aws-sdk-sagemaker 1.191.0 → 1.193.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: c5a11a92ae9b1f7dd4576c7bb6eae1b62aa9a1c0ed7ae60f9e9ed65530576e78
4
- data.tar.gz: 20605cdbe5d1510b493fc76073591c26216eda6e4f87c492a119b07981bde826
3
+ metadata.gz: e8563212194efe3f885db18ded340750c68719059405c10110a98fe0a254de83
4
+ data.tar.gz: 8c32b946394f67fac58c560a9a048ec39d56ab2ea1f1416484de48dbeb99947c
5
5
  SHA512:
6
- metadata.gz: ff5009d9104e86b816c8d1e5c888b5a62685dde25be5409dff164ecefb2f1e12bc3f45d48eb09871d0bd2913235b361230a8dfd13328def19821dc6e30953e4f
7
- data.tar.gz: ae8df2ffe98ba597b35358eb42a32387d2371c05192aa72630445205b11fe68018b1d9f79f52ffa1052139abf3c452fb6dd5b4869da308e9ce294d6f06d0688e
6
+ metadata.gz: 1632e061172d86fd8998029d2b91c397c527dc6329297cacff63dd191a7b81e349ad4ba938c85a178d7056a47b4bbe084f7adc327087dc8c652d87effcc75be5
7
+ data.tar.gz: 6e7c6e026568146cea2404421c7ce6028e509a6d042af8c25ede1c4e5b141f0b89303e1c4d801d7405338204ea4f27d75c1f7670de963cb6593951988c110559
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.193.0 (2023-06-30)
5
+ ------------------
6
+
7
+ * Feature - This release adds support for rolling deployment in SageMaker Inference.
8
+
9
+ 1.192.0 (2023-06-29)
10
+ ------------------
11
+
12
+ * Feature - Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
13
+
4
14
  1.191.0 (2023-06-28)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.191.0
1
+ 1.193.0
@@ -1307,7 +1307,7 @@ module Aws::SageMaker
1307
1307
  # },
1308
1308
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
1309
1309
  # auto_ml_job_objective: {
1310
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1310
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
1311
1311
  # },
1312
1312
  # auto_ml_job_config: {
1313
1313
  # completion_criteria: {
@@ -1405,12 +1405,14 @@ module Aws::SageMaker
1405
1405
  # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
1406
1406
  # parameters. The supported formats depend on the problem type:
1407
1407
  #
1408
- # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
1408
+ # * For tabular problem types: `S3Prefix`, `ManifestFile`.
1409
1409
  #
1410
- # * For ImageClassification: `S3Prefix`, `ManifestFile`,
1410
+ # * For image classification: `S3Prefix`, `ManifestFile`,
1411
1411
  # `AugmentedManifestFile`.
1412
1412
  #
1413
- # * For TextClassification: `S3Prefix`.
1413
+ # * For text classification: `S3Prefix`.
1414
+ #
1415
+ # * For time-series forecasting: `S3Prefix`.
1414
1416
  #
1415
1417
  #
1416
1418
  #
@@ -1470,6 +1472,12 @@ module Aws::SageMaker
1470
1472
  # For jobs created by calling `CreateAutoMLJob`, the validation dataset
1471
1473
  # must be less than 2 GB in size.
1472
1474
  #
1475
+ # <note markdown="1"> This attribute must not be set for the time-series forecasting problem
1476
+ # type, as Autopilot automatically splits the input dataset into
1477
+ # training and validation sets.
1478
+ #
1479
+ # </note>
1480
+ #
1473
1481
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1474
1482
  #
1475
1483
  # * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1532,6 +1540,33 @@ module Aws::SageMaker
1532
1540
  # target_attribute_name: "TargetAttributeName", # required
1533
1541
  # sample_weight_attribute_name: "SampleWeightAttributeName",
1534
1542
  # },
1543
+ # time_series_forecasting_job_config: {
1544
+ # feature_specification_s3_uri: "S3Uri",
1545
+ # completion_criteria: {
1546
+ # max_candidates: 1,
1547
+ # max_runtime_per_training_job_in_seconds: 1,
1548
+ # max_auto_ml_job_runtime_in_seconds: 1,
1549
+ # },
1550
+ # forecast_frequency: "ForecastFrequency", # required
1551
+ # forecast_horizon: 1, # required
1552
+ # forecast_quantiles: ["ForecastQuantile"],
1553
+ # transformations: {
1554
+ # filling: {
1555
+ # "TransformationAttributeName" => {
1556
+ # "frontfill" => "FillingTransformationValue",
1557
+ # },
1558
+ # },
1559
+ # aggregation: {
1560
+ # "TransformationAttributeName" => "sum", # accepts sum, avg, first, min, max
1561
+ # },
1562
+ # },
1563
+ # time_series_config: { # required
1564
+ # target_attribute_name: "TargetAttributeName", # required
1565
+ # timestamp_attribute_name: "TimestampAttributeName", # required
1566
+ # item_identifier_attribute_name: "ItemIdentifierAttributeName", # required
1567
+ # grouping_attribute_names: ["GroupingAttributeName"],
1568
+ # },
1569
+ # },
1535
1570
  # },
1536
1571
  # role_arn: "RoleArn", # required
1537
1572
  # tags: [
@@ -1549,7 +1584,7 @@ module Aws::SageMaker
1549
1584
  # },
1550
1585
  # },
1551
1586
  # auto_ml_job_objective: {
1552
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1587
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
1553
1588
  # },
1554
1589
  # model_deploy_config: {
1555
1590
  # auto_generate_endpoint_name: false,
@@ -2684,7 +2719,7 @@ module Aws::SageMaker
2684
2719
  # endpoint_name: "EndpointName", # required
2685
2720
  # endpoint_config_name: "EndpointConfigName", # required
2686
2721
  # deployment_config: {
2687
- # blue_green_update_policy: { # required
2722
+ # blue_green_update_policy: {
2688
2723
  # traffic_routing_configuration: { # required
2689
2724
  # type: "ALL_AT_ONCE", # required, accepts ALL_AT_ONCE, CANARY, LINEAR
2690
2725
  # wait_interval_in_seconds: 1, # required
@@ -2707,6 +2742,18 @@ module Aws::SageMaker
2707
2742
  # },
2708
2743
  # ],
2709
2744
  # },
2745
+ # rolling_update_policy: {
2746
+ # maximum_batch_size: { # required
2747
+ # type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
2748
+ # value: 1, # required
2749
+ # },
2750
+ # wait_interval_in_seconds: 1, # required
2751
+ # maximum_execution_timeout_in_seconds: 1,
2752
+ # rollback_maximum_batch_size: {
2753
+ # type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
2754
+ # value: 1, # required
2755
+ # },
2756
+ # },
2710
2757
  # },
2711
2758
  # tags: [
2712
2759
  # {
@@ -10091,7 +10138,7 @@ module Aws::SageMaker
10091
10138
  # resp.output_data_config.kms_key_id #=> String
10092
10139
  # resp.output_data_config.s3_output_path #=> String
10093
10140
  # resp.role_arn #=> String
10094
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10141
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10095
10142
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10096
10143
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
10097
10144
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -10116,9 +10163,9 @@ module Aws::SageMaker
10116
10163
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
10117
10164
  # resp.best_candidate.candidate_name #=> String
10118
10165
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
10119
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10166
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10120
10167
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
10121
- # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10168
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10122
10169
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
10123
10170
  # resp.best_candidate.candidate_steps #=> Array
10124
10171
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10136,11 +10183,12 @@ module Aws::SageMaker
10136
10183
  # resp.best_candidate.failure_reason #=> String
10137
10184
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
10138
10185
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
10186
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
10139
10187
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
10140
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10188
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10141
10189
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10142
10190
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10143
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
10191
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10144
10192
  # resp.best_candidate.inference_container_definitions #=> Hash
10145
10193
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10146
10194
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10148,11 +10196,11 @@ module Aws::SageMaker
10148
10196
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
10149
10197
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
10150
10198
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
10151
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
10199
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
10152
10200
  # resp.generate_candidate_definitions_only #=> Boolean
10153
10201
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10154
10202
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10155
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10203
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10156
10204
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10157
10205
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10158
10206
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -10225,7 +10273,7 @@ module Aws::SageMaker
10225
10273
  # resp.output_data_config.kms_key_id #=> String
10226
10274
  # resp.output_data_config.s3_output_path #=> String
10227
10275
  # resp.role_arn #=> String
10228
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10276
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10229
10277
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_candidates #=> Integer
10230
10278
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10231
10279
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
@@ -10246,6 +10294,24 @@ module Aws::SageMaker
10246
10294
  # resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10247
10295
  # resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
10248
10296
  # resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
10297
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.feature_specification_s3_uri #=> String
10298
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_candidates #=> Integer
10299
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10300
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10301
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_frequency #=> String
10302
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_horizon #=> Integer
10303
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles #=> Array
10304
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles[0] #=> String
10305
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling #=> Hash
10306
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"] #=> Hash
10307
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"]["FillingType"] #=> String
10308
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation #=> Hash
10309
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation["TransformationAttributeName"] #=> String, one of "sum", "avg", "first", "min", "max"
10310
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.target_attribute_name #=> String
10311
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.timestamp_attribute_name #=> String
10312
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.item_identifier_attribute_name #=> String
10313
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names #=> Array
10314
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
10249
10315
  # resp.creation_time #=> Time
10250
10316
  # resp.end_time #=> Time
10251
10317
  # resp.last_modified_time #=> Time
@@ -10254,9 +10320,9 @@ module Aws::SageMaker
10254
10320
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
10255
10321
  # resp.best_candidate.candidate_name #=> String
10256
10322
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
10257
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10323
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10258
10324
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
10259
- # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10325
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10260
10326
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
10261
10327
  # resp.best_candidate.candidate_steps #=> Array
10262
10328
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10274,11 +10340,12 @@ module Aws::SageMaker
10274
10340
  # resp.best_candidate.failure_reason #=> String
10275
10341
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
10276
10342
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
10343
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
10277
10344
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
10278
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10345
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10279
10346
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10280
10347
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10281
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
10348
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10282
10349
  # resp.best_candidate.inference_container_definitions #=> Hash
10283
10350
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10284
10351
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10286,7 +10353,7 @@ module Aws::SageMaker
10286
10353
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
10287
10354
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
10288
10355
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
10289
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
10356
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
10290
10357
  # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
10291
10358
  # resp.model_deploy_config.endpoint_name #=> String
10292
10359
  # resp.model_deploy_result.endpoint_name #=> String
@@ -10299,12 +10366,12 @@ module Aws::SageMaker
10299
10366
  # resp.security_config.vpc_config.subnets[0] #=> String
10300
10367
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10301
10368
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10302
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10369
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10303
10370
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10304
10371
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10305
10372
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10306
10373
  # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10307
- # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
10374
+ # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
10308
10375
  #
10309
10376
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
10310
10377
  #
@@ -11023,7 +11090,7 @@ module Aws::SageMaker
11023
11090
  # resp.data_capture_config.current_sampling_percentage #=> Integer
11024
11091
  # resp.data_capture_config.destination_s3_uri #=> String
11025
11092
  # resp.data_capture_config.kms_key_id #=> String
11026
- # resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
11093
+ # resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
11027
11094
  # resp.failure_reason #=> String
11028
11095
  # resp.creation_time #=> Time
11029
11096
  # resp.last_modified_time #=> Time
@@ -11037,6 +11104,12 @@ module Aws::SageMaker
11037
11104
  # resp.last_deployment_config.blue_green_update_policy.maximum_execution_timeout_in_seconds #=> Integer
11038
11105
  # resp.last_deployment_config.auto_rollback_configuration.alarms #=> Array
11039
11106
  # resp.last_deployment_config.auto_rollback_configuration.alarms[0].alarm_name #=> String
11107
+ # resp.last_deployment_config.rolling_update_policy.maximum_batch_size.type #=> String, one of "INSTANCE_COUNT", "CAPACITY_PERCENT"
11108
+ # resp.last_deployment_config.rolling_update_policy.maximum_batch_size.value #=> Integer
11109
+ # resp.last_deployment_config.rolling_update_policy.wait_interval_in_seconds #=> Integer
11110
+ # resp.last_deployment_config.rolling_update_policy.maximum_execution_timeout_in_seconds #=> Integer
11111
+ # resp.last_deployment_config.rolling_update_policy.rollback_maximum_batch_size.type #=> String, one of "INSTANCE_COUNT", "CAPACITY_PERCENT"
11112
+ # resp.last_deployment_config.rolling_update_policy.rollback_maximum_batch_size.value #=> Integer
11040
11113
  # resp.async_inference_config.client_config.max_concurrent_invocations_per_instance #=> Integer
11041
11114
  # resp.async_inference_config.output_config.kms_key_id #=> String
11042
11115
  # resp.async_inference_config.output_config.s3_output_path #=> String
@@ -12135,7 +12208,7 @@ module Aws::SageMaker
12135
12208
  # resp.role_arn #=> String
12136
12209
  # resp.endpoint_metadata.endpoint_name #=> String
12137
12210
  # resp.endpoint_metadata.endpoint_config_name #=> String
12138
- # resp.endpoint_metadata.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
12211
+ # resp.endpoint_metadata.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
12139
12212
  # resp.endpoint_metadata.failure_reason #=> String
12140
12213
  # resp.model_variants #=> Array
12141
12214
  # resp.model_variants[0].model_name #=> String
@@ -15454,7 +15527,7 @@ module Aws::SageMaker
15454
15527
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
15455
15528
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
15456
15529
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
15457
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
15530
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
15458
15531
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
15459
15532
  # resp.auto_ml_job_summaries[0].end_time #=> Time
15460
15533
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
@@ -15521,9 +15594,9 @@ module Aws::SageMaker
15521
15594
  # resp.candidates #=> Array
15522
15595
  # resp.candidates[0].candidate_name #=> String
15523
15596
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
15524
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15597
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15525
15598
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
15526
- # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15599
+ # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15527
15600
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
15528
15601
  # resp.candidates[0].candidate_steps #=> Array
15529
15602
  # resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -15541,11 +15614,12 @@ module Aws::SageMaker
15541
15614
  # resp.candidates[0].failure_reason #=> String
15542
15615
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
15543
15616
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
15617
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
15544
15618
  # resp.candidates[0].candidate_properties.candidate_metrics #=> Array
15545
- # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15619
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15546
15620
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
15547
15621
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
15548
- # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
15622
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15549
15623
  # resp.candidates[0].inference_container_definitions #=> Hash
15550
15624
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
15551
15625
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -16346,7 +16420,7 @@ module Aws::SageMaker
16346
16420
  # creation_time_after: Time.now,
16347
16421
  # last_modified_time_before: Time.now,
16348
16422
  # last_modified_time_after: Time.now,
16349
- # status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed
16423
+ # status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed, UpdateRollbackFailed
16350
16424
  # })
16351
16425
  #
16352
16426
  # @example Response structure
@@ -16356,7 +16430,7 @@ module Aws::SageMaker
16356
16430
  # resp.endpoints[0].endpoint_arn #=> String
16357
16431
  # resp.endpoints[0].creation_time #=> Time
16358
16432
  # resp.endpoints[0].last_modified_time #=> Time
16359
- # resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
16433
+ # resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
16360
16434
  # resp.next_token #=> String
16361
16435
  #
16362
16436
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpoints AWS API Documentation
@@ -21938,7 +22012,7 @@ module Aws::SageMaker
21938
22012
  # },
21939
22013
  # ],
21940
22014
  # deployment_config: {
21941
- # blue_green_update_policy: { # required
22015
+ # blue_green_update_policy: {
21942
22016
  # traffic_routing_configuration: { # required
21943
22017
  # type: "ALL_AT_ONCE", # required, accepts ALL_AT_ONCE, CANARY, LINEAR
21944
22018
  # wait_interval_in_seconds: 1, # required
@@ -21961,6 +22035,18 @@ module Aws::SageMaker
21961
22035
  # },
21962
22036
  # ],
21963
22037
  # },
22038
+ # rolling_update_policy: {
22039
+ # maximum_batch_size: { # required
22040
+ # type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
22041
+ # value: 1, # required
22042
+ # },
22043
+ # wait_interval_in_seconds: 1, # required
22044
+ # maximum_execution_timeout_in_seconds: 1,
22045
+ # rollback_maximum_batch_size: {
22046
+ # type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
22047
+ # value: 1, # required
22048
+ # },
22049
+ # },
21964
22050
  # },
21965
22051
  # retain_deployment_config: false,
21966
22052
  # })
@@ -23762,7 +23848,7 @@ module Aws::SageMaker
23762
23848
  params: params,
23763
23849
  config: config)
23764
23850
  context[:gem_name] = 'aws-sdk-sagemaker'
23765
- context[:gem_version] = '1.191.0'
23851
+ context[:gem_version] = '1.193.0'
23766
23852
  Seahorse::Client::Request.new(handlers, context)
23767
23853
  end
23768
23854
 
@@ -29,6 +29,8 @@ module Aws::SageMaker
29
29
  AdditionalInferenceSpecifications = Shapes::ListShape.new(name: 'AdditionalInferenceSpecifications')
30
30
  AgentVersion = Shapes::StructureShape.new(name: 'AgentVersion')
31
31
  AgentVersions = Shapes::ListShape.new(name: 'AgentVersions')
32
+ AggregationTransformationValue = Shapes::StringShape.new(name: 'AggregationTransformationValue')
33
+ AggregationTransformations = Shapes::MapShape.new(name: 'AggregationTransformations')
32
34
  Alarm = Shapes::StructureShape.new(name: 'Alarm')
33
35
  AlarmList = Shapes::ListShape.new(name: 'AlarmList')
34
36
  AlarmName = Shapes::StringShape.new(name: 'AlarmName')
@@ -152,6 +154,7 @@ module Aws::SageMaker
152
154
  Autotune = Shapes::StructureShape.new(name: 'Autotune')
153
155
  AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
154
156
  AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
157
+ BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
155
158
  BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
156
159
  BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
157
160
  BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
@@ -781,6 +784,10 @@ module Aws::SageMaker
781
784
  FileSystemDataSource = Shapes::StructureShape.new(name: 'FileSystemDataSource')
782
785
  FileSystemId = Shapes::StringShape.new(name: 'FileSystemId')
783
786
  FileSystemType = Shapes::StringShape.new(name: 'FileSystemType')
787
+ FillingTransformationMap = Shapes::MapShape.new(name: 'FillingTransformationMap')
788
+ FillingTransformationValue = Shapes::StringShape.new(name: 'FillingTransformationValue')
789
+ FillingTransformations = Shapes::MapShape.new(name: 'FillingTransformations')
790
+ FillingType = Shapes::StringShape.new(name: 'FillingType')
784
791
  Filter = Shapes::StructureShape.new(name: 'Filter')
785
792
  FilterList = Shapes::ListShape.new(name: 'FilterList')
786
793
  FilterValue = Shapes::StringShape.new(name: 'FilterValue')
@@ -801,6 +808,10 @@ module Aws::SageMaker
801
808
  FlowDefinitionTaskKeywords = Shapes::ListShape.new(name: 'FlowDefinitionTaskKeywords')
802
809
  FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
803
810
  FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
811
+ ForecastFrequency = Shapes::StringShape.new(name: 'ForecastFrequency')
812
+ ForecastHorizon = Shapes::IntegerShape.new(name: 'ForecastHorizon')
813
+ ForecastQuantile = Shapes::StringShape.new(name: 'ForecastQuantile')
814
+ ForecastQuantiles = Shapes::ListShape.new(name: 'ForecastQuantiles')
804
815
  Framework = Shapes::StringShape.new(name: 'Framework')
805
816
  FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
806
817
  GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
@@ -818,6 +829,8 @@ module Aws::SageMaker
818
829
  GitConfigForUpdate = Shapes::StructureShape.new(name: 'GitConfigForUpdate')
819
830
  GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
820
831
  Group = Shapes::StringShape.new(name: 'Group')
832
+ GroupingAttributeName = Shapes::StringShape.new(name: 'GroupingAttributeName')
833
+ GroupingAttributeNames = Shapes::ListShape.new(name: 'GroupingAttributeNames')
821
834
  Groups = Shapes::ListShape.new(name: 'Groups')
822
835
  HookParameters = Shapes::MapShape.new(name: 'HookParameters')
823
836
  Horovod = Shapes::BooleanShape.new(name: 'Horovod')
@@ -972,6 +985,7 @@ module Aws::SageMaker
972
985
  InvocationsMaxRetries = Shapes::IntegerShape.new(name: 'InvocationsMaxRetries')
973
986
  InvocationsTimeoutInSeconds = Shapes::IntegerShape.new(name: 'InvocationsTimeoutInSeconds')
974
987
  IotRoleAlias = Shapes::StringShape.new(name: 'IotRoleAlias')
988
+ ItemIdentifierAttributeName = Shapes::StringShape.new(name: 'ItemIdentifierAttributeName')
975
989
  JobDurationInSeconds = Shapes::IntegerShape.new(name: 'JobDurationInSeconds')
976
990
  JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
977
991
  JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
@@ -1654,6 +1668,7 @@ module Aws::SageMaker
1654
1668
  RetryPipelineExecutionResponse = Shapes::StructureShape.new(name: 'RetryPipelineExecutionResponse')
1655
1669
  RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
1656
1670
  RoleArn = Shapes::StringShape.new(name: 'RoleArn')
1671
+ RollingUpdatePolicy = Shapes::StructureShape.new(name: 'RollingUpdatePolicy')
1657
1672
  RootAccess = Shapes::StringShape.new(name: 'RootAccess')
1658
1673
  RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
1659
1674
  RuleEvaluationStatus = Shapes::StringShape.new(name: 'RuleEvaluationStatus')
@@ -1829,8 +1844,12 @@ module Aws::SageMaker
1829
1844
  TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
1830
1845
  TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
1831
1846
  ThingName = Shapes::StringShape.new(name: 'ThingName')
1847
+ TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
1848
+ TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
1832
1849
  TimeSeriesForecastingSettings = Shapes::StructureShape.new(name: 'TimeSeriesForecastingSettings')
1850
+ TimeSeriesTransformations = Shapes::StructureShape.new(name: 'TimeSeriesTransformations')
1833
1851
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1852
+ TimestampAttributeName = Shapes::StringShape.new(name: 'TimestampAttributeName')
1834
1853
  TrafficDurationInSeconds = Shapes::IntegerShape.new(name: 'TrafficDurationInSeconds')
1835
1854
  TrafficPattern = Shapes::StructureShape.new(name: 'TrafficPattern')
1836
1855
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
@@ -1884,6 +1903,7 @@ module Aws::SageMaker
1884
1903
  TransformOutput = Shapes::StructureShape.new(name: 'TransformOutput')
1885
1904
  TransformResources = Shapes::StructureShape.new(name: 'TransformResources')
1886
1905
  TransformS3DataSource = Shapes::StructureShape.new(name: 'TransformS3DataSource')
1906
+ TransformationAttributeName = Shapes::StringShape.new(name: 'TransformationAttributeName')
1887
1907
  Trial = Shapes::StructureShape.new(name: 'Trial')
1888
1908
  TrialArn = Shapes::StringShape.new(name: 'TrialArn')
1889
1909
  TrialComponent = Shapes::StructureShape.new(name: 'TrialComponent')
@@ -2084,6 +2104,9 @@ module Aws::SageMaker
2084
2104
 
2085
2105
  AgentVersions.member = Shapes::ShapeRef.new(shape: AgentVersion)
2086
2106
 
2107
+ AggregationTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
2108
+ AggregationTransformations.value = Shapes::ShapeRef.new(shape: AggregationTransformationValue)
2109
+
2087
2110
  Alarm.add_member(:alarm_name, Shapes::ShapeRef.new(shape: AlarmName, location_name: "AlarmName"))
2088
2111
  Alarm.struct_class = Types::Alarm
2089
2112
 
@@ -2344,10 +2367,12 @@ module Aws::SageMaker
2344
2367
  AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
2345
2368
  AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
2346
2369
  AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
2370
+ AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
2347
2371
  AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2348
2372
  AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
2349
2373
  AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
2350
2374
  AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
2375
+ AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
2351
2376
  AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
2352
2377
  AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
2353
2378
 
@@ -2448,6 +2473,7 @@ module Aws::SageMaker
2448
2473
 
2449
2474
  CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
2450
2475
  CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
2476
+ CandidateArtifactLocations.add_member(:backtest_results, Shapes::ShapeRef.new(shape: BacktestResultsLocation, location_name: "BacktestResults"))
2451
2477
  CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
2452
2478
 
2453
2479
  CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
@@ -3641,8 +3667,9 @@ module Aws::SageMaker
3641
3667
 
3642
3668
  DeployedImages.member = Shapes::ShapeRef.new(shape: DeployedImage)
3643
3669
 
3644
- DeploymentConfig.add_member(:blue_green_update_policy, Shapes::ShapeRef.new(shape: BlueGreenUpdatePolicy, required: true, location_name: "BlueGreenUpdatePolicy"))
3670
+ DeploymentConfig.add_member(:blue_green_update_policy, Shapes::ShapeRef.new(shape: BlueGreenUpdatePolicy, location_name: "BlueGreenUpdatePolicy"))
3645
3671
  DeploymentConfig.add_member(:auto_rollback_configuration, Shapes::ShapeRef.new(shape: AutoRollbackConfig, location_name: "AutoRollbackConfiguration"))
3672
+ DeploymentConfig.add_member(:rolling_update_policy, Shapes::ShapeRef.new(shape: RollingUpdatePolicy, location_name: "RollingUpdatePolicy"))
3646
3673
  DeploymentConfig.struct_class = Types::DeploymentConfig
3647
3674
 
3648
3675
  DeploymentRecommendation.add_member(:recommendation_status, Shapes::ShapeRef.new(shape: RecommendationStatus, required: true, location_name: "RecommendationStatus"))
@@ -5102,6 +5129,12 @@ module Aws::SageMaker
5102
5129
  FileSystemDataSource.add_member(:directory_path, Shapes::ShapeRef.new(shape: DirectoryPath, required: true, location_name: "DirectoryPath"))
5103
5130
  FileSystemDataSource.struct_class = Types::FileSystemDataSource
5104
5131
 
5132
+ FillingTransformationMap.key = Shapes::ShapeRef.new(shape: FillingType)
5133
+ FillingTransformationMap.value = Shapes::ShapeRef.new(shape: FillingTransformationValue)
5134
+
5135
+ FillingTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
5136
+ FillingTransformations.value = Shapes::ShapeRef.new(shape: FillingTransformationMap)
5137
+
5105
5138
  Filter.add_member(:name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "Name"))
5106
5139
  Filter.add_member(:operator, Shapes::ShapeRef.new(shape: Operator, location_name: "Operator"))
5107
5140
  Filter.add_member(:value, Shapes::ShapeRef.new(shape: FilterValue, location_name: "Value"))
@@ -5137,6 +5170,8 @@ module Aws::SageMaker
5137
5170
 
5138
5171
  FlowDefinitionTaskKeywords.member = Shapes::ShapeRef.new(shape: FlowDefinitionTaskKeyword)
5139
5172
 
5173
+ ForecastQuantiles.member = Shapes::ShapeRef.new(shape: ForecastQuantile)
5174
+
5140
5175
  GetDeviceFleetReportRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
5141
5176
  GetDeviceFleetReportRequest.struct_class = Types::GetDeviceFleetReportRequest
5142
5177
 
@@ -5183,6 +5218,8 @@ module Aws::SageMaker
5183
5218
  GitConfigForUpdate.add_member(:secret_arn, Shapes::ShapeRef.new(shape: SecretArn, location_name: "SecretArn"))
5184
5219
  GitConfigForUpdate.struct_class = Types::GitConfigForUpdate
5185
5220
 
5221
+ GroupingAttributeNames.member = Shapes::ShapeRef.new(shape: GroupingAttributeName)
5222
+
5186
5223
  Groups.member = Shapes::ShapeRef.new(shape: Group)
5187
5224
 
5188
5225
  HookParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
@@ -7982,6 +8019,12 @@ module Aws::SageMaker
7982
8019
  RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
7983
8020
  RetryStrategy.struct_class = Types::RetryStrategy
7984
8021
 
8022
+ RollingUpdatePolicy.add_member(:maximum_batch_size, Shapes::ShapeRef.new(shape: CapacitySize, required: true, location_name: "MaximumBatchSize"))
8023
+ RollingUpdatePolicy.add_member(:wait_interval_in_seconds, Shapes::ShapeRef.new(shape: WaitIntervalInSeconds, required: true, location_name: "WaitIntervalInSeconds"))
8024
+ RollingUpdatePolicy.add_member(:maximum_execution_timeout_in_seconds, Shapes::ShapeRef.new(shape: MaximumExecutionTimeoutInSeconds, location_name: "MaximumExecutionTimeoutInSeconds"))
8025
+ RollingUpdatePolicy.add_member(:rollback_maximum_batch_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "RollbackMaximumBatchSize"))
8026
+ RollingUpdatePolicy.struct_class = Types::RollingUpdatePolicy
8027
+
7985
8028
  RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
7986
8029
  RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
7987
8030
 
@@ -8290,10 +8333,29 @@ module Aws::SageMaker
8290
8333
  TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, location_name: "TargetLabelColumn"))
8291
8334
  TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
8292
8335
 
8336
+ TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
8337
+ TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
8338
+ TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
8339
+ TimeSeriesConfig.add_member(:grouping_attribute_names, Shapes::ShapeRef.new(shape: GroupingAttributeNames, location_name: "GroupingAttributeNames"))
8340
+ TimeSeriesConfig.struct_class = Types::TimeSeriesConfig
8341
+
8342
+ TimeSeriesForecastingJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
8343
+ TimeSeriesForecastingJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
8344
+ TimeSeriesForecastingJobConfig.add_member(:forecast_frequency, Shapes::ShapeRef.new(shape: ForecastFrequency, required: true, location_name: "ForecastFrequency"))
8345
+ TimeSeriesForecastingJobConfig.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: ForecastHorizon, required: true, location_name: "ForecastHorizon"))
8346
+ TimeSeriesForecastingJobConfig.add_member(:forecast_quantiles, Shapes::ShapeRef.new(shape: ForecastQuantiles, location_name: "ForecastQuantiles"))
8347
+ TimeSeriesForecastingJobConfig.add_member(:transformations, Shapes::ShapeRef.new(shape: TimeSeriesTransformations, location_name: "Transformations"))
8348
+ TimeSeriesForecastingJobConfig.add_member(:time_series_config, Shapes::ShapeRef.new(shape: TimeSeriesConfig, required: true, location_name: "TimeSeriesConfig"))
8349
+ TimeSeriesForecastingJobConfig.struct_class = Types::TimeSeriesForecastingJobConfig
8350
+
8293
8351
  TimeSeriesForecastingSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
8294
8352
  TimeSeriesForecastingSettings.add_member(:amazon_forecast_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "AmazonForecastRoleArn"))
8295
8353
  TimeSeriesForecastingSettings.struct_class = Types::TimeSeriesForecastingSettings
8296
8354
 
8355
+ TimeSeriesTransformations.add_member(:filling, Shapes::ShapeRef.new(shape: FillingTransformations, location_name: "Filling"))
8356
+ TimeSeriesTransformations.add_member(:aggregation, Shapes::ShapeRef.new(shape: AggregationTransformations, location_name: "Aggregation"))
8357
+ TimeSeriesTransformations.struct_class = Types::TimeSeriesTransformations
8358
+
8297
8359
  TrafficPattern.add_member(:traffic_type, Shapes::ShapeRef.new(shape: TrafficType, location_name: "TrafficType"))
8298
8360
  TrafficPattern.add_member(:phases, Shapes::ShapeRef.new(shape: Phases, location_name: "Phases"))
8299
8361
  TrafficPattern.struct_class = Types::TrafficPattern
@@ -2086,20 +2086,29 @@ module Aws::SageMaker
2086
2086
  # The type of channel. Defines whether the data are used for training
2087
2087
  # or validation. The default value is `training`. Channels for
2088
2088
  # `training` and `validation` must share the same `ContentType`
2089
+ #
2090
+ # <note markdown="1"> The type of channel defaults to `training` for the time-series
2091
+ # forecasting problem type.
2092
+ #
2093
+ # </note>
2089
2094
  # @return [String]
2090
2095
  #
2091
2096
  # @!attribute [rw] content_type
2092
2097
  # The content type of the data from the input source. The following
2093
2098
  # are the allowed content types for different problems:
2094
2099
  #
2095
- # * For Tabular problem types: `text/csv;header=present` or
2100
+ # * For tabular problem types: `text/csv;header=present` or
2096
2101
  # `x-application/vnd.amazon+parquet`. The default value is
2097
2102
  # `text/csv;header=present`.
2098
2103
  #
2099
- # * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
2104
+ # * For image classification: `image/png`, `image/jpeg`, or `image/*`.
2100
2105
  # The default value is `image/*`.
2101
2106
  #
2102
- # * For TextClassification: `text/csv;header=present` or
2107
+ # * For text classification: `text/csv;header=present` or
2108
+ # `x-application/vnd.amazon+parquet`. The default value is
2109
+ # `text/csv;header=present`.
2110
+ #
2111
+ # * For time-series forecasting: `text/csv;header=present` or
2103
2112
  # `x-application/vnd.amazon+parquet`. The default value is
2104
2113
  # `text/csv;header=present`.
2105
2114
  # @return [String]
@@ -2132,8 +2141,9 @@ module Aws::SageMaker
2132
2141
  # @!attribute [rw] max_candidates
2133
2142
  # The maximum number of times a training job is allowed to run.
2134
2143
  #
2135
- # For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
2136
- # supported value is 1.
2144
+ # For text and image classification, as well as time-series
2145
+ # forecasting problem types, the supported value is 1. For tabular
2146
+ # problem types, the maximum value is 750.
2137
2147
  # @return [Integer]
2138
2148
  #
2139
2149
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
@@ -2261,6 +2271,9 @@ module Aws::SageMaker
2261
2271
  #
2262
2272
  # * For image or text classification problem types: `Accuracy`
2263
2273
  #
2274
+ # * For time-series forecasting problem types:
2275
+ # `AverageWeightedQuantileLoss`
2276
+ #
2264
2277
  #
2265
2278
  #
2266
2279
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
@@ -2399,12 +2412,18 @@ module Aws::SageMaker
2399
2412
  # type (regression, classification).
2400
2413
  # @return [Types::TabularJobConfig]
2401
2414
  #
2415
+ # @!attribute [rw] time_series_forecasting_job_config
2416
+ # Settings used to configure an AutoML job V2 for a time-series
2417
+ # forecasting problem type.
2418
+ # @return [Types::TimeSeriesForecastingJobConfig]
2419
+ #
2402
2420
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2403
2421
  #
2404
2422
  class AutoMLProblemTypeConfig < Struct.new(
2405
2423
  :image_classification_job_config,
2406
2424
  :text_classification_job_config,
2407
2425
  :tabular_job_config,
2426
+ :time_series_forecasting_job_config,
2408
2427
  :unknown)
2409
2428
  SENSITIVE = []
2410
2429
  include Aws::Structure
@@ -2413,6 +2432,7 @@ module Aws::SageMaker
2413
2432
  class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2414
2433
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2415
2434
  class TabularJobConfig < AutoMLProblemTypeConfig; end
2435
+ class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
2416
2436
  class Unknown < AutoMLProblemTypeConfig; end
2417
2437
  end
2418
2438
 
@@ -2987,11 +3007,18 @@ module Aws::SageMaker
2987
3007
  # the AutoML candidate.
2988
3008
  # @return [String]
2989
3009
  #
3010
+ # @!attribute [rw] backtest_results
3011
+ # The Amazon S3 prefix to the accuracy metrics and the inference
3012
+ # results observed over the testing window. Available only for the
3013
+ # time-series forecasting problem type.
3014
+ # @return [String]
3015
+ #
2990
3016
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2991
3017
  #
2992
3018
  class CandidateArtifactLocations < Struct.new(
2993
3019
  :explainability,
2994
- :model_insights)
3020
+ :model_insights,
3021
+ :backtest_results)
2995
3022
  SENSITIVE = []
2996
3023
  include Aws::Structure
2997
3024
  end
@@ -3079,7 +3106,15 @@ module Aws::SageMaker
3079
3106
  include Aws::Structure
3080
3107
  end
3081
3108
 
3082
- # Specifies the endpoint capacity to activate for production.
3109
+ # Specifies the type and size of the endpoint capacity to activate for a
3110
+ # blue/green deployment, a rolling deployment, or a rollback strategy.
3111
+ # You can specify your batches as either instance count or the overall
3112
+ # percentage or your fleet.
3113
+ #
3114
+ # For a rollback strategy, if you don't specify the fields in this
3115
+ # object, or if you set the `Value` to 100%, then SageMaker uses a
3116
+ # blue/green rollback strategy and rolls all traffic back to the blue
3117
+ # fleet.
3083
3118
  #
3084
3119
  # @!attribute [rw] type
3085
3120
  # Specifies the endpoint capacity type.
@@ -4717,12 +4752,14 @@ module Aws::SageMaker
4717
4752
  # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
4718
4753
  # parameters. The supported formats depend on the problem type:
4719
4754
  #
4720
- # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
4755
+ # * For tabular problem types: `S3Prefix`, `ManifestFile`.
4721
4756
  #
4722
- # * For ImageClassification: `S3Prefix`, `ManifestFile`,
4757
+ # * For image classification: `S3Prefix`, `ManifestFile`,
4723
4758
  # `AugmentedManifestFile`.
4724
4759
  #
4725
- # * For TextClassification: `S3Prefix`.
4760
+ # * For text classification: `S3Prefix`.
4761
+ #
4762
+ # * For time-series forecasting: `S3Prefix`.
4726
4763
  #
4727
4764
  #
4728
4765
  #
@@ -4789,6 +4826,12 @@ module Aws::SageMaker
4789
4826
  # The validation and training datasets must contain the same headers.
4790
4827
  # For jobs created by calling `CreateAutoMLJob`, the validation
4791
4828
  # dataset must be less than 2 GB in size.
4829
+ #
4830
+ # <note markdown="1"> This attribute must not be set for the time-series forecasting
4831
+ # problem type, as Autopilot automatically splits the input dataset
4832
+ # into training and validation sets.
4833
+ #
4834
+ # </note>
4792
4835
  # @return [Types::AutoMLDataSplitConfig]
4793
4836
  #
4794
4837
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
@@ -10159,11 +10202,17 @@ module Aws::SageMaker
10159
10202
  # failures and recovery.
10160
10203
  # @return [Types::AutoRollbackConfig]
10161
10204
  #
10205
+ # @!attribute [rw] rolling_update_policy
10206
+ # Specifies a rolling deployment strategy for updating a SageMaker
10207
+ # endpoint.
10208
+ # @return [Types::RollingUpdatePolicy]
10209
+ #
10162
10210
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeploymentConfig AWS API Documentation
10163
10211
  #
10164
10212
  class DeploymentConfig < Struct.new(
10165
10213
  :blue_green_update_policy,
10166
- :auto_rollback_configuration)
10214
+ :auto_rollback_configuration,
10215
+ :rolling_update_policy)
10167
10216
  SENSITIVE = []
10168
10217
  include Aws::Structure
10169
10218
  end
@@ -34959,6 +35008,46 @@ module Aws::SageMaker
34959
35008
  include Aws::Structure
34960
35009
  end
34961
35010
 
35011
+ # Specifies a rolling deployment strategy for updating a SageMaker
35012
+ # endpoint.
35013
+ #
35014
+ # @!attribute [rw] maximum_batch_size
35015
+ # Batch size for each rolling step to provision capacity and turn on
35016
+ # traffic on the new endpoint fleet, and terminate capacity on the old
35017
+ # endpoint fleet. Value must be between 5% to 50% of the variant's
35018
+ # total instance count.
35019
+ # @return [Types::CapacitySize]
35020
+ #
35021
+ # @!attribute [rw] wait_interval_in_seconds
35022
+ # The length of the baking period, during which SageMaker monitors
35023
+ # alarms for each batch on the new fleet.
35024
+ # @return [Integer]
35025
+ #
35026
+ # @!attribute [rw] maximum_execution_timeout_in_seconds
35027
+ # The time limit for the total deployment. Exceeding this limit causes
35028
+ # a timeout.
35029
+ # @return [Integer]
35030
+ #
35031
+ # @!attribute [rw] rollback_maximum_batch_size
35032
+ # Batch size for rollback to the old endpoint fleet. Each rolling step
35033
+ # to provision capacity and turn on traffic on the old endpoint fleet,
35034
+ # and terminate capacity on the new endpoint fleet. If this field is
35035
+ # absent, the default value will be set to 100% of total capacity
35036
+ # which means to bring up the whole capacity of the old fleet at once
35037
+ # during rollback.
35038
+ # @return [Types::CapacitySize]
35039
+ #
35040
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RollingUpdatePolicy AWS API Documentation
35041
+ #
35042
+ class RollingUpdatePolicy < Struct.new(
35043
+ :maximum_batch_size,
35044
+ :wait_interval_in_seconds,
35045
+ :maximum_execution_timeout_in_seconds,
35046
+ :rollback_maximum_batch_size)
35047
+ SENSITIVE = []
35048
+ include Aws::Structure
35049
+ end
35050
+
34962
35051
  # Describes the S3 data source.
34963
35052
  #
34964
35053
  # Your input bucket must be in the same Amazon Web Services region as
@@ -36920,6 +37009,157 @@ module Aws::SageMaker
36920
37009
  include Aws::Structure
36921
37010
  end
36922
37011
 
37012
+ # The collection of components that defines the time-series.
37013
+ #
37014
+ # @!attribute [rw] target_attribute_name
37015
+ # The name of the column representing the target variable that you
37016
+ # want to predict for each item in your dataset. The data type of the
37017
+ # target variable must be numerical.
37018
+ # @return [String]
37019
+ #
37020
+ # @!attribute [rw] timestamp_attribute_name
37021
+ # The name of the column indicating a point in time at which the
37022
+ # target value of a given item is recorded.
37023
+ # @return [String]
37024
+ #
37025
+ # @!attribute [rw] item_identifier_attribute_name
37026
+ # The name of the column that represents the set of item identifiers
37027
+ # for which you want to predict the target value.
37028
+ # @return [String]
37029
+ #
37030
+ # @!attribute [rw] grouping_attribute_names
37031
+ # A set of columns names that can be grouped with the item identifier
37032
+ # column to create a composite key for which a target value is
37033
+ # predicted.
37034
+ # @return [Array<String>]
37035
+ #
37036
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesConfig AWS API Documentation
37037
+ #
37038
+ class TimeSeriesConfig < Struct.new(
37039
+ :target_attribute_name,
37040
+ :timestamp_attribute_name,
37041
+ :item_identifier_attribute_name,
37042
+ :grouping_attribute_names)
37043
+ SENSITIVE = []
37044
+ include Aws::Structure
37045
+ end
37046
+
37047
+ # The collection of settings used by an AutoML job V2 for the
37048
+ # time-series forecasting problem type.
37049
+ #
37050
+ # <note markdown="1"> The `TimeSeriesForecastingJobConfig` problem type is only available in
37051
+ # private beta. Contact Amazon Web Services Support or your account
37052
+ # manager to learn more about access privileges.
37053
+ #
37054
+ # </note>
37055
+ #
37056
+ # @!attribute [rw] feature_specification_s3_uri
37057
+ # A URL to the Amazon S3 data source containing additional selected
37058
+ # features that complement the target, itemID, timestamp, and grouped
37059
+ # columns set in `TimeSeriesConfig`. When not provided, the AutoML job
37060
+ # V2 includes all the columns from the original dataset that are not
37061
+ # already declared in `TimeSeriesConfig`. If provided, the AutoML job
37062
+ # V2 only considers these additional columns as a complement to the
37063
+ # ones declared in `TimeSeriesConfig`.
37064
+ #
37065
+ # You can input `FeatureAttributeNames` (optional) in JSON format as
37066
+ # shown below:
37067
+ #
37068
+ # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
37069
+ #
37070
+ # You can also specify the data type of the feature (optional) in the
37071
+ # format shown below:
37072
+ #
37073
+ # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
37074
+ # \} \}`
37075
+ #
37076
+ # Autopilot supports the following data types: `numeric`,
37077
+ # `categorical`, `text`, and `datetime`.
37078
+ #
37079
+ # <note markdown="1"> These column keys must not include any column set in
37080
+ # `TimeSeriesConfig`.
37081
+ #
37082
+ # </note>
37083
+ #
37084
+ # When not provided, the AutoML job V2 includes all the columns from
37085
+ # the original dataset that are not already declared in
37086
+ # `TimeSeriesConfig`. If provided, the AutoML job V2 only considers
37087
+ # these additional columns as a complement to the ones declared in
37088
+ # `TimeSeriesConfig`.
37089
+ #
37090
+ # Autopilot supports the following data types: `numeric`,
37091
+ # `categorical`, `text`, and `datetime`.
37092
+ # @return [String]
37093
+ #
37094
+ # @!attribute [rw] completion_criteria
37095
+ # How long a job is allowed to run, or how many candidates a job is
37096
+ # allowed to generate.
37097
+ # @return [Types::AutoMLJobCompletionCriteria]
37098
+ #
37099
+ # @!attribute [rw] forecast_frequency
37100
+ # The frequency of predictions in a forecast.
37101
+ #
37102
+ # Valid intervals are an integer followed by Y (Year), M (Month), W
37103
+ # (Week), D (Day), H (Hour), and min (Minute). For example, `1D`
37104
+ # indicates every day and `15min` indicates every 15 minutes. The
37105
+ # value of a frequency must not overlap with the next larger
37106
+ # frequency. For example, you must use a frequency of `1H` instead of
37107
+ # `60min`.
37108
+ #
37109
+ # The valid values for each frequency are the following:
37110
+ #
37111
+ # * Minute - 1-59
37112
+ #
37113
+ # * Hour - 1-23
37114
+ #
37115
+ # * Day - 1-6
37116
+ #
37117
+ # * Week - 1-4
37118
+ #
37119
+ # * Month - 1-11
37120
+ #
37121
+ # * Year - 1
37122
+ # @return [String]
37123
+ #
37124
+ # @!attribute [rw] forecast_horizon
37125
+ # The number of time-steps that the model predicts. The forecast
37126
+ # horizon is also called the prediction length. The maximum forecast
37127
+ # horizon is the lesser of 500 time-steps or 1/4 of the time-steps in
37128
+ # the dataset.
37129
+ # @return [Integer]
37130
+ #
37131
+ # @!attribute [rw] forecast_quantiles
37132
+ # The quantiles used to train the model for forecasts at a specified
37133
+ # quantile. You can specify quantiles from `0.01` (p1) to `0.99`
37134
+ # (p99), by increments of 0.01 or higher. Up to five forecast
37135
+ # quantiles can be specified. When `ForecastQuantiles` is not
37136
+ # provided, the AutoML job uses the quantiles p10, p50, and p90 as
37137
+ # default.
37138
+ # @return [Array<String>]
37139
+ #
37140
+ # @!attribute [rw] transformations
37141
+ # The transformations modifying specific attributes of the
37142
+ # time-series, such as filling strategies for missing values.
37143
+ # @return [Types::TimeSeriesTransformations]
37144
+ #
37145
+ # @!attribute [rw] time_series_config
37146
+ # The collection of components that defines the time-series.
37147
+ # @return [Types::TimeSeriesConfig]
37148
+ #
37149
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesForecastingJobConfig AWS API Documentation
37150
+ #
37151
+ class TimeSeriesForecastingJobConfig < Struct.new(
37152
+ :feature_specification_s3_uri,
37153
+ :completion_criteria,
37154
+ :forecast_frequency,
37155
+ :forecast_horizon,
37156
+ :forecast_quantiles,
37157
+ :transformations,
37158
+ :time_series_config)
37159
+ SENSITIVE = []
37160
+ include Aws::Structure
37161
+ end
37162
+
36923
37163
  # Time series forecast settings for the SageMaker Canvas application.
36924
37164
  #
36925
37165
  # @!attribute [rw] status
@@ -36952,6 +37192,56 @@ module Aws::SageMaker
36952
37192
  include Aws::Structure
36953
37193
  end
36954
37194
 
37195
+ # Transformations allowed on the dataset. Supported transformations are
37196
+ # `Filling` and `Aggregation`. `Filling` specifies how to add values to
37197
+ # missing values in the dataset. `Aggregation` defines how to aggregate
37198
+ # data that does not align with forecast frequency.
37199
+ #
37200
+ # @!attribute [rw] filling
37201
+ # A key value pair defining the filling method for a column, where the
37202
+ # key is the column name and the value is an object which defines the
37203
+ # filling logic. You can specify multiple filling methods for a single
37204
+ # column.
37205
+ #
37206
+ # The supported filling methods and their corresponding options are:
37207
+ #
37208
+ # * `frontfill`: `none` (Supported only for target column)
37209
+ #
37210
+ # * `middlefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37211
+ #
37212
+ # * `backfill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37213
+ #
37214
+ # * `futurefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37215
+ #
37216
+ # To set a filling method to a specific value, set the fill parameter
37217
+ # to the chosen filling method value (for example `"backfill" :
37218
+ # "value"`), and define the filling value in an additional parameter
37219
+ # prefixed with "\_value". For example, to set `backfill` to a value
37220
+ # of `2`, you must include two parameters: `"backfill": "value"` and
37221
+ # `"backfill_value":"2"`.
37222
+ # @return [Hash<String,Hash<String,String>>]
37223
+ #
37224
+ # @!attribute [rw] aggregation
37225
+ # A key value pair defining the aggregation method for a column, where
37226
+ # the key is the column name and the value is the aggregation method.
37227
+ #
37228
+ # The supported aggregation methods are `sum` (default), `avg`,
37229
+ # `first`, `min`, `max`.
37230
+ #
37231
+ # <note markdown="1"> Aggregation is only supported for the target column.
37232
+ #
37233
+ # </note>
37234
+ # @return [Hash<String,String>]
37235
+ #
37236
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesTransformations AWS API Documentation
37237
+ #
37238
+ class TimeSeriesTransformations < Struct.new(
37239
+ :filling,
37240
+ :aggregation)
37241
+ SENSITIVE = []
37242
+ include Aws::Structure
37243
+ end
37244
+
36955
37245
  # Defines the traffic pattern of the load test.
36956
37246
  #
36957
37247
  # @!attribute [rw] traffic_type
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.191.0'
56
+ GEM_VERSION = '1.193.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.191.0
4
+ version: 1.193.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-06-28 00:00:00.000000000 Z
11
+ date: 2023-06-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core