aws-sdk-sagemaker 1.254.0 → 1.256.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 9b3abcef61e3060d494a77a2dd243af0c59265d51ec0d9e196aa3baf1a7fb15a
4
- data.tar.gz: beecd2f32c0dbd29bdf12ba230715b88322eb5555d1322eaaa139f73992367a2
3
+ metadata.gz: e7c513c5ec62b6be1600325edc43c719e82113a74aa7821056a4959ec94b9428
4
+ data.tar.gz: 908362dc45eaf534e33b55070ef08d118d7fe9d14e1704656e9fa7afb50ffd75
5
5
  SHA512:
6
- metadata.gz: 0a95a25e5ae6221dfcc6ae2190101d8811023f8d78d8091152528c49fde8d1a8d16cdd681358367c7728882b74208d1970a5f7d2db5834ecc7247e6b410c690c
7
- data.tar.gz: 1fbd265a1977cbeb7ff113cbb1cdd94f99dd36ac99a367fc733ce8c93eb0194cc6463e15ca8ff39188947ac84f550ebd0606978892b7c3cc12faa812b0475208
6
+ metadata.gz: 114668ef484da86036f5dfe8766d6973a6edf2fcb2e5d9af1f2d582b9c154905604f4e5f96c3c8f4b50c51b8f93272e797f18857f7040e085f4a0e9b14028f9e
7
+ data.tar.gz: 6f45e0e93b305f1f8148e30a180a5d779a66794357d8535768cd0f017978f7d86f95091acd1e09c62ea97ec93997bc5619e920d5278f14395ecc7a707c3c9fbb
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.256.0 (2024-08-12)
5
+ ------------------
6
+
7
+ * Feature - Releasing large data support as part of CreateAutoMLJobV2 in SageMaker Autopilot and CreateDomain API for SageMaker Canvas.
8
+
9
+ 1.255.0 (2024-08-01)
10
+ ------------------
11
+
12
+ * Feature - This release adds support for Amazon EMR Serverless applications in SageMaker Studio for running data processing jobs.
13
+
4
14
  1.254.0 (2024-07-18)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.254.0
1
+ 1.256.0
@@ -1309,8 +1309,27 @@ module Aws::SageMaker
1309
1309
  # Creates an Autopilot job also referred to as Autopilot experiment or
1310
1310
  # AutoML job.
1311
1311
  #
1312
- # <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][1] and
1313
- # [DescribeAutoMLJobV2][2], which offer backward compatibility.
1312
+ # An AutoML job in SageMaker is a fully automated process that allows
1313
+ # you to build machine learning models with minimal effort and machine
1314
+ # learning expertise. When initiating an AutoML job, you provide your
1315
+ # data and optionally specify parameters tailored to your use case.
1316
+ # SageMaker then automates the entire model development lifecycle,
1317
+ # including data preprocessing, model training, tuning, and evaluation.
1318
+ # AutoML jobs are designed to simplify and accelerate the model building
1319
+ # process by automating various tasks and exploring different
1320
+ # combinations of machine learning algorithms, data preprocessing
1321
+ # techniques, and hyperparameter values. The output of an AutoML job
1322
+ # comprises one or more trained models ready for deployment and
1323
+ # inference. Additionally, SageMaker AutoML jobs generate a candidate
1324
+ # model leaderboard, allowing you to select the best-performing model
1325
+ # for deployment.
1326
+ #
1327
+ # For more information about AutoML jobs, see
1328
+ # [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
1329
+ # in the SageMaker developer guide.
1330
+ #
1331
+ # <note markdown="1"> We recommend using the new versions [CreateAutoMLJobV2][2] and
1332
+ # [DescribeAutoMLJobV2][3], which offer backward compatibility.
1314
1333
  #
1315
1334
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
1316
1335
  # those of its previous version `CreateAutoMLJob`, as well as
@@ -1319,20 +1338,21 @@ module Aws::SageMaker
1319
1338
  #
1320
1339
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1321
1340
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1322
- # CreateAutoMLJobV2][3].
1341
+ # CreateAutoMLJobV2][4].
1323
1342
  #
1324
1343
  # </note>
1325
1344
  #
1326
1345
  # You can find the best-performing model after you run an AutoML job by
1327
- # calling [DescribeAutoMLJobV2][2] (recommended) or
1328
- # [DescribeAutoMLJob][4].
1346
+ # calling [DescribeAutoMLJobV2][3] (recommended) or
1347
+ # [DescribeAutoMLJob][5].
1329
1348
  #
1330
1349
  #
1331
1350
  #
1332
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1333
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1334
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1335
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1351
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1352
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1353
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1354
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1355
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1336
1356
  #
1337
1357
  # @option params [required, String] :auto_ml_job_name
1338
1358
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1488,8 +1508,32 @@ module Aws::SageMaker
1488
1508
  # Creates an Autopilot job also referred to as Autopilot experiment or
1489
1509
  # AutoML job V2.
1490
1510
  #
1491
- # <note markdown="1"> [CreateAutoMLJobV2][1] and [DescribeAutoMLJobV2][2] are new versions
1492
- # of [CreateAutoMLJob][3] and [DescribeAutoMLJob][4] which offer
1511
+ # An AutoML job in SageMaker is a fully automated process that allows
1512
+ # you to build machine learning models with minimal effort and machine
1513
+ # learning expertise. When initiating an AutoML job, you provide your
1514
+ # data and optionally specify parameters tailored to your use case.
1515
+ # SageMaker then automates the entire model development lifecycle,
1516
+ # including data preprocessing, model training, tuning, and evaluation.
1517
+ # AutoML jobs are designed to simplify and accelerate the model building
1518
+ # process by automating various tasks and exploring different
1519
+ # combinations of machine learning algorithms, data preprocessing
1520
+ # techniques, and hyperparameter values. The output of an AutoML job
1521
+ # comprises one or more trained models ready for deployment and
1522
+ # inference. Additionally, SageMaker AutoML jobs generate a candidate
1523
+ # model leaderboard, allowing you to select the best-performing model
1524
+ # for deployment.
1525
+ #
1526
+ # For more information about AutoML jobs, see
1527
+ # [https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html][1]
1528
+ # in the SageMaker developer guide.
1529
+ #
1530
+ # AutoML jobs V2 support various problem types such as regression,
1531
+ # binary, and multiclass classification with tabular data, text and
1532
+ # image classification, time-series forecasting, and fine-tuning of
1533
+ # large language models (LLMs) for text generation.
1534
+ #
1535
+ # <note markdown="1"> [CreateAutoMLJobV2][2] and [DescribeAutoMLJobV2][3] are new versions
1536
+ # of [CreateAutoMLJob][4] and [DescribeAutoMLJob][5] which offer
1493
1537
  # backward compatibility.
1494
1538
  #
1495
1539
  # `CreateAutoMLJobV2` can manage tabular problem types identical to
@@ -1499,24 +1543,25 @@ module Aws::SageMaker
1499
1543
  #
1500
1544
  # Find guidelines about how to migrate a `CreateAutoMLJob` to
1501
1545
  # `CreateAutoMLJobV2` in [Migrate a CreateAutoMLJob to
1502
- # CreateAutoMLJobV2][5].
1546
+ # CreateAutoMLJobV2][6].
1503
1547
  #
1504
1548
  # </note>
1505
1549
  #
1506
1550
  # For the list of available problem types supported by
1507
- # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][6].
1551
+ # `CreateAutoMLJobV2`, see [AutoMLProblemTypeConfig][7].
1508
1552
  #
1509
1553
  # You can find the best-performing model after you run an AutoML job V2
1510
- # by calling [DescribeAutoMLJobV2][2].
1554
+ # by calling [DescribeAutoMLJobV2][3].
1511
1555
  #
1512
1556
  #
1513
1557
  #
1514
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1515
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1516
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1517
- # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1518
- # [5]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1519
- # [6]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1558
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1559
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1560
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1561
+ # [4]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1562
+ # [5]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1563
+ # [6]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2
1564
+ # [7]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html
1520
1565
  #
1521
1566
  # @option params [required, String] :auto_ml_job_name
1522
1567
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1614,6 +1659,9 @@ module Aws::SageMaker
1614
1659
  #
1615
1660
  # </note>
1616
1661
  #
1662
+ # @option params [Types::AutoMLComputeConfig] :auto_ml_compute_config
1663
+ # Specifies the compute configuration for the AutoML job V2.
1664
+ #
1617
1665
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1618
1666
  #
1619
1667
  # * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1755,6 +1803,11 @@ module Aws::SageMaker
1755
1803
  # data_split_config: {
1756
1804
  # validation_fraction: 1.0,
1757
1805
  # },
1806
+ # auto_ml_compute_config: {
1807
+ # emr_serverless_compute_config: {
1808
+ # execution_role_arn: "RoleArn", # required
1809
+ # },
1810
+ # },
1758
1811
  # })
1759
1812
  #
1760
1813
  # @example Response structure
@@ -2604,6 +2657,10 @@ module Aws::SageMaker
2604
2657
  # generative_ai_settings: {
2605
2658
  # amazon_bedrock_role_arn: "RoleArn",
2606
2659
  # },
2660
+ # emr_serverless_settings: {
2661
+ # execution_role_arn: "RoleArn",
2662
+ # status: "ENABLED", # accepts ENABLED, DISABLED
2663
+ # },
2607
2664
  # },
2608
2665
  # code_editor_app_settings: {
2609
2666
  # default_resource_spec: {
@@ -2643,6 +2700,10 @@ module Aws::SageMaker
2643
2700
  # repository_url: "RepositoryUrl", # required
2644
2701
  # },
2645
2702
  # ],
2703
+ # emr_settings: {
2704
+ # assumable_role_arns: ["RoleArn"],
2705
+ # execution_role_arns: ["RoleArn"],
2706
+ # },
2646
2707
  # },
2647
2708
  # space_storage_settings: {
2648
2709
  # default_ebs_storage_settings: {
@@ -2665,7 +2726,7 @@ module Aws::SageMaker
2665
2726
  # },
2666
2727
  # ],
2667
2728
  # studio_web_portal_settings: {
2668
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
2729
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
2669
2730
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
2670
2731
  # },
2671
2732
  # },
@@ -2761,6 +2822,10 @@ module Aws::SageMaker
2761
2822
  # repository_url: "RepositoryUrl", # required
2762
2823
  # },
2763
2824
  # ],
2825
+ # emr_settings: {
2826
+ # assumable_role_arns: ["RoleArn"],
2827
+ # execution_role_arns: ["RoleArn"],
2828
+ # },
2764
2829
  # },
2765
2830
  # space_storage_settings: {
2766
2831
  # default_ebs_storage_settings: {
@@ -7935,7 +8000,7 @@ module Aws::SageMaker
7935
8000
  # output_name: "String", # required
7936
8001
  # s3_output: {
7937
8002
  # s3_uri: "S3Uri", # required
7938
- # local_path: "ProcessingLocalPath", # required
8003
+ # local_path: "ProcessingLocalPath",
7939
8004
  # s3_upload_mode: "Continuous", # required, accepts Continuous, EndOfJob
7940
8005
  # },
7941
8006
  # feature_store_output: {
@@ -9335,6 +9400,10 @@ module Aws::SageMaker
9335
9400
  # generative_ai_settings: {
9336
9401
  # amazon_bedrock_role_arn: "RoleArn",
9337
9402
  # },
9403
+ # emr_serverless_settings: {
9404
+ # execution_role_arn: "RoleArn",
9405
+ # status: "ENABLED", # accepts ENABLED, DISABLED
9406
+ # },
9338
9407
  # },
9339
9408
  # code_editor_app_settings: {
9340
9409
  # default_resource_spec: {
@@ -9374,6 +9443,10 @@ module Aws::SageMaker
9374
9443
  # repository_url: "RepositoryUrl", # required
9375
9444
  # },
9376
9445
  # ],
9446
+ # emr_settings: {
9447
+ # assumable_role_arns: ["RoleArn"],
9448
+ # execution_role_arns: ["RoleArn"],
9449
+ # },
9377
9450
  # },
9378
9451
  # space_storage_settings: {
9379
9452
  # default_ebs_storage_settings: {
@@ -9396,7 +9469,7 @@ module Aws::SageMaker
9396
9469
  # },
9397
9470
  # ],
9398
9471
  # studio_web_portal_settings: {
9399
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
9472
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
9400
9473
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
9401
9474
  # },
9402
9475
  # },
@@ -11765,6 +11838,7 @@ module Aws::SageMaker
11765
11838
  # * {Types::DescribeAutoMLJobV2Response#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
11766
11839
  # * {Types::DescribeAutoMLJobV2Response#data_split_config #data_split_config} => Types::AutoMLDataSplitConfig
11767
11840
  # * {Types::DescribeAutoMLJobV2Response#security_config #security_config} => Types::AutoMLSecurityConfig
11841
+ # * {Types::DescribeAutoMLJobV2Response#auto_ml_compute_config #auto_ml_compute_config} => Types::AutoMLComputeConfig
11768
11842
  #
11769
11843
  # @example Request syntax with placeholder values
11770
11844
  #
@@ -11897,6 +11971,7 @@ module Aws::SageMaker
11897
11971
  # resp.security_config.vpc_config.security_group_ids[0] #=> String
11898
11972
  # resp.security_config.vpc_config.subnets #=> Array
11899
11973
  # resp.security_config.vpc_config.subnets[0] #=> String
11974
+ # resp.auto_ml_compute_config.emr_serverless_compute_config.execution_role_arn #=> String
11900
11975
  #
11901
11976
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
11902
11977
  #
@@ -12496,6 +12571,8 @@ module Aws::SageMaker
12496
12571
  # resp.default_user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
12497
12572
  # resp.default_user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
12498
12573
  # resp.default_user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
12574
+ # resp.default_user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
12575
+ # resp.default_user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
12499
12576
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
12500
12577
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
12501
12578
  # resp.default_user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
@@ -12520,6 +12597,10 @@ module Aws::SageMaker
12520
12597
  # resp.default_user_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
12521
12598
  # resp.default_user_settings.jupyter_lab_app_settings.code_repositories #=> Array
12522
12599
  # resp.default_user_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
12600
+ # resp.default_user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
12601
+ # resp.default_user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
12602
+ # resp.default_user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
12603
+ # resp.default_user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
12523
12604
  # resp.default_user_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
12524
12605
  # resp.default_user_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
12525
12606
  # resp.default_user_settings.default_landing_uri #=> String
@@ -12530,7 +12611,7 @@ module Aws::SageMaker
12530
12611
  # resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
12531
12612
  # resp.default_user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
12532
12613
  # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
12533
- # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
12614
+ # resp.default_user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
12534
12615
  # resp.default_user_settings.studio_web_portal_settings.hidden_app_types #=> Array
12535
12616
  # resp.default_user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
12536
12617
  # resp.domain_settings.security_group_ids #=> Array
@@ -12593,6 +12674,10 @@ module Aws::SageMaker
12593
12674
  # resp.default_space_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
12594
12675
  # resp.default_space_settings.jupyter_lab_app_settings.code_repositories #=> Array
12595
12676
  # resp.default_space_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
12677
+ # resp.default_space_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
12678
+ # resp.default_space_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
12679
+ # resp.default_space_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
12680
+ # resp.default_space_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
12596
12681
  # resp.default_space_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
12597
12682
  # resp.default_space_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
12598
12683
  # resp.default_space_settings.custom_posix_user_config.uid #=> Integer
@@ -16573,6 +16658,8 @@ module Aws::SageMaker
16573
16658
  # resp.user_settings.canvas_app_settings.direct_deploy_settings.status #=> String, one of "ENABLED", "DISABLED"
16574
16659
  # resp.user_settings.canvas_app_settings.kendra_settings.status #=> String, one of "ENABLED", "DISABLED"
16575
16660
  # resp.user_settings.canvas_app_settings.generative_ai_settings.amazon_bedrock_role_arn #=> String
16661
+ # resp.user_settings.canvas_app_settings.emr_serverless_settings.execution_role_arn #=> String
16662
+ # resp.user_settings.canvas_app_settings.emr_serverless_settings.status #=> String, one of "ENABLED", "DISABLED"
16576
16663
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_arn #=> String
16577
16664
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
16578
16665
  # resp.user_settings.code_editor_app_settings.default_resource_spec.sage_maker_image_version_alias #=> String
@@ -16597,6 +16684,10 @@ module Aws::SageMaker
16597
16684
  # resp.user_settings.jupyter_lab_app_settings.lifecycle_config_arns[0] #=> String
16598
16685
  # resp.user_settings.jupyter_lab_app_settings.code_repositories #=> Array
16599
16686
  # resp.user_settings.jupyter_lab_app_settings.code_repositories[0].repository_url #=> String
16687
+ # resp.user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns #=> Array
16688
+ # resp.user_settings.jupyter_lab_app_settings.emr_settings.assumable_role_arns[0] #=> String
16689
+ # resp.user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns #=> Array
16690
+ # resp.user_settings.jupyter_lab_app_settings.emr_settings.execution_role_arns[0] #=> String
16600
16691
  # resp.user_settings.space_storage_settings.default_ebs_storage_settings.default_ebs_volume_size_in_gb #=> Integer
16601
16692
  # resp.user_settings.space_storage_settings.default_ebs_storage_settings.maximum_ebs_volume_size_in_gb #=> Integer
16602
16693
  # resp.user_settings.default_landing_uri #=> String
@@ -16607,7 +16698,7 @@ module Aws::SageMaker
16607
16698
  # resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_id #=> String
16608
16699
  # resp.user_settings.custom_file_system_configs[0].efs_file_system_config.file_system_path #=> String
16609
16700
  # resp.user_settings.studio_web_portal_settings.hidden_ml_tools #=> Array
16610
- # resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects"
16701
+ # resp.user_settings.studio_web_portal_settings.hidden_ml_tools[0] #=> String, one of "DataWrangler", "FeatureStore", "EmrClusters", "AutoMl", "Experiments", "Training", "ModelEvaluation", "Pipelines", "Models", "JumpStart", "InferenceRecommender", "Endpoints", "Projects", "InferenceOptimization"
16611
16702
  # resp.user_settings.studio_web_portal_settings.hidden_app_types #=> Array
16612
16703
  # resp.user_settings.studio_web_portal_settings.hidden_app_types[0] #=> String, one of "JupyterServer", "KernelGateway", "DetailedProfiler", "TensorBoard", "CodeEditor", "JupyterLab", "RStudioServerPro", "RSessionGateway", "Canvas"
16613
16704
  #
@@ -24928,6 +25019,10 @@ module Aws::SageMaker
24928
25019
  # generative_ai_settings: {
24929
25020
  # amazon_bedrock_role_arn: "RoleArn",
24930
25021
  # },
25022
+ # emr_serverless_settings: {
25023
+ # execution_role_arn: "RoleArn",
25024
+ # status: "ENABLED", # accepts ENABLED, DISABLED
25025
+ # },
24931
25026
  # },
24932
25027
  # code_editor_app_settings: {
24933
25028
  # default_resource_spec: {
@@ -24967,6 +25062,10 @@ module Aws::SageMaker
24967
25062
  # repository_url: "RepositoryUrl", # required
24968
25063
  # },
24969
25064
  # ],
25065
+ # emr_settings: {
25066
+ # assumable_role_arns: ["RoleArn"],
25067
+ # execution_role_arns: ["RoleArn"],
25068
+ # },
24970
25069
  # },
24971
25070
  # space_storage_settings: {
24972
25071
  # default_ebs_storage_settings: {
@@ -24989,7 +25088,7 @@ module Aws::SageMaker
24989
25088
  # },
24990
25089
  # ],
24991
25090
  # studio_web_portal_settings: {
24992
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
25091
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
24993
25092
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
24994
25093
  # },
24995
25094
  # },
@@ -25074,6 +25173,10 @@ module Aws::SageMaker
25074
25173
  # repository_url: "RepositoryUrl", # required
25075
25174
  # },
25076
25175
  # ],
25176
+ # emr_settings: {
25177
+ # assumable_role_arns: ["RoleArn"],
25178
+ # execution_role_arns: ["RoleArn"],
25179
+ # },
25077
25180
  # },
25078
25181
  # space_storage_settings: {
25079
25182
  # default_ebs_storage_settings: {
@@ -27135,6 +27238,10 @@ module Aws::SageMaker
27135
27238
  # generative_ai_settings: {
27136
27239
  # amazon_bedrock_role_arn: "RoleArn",
27137
27240
  # },
27241
+ # emr_serverless_settings: {
27242
+ # execution_role_arn: "RoleArn",
27243
+ # status: "ENABLED", # accepts ENABLED, DISABLED
27244
+ # },
27138
27245
  # },
27139
27246
  # code_editor_app_settings: {
27140
27247
  # default_resource_spec: {
@@ -27174,6 +27281,10 @@ module Aws::SageMaker
27174
27281
  # repository_url: "RepositoryUrl", # required
27175
27282
  # },
27176
27283
  # ],
27284
+ # emr_settings: {
27285
+ # assumable_role_arns: ["RoleArn"],
27286
+ # execution_role_arns: ["RoleArn"],
27287
+ # },
27177
27288
  # },
27178
27289
  # space_storage_settings: {
27179
27290
  # default_ebs_storage_settings: {
@@ -27196,7 +27307,7 @@ module Aws::SageMaker
27196
27307
  # },
27197
27308
  # ],
27198
27309
  # studio_web_portal_settings: {
27199
- # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects
27310
+ # hidden_ml_tools: ["DataWrangler"], # accepts DataWrangler, FeatureStore, EmrClusters, AutoMl, Experiments, Training, ModelEvaluation, Pipelines, Models, JumpStart, InferenceRecommender, Endpoints, Projects, InferenceOptimization
27200
27311
  # hidden_app_types: ["JupyterServer"], # accepts JupyterServer, KernelGateway, DetailedProfiler, TensorBoard, CodeEditor, JupyterLab, RStudioServerPro, RSessionGateway, Canvas
27201
27312
  # },
27202
27313
  # },
@@ -27478,7 +27589,7 @@ module Aws::SageMaker
27478
27589
  params: params,
27479
27590
  config: config)
27480
27591
  context[:gem_name] = 'aws-sdk-sagemaker'
27481
- context[:gem_version] = '1.254.0'
27592
+ context[:gem_version] = '1.256.0'
27482
27593
  Seahorse::Client::Request.new(handlers, context)
27483
27594
  end
27484
27595
 
@@ -91,6 +91,7 @@ module Aws::SageMaker
91
91
  AssociationEntityArn = Shapes::StringShape.new(name: 'AssociationEntityArn')
92
92
  AssociationSummaries = Shapes::ListShape.new(name: 'AssociationSummaries')
93
93
  AssociationSummary = Shapes::StructureShape.new(name: 'AssociationSummary')
94
+ AssumableRoleArns = Shapes::ListShape.new(name: 'AssumableRoleArns')
94
95
  AsyncInferenceClientConfig = Shapes::StructureShape.new(name: 'AsyncInferenceClientConfig')
95
96
  AsyncInferenceConfig = Shapes::StructureShape.new(name: 'AsyncInferenceConfig')
96
97
  AsyncInferenceNotificationConfig = Shapes::StructureShape.new(name: 'AsyncInferenceNotificationConfig')
@@ -121,6 +122,7 @@ module Aws::SageMaker
121
122
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
122
123
  AutoMLChannel = Shapes::StructureShape.new(name: 'AutoMLChannel')
123
124
  AutoMLChannelType = Shapes::StringShape.new(name: 'AutoMLChannelType')
125
+ AutoMLComputeConfig = Shapes::StructureShape.new(name: 'AutoMLComputeConfig')
124
126
  AutoMLContainerDefinition = Shapes::StructureShape.new(name: 'AutoMLContainerDefinition')
125
127
  AutoMLContainerDefinitions = Shapes::ListShape.new(name: 'AutoMLContainerDefinitions')
126
128
  AutoMLDataSource = Shapes::StructureShape.new(name: 'AutoMLDataSource')
@@ -808,6 +810,9 @@ module Aws::SageMaker
808
810
  EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
809
811
  Edges = Shapes::ListShape.new(name: 'Edges')
810
812
  EfsUid = Shapes::StringShape.new(name: 'EfsUid')
813
+ EmrServerlessComputeConfig = Shapes::StructureShape.new(name: 'EmrServerlessComputeConfig')
814
+ EmrServerlessSettings = Shapes::StructureShape.new(name: 'EmrServerlessSettings')
815
+ EmrSettings = Shapes::StructureShape.new(name: 'EmrSettings')
811
816
  EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
812
817
  EnableInfraCheck = Shapes::BooleanShape.new(name: 'EnableInfraCheck')
813
818
  EnableIotRoleAlias = Shapes::BooleanShape.new(name: 'EnableIotRoleAlias')
@@ -848,6 +853,7 @@ module Aws::SageMaker
848
853
  EnvironmentParameters = Shapes::ListShape.new(name: 'EnvironmentParameters')
849
854
  EnvironmentValue = Shapes::StringShape.new(name: 'EnvironmentValue')
850
855
  ExcludeFeaturesAttribute = Shapes::StringShape.new(name: 'ExcludeFeaturesAttribute')
856
+ ExecutionRoleArns = Shapes::ListShape.new(name: 'ExecutionRoleArns')
851
857
  ExecutionRoleIdentityConfig = Shapes::StringShape.new(name: 'ExecutionRoleIdentityConfig')
852
858
  ExecutionStatus = Shapes::StringShape.new(name: 'ExecutionStatus')
853
859
  ExitMessage = Shapes::StringShape.new(name: 'ExitMessage')
@@ -2544,6 +2550,8 @@ module Aws::SageMaker
2544
2550
  AssociationSummary.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
2545
2551
  AssociationSummary.struct_class = Types::AssociationSummary
2546
2552
 
2553
+ AssumableRoleArns.member = Shapes::ShapeRef.new(shape: RoleArn)
2554
+
2547
2555
  AsyncInferenceClientConfig.add_member(:max_concurrent_invocations_per_instance, Shapes::ShapeRef.new(shape: MaxConcurrentInvocationsPerInstance, location_name: "MaxConcurrentInvocationsPerInstance"))
2548
2556
  AsyncInferenceClientConfig.struct_class = Types::AsyncInferenceClientConfig
2549
2557
 
@@ -2619,6 +2627,9 @@ module Aws::SageMaker
2619
2627
  AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
2620
2628
  AutoMLChannel.struct_class = Types::AutoMLChannel
2621
2629
 
2630
+ AutoMLComputeConfig.add_member(:emr_serverless_compute_config, Shapes::ShapeRef.new(shape: EmrServerlessComputeConfig, location_name: "EmrServerlessComputeConfig"))
2631
+ AutoMLComputeConfig.struct_class = Types::AutoMLComputeConfig
2632
+
2622
2633
  AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
2623
2634
  AutoMLContainerDefinition.add_member(:model_data_url, Shapes::ShapeRef.new(shape: Url, required: true, location_name: "ModelDataUrl"))
2624
2635
  AutoMLContainerDefinition.add_member(:environment, Shapes::ShapeRef.new(shape: EnvironmentMap, location_name: "Environment"))
@@ -2822,6 +2833,7 @@ module Aws::SageMaker
2822
2833
  CanvasAppSettings.add_member(:direct_deploy_settings, Shapes::ShapeRef.new(shape: DirectDeploySettings, location_name: "DirectDeploySettings"))
2823
2834
  CanvasAppSettings.add_member(:kendra_settings, Shapes::ShapeRef.new(shape: KendraSettings, location_name: "KendraSettings"))
2824
2835
  CanvasAppSettings.add_member(:generative_ai_settings, Shapes::ShapeRef.new(shape: GenerativeAiSettings, location_name: "GenerativeAiSettings"))
2836
+ CanvasAppSettings.add_member(:emr_serverless_settings, Shapes::ShapeRef.new(shape: EmrServerlessSettings, location_name: "EmrServerlessSettings"))
2825
2837
  CanvasAppSettings.struct_class = Types::CanvasAppSettings
2826
2838
 
2827
2839
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -3216,6 +3228,7 @@ module Aws::SageMaker
3216
3228
  CreateAutoMLJobV2Request.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
3217
3229
  CreateAutoMLJobV2Request.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
3218
3230
  CreateAutoMLJobV2Request.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
3231
+ CreateAutoMLJobV2Request.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
3219
3232
  CreateAutoMLJobV2Request.struct_class = Types::CreateAutoMLJobV2Request
3220
3233
 
3221
3234
  CreateAutoMLJobV2Response.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -4421,6 +4434,7 @@ module Aws::SageMaker
4421
4434
  DescribeAutoMLJobV2Response.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
4422
4435
  DescribeAutoMLJobV2Response.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
4423
4436
  DescribeAutoMLJobV2Response.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
4437
+ DescribeAutoMLJobV2Response.add_member(:auto_ml_compute_config, Shapes::ShapeRef.new(shape: AutoMLComputeConfig, location_name: "AutoMLComputeConfig"))
4424
4438
  DescribeAutoMLJobV2Response.struct_class = Types::DescribeAutoMLJobV2Response
4425
4439
 
4426
4440
  DescribeClusterNodeRequest.add_member(:cluster_name, Shapes::ShapeRef.new(shape: ClusterNameOrArn, required: true, location_name: "ClusterName"))
@@ -5646,6 +5660,17 @@ module Aws::SageMaker
5646
5660
 
5647
5661
  Edges.member = Shapes::ShapeRef.new(shape: Edge)
5648
5662
 
5663
+ EmrServerlessComputeConfig.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "ExecutionRoleARN"))
5664
+ EmrServerlessComputeConfig.struct_class = Types::EmrServerlessComputeConfig
5665
+
5666
+ EmrServerlessSettings.add_member(:execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "ExecutionRoleArn"))
5667
+ EmrServerlessSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
5668
+ EmrServerlessSettings.struct_class = Types::EmrServerlessSettings
5669
+
5670
+ EmrSettings.add_member(:assumable_role_arns, Shapes::ShapeRef.new(shape: AssumableRoleArns, location_name: "AssumableRoleArns"))
5671
+ EmrSettings.add_member(:execution_role_arns, Shapes::ShapeRef.new(shape: ExecutionRoleArns, location_name: "ExecutionRoleArns"))
5672
+ EmrSettings.struct_class = Types::EmrSettings
5673
+
5649
5674
  EnableSagemakerServicecatalogPortfolioInput.struct_class = Types::EnableSagemakerServicecatalogPortfolioInput
5650
5675
 
5651
5676
  EnableSagemakerServicecatalogPortfolioOutput.struct_class = Types::EnableSagemakerServicecatalogPortfolioOutput
@@ -5738,6 +5763,8 @@ module Aws::SageMaker
5738
5763
 
5739
5764
  EnvironmentParameters.member = Shapes::ShapeRef.new(shape: EnvironmentParameter)
5740
5765
 
5766
+ ExecutionRoleArns.member = Shapes::ShapeRef.new(shape: RoleArn)
5767
+
5741
5768
  Experiment.add_member(:experiment_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "ExperimentName"))
5742
5769
  Experiment.add_member(:experiment_arn, Shapes::ShapeRef.new(shape: ExperimentArn, location_name: "ExperimentArn"))
5743
5770
  Experiment.add_member(:display_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "DisplayName"))
@@ -6441,6 +6468,7 @@ module Aws::SageMaker
6441
6468
  JupyterLabAppSettings.add_member(:custom_images, Shapes::ShapeRef.new(shape: CustomImages, location_name: "CustomImages"))
6442
6469
  JupyterLabAppSettings.add_member(:lifecycle_config_arns, Shapes::ShapeRef.new(shape: LifecycleConfigArns, location_name: "LifecycleConfigArns"))
6443
6470
  JupyterLabAppSettings.add_member(:code_repositories, Shapes::ShapeRef.new(shape: CodeRepositories, location_name: "CodeRepositories"))
6471
+ JupyterLabAppSettings.add_member(:emr_settings, Shapes::ShapeRef.new(shape: EmrSettings, location_name: "EmrSettings"))
6444
6472
  JupyterLabAppSettings.struct_class = Types::JupyterLabAppSettings
6445
6473
 
6446
6474
  JupyterServerAppSettings.add_member(:default_resource_spec, Shapes::ShapeRef.new(shape: ResourceSpec, location_name: "DefaultResourceSpec"))
@@ -8665,7 +8693,7 @@ module Aws::SageMaker
8665
8693
  ProcessingS3Input.struct_class = Types::ProcessingS3Input
8666
8694
 
8667
8695
  ProcessingS3Output.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
8668
- ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, required: true, location_name: "LocalPath"))
8696
+ ProcessingS3Output.add_member(:local_path, Shapes::ShapeRef.new(shape: ProcessingLocalPath, location_name: "LocalPath"))
8669
8697
  ProcessingS3Output.add_member(:s3_upload_mode, Shapes::ShapeRef.new(shape: ProcessingS3UploadMode, required: true, location_name: "S3UploadMode"))
8670
8698
  ProcessingS3Output.struct_class = Types::ProcessingS3Output
8671
8699
 
@@ -2082,6 +2082,46 @@ module Aws::SageMaker
2082
2082
  include Aws::Structure
2083
2083
  end
2084
2084
 
2085
+ # <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
2086
+ # cannot be used in other contexts at the moment.
2087
+ #
2088
+ # </note>
2089
+ #
2090
+ # Specifies the compute configuration for an AutoML job V2.
2091
+ #
2092
+ # @!attribute [rw] emr_serverless_compute_config
2093
+ # The configuration for using [ EMR Serverless][1] to run the AutoML
2094
+ # job V2.
2095
+ #
2096
+ # To allow your AutoML job V2 to automatically initiate a remote job
2097
+ # on EMR Serverless when additional compute resources are needed to
2098
+ # process large datasets, you need to provide an
2099
+ # `EmrServerlessComputeConfig` object, which includes an
2100
+ # `ExecutionRoleARN` attribute, to the `AutoMLComputeConfig` of the
2101
+ # AutoML job V2 input request.
2102
+ #
2103
+ # By seamlessly transitioning to EMR Serverless when required, the
2104
+ # AutoML job can handle datasets that would otherwise exceed the
2105
+ # initially provisioned resources, without any manual intervention
2106
+ # from you.
2107
+ #
2108
+ # EMR Serverless is available for the tabular and time series problem
2109
+ # types. We recommend setting up this option for tabular datasets
2110
+ # larger than 5 GB and time series datasets larger than 30 GB.
2111
+ #
2112
+ #
2113
+ #
2114
+ # [1]: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
2115
+ # @return [Types::EmrServerlessComputeConfig]
2116
+ #
2117
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLComputeConfig AWS API Documentation
2118
+ #
2119
+ class AutoMLComputeConfig < Struct.new(
2120
+ :emr_serverless_compute_config)
2121
+ SENSITIVE = []
2122
+ include Aws::Structure
2123
+ end
2124
+
2085
2125
  # A list of container definitions that describe the different containers
2086
2126
  # that make up an AutoML candidate. For more information, see [
2087
2127
  # ContainerDefinition][1].
@@ -2520,7 +2560,7 @@ module Aws::SageMaker
2520
2560
  # @return [String]
2521
2561
  #
2522
2562
  # @!attribute [rw] s3_output_path
2523
- # The Amazon S3 output path. Must be 128 characters or less.
2563
+ # The Amazon S3 output path. Must be 512 characters or less.
2524
2564
  # @return [String]
2525
2565
  #
2526
2566
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLOutputDataConfig AWS API Documentation
@@ -3331,6 +3371,11 @@ module Aws::SageMaker
3331
3371
  # The generative AI settings for the SageMaker Canvas application.
3332
3372
  # @return [Types::GenerativeAiSettings]
3333
3373
  #
3374
+ # @!attribute [rw] emr_serverless_settings
3375
+ # The settings for running Amazon EMR Serverless data processing jobs
3376
+ # in SageMaker Canvas.
3377
+ # @return [Types::EmrServerlessSettings]
3378
+ #
3334
3379
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CanvasAppSettings AWS API Documentation
3335
3380
  #
3336
3381
  class CanvasAppSettings < Struct.new(
@@ -3340,7 +3385,8 @@ module Aws::SageMaker
3340
3385
  :identity_provider_o_auth_settings,
3341
3386
  :direct_deploy_settings,
3342
3387
  :kendra_settings,
3343
- :generative_ai_settings)
3388
+ :generative_ai_settings,
3389
+ :emr_serverless_settings)
3344
3390
  SENSITIVE = []
3345
3391
  include Aws::Structure
3346
3392
  end
@@ -5603,6 +5649,10 @@ module Aws::SageMaker
5603
5649
  # </note>
5604
5650
  # @return [Types::AutoMLDataSplitConfig]
5605
5651
  #
5652
+ # @!attribute [rw] auto_ml_compute_config
5653
+ # Specifies the compute configuration for the AutoML job V2.
5654
+ # @return [Types::AutoMLComputeConfig]
5655
+ #
5606
5656
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
5607
5657
  #
5608
5658
  class CreateAutoMLJobV2Request < Struct.new(
@@ -5615,7 +5665,8 @@ module Aws::SageMaker
5615
5665
  :security_config,
5616
5666
  :auto_ml_job_objective,
5617
5667
  :model_deploy_config,
5618
- :data_split_config)
5668
+ :data_split_config,
5669
+ :auto_ml_compute_config)
5619
5670
  SENSITIVE = []
5620
5671
  include Aws::Structure
5621
5672
  end
@@ -12620,6 +12671,10 @@ module Aws::SageMaker
12620
12671
  # VPC settings.
12621
12672
  # @return [Types::AutoMLSecurityConfig]
12622
12673
  #
12674
+ # @!attribute [rw] auto_ml_compute_config
12675
+ # The compute configuration used for the AutoML job V2.
12676
+ # @return [Types::AutoMLComputeConfig]
12677
+ #
12623
12678
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2Response AWS API Documentation
12624
12679
  #
12625
12680
  class DescribeAutoMLJobV2Response < Struct.new(
@@ -12644,7 +12699,8 @@ module Aws::SageMaker
12644
12699
  :model_deploy_config,
12645
12700
  :model_deploy_result,
12646
12701
  :data_split_config,
12647
- :security_config)
12702
+ :security_config,
12703
+ :auto_ml_compute_config)
12648
12704
  SENSITIVE = []
12649
12705
  include Aws::Structure
12650
12706
  end
@@ -19302,6 +19358,99 @@ module Aws::SageMaker
19302
19358
  include Aws::Structure
19303
19359
  end
19304
19360
 
19361
+ # <note markdown="1"> This data type is intended for use exclusively by SageMaker Canvas and
19362
+ # cannot be used in other contexts at the moment.
19363
+ #
19364
+ # </note>
19365
+ #
19366
+ # Specifies the compute configuration for the EMR Serverless job.
19367
+ #
19368
+ # @!attribute [rw] execution_role_arn
19369
+ # The ARN of the IAM role granting the AutoML job V2 the necessary
19370
+ # permissions access policies to list, connect to, or manage EMR
19371
+ # Serverless jobs. For detailed information about the required
19372
+ # permissions of this role, see "How to configure AutoML to initiate
19373
+ # a remote job on EMR Serverless for large datasets" in [Create a
19374
+ # regression or classification job for tabular data using the AutoML
19375
+ # API][1] or [Create an AutoML job for time-series forecasting using
19376
+ # the API][2].
19377
+ #
19378
+ #
19379
+ #
19380
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html
19381
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params
19382
+ # @return [String]
19383
+ #
19384
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessComputeConfig AWS API Documentation
19385
+ #
19386
+ class EmrServerlessComputeConfig < Struct.new(
19387
+ :execution_role_arn)
19388
+ SENSITIVE = []
19389
+ include Aws::Structure
19390
+ end
19391
+
19392
+ # The settings for running Amazon EMR Serverless jobs in SageMaker
19393
+ # Canvas.
19394
+ #
19395
+ # @!attribute [rw] execution_role_arn
19396
+ # The Amazon Resource Name (ARN) of the Amazon Web Services IAM role
19397
+ # that is assumed for running Amazon EMR Serverless jobs in SageMaker
19398
+ # Canvas. This role should have the necessary permissions to read and
19399
+ # write data attached and a trust relationship with EMR Serverless.
19400
+ # @return [String]
19401
+ #
19402
+ # @!attribute [rw] status
19403
+ # Describes whether Amazon EMR Serverless job capabilities are enabled
19404
+ # or disabled in the SageMaker Canvas application.
19405
+ # @return [String]
19406
+ #
19407
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrServerlessSettings AWS API Documentation
19408
+ #
19409
+ class EmrServerlessSettings < Struct.new(
19410
+ :execution_role_arn,
19411
+ :status)
19412
+ SENSITIVE = []
19413
+ include Aws::Structure
19414
+ end
19415
+
19416
+ # The configuration parameters that specify the IAM roles assumed by the
19417
+ # execution role of SageMaker (assumable roles) and the cluster
19418
+ # instances or job execution environments (execution roles or runtime
19419
+ # roles) to manage and access resources required for running Amazon EMR
19420
+ # clusters or Amazon EMR Serverless applications.
19421
+ #
19422
+ # @!attribute [rw] assumable_role_arns
19423
+ # An array of Amazon Resource Names (ARNs) of the IAM roles that the
19424
+ # execution role of SageMaker can assume for performing operations or
19425
+ # tasks related to Amazon EMR clusters or Amazon EMR Serverless
19426
+ # applications. These roles define the permissions and access policies
19427
+ # required when performing Amazon EMR-related operations, such as
19428
+ # listing, connecting to, or terminating Amazon EMR clusters or Amazon
19429
+ # EMR Serverless applications. They are typically used in
19430
+ # cross-account access scenarios, where the Amazon EMR resources
19431
+ # (clusters or serverless applications) are located in a different
19432
+ # Amazon Web Services account than the SageMaker domain.
19433
+ # @return [Array<String>]
19434
+ #
19435
+ # @!attribute [rw] execution_role_arns
19436
+ # An array of Amazon Resource Names (ARNs) of the IAM roles used by
19437
+ # the Amazon EMR cluster instances or job execution environments to
19438
+ # access other Amazon Web Services services and resources needed
19439
+ # during the runtime of your Amazon EMR or Amazon EMR Serverless
19440
+ # workloads, such as Amazon S3 for data access, Amazon CloudWatch for
19441
+ # logging, or other Amazon Web Services services based on the
19442
+ # particular workload requirements.
19443
+ # @return [Array<String>]
19444
+ #
19445
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EmrSettings AWS API Documentation
19446
+ #
19447
+ class EmrSettings < Struct.new(
19448
+ :assumable_role_arns,
19449
+ :execution_role_arns)
19450
+ SENSITIVE = []
19451
+ include Aws::Structure
19452
+ end
19453
+
19305
19454
  # @api private
19306
19455
  #
19307
19456
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EnableSagemakerServicecatalogPortfolioInput AWS API Documentation
@@ -24841,13 +24990,22 @@ module Aws::SageMaker
24841
24990
  # users for cloning in the JupyterLab application.
24842
24991
  # @return [Array<Types::CodeRepository>]
24843
24992
  #
24993
+ # @!attribute [rw] emr_settings
24994
+ # The configuration parameters that specify the IAM roles assumed by
24995
+ # the execution role of SageMaker (assumable roles) and the cluster
24996
+ # instances or job execution environments (execution roles or runtime
24997
+ # roles) to manage and access resources required for running Amazon
24998
+ # EMR clusters or Amazon EMR Serverless applications.
24999
+ # @return [Types::EmrSettings]
25000
+ #
24844
25001
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterLabAppSettings AWS API Documentation
24845
25002
  #
24846
25003
  class JupyterLabAppSettings < Struct.new(
24847
25004
  :default_resource_spec,
24848
25005
  :custom_images,
24849
25006
  :lifecycle_config_arns,
24850
- :code_repositories)
25007
+ :code_repositories,
25008
+ :emr_settings)
24851
25009
  SENSITIVE = []
24852
25010
  include Aws::Structure
24853
25011
  end
@@ -36966,6 +37124,18 @@ module Aws::SageMaker
36966
37124
  # environment is compatible with specific software requirements, such
36967
37125
  # as CUDA driver versions, Linux kernel versions, or Amazon Web
36968
37126
  # Services Neuron driver versions.
37127
+ #
37128
+ # The AMI version names, and their configurations, are the following:
37129
+ #
37130
+ # al2-ami-sagemaker-inference-gpu-2
37131
+ # : * Accelerator: GPU
37132
+ #
37133
+ # * NVIDIA driver version: 535.54.03
37134
+ #
37135
+ # * CUDA driver version: 12.2
37136
+ #
37137
+ # * Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*,
37138
+ # ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
36969
37139
  # @return [String]
36970
37140
  #
36971
37141
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.254.0'
56
+ GEM_VERSION = '1.256.0'
57
57
 
58
58
  end
data/sig/client.rbs CHANGED
@@ -678,6 +678,11 @@ module Aws
678
678
  },
679
679
  ?data_split_config: {
680
680
  validation_fraction: ::Float?
681
+ },
682
+ ?auto_ml_compute_config: {
683
+ emr_serverless_compute_config: {
684
+ execution_role_arn: ::String
685
+ }?
681
686
  }
682
687
  ) -> _CreateAutoMLJobV2ResponseSuccess
683
688
  | (Hash[Symbol, untyped] params, ?Hash[Symbol, untyped] options) -> _CreateAutoMLJobV2ResponseSuccess
@@ -1041,6 +1046,10 @@ module Aws
1041
1046
  }?,
1042
1047
  generative_ai_settings: {
1043
1048
  amazon_bedrock_role_arn: ::String?
1049
+ }?,
1050
+ emr_serverless_settings: {
1051
+ execution_role_arn: ::String?,
1052
+ status: ("ENABLED" | "DISABLED")?
1044
1053
  }?
1045
1054
  }?,
1046
1055
  code_editor_app_settings: {
@@ -1080,7 +1089,11 @@ module Aws
1080
1089
  {
1081
1090
  repository_url: ::String
1082
1091
  },
1083
- ]?
1092
+ ]?,
1093
+ emr_settings: {
1094
+ assumable_role_arns: Array[::String]?,
1095
+ execution_role_arns: Array[::String]?
1096
+ }?
1084
1097
  }?,
1085
1098
  space_storage_settings: {
1086
1099
  default_ebs_storage_settings: {
@@ -1103,7 +1116,7 @@ module Aws
1103
1116
  },
1104
1117
  ]?,
1105
1118
  studio_web_portal_settings: {
1106
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
1119
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
1107
1120
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
1108
1121
  }?
1109
1122
  },
@@ -1198,7 +1211,11 @@ module Aws
1198
1211
  {
1199
1212
  repository_url: ::String
1200
1213
  },
1201
- ]?
1214
+ ]?,
1215
+ emr_settings: {
1216
+ assumable_role_arns: Array[::String]?,
1217
+ execution_role_arns: Array[::String]?
1218
+ }?
1202
1219
  }?,
1203
1220
  space_storage_settings: {
1204
1221
  default_ebs_storage_settings: {
@@ -3475,7 +3492,7 @@ module Aws
3475
3492
  output_name: ::String,
3476
3493
  s3_output: {
3477
3494
  s3_uri: ::String,
3478
- local_path: ::String,
3495
+ local_path: ::String?,
3479
3496
  s3_upload_mode: ("Continuous" | "EndOfJob")
3480
3497
  }?,
3481
3498
  feature_store_output: {
@@ -4072,6 +4089,10 @@ module Aws
4072
4089
  }?,
4073
4090
  generative_ai_settings: {
4074
4091
  amazon_bedrock_role_arn: ::String?
4092
+ }?,
4093
+ emr_serverless_settings: {
4094
+ execution_role_arn: ::String?,
4095
+ status: ("ENABLED" | "DISABLED")?
4075
4096
  }?
4076
4097
  }?,
4077
4098
  code_editor_app_settings: {
@@ -4111,7 +4132,11 @@ module Aws
4111
4132
  {
4112
4133
  repository_url: ::String
4113
4134
  },
4114
- ]?
4135
+ ]?,
4136
+ emr_settings: {
4137
+ assumable_role_arns: Array[::String]?,
4138
+ execution_role_arns: Array[::String]?
4139
+ }?
4115
4140
  }?,
4116
4141
  space_storage_settings: {
4117
4142
  default_ebs_storage_settings: {
@@ -4134,7 +4159,7 @@ module Aws
4134
4159
  },
4135
4160
  ]?,
4136
4161
  studio_web_portal_settings: {
4137
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
4162
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
4138
4163
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
4139
4164
  }?
4140
4165
  }
@@ -4794,6 +4819,7 @@ module Aws
4794
4819
  def model_deploy_result: () -> Types::ModelDeployResult
4795
4820
  def data_split_config: () -> Types::AutoMLDataSplitConfig
4796
4821
  def security_config: () -> Types::AutoMLSecurityConfig
4822
+ def auto_ml_compute_config: () -> Types::AutoMLComputeConfig
4797
4823
  end
4798
4824
  # https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SageMaker/Client.html#describe_auto_ml_job_v2-instance_method
4799
4825
  def describe_auto_ml_job_v2: (
@@ -8170,6 +8196,10 @@ module Aws
8170
8196
  }?,
8171
8197
  generative_ai_settings: {
8172
8198
  amazon_bedrock_role_arn: ::String?
8199
+ }?,
8200
+ emr_serverless_settings: {
8201
+ execution_role_arn: ::String?,
8202
+ status: ("ENABLED" | "DISABLED")?
8173
8203
  }?
8174
8204
  }?,
8175
8205
  code_editor_app_settings: {
@@ -8209,7 +8239,11 @@ module Aws
8209
8239
  {
8210
8240
  repository_url: ::String
8211
8241
  },
8212
- ]?
8242
+ ]?,
8243
+ emr_settings: {
8244
+ assumable_role_arns: Array[::String]?,
8245
+ execution_role_arns: Array[::String]?
8246
+ }?
8213
8247
  }?,
8214
8248
  space_storage_settings: {
8215
8249
  default_ebs_storage_settings: {
@@ -8232,7 +8266,7 @@ module Aws
8232
8266
  },
8233
8267
  ]?,
8234
8268
  studio_web_portal_settings: {
8235
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
8269
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
8236
8270
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
8237
8271
  }?
8238
8272
  },
@@ -8316,7 +8350,11 @@ module Aws
8316
8350
  {
8317
8351
  repository_url: ::String
8318
8352
  },
8319
- ]?
8353
+ ]?,
8354
+ emr_settings: {
8355
+ assumable_role_arns: Array[::String]?,
8356
+ execution_role_arns: Array[::String]?
8357
+ }?
8320
8358
  }?,
8321
8359
  space_storage_settings: {
8322
8360
  default_ebs_storage_settings: {
@@ -9237,6 +9275,10 @@ module Aws
9237
9275
  }?,
9238
9276
  generative_ai_settings: {
9239
9277
  amazon_bedrock_role_arn: ::String?
9278
+ }?,
9279
+ emr_serverless_settings: {
9280
+ execution_role_arn: ::String?,
9281
+ status: ("ENABLED" | "DISABLED")?
9240
9282
  }?
9241
9283
  }?,
9242
9284
  code_editor_app_settings: {
@@ -9276,7 +9318,11 @@ module Aws
9276
9318
  {
9277
9319
  repository_url: ::String
9278
9320
  },
9279
- ]?
9321
+ ]?,
9322
+ emr_settings: {
9323
+ assumable_role_arns: Array[::String]?,
9324
+ execution_role_arns: Array[::String]?
9325
+ }?
9280
9326
  }?,
9281
9327
  space_storage_settings: {
9282
9328
  default_ebs_storage_settings: {
@@ -9299,7 +9345,7 @@ module Aws
9299
9345
  },
9300
9346
  ]?,
9301
9347
  studio_web_portal_settings: {
9302
- hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]?,
9348
+ hidden_ml_tools: Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]?,
9303
9349
  hidden_app_types: Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]?
9304
9350
  }?
9305
9351
  }
data/sig/types.rbs CHANGED
@@ -302,6 +302,11 @@ module Aws::SageMaker
302
302
  SENSITIVE: []
303
303
  end
304
304
 
305
+ class AutoMLComputeConfig
306
+ attr_accessor emr_serverless_compute_config: Types::EmrServerlessComputeConfig
307
+ SENSITIVE: []
308
+ end
309
+
305
310
  class AutoMLContainerDefinition
306
311
  attr_accessor image: ::String
307
312
  attr_accessor model_data_url: ::String
@@ -565,6 +570,7 @@ module Aws::SageMaker
565
570
  attr_accessor direct_deploy_settings: Types::DirectDeploySettings
566
571
  attr_accessor kendra_settings: Types::KendraSettings
567
572
  attr_accessor generative_ai_settings: Types::GenerativeAiSettings
573
+ attr_accessor emr_serverless_settings: Types::EmrServerlessSettings
568
574
  SENSITIVE: []
569
575
  end
570
576
 
@@ -1022,6 +1028,7 @@ module Aws::SageMaker
1022
1028
  attr_accessor auto_ml_job_objective: Types::AutoMLJobObjective
1023
1029
  attr_accessor model_deploy_config: Types::ModelDeployConfig
1024
1030
  attr_accessor data_split_config: Types::AutoMLDataSplitConfig
1031
+ attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
1025
1032
  SENSITIVE: []
1026
1033
  end
1027
1034
 
@@ -2627,6 +2634,7 @@ module Aws::SageMaker
2627
2634
  attr_accessor model_deploy_result: Types::ModelDeployResult
2628
2635
  attr_accessor data_split_config: Types::AutoMLDataSplitConfig
2629
2636
  attr_accessor security_config: Types::AutoMLSecurityConfig
2637
+ attr_accessor auto_ml_compute_config: Types::AutoMLComputeConfig
2630
2638
  SENSITIVE: []
2631
2639
  end
2632
2640
 
@@ -4119,6 +4127,23 @@ module Aws::SageMaker
4119
4127
  SENSITIVE: []
4120
4128
  end
4121
4129
 
4130
+ class EmrServerlessComputeConfig
4131
+ attr_accessor execution_role_arn: ::String
4132
+ SENSITIVE: []
4133
+ end
4134
+
4135
+ class EmrServerlessSettings
4136
+ attr_accessor execution_role_arn: ::String
4137
+ attr_accessor status: ("ENABLED" | "DISABLED")
4138
+ SENSITIVE: []
4139
+ end
4140
+
4141
+ class EmrSettings
4142
+ attr_accessor assumable_role_arns: ::Array[::String]
4143
+ attr_accessor execution_role_arns: ::Array[::String]
4144
+ SENSITIVE: []
4145
+ end
4146
+
4122
4147
  class EnableSagemakerServicecatalogPortfolioInput < Aws::EmptyStructure
4123
4148
  end
4124
4149
 
@@ -5012,6 +5037,7 @@ module Aws::SageMaker
5012
5037
  attr_accessor custom_images: ::Array[Types::CustomImage]
5013
5038
  attr_accessor lifecycle_config_arns: ::Array[::String]
5014
5039
  attr_accessor code_repositories: ::Array[Types::CodeRepository]
5040
+ attr_accessor emr_settings: Types::EmrSettings
5015
5041
  SENSITIVE: []
5016
5042
  end
5017
5043
 
@@ -8707,7 +8733,7 @@ module Aws::SageMaker
8707
8733
  end
8708
8734
 
8709
8735
  class StudioWebPortalSettings
8710
- attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects")]
8736
+ attr_accessor hidden_ml_tools: ::Array[("DataWrangler" | "FeatureStore" | "EmrClusters" | "AutoMl" | "Experiments" | "Training" | "ModelEvaluation" | "Pipelines" | "Models" | "JumpStart" | "InferenceRecommender" | "Endpoints" | "Projects" | "InferenceOptimization")]
8711
8737
  attr_accessor hidden_app_types: ::Array[("JupyterServer" | "KernelGateway" | "DetailedProfiler" | "TensorBoard" | "CodeEditor" | "JupyterLab" | "RStudioServerPro" | "RSessionGateway" | "Canvas")]
8712
8738
  SENSITIVE: []
8713
8739
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.254.0
4
+ version: 1.256.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-07-18 00:00:00.000000000 Z
11
+ date: 2024-08-12 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core