_role_arn: "RoleArn",
|
2662
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
2663
|
+
# },
|
2607
2664
|
# },
|
2608
2665
|
# code_editor_app_settings: {
|
2609
2666
|
# default_resource_spec: {
|
@@ -2643,6 +2700,10 @@ module Aws::SageMaker
|
|
2643
2700
|
# repository_url: "RepositoryUrl", # required
|
2644
2701
|
# },
|
2645
2702
|
# ],
|
2703
|
+
# emr_settings: {
|
2704
|
+
# assumable_role_arns: ["RoleArn"],
|
2705
|
+
# execution_role_arns: ["RoleArn"],
|
2706
|
+
# },
|
2646
2707
|
# },
|
2647
2708
|
# space_storage_settings: {
|
2648
2709
|
# default_ebs_storage_settings: {
|
@@ -2665,7 +2726,7 @@ module Aws::SageMaker
|
|
2665
2726
|
# },
|
2666
2727
|
# ],
|
2667
2728
|
# studio_web_portal_settings: {
|
2668
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
2729
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
2669
2730
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
2670
2731
|
# },
|
2671
2732
|
# },
|
@@ -2761,6 +2822,10 @@ module Aws::SageMaker
|
|
2761
2822
|
# repository_url: "RepositoryUrl", # required
|
2762
2823
|
# },
|
2763
2824
|
# ],
|
2825
|
+
# emr_settings: {
|
2826
|
+
# assumable_role_arns: ["RoleArn"],
|
2827
|
+
# execution_role_arns: ["RoleArn"],
|
2828
|
+
# },
|
2764
2829
|
# },
|
2765
2830
|
# space_storage_settings: {
|
2766
2831
|
# default_ebs_storage_settings: {
|
@@ -7935,7 +8000,7 @@ module Aws::SageMaker
|
|
7935
8000
|
# output_name: "String", # required
|
7936
8001
|
# s3_output: {
|
7937
8002
|
# s3_uri: "S3Uri", # required
|
7938
|
-
# local_path: "ProcessingLocalPath",
|
8003
|
+
# local_path: "ProcessingLocalPath",
|
7939
8004
|
# s3_upload_mode: "Continuous", # required, accepts Continuous, EndOfJob
|
7940
8005
|
# },
|
7941
8006
|
# feature_store_output: {
|
@@ -9335,6 +9400,10 @@ module Aws::SageMaker
|
|
9335
9400
|
# generative_ai_settings: {
|
9336
9401
|
# amazon_bedrock_role_arn: "RoleArn",
|
9337
9402
|
# },
|
9403
|
+
# emr_serverless_settings: {
|
9404
|
+
# execution_role_arn: "RoleArn",
|
9405
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
9406
|
+
# },
|
9338
9407
|
# },
|
9339
9408
|
# code_editor_app_settings: {
|
9340
9409
|
# default_resource_spec: {
|
@@ -9374,6 +9443,10 @@ module Aws::SageMaker
|
|
9374
9443
|
# repository_url: "RepositoryUrl", # required
|
9375
9444
|
# },
|
9376
9445
|
# ],
|
9446
|
+
# emr_settings: {
|
9447
|
+
# assumable_role_arns: ["RoleArn"],
|
9448
|
+
# execution_role_arns: ["RoleArn"],
|
9449
|
+
# },
|
9377
9450
|
# },
|
9378
9451
|
# space_storage_settings: {
|
9379
9452
|
# default_ebs_storage_settings: {
|
@@ -9396,7 +9469,7 @@ module Aws::SageMaker
|
|
9396
9469
|
# },
|
9397
9470
|
# ],
|
9398
9471
|
# studio_web_portal_settings: {
|
9399
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
9472
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
9400
9473
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
9401
9474
|
# },
|
9402
9475
|
# },
|
@@ -11765,6 +11838,7 @@ module Aws::SageMaker
|
|
11765
11838
|
# * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
11766
11839
|
# * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
|
11767
11840
|
# * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
|
11841
|
+
# * {Types::DescribeAutoMLJobV2Response#auto_ml_compute_config #auto_ml_compute_config} => Types::AutoMLComputeConfig
|
11768
11842
|
#
|
11769
11843
|
# @example Request syntax with placeholder values
|
11770
11844
|
#
|
@@ -11897,6 +11971,7 @@ module Aws::SageMaker
|
|
11897
11971
|
# resp.security_config.vpc_config.security_group_ids[0] #=> String
|
11898
11972
|
# resp.security_config.vpc_config.subnets #=> Array
|
11899
11973
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
11974
|
+
# resp.auto_ml_compute_config.emr_serverless_compute_config.execution_role_arn #=> String
|
11900
11975
|
#
|
11901
11976
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
11902
11977
|
#
|
@@ -12496,6 +12571,8 @@ module Aws::SageMaker
|
|
12496
12571
|
# resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12497
12572
|
# resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12498
12573
|
# resp.default_user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
|
12574
|
+
# resp.default_user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
|
12575
|
+
# resp.default_user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
|
12499
12576
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
12500
12577
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
12501
12578
|
# resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
|
@@ -12520,6 +12597,10 @@ module Aws::SageMaker
|
|
12520
12597
|
# resp.default_user_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
|
12521
12598
|
# resp.default_user_settings.jupyter_lab_app_settings.code_repositories #=> Array
|
12522
12599
|
# resp.default_user_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
|
12600
|
+
# resp.default_user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
|
12601
|
+
# resp.default_user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
|
12602
|
+
# resp.default_user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
|
12603
|
+
# resp.default_user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
|
12523
12604
|
# resp.default_user_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
|
12524
12605
|
# resp.default_user_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
|
12525
12606
|
# resp.default_user_settings.default_landing_uri #=> String
|
@@ -12530,7 +12611,7 @@ module Aws::SageMaker
|
|
12530
12611
|
# resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
|
12531
12612
|
# resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
|
12532
12613
|
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
|
12533
|
-
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
|
12614
|
+
# resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
|
12534
12615
|
# resp.default_user_settings.studio_web_portal_settings.hidden_app_types #=> Array
|
12535
12616
|
# resp.default_user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
|
12536
12617
|
# resp.domain_settings.security_group_ids #=> Array
|
@@ -12593,6 +12674,10 @@ module Aws::SageMaker
|
|
12593
12674
|
# resp.default_space_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
|
12594
12675
|
# resp.default_space_settings.jupyter_lab_app_settings.code_repositories #=> Array
|
12595
12676
|
# resp.default_space_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
|
12677
|
+
# resp.default_space_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
|
12678
|
+
# resp.default_space_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
|
12679
|
+
# resp.default_space_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
|
12680
|
+
# resp.default_space_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
|
12596
12681
|
# resp.default_space_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
|
12597
12682
|
# resp.default_space_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
|
12598
12683
|
# resp.default_space_settings.custom_posix_user_config.uid #=> Integer
|
@@ -16573,6 +16658,8 @@ module Aws::SageMaker
|
|
16573
16658
|
# resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16574
16659
|
# resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16575
16660
|
# resp.user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
|
16661
|
+
# resp.user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
|
16662
|
+
# resp.user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
|
16576
16663
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
16577
16664
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
16578
16665
|
# resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
|
@@ -16597,6 +16684,10 @@ module Aws::SageMaker
|
|
16597
16684
|
# resp.user_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
|
16598
16685
|
# resp.user_settings.jupyter_lab_app_settings.code_repositories #=> Array
|
16599
16686
|
# resp.user_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
|
16687
|
+
# resp.user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
|
16688
|
+
# resp.user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
|
16689
|
+
# resp.user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
|
16690
|
+
# resp.user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
|
16600
16691
|
# resp.user_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
|
16601
16692
|
# resp.user_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
|
16602
16693
|
# resp.user_settings.default_landing_uri #=> String
|
@@ -16607,7 +16698,7 @@ module Aws::SageMaker
|
|
16607
16698
|
# resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
|
16608
16699
|
# resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
|
16609
16700
|
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
|
16610
|
-
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
|
16701
|
+
# resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
|
16611
16702
|
# resp.user_settings.studio_web_portal_settings.hidden_app_types #=> Array
|
16612
16703
|
# resp.user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
|
16613
16704
|
#
|
@@ -24928,6 +25019,10 @@ module Aws::SageMaker
|
|
24928
25019
|
# generative_ai_settings: {
|
24929
25020
|
# amazon_bedrock_role_arn: "RoleArn",
|
24930
25021
|
# },
|
25022
|
+
# emr_serverless_settings: {
|
25023
|
+
# execution_role_arn: "RoleArn",
|
25024
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
25025
|
+
# },
|
24931
25026
|
# },
|
24932
25027
|
# code_editor_app_settings: {
|
24933
25028
|
# default_resource_spec: {
|
@@ -24967,6 +25062,10 @@ module Aws::SageMaker
|
|
24967
25062
|
# repository_url: "RepositoryUrl", # required
|
24968
25063
|
# },
|
24969
25064
|
# ],
|
25065
|
+
# emr_settings: {
|
25066
|
+
# assumable_role_arns: ["RoleArn"],
|
25067
|
+
# execution_role_arns: ["RoleArn"],
|
25068
|
+
# },
|
24970
25069
|
# },
|
24971
25070
|
# space_storage_settings: {
|
24972
25071
|
# default_ebs_storage_settings: {
|
@@ -24989,7 +25088,7 @@ module Aws::SageMaker
|
|
24989
25088
|
# },
|
24990
25089
|
# ],
|
24991
25090
|
# studio_web_portal_settings: {
|
24992
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
25091
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
24993
25092
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
24994
25093
|
# },
|
24995
25094
|
# },
|
@@ -25074,6 +25173,10 @@ module Aws::SageMaker
|
|
25074
25173
|
# repository_url: "RepositoryUrl", # required
|
25075
25174
|
# },
|
25076
25175
|
# ],
|
25176
|
+
# emr_settings: {
|
25177
|
+
# assumable_role_arns: ["RoleArn"],
|
25178
|
+
# execution_role_arns: ["RoleArn"],
|
25179
|
+
# },
|
25077
25180
|
# },
|
25078
25181
|
# space_storage_settings: {
|
25079
25182
|
# default_ebs_storage_settings: {
|
@@ -27135,6 +27238,10 @@ module Aws::SageMaker
|
|
27135
27238
|
# generative_ai_settings: {
|
27136
27239
|
# amazon_bedrock_role_arn: "RoleArn",
|
27137
27240
|
# },
|
27241
|
+
# emr_serverless_settings: {
|
27242
|
+
# execution_role_arn: "RoleArn",
|
27243
|
+
# status: "ENABLED", # accepts ENABLED, DISABLED
|
27244
|
+
# },
|
27138
27245
|
# },
|
27139
27246
|
# code_editor_app_settings: {
|
27140
27247
|
# default_resource_spec: {
|
@@ -27174,6 +27281,10 @@ module Aws::SageMaker
|
|
27174
27281
|
# repository_url: "RepositoryUrl", # required
|
27175
27282
|
# },
|
27176
27283
|
# ],
|
27284
|
+
# emr_settings: {
|
27285
|
+
# assumable_role_arns: ["RoleArn"],
|
27286
|
+
# execution_role_arns: ["RoleArn"],
|
27287
|
+
# },
|
27177
27288
|
# },
|
27178
27289
|
# space_storage_settings: {
|
27179
27290
|
# default_ebs_storage_settings: {
|
@@ -27196,7 +27307,7 @@ module Aws::SageMaker
|
|
27196
27307
|
# },
|
27197
27308
|
# ],
|
27198
27309
|
# studio_web_portal_settings: {
|
27199
|
-
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
|
27310
|
+
# hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
|
27200
27311
|
# hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
|
27201
27312
|
# },
|
27202
27313
|
# },
|
@@ -27478,7 +27589,7 @@ module Aws::SageMaker
|
|
27478
27589
|
params: params,
|
27479
27590
|
config: config)
|
27480
27591
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
27481
|
-
context[:gem_version] = '1.
|
27592
|
+
context[:gem_version] = '1.256.0'
|
27482
27593
|
Seahorse::Client::Request.new(handlers, context)
|
27483
27594
|
end
|
27484
27595
|
|
@@ -91,6 +91,7 @@ module Aws::SageMaker
|
|
91
91
|
AssociationEntityArn = Shapes::StringShape.new(name: 'AssociationEntityArn')
|
92
92
|
AssociationSummaries = Shapes::ListShape.new(name: 'AssociationSummaries')
|
93
93
|
AssociationSummary = Shapes::StructureShape.new(name: 'AssociationSummary')
|
94
|
+
AssumableRoleArns = Shapes::ListShape.new(name: 'AssumableRoleArns')
|
94
95
|
AsyncInferenceClientConfig = Shapes::StructureShape.new(name: 'AsyncInferenceClientConfig')
|
95
96
|
AsyncInferenceConfig = Shapes::StructureShape.new(name: 'AsyncInferenceConfig')
|
96
97
|
AsyncInferenceNotificationConfig = Shapes::StructureShape.new(name: 'AsyncInferenceNotificationConfig')
|
@@ -121,6 +122,7 @@ module Aws::SageMaker
|
|
121
122
|
AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
|
122
123
|
AutoMLChannel = Shapes::StructureShape.new(name: 'AutoMLChannel')
|
123
124
|
AutoMLChannelType = Shapes::StringShape.new(name: 'AutoMLChannelType')
|
125
|
+
AutoMLComputeConfig = Shapes::StructureShape.new(name: 'AutoMLComputeConfig')
|
124
126
|
AutoMLContainerDefinition = Shapes::StructureShape.new(name: 'AutoMLContainerDefinition')
|
125
127
|
AutoMLContainerDefinitions = Shapes::ListShape.new(name: 'AutoMLContainerDefinitions')
|
126
128
|
AutoMLDataSource = Shapes::StructureShape.new(name: 'AutoMLDataSource')
|
@@ -808,6 +810,9 @@ module Aws::SageMaker
|
|
808
810
|
EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
|
809
811
|
Edges = Shapes::ListShape.new(name: 'Edges')
|
810
812
|
EfsUid = Shapes::StringShape.new(name: 'EfsUid')
|
813
|
+
EmrServerlessComputeConfig = Shapes::StructureShape.new(name: 'EmrServerlessComputeConfig')
|
814
|
+
EmrServerlessSettings = Shapes::StructureShape.new(name: 'EmrServerlessSettings')
|
815
|
+
EmrSettings = Shapes::StructureShape.new(name: 'EmrSettings')
|
811
816
|
EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
|
812
817
|
EnableInfraCheck = Shapes::BooleanShape.new(name: 'EnableInfraCheck')
|
813
818
|
EnableIotRoleAlias = Shapes::BooleanShape.new(name: 'EnableIotRoleAlias')
|
@@ -848,6 +853,7 @@ module Aws::SageMaker
|
|
848
853
|
EnvironmentParameters = Shapes::ListShape.new(name: 'EnvironmentParameters')
|
849
854
|
EnvironmentValue = Shapes::StringShape.new(name: 'EnvironmentValue')
|
850
855
|
ExcludeFeaturesAttribute = Shapes::StringShape.new(name: 'ExcludeFeaturesAttribute')
|
856
|
+
ExecutionRoleArns = Shapes::ListShape.new(name: 'ExecutionRoleArns')
|
851
857
|
ExecutionRoleIdentityConfig = Shapes::StringShape.new(name: 'ExecutionRoleIdentityConfig')
|
852
858
|
ExecutionStatus = Shapes::StringShape.new(name: 'ExecutionStatus')
|
853
859
|
ExitMessage = Shapes::StringShape.new(name: 'ExitMessage')
|
@@ -2544,6 +2550,8 @@ module Aws::SageMaker
|
|
2544
2550
|
AssociationSummary.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
|
2545
2551
|
AssociationSummary.struct_class = Types::AssociationSummary
|
2546
2552
|
|
2553
|
+
AssumableRoleArns.member = Shapes::ShapeRef.new(shape: RoleArn)
|
2554
|
+
|
2547
2555
|
AsyncInferenceClientConfig.add_member(:max_concurrent_invocations_per_instance, Shapes::ShapeRef.new(shape: MaxConcurrentInvocationsPerInstance, location_name: "MaxConcurrentInvocationsPerInstance"))
|
2548
2556
|
AsyncInferenceClientConfig.struct_class = Types::AsyncInferenceClientConfig
|
2549
2557
|
|
@@ -2619,6 +2627,9 @@ module Aws::SageMaker
|
|
2619
2627
|
AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
|
2620
2628
|
AutoMLChannel.struct_class = Types::AutoMLChannel
|
2621
2629
|
|
2630
|
+
AutoMLComputeConfig.add_member(:emr_serverless_compute_config, Shapes::ShapeRef.new(shape: EmrServerlessComputeConfig, location_name: "EmrServerlessComputeConfig"))
|
2631
|
+
AutoMLComputeConfig.struct_class = Types::AutoMLComputeConfig
|
2632
|
+
|
2622
2633
|
AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
|
2623
2634
|
AutoMLContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, required: true, location_name: "ModelDataUrl"))
|
2624
2635
|
AutoMLContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
|
@@ -2822,6 +2833,7 @@ module Aws::SageMaker
|
|
2822
2833
|
CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
|
2823
2834
|
CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
|
2824
2835
|
CanvasAppSettings.add_member(:generative_ai_settings, Shapes::ShapeRef.new(shape: GenerativeAiSettings, location_name: "GenerativeAiSettings"))
|
2836
|
+
CanvasAppSettings.add_member(:emr_serverless_settings, Shapes::ShapeRef.new(shape: EmrServerlessSettings, location_name: "EmrServerlessSettings"))
|
2825
2837
|
CanvasAppSettings.struct_class = Types::CanvasAppSettings
|
2826
2838
|
|
2827
2839
|
CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
|
@@ -3216,6 +3228,7 @@ module Aws::SageMaker
|
|
3216
3228
|
CreateAutoMLJobV2Request.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
|
3217
3229
|
CreateAutoMLJobV2Request.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
3218
3230
|
CreateAutoMLJobV2Request.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
3231
|
+
CreateAutoMLJobV2Request.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
|
3219
3232
|
CreateAutoMLJobV2Request.struct_class = Types::CreateAutoMLJobV2Request
|
3220
3233
|
|
3221
3234
|
CreateAutoMLJobV2Response.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
|
@@ -4421,6 +4434,7 @@ module Aws::SageMaker
|
|
4421
4434
|
DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
4422
4435
|
DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
4423
4436
|
DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
|
4437
|
+
DescribeAutoMLJobV2Response.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
|
4424
4438
|
DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
|
4425
4439
|
|
4426
4440
|
DescribeClusterNodeRequest.add_member(:cluster_name, Shapes::ShapeRef.new(shape: ClusterNameOrArn, required: true, location_name: "ClusterName"))
|
@@ -5646,6 +5660,17 @@ module Aws::SageMaker
|
|
5646
5660
|
|
5647
5661
|
Edges.member = Shapes::ShapeRef.new(shape: Edge)
|
5648
5662
|
|
5663
|
+
EmrServerlessComputeConfig.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleARN"))
|
5664
|
+
EmrServerlessComputeConfig.struct_class = Types::EmrServerlessComputeConfig
|
5665
|
+
|
5666
|
+
EmrServerlessSettings.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "ExecutionRoleArn"))
|
5667
|
+
EmrServerlessSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
5668
|
+
EmrServerlessSettings.struct_class = Types::EmrServerlessSettings
|
5669
|
+
|
5670
|
+
EmrSettings.add_member(:assumable_role_arns, Shapes::ShapeRef.new(shape: AssumableRoleArns, location_name: "AssumableRoleArns"))
|
5671
|
+
EmrSettings.add_member(:execution_role_arns, Shapes::ShapeRef.new(shape: ExecutionRoleArns, location_name: "ExecutionRoleArns"))
|
5672
|
+
EmrSettings.struct_class = Types::EmrSettings
|
5673
|
+
|
5649
5674
|
EnableSagemakerServicecatalogPortfolioInput.struct_class = Types::EnableSagemakerServicecatalogPortfolioInput
|
5650
5675
|
|
5651
5676
|
EnableSagemakerServicecatalogPortfolioOutput.struct_class = Types::EnableSagemakerServicecatalogPortfolioOutput
|
@@ -5738,6 +5763,8 @@ module Aws::SageMaker
|
|
5738
5763
|
|
5739
5764
|
EnvironmentParameters.member = Shapes::ShapeRef.new(shape: EnvironmentParameter)
|
5740
5765
|
|
5766
|
+
ExecutionRoleArns.member = Shapes::ShapeRef.new(shape: RoleArn)
|
5767
|
+
|
5741
5768
|
Experiment.add_member(:experiment_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "ExperimentName"))
|
5742
5769
|
Experiment.add_member(:experiment_arn, Shapes::ShapeRef.new(shape: ExperimentArn, location_name: "ExperimentArn"))
|
5743
5770
|
Experiment.add_member(:display_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "DisplayName"))
|
@@ -6441,6 +6468,7 @@ module Aws::SageMaker
|
|
6441
6468
|
JupyterLabAppSettings.add_member(:custom_images, Shapes::ShapeRef.new(shape: CustomImages, location_name: "CustomImages"))
|
6442
6469
|
JupyterLabAppSettings.add_member(:lifecycle_config_arns, Shapes::ShapeRef.new(shape: LifecycleConfigArns, location_name: "LifecycleConfigArns"))
|
6443
6470
|
JupyterLabAppSettings.add_member(:code_repositories, Shapes::ShapeRef.new(shape: CodeRepositories, location_name: "CodeRepositories"))
|
6471
|
+
JupyterLabAppSettings.add_member(:emr_settings, Shapes::ShapeRef.new(shape: EmrSettings, location_name: "EmrSettings"))
|
6444
6472
|
JupyterLabAppSettings.struct_class = Types::JupyterLabAppSettings
|
6445
6473
|
|
6446
6474
|
JupyterServerAppSettings.add_member(:default_resource_spec, Shapes::ShapeRef.new(shape: ResourceSpec, location_name: "DefaultResourceSpec"))
|
@@ -8665,7 +8693,7 @@ module Aws::SageMaker
|
|
8665
8693
|
ProcessingS3Input.struct_class = Types::ProcessingS3Input
|
8666
8694
|
|
8667
8695
|
ProcessingS3Output.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
|
8668
|
-
ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath,
|
8696
|
+
ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, location_name: "LocalPath"))
|
8669
8697
|
ProcessingS3Output.add_member(:s3_upload_mode, Shapes::ShapeRef.new(shape: ProcessingS3UploadMode, required: true, location_name: "S3UploadMode"))
|
8670
8698
|
ProcessingS3Output.struct_class = Types::ProcessingS3Output
|
8671
8699
|
|
@@ -2082,6 +2082,46 @@ module Aws::SageMaker
|
|
2082
2082
|
include Aws::Structure
|
2083
2083
|
end
|
2084
2084
|
|
2085
|
+
# <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
|
2086
|
+
# cannot be used in other contexts at the moment.
|
2087
|
+
#
|
2088
|
+
# </note>
|
2089
|
+
#
|
2090
|
+
# Specifies the compute configuration for an AutoML job V2.
|
2091
|
+
#
|
2092
|
+
# @!attribute [rw] emr_serverless_compute_config
|
2093
|
+
# The configuration for using [ EMR Serverless][1] to run the AutoML
|
2094
|
+
# job V2.
|
2095
|
+
#
|
2096
|
+
# To allow your AutoML job V2 to automatically initiate a remote job
|
2097
|
+
# on EMR Serverless when additional compute resources are needed to
|
2098
|
+
# process large datasets, you need to provide an
|
2099
|
+
# `EmrServerlessComputeConfig` object, which includes an
|
2100
|
+
# `ExecutionRoleARN` attribute, to the `AutoMLComputeConfig` of the
|
2101
|
+
# AutoML job V2 input request.
|
2102
|
+
#
|
2103
|
+
# By seamlessly transitioning to EMR Serverless when required, the
|
2104
|
+
# AutoML job can handle datasets that would otherwise exceed the
|
2105
|
+
# initially provisioned resources, without any manual intervention
|
2106
|
+
# from you.
|
2107
|
+
#
|
2108
|
+
# EMR Serverless is available for the tabular and time series problem
|
2109
|
+
# types. We recommend setting up this option for tabular datasets
|
2110
|
+
# larger than 5 GB and time series datasets larger than 30 GB.
|
2111
|
+
#
|
2112
|
+
#
|
2113
|
+
#
|
2114
|
+
# [1]: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
|
2115
|
+
# @return [Types::EmrServerlessComputeConfig]
|
2116
|
+
#
|
2117
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLComputeConfig AWS API Documentation
|
2118
|
+
#
|
2119
|
+
class AutoMLComputeConfig < Struct.new(
|
2120
|
+
:emr_serverless_compute_config)
|
2121
|
+
SENSITIVE = []
|
2122
|
+
include Aws::Structure
|
2123
|
+
end
|
2124
|
+
|
2085
2125
|
# A list of container definitions that describe the different containers
|
2086
2126
|
# that make up an AutoML candidate. For more information, see [
|
2087
2127
|
# ContainerDefinition][1].
|
@@ -2520,7 +2560,7 @@ module Aws::SageMaker
|
|
2520
2560
|
# @return [String]
|
2521
2561
|
#
|
2522
2562
|
# @!attribute [rw] s3_output_path
|
2523
|
-
# The Amazon S3 output path. Must be
|
2563
|
+
# The Amazon S3 output path. Must be 512 characters or less.
|
2524
2564
|
# @return [String]
|
2525
2565
|
#
|
2526
2566
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLOutputDataConfig AWS API Documentation
|
@@ -3331,6 +3371,11 @@ module Aws::SageMaker
|
|
3331
3371
|
# The generative AI settings for the SageMaker Canvas application.
|
3332
3372
|
# @return [Types::GenerativeAiSettings]
|
3333
3373
|
#
|
3374
|
+
# @!attribute [rw] emr_serverless_settings
|
3375
|
+
# The settings for running Amazon EMR Serverless data processing jobs
|
3376
|
+
# in SageMaker Canvas.
|
3377
|
+
# @return [Types::EmrServerlessSettings]
|
3378
|
+
#
|
3334
3379
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
|
3335
3380
|
#
|
3336
3381
|
class CanvasAppSettings < Struct.new(
|
@@ -3340,7 +3385,8 @@ module Aws::SageMaker
|
|
3340
3385
|
:identity_provider_o_auth_settings,
|
3341
3386
|
:direct_deploy_settings,
|
3342
3387
|
:kendra_settings,
|
3343
|
-
:generative_ai_settings
|
3388
|
+
:generative_ai_settings,
|
3389
|
+
:emr_serverless_settings)
|
3344
3390
|
SENSITIVE = []
|
3345
3391
|
include Aws::Structure
|
3346
3392
|
end
|
@@ -5603,6 +5649,10 @@ module Aws::SageMaker
|
|
5603
5649
|
# </note>
|
5604
5650
|
# @return [Types::AutoMLDataSplitConfig]
|
5605
5651
|
#
|
5652
|
+
# @!attribute [rw] auto_ml_compute_config
|
5653
|
+
# Specifies the compute configuration for the AutoML job V2.
|
5654
|
+
# @return [Types::AutoMLComputeConfig]
|
5655
|
+
#
|
5606
5656
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
5607
5657
|
#
|
5608
5658
|
class CreateAutoMLJobV2Request < Struct.new(
|
@@ -5615,7 +5665,8 @@ module Aws::SageMaker
|
|
5615
5665
|
:security_config,
|
5616
5666
|
:auto_ml_job_objective,
|
5617
5667
|
:model_deploy_config,
|
5618
|
-
:data_split_config
|
5668
|
+
:data_split_config,
|
5669
|
+
:auto_ml_compute_config)
|
5619
5670
|
SENSITIVE = []
|
5620
5671
|
include Aws::Structure
|
5621
5672
|
end
|
@@ -12620,6 +12671,10 @@ module Aws::SageMaker
|
|
12620
12671
|
# VPC settings.
|
12621
12672
|
# @return [Types::AutoMLSecurityConfig]
|
12622
12673
|
#
|
12674
|
+
# @!attribute [rw] auto_ml_compute_config
|
12675
|
+
# The compute configuration used for the AutoML job V2.
|
12676
|
+
# @return [Types::AutoMLComputeConfig]
|
12677
|
+
#
|
12623
12678
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
|
12624
12679
|
#
|
12625
12680
|
class DescribeAutoMLJobV2Response < Struct.new(
|
@@ -12644,7 +12699,8 @@ module Aws::SageMaker
|
|
12644
12699
|
:model_deploy_config,
|
12645
12700
|
:model_deploy_result,
|
12646
12701
|
:data_split_config,
|
12647
|
-
:security_config
|
12702
|
+
:security_config,
|
12703
|
+
:auto_ml_compute_config)
|
12648
12704
|
SENSITIVE = []
|
12649
12705
|
include Aws::Structure
|
12650
12706
|
end
|
@@ -19302,6 +19358,99 @@ module Aws::SageMaker
|
|
19302
19358
|
include Aws::Structure
|
19303
19359
|
end
|
19304
19360
|
|
19361
|
+
# <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
|
19362
|
+
# cannot be used in other contexts at the moment.
|
19363
|
+
#
|
19364
|
+
# </note>
|
19365
|
+
#
|
19366
|
+
# Specifies the compute configuration for the EMR Serverless job.
|
19367
|
+
#
|
19368
|
+
# @!attribute [rw] execution_role_arn
|
19369
|
+
# The ARN of the IAM role granting the AutoML job V2 the necessary
|
19370
|
+
# permissions access policies to list, connect to, or manage EMR
|
19371
|
+
# Serverless jobs. For detailed information about the required
|
19372
|
+
# permissions of this role, see "How to configure AutoML to initiate
|
19373
|
+
# a remote job on EMR Serverless for large datasets" in [Create a
|
19374
|
+
# regression or classification job for tabular data using the AutoML
|
19375
|
+
# API][1] or [Create an AutoML job for time-series forecasting using
|
19376
|
+
# the API][2].
|
19377
|
+
#
|
19378
|
+
#
|
19379
|
+
#
|
19380
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
|
19381
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params
|
19382
|
+
# @return [String]
|
19383
|
+
#
|
19384
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessComputeConfig AWS API Documentation
|
19385
|
+
#
|
19386
|
+
class EmrServerlessComputeConfig < Struct.new(
|
19387
|
+
:execution_role_arn)
|
19388
|
+
SENSITIVE = []
|
19389
|
+
include Aws::Structure
|
19390
|
+
end
|
19391
|
+
|
19392
|
+
# The settings for running Amazon EMR Serverless jobs in SageMaker
|
19393
|
+
# Canvas.
|
19394
|
+
#
|
19395
|
+
# @!attribute [rw] execution_role_arn
|
19396
|
+
# The Amazon Resource Name (ARN) of the Amazon Web Services IAM role
|
19397
|
+
# that is assumed for running Amazon EMR Serverless jobs in SageMaker
|
19398
|
+
# Canvas. This role should have the necessary permissions to read and
|
19399
|
+
# write data attached and a trust relationship with EMR Serverless.
|
19400
|
+
# @return [String]
|
19401
|
+
#
|
19402
|
+
# @!attribute [rw] status
|
19403
|
+
# Describes whether Amazon EMR Serverless job capabilities are enabled
|
19404
|
+
# or disabled in the SageMaker Canvas application.
|
19405
|
+
# @return [String]
|
19406
|
+
#
|
19407
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessSettings AWS API Documentation
|
19408
|
+
#
|
19409
|
+
class EmrServerlessSettings < Struct.new(
|
19410
|
+
:execution_role_arn,
|
19411
|
+
:status)
|
19412
|
+
SENSITIVE = []
|
19413
|
+
include Aws::Structure
|
19414
|
+
end
|
19415
|
+
|
19416
|
+
# The configuration parameters that specify the IAM roles assumed by the
|
19417
|
+
# execution role of SageMaker (assumable roles) and the cluster
|
19418
|
+
# instances or job execution environments (execution roles or runtime
|
19419
|
+
# roles) to manage and access resources required for running Amazon EMR
|
19420
|
+
# clusters or Amazon EMR Serverless applications.
|
19421
|
+
#
|
19422
|
+
# @!attribute [rw] assumable_role_arns
|
19423
|
+
# An array of Amazon Resource Names (ARNs) of the IAM roles that the
|
19424
|
+
# execution role of SageMaker can assume for performing operations or
|
19425
|
+
# tasks related to Amazon EMR clusters or Amazon EMR Serverless
|
19426
|
+
# applications. These roles define the permissions and access policies
|
19427
|
+
# required when performing Amazon EMR-related operations, such as
|
19428
|
+
# listing, connecting to, or terminating Amazon EMR clusters or Amazon
|
19429
|
+
# EMR Serverless applications. They are typically used in
|
19430
|
+
# cross-account access scenarios, where the Amazon EMR resources
|
19431
|
+
# (clusters or serverless applications) are located in a different
|
19432
|
+
# Amazon Web Services account than the SageMaker domain.
|
19433
|
+
# @return [Array<String>]
|
19434
|
+
#
|
19435
|
+
# @!attribute [rw] execution_role_arns
|
19436
|
+
# An array of Amazon Resource Names (ARNs) of the IAM roles used by
|
19437
|
+
# the Amazon EMR cluster instances or job execution environments to
|
19438
|
+
# access other Amazon Web Services services and resources needed
|
19439
|
+
# during the runtime of your Amazon EMR or Amazon EMR Serverless
|
19440
|
+
# workloads, such as Amazon S3 for data access, Amazon CloudWatch for
|
19441
|
+
# logging, or other Amazon Web Services services based on the
|
19442
|
+
# particular workload requirements.
|
19443
|
+
# @return [Array<String>]
|
19444
|
+
#
|
19445
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrSettings AWS API Documentation
|
19446
|
+
#
|
19447
|
+
class EmrSettings < Struct.new(
|
19448
|
+
:assumable_role_arns,
|
19449
|
+
:execution_role_arns)
|
19450
|
+
SENSITIVE = []
|
19451
|
+
include Aws::Structure
|
19452
|
+
end
|
19453
|
+
|
19305
19454
|
# @api private
|
19306
19455
|
#
|
19307
19456
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EnableSagemakerServicecatalogPortfolioInput AWS API Documentation
|
@@ -24841,13 +24990,22 @@ module Aws::SageMaker
|
|
24841
24990
|
# users for cloning in the JupyterLab application.
|
24842
24991
|
# @return [Array<Types::CodeRepository>]
|
24843
24992
|
#
|
24993
|
+
# @!attribute [rw] emr_settings
|
24994
|
+
# The configuration parameters that specify the IAM roles assumed by
|
24995
|
+
# the execution role of SageMaker (assumable roles) and the cluster
|
24996
|
+
# instances or job execution environments (execution roles or runtime
|
24997
|
+
# roles) to manage and access resources required for running Amazon
|
24998
|
+
# EMR clusters or Amazon EMR Serverless applications.
|
24999
|
+
# @return [Types::EmrSettings]
|
25000
|
+
#
|
24844
25001
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterLabAppSettings AWS API Documentation
|
24845
25002
|
#
|
24846
25003
|
class JupyterLabAppSettings < Struct.new(
|
24847
25004
|
:default_resource_spec,
|
24848
25005
|
:custom_images,
|
24849
25006
|
:lifecycle_config_arns,
|
24850
|
-
:code_repositories
|
25007
|
+
:code_repositories,
|
25008
|
+
:emr_settings)
|
24851
25009
|
SENSITIVE = []
|
24852
25010
|
include Aws::Structure
|
24853
25011
|
end
|
@@ -36966,6 +37124,18 @@ module Aws::SageMaker
|
|
36966
37124
|
# environment is compatible with specific software requirements, such
|
36967
37125
|
# as CUDA driver versions, Linux kernel versions, or Amazon Web
|
36968
37126
|
# Services Neuron driver versions.
|
37127
|
+
#
|
37128
|
+
# The AMI version names, and their configurations, are the following:
|
37129
|
+
#
|
37130
|
+
# al2-ami-sagemaker-inference-gpu-2
|
37131
|
+
# : * Accelerator: GPU
|
37132
|
+
#
|
37133
|
+
# * NVIDIA driver version: 535.54.03
|
37134
|
+
#
|
37135
|
+
# * CUDA driver version: 12.2
|
37136
|
+
#
|
37137
|
+
# * Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*,
|
37138
|
+
# ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
|
36969
37139
|
# @return [String]
|
36970
37140
|
#
|
36971
37141
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
data/sig/client.rbs
CHANGED
@@ -678,6 +678,11 @@ module Aws
|
|
678
678
|
},
|
679
679
|
?data_split_config: {
|
680
680
|
validation_fraction: ::Float?
|
681
|
+
},
|
682
|
+
?auto_ml_compute_config: {
|
683
|
+
emr_serverless_compute_config: {
|
684
|
+
execution_role_arn: ::String
|
685
|
+
}?
|
681
686
|
}
|
682
687
|
) -> _CreateAutoMLJobV2ResponseSuccess
|
683
688
|
| (Hash[Symbol, untyped] params, ?Hash[Symbol, untyped] options) -> _CreateAutoMLJobV2ResponseSuccess
|
@@ -1041,6 +1046,10 @@ module Aws
|
|
1041
1046
|
}?,
|
1042
1047
|
generative_ai_settings: {
|
1043
1048
|
amazon_bedrock_role_arn: ::String?
|
1049
|
+
}?,
|
1050
|
+
emr_serverless_settings: {
|
1051
|
+
execution_role_arn: ::String?,
|
1052
|
+
status: ("ENABLED" | "DISABLED")?
|
1044
1053
|
}?
|
1045
1054
|
}?,
|
1046
1055
|
code_editor_app_settings: {
|
@@ -1080,7 +1089,11 @@ module Aws
|
|
1080
1089
|
{
|
1081
1090
|
repository_url: ::String
|
1082
1091
|
},
|
1083
|
-
]
|
1092
|
+
]?,
|
1093
|
+
emr_settings: {
|
1094
|
+
assumable_role_arns: Array[::String]?,
|
1095
|
+
execution_role_arns: Array[::String]?
|
1096
|
+
}?
|
1084
1097
|
}?,
|
1085
1098
|
space_storage_settings: {
|
1086
1099
|
default_ebs_storage_settings: {
|
@@ -1103,7 +1116,7 @@ module Aws
|
|
1103
1116
|
},
|
1104
1117
|
]?,
|
1105
1118
|
studio_web_portal_settings: {
|
1106
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
1119
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
1107
1120
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
1108
1121
|
}?
|
1109
1122
|
},
|
@@ -1198,7 +1211,11 @@ module Aws
|
|
1198
1211
|
{
|
1199
1212
|
repository_url: ::String
|
1200
1213
|
},
|
1201
|
-
]
|
1214
|
+
]?,
|
1215
|
+
emr_settings: {
|
1216
|
+
assumable_role_arns: Array[::String]?,
|
1217
|
+
execution_role_arns: Array[::String]?
|
1218
|
+
}?
|
1202
1219
|
}?,
|
1203
1220
|
space_storage_settings: {
|
1204
1221
|
default_ebs_storage_settings: {
|
@@ -3475,7 +3492,7 @@ module Aws
|
|
3475
3492
|
output_name: ::String,
|
3476
3493
|
s3_output: {
|
3477
3494
|
s3_uri: ::String,
|
3478
|
-
local_path: ::String
|
3495
|
+
local_path: ::String?,
|
3479
3496
|
s3_upload_mode: ("Continuous" | "EndOfJob")
|
3480
3497
|
}?,
|
3481
3498
|
feature_store_output: {
|
@@ -4072,6 +4089,10 @@ module Aws
|
|
4072
4089
|
}?,
|
4073
4090
|
generative_ai_settings: {
|
4074
4091
|
amazon_bedrock_role_arn: ::String?
|
4092
|
+
}?,
|
4093
|
+
emr_serverless_settings: {
|
4094
|
+
execution_role_arn: ::String?,
|
4095
|
+
status: ("ENABLED" | "DISABLED")?
|
4075
4096
|
}?
|
4076
4097
|
}?,
|
4077
4098
|
code_editor_app_settings: {
|
@@ -4111,7 +4132,11 @@ module Aws
|
|
4111
4132
|
{
|
4112
4133
|
repository_url: ::String
|
4113
4134
|
},
|
4114
|
-
]
|
4135
|
+
]?,
|
4136
|
+
emr_settings: {
|
4137
|
+
assumable_role_arns: Array[::String]?,
|
4138
|
+
execution_role_arns: Array[::String]?
|
4139
|
+
}?
|
4115
4140
|
}?,
|
4116
4141
|
space_storage_settings: {
|
4117
4142
|
default_ebs_storage_settings: {
|
@@ -4134,7 +4159,7 @@ module Aws
|
|
4134
4159
|
},
|
4135
4160
|
]?,
|
4136
4161
|
studio_web_portal_settings: {
|
4137
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
4162
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
4138
4163
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
4139
4164
|
}?
|
4140
4165
|
}
|
@@ -4794,6 +4819,7 @@ module Aws
|
|
4794
4819
|
def model_deploy_result: () -> Types::ModelDeployResult
|
4795
4820
|
def data_split_config: () -> Types::AutoMLDataSplitConfig
|
4796
4821
|
def security_config: () -> Types::AutoMLSecurityConfig
|
4822
|
+
def auto_ml_compute_config: () -> Types::AutoMLComputeConfig
|
4797
4823
|
end
|
4798
4824
|
# https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SageMaker/Client.html#describe_auto_ml_job_v2-instance_method
|
4799
4825
|
def describe_auto_ml_job_v2: (
|
@@ -8170,6 +8196,10 @@ module Aws
|
|
8170
8196
|
}?,
|
8171
8197
|
generative_ai_settings: {
|
8172
8198
|
amazon_bedrock_role_arn: ::String?
|
8199
|
+
}?,
|
8200
|
+
emr_serverless_settings: {
|
8201
|
+
execution_role_arn: ::String?,
|
8202
|
+
status: ("ENABLED" | "DISABLED")?
|
8173
8203
|
}?
|
8174
8204
|
}?,
|
8175
8205
|
code_editor_app_settings: {
|
@@ -8209,7 +8239,11 @@ module Aws
|
|
8209
8239
|
{
|
8210
8240
|
repository_url: ::String
|
8211
8241
|
},
|
8212
|
-
]
|
8242
|
+
]?,
|
8243
|
+
emr_settings: {
|
8244
|
+
assumable_role_arns: Array[::String]?,
|
8245
|
+
execution_role_arns: Array[::String]?
|
8246
|
+
}?
|
8213
8247
|
}?,
|
8214
8248
|
space_storage_settings: {
|
8215
8249
|
default_ebs_storage_settings: {
|
@@ -8232,7 +8266,7 @@ module Aws
|
|
8232
8266
|
},
|
8233
8267
|
]?,
|
8234
8268
|
studio_web_portal_settings: {
|
8235
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
8269
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
8236
8270
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
8237
8271
|
}?
|
8238
8272
|
},
|
@@ -8316,7 +8350,11 @@ module Aws
|
|
8316
8350
|
{
|
8317
8351
|
repository_url: ::String
|
8318
8352
|
},
|
8319
|
-
]
|
8353
|
+
]?,
|
8354
|
+
emr_settings: {
|
8355
|
+
assumable_role_arns: Array[::String]?,
|
8356
|
+
execution_role_arns: Array[::String]?
|
8357
|
+
}?
|
8320
8358
|
}?,
|
8321
8359
|
space_storage_settings: {
|
8322
8360
|
default_ebs_storage_settings: {
|
@@ -9237,6 +9275,10 @@ module Aws
|
|
9237
9275
|
}?,
|
9238
9276
|
generative_ai_settings: {
|
9239
9277
|
amazon_bedrock_role_arn: ::String?
|
9278
|
+
}?,
|
9279
|
+
emr_serverless_settings: {
|
9280
|
+
execution_role_arn: ::String?,
|
9281
|
+
status: ("ENABLED" | "DISABLED")?
|
9240
9282
|
}?
|
9241
9283
|
}?,
|
9242
9284
|
code_editor_app_settings: {
|
@@ -9276,7 +9318,11 @@ module Aws
|
|
9276
9318
|
{
|
9277
9319
|
repository_url: ::String
|
9278
9320
|
},
|
9279
|
-
]
|
9321
|
+
]?,
|
9322
|
+
emr_settings: {
|
9323
|
+
assumable_role_arns: Array[::String]?,
|
9324
|
+
execution_role_arns: Array[::String]?
|
9325
|
+
}?
|
9280
9326
|
}?,
|
9281
9327
|
space_storage_settings: {
|
9282
9328
|
default_ebs_storage_settings: {
|
@@ -9299,7 +9345,7 @@ module Aws
|
|
9299
9345
|
},
|
9300
9346
|
]?,
|
9301
9347
|
studio_web_portal_settings: {
|
9302
|
-
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
|
9348
|
+
hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
|
9303
9349
|
hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
|
9304
9350
|
}?
|
9305
9351
|
}
|
data/sig/types.rbs
CHANGED
@@ -302,6 +302,11 @@ module Aws::SageMaker
|
|
302
302
|
SENSITIVE: []
|
303
303
|
end
|
304
304
|
|
305
|
+
class AutoMLComputeConfig
|
306
|
+
attr_accessor emr_serverless_compute_config: Types::EmrServerlessComputeConfig
|
307
|
+
SENSITIVE: []
|
308
|
+
end
|
309
|
+
|
305
310
|
class AutoMLContainerDefinition
|
306
311
|
attr_accessor image: ::String
|
307
312
|
attr_accessor model_data_url: ::String
|
@@ -565,6 +570,7 @@ module Aws::SageMaker
|
|
565
570
|
attr_accessor direct_deploy_settings: Types::DirectDeploySettings
|
566
571
|
attr_accessor kendra_settings: Types::KendraSettings
|
567
572
|
attr_accessor generative_ai_settings: Types::GenerativeAiSettings
|
573
|
+
attr_accessor emr_serverless_settings: Types::EmrServerlessSettings
|
568
574
|
SENSITIVE: []
|
569
575
|
end
|
570
576
|
|
@@ -1022,6 +1028,7 @@ module Aws::SageMaker
|
|
1022
1028
|
attr_accessor auto_ml_job_objective: Types::AutoMLJobObjective
|
1023
1029
|
attr_accessor model_deploy_config: Types::ModelDeployConfig
|
1024
1030
|
attr_accessor data_split_config: Types::AutoMLDataSplitConfig
|
1031
|
+
attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
|
1025
1032
|
SENSITIVE: []
|
1026
1033
|
end
|
1027
1034
|
|
@@ -2627,6 +2634,7 @@ module Aws::SageMaker
|
|
2627
2634
|
attr_accessor model_deploy_result: Types::ModelDeployResult
|
2628
2635
|
attr_accessor data_split_config: Types::AutoMLDataSplitConfig
|
2629
2636
|
attr_accessor security_config: Types::AutoMLSecurityConfig
|
2637
|
+
attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
|
2630
2638
|
SENSITIVE: []
|
2631
2639
|
end
|
2632
2640
|
|
@@ -4119,6 +4127,23 @@ module Aws::SageMaker
|
|
4119
4127
|
SENSITIVE: []
|
4120
4128
|
end
|
4121
4129
|
|
4130
|
+
class EmrServerlessComputeConfig
|
4131
|
+
attr_accessor execution_role_arn: ::String
|
4132
|
+
SENSITIVE: []
|
4133
|
+
end
|
4134
|
+
|
4135
|
+
class EmrServerlessSettings
|
4136
|
+
attr_accessor execution_role_arn: ::String
|
4137
|
+
attr_accessor status: ("ENABLED" | "DISABLED")
|
4138
|
+
SENSITIVE: []
|
4139
|
+
end
|
4140
|
+
|
4141
|
+
class EmrSettings
|
4142
|
+
attr_accessor assumable_role_arns: ::Array[::String]
|
4143
|
+
attr_accessor execution_role_arns: ::Array[::String]
|
4144
|
+
SENSITIVE: []
|
4145
|
+
end
|
4146
|
+
|
4122
4147
|
class EnableSagemakerServicecatalogPortfolioInput < Aws::EmptyStructure
|
4123
4148
|
end
|
4124
4149
|
|
@@ -5012,6 +5037,7 @@ module Aws::SageMaker
|
|
5012
5037
|
attr_accessor custom_images: ::Array[Types::CustomImage]
|
5013
5038
|
attr_accessor lifecycle_config_arns: ::Array[::String]
|
5014
5039
|
attr_accessor code_repositories: ::Array[Types::CodeRepository]
|
5040
|
+
attr_accessor emr_settings: Types::EmrSettings
|
5015
5041
|
SENSITIVE: []
|
5016
5042
|
end
|
5017
5043
|
|
@@ -8707,7 +8733,7 @@ module Aws::SageMaker
|
|
8707
8733
|
end
|
8708
8734
|
|
8709
8735
|
class StudioWebPortalSettings
|
8710
|
-
attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]
|
8736
|
+
attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]
|
8711
8737
|
attr_accessor hidden_app_types: ::Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]
|
8712
8738
|
SENSITIVE: []
|
8713
8739
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.256.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-08-12 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|