aws-sdk-sagemaker 1.22.0 → 1.23.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 23a230a548063d7b4c4b79fec12f854b7a1a31ae
4
- data.tar.gz: 36f05d0d9a75480a1f6290b595fe4debcfbabc5c
3
+ metadata.gz: b36f98d5a8bf9da7a4732b5ee418bcc9c071f43c
4
+ data.tar.gz: 65b6f7b2adc03ed424c38b4d55a95decc199de4e
5
5
  SHA512:
6
- metadata.gz: 91cfc944da0e803b7608aaa675f1980f17b4ceaaa1b7c913e6659315382fbc8472520d3e2f187f2bddff7e8bd4c492a673bca33db7ef82e3b02e3e3b77f74c6c
7
- data.tar.gz: 7b4884efa994f9b28b35cd1ae311e2dcdb9bd2b0957074a10fe1dff6b15d928b30335981dab160685d4dceaf5857212a7665129d1ff5800351a46b138871cac3
6
+ metadata.gz: d07b58e6dde5d44477871bacbf073b0e93526d4b8a98fabc9f5820c8a95e9daa9daa4df89d9e7079ca829e494ebcb1261b0b0272f32ad214f650d27b6bf14c16
7
+ data.tar.gz: 5bf7f05103eb6d57a54de1a44748efd16bddf1f89efa440b17ea2f34617c2ec612f1c1ac0a32436e808fa8a1661cf56df251985d46b0c1033e13a08f2aa4611b
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.22.0'
46
+ GEM_VERSION = '1.23.0'
47
47
 
48
48
  end
@@ -15,6 +15,7 @@ require 'aws-sdk-core/plugins/helpful_socket_errors.rb'
15
15
  require 'aws-sdk-core/plugins/retry_errors.rb'
16
16
  require 'aws-sdk-core/plugins/global_configuration.rb'
17
17
  require 'aws-sdk-core/plugins/regional_endpoint.rb'
18
+ require 'aws-sdk-core/plugins/endpoint_discovery.rb'
18
19
  require 'aws-sdk-core/plugins/response_paging.rb'
19
20
  require 'aws-sdk-core/plugins/stub_responses.rb'
20
21
  require 'aws-sdk-core/plugins/idempotency_token.rb'
@@ -45,6 +46,7 @@ module Aws::SageMaker
45
46
  add_plugin(Aws::Plugins::RetryErrors)
46
47
  add_plugin(Aws::Plugins::GlobalConfiguration)
47
48
  add_plugin(Aws::Plugins::RegionalEndpoint)
49
+ add_plugin(Aws::Plugins::EndpointDiscovery)
48
50
  add_plugin(Aws::Plugins::ResponsePaging)
49
51
  add_plugin(Aws::Plugins::StubResponses)
50
52
  add_plugin(Aws::Plugins::IdempotencyToken)
@@ -98,6 +100,10 @@ module Aws::SageMaker
98
100
  #
99
101
  # @option options [String] :access_key_id
100
102
  #
103
+ # @option options [Boolean] :active_endpoint_cache (false)
104
+ # When set to `true`, a thread polling for endpoints will be running in
105
+ # the background every 60 secs (default). Defaults to `false`.
106
+ #
101
107
  # @option options [Boolean] :client_side_monitoring (false)
102
108
  # When `true`, client-side metrics will be collected for all API requests from
103
109
  # this client.
@@ -123,6 +129,21 @@ module Aws::SageMaker
123
129
  # option. You should only configure an `:endpoint` when connecting
124
130
  # to test endpoints. This should be avalid HTTP(S) URI.
125
131
  #
132
+ # @option options [Integer] :endpoint_cache_max_entries (1000)
133
+ # Used for the maximum size limit of the LRU cache storing endpoints data
134
+ # for endpoint discovery enabled operations. Defaults to 1000.
135
+ #
136
+ # @option options [Integer] :endpoint_cache_max_threads (10)
137
+ # Used for the maximum threads in use for polling endpoints to be cached, defaults to 10.
138
+ #
139
+ # @option options [Integer] :endpoint_cache_poll_interval (60)
140
+ # When :endpoint_discovery and :active_endpoint_cache is enabled,
141
+ # Use this option to config the time interval in seconds for making
142
+ # requests fetching endpoints information. Defaults to 60 sec.
143
+ #
144
+ # @option options [Boolean] :endpoint_discovery (false)
145
+ # When set to `true`, endpoint discovery will be enabled for operations when available. Defaults to `false`.
146
+ #
126
147
  # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
127
148
  # The log formatter.
128
149
  #
@@ -437,19 +458,26 @@ module Aws::SageMaker
437
458
  req.send_request(options)
438
459
  end
439
460
 
440
- # Starts a hyperparameter tuning job.
461
+ # Starts a hyperparameter tuning job. A hyperparameter tuning job finds
462
+ # the best version of a model by running many training jobs on your
463
+ # dataset using the algorithm you choose and values for hyperparameters
464
+ # within ranges that you specify. It then chooses the hyperparameter
465
+ # values that result in a model that performs the best, as measured by
466
+ # an objective metric that you choose.
441
467
  #
442
468
  # @option params [required, String] :hyper_parameter_tuning_job_name
443
469
  # The name of the tuning job. This name is the prefix for the names of
444
470
  # all training jobs that this tuning job launches. The name must be
445
- # unique within the same AWS account and AWS Region. Names are not case
446
- # sensitive, and must be between 1-32 characters.
471
+ # unique within the same AWS account and AWS Region. The name must have
472
+ # \\\{ \\} to \\\{ \\} characters. Valid characters are a-z, A-Z, 0-9,
473
+ # and : + = @ \_ % - (hyphen). The name is not case sensitive.
447
474
  #
448
475
  # @option params [required, Types::HyperParameterTuningJobConfig] :hyper_parameter_tuning_job_config
449
476
  # The HyperParameterTuningJobConfig object that describes the tuning
450
- # job, including the search strategy, metric used to evaluate training
451
- # jobs, ranges of parameters to search, and resource limits for the
452
- # tuning job.
477
+ # job, including the search strategy, the objective metric used to
478
+ # evaluate training jobs, ranges of parameters to search, and resource
479
+ # limits for the tuning job. For more information, see
480
+ # automatic-model-tuning
453
481
  #
454
482
  # @option params [required, Types::HyperParameterTrainingJobDefinition] :training_job_definition
455
483
  # The HyperParameterTrainingJobDefinition object that describes the
@@ -457,6 +485,27 @@ module Aws::SageMaker
457
485
  # hyperparameters, input data configuration, output data configuration,
458
486
  # resource configuration, and stopping condition.
459
487
  #
488
+ # @option params [Types::HyperParameterTuningJobWarmStartConfig] :warm_start_config
489
+ # Specifies configuration for starting the hyperparameter tuning job
490
+ # using one or more previous tuning jobs as a starting point. The
491
+ # results of previous tuning jobs are used to inform which combinations
492
+ # of hyperparameters to search over in the new tuning job.
493
+ #
494
+ # All training jobs launched by the new hyperparameter tuning job are
495
+ # evaluated by using the objective metric. If you specify
496
+ # `IDENTICAL_DATA_AND_ALGORITHM` as the `WarmStartType` for the warm
497
+ # start configuration, the training job that performs the best in the
498
+ # new tuning job is compared to the best training jobs from the parent
499
+ # tuning jobs. From these, the training job that performs the best as
500
+ # measured by the objective metric is returned as the overall best
501
+ # training job.
502
+ #
503
+ # <note markdown="1"> All training jobs launched by parent hyperparameter tuning jobs and
504
+ # the new hyperparameter tuning jobs count against the limit of training
505
+ # jobs for the tuning job.
506
+ #
507
+ # </note>
508
+ #
460
509
  # @option params [Array<Types::Tag>] :tags
461
510
  # An array of key-value pairs. You can use tags to categorize your AWS
462
511
  # resources in different ways, for example, by purpose, owner, or
@@ -515,7 +564,7 @@ module Aws::SageMaker
515
564
  # "ParameterKey" => "ParameterValue",
516
565
  # },
517
566
  # algorithm_specification: { # required
518
- # training_image: "AlgorithmImage", # required
567
+ # training_image: "AlgorithmImage",
519
568
  # training_input_mode: "Pipe", # required, accepts Pipe, File
520
569
  # metric_definitions: [
521
570
  # {
@@ -525,7 +574,7 @@ module Aws::SageMaker
525
574
  # ],
526
575
  # },
527
576
  # role_arn: "RoleArn", # required
528
- # input_data_config: [ # required
577
+ # input_data_config: [
529
578
  # {
530
579
  # channel_name: "ChannelName", # required
531
580
  # data_source: { # required
@@ -559,6 +608,14 @@ module Aws::SageMaker
559
608
  # max_runtime_in_seconds: 1,
560
609
  # },
561
610
  # },
611
+ # warm_start_config: {
612
+ # parent_hyper_parameter_tuning_jobs: [ # required
613
+ # {
614
+ # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
615
+ # },
616
+ # ],
617
+ # warm_start_type: "IdenticalDataAndAlgorithm", # required, accepts IdenticalDataAndAlgorithm, TransferLearning
618
+ # },
562
619
  # tags: [
563
620
  # {
564
621
  # key: "TagKey", # required
@@ -778,7 +835,13 @@ module Aws::SageMaker
778
835
  # @option params [String] :kms_key_id
779
836
  # If you provide a AWS KMS key ID, Amazon SageMaker uses it to encrypt
780
837
  # data at rest on the ML storage volume that is attached to your
781
- # notebook instance.
838
+ # notebook instance. The KMS key you provide must be enabled. For
839
+ # information, see [Enabling and Disabling Keys][1] in the *AWS Key
840
+ # Management Service Developer Guide*.
841
+ #
842
+ #
843
+ #
844
+ # [1]: http://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
782
845
  #
783
846
  # @option params [Array<Types::Tag>] :tags
784
847
  # A list of tags to associate with the notebook instance. You can add
@@ -810,7 +873,7 @@ module Aws::SageMaker
810
873
  #
811
874
  # @option params [Integer] :volume_size_in_gb
812
875
  # The size, in GB, of the ML storage volume to attach to the notebook
813
- # instance.
876
+ # instance. The default value is 5 GB.
814
877
  #
815
878
  # @return [Types::CreateNotebookInstanceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
816
879
  #
@@ -820,7 +883,7 @@ module Aws::SageMaker
820
883
  #
821
884
  # resp = client.create_notebook_instance({
822
885
  # notebook_instance_name: "NotebookInstanceName", # required
823
- # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
886
+ # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
824
887
  # subnet_id: "SubnetId",
825
888
  # security_group_ids: ["SecurityGroupId"],
826
889
  # role_arn: "RoleArn", # required
@@ -936,7 +999,7 @@ module Aws::SageMaker
936
999
  #
937
1000
  #
938
1001
  #
939
- # [1]: http://docs.aws.amazon.com/https:/docs.aws.amazon.com/sagemaker/latest/dg/howitworks-access-ws.html#nbi-ip-filter
1002
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-access-ws.html#nbi-ip-filter
940
1003
  #
941
1004
  # @option params [required, String] :notebook_instance_name
942
1005
  # The name of the notebook instance.
@@ -1140,8 +1203,14 @@ module Aws::SageMaker
1140
1203
  # "ParameterKey" => "ParameterValue",
1141
1204
  # },
1142
1205
  # algorithm_specification: { # required
1143
- # training_image: "AlgorithmImage", # required
1206
+ # training_image: "AlgorithmImage",
1144
1207
  # training_input_mode: "Pipe", # required, accepts Pipe, File
1208
+ # metric_definitions: [
1209
+ # {
1210
+ # name: "MetricName", # required
1211
+ # regex: "MetricRegex", # required
1212
+ # },
1213
+ # ],
1145
1214
  # },
1146
1215
  # role_arn: "RoleArn", # required
1147
1216
  # input_data_config: [
@@ -1631,6 +1700,8 @@ module Aws::SageMaker
1631
1700
  # * {Types::DescribeHyperParameterTuningJobResponse#training_job_status_counters #training_job_status_counters} => Types::TrainingJobStatusCounters
1632
1701
  # * {Types::DescribeHyperParameterTuningJobResponse#objective_status_counters #objective_status_counters} => Types::ObjectiveStatusCounters
1633
1702
  # * {Types::DescribeHyperParameterTuningJobResponse#best_training_job #best_training_job} => Types::HyperParameterTrainingJobSummary
1703
+ # * {Types::DescribeHyperParameterTuningJobResponse#overall_best_training_job #overall_best_training_job} => Types::HyperParameterTrainingJobSummary
1704
+ # * {Types::DescribeHyperParameterTuningJobResponse#warm_start_config #warm_start_config} => Types::HyperParameterTuningJobWarmStartConfig
1634
1705
  # * {Types::DescribeHyperParameterTuningJobResponse#failure_reason #failure_reason} => String
1635
1706
  #
1636
1707
  # @example Request syntax with placeholder values
@@ -1702,6 +1773,7 @@ module Aws::SageMaker
1702
1773
  # resp.objective_status_counters.failed #=> Integer
1703
1774
  # resp.best_training_job.training_job_name #=> String
1704
1775
  # resp.best_training_job.training_job_arn #=> String
1776
+ # resp.best_training_job.tuning_job_name #=> String
1705
1777
  # resp.best_training_job.creation_time #=> Time
1706
1778
  # resp.best_training_job.training_start_time #=> Time
1707
1779
  # resp.best_training_job.training_end_time #=> Time
@@ -1713,6 +1785,23 @@ module Aws::SageMaker
1713
1785
  # resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
1714
1786
  # resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
1715
1787
  # resp.best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
1788
+ # resp.overall_best_training_job.training_job_name #=> String
1789
+ # resp.overall_best_training_job.training_job_arn #=> String
1790
+ # resp.overall_best_training_job.tuning_job_name #=> String
1791
+ # resp.overall_best_training_job.creation_time #=> Time
1792
+ # resp.overall_best_training_job.training_start_time #=> Time
1793
+ # resp.overall_best_training_job.training_end_time #=> Time
1794
+ # resp.overall_best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
1795
+ # resp.overall_best_training_job.tuned_hyper_parameters #=> Hash
1796
+ # resp.overall_best_training_job.tuned_hyper_parameters["ParameterKey"] #=> String
1797
+ # resp.overall_best_training_job.failure_reason #=> String
1798
+ # resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
1799
+ # resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
1800
+ # resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
1801
+ # resp.overall_best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
1802
+ # resp.warm_start_config.parent_hyper_parameter_tuning_jobs #=> Array
1803
+ # resp.warm_start_config.parent_hyper_parameter_tuning_jobs[0].hyper_parameter_tuning_job_name #=> String
1804
+ # resp.warm_start_config.warm_start_type #=> String, one of "IdenticalDataAndAlgorithm", "TransferLearning"
1716
1805
  # resp.failure_reason #=> String
1717
1806
  #
1718
1807
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJob AWS API Documentation
@@ -1806,7 +1895,7 @@ module Aws::SageMaker
1806
1895
  # resp.notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
1807
1896
  # resp.failure_reason #=> String
1808
1897
  # resp.url #=> String
1809
- # resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
1898
+ # resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
1810
1899
  # resp.subnet_id #=> String
1811
1900
  # resp.security_groups #=> Array
1812
1901
  # resp.security_groups[0] #=> String
@@ -1902,6 +1991,7 @@ module Aws::SageMaker
1902
1991
  # * {Types::DescribeTrainingJobResponse#training_end_time #training_end_time} => Time
1903
1992
  # * {Types::DescribeTrainingJobResponse#last_modified_time #last_modified_time} => Time
1904
1993
  # * {Types::DescribeTrainingJobResponse#secondary_status_transitions #secondary_status_transitions} => Array&lt;Types::SecondaryStatusTransition&gt;
1994
+ # * {Types::DescribeTrainingJobResponse#final_metric_data_list #final_metric_data_list} => Array&lt;Types::MetricData&gt;
1905
1995
  #
1906
1996
  # @example Request syntax with placeholder values
1907
1997
  #
@@ -1922,6 +2012,9 @@ module Aws::SageMaker
1922
2012
  # resp.hyper_parameters["ParameterKey"] #=> String
1923
2013
  # resp.algorithm_specification.training_image #=> String
1924
2014
  # resp.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File"
2015
+ # resp.algorithm_specification.metric_definitions #=> Array
2016
+ # resp.algorithm_specification.metric_definitions[0].name #=> String
2017
+ # resp.algorithm_specification.metric_definitions[0].regex #=> String
1925
2018
  # resp.role_arn #=> String
1926
2019
  # resp.input_data_config #=> Array
1927
2020
  # resp.input_data_config[0].channel_name #=> String
@@ -1952,6 +2045,10 @@ module Aws::SageMaker
1952
2045
  # resp.secondary_status_transitions[0].start_time #=> Time
1953
2046
  # resp.secondary_status_transitions[0].end_time #=> Time
1954
2047
  # resp.secondary_status_transitions[0].status_message #=> String
2048
+ # resp.final_metric_data_list #=> Array
2049
+ # resp.final_metric_data_list[0].metric_name #=> String
2050
+ # resp.final_metric_data_list[0].value #=> Float
2051
+ # resp.final_metric_data_list[0].timestamp #=> Time
1955
2052
  #
1956
2053
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJob AWS API Documentation
1957
2054
  #
@@ -2483,7 +2580,7 @@ module Aws::SageMaker
2483
2580
  # resp.notebook_instances[0].notebook_instance_arn #=> String
2484
2581
  # resp.notebook_instances[0].notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
2485
2582
  # resp.notebook_instances[0].url #=> String
2486
- # resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
2583
+ # resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
2487
2584
  # resp.notebook_instances[0].creation_time #=> Time
2488
2585
  # resp.notebook_instances[0].last_modified_time #=> Time
2489
2586
  # resp.notebook_instances[0].notebook_instance_lifecycle_config_name #=> String
@@ -2668,6 +2765,7 @@ module Aws::SageMaker
2668
2765
  # resp.training_job_summaries #=> Array
2669
2766
  # resp.training_job_summaries[0].training_job_name #=> String
2670
2767
  # resp.training_job_summaries[0].training_job_arn #=> String
2768
+ # resp.training_job_summaries[0].tuning_job_name #=> String
2671
2769
  # resp.training_job_summaries[0].creation_time #=> Time
2672
2770
  # resp.training_job_summaries[0].training_start_time #=> Time
2673
2771
  # resp.training_job_summaries[0].training_end_time #=> Time
@@ -3054,7 +3152,7 @@ module Aws::SageMaker
3054
3152
  #
3055
3153
  # @option params [Integer] :volume_size_in_gb
3056
3154
  # The size, in GB, of the ML storage volume to attach to the notebook
3057
- # instance.
3155
+ # instance. The default value is 5 GB.
3058
3156
  #
3059
3157
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
3060
3158
  #
@@ -3062,7 +3160,7 @@ module Aws::SageMaker
3062
3160
  #
3063
3161
  # resp = client.update_notebook_instance({
3064
3162
  # notebook_instance_name: "NotebookInstanceName", # required
3065
- # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
3163
+ # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
3066
3164
  # role_arn: "RoleArn",
3067
3165
  # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
3068
3166
  # disassociate_lifecycle_config: false,
@@ -3132,7 +3230,7 @@ module Aws::SageMaker
3132
3230
  params: params,
3133
3231
  config: config)
3134
3232
  context[:gem_name] = 'aws-sdk-sagemaker'
3135
- context[:gem_version] = '1.22.0'
3233
+ context[:gem_version] = '1.23.0'
3136
3234
  Seahorse::Client::Request.new(handlers, context)
3137
3235
  end
3138
3236
 
@@ -95,6 +95,8 @@ module Aws::SageMaker
95
95
  EnvironmentValue = Shapes::StringShape.new(name: 'EnvironmentValue')
96
96
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
97
97
  FinalHyperParameterTuningJobObjectiveMetric = Shapes::StructureShape.new(name: 'FinalHyperParameterTuningJobObjectiveMetric')
98
+ FinalMetricDataList = Shapes::ListShape.new(name: 'FinalMetricDataList')
99
+ Float = Shapes::FloatShape.new(name: 'Float')
98
100
  HyperParameterAlgorithmSpecification = Shapes::StructureShape.new(name: 'HyperParameterAlgorithmSpecification')
99
101
  HyperParameterTrainingJobDefinition = Shapes::StructureShape.new(name: 'HyperParameterTrainingJobDefinition')
100
102
  HyperParameterTrainingJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTrainingJobSummaries')
@@ -109,6 +111,8 @@ module Aws::SageMaker
109
111
  HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
110
112
  HyperParameterTuningJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTuningJobSummaries')
111
113
  HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
114
+ HyperParameterTuningJobWarmStartConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobWarmStartConfig')
115
+ HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
112
116
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
113
117
  Image = Shapes::StringShape.new(name: 'Image')
114
118
  InputDataConfig = Shapes::ListShape.new(name: 'InputDataConfig')
@@ -144,6 +148,7 @@ module Aws::SageMaker
144
148
  MaxPayloadInMB = Shapes::IntegerShape.new(name: 'MaxPayloadInMB')
145
149
  MaxResults = Shapes::IntegerShape.new(name: 'MaxResults')
146
150
  MaxRuntimeInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimeInSeconds')
151
+ MetricData = Shapes::StructureShape.new(name: 'MetricData')
147
152
  MetricDefinition = Shapes::StructureShape.new(name: 'MetricDefinition')
148
153
  MetricDefinitionList = Shapes::ListShape.new(name: 'MetricDefinitionList')
149
154
  MetricName = Shapes::StringShape.new(name: 'MetricName')
@@ -189,6 +194,8 @@ module Aws::SageMaker
189
194
  ParameterRanges = Shapes::StructureShape.new(name: 'ParameterRanges')
190
195
  ParameterValue = Shapes::StringShape.new(name: 'ParameterValue')
191
196
  ParameterValues = Shapes::ListShape.new(name: 'ParameterValues')
197
+ ParentHyperParameterTuningJob = Shapes::StructureShape.new(name: 'ParentHyperParameterTuningJob')
198
+ ParentHyperParameterTuningJobs = Shapes::ListShape.new(name: 'ParentHyperParameterTuningJobs')
192
199
  ProductionVariant = Shapes::StructureShape.new(name: 'ProductionVariant')
193
200
  ProductionVariantInstanceType = Shapes::StringShape.new(name: 'ProductionVariantInstanceType')
194
201
  ProductionVariantList = Shapes::ListShape.new(name: 'ProductionVariantList')
@@ -279,8 +286,9 @@ module Aws::SageMaker
279
286
  AddTagsOutput.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
280
287
  AddTagsOutput.struct_class = Types::AddTagsOutput
281
288
 
282
- AlgorithmSpecification.add_member(:training_image, Shapes::ShapeRef.new(shape: AlgorithmImage, required: true, location_name: "TrainingImage"))
289
+ AlgorithmSpecification.add_member(:training_image, Shapes::ShapeRef.new(shape: AlgorithmImage, location_name: "TrainingImage"))
283
290
  AlgorithmSpecification.add_member(:training_input_mode, Shapes::ShapeRef.new(shape: TrainingInputMode, required: true, location_name: "TrainingInputMode"))
291
+ AlgorithmSpecification.add_member(:metric_definitions, Shapes::ShapeRef.new(shape: MetricDefinitionList, location_name: "MetricDefinitions"))
284
292
  AlgorithmSpecification.struct_class = Types::AlgorithmSpecification
285
293
 
286
294
  CategoricalParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
@@ -330,6 +338,7 @@ module Aws::SageMaker
330
338
  CreateHyperParameterTuningJobRequest.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
331
339
  CreateHyperParameterTuningJobRequest.add_member(:hyper_parameter_tuning_job_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConfig, required: true, location_name: "HyperParameterTuningJobConfig"))
332
340
  CreateHyperParameterTuningJobRequest.add_member(:training_job_definition, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition, required: true, location_name: "TrainingJobDefinition"))
341
+ CreateHyperParameterTuningJobRequest.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
333
342
  CreateHyperParameterTuningJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
334
343
  CreateHyperParameterTuningJobRequest.struct_class = Types::CreateHyperParameterTuningJobRequest
335
344
 
@@ -474,6 +483,8 @@ module Aws::SageMaker
474
483
  DescribeHyperParameterTuningJobResponse.add_member(:training_job_status_counters, Shapes::ShapeRef.new(shape: TrainingJobStatusCounters, required: true, location_name: "TrainingJobStatusCounters"))
475
484
  DescribeHyperParameterTuningJobResponse.add_member(:objective_status_counters, Shapes::ShapeRef.new(shape: ObjectiveStatusCounters, required: true, location_name: "ObjectiveStatusCounters"))
476
485
  DescribeHyperParameterTuningJobResponse.add_member(:best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "BestTrainingJob"))
486
+ DescribeHyperParameterTuningJobResponse.add_member(:overall_best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "OverallBestTrainingJob"))
487
+ DescribeHyperParameterTuningJobResponse.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
477
488
  DescribeHyperParameterTuningJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
478
489
  DescribeHyperParameterTuningJobResponse.struct_class = Types::DescribeHyperParameterTuningJobResponse
479
490
 
@@ -543,6 +554,7 @@ module Aws::SageMaker
543
554
  DescribeTrainingJobResponse.add_member(:training_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TrainingEndTime"))
544
555
  DescribeTrainingJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
545
556
  DescribeTrainingJobResponse.add_member(:secondary_status_transitions, Shapes::ShapeRef.new(shape: SecondaryStatusTransitions, location_name: "SecondaryStatusTransitions"))
557
+ DescribeTrainingJobResponse.add_member(:final_metric_data_list, Shapes::ShapeRef.new(shape: FinalMetricDataList, location_name: "FinalMetricDataList"))
546
558
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
547
559
 
548
560
  DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
@@ -596,7 +608,9 @@ module Aws::SageMaker
596
608
  FinalHyperParameterTuningJobObjectiveMetric.add_member(:value, Shapes::ShapeRef.new(shape: MetricValue, required: true, location_name: "Value"))
597
609
  FinalHyperParameterTuningJobObjectiveMetric.struct_class = Types::FinalHyperParameterTuningJobObjectiveMetric
598
610
 
599
- HyperParameterAlgorithmSpecification.add_member(:training_image, Shapes::ShapeRef.new(shape: AlgorithmImage, required: true, location_name: "TrainingImage"))
611
+ FinalMetricDataList.member = Shapes::ShapeRef.new(shape: MetricData)
612
+
613
+ HyperParameterAlgorithmSpecification.add_member(:training_image, Shapes::ShapeRef.new(shape: AlgorithmImage, location_name: "TrainingImage"))
600
614
  HyperParameterAlgorithmSpecification.add_member(:training_input_mode, Shapes::ShapeRef.new(shape: TrainingInputMode, required: true, location_name: "TrainingInputMode"))
601
615
  HyperParameterAlgorithmSpecification.add_member(:metric_definitions, Shapes::ShapeRef.new(shape: MetricDefinitionList, location_name: "MetricDefinitions"))
602
616
  HyperParameterAlgorithmSpecification.struct_class = Types::HyperParameterAlgorithmSpecification
@@ -604,7 +618,7 @@ module Aws::SageMaker
604
618
  HyperParameterTrainingJobDefinition.add_member(:static_hyper_parameters, Shapes::ShapeRef.new(shape: HyperParameters, location_name: "StaticHyperParameters"))
605
619
  HyperParameterTrainingJobDefinition.add_member(:algorithm_specification, Shapes::ShapeRef.new(shape: HyperParameterAlgorithmSpecification, required: true, location_name: "AlgorithmSpecification"))
606
620
  HyperParameterTrainingJobDefinition.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
607
- HyperParameterTrainingJobDefinition.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, required: true, location_name: "InputDataConfig"))
621
+ HyperParameterTrainingJobDefinition.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, location_name: "InputDataConfig"))
608
622
  HyperParameterTrainingJobDefinition.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
609
623
  HyperParameterTrainingJobDefinition.add_member(:output_data_config, Shapes::ShapeRef.new(shape: OutputDataConfig, required: true, location_name: "OutputDataConfig"))
610
624
  HyperParameterTrainingJobDefinition.add_member(:resource_config, Shapes::ShapeRef.new(shape: ResourceConfig, required: true, location_name: "ResourceConfig"))
@@ -615,6 +629,7 @@ module Aws::SageMaker
615
629
 
616
630
  HyperParameterTrainingJobSummary.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, required: true, location_name: "TrainingJobName"))
617
631
  HyperParameterTrainingJobSummary.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
632
+ HyperParameterTrainingJobSummary.add_member(:tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, location_name: "TuningJobName"))
618
633
  HyperParameterTrainingJobSummary.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
619
634
  HyperParameterTrainingJobSummary.add_member(:training_start_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TrainingStartTime"))
620
635
  HyperParameterTrainingJobSummary.add_member(:training_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TrainingEndTime"))
@@ -649,6 +664,10 @@ module Aws::SageMaker
649
664
  HyperParameterTuningJobSummary.add_member(:resource_limits, Shapes::ShapeRef.new(shape: ResourceLimits, location_name: "ResourceLimits"))
650
665
  HyperParameterTuningJobSummary.struct_class = Types::HyperParameterTuningJobSummary
651
666
 
667
+ HyperParameterTuningJobWarmStartConfig.add_member(:parent_hyper_parameter_tuning_jobs, Shapes::ShapeRef.new(shape: ParentHyperParameterTuningJobs, required: true, location_name: "ParentHyperParameterTuningJobs"))
668
+ HyperParameterTuningJobWarmStartConfig.add_member(:warm_start_type, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartType, required: true, location_name: "WarmStartType"))
669
+ HyperParameterTuningJobWarmStartConfig.struct_class = Types::HyperParameterTuningJobWarmStartConfig
670
+
652
671
  HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
653
672
  HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
654
673
 
@@ -804,6 +823,11 @@ module Aws::SageMaker
804
823
  ListTransformJobsResponse.add_member(:next_token, Shapes::ShapeRef.new(shape: NextToken, location_name: "NextToken"))
805
824
  ListTransformJobsResponse.struct_class = Types::ListTransformJobsResponse
806
825
 
826
+ MetricData.add_member(:metric_name, Shapes::ShapeRef.new(shape: MetricName, location_name: "MetricName"))
827
+ MetricData.add_member(:value, Shapes::ShapeRef.new(shape: Float, location_name: "Value"))
828
+ MetricData.add_member(:timestamp, Shapes::ShapeRef.new(shape: Timestamp, location_name: "Timestamp"))
829
+ MetricData.struct_class = Types::MetricData
830
+
807
831
  MetricDefinition.add_member(:name, Shapes::ShapeRef.new(shape: MetricName, required: true, location_name: "Name"))
808
832
  MetricDefinition.add_member(:regex, Shapes::ShapeRef.new(shape: MetricRegex, required: true, location_name: "Regex"))
809
833
  MetricDefinition.struct_class = Types::MetricDefinition
@@ -861,6 +885,11 @@ module Aws::SageMaker
861
885
 
862
886
  ParameterValues.member = Shapes::ShapeRef.new(shape: ParameterValue)
863
887
 
888
+ ParentHyperParameterTuningJob.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, location_name: "HyperParameterTuningJobName"))
889
+ ParentHyperParameterTuningJob.struct_class = Types::ParentHyperParameterTuningJob
890
+
891
+ ParentHyperParameterTuningJobs.member = Shapes::ShapeRef.new(shape: ParentHyperParameterTuningJob)
892
+
864
893
  ProductionVariant.add_member(:variant_name, Shapes::ShapeRef.new(shape: VariantName, required: true, location_name: "VariantName"))
865
894
  ProductionVariant.add_member(:model_name, Shapes::ShapeRef.new(shape: ModelName, required: true, location_name: "ModelName"))
866
895
  ProductionVariant.add_member(:initial_instance_count, Shapes::ShapeRef.new(shape: TaskCount, required: true, location_name: "InitialInstanceCount"))
@@ -67,8 +67,14 @@ module Aws::SageMaker
67
67
  # data as a hash:
68
68
  #
69
69
  # {
70
- # training_image: "AlgorithmImage", # required
70
+ # training_image: "AlgorithmImage",
71
71
  # training_input_mode: "Pipe", # required, accepts Pipe, File
72
+ # metric_definitions: [
73
+ # {
74
+ # name: "MetricName", # required
75
+ # regex: "MetricRegex", # required
76
+ # },
77
+ # ],
72
78
  # }
73
79
  #
74
80
  # @!attribute [rw] training_image
@@ -110,11 +116,18 @@ module Aws::SageMaker
110
116
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
111
117
  # @return [String]
112
118
  #
119
+ # @!attribute [rw] metric_definitions
120
+ # A list of metric definition objects. Each object specifies the
121
+ # metric name and regular expressions used to parse algorithm logs.
122
+ # Amazon SageMaker publishes each metric to Amazon CloudWatch.
123
+ # @return [Array<Types::MetricDefinition>]
124
+ #
113
125
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmSpecification AWS API Documentation
114
126
  #
115
127
  class AlgorithmSpecification < Struct.new(
116
128
  :training_image,
117
- :training_input_mode)
129
+ :training_input_mode,
130
+ :metric_definitions)
118
131
  include Aws::Structure
119
132
  end
120
133
 
@@ -201,6 +214,18 @@ module Aws::SageMaker
201
214
  # @return [String]
202
215
  #
203
216
  # @!attribute [rw] input_mode
217
+ # (Optional) The input mode to use for the data channel in a training
218
+ # job. If you don't set a value for `InputMode`, Amazon SageMaker
219
+ # uses the value set for `TrainingInputMode`. Use this parameter to
220
+ # override the `TrainingInputMode` setting in a AlgorithmSpecification
221
+ # request when you have a channel that needs a different input mode
222
+ # from the training job's general setting. To download the data from
223
+ # Amazon Simple Storage Service (Amazon S3) to the provisioned ML
224
+ # storage volume, and mount the directory to a Docker volume, use
225
+ # `File` input mode. To stream data directly from Amazon S3 to the
226
+ # container, choose `Pipe` input mode.
227
+ #
228
+ # To use a model for incremental training, choose `File` input model.
204
229
  # @return [String]
205
230
  #
206
231
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Channel AWS API Documentation
@@ -258,7 +283,7 @@ module Aws::SageMaker
258
283
  # you provide. AWS STS is activated in your IAM user account by
259
284
  # default. If you previously deactivated AWS STS for a region, you
260
285
  # need to reactivate AWS STS for that region. For more information,
261
- # see [Activating and Deactivating AWS STS i an AWS Region][1] in the
286
+ # see [Activating and Deactivating AWS STS in an AWS Region][1] in the
262
287
  # *AWS Identity and Access Management User Guide*.
263
288
  #
264
289
  #
@@ -492,7 +517,7 @@ module Aws::SageMaker
492
517
  # "ParameterKey" => "ParameterValue",
493
518
  # },
494
519
  # algorithm_specification: { # required
495
- # training_image: "AlgorithmImage", # required
520
+ # training_image: "AlgorithmImage",
496
521
  # training_input_mode: "Pipe", # required, accepts Pipe, File
497
522
  # metric_definitions: [
498
523
  # {
@@ -502,7 +527,7 @@ module Aws::SageMaker
502
527
  # ],
503
528
  # },
504
529
  # role_arn: "RoleArn", # required
505
- # input_data_config: [ # required
530
+ # input_data_config: [
506
531
  # {
507
532
  # channel_name: "ChannelName", # required
508
533
  # data_source: { # required
@@ -536,6 +561,14 @@ module Aws::SageMaker
536
561
  # max_runtime_in_seconds: 1,
537
562
  # },
538
563
  # },
564
+ # warm_start_config: {
565
+ # parent_hyper_parameter_tuning_jobs: [ # required
566
+ # {
567
+ # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
568
+ # },
569
+ # ],
570
+ # warm_start_type: "IdenticalDataAndAlgorithm", # required, accepts IdenticalDataAndAlgorithm, TransferLearning
571
+ # },
539
572
  # tags: [
540
573
  # {
541
574
  # key: "TagKey", # required
@@ -547,15 +580,17 @@ module Aws::SageMaker
547
580
  # @!attribute [rw] hyper_parameter_tuning_job_name
548
581
  # The name of the tuning job. This name is the prefix for the names of
549
582
  # all training jobs that this tuning job launches. The name must be
550
- # unique within the same AWS account and AWS Region. Names are not
551
- # case sensitive, and must be between 1-32 characters.
583
+ # unique within the same AWS account and AWS Region. The name must
584
+ # have \\\{ \\} to \\\{ \\} characters. Valid characters are a-z, A-Z,
585
+ # 0-9, and : + = @ \_ % - (hyphen). The name is not case sensitive.
552
586
  # @return [String]
553
587
  #
554
588
  # @!attribute [rw] hyper_parameter_tuning_job_config
555
589
  # The HyperParameterTuningJobConfig object that describes the tuning
556
- # job, including the search strategy, metric used to evaluate training
557
- # jobs, ranges of parameters to search, and resource limits for the
558
- # tuning job.
590
+ # job, including the search strategy, the objective metric used to
591
+ # evaluate training jobs, ranges of parameters to search, and resource
592
+ # limits for the tuning job. For more information, see
593
+ # automatic-model-tuning
559
594
  # @return [Types::HyperParameterTuningJobConfig]
560
595
  #
561
596
  # @!attribute [rw] training_job_definition
@@ -565,6 +600,29 @@ module Aws::SageMaker
565
600
  # configuration, resource configuration, and stopping condition.
566
601
  # @return [Types::HyperParameterTrainingJobDefinition]
567
602
  #
603
+ # @!attribute [rw] warm_start_config
604
+ # Specifies configuration for starting the hyperparameter tuning job
605
+ # using one or more previous tuning jobs as a starting point. The
606
+ # results of previous tuning jobs are used to inform which
607
+ # combinations of hyperparameters to search over in the new tuning
608
+ # job.
609
+ #
610
+ # All training jobs launched by the new hyperparameter tuning job are
611
+ # evaluated by using the objective metric. If you specify
612
+ # `IDENTICAL_DATA_AND_ALGORITHM` as the `WarmStartType` for the warm
613
+ # start configuration, the training job that performs the best in the
614
+ # new tuning job is compared to the best training jobs from the parent
615
+ # tuning jobs. From these, the training job that performs the best as
616
+ # measured by the objective metric is returned as the overall best
617
+ # training job.
618
+ #
619
+ # <note markdown="1"> All training jobs launched by parent hyperparameter tuning jobs and
620
+ # the new hyperparameter tuning jobs count against the limit of
621
+ # training jobs for the tuning job.
622
+ #
623
+ # </note>
624
+ # @return [Types::HyperParameterTuningJobWarmStartConfig]
625
+ #
568
626
  # @!attribute [rw] tags
569
627
  # An array of key-value pairs. You can use tags to categorize your AWS
570
628
  # resources in different ways, for example, by purpose, owner, or
@@ -584,12 +642,14 @@ module Aws::SageMaker
584
642
  :hyper_parameter_tuning_job_name,
585
643
  :hyper_parameter_tuning_job_config,
586
644
  :training_job_definition,
645
+ :warm_start_config,
587
646
  :tags)
588
647
  include Aws::Structure
589
648
  end
590
649
 
591
650
  # @!attribute [rw] hyper_parameter_tuning_job_arn
592
- # The Amazon Resource Name (ARN) of the tuning job.
651
+ # The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker
652
+ # assigns an ARN to a hyperparameter tuning job when you create it.
593
653
  # @return [String]
594
654
  #
595
655
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
@@ -703,7 +763,7 @@ module Aws::SageMaker
703
763
  #
704
764
  # {
705
765
  # notebook_instance_name: "NotebookInstanceName", # required
706
- # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
766
+ # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
707
767
  # subnet_id: "SubnetId",
708
768
  # security_group_ids: ["SecurityGroupId"],
709
769
  # role_arn: "RoleArn", # required
@@ -759,7 +819,13 @@ module Aws::SageMaker
759
819
  # @!attribute [rw] kms_key_id
760
820
  # If you provide a AWS KMS key ID, Amazon SageMaker uses it to encrypt
761
821
  # data at rest on the ML storage volume that is attached to your
762
- # notebook instance.
822
+ # notebook instance. The KMS key you provide must be enabled. For
823
+ # information, see [Enabling and Disabling Keys][1] in the *AWS Key
824
+ # Management Service Developer Guide*.
825
+ #
826
+ #
827
+ #
828
+ # [1]: http://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
763
829
  # @return [String]
764
830
  #
765
831
  # @!attribute [rw] tags
@@ -795,7 +861,7 @@ module Aws::SageMaker
795
861
  #
796
862
  # @!attribute [rw] volume_size_in_gb
797
863
  # The size, in GB, of the ML storage volume to attach to the notebook
798
- # instance.
864
+ # instance. The default value is 5 GB.
799
865
  # @return [Integer]
800
866
  #
801
867
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateNotebookInstanceInput AWS API Documentation
@@ -921,8 +987,14 @@ module Aws::SageMaker
921
987
  # "ParameterKey" => "ParameterValue",
922
988
  # },
923
989
  # algorithm_specification: { # required
924
- # training_image: "AlgorithmImage", # required
990
+ # training_image: "AlgorithmImage",
925
991
  # training_input_mode: "Pipe", # required, accepts Pipe, File
992
+ # metric_definitions: [
993
+ # {
994
+ # name: "MetricName", # required
995
+ # regex: "MetricRegex", # required
996
+ # },
997
+ # ],
926
998
  # },
927
999
  # role_arn: "RoleArn", # required
928
1000
  # input_data_config: [
@@ -1660,6 +1732,22 @@ module Aws::SageMaker
1660
1732
  # completed with the best current HyperParameterTuningJobObjective.
1661
1733
  # @return [Types::HyperParameterTrainingJobSummary]
1662
1734
  #
1735
+ # @!attribute [rw] overall_best_training_job
1736
+ # If the hyperparameter tuning job is an incremental tuning job with a
1737
+ # `WarmStartType` of `IDENTICAL_DATA_AND_ALGORITHM`, this is the
1738
+ # TrainingJobSummary for the training job with the best objective
1739
+ # metric value of all training jobs launched by this tuning job and
1740
+ # all parent jobs specified for the incremental tuning job.
1741
+ # @return [Types::HyperParameterTrainingJobSummary]
1742
+ #
1743
+ # @!attribute [rw] warm_start_config
1744
+ # The configuration for starting the hyperparameter parameter tuning
1745
+ # job using one or more previous tuning jobs as a starting point. The
1746
+ # results of previous tuning jobs are used to inform which
1747
+ # combinations of hyperparameters to search over in the new tuning
1748
+ # job.
1749
+ # @return [Types::HyperParameterTuningJobWarmStartConfig]
1750
+ #
1663
1751
  # @!attribute [rw] failure_reason
1664
1752
  # If the tuning job failed, the reason it failed.
1665
1753
  # @return [String]
@@ -1678,6 +1766,8 @@ module Aws::SageMaker
1678
1766
  :training_job_status_counters,
1679
1767
  :objective_status_counters,
1680
1768
  :best_training_job,
1769
+ :overall_best_training_job,
1770
+ :warm_start_config,
1681
1771
  :failure_reason)
1682
1772
  include Aws::Structure
1683
1773
  end
@@ -2121,6 +2211,12 @@ module Aws::SageMaker
2121
2211
  # transitioned through.
2122
2212
  # @return [Array<Types::SecondaryStatusTransition>]
2123
2213
  #
2214
+ # @!attribute [rw] final_metric_data_list
2215
+ # A collection of `MetricData` objects that specify the names, values,
2216
+ # and dates and times that the training algorithm emitted to Amazon
2217
+ # CloudWatch.
2218
+ # @return [Array<Types::MetricData>]
2219
+ #
2124
2220
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
2125
2221
  #
2126
2222
  class DescribeTrainingJobResponse < Struct.new(
@@ -2143,7 +2239,8 @@ module Aws::SageMaker
2143
2239
  :training_start_time,
2144
2240
  :training_end_time,
2145
2241
  :last_modified_time,
2146
- :secondary_status_transitions)
2242
+ :secondary_status_transitions,
2243
+ :final_metric_data_list)
2147
2244
  include Aws::Structure
2148
2245
  end
2149
2246
 
@@ -2413,7 +2510,7 @@ module Aws::SageMaker
2413
2510
  # data as a hash:
2414
2511
  #
2415
2512
  # {
2416
- # training_image: "AlgorithmImage", # required
2513
+ # training_image: "AlgorithmImage",
2417
2514
  # training_input_mode: "Pipe", # required, accepts Pipe, File
2418
2515
  # metric_definitions: [
2419
2516
  # {
@@ -2480,7 +2577,7 @@ module Aws::SageMaker
2480
2577
  # "ParameterKey" => "ParameterValue",
2481
2578
  # },
2482
2579
  # algorithm_specification: { # required
2483
- # training_image: "AlgorithmImage", # required
2580
+ # training_image: "AlgorithmImage",
2484
2581
  # training_input_mode: "Pipe", # required, accepts Pipe, File
2485
2582
  # metric_definitions: [
2486
2583
  # {
@@ -2490,7 +2587,7 @@ module Aws::SageMaker
2490
2587
  # ],
2491
2588
  # },
2492
2589
  # role_arn: "RoleArn", # required
2493
- # input_data_config: [ # required
2590
+ # input_data_config: [
2494
2591
  # {
2495
2592
  # channel_name: "ChannelName", # required
2496
2593
  # data_source: { # required
@@ -2611,6 +2708,9 @@ module Aws::SageMaker
2611
2708
  # The Amazon Resource Name (ARN) of the training job.
2612
2709
  # @return [String]
2613
2710
  #
2711
+ # @!attribute [rw] tuning_job_name
2712
+ # @return [String]
2713
+ #
2614
2714
  # @!attribute [rw] creation_time
2615
2715
  # The date and time that the training job was created.
2616
2716
  # @return [Time]
@@ -2671,6 +2771,7 @@ module Aws::SageMaker
2671
2771
  class HyperParameterTrainingJobSummary < Struct.new(
2672
2772
  :training_job_name,
2673
2773
  :training_job_arn,
2774
+ :tuning_job_name,
2674
2775
  :creation_time,
2675
2776
  :training_start_time,
2676
2777
  :training_end_time,
@@ -2846,6 +2947,84 @@ module Aws::SageMaker
2846
2947
  include Aws::Structure
2847
2948
  end
2848
2949
 
2950
+ # Specifies the configuration for a hyperparameter tuning job that uses
2951
+ # one or more previous hyperparameter tuning jobs as a starting point.
2952
+ # The results of previous tuning jobs are used to inform which
2953
+ # combinations of hyperparameters to search over in the new tuning job.
2954
+ #
2955
+ # All training jobs launched by the new hyperparameter tuning job are
2956
+ # evaluated by using the objective metric, and the training job that
2957
+ # performs the best is compared to the best training jobs from the
2958
+ # parent tuning jobs. From these, the training job that performs the
2959
+ # best as measured by the objective metric is returned as the overall
2960
+ # best training job.
2961
+ #
2962
+ # <note markdown="1"> All training jobs launched by parent hyperparameter tuning jobs and
2963
+ # the new hyperparameter tuning jobs count against the limit of training
2964
+ # jobs for the tuning job.
2965
+ #
2966
+ # </note>
2967
+ #
2968
+ # @note When making an API call, you may pass HyperParameterTuningJobWarmStartConfig
2969
+ # data as a hash:
2970
+ #
2971
+ # {
2972
+ # parent_hyper_parameter_tuning_jobs: [ # required
2973
+ # {
2974
+ # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
2975
+ # },
2976
+ # ],
2977
+ # warm_start_type: "IdenticalDataAndAlgorithm", # required, accepts IdenticalDataAndAlgorithm, TransferLearning
2978
+ # }
2979
+ #
2980
+ # @!attribute [rw] parent_hyper_parameter_tuning_jobs
2981
+ # An array of hyperparameter tuning jobs that are used as the starting
2982
+ # point for the new hyperparameter tuning job. For more information
2983
+ # about warm starting a hyperparameter tuning job, see [Using a
2984
+ # Previous Hyperparameter Tuning Job as a Starting Point][1].
2985
+ #
2986
+ #
2987
+ #
2988
+ # [1]: http://docs.aws.amazon.com/automatic-model-tuning-incremental
2989
+ # @return [Array<Types::ParentHyperParameterTuningJob>]
2990
+ #
2991
+ # @!attribute [rw] warm_start_type
2992
+ # Specifies one of the following:
2993
+ #
2994
+ # IDENTICAL\_DATA\_AND\_ALGORITHM
2995
+ #
2996
+ # : The new hyperparameter tuning job uses the same input data and
2997
+ # training image as the parent tuning jobs. You can change the
2998
+ # hyperparameter ranges to search and the maximum number of training
2999
+ # jobs that the hyperparameter tuning job launches. You cannot use a
3000
+ # new version of the training algorithm, unless the changes in the
3001
+ # new version do not affect the algorithm itself. For example,
3002
+ # changes that improve logging or adding support for a different
3003
+ # data format are allowed. The objective metric for the new tuning
3004
+ # job must be the same as for all parent jobs.
3005
+ #
3006
+ # TRANSFER\_LEARNING
3007
+ #
3008
+ # : The new hyperparameter tuning job can include input data,
3009
+ # hyperparameter ranges, maximum number of concurrent training jobs,
3010
+ # and maximum number of training jobs that are different than those
3011
+ # of its parent hyperparameter tuning jobs. The training image can
3012
+ # also be a different versionfrom the version used in the parent
3013
+ # hyperparameter tuning job. You can also change hyperparameters
3014
+ # from tunable to static, and from static to tunable, but the total
3015
+ # number of static plus tunable hyperparameters must remain the same
3016
+ # as it is in all parent jobs. The objective metric for the new
3017
+ # tuning job must be the same as for all parent jobs.
3018
+ # @return [String]
3019
+ #
3020
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobWarmStartConfig AWS API Documentation
3021
+ #
3022
+ class HyperParameterTuningJobWarmStartConfig < Struct.new(
3023
+ :parent_hyper_parameter_tuning_jobs,
3024
+ :warm_start_type)
3025
+ include Aws::Structure
3026
+ end
3027
+
2849
3028
  # For a hyperparameter of the integer type, specifies the range that a
2850
3029
  # hyperparameter tuning job searches.
2851
3030
  #
@@ -3764,6 +3943,30 @@ module Aws::SageMaker
3764
3943
  include Aws::Structure
3765
3944
  end
3766
3945
 
3946
+ # The name, value, and date and time of a metric that was emitted to
3947
+ # Amazon CloudWatch.
3948
+ #
3949
+ # @!attribute [rw] metric_name
3950
+ # The name of the metric.
3951
+ # @return [String]
3952
+ #
3953
+ # @!attribute [rw] value
3954
+ # The value of the metric.
3955
+ # @return [Float]
3956
+ #
3957
+ # @!attribute [rw] timestamp
3958
+ # The date and time that the algorithm emitted the metric.
3959
+ # @return [Time]
3960
+ #
3961
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricData AWS API Documentation
3962
+ #
3963
+ class MetricData < Struct.new(
3964
+ :metric_name,
3965
+ :value,
3966
+ :timestamp)
3967
+ include Aws::Structure
3968
+ end
3969
+
3767
3970
  # Specifies a metric that the training algorithm writes to `stderr` or
3768
3971
  # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
3769
3972
  # metrics. You specify one metric that a hyperparameter tuning job uses
@@ -4064,7 +4267,17 @@ module Aws::SageMaker
4064
4267
  end
4065
4268
 
4066
4269
  # Specifies ranges of integer, continuous, and categorical
4067
- # hyperparameters that a hyperparameter tuning job searches.
4270
+ # hyperparameters that a hyperparameter tuning job searches. The
4271
+ # hyperparameter tuning job launches training jobs with hyperparameter
4272
+ # values within these ranges to find the combination of values that
4273
+ # result in the training job with the best performance as measured by
4274
+ # the objective metric of the hyperparameter tuning job.
4275
+ #
4276
+ # <note markdown="1"> You can specify a maximum of 20 hyperparameters that a hyperparameter
4277
+ # tuning job can search over. Every possible value of a categorical
4278
+ # parameter range counts against this limit.
4279
+ #
4280
+ # </note>
4068
4281
  #
4069
4282
  # @note When making an API call, you may pass ParameterRanges
4070
4283
  # data as a hash:
@@ -4118,6 +4331,28 @@ module Aws::SageMaker
4118
4331
  include Aws::Structure
4119
4332
  end
4120
4333
 
4334
+ # A previously completed or stopped hyperparameter tuning job to be used
4335
+ # as a starting point for a new hyperparameter tuning job.
4336
+ #
4337
+ # @note When making an API call, you may pass ParentHyperParameterTuningJob
4338
+ # data as a hash:
4339
+ #
4340
+ # {
4341
+ # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
4342
+ # }
4343
+ #
4344
+ # @!attribute [rw] hyper_parameter_tuning_job_name
4345
+ # The name of the hyperparameter tuning job to be used as a starting
4346
+ # point for a new hyperparameter tuning job.
4347
+ # @return [String]
4348
+ #
4349
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ParentHyperParameterTuningJob AWS API Documentation
4350
+ #
4351
+ class ParentHyperParameterTuningJob < Struct.new(
4352
+ :hyper_parameter_tuning_job_name)
4353
+ include Aws::Structure
4354
+ end
4355
+
4121
4356
  # Identifies a model that you want to host and the resources to deploy
4122
4357
  # for hosting it. If you are deploying multiple models, tell Amazon
4123
4358
  # SageMaker how to distribute traffic among the models by specifying
@@ -4358,7 +4593,7 @@ module Aws::SageMaker
4358
4593
  #
4359
4594
  # `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
4360
4595
  #
4361
- # `s3://customer_bucket/some/prefix/relative/path/custdata-1`
4596
+ # `s3://customer_bucket/some/prefix/relative/path/custdata-2`
4362
4597
  #
4363
4598
  # `...`
4364
4599
  #
@@ -4678,7 +4913,7 @@ module Aws::SageMaker
4678
4913
  # categorized by status.
4679
4914
  #
4680
4915
  # @!attribute [rw] completed
4681
- # The number of completed training jobs launched by a hyperparameter
4916
+ # The number of completed training jobs launched by the hyperparameter
4682
4917
  # tuning job.
4683
4918
  # @return [Integer]
4684
4919
  #
@@ -5178,7 +5413,7 @@ module Aws::SageMaker
5178
5413
  #
5179
5414
  # {
5180
5415
  # notebook_instance_name: "NotebookInstanceName", # required
5181
- # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
5416
+ # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
5182
5417
  # role_arn: "RoleArn",
5183
5418
  # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
5184
5419
  # disassociate_lifecycle_config: false,
@@ -5225,7 +5460,7 @@ module Aws::SageMaker
5225
5460
  #
5226
5461
  # @!attribute [rw] volume_size_in_gb
5227
5462
  # The size, in GB, of the ML storage volume to attach to the notebook
5228
- # instance.
5463
+ # instance. The default value is 5 GB.
5229
5464
  # @return [Integer]
5230
5465
  #
5231
5466
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.22.0
4
+ version: 1.23.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2018-10-26 00:00:00.000000000 Z
11
+ date: 2018-11-14 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core