aws-sdk-sagemaker 1.22.0 → 1.23.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +116 -18
- data/lib/aws-sdk-sagemaker/client_api.rb +32 -3
- data/lib/aws-sdk-sagemaker/types.rb +259 -24
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: b36f98d5a8bf9da7a4732b5ee418bcc9c071f43c
|
4
|
+
data.tar.gz: 65b6f7b2adc03ed424c38b4d55a95decc199de4e
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: d07b58e6dde5d44477871bacbf073b0e93526d4b8a98fabc9f5820c8a95e9daa9daa4df89d9e7079ca829e494ebcb1261b0b0272f32ad214f650d27b6bf14c16
|
7
|
+
data.tar.gz: 5bf7f05103eb6d57a54de1a44748efd16bddf1f89efa440b17ea2f34617c2ec612f1c1ac0a32436e808fa8a1661cf56df251985d46b0c1033e13a08f2aa4611b
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -15,6 +15,7 @@ require 'aws-sdk-core/plugins/helpful_socket_errors.rb'
|
|
15
15
|
require 'aws-sdk-core/plugins/retry_errors.rb'
|
16
16
|
require 'aws-sdk-core/plugins/global_configuration.rb'
|
17
17
|
require 'aws-sdk-core/plugins/regional_endpoint.rb'
|
18
|
+
require 'aws-sdk-core/plugins/endpoint_discovery.rb'
|
18
19
|
require 'aws-sdk-core/plugins/response_paging.rb'
|
19
20
|
require 'aws-sdk-core/plugins/stub_responses.rb'
|
20
21
|
require 'aws-sdk-core/plugins/idempotency_token.rb'
|
@@ -45,6 +46,7 @@ module Aws::SageMaker
|
|
45
46
|
add_plugin(Aws::Plugins::RetryErrors)
|
46
47
|
add_plugin(Aws::Plugins::GlobalConfiguration)
|
47
48
|
add_plugin(Aws::Plugins::RegionalEndpoint)
|
49
|
+
add_plugin(Aws::Plugins::EndpointDiscovery)
|
48
50
|
add_plugin(Aws::Plugins::ResponsePaging)
|
49
51
|
add_plugin(Aws::Plugins::StubResponses)
|
50
52
|
add_plugin(Aws::Plugins::IdempotencyToken)
|
@@ -98,6 +100,10 @@ module Aws::SageMaker
|
|
98
100
|
#
|
99
101
|
# @option options [String] :access_key_id
|
100
102
|
#
|
103
|
+
# @option options [Boolean] :active_endpoint_cache (false)
|
104
|
+
# When set to `true`, a thread polling for endpoints will be running in
|
105
|
+
# the background every 60 secs (default). Defaults to `false`.
|
106
|
+
#
|
101
107
|
# @option options [Boolean] :client_side_monitoring (false)
|
102
108
|
# When `true`, client-side metrics will be collected for all API requests from
|
103
109
|
# this client.
|
@@ -123,6 +129,21 @@ module Aws::SageMaker
|
|
123
129
|
# option. You should only configure an `:endpoint` when connecting
|
124
130
|
# to test endpoints. This should be avalid HTTP(S) URI.
|
125
131
|
#
|
132
|
+
# @option options [Integer] :endpoint_cache_max_entries (1000)
|
133
|
+
# Used for the maximum size limit of the LRU cache storing endpoints data
|
134
|
+
# for endpoint discovery enabled operations. Defaults to 1000.
|
135
|
+
#
|
136
|
+
# @option options [Integer] :endpoint_cache_max_threads (10)
|
137
|
+
# Used for the maximum threads in use for polling endpoints to be cached, defaults to 10.
|
138
|
+
#
|
139
|
+
# @option options [Integer] :endpoint_cache_poll_interval (60)
|
140
|
+
# When :endpoint_discovery and :active_endpoint_cache is enabled,
|
141
|
+
# Use this option to config the time interval in seconds for making
|
142
|
+
# requests fetching endpoints information. Defaults to 60 sec.
|
143
|
+
#
|
144
|
+
# @option options [Boolean] :endpoint_discovery (false)
|
145
|
+
# When set to `true`, endpoint discovery will be enabled for operations when available. Defaults to `false`.
|
146
|
+
#
|
126
147
|
# @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
|
127
148
|
# The log formatter.
|
128
149
|
#
|
@@ -437,19 +458,26 @@ module Aws::SageMaker
|
|
437
458
|
req.send_request(options)
|
438
459
|
end
|
439
460
|
|
440
|
-
# Starts a hyperparameter tuning job.
|
461
|
+
# Starts a hyperparameter tuning job. A hyperparameter tuning job finds
|
462
|
+
# the best version of a model by running many training jobs on your
|
463
|
+
# dataset using the algorithm you choose and values for hyperparameters
|
464
|
+
# within ranges that you specify. It then chooses the hyperparameter
|
465
|
+
# values that result in a model that performs the best, as measured by
|
466
|
+
# an objective metric that you choose.
|
441
467
|
#
|
442
468
|
# @option params [required, String] :hyper_parameter_tuning_job_name
|
443
469
|
# The name of the tuning job. This name is the prefix for the names of
|
444
470
|
# all training jobs that this tuning job launches. The name must be
|
445
|
-
# unique within the same AWS account and AWS Region.
|
446
|
-
#
|
471
|
+
# unique within the same AWS account and AWS Region. The name must have
|
472
|
+
# \\\{ \\} to \\\{ \\} characters. Valid characters are a-z, A-Z, 0-9,
|
473
|
+
# and : + = @ \_ % - (hyphen). The name is not case sensitive.
|
447
474
|
#
|
448
475
|
# @option params [required, Types::HyperParameterTuningJobConfig] :hyper_parameter_tuning_job_config
|
449
476
|
# The HyperParameterTuningJobConfig object that describes the tuning
|
450
|
-
# job, including the search strategy, metric used to
|
451
|
-
# jobs, ranges of parameters to search, and resource
|
452
|
-
# tuning job.
|
477
|
+
# job, including the search strategy, the objective metric used to
|
478
|
+
# evaluate training jobs, ranges of parameters to search, and resource
|
479
|
+
# limits for the tuning job. For more information, see
|
480
|
+
# automatic-model-tuning
|
453
481
|
#
|
454
482
|
# @option params [required, Types::HyperParameterTrainingJobDefinition] :training_job_definition
|
455
483
|
# The HyperParameterTrainingJobDefinition object that describes the
|
@@ -457,6 +485,27 @@ module Aws::SageMaker
|
|
457
485
|
# hyperparameters, input data configuration, output data configuration,
|
458
486
|
# resource configuration, and stopping condition.
|
459
487
|
#
|
488
|
+
# @option params [Types::HyperParameterTuningJobWarmStartConfig] :warm_start_config
|
489
|
+
# Specifies configuration for starting the hyperparameter tuning job
|
490
|
+
# using one or more previous tuning jobs as a starting point. The
|
491
|
+
# results of previous tuning jobs are used to inform which combinations
|
492
|
+
# of hyperparameters to search over in the new tuning job.
|
493
|
+
#
|
494
|
+
# All training jobs launched by the new hyperparameter tuning job are
|
495
|
+
# evaluated by using the objective metric. If you specify
|
496
|
+
# `IDENTICAL_DATA_AND_ALGORITHM` as the `WarmStartType` for the warm
|
497
|
+
# start configuration, the training job that performs the best in the
|
498
|
+
# new tuning job is compared to the best training jobs from the parent
|
499
|
+
# tuning jobs. From these, the training job that performs the best as
|
500
|
+
# measured by the objective metric is returned as the overall best
|
501
|
+
# training job.
|
502
|
+
#
|
503
|
+
# <note markdown="1"> All training jobs launched by parent hyperparameter tuning jobs and
|
504
|
+
# the new hyperparameter tuning jobs count against the limit of training
|
505
|
+
# jobs for the tuning job.
|
506
|
+
#
|
507
|
+
# </note>
|
508
|
+
#
|
460
509
|
# @option params [Array<Types::Tag>] :tags
|
461
510
|
# An array of key-value pairs. You can use tags to categorize your AWS
|
462
511
|
# resources in different ways, for example, by purpose, owner, or
|
@@ -515,7 +564,7 @@ module Aws::SageMaker
|
|
515
564
|
# "ParameterKey" => "ParameterValue",
|
516
565
|
# },
|
517
566
|
# algorithm_specification: { # required
|
518
|
-
# training_image: "AlgorithmImage",
|
567
|
+
# training_image: "AlgorithmImage",
|
519
568
|
# training_input_mode: "Pipe", # required, accepts Pipe, File
|
520
569
|
# metric_definitions: [
|
521
570
|
# {
|
@@ -525,7 +574,7 @@ module Aws::SageMaker
|
|
525
574
|
# ],
|
526
575
|
# },
|
527
576
|
# role_arn: "RoleArn", # required
|
528
|
-
# input_data_config: [
|
577
|
+
# input_data_config: [
|
529
578
|
# {
|
530
579
|
# channel_name: "ChannelName", # required
|
531
580
|
# data_source: { # required
|
@@ -559,6 +608,14 @@ module Aws::SageMaker
|
|
559
608
|
# max_runtime_in_seconds: 1,
|
560
609
|
# },
|
561
610
|
# },
|
611
|
+
# warm_start_config: {
|
612
|
+
# parent_hyper_parameter_tuning_jobs: [ # required
|
613
|
+
# {
|
614
|
+
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
|
615
|
+
# },
|
616
|
+
# ],
|
617
|
+
# warm_start_type: "IdenticalDataAndAlgorithm", # required, accepts IdenticalDataAndAlgorithm, TransferLearning
|
618
|
+
# },
|
562
619
|
# tags: [
|
563
620
|
# {
|
564
621
|
# key: "TagKey", # required
|
@@ -778,7 +835,13 @@ module Aws::SageMaker
|
|
778
835
|
# @option params [String] :kms_key_id
|
779
836
|
# If you provide a AWS KMS key ID, Amazon SageMaker uses it to encrypt
|
780
837
|
# data at rest on the ML storage volume that is attached to your
|
781
|
-
# notebook instance.
|
838
|
+
# notebook instance. The KMS key you provide must be enabled. For
|
839
|
+
# information, see [Enabling and Disabling Keys][1] in the *AWS Key
|
840
|
+
# Management Service Developer Guide*.
|
841
|
+
#
|
842
|
+
#
|
843
|
+
#
|
844
|
+
# [1]: http://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
|
782
845
|
#
|
783
846
|
# @option params [Array<Types::Tag>] :tags
|
784
847
|
# A list of tags to associate with the notebook instance. You can add
|
@@ -810,7 +873,7 @@ module Aws::SageMaker
|
|
810
873
|
#
|
811
874
|
# @option params [Integer] :volume_size_in_gb
|
812
875
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
813
|
-
# instance.
|
876
|
+
# instance. The default value is 5 GB.
|
814
877
|
#
|
815
878
|
# @return [Types::CreateNotebookInstanceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
816
879
|
#
|
@@ -820,7 +883,7 @@ module Aws::SageMaker
|
|
820
883
|
#
|
821
884
|
# resp = client.create_notebook_instance({
|
822
885
|
# notebook_instance_name: "NotebookInstanceName", # required
|
823
|
-
# instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
886
|
+
# instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
824
887
|
# subnet_id: "SubnetId",
|
825
888
|
# security_group_ids: ["SecurityGroupId"],
|
826
889
|
# role_arn: "RoleArn", # required
|
@@ -936,7 +999,7 @@ module Aws::SageMaker
|
|
936
999
|
#
|
937
1000
|
#
|
938
1001
|
#
|
939
|
-
# [1]: http://docs.aws.amazon.com/
|
1002
|
+
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-access-ws.html#nbi-ip-filter
|
940
1003
|
#
|
941
1004
|
# @option params [required, String] :notebook_instance_name
|
942
1005
|
# The name of the notebook instance.
|
@@ -1140,8 +1203,14 @@ module Aws::SageMaker
|
|
1140
1203
|
# "ParameterKey" => "ParameterValue",
|
1141
1204
|
# },
|
1142
1205
|
# algorithm_specification: { # required
|
1143
|
-
# training_image: "AlgorithmImage",
|
1206
|
+
# training_image: "AlgorithmImage",
|
1144
1207
|
# training_input_mode: "Pipe", # required, accepts Pipe, File
|
1208
|
+
# metric_definitions: [
|
1209
|
+
# {
|
1210
|
+
# name: "MetricName", # required
|
1211
|
+
# regex: "MetricRegex", # required
|
1212
|
+
# },
|
1213
|
+
# ],
|
1145
1214
|
# },
|
1146
1215
|
# role_arn: "RoleArn", # required
|
1147
1216
|
# input_data_config: [
|
@@ -1631,6 +1700,8 @@ module Aws::SageMaker
|
|
1631
1700
|
# * {Types::DescribeHyperParameterTuningJobResponse#training_job_status_counters #training_job_status_counters} => Types::TrainingJobStatusCounters
|
1632
1701
|
# * {Types::DescribeHyperParameterTuningJobResponse#objective_status_counters #objective_status_counters} => Types::ObjectiveStatusCounters
|
1633
1702
|
# * {Types::DescribeHyperParameterTuningJobResponse#best_training_job #best_training_job} => Types::HyperParameterTrainingJobSummary
|
1703
|
+
# * {Types::DescribeHyperParameterTuningJobResponse#overall_best_training_job #overall_best_training_job} => Types::HyperParameterTrainingJobSummary
|
1704
|
+
# * {Types::DescribeHyperParameterTuningJobResponse#warm_start_config #warm_start_config} => Types::HyperParameterTuningJobWarmStartConfig
|
1634
1705
|
# * {Types::DescribeHyperParameterTuningJobResponse#failure_reason #failure_reason} => String
|
1635
1706
|
#
|
1636
1707
|
# @example Request syntax with placeholder values
|
@@ -1702,6 +1773,7 @@ module Aws::SageMaker
|
|
1702
1773
|
# resp.objective_status_counters.failed #=> Integer
|
1703
1774
|
# resp.best_training_job.training_job_name #=> String
|
1704
1775
|
# resp.best_training_job.training_job_arn #=> String
|
1776
|
+
# resp.best_training_job.tuning_job_name #=> String
|
1705
1777
|
# resp.best_training_job.creation_time #=> Time
|
1706
1778
|
# resp.best_training_job.training_start_time #=> Time
|
1707
1779
|
# resp.best_training_job.training_end_time #=> Time
|
@@ -1713,6 +1785,23 @@ module Aws::SageMaker
|
|
1713
1785
|
# resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
|
1714
1786
|
# resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
|
1715
1787
|
# resp.best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
1788
|
+
# resp.overall_best_training_job.training_job_name #=> String
|
1789
|
+
# resp.overall_best_training_job.training_job_arn #=> String
|
1790
|
+
# resp.overall_best_training_job.tuning_job_name #=> String
|
1791
|
+
# resp.overall_best_training_job.creation_time #=> Time
|
1792
|
+
# resp.overall_best_training_job.training_start_time #=> Time
|
1793
|
+
# resp.overall_best_training_job.training_end_time #=> Time
|
1794
|
+
# resp.overall_best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
1795
|
+
# resp.overall_best_training_job.tuned_hyper_parameters #=> Hash
|
1796
|
+
# resp.overall_best_training_job.tuned_hyper_parameters["ParameterKey"] #=> String
|
1797
|
+
# resp.overall_best_training_job.failure_reason #=> String
|
1798
|
+
# resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
1799
|
+
# resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
|
1800
|
+
# resp.overall_best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
|
1801
|
+
# resp.overall_best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
1802
|
+
# resp.warm_start_config.parent_hyper_parameter_tuning_jobs #=> Array
|
1803
|
+
# resp.warm_start_config.parent_hyper_parameter_tuning_jobs[0].hyper_parameter_tuning_job_name #=> String
|
1804
|
+
# resp.warm_start_config.warm_start_type #=> String, one of "IdenticalDataAndAlgorithm", "TransferLearning"
|
1716
1805
|
# resp.failure_reason #=> String
|
1717
1806
|
#
|
1718
1807
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJob AWS API Documentation
|
@@ -1806,7 +1895,7 @@ module Aws::SageMaker
|
|
1806
1895
|
# resp.notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
|
1807
1896
|
# resp.failure_reason #=> String
|
1808
1897
|
# resp.url #=> String
|
1809
|
-
# resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
|
1898
|
+
# resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
|
1810
1899
|
# resp.subnet_id #=> String
|
1811
1900
|
# resp.security_groups #=> Array
|
1812
1901
|
# resp.security_groups[0] #=> String
|
@@ -1902,6 +1991,7 @@ module Aws::SageMaker
|
|
1902
1991
|
# * {Types::DescribeTrainingJobResponse#training_end_time #training_end_time} => Time
|
1903
1992
|
# * {Types::DescribeTrainingJobResponse#last_modified_time #last_modified_time} => Time
|
1904
1993
|
# * {Types::DescribeTrainingJobResponse#secondary_status_transitions #secondary_status_transitions} => Array<Types::SecondaryStatusTransition>
|
1994
|
+
# * {Types::DescribeTrainingJobResponse#final_metric_data_list #final_metric_data_list} => Array<Types::MetricData>
|
1905
1995
|
#
|
1906
1996
|
# @example Request syntax with placeholder values
|
1907
1997
|
#
|
@@ -1922,6 +2012,9 @@ module Aws::SageMaker
|
|
1922
2012
|
# resp.hyper_parameters["ParameterKey"] #=> String
|
1923
2013
|
# resp.algorithm_specification.training_image #=> String
|
1924
2014
|
# resp.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File"
|
2015
|
+
# resp.algorithm_specification.metric_definitions #=> Array
|
2016
|
+
# resp.algorithm_specification.metric_definitions[0].name #=> String
|
2017
|
+
# resp.algorithm_specification.metric_definitions[0].regex #=> String
|
1925
2018
|
# resp.role_arn #=> String
|
1926
2019
|
# resp.input_data_config #=> Array
|
1927
2020
|
# resp.input_data_config[0].channel_name #=> String
|
@@ -1952,6 +2045,10 @@ module Aws::SageMaker
|
|
1952
2045
|
# resp.secondary_status_transitions[0].start_time #=> Time
|
1953
2046
|
# resp.secondary_status_transitions[0].end_time #=> Time
|
1954
2047
|
# resp.secondary_status_transitions[0].status_message #=> String
|
2048
|
+
# resp.final_metric_data_list #=> Array
|
2049
|
+
# resp.final_metric_data_list[0].metric_name #=> String
|
2050
|
+
# resp.final_metric_data_list[0].value #=> Float
|
2051
|
+
# resp.final_metric_data_list[0].timestamp #=> Time
|
1955
2052
|
#
|
1956
2053
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJob AWS API Documentation
|
1957
2054
|
#
|
@@ -2483,7 +2580,7 @@ module Aws::SageMaker
|
|
2483
2580
|
# resp.notebook_instances[0].notebook_instance_arn #=> String
|
2484
2581
|
# resp.notebook_instances[0].notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
|
2485
2582
|
# resp.notebook_instances[0].url #=> String
|
2486
|
-
# resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
|
2583
|
+
# resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge"
|
2487
2584
|
# resp.notebook_instances[0].creation_time #=> Time
|
2488
2585
|
# resp.notebook_instances[0].last_modified_time #=> Time
|
2489
2586
|
# resp.notebook_instances[0].notebook_instance_lifecycle_config_name #=> String
|
@@ -2668,6 +2765,7 @@ module Aws::SageMaker
|
|
2668
2765
|
# resp.training_job_summaries #=> Array
|
2669
2766
|
# resp.training_job_summaries[0].training_job_name #=> String
|
2670
2767
|
# resp.training_job_summaries[0].training_job_arn #=> String
|
2768
|
+
# resp.training_job_summaries[0].tuning_job_name #=> String
|
2671
2769
|
# resp.training_job_summaries[0].creation_time #=> Time
|
2672
2770
|
# resp.training_job_summaries[0].training_start_time #=> Time
|
2673
2771
|
# resp.training_job_summaries[0].training_end_time #=> Time
|
@@ -3054,7 +3152,7 @@ module Aws::SageMaker
|
|
3054
3152
|
#
|
3055
3153
|
# @option params [Integer] :volume_size_in_gb
|
3056
3154
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
3057
|
-
# instance.
|
3155
|
+
# instance. The default value is 5 GB.
|
3058
3156
|
#
|
3059
3157
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
3060
3158
|
#
|
@@ -3062,7 +3160,7 @@ module Aws::SageMaker
|
|
3062
3160
|
#
|
3063
3161
|
# resp = client.update_notebook_instance({
|
3064
3162
|
# notebook_instance_name: "NotebookInstanceName", # required
|
3065
|
-
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
3163
|
+
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
3066
3164
|
# role_arn: "RoleArn",
|
3067
3165
|
# lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
|
3068
3166
|
# disassociate_lifecycle_config: false,
|
@@ -3132,7 +3230,7 @@ module Aws::SageMaker
|
|
3132
3230
|
params: params,
|
3133
3231
|
config: config)
|
3134
3232
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
3135
|
-
context[:gem_version] = '1.
|
3233
|
+
context[:gem_version] = '1.23.0'
|
3136
3234
|
Seahorse::Client::Request.new(handlers, context)
|
3137
3235
|
end
|
3138
3236
|
|
@@ -95,6 +95,8 @@ module Aws::SageMaker
|
|
95
95
|
EnvironmentValue = Shapes::StringShape.new(name: 'EnvironmentValue')
|
96
96
|
FailureReason = Shapes::StringShape.new(name: 'FailureReason')
|
97
97
|
FinalHyperParameterTuningJobObjectiveMetric = Shapes::StructureShape.new(name: 'FinalHyperParameterTuningJobObjectiveMetric')
|
98
|
+
FinalMetricDataList = Shapes::ListShape.new(name: 'FinalMetricDataList')
|
99
|
+
Float = Shapes::FloatShape.new(name: 'Float')
|
98
100
|
HyperParameterAlgorithmSpecification = Shapes::StructureShape.new(name: 'HyperParameterAlgorithmSpecification')
|
99
101
|
HyperParameterTrainingJobDefinition = Shapes::StructureShape.new(name: 'HyperParameterTrainingJobDefinition')
|
100
102
|
HyperParameterTrainingJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTrainingJobSummaries')
|
@@ -109,6 +111,8 @@ module Aws::SageMaker
|
|
109
111
|
HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
|
110
112
|
HyperParameterTuningJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTuningJobSummaries')
|
111
113
|
HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
|
114
|
+
HyperParameterTuningJobWarmStartConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobWarmStartConfig')
|
115
|
+
HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
|
112
116
|
HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
|
113
117
|
Image = Shapes::StringShape.new(name: 'Image')
|
114
118
|
InputDataConfig = Shapes::ListShape.new(name: 'InputDataConfig')
|
@@ -144,6 +148,7 @@ module Aws::SageMaker
|
|
144
148
|
MaxPayloadInMB = Shapes::IntegerShape.new(name: 'MaxPayloadInMB')
|
145
149
|
MaxResults = Shapes::IntegerShape.new(name: 'MaxResults')
|
146
150
|
MaxRuntimeInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimeInSeconds')
|
151
|
+
MetricData = Shapes::StructureShape.new(name: 'MetricData')
|
147
152
|
MetricDefinition = Shapes::StructureShape.new(name: 'MetricDefinition')
|
148
153
|
MetricDefinitionList = Shapes::ListShape.new(name: 'MetricDefinitionList')
|
149
154
|
MetricName = Shapes::StringShape.new(name: 'MetricName')
|
@@ -189,6 +194,8 @@ module Aws::SageMaker
|
|
189
194
|
ParameterRanges = Shapes::StructureShape.new(name: 'ParameterRanges')
|
190
195
|
ParameterValue = Shapes::StringShape.new(name: 'ParameterValue')
|
191
196
|
ParameterValues = Shapes::ListShape.new(name: 'ParameterValues')
|
197
|
+
ParentHyperParameterTuningJob = Shapes::StructureShape.new(name: 'ParentHyperParameterTuningJob')
|
198
|
+
ParentHyperParameterTuningJobs = Shapes::ListShape.new(name: 'ParentHyperParameterTuningJobs')
|
192
199
|
ProductionVariant = Shapes::StructureShape.new(name: 'ProductionVariant')
|
193
200
|
ProductionVariantInstanceType = Shapes::StringShape.new(name: 'ProductionVariantInstanceType')
|
194
201
|
ProductionVariantList = Shapes::ListShape.new(name: 'ProductionVariantList')
|
@@ -279,8 +286,9 @@ module Aws::SageMaker
|
|
279
286
|
AddTagsOutput.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
280
287
|
AddTagsOutput.struct_class = Types::AddTagsOutput
|
281
288
|
|
282
|
-
AlgorithmSpecification.add_member(:training_image, Shapes::ShapeRef.new(shape: AlgorithmImage,
|
289
|
+
AlgorithmSpecification.add_member(:training_image, Shapes::ShapeRef.new(shape: AlgorithmImage, location_name: "TrainingImage"))
|
283
290
|
AlgorithmSpecification.add_member(:training_input_mode, Shapes::ShapeRef.new(shape: TrainingInputMode, required: true, location_name: "TrainingInputMode"))
|
291
|
+
AlgorithmSpecification.add_member(:metric_definitions, Shapes::ShapeRef.new(shape: MetricDefinitionList, location_name: "MetricDefinitions"))
|
284
292
|
AlgorithmSpecification.struct_class = Types::AlgorithmSpecification
|
285
293
|
|
286
294
|
CategoricalParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterKey, required: true, location_name: "Name"))
|
@@ -330,6 +338,7 @@ module Aws::SageMaker
|
|
330
338
|
CreateHyperParameterTuningJobRequest.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
|
331
339
|
CreateHyperParameterTuningJobRequest.add_member(:hyper_parameter_tuning_job_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConfig, required: true, location_name: "HyperParameterTuningJobConfig"))
|
332
340
|
CreateHyperParameterTuningJobRequest.add_member(:training_job_definition, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition, required: true, location_name: "TrainingJobDefinition"))
|
341
|
+
CreateHyperParameterTuningJobRequest.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
|
333
342
|
CreateHyperParameterTuningJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
334
343
|
CreateHyperParameterTuningJobRequest.struct_class = Types::CreateHyperParameterTuningJobRequest
|
335
344
|
|
@@ -474,6 +483,8 @@ module Aws::SageMaker
|
|
474
483
|
DescribeHyperParameterTuningJobResponse.add_member(:training_job_status_counters, Shapes::ShapeRef.new(shape: TrainingJobStatusCounters, required: true, location_name: "TrainingJobStatusCounters"))
|
475
484
|
DescribeHyperParameterTuningJobResponse.add_member(:objective_status_counters, Shapes::ShapeRef.new(shape: ObjectiveStatusCounters, required: true, location_name: "ObjectiveStatusCounters"))
|
476
485
|
DescribeHyperParameterTuningJobResponse.add_member(:best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "BestTrainingJob"))
|
486
|
+
DescribeHyperParameterTuningJobResponse.add_member(:overall_best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "OverallBestTrainingJob"))
|
487
|
+
DescribeHyperParameterTuningJobResponse.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
|
477
488
|
DescribeHyperParameterTuningJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
|
478
489
|
DescribeHyperParameterTuningJobResponse.struct_class = Types::DescribeHyperParameterTuningJobResponse
|
479
490
|
|
@@ -543,6 +554,7 @@ module Aws::SageMaker
|
|
543
554
|
DescribeTrainingJobResponse.add_member(:training_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TrainingEndTime"))
|
544
555
|
DescribeTrainingJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
|
545
556
|
DescribeTrainingJobResponse.add_member(:secondary_status_transitions, Shapes::ShapeRef.new(shape: SecondaryStatusTransitions, location_name: "SecondaryStatusTransitions"))
|
557
|
+
DescribeTrainingJobResponse.add_member(:final_metric_data_list, Shapes::ShapeRef.new(shape: FinalMetricDataList, location_name: "FinalMetricDataList"))
|
546
558
|
DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
|
547
559
|
|
548
560
|
DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
|
@@ -596,7 +608,9 @@ module Aws::SageMaker
|
|
596
608
|
FinalHyperParameterTuningJobObjectiveMetric.add_member(:value, Shapes::ShapeRef.new(shape: MetricValue, required: true, location_name: "Value"))
|
597
609
|
FinalHyperParameterTuningJobObjectiveMetric.struct_class = Types::FinalHyperParameterTuningJobObjectiveMetric
|
598
610
|
|
599
|
-
|
611
|
+
FinalMetricDataList.member = Shapes::ShapeRef.new(shape: MetricData)
|
612
|
+
|
613
|
+
HyperParameterAlgorithmSpecification.add_member(:training_image, Shapes::ShapeRef.new(shape: AlgorithmImage, location_name: "TrainingImage"))
|
600
614
|
HyperParameterAlgorithmSpecification.add_member(:training_input_mode, Shapes::ShapeRef.new(shape: TrainingInputMode, required: true, location_name: "TrainingInputMode"))
|
601
615
|
HyperParameterAlgorithmSpecification.add_member(:metric_definitions, Shapes::ShapeRef.new(shape: MetricDefinitionList, location_name: "MetricDefinitions"))
|
602
616
|
HyperParameterAlgorithmSpecification.struct_class = Types::HyperParameterAlgorithmSpecification
|
@@ -604,7 +618,7 @@ module Aws::SageMaker
|
|
604
618
|
HyperParameterTrainingJobDefinition.add_member(:static_hyper_parameters, Shapes::ShapeRef.new(shape: HyperParameters, location_name: "StaticHyperParameters"))
|
605
619
|
HyperParameterTrainingJobDefinition.add_member(:algorithm_specification, Shapes::ShapeRef.new(shape: HyperParameterAlgorithmSpecification, required: true, location_name: "AlgorithmSpecification"))
|
606
620
|
HyperParameterTrainingJobDefinition.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
|
607
|
-
HyperParameterTrainingJobDefinition.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig,
|
621
|
+
HyperParameterTrainingJobDefinition.add_member(:input_data_config, Shapes::ShapeRef.new(shape: InputDataConfig, location_name: "InputDataConfig"))
|
608
622
|
HyperParameterTrainingJobDefinition.add_member(:vpc_config, Shapes::ShapeRef.new(shape: VpcConfig, location_name: "VpcConfig"))
|
609
623
|
HyperParameterTrainingJobDefinition.add_member(:output_data_config, Shapes::ShapeRef.new(shape: OutputDataConfig, required: true, location_name: "OutputDataConfig"))
|
610
624
|
HyperParameterTrainingJobDefinition.add_member(:resource_config, Shapes::ShapeRef.new(shape: ResourceConfig, required: true, location_name: "ResourceConfig"))
|
@@ -615,6 +629,7 @@ module Aws::SageMaker
|
|
615
629
|
|
616
630
|
HyperParameterTrainingJobSummary.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, required: true, location_name: "TrainingJobName"))
|
617
631
|
HyperParameterTrainingJobSummary.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
|
632
|
+
HyperParameterTrainingJobSummary.add_member(:tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, location_name: "TuningJobName"))
|
618
633
|
HyperParameterTrainingJobSummary.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
|
619
634
|
HyperParameterTrainingJobSummary.add_member(:training_start_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TrainingStartTime"))
|
620
635
|
HyperParameterTrainingJobSummary.add_member(:training_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TrainingEndTime"))
|
@@ -649,6 +664,10 @@ module Aws::SageMaker
|
|
649
664
|
HyperParameterTuningJobSummary.add_member(:resource_limits, Shapes::ShapeRef.new(shape: ResourceLimits, location_name: "ResourceLimits"))
|
650
665
|
HyperParameterTuningJobSummary.struct_class = Types::HyperParameterTuningJobSummary
|
651
666
|
|
667
|
+
HyperParameterTuningJobWarmStartConfig.add_member(:parent_hyper_parameter_tuning_jobs, Shapes::ShapeRef.new(shape: ParentHyperParameterTuningJobs, required: true, location_name: "ParentHyperParameterTuningJobs"))
|
668
|
+
HyperParameterTuningJobWarmStartConfig.add_member(:warm_start_type, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartType, required: true, location_name: "WarmStartType"))
|
669
|
+
HyperParameterTuningJobWarmStartConfig.struct_class = Types::HyperParameterTuningJobWarmStartConfig
|
670
|
+
|
652
671
|
HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterKey)
|
653
672
|
HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
|
654
673
|
|
@@ -804,6 +823,11 @@ module Aws::SageMaker
|
|
804
823
|
ListTransformJobsResponse.add_member(:next_token, Shapes::ShapeRef.new(shape: NextToken, location_name: "NextToken"))
|
805
824
|
ListTransformJobsResponse.struct_class = Types::ListTransformJobsResponse
|
806
825
|
|
826
|
+
MetricData.add_member(:metric_name, Shapes::ShapeRef.new(shape: MetricName, location_name: "MetricName"))
|
827
|
+
MetricData.add_member(:value, Shapes::ShapeRef.new(shape: Float, location_name: "Value"))
|
828
|
+
MetricData.add_member(:timestamp, Shapes::ShapeRef.new(shape: Timestamp, location_name: "Timestamp"))
|
829
|
+
MetricData.struct_class = Types::MetricData
|
830
|
+
|
807
831
|
MetricDefinition.add_member(:name, Shapes::ShapeRef.new(shape: MetricName, required: true, location_name: "Name"))
|
808
832
|
MetricDefinition.add_member(:regex, Shapes::ShapeRef.new(shape: MetricRegex, required: true, location_name: "Regex"))
|
809
833
|
MetricDefinition.struct_class = Types::MetricDefinition
|
@@ -861,6 +885,11 @@ module Aws::SageMaker
|
|
861
885
|
|
862
886
|
ParameterValues.member = Shapes::ShapeRef.new(shape: ParameterValue)
|
863
887
|
|
888
|
+
ParentHyperParameterTuningJob.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, location_name: "HyperParameterTuningJobName"))
|
889
|
+
ParentHyperParameterTuningJob.struct_class = Types::ParentHyperParameterTuningJob
|
890
|
+
|
891
|
+
ParentHyperParameterTuningJobs.member = Shapes::ShapeRef.new(shape: ParentHyperParameterTuningJob)
|
892
|
+
|
864
893
|
ProductionVariant.add_member(:variant_name, Shapes::ShapeRef.new(shape: VariantName, required: true, location_name: "VariantName"))
|
865
894
|
ProductionVariant.add_member(:model_name, Shapes::ShapeRef.new(shape: ModelName, required: true, location_name: "ModelName"))
|
866
895
|
ProductionVariant.add_member(:initial_instance_count, Shapes::ShapeRef.new(shape: TaskCount, required: true, location_name: "InitialInstanceCount"))
|
@@ -67,8 +67,14 @@ module Aws::SageMaker
|
|
67
67
|
# data as a hash:
|
68
68
|
#
|
69
69
|
# {
|
70
|
-
# training_image: "AlgorithmImage",
|
70
|
+
# training_image: "AlgorithmImage",
|
71
71
|
# training_input_mode: "Pipe", # required, accepts Pipe, File
|
72
|
+
# metric_definitions: [
|
73
|
+
# {
|
74
|
+
# name: "MetricName", # required
|
75
|
+
# regex: "MetricRegex", # required
|
76
|
+
# },
|
77
|
+
# ],
|
72
78
|
# }
|
73
79
|
#
|
74
80
|
# @!attribute [rw] training_image
|
@@ -110,11 +116,18 @@ module Aws::SageMaker
|
|
110
116
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
|
111
117
|
# @return [String]
|
112
118
|
#
|
119
|
+
# @!attribute [rw] metric_definitions
|
120
|
+
# A list of metric definition objects. Each object specifies the
|
121
|
+
# metric name and regular expressions used to parse algorithm logs.
|
122
|
+
# Amazon SageMaker publishes each metric to Amazon CloudWatch.
|
123
|
+
# @return [Array<Types::MetricDefinition>]
|
124
|
+
#
|
113
125
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmSpecification AWS API Documentation
|
114
126
|
#
|
115
127
|
class AlgorithmSpecification < Struct.new(
|
116
128
|
:training_image,
|
117
|
-
:training_input_mode
|
129
|
+
:training_input_mode,
|
130
|
+
:metric_definitions)
|
118
131
|
include Aws::Structure
|
119
132
|
end
|
120
133
|
|
@@ -201,6 +214,18 @@ module Aws::SageMaker
|
|
201
214
|
# @return [String]
|
202
215
|
#
|
203
216
|
# @!attribute [rw] input_mode
|
217
|
+
# (Optional) The input mode to use for the data channel in a training
|
218
|
+
# job. If you don't set a value for `InputMode`, Amazon SageMaker
|
219
|
+
# uses the value set for `TrainingInputMode`. Use this parameter to
|
220
|
+
# override the `TrainingInputMode` setting in a AlgorithmSpecification
|
221
|
+
# request when you have a channel that needs a different input mode
|
222
|
+
# from the training job's general setting. To download the data from
|
223
|
+
# Amazon Simple Storage Service (Amazon S3) to the provisioned ML
|
224
|
+
# storage volume, and mount the directory to a Docker volume, use
|
225
|
+
# `File` input mode. To stream data directly from Amazon S3 to the
|
226
|
+
# container, choose `Pipe` input mode.
|
227
|
+
#
|
228
|
+
# To use a model for incremental training, choose `File` input model.
|
204
229
|
# @return [String]
|
205
230
|
#
|
206
231
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Channel AWS API Documentation
|
@@ -258,7 +283,7 @@ module Aws::SageMaker
|
|
258
283
|
# you provide. AWS STS is activated in your IAM user account by
|
259
284
|
# default. If you previously deactivated AWS STS for a region, you
|
260
285
|
# need to reactivate AWS STS for that region. For more information,
|
261
|
-
# see [Activating and Deactivating AWS STS
|
286
|
+
# see [Activating and Deactivating AWS STS in an AWS Region][1] in the
|
262
287
|
# *AWS Identity and Access Management User Guide*.
|
263
288
|
#
|
264
289
|
#
|
@@ -492,7 +517,7 @@ module Aws::SageMaker
|
|
492
517
|
# "ParameterKey" => "ParameterValue",
|
493
518
|
# },
|
494
519
|
# algorithm_specification: { # required
|
495
|
-
# training_image: "AlgorithmImage",
|
520
|
+
# training_image: "AlgorithmImage",
|
496
521
|
# training_input_mode: "Pipe", # required, accepts Pipe, File
|
497
522
|
# metric_definitions: [
|
498
523
|
# {
|
@@ -502,7 +527,7 @@ module Aws::SageMaker
|
|
502
527
|
# ],
|
503
528
|
# },
|
504
529
|
# role_arn: "RoleArn", # required
|
505
|
-
# input_data_config: [
|
530
|
+
# input_data_config: [
|
506
531
|
# {
|
507
532
|
# channel_name: "ChannelName", # required
|
508
533
|
# data_source: { # required
|
@@ -536,6 +561,14 @@ module Aws::SageMaker
|
|
536
561
|
# max_runtime_in_seconds: 1,
|
537
562
|
# },
|
538
563
|
# },
|
564
|
+
# warm_start_config: {
|
565
|
+
# parent_hyper_parameter_tuning_jobs: [ # required
|
566
|
+
# {
|
567
|
+
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
|
568
|
+
# },
|
569
|
+
# ],
|
570
|
+
# warm_start_type: "IdenticalDataAndAlgorithm", # required, accepts IdenticalDataAndAlgorithm, TransferLearning
|
571
|
+
# },
|
539
572
|
# tags: [
|
540
573
|
# {
|
541
574
|
# key: "TagKey", # required
|
@@ -547,15 +580,17 @@ module Aws::SageMaker
|
|
547
580
|
# @!attribute [rw] hyper_parameter_tuning_job_name
|
548
581
|
# The name of the tuning job. This name is the prefix for the names of
|
549
582
|
# all training jobs that this tuning job launches. The name must be
|
550
|
-
# unique within the same AWS account and AWS Region.
|
551
|
-
#
|
583
|
+
# unique within the same AWS account and AWS Region. The name must
|
584
|
+
# have \\\{ \\} to \\\{ \\} characters. Valid characters are a-z, A-Z,
|
585
|
+
# 0-9, and : + = @ \_ % - (hyphen). The name is not case sensitive.
|
552
586
|
# @return [String]
|
553
587
|
#
|
554
588
|
# @!attribute [rw] hyper_parameter_tuning_job_config
|
555
589
|
# The HyperParameterTuningJobConfig object that describes the tuning
|
556
|
-
# job, including the search strategy, metric used to
|
557
|
-
# jobs, ranges of parameters to search, and resource
|
558
|
-
# tuning job.
|
590
|
+
# job, including the search strategy, the objective metric used to
|
591
|
+
# evaluate training jobs, ranges of parameters to search, and resource
|
592
|
+
# limits for the tuning job. For more information, see
|
593
|
+
# automatic-model-tuning
|
559
594
|
# @return [Types::HyperParameterTuningJobConfig]
|
560
595
|
#
|
561
596
|
# @!attribute [rw] training_job_definition
|
@@ -565,6 +600,29 @@ module Aws::SageMaker
|
|
565
600
|
# configuration, resource configuration, and stopping condition.
|
566
601
|
# @return [Types::HyperParameterTrainingJobDefinition]
|
567
602
|
#
|
603
|
+
# @!attribute [rw] warm_start_config
|
604
|
+
# Specifies configuration for starting the hyperparameter tuning job
|
605
|
+
# using one or more previous tuning jobs as a starting point. The
|
606
|
+
# results of previous tuning jobs are used to inform which
|
607
|
+
# combinations of hyperparameters to search over in the new tuning
|
608
|
+
# job.
|
609
|
+
#
|
610
|
+
# All training jobs launched by the new hyperparameter tuning job are
|
611
|
+
# evaluated by using the objective metric. If you specify
|
612
|
+
# `IDENTICAL_DATA_AND_ALGORITHM` as the `WarmStartType` for the warm
|
613
|
+
# start configuration, the training job that performs the best in the
|
614
|
+
# new tuning job is compared to the best training jobs from the parent
|
615
|
+
# tuning jobs. From these, the training job that performs the best as
|
616
|
+
# measured by the objective metric is returned as the overall best
|
617
|
+
# training job.
|
618
|
+
#
|
619
|
+
# <note markdown="1"> All training jobs launched by parent hyperparameter tuning jobs and
|
620
|
+
# the new hyperparameter tuning jobs count against the limit of
|
621
|
+
# training jobs for the tuning job.
|
622
|
+
#
|
623
|
+
# </note>
|
624
|
+
# @return [Types::HyperParameterTuningJobWarmStartConfig]
|
625
|
+
#
|
568
626
|
# @!attribute [rw] tags
|
569
627
|
# An array of key-value pairs. You can use tags to categorize your AWS
|
570
628
|
# resources in different ways, for example, by purpose, owner, or
|
@@ -584,12 +642,14 @@ module Aws::SageMaker
|
|
584
642
|
:hyper_parameter_tuning_job_name,
|
585
643
|
:hyper_parameter_tuning_job_config,
|
586
644
|
:training_job_definition,
|
645
|
+
:warm_start_config,
|
587
646
|
:tags)
|
588
647
|
include Aws::Structure
|
589
648
|
end
|
590
649
|
|
591
650
|
# @!attribute [rw] hyper_parameter_tuning_job_arn
|
592
|
-
# The Amazon Resource Name (ARN) of the tuning job.
|
651
|
+
# The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker
|
652
|
+
# assigns an ARN to a hyperparameter tuning job when you create it.
|
593
653
|
# @return [String]
|
594
654
|
#
|
595
655
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
|
@@ -703,7 +763,7 @@ module Aws::SageMaker
|
|
703
763
|
#
|
704
764
|
# {
|
705
765
|
# notebook_instance_name: "NotebookInstanceName", # required
|
706
|
-
# instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
766
|
+
# instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
707
767
|
# subnet_id: "SubnetId",
|
708
768
|
# security_group_ids: ["SecurityGroupId"],
|
709
769
|
# role_arn: "RoleArn", # required
|
@@ -759,7 +819,13 @@ module Aws::SageMaker
|
|
759
819
|
# @!attribute [rw] kms_key_id
|
760
820
|
# If you provide a AWS KMS key ID, Amazon SageMaker uses it to encrypt
|
761
821
|
# data at rest on the ML storage volume that is attached to your
|
762
|
-
# notebook instance.
|
822
|
+
# notebook instance. The KMS key you provide must be enabled. For
|
823
|
+
# information, see [Enabling and Disabling Keys][1] in the *AWS Key
|
824
|
+
# Management Service Developer Guide*.
|
825
|
+
#
|
826
|
+
#
|
827
|
+
#
|
828
|
+
# [1]: http://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
|
763
829
|
# @return [String]
|
764
830
|
#
|
765
831
|
# @!attribute [rw] tags
|
@@ -795,7 +861,7 @@ module Aws::SageMaker
|
|
795
861
|
#
|
796
862
|
# @!attribute [rw] volume_size_in_gb
|
797
863
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
798
|
-
# instance.
|
864
|
+
# instance. The default value is 5 GB.
|
799
865
|
# @return [Integer]
|
800
866
|
#
|
801
867
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateNotebookInstanceInput AWS API Documentation
|
@@ -921,8 +987,14 @@ module Aws::SageMaker
|
|
921
987
|
# "ParameterKey" => "ParameterValue",
|
922
988
|
# },
|
923
989
|
# algorithm_specification: { # required
|
924
|
-
# training_image: "AlgorithmImage",
|
990
|
+
# training_image: "AlgorithmImage",
|
925
991
|
# training_input_mode: "Pipe", # required, accepts Pipe, File
|
992
|
+
# metric_definitions: [
|
993
|
+
# {
|
994
|
+
# name: "MetricName", # required
|
995
|
+
# regex: "MetricRegex", # required
|
996
|
+
# },
|
997
|
+
# ],
|
926
998
|
# },
|
927
999
|
# role_arn: "RoleArn", # required
|
928
1000
|
# input_data_config: [
|
@@ -1660,6 +1732,22 @@ module Aws::SageMaker
|
|
1660
1732
|
# completed with the best current HyperParameterTuningJobObjective.
|
1661
1733
|
# @return [Types::HyperParameterTrainingJobSummary]
|
1662
1734
|
#
|
1735
|
+
# @!attribute [rw] overall_best_training_job
|
1736
|
+
# If the hyperparameter tuning job is an incremental tuning job with a
|
1737
|
+
# `WarmStartType` of `IDENTICAL_DATA_AND_ALGORITHM`, this is the
|
1738
|
+
# TrainingJobSummary for the training job with the best objective
|
1739
|
+
# metric value of all training jobs launched by this tuning job and
|
1740
|
+
# all parent jobs specified for the incremental tuning job.
|
1741
|
+
# @return [Types::HyperParameterTrainingJobSummary]
|
1742
|
+
#
|
1743
|
+
# @!attribute [rw] warm_start_config
|
1744
|
+
# The configuration for starting the hyperparameter parameter tuning
|
1745
|
+
# job using one or more previous tuning jobs as a starting point. The
|
1746
|
+
# results of previous tuning jobs are used to inform which
|
1747
|
+
# combinations of hyperparameters to search over in the new tuning
|
1748
|
+
# job.
|
1749
|
+
# @return [Types::HyperParameterTuningJobWarmStartConfig]
|
1750
|
+
#
|
1663
1751
|
# @!attribute [rw] failure_reason
|
1664
1752
|
# If the tuning job failed, the reason it failed.
|
1665
1753
|
# @return [String]
|
@@ -1678,6 +1766,8 @@ module Aws::SageMaker
|
|
1678
1766
|
:training_job_status_counters,
|
1679
1767
|
:objective_status_counters,
|
1680
1768
|
:best_training_job,
|
1769
|
+
:overall_best_training_job,
|
1770
|
+
:warm_start_config,
|
1681
1771
|
:failure_reason)
|
1682
1772
|
include Aws::Structure
|
1683
1773
|
end
|
@@ -2121,6 +2211,12 @@ module Aws::SageMaker
|
|
2121
2211
|
# transitioned through.
|
2122
2212
|
# @return [Array<Types::SecondaryStatusTransition>]
|
2123
2213
|
#
|
2214
|
+
# @!attribute [rw] final_metric_data_list
|
2215
|
+
# A collection of `MetricData` objects that specify the names, values,
|
2216
|
+
# and dates and times that the training algorithm emitted to Amazon
|
2217
|
+
# CloudWatch.
|
2218
|
+
# @return [Array<Types::MetricData>]
|
2219
|
+
#
|
2124
2220
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
|
2125
2221
|
#
|
2126
2222
|
class DescribeTrainingJobResponse < Struct.new(
|
@@ -2143,7 +2239,8 @@ module Aws::SageMaker
|
|
2143
2239
|
:training_start_time,
|
2144
2240
|
:training_end_time,
|
2145
2241
|
:last_modified_time,
|
2146
|
-
:secondary_status_transitions
|
2242
|
+
:secondary_status_transitions,
|
2243
|
+
:final_metric_data_list)
|
2147
2244
|
include Aws::Structure
|
2148
2245
|
end
|
2149
2246
|
|
@@ -2413,7 +2510,7 @@ module Aws::SageMaker
|
|
2413
2510
|
# data as a hash:
|
2414
2511
|
#
|
2415
2512
|
# {
|
2416
|
-
# training_image: "AlgorithmImage",
|
2513
|
+
# training_image: "AlgorithmImage",
|
2417
2514
|
# training_input_mode: "Pipe", # required, accepts Pipe, File
|
2418
2515
|
# metric_definitions: [
|
2419
2516
|
# {
|
@@ -2480,7 +2577,7 @@ module Aws::SageMaker
|
|
2480
2577
|
# "ParameterKey" => "ParameterValue",
|
2481
2578
|
# },
|
2482
2579
|
# algorithm_specification: { # required
|
2483
|
-
# training_image: "AlgorithmImage",
|
2580
|
+
# training_image: "AlgorithmImage",
|
2484
2581
|
# training_input_mode: "Pipe", # required, accepts Pipe, File
|
2485
2582
|
# metric_definitions: [
|
2486
2583
|
# {
|
@@ -2490,7 +2587,7 @@ module Aws::SageMaker
|
|
2490
2587
|
# ],
|
2491
2588
|
# },
|
2492
2589
|
# role_arn: "RoleArn", # required
|
2493
|
-
# input_data_config: [
|
2590
|
+
# input_data_config: [
|
2494
2591
|
# {
|
2495
2592
|
# channel_name: "ChannelName", # required
|
2496
2593
|
# data_source: { # required
|
@@ -2611,6 +2708,9 @@ module Aws::SageMaker
|
|
2611
2708
|
# The Amazon Resource Name (ARN) of the training job.
|
2612
2709
|
# @return [String]
|
2613
2710
|
#
|
2711
|
+
# @!attribute [rw] tuning_job_name
|
2712
|
+
# @return [String]
|
2713
|
+
#
|
2614
2714
|
# @!attribute [rw] creation_time
|
2615
2715
|
# The date and time that the training job was created.
|
2616
2716
|
# @return [Time]
|
@@ -2671,6 +2771,7 @@ module Aws::SageMaker
|
|
2671
2771
|
class HyperParameterTrainingJobSummary < Struct.new(
|
2672
2772
|
:training_job_name,
|
2673
2773
|
:training_job_arn,
|
2774
|
+
:tuning_job_name,
|
2674
2775
|
:creation_time,
|
2675
2776
|
:training_start_time,
|
2676
2777
|
:training_end_time,
|
@@ -2846,6 +2947,84 @@ module Aws::SageMaker
|
|
2846
2947
|
include Aws::Structure
|
2847
2948
|
end
|
2848
2949
|
|
2950
|
+
# Specifies the configuration for a hyperparameter tuning job that uses
|
2951
|
+
# one or more previous hyperparameter tuning jobs as a starting point.
|
2952
|
+
# The results of previous tuning jobs are used to inform which
|
2953
|
+
# combinations of hyperparameters to search over in the new tuning job.
|
2954
|
+
#
|
2955
|
+
# All training jobs launched by the new hyperparameter tuning job are
|
2956
|
+
# evaluated by using the objective metric, and the training job that
|
2957
|
+
# performs the best is compared to the best training jobs from the
|
2958
|
+
# parent tuning jobs. From these, the training job that performs the
|
2959
|
+
# best as measured by the objective metric is returned as the overall
|
2960
|
+
# best training job.
|
2961
|
+
#
|
2962
|
+
# <note markdown="1"> All training jobs launched by parent hyperparameter tuning jobs and
|
2963
|
+
# the new hyperparameter tuning jobs count against the limit of training
|
2964
|
+
# jobs for the tuning job.
|
2965
|
+
#
|
2966
|
+
# </note>
|
2967
|
+
#
|
2968
|
+
# @note When making an API call, you may pass HyperParameterTuningJobWarmStartConfig
|
2969
|
+
# data as a hash:
|
2970
|
+
#
|
2971
|
+
# {
|
2972
|
+
# parent_hyper_parameter_tuning_jobs: [ # required
|
2973
|
+
# {
|
2974
|
+
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
|
2975
|
+
# },
|
2976
|
+
# ],
|
2977
|
+
# warm_start_type: "IdenticalDataAndAlgorithm", # required, accepts IdenticalDataAndAlgorithm, TransferLearning
|
2978
|
+
# }
|
2979
|
+
#
|
2980
|
+
# @!attribute [rw] parent_hyper_parameter_tuning_jobs
|
2981
|
+
# An array of hyperparameter tuning jobs that are used as the starting
|
2982
|
+
# point for the new hyperparameter tuning job. For more information
|
2983
|
+
# about warm starting a hyperparameter tuning job, see [Using a
|
2984
|
+
# Previous Hyperparameter Tuning Job as a Starting Point][1].
|
2985
|
+
#
|
2986
|
+
#
|
2987
|
+
#
|
2988
|
+
# [1]: http://docs.aws.amazon.com/automatic-model-tuning-incremental
|
2989
|
+
# @return [Array<Types::ParentHyperParameterTuningJob>]
|
2990
|
+
#
|
2991
|
+
# @!attribute [rw] warm_start_type
|
2992
|
+
# Specifies one of the following:
|
2993
|
+
#
|
2994
|
+
# IDENTICAL\_DATA\_AND\_ALGORITHM
|
2995
|
+
#
|
2996
|
+
# : The new hyperparameter tuning job uses the same input data and
|
2997
|
+
# training image as the parent tuning jobs. You can change the
|
2998
|
+
# hyperparameter ranges to search and the maximum number of training
|
2999
|
+
# jobs that the hyperparameter tuning job launches. You cannot use a
|
3000
|
+
# new version of the training algorithm, unless the changes in the
|
3001
|
+
# new version do not affect the algorithm itself. For example,
|
3002
|
+
# changes that improve logging or adding support for a different
|
3003
|
+
# data format are allowed. The objective metric for the new tuning
|
3004
|
+
# job must be the same as for all parent jobs.
|
3005
|
+
#
|
3006
|
+
# TRANSFER\_LEARNING
|
3007
|
+
#
|
3008
|
+
# : The new hyperparameter tuning job can include input data,
|
3009
|
+
# hyperparameter ranges, maximum number of concurrent training jobs,
|
3010
|
+
# and maximum number of training jobs that are different than those
|
3011
|
+
# of its parent hyperparameter tuning jobs. The training image can
|
3012
|
+
# also be a different versionfrom the version used in the parent
|
3013
|
+
# hyperparameter tuning job. You can also change hyperparameters
|
3014
|
+
# from tunable to static, and from static to tunable, but the total
|
3015
|
+
# number of static plus tunable hyperparameters must remain the same
|
3016
|
+
# as it is in all parent jobs. The objective metric for the new
|
3017
|
+
# tuning job must be the same as for all parent jobs.
|
3018
|
+
# @return [String]
|
3019
|
+
#
|
3020
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobWarmStartConfig AWS API Documentation
|
3021
|
+
#
|
3022
|
+
class HyperParameterTuningJobWarmStartConfig < Struct.new(
|
3023
|
+
:parent_hyper_parameter_tuning_jobs,
|
3024
|
+
:warm_start_type)
|
3025
|
+
include Aws::Structure
|
3026
|
+
end
|
3027
|
+
|
2849
3028
|
# For a hyperparameter of the integer type, specifies the range that a
|
2850
3029
|
# hyperparameter tuning job searches.
|
2851
3030
|
#
|
@@ -3764,6 +3943,30 @@ module Aws::SageMaker
|
|
3764
3943
|
include Aws::Structure
|
3765
3944
|
end
|
3766
3945
|
|
3946
|
+
# The name, value, and date and time of a metric that was emitted to
|
3947
|
+
# Amazon CloudWatch.
|
3948
|
+
#
|
3949
|
+
# @!attribute [rw] metric_name
|
3950
|
+
# The name of the metric.
|
3951
|
+
# @return [String]
|
3952
|
+
#
|
3953
|
+
# @!attribute [rw] value
|
3954
|
+
# The value of the metric.
|
3955
|
+
# @return [Float]
|
3956
|
+
#
|
3957
|
+
# @!attribute [rw] timestamp
|
3958
|
+
# The date and time that the algorithm emitted the metric.
|
3959
|
+
# @return [Time]
|
3960
|
+
#
|
3961
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricData AWS API Documentation
|
3962
|
+
#
|
3963
|
+
class MetricData < Struct.new(
|
3964
|
+
:metric_name,
|
3965
|
+
:value,
|
3966
|
+
:timestamp)
|
3967
|
+
include Aws::Structure
|
3968
|
+
end
|
3969
|
+
|
3767
3970
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
3768
3971
|
# `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
|
3769
3972
|
# metrics. You specify one metric that a hyperparameter tuning job uses
|
@@ -4064,7 +4267,17 @@ module Aws::SageMaker
|
|
4064
4267
|
end
|
4065
4268
|
|
4066
4269
|
# Specifies ranges of integer, continuous, and categorical
|
4067
|
-
# hyperparameters that a hyperparameter tuning job searches.
|
4270
|
+
# hyperparameters that a hyperparameter tuning job searches. The
|
4271
|
+
# hyperparameter tuning job launches training jobs with hyperparameter
|
4272
|
+
# values within these ranges to find the combination of values that
|
4273
|
+
# result in the training job with the best performance as measured by
|
4274
|
+
# the objective metric of the hyperparameter tuning job.
|
4275
|
+
#
|
4276
|
+
# <note markdown="1"> You can specify a maximum of 20 hyperparameters that a hyperparameter
|
4277
|
+
# tuning job can search over. Every possible value of a categorical
|
4278
|
+
# parameter range counts against this limit.
|
4279
|
+
#
|
4280
|
+
# </note>
|
4068
4281
|
#
|
4069
4282
|
# @note When making an API call, you may pass ParameterRanges
|
4070
4283
|
# data as a hash:
|
@@ -4118,6 +4331,28 @@ module Aws::SageMaker
|
|
4118
4331
|
include Aws::Structure
|
4119
4332
|
end
|
4120
4333
|
|
4334
|
+
# A previously completed or stopped hyperparameter tuning job to be used
|
4335
|
+
# as a starting point for a new hyperparameter tuning job.
|
4336
|
+
#
|
4337
|
+
# @note When making an API call, you may pass ParentHyperParameterTuningJob
|
4338
|
+
# data as a hash:
|
4339
|
+
#
|
4340
|
+
# {
|
4341
|
+
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName",
|
4342
|
+
# }
|
4343
|
+
#
|
4344
|
+
# @!attribute [rw] hyper_parameter_tuning_job_name
|
4345
|
+
# The name of the hyperparameter tuning job to be used as a starting
|
4346
|
+
# point for a new hyperparameter tuning job.
|
4347
|
+
# @return [String]
|
4348
|
+
#
|
4349
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ParentHyperParameterTuningJob AWS API Documentation
|
4350
|
+
#
|
4351
|
+
class ParentHyperParameterTuningJob < Struct.new(
|
4352
|
+
:hyper_parameter_tuning_job_name)
|
4353
|
+
include Aws::Structure
|
4354
|
+
end
|
4355
|
+
|
4121
4356
|
# Identifies a model that you want to host and the resources to deploy
|
4122
4357
|
# for hosting it. If you are deploying multiple models, tell Amazon
|
4123
4358
|
# SageMaker how to distribute traffic among the models by specifying
|
@@ -4358,7 +4593,7 @@ module Aws::SageMaker
|
|
4358
4593
|
#
|
4359
4594
|
# `s3://customer_bucket/some/prefix/relative/path/to/custdata-1`
|
4360
4595
|
#
|
4361
|
-
# `s3://customer_bucket/some/prefix/relative/path/custdata-
|
4596
|
+
# `s3://customer_bucket/some/prefix/relative/path/custdata-2`
|
4362
4597
|
#
|
4363
4598
|
# `...`
|
4364
4599
|
#
|
@@ -4678,7 +4913,7 @@ module Aws::SageMaker
|
|
4678
4913
|
# categorized by status.
|
4679
4914
|
#
|
4680
4915
|
# @!attribute [rw] completed
|
4681
|
-
# The number of completed training jobs launched by
|
4916
|
+
# The number of completed training jobs launched by the hyperparameter
|
4682
4917
|
# tuning job.
|
4683
4918
|
# @return [Integer]
|
4684
4919
|
#
|
@@ -5178,7 +5413,7 @@ module Aws::SageMaker
|
|
5178
5413
|
#
|
5179
5414
|
# {
|
5180
5415
|
# notebook_instance_name: "NotebookInstanceName", # required
|
5181
|
-
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
5416
|
+
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
5182
5417
|
# role_arn: "RoleArn",
|
5183
5418
|
# lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
|
5184
5419
|
# disassociate_lifecycle_config: false,
|
@@ -5225,7 +5460,7 @@ module Aws::SageMaker
|
|
5225
5460
|
#
|
5226
5461
|
# @!attribute [rw] volume_size_in_gb
|
5227
5462
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
5228
|
-
# instance.
|
5463
|
+
# instance. The default value is 5 GB.
|
5229
5464
|
# @return [Integer]
|
5230
5465
|
#
|
5231
5466
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.23.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-
|
11
|
+
date: 2018-11-14 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|