aws-sdk-sagemaker 1.191.0 → 1.193.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +118 -32
- data/lib/aws-sdk-sagemaker/client_api.rb +63 -1
- data/lib/aws-sdk-sagemaker/types.rb +301 -11
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e8563212194efe3f885db18ded340750c68719059405c10110a98fe0a254de83
|
4
|
+
data.tar.gz: 8c32b946394f67fac58c560a9a048ec39d56ab2ea1f1416484de48dbeb99947c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 1632e061172d86fd8998029d2b91c397c527dc6329297cacff63dd191a7b81e349ad4ba938c85a178d7056a47b4bbe084f7adc327087dc8c652d87effcc75be5
|
7
|
+
data.tar.gz: 6e7c6e026568146cea2404421c7ce6028e509a6d042af8c25ede1c4e5b141f0b89303e1c4d801d7405338204ea4f27d75c1f7670de963cb6593951988c110559
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.193.0 (2023-06-30)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - This release adds support for rolling deployment in SageMaker Inference.
|
8
|
+
|
9
|
+
1.192.0 (2023-06-29)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
|
13
|
+
|
4
14
|
1.191.0 (2023-06-28)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.193.0
|
@@ -1307,7 +1307,7 @@ module Aws::SageMaker
|
|
1307
1307
|
# },
|
1308
1308
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
1309
1309
|
# auto_ml_job_objective: {
|
1310
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1310
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
|
1311
1311
|
# },
|
1312
1312
|
# auto_ml_job_config: {
|
1313
1313
|
# completion_criteria: {
|
@@ -1405,12 +1405,14 @@ module Aws::SageMaker
|
|
1405
1405
|
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
1406
1406
|
# parameters. The supported formats depend on the problem type:
|
1407
1407
|
#
|
1408
|
-
# * For
|
1408
|
+
# * For tabular problem types: `S3Prefix`, `ManifestFile`.
|
1409
1409
|
#
|
1410
|
-
# * For
|
1410
|
+
# * For image classification: `S3Prefix`, `ManifestFile`,
|
1411
1411
|
# `AugmentedManifestFile`.
|
1412
1412
|
#
|
1413
|
-
# * For
|
1413
|
+
# * For text classification: `S3Prefix`.
|
1414
|
+
#
|
1415
|
+
# * For time-series forecasting: `S3Prefix`.
|
1414
1416
|
#
|
1415
1417
|
#
|
1416
1418
|
#
|
@@ -1470,6 +1472,12 @@ module Aws::SageMaker
|
|
1470
1472
|
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
1471
1473
|
# must be less than 2 GB in size.
|
1472
1474
|
#
|
1475
|
+
# <note markdown="1"> This attribute must not be set for the time-series forecasting problem
|
1476
|
+
# type, as Autopilot automatically splits the input dataset into
|
1477
|
+
# training and validation sets.
|
1478
|
+
#
|
1479
|
+
# </note>
|
1480
|
+
#
|
1473
1481
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1474
1482
|
#
|
1475
1483
|
# * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1532,6 +1540,33 @@ module Aws::SageMaker
|
|
1532
1540
|
# target_attribute_name: "TargetAttributeName", # required
|
1533
1541
|
# sample_weight_attribute_name: "SampleWeightAttributeName",
|
1534
1542
|
# },
|
1543
|
+
# time_series_forecasting_job_config: {
|
1544
|
+
# feature_specification_s3_uri: "S3Uri",
|
1545
|
+
# completion_criteria: {
|
1546
|
+
# max_candidates: 1,
|
1547
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1548
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1549
|
+
# },
|
1550
|
+
# forecast_frequency: "ForecastFrequency", # required
|
1551
|
+
# forecast_horizon: 1, # required
|
1552
|
+
# forecast_quantiles: ["ForecastQuantile"],
|
1553
|
+
# transformations: {
|
1554
|
+
# filling: {
|
1555
|
+
# "TransformationAttributeName" => {
|
1556
|
+
# "frontfill" => "FillingTransformationValue",
|
1557
|
+
# },
|
1558
|
+
# },
|
1559
|
+
# aggregation: {
|
1560
|
+
# "TransformationAttributeName" => "sum", # accepts sum, avg, first, min, max
|
1561
|
+
# },
|
1562
|
+
# },
|
1563
|
+
# time_series_config: { # required
|
1564
|
+
# target_attribute_name: "TargetAttributeName", # required
|
1565
|
+
# timestamp_attribute_name: "TimestampAttributeName", # required
|
1566
|
+
# item_identifier_attribute_name: "ItemIdentifierAttributeName", # required
|
1567
|
+
# grouping_attribute_names: ["GroupingAttributeName"],
|
1568
|
+
# },
|
1569
|
+
# },
|
1535
1570
|
# },
|
1536
1571
|
# role_arn: "RoleArn", # required
|
1537
1572
|
# tags: [
|
@@ -1549,7 +1584,7 @@ module Aws::SageMaker
|
|
1549
1584
|
# },
|
1550
1585
|
# },
|
1551
1586
|
# auto_ml_job_objective: {
|
1552
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1587
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
|
1553
1588
|
# },
|
1554
1589
|
# model_deploy_config: {
|
1555
1590
|
# auto_generate_endpoint_name: false,
|
@@ -2684,7 +2719,7 @@ module Aws::SageMaker
|
|
2684
2719
|
# endpoint_name: "EndpointName", # required
|
2685
2720
|
# endpoint_config_name: "EndpointConfigName", # required
|
2686
2721
|
# deployment_config: {
|
2687
|
-
# blue_green_update_policy: {
|
2722
|
+
# blue_green_update_policy: {
|
2688
2723
|
# traffic_routing_configuration: { # required
|
2689
2724
|
# type: "ALL_AT_ONCE", # required, accepts ALL_AT_ONCE, CANARY, LINEAR
|
2690
2725
|
# wait_interval_in_seconds: 1, # required
|
@@ -2707,6 +2742,18 @@ module Aws::SageMaker
|
|
2707
2742
|
# },
|
2708
2743
|
# ],
|
2709
2744
|
# },
|
2745
|
+
# rolling_update_policy: {
|
2746
|
+
# maximum_batch_size: { # required
|
2747
|
+
# type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
|
2748
|
+
# value: 1, # required
|
2749
|
+
# },
|
2750
|
+
# wait_interval_in_seconds: 1, # required
|
2751
|
+
# maximum_execution_timeout_in_seconds: 1,
|
2752
|
+
# rollback_maximum_batch_size: {
|
2753
|
+
# type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
|
2754
|
+
# value: 1, # required
|
2755
|
+
# },
|
2756
|
+
# },
|
2710
2757
|
# },
|
2711
2758
|
# tags: [
|
2712
2759
|
# {
|
@@ -10091,7 +10138,7 @@ module Aws::SageMaker
|
|
10091
10138
|
# resp.output_data_config.kms_key_id #=> String
|
10092
10139
|
# resp.output_data_config.s3_output_path #=> String
|
10093
10140
|
# resp.role_arn #=> String
|
10094
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10141
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10095
10142
|
# resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10096
10143
|
# resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
|
10097
10144
|
# resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -10116,9 +10163,9 @@ module Aws::SageMaker
|
|
10116
10163
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
10117
10164
|
# resp.best_candidate.candidate_name #=> String
|
10118
10165
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
10119
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10166
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10120
10167
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
10121
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10168
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10122
10169
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
10123
10170
|
# resp.best_candidate.candidate_steps #=> Array
|
10124
10171
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10136,11 +10183,12 @@ module Aws::SageMaker
|
|
10136
10183
|
# resp.best_candidate.failure_reason #=> String
|
10137
10184
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
10138
10185
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
10186
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
10139
10187
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
10140
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10188
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10141
10189
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10142
10190
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10143
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
10191
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10144
10192
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10145
10193
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10146
10194
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10148,11 +10196,11 @@ module Aws::SageMaker
|
|
10148
10196
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
|
10149
10197
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
|
10150
10198
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
10151
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
10199
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
10152
10200
|
# resp.generate_candidate_definitions_only #=> Boolean
|
10153
10201
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10154
10202
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10155
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10203
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10156
10204
|
# resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10157
10205
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10158
10206
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -10225,7 +10273,7 @@ module Aws::SageMaker
|
|
10225
10273
|
# resp.output_data_config.kms_key_id #=> String
|
10226
10274
|
# resp.output_data_config.s3_output_path #=> String
|
10227
10275
|
# resp.role_arn #=> String
|
10228
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10276
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10229
10277
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_candidates #=> Integer
|
10230
10278
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10231
10279
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
@@ -10246,6 +10294,24 @@ module Aws::SageMaker
|
|
10246
10294
|
# resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10247
10295
|
# resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
|
10248
10296
|
# resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
|
10297
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.feature_specification_s3_uri #=> String
|
10298
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_candidates #=> Integer
|
10299
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10300
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10301
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_frequency #=> String
|
10302
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_horizon #=> Integer
|
10303
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles #=> Array
|
10304
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles[0] #=> String
|
10305
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling #=> Hash
|
10306
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"] #=> Hash
|
10307
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"]["FillingType"] #=> String
|
10308
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation #=> Hash
|
10309
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation["TransformationAttributeName"] #=> String, one of "sum", "avg", "first", "min", "max"
|
10310
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.target_attribute_name #=> String
|
10311
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.timestamp_attribute_name #=> String
|
10312
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.item_identifier_attribute_name #=> String
|
10313
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names #=> Array
|
10314
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
|
10249
10315
|
# resp.creation_time #=> Time
|
10250
10316
|
# resp.end_time #=> Time
|
10251
10317
|
# resp.last_modified_time #=> Time
|
@@ -10254,9 +10320,9 @@ module Aws::SageMaker
|
|
10254
10320
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
10255
10321
|
# resp.best_candidate.candidate_name #=> String
|
10256
10322
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
10257
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10323
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10258
10324
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
10259
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10325
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10260
10326
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
10261
10327
|
# resp.best_candidate.candidate_steps #=> Array
|
10262
10328
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10274,11 +10340,12 @@ module Aws::SageMaker
|
|
10274
10340
|
# resp.best_candidate.failure_reason #=> String
|
10275
10341
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
10276
10342
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
10343
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
10277
10344
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
10278
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10345
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10279
10346
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10280
10347
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10281
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
10348
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10282
10349
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10283
10350
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10284
10351
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10286,7 +10353,7 @@ module Aws::SageMaker
|
|
10286
10353
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
|
10287
10354
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
|
10288
10355
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
10289
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
10356
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
10290
10357
|
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
10291
10358
|
# resp.model_deploy_config.endpoint_name #=> String
|
10292
10359
|
# resp.model_deploy_result.endpoint_name #=> String
|
@@ -10299,12 +10366,12 @@ module Aws::SageMaker
|
|
10299
10366
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
10300
10367
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10301
10368
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10302
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10369
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10303
10370
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10304
10371
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10305
10372
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10306
10373
|
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10307
|
-
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
|
10374
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
|
10308
10375
|
#
|
10309
10376
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10310
10377
|
#
|
@@ -11023,7 +11090,7 @@ module Aws::SageMaker
|
|
11023
11090
|
# resp.data_capture_config.current_sampling_percentage #=> Integer
|
11024
11091
|
# resp.data_capture_config.destination_s3_uri #=> String
|
11025
11092
|
# resp.data_capture_config.kms_key_id #=> String
|
11026
|
-
# resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
|
11093
|
+
# resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
|
11027
11094
|
# resp.failure_reason #=> String
|
11028
11095
|
# resp.creation_time #=> Time
|
11029
11096
|
# resp.last_modified_time #=> Time
|
@@ -11037,6 +11104,12 @@ module Aws::SageMaker
|
|
11037
11104
|
# resp.last_deployment_config.blue_green_update_policy.maximum_execution_timeout_in_seconds #=> Integer
|
11038
11105
|
# resp.last_deployment_config.auto_rollback_configuration.alarms #=> Array
|
11039
11106
|
# resp.last_deployment_config.auto_rollback_configuration.alarms[0].alarm_name #=> String
|
11107
|
+
# resp.last_deployment_config.rolling_update_policy.maximum_batch_size.type #=> String, one of "INSTANCE_COUNT", "CAPACITY_PERCENT"
|
11108
|
+
# resp.last_deployment_config.rolling_update_policy.maximum_batch_size.value #=> Integer
|
11109
|
+
# resp.last_deployment_config.rolling_update_policy.wait_interval_in_seconds #=> Integer
|
11110
|
+
# resp.last_deployment_config.rolling_update_policy.maximum_execution_timeout_in_seconds #=> Integer
|
11111
|
+
# resp.last_deployment_config.rolling_update_policy.rollback_maximum_batch_size.type #=> String, one of "INSTANCE_COUNT", "CAPACITY_PERCENT"
|
11112
|
+
# resp.last_deployment_config.rolling_update_policy.rollback_maximum_batch_size.value #=> Integer
|
11040
11113
|
# resp.async_inference_config.client_config.max_concurrent_invocations_per_instance #=> Integer
|
11041
11114
|
# resp.async_inference_config.output_config.kms_key_id #=> String
|
11042
11115
|
# resp.async_inference_config.output_config.s3_output_path #=> String
|
@@ -12135,7 +12208,7 @@ module Aws::SageMaker
|
|
12135
12208
|
# resp.role_arn #=> String
|
12136
12209
|
# resp.endpoint_metadata.endpoint_name #=> String
|
12137
12210
|
# resp.endpoint_metadata.endpoint_config_name #=> String
|
12138
|
-
# resp.endpoint_metadata.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
|
12211
|
+
# resp.endpoint_metadata.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
|
12139
12212
|
# resp.endpoint_metadata.failure_reason #=> String
|
12140
12213
|
# resp.model_variants #=> Array
|
12141
12214
|
# resp.model_variants[0].model_name #=> String
|
@@ -15454,7 +15527,7 @@ module Aws::SageMaker
|
|
15454
15527
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
15455
15528
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
15456
15529
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
15457
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
15530
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
15458
15531
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
15459
15532
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
15460
15533
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
@@ -15521,9 +15594,9 @@ module Aws::SageMaker
|
|
15521
15594
|
# resp.candidates #=> Array
|
15522
15595
|
# resp.candidates[0].candidate_name #=> String
|
15523
15596
|
# resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
15524
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15597
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15525
15598
|
# resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
|
15526
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15599
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15527
15600
|
# resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
15528
15601
|
# resp.candidates[0].candidate_steps #=> Array
|
15529
15602
|
# resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -15541,11 +15614,12 @@ module Aws::SageMaker
|
|
15541
15614
|
# resp.candidates[0].failure_reason #=> String
|
15542
15615
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
15543
15616
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
|
15617
|
+
# resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
15544
15618
|
# resp.candidates[0].candidate_properties.candidate_metrics #=> Array
|
15545
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15619
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15546
15620
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
15547
15621
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
15548
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
15622
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15549
15623
|
# resp.candidates[0].inference_container_definitions #=> Hash
|
15550
15624
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
15551
15625
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -16346,7 +16420,7 @@ module Aws::SageMaker
|
|
16346
16420
|
# creation_time_after: Time.now,
|
16347
16421
|
# last_modified_time_before: Time.now,
|
16348
16422
|
# last_modified_time_after: Time.now,
|
16349
|
-
# status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed
|
16423
|
+
# status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed, UpdateRollbackFailed
|
16350
16424
|
# })
|
16351
16425
|
#
|
16352
16426
|
# @example Response structure
|
@@ -16356,7 +16430,7 @@ module Aws::SageMaker
|
|
16356
16430
|
# resp.endpoints[0].endpoint_arn #=> String
|
16357
16431
|
# resp.endpoints[0].creation_time #=> Time
|
16358
16432
|
# resp.endpoints[0].last_modified_time #=> Time
|
16359
|
-
# resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
|
16433
|
+
# resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
|
16360
16434
|
# resp.next_token #=> String
|
16361
16435
|
#
|
16362
16436
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpoints AWS API Documentation
|
@@ -21938,7 +22012,7 @@ module Aws::SageMaker
|
|
21938
22012
|
# },
|
21939
22013
|
# ],
|
21940
22014
|
# deployment_config: {
|
21941
|
-
# blue_green_update_policy: {
|
22015
|
+
# blue_green_update_policy: {
|
21942
22016
|
# traffic_routing_configuration: { # required
|
21943
22017
|
# type: "ALL_AT_ONCE", # required, accepts ALL_AT_ONCE, CANARY, LINEAR
|
21944
22018
|
# wait_interval_in_seconds: 1, # required
|
@@ -21961,6 +22035,18 @@ module Aws::SageMaker
|
|
21961
22035
|
# },
|
21962
22036
|
# ],
|
21963
22037
|
# },
|
22038
|
+
# rolling_update_policy: {
|
22039
|
+
# maximum_batch_size: { # required
|
22040
|
+
# type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
|
22041
|
+
# value: 1, # required
|
22042
|
+
# },
|
22043
|
+
# wait_interval_in_seconds: 1, # required
|
22044
|
+
# maximum_execution_timeout_in_seconds: 1,
|
22045
|
+
# rollback_maximum_batch_size: {
|
22046
|
+
# type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
|
22047
|
+
# value: 1, # required
|
22048
|
+
# },
|
22049
|
+
# },
|
21964
22050
|
# },
|
21965
22051
|
# retain_deployment_config: false,
|
21966
22052
|
# })
|
@@ -23762,7 +23848,7 @@ module Aws::SageMaker
|
|
23762
23848
|
params: params,
|
23763
23849
|
config: config)
|
23764
23850
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23765
|
-
context[:gem_version] = '1.
|
23851
|
+
context[:gem_version] = '1.193.0'
|
23766
23852
|
Seahorse::Client::Request.new(handlers, context)
|
23767
23853
|
end
|
23768
23854
|
|
@@ -29,6 +29,8 @@ module Aws::SageMaker
|
|
29
29
|
AdditionalInferenceSpecifications = Shapes::ListShape.new(name: 'AdditionalInferenceSpecifications')
|
30
30
|
AgentVersion = Shapes::StructureShape.new(name: 'AgentVersion')
|
31
31
|
AgentVersions = Shapes::ListShape.new(name: 'AgentVersions')
|
32
|
+
AggregationTransformationValue = Shapes::StringShape.new(name: 'AggregationTransformationValue')
|
33
|
+
AggregationTransformations = Shapes::MapShape.new(name: 'AggregationTransformations')
|
32
34
|
Alarm = Shapes::StructureShape.new(name: 'Alarm')
|
33
35
|
AlarmList = Shapes::ListShape.new(name: 'AlarmList')
|
34
36
|
AlarmName = Shapes::StringShape.new(name: 'AlarmName')
|
@@ -152,6 +154,7 @@ module Aws::SageMaker
|
|
152
154
|
Autotune = Shapes::StructureShape.new(name: 'Autotune')
|
153
155
|
AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
|
154
156
|
AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
|
157
|
+
BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
|
155
158
|
BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
|
156
159
|
BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
|
157
160
|
BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
|
@@ -781,6 +784,10 @@ module Aws::SageMaker
|
|
781
784
|
FileSystemDataSource = Shapes::StructureShape.new(name: 'FileSystemDataSource')
|
782
785
|
FileSystemId = Shapes::StringShape.new(name: 'FileSystemId')
|
783
786
|
FileSystemType = Shapes::StringShape.new(name: 'FileSystemType')
|
787
|
+
FillingTransformationMap = Shapes::MapShape.new(name: 'FillingTransformationMap')
|
788
|
+
FillingTransformationValue = Shapes::StringShape.new(name: 'FillingTransformationValue')
|
789
|
+
FillingTransformations = Shapes::MapShape.new(name: 'FillingTransformations')
|
790
|
+
FillingType = Shapes::StringShape.new(name: 'FillingType')
|
784
791
|
Filter = Shapes::StructureShape.new(name: 'Filter')
|
785
792
|
FilterList = Shapes::ListShape.new(name: 'FilterList')
|
786
793
|
FilterValue = Shapes::StringShape.new(name: 'FilterValue')
|
@@ -801,6 +808,10 @@ module Aws::SageMaker
|
|
801
808
|
FlowDefinitionTaskKeywords = Shapes::ListShape.new(name: 'FlowDefinitionTaskKeywords')
|
802
809
|
FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
|
803
810
|
FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
|
811
|
+
ForecastFrequency = Shapes::StringShape.new(name: 'ForecastFrequency')
|
812
|
+
ForecastHorizon = Shapes::IntegerShape.new(name: 'ForecastHorizon')
|
813
|
+
ForecastQuantile = Shapes::StringShape.new(name: 'ForecastQuantile')
|
814
|
+
ForecastQuantiles = Shapes::ListShape.new(name: 'ForecastQuantiles')
|
804
815
|
Framework = Shapes::StringShape.new(name: 'Framework')
|
805
816
|
FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
|
806
817
|
GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
|
@@ -818,6 +829,8 @@ module Aws::SageMaker
|
|
818
829
|
GitConfigForUpdate = Shapes::StructureShape.new(name: 'GitConfigForUpdate')
|
819
830
|
GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
|
820
831
|
Group = Shapes::StringShape.new(name: 'Group')
|
832
|
+
GroupingAttributeName = Shapes::StringShape.new(name: 'GroupingAttributeName')
|
833
|
+
GroupingAttributeNames = Shapes::ListShape.new(name: 'GroupingAttributeNames')
|
821
834
|
Groups = Shapes::ListShape.new(name: 'Groups')
|
822
835
|
HookParameters = Shapes::MapShape.new(name: 'HookParameters')
|
823
836
|
Horovod = Shapes::BooleanShape.new(name: 'Horovod')
|
@@ -972,6 +985,7 @@ module Aws::SageMaker
|
|
972
985
|
InvocationsMaxRetries = Shapes::IntegerShape.new(name: 'InvocationsMaxRetries')
|
973
986
|
InvocationsTimeoutInSeconds = Shapes::IntegerShape.new(name: 'InvocationsTimeoutInSeconds')
|
974
987
|
IotRoleAlias = Shapes::StringShape.new(name: 'IotRoleAlias')
|
988
|
+
ItemIdentifierAttributeName = Shapes::StringShape.new(name: 'ItemIdentifierAttributeName')
|
975
989
|
JobDurationInSeconds = Shapes::IntegerShape.new(name: 'JobDurationInSeconds')
|
976
990
|
JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
|
977
991
|
JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
|
@@ -1654,6 +1668,7 @@ module Aws::SageMaker
|
|
1654
1668
|
RetryPipelineExecutionResponse = Shapes::StructureShape.new(name: 'RetryPipelineExecutionResponse')
|
1655
1669
|
RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
|
1656
1670
|
RoleArn = Shapes::StringShape.new(name: 'RoleArn')
|
1671
|
+
RollingUpdatePolicy = Shapes::StructureShape.new(name: 'RollingUpdatePolicy')
|
1657
1672
|
RootAccess = Shapes::StringShape.new(name: 'RootAccess')
|
1658
1673
|
RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
|
1659
1674
|
RuleEvaluationStatus = Shapes::StringShape.new(name: 'RuleEvaluationStatus')
|
@@ -1829,8 +1844,12 @@ module Aws::SageMaker
|
|
1829
1844
|
TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
|
1830
1845
|
TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
|
1831
1846
|
ThingName = Shapes::StringShape.new(name: 'ThingName')
|
1847
|
+
TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
|
1848
|
+
TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
|
1832
1849
|
TimeSeriesForecastingSettings = Shapes::StructureShape.new(name: 'TimeSeriesForecastingSettings')
|
1850
|
+
TimeSeriesTransformations = Shapes::StructureShape.new(name: 'TimeSeriesTransformations')
|
1833
1851
|
Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
|
1852
|
+
TimestampAttributeName = Shapes::StringShape.new(name: 'TimestampAttributeName')
|
1834
1853
|
TrafficDurationInSeconds = Shapes::IntegerShape.new(name: 'TrafficDurationInSeconds')
|
1835
1854
|
TrafficPattern = Shapes::StructureShape.new(name: 'TrafficPattern')
|
1836
1855
|
TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
|
@@ -1884,6 +1903,7 @@ module Aws::SageMaker
|
|
1884
1903
|
TransformOutput = Shapes::StructureShape.new(name: 'TransformOutput')
|
1885
1904
|
TransformResources = Shapes::StructureShape.new(name: 'TransformResources')
|
1886
1905
|
TransformS3DataSource = Shapes::StructureShape.new(name: 'TransformS3DataSource')
|
1906
|
+
TransformationAttributeName = Shapes::StringShape.new(name: 'TransformationAttributeName')
|
1887
1907
|
Trial = Shapes::StructureShape.new(name: 'Trial')
|
1888
1908
|
TrialArn = Shapes::StringShape.new(name: 'TrialArn')
|
1889
1909
|
TrialComponent = Shapes::StructureShape.new(name: 'TrialComponent')
|
@@ -2084,6 +2104,9 @@ module Aws::SageMaker
|
|
2084
2104
|
|
2085
2105
|
AgentVersions.member = Shapes::ShapeRef.new(shape: AgentVersion)
|
2086
2106
|
|
2107
|
+
AggregationTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
|
2108
|
+
AggregationTransformations.value = Shapes::ShapeRef.new(shape: AggregationTransformationValue)
|
2109
|
+
|
2087
2110
|
Alarm.add_member(:alarm_name, Shapes::ShapeRef.new(shape: AlarmName, location_name: "AlarmName"))
|
2088
2111
|
Alarm.struct_class = Types::Alarm
|
2089
2112
|
|
@@ -2344,10 +2367,12 @@ module Aws::SageMaker
|
|
2344
2367
|
AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
|
2345
2368
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2346
2369
|
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2370
|
+
AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
|
2347
2371
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2348
2372
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2349
2373
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2350
2374
|
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2375
|
+
AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
|
2351
2376
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2352
2377
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2353
2378
|
|
@@ -2448,6 +2473,7 @@ module Aws::SageMaker
|
|
2448
2473
|
|
2449
2474
|
CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
|
2450
2475
|
CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
|
2476
|
+
CandidateArtifactLocations.add_member(:backtest_results, Shapes::ShapeRef.new(shape: BacktestResultsLocation, location_name: "BacktestResults"))
|
2451
2477
|
CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
|
2452
2478
|
|
2453
2479
|
CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
|
@@ -3641,8 +3667,9 @@ module Aws::SageMaker
|
|
3641
3667
|
|
3642
3668
|
DeployedImages.member = Shapes::ShapeRef.new(shape: DeployedImage)
|
3643
3669
|
|
3644
|
-
DeploymentConfig.add_member(:blue_green_update_policy, Shapes::ShapeRef.new(shape: BlueGreenUpdatePolicy,
|
3670
|
+
DeploymentConfig.add_member(:blue_green_update_policy, Shapes::ShapeRef.new(shape: BlueGreenUpdatePolicy, location_name: "BlueGreenUpdatePolicy"))
|
3645
3671
|
DeploymentConfig.add_member(:auto_rollback_configuration, Shapes::ShapeRef.new(shape: AutoRollbackConfig, location_name: "AutoRollbackConfiguration"))
|
3672
|
+
DeploymentConfig.add_member(:rolling_update_policy, Shapes::ShapeRef.new(shape: RollingUpdatePolicy, location_name: "RollingUpdatePolicy"))
|
3646
3673
|
DeploymentConfig.struct_class = Types::DeploymentConfig
|
3647
3674
|
|
3648
3675
|
DeploymentRecommendation.add_member(:recommendation_status, Shapes::ShapeRef.new(shape: RecommendationStatus, required: true, location_name: "RecommendationStatus"))
|
@@ -5102,6 +5129,12 @@ module Aws::SageMaker
|
|
5102
5129
|
FileSystemDataSource.add_member(:directory_path, Shapes::ShapeRef.new(shape: DirectoryPath, required: true, location_name: "DirectoryPath"))
|
5103
5130
|
FileSystemDataSource.struct_class = Types::FileSystemDataSource
|
5104
5131
|
|
5132
|
+
FillingTransformationMap.key = Shapes::ShapeRef.new(shape: FillingType)
|
5133
|
+
FillingTransformationMap.value = Shapes::ShapeRef.new(shape: FillingTransformationValue)
|
5134
|
+
|
5135
|
+
FillingTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
|
5136
|
+
FillingTransformations.value = Shapes::ShapeRef.new(shape: FillingTransformationMap)
|
5137
|
+
|
5105
5138
|
Filter.add_member(:name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "Name"))
|
5106
5139
|
Filter.add_member(:operator, Shapes::ShapeRef.new(shape: Operator, location_name: "Operator"))
|
5107
5140
|
Filter.add_member(:value, Shapes::ShapeRef.new(shape: FilterValue, location_name: "Value"))
|
@@ -5137,6 +5170,8 @@ module Aws::SageMaker
|
|
5137
5170
|
|
5138
5171
|
FlowDefinitionTaskKeywords.member = Shapes::ShapeRef.new(shape: FlowDefinitionTaskKeyword)
|
5139
5172
|
|
5173
|
+
ForecastQuantiles.member = Shapes::ShapeRef.new(shape: ForecastQuantile)
|
5174
|
+
|
5140
5175
|
GetDeviceFleetReportRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
|
5141
5176
|
GetDeviceFleetReportRequest.struct_class = Types::GetDeviceFleetReportRequest
|
5142
5177
|
|
@@ -5183,6 +5218,8 @@ module Aws::SageMaker
|
|
5183
5218
|
GitConfigForUpdate.add_member(:secret_arn, Shapes::ShapeRef.new(shape: SecretArn, location_name: "SecretArn"))
|
5184
5219
|
GitConfigForUpdate.struct_class = Types::GitConfigForUpdate
|
5185
5220
|
|
5221
|
+
GroupingAttributeNames.member = Shapes::ShapeRef.new(shape: GroupingAttributeName)
|
5222
|
+
|
5186
5223
|
Groups.member = Shapes::ShapeRef.new(shape: Group)
|
5187
5224
|
|
5188
5225
|
HookParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
|
@@ -7982,6 +8019,12 @@ module Aws::SageMaker
|
|
7982
8019
|
RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
|
7983
8020
|
RetryStrategy.struct_class = Types::RetryStrategy
|
7984
8021
|
|
8022
|
+
RollingUpdatePolicy.add_member(:maximum_batch_size, Shapes::ShapeRef.new(shape: CapacitySize, required: true, location_name: "MaximumBatchSize"))
|
8023
|
+
RollingUpdatePolicy.add_member(:wait_interval_in_seconds, Shapes::ShapeRef.new(shape: WaitIntervalInSeconds, required: true, location_name: "WaitIntervalInSeconds"))
|
8024
|
+
RollingUpdatePolicy.add_member(:maximum_execution_timeout_in_seconds, Shapes::ShapeRef.new(shape: MaximumExecutionTimeoutInSeconds, location_name: "MaximumExecutionTimeoutInSeconds"))
|
8025
|
+
RollingUpdatePolicy.add_member(:rollback_maximum_batch_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "RollbackMaximumBatchSize"))
|
8026
|
+
RollingUpdatePolicy.struct_class = Types::RollingUpdatePolicy
|
8027
|
+
|
7985
8028
|
RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
|
7986
8029
|
RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
|
7987
8030
|
|
@@ -8290,10 +8333,29 @@ module Aws::SageMaker
|
|
8290
8333
|
TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, location_name: "TargetLabelColumn"))
|
8291
8334
|
TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
|
8292
8335
|
|
8336
|
+
TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8337
|
+
TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
|
8338
|
+
TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
|
8339
|
+
TimeSeriesConfig.add_member(:grouping_attribute_names, Shapes::ShapeRef.new(shape: GroupingAttributeNames, location_name: "GroupingAttributeNames"))
|
8340
|
+
TimeSeriesConfig.struct_class = Types::TimeSeriesConfig
|
8341
|
+
|
8342
|
+
TimeSeriesForecastingJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
|
8343
|
+
TimeSeriesForecastingJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8344
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_frequency, Shapes::ShapeRef.new(shape: ForecastFrequency, required: true, location_name: "ForecastFrequency"))
|
8345
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: ForecastHorizon, required: true, location_name: "ForecastHorizon"))
|
8346
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_quantiles, Shapes::ShapeRef.new(shape: ForecastQuantiles, location_name: "ForecastQuantiles"))
|
8347
|
+
TimeSeriesForecastingJobConfig.add_member(:transformations, Shapes::ShapeRef.new(shape: TimeSeriesTransformations, location_name: "Transformations"))
|
8348
|
+
TimeSeriesForecastingJobConfig.add_member(:time_series_config, Shapes::ShapeRef.new(shape: TimeSeriesConfig, required: true, location_name: "TimeSeriesConfig"))
|
8349
|
+
TimeSeriesForecastingJobConfig.struct_class = Types::TimeSeriesForecastingJobConfig
|
8350
|
+
|
8293
8351
|
TimeSeriesForecastingSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
8294
8352
|
TimeSeriesForecastingSettings.add_member(:amazon_forecast_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "AmazonForecastRoleArn"))
|
8295
8353
|
TimeSeriesForecastingSettings.struct_class = Types::TimeSeriesForecastingSettings
|
8296
8354
|
|
8355
|
+
TimeSeriesTransformations.add_member(:filling, Shapes::ShapeRef.new(shape: FillingTransformations, location_name: "Filling"))
|
8356
|
+
TimeSeriesTransformations.add_member(:aggregation, Shapes::ShapeRef.new(shape: AggregationTransformations, location_name: "Aggregation"))
|
8357
|
+
TimeSeriesTransformations.struct_class = Types::TimeSeriesTransformations
|
8358
|
+
|
8297
8359
|
TrafficPattern.add_member(:traffic_type, Shapes::ShapeRef.new(shape: TrafficType, location_name: "TrafficType"))
|
8298
8360
|
TrafficPattern.add_member(:phases, Shapes::ShapeRef.new(shape: Phases, location_name: "Phases"))
|
8299
8361
|
TrafficPattern.struct_class = Types::TrafficPattern
|
@@ -2086,20 +2086,29 @@ module Aws::SageMaker
|
|
2086
2086
|
# The type of channel. Defines whether the data are used for training
|
2087
2087
|
# or validation. The default value is `training`. Channels for
|
2088
2088
|
# `training` and `validation` must share the same `ContentType`
|
2089
|
+
#
|
2090
|
+
# <note markdown="1"> The type of channel defaults to `training` for the time-series
|
2091
|
+
# forecasting problem type.
|
2092
|
+
#
|
2093
|
+
# </note>
|
2089
2094
|
# @return [String]
|
2090
2095
|
#
|
2091
2096
|
# @!attribute [rw] content_type
|
2092
2097
|
# The content type of the data from the input source. The following
|
2093
2098
|
# are the allowed content types for different problems:
|
2094
2099
|
#
|
2095
|
-
# * For
|
2100
|
+
# * For tabular problem types: `text/csv;header=present` or
|
2096
2101
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2097
2102
|
# `text/csv;header=present`.
|
2098
2103
|
#
|
2099
|
-
# * For
|
2104
|
+
# * For image classification: `image/png`, `image/jpeg`, or `image/*`.
|
2100
2105
|
# The default value is `image/*`.
|
2101
2106
|
#
|
2102
|
-
# * For
|
2107
|
+
# * For text classification: `text/csv;header=present` or
|
2108
|
+
# `x-application/vnd.amazon+parquet`. The default value is
|
2109
|
+
# `text/csv;header=present`.
|
2110
|
+
#
|
2111
|
+
# * For time-series forecasting: `text/csv;header=present` or
|
2103
2112
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2104
2113
|
# `text/csv;header=present`.
|
2105
2114
|
# @return [String]
|
@@ -2132,8 +2141,9 @@ module Aws::SageMaker
|
|
2132
2141
|
# @!attribute [rw] max_candidates
|
2133
2142
|
# The maximum number of times a training job is allowed to run.
|
2134
2143
|
#
|
2135
|
-
# For
|
2136
|
-
# supported value is 1.
|
2144
|
+
# For text and image classification, as well as time-series
|
2145
|
+
# forecasting problem types, the supported value is 1. For tabular
|
2146
|
+
# problem types, the maximum value is 750.
|
2137
2147
|
# @return [Integer]
|
2138
2148
|
#
|
2139
2149
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
@@ -2261,6 +2271,9 @@ module Aws::SageMaker
|
|
2261
2271
|
#
|
2262
2272
|
# * For image or text classification problem types: `Accuracy`
|
2263
2273
|
#
|
2274
|
+
# * For time-series forecasting problem types:
|
2275
|
+
# `AverageWeightedQuantileLoss`
|
2276
|
+
#
|
2264
2277
|
#
|
2265
2278
|
#
|
2266
2279
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
@@ -2399,12 +2412,18 @@ module Aws::SageMaker
|
|
2399
2412
|
# type (regression, classification).
|
2400
2413
|
# @return [Types::TabularJobConfig]
|
2401
2414
|
#
|
2415
|
+
# @!attribute [rw] time_series_forecasting_job_config
|
2416
|
+
# Settings used to configure an AutoML job V2 for a time-series
|
2417
|
+
# forecasting problem type.
|
2418
|
+
# @return [Types::TimeSeriesForecastingJobConfig]
|
2419
|
+
#
|
2402
2420
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2403
2421
|
#
|
2404
2422
|
class AutoMLProblemTypeConfig < Struct.new(
|
2405
2423
|
:image_classification_job_config,
|
2406
2424
|
:text_classification_job_config,
|
2407
2425
|
:tabular_job_config,
|
2426
|
+
:time_series_forecasting_job_config,
|
2408
2427
|
:unknown)
|
2409
2428
|
SENSITIVE = []
|
2410
2429
|
include Aws::Structure
|
@@ -2413,6 +2432,7 @@ module Aws::SageMaker
|
|
2413
2432
|
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2414
2433
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2415
2434
|
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2435
|
+
class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
|
2416
2436
|
class Unknown < AutoMLProblemTypeConfig; end
|
2417
2437
|
end
|
2418
2438
|
|
@@ -2987,11 +3007,18 @@ module Aws::SageMaker
|
|
2987
3007
|
# the AutoML candidate.
|
2988
3008
|
# @return [String]
|
2989
3009
|
#
|
3010
|
+
# @!attribute [rw] backtest_results
|
3011
|
+
# The Amazon S3 prefix to the accuracy metrics and the inference
|
3012
|
+
# results observed over the testing window. Available only for the
|
3013
|
+
# time-series forecasting problem type.
|
3014
|
+
# @return [String]
|
3015
|
+
#
|
2990
3016
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
|
2991
3017
|
#
|
2992
3018
|
class CandidateArtifactLocations < Struct.new(
|
2993
3019
|
:explainability,
|
2994
|
-
:model_insights
|
3020
|
+
:model_insights,
|
3021
|
+
:backtest_results)
|
2995
3022
|
SENSITIVE = []
|
2996
3023
|
include Aws::Structure
|
2997
3024
|
end
|
@@ -3079,7 +3106,15 @@ module Aws::SageMaker
|
|
3079
3106
|
include Aws::Structure
|
3080
3107
|
end
|
3081
3108
|
|
3082
|
-
# Specifies the endpoint capacity to activate for
|
3109
|
+
# Specifies the type and size of the endpoint capacity to activate for a
|
3110
|
+
# blue/green deployment, a rolling deployment, or a rollback strategy.
|
3111
|
+
# You can specify your batches as either instance count or the overall
|
3112
|
+
# percentage or your fleet.
|
3113
|
+
#
|
3114
|
+
# For a rollback strategy, if you don't specify the fields in this
|
3115
|
+
# object, or if you set the `Value` to 100%, then SageMaker uses a
|
3116
|
+
# blue/green rollback strategy and rolls all traffic back to the blue
|
3117
|
+
# fleet.
|
3083
3118
|
#
|
3084
3119
|
# @!attribute [rw] type
|
3085
3120
|
# Specifies the endpoint capacity type.
|
@@ -4717,12 +4752,14 @@ module Aws::SageMaker
|
|
4717
4752
|
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
4718
4753
|
# parameters. The supported formats depend on the problem type:
|
4719
4754
|
#
|
4720
|
-
# * For
|
4755
|
+
# * For tabular problem types: `S3Prefix`, `ManifestFile`.
|
4721
4756
|
#
|
4722
|
-
# * For
|
4757
|
+
# * For image classification: `S3Prefix`, `ManifestFile`,
|
4723
4758
|
# `AugmentedManifestFile`.
|
4724
4759
|
#
|
4725
|
-
# * For
|
4760
|
+
# * For text classification: `S3Prefix`.
|
4761
|
+
#
|
4762
|
+
# * For time-series forecasting: `S3Prefix`.
|
4726
4763
|
#
|
4727
4764
|
#
|
4728
4765
|
#
|
@@ -4789,6 +4826,12 @@ module Aws::SageMaker
|
|
4789
4826
|
# The validation and training datasets must contain the same headers.
|
4790
4827
|
# For jobs created by calling `CreateAutoMLJob`, the validation
|
4791
4828
|
# dataset must be less than 2 GB in size.
|
4829
|
+
#
|
4830
|
+
# <note markdown="1"> This attribute must not be set for the time-series forecasting
|
4831
|
+
# problem type, as Autopilot automatically splits the input dataset
|
4832
|
+
# into training and validation sets.
|
4833
|
+
#
|
4834
|
+
# </note>
|
4792
4835
|
# @return [Types::AutoMLDataSplitConfig]
|
4793
4836
|
#
|
4794
4837
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
@@ -10159,11 +10202,17 @@ module Aws::SageMaker
|
|
10159
10202
|
# failures and recovery.
|
10160
10203
|
# @return [Types::AutoRollbackConfig]
|
10161
10204
|
#
|
10205
|
+
# @!attribute [rw] rolling_update_policy
|
10206
|
+
# Specifies a rolling deployment strategy for updating a SageMaker
|
10207
|
+
# endpoint.
|
10208
|
+
# @return [Types::RollingUpdatePolicy]
|
10209
|
+
#
|
10162
10210
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeploymentConfig AWS API Documentation
|
10163
10211
|
#
|
10164
10212
|
class DeploymentConfig < Struct.new(
|
10165
10213
|
:blue_green_update_policy,
|
10166
|
-
:auto_rollback_configuration
|
10214
|
+
:auto_rollback_configuration,
|
10215
|
+
:rolling_update_policy)
|
10167
10216
|
SENSITIVE = []
|
10168
10217
|
include Aws::Structure
|
10169
10218
|
end
|
@@ -34959,6 +35008,46 @@ module Aws::SageMaker
|
|
34959
35008
|
include Aws::Structure
|
34960
35009
|
end
|
34961
35010
|
|
35011
|
+
# Specifies a rolling deployment strategy for updating a SageMaker
|
35012
|
+
# endpoint.
|
35013
|
+
#
|
35014
|
+
# @!attribute [rw] maximum_batch_size
|
35015
|
+
# Batch size for each rolling step to provision capacity and turn on
|
35016
|
+
# traffic on the new endpoint fleet, and terminate capacity on the old
|
35017
|
+
# endpoint fleet. Value must be between 5% to 50% of the variant's
|
35018
|
+
# total instance count.
|
35019
|
+
# @return [Types::CapacitySize]
|
35020
|
+
#
|
35021
|
+
# @!attribute [rw] wait_interval_in_seconds
|
35022
|
+
# The length of the baking period, during which SageMaker monitors
|
35023
|
+
# alarms for each batch on the new fleet.
|
35024
|
+
# @return [Integer]
|
35025
|
+
#
|
35026
|
+
# @!attribute [rw] maximum_execution_timeout_in_seconds
|
35027
|
+
# The time limit for the total deployment. Exceeding this limit causes
|
35028
|
+
# a timeout.
|
35029
|
+
# @return [Integer]
|
35030
|
+
#
|
35031
|
+
# @!attribute [rw] rollback_maximum_batch_size
|
35032
|
+
# Batch size for rollback to the old endpoint fleet. Each rolling step
|
35033
|
+
# to provision capacity and turn on traffic on the old endpoint fleet,
|
35034
|
+
# and terminate capacity on the new endpoint fleet. If this field is
|
35035
|
+
# absent, the default value will be set to 100% of total capacity
|
35036
|
+
# which means to bring up the whole capacity of the old fleet at once
|
35037
|
+
# during rollback.
|
35038
|
+
# @return [Types::CapacitySize]
|
35039
|
+
#
|
35040
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RollingUpdatePolicy AWS API Documentation
|
35041
|
+
#
|
35042
|
+
class RollingUpdatePolicy < Struct.new(
|
35043
|
+
:maximum_batch_size,
|
35044
|
+
:wait_interval_in_seconds,
|
35045
|
+
:maximum_execution_timeout_in_seconds,
|
35046
|
+
:rollback_maximum_batch_size)
|
35047
|
+
SENSITIVE = []
|
35048
|
+
include Aws::Structure
|
35049
|
+
end
|
35050
|
+
|
34962
35051
|
# Describes the S3 data source.
|
34963
35052
|
#
|
34964
35053
|
# Your input bucket must be in the same Amazon Web Services region as
|
@@ -36920,6 +37009,157 @@ module Aws::SageMaker
|
|
36920
37009
|
include Aws::Structure
|
36921
37010
|
end
|
36922
37011
|
|
37012
|
+
# The collection of components that defines the time-series.
|
37013
|
+
#
|
37014
|
+
# @!attribute [rw] target_attribute_name
|
37015
|
+
# The name of the column representing the target variable that you
|
37016
|
+
# want to predict for each item in your dataset. The data type of the
|
37017
|
+
# target variable must be numerical.
|
37018
|
+
# @return [String]
|
37019
|
+
#
|
37020
|
+
# @!attribute [rw] timestamp_attribute_name
|
37021
|
+
# The name of the column indicating a point in time at which the
|
37022
|
+
# target value of a given item is recorded.
|
37023
|
+
# @return [String]
|
37024
|
+
#
|
37025
|
+
# @!attribute [rw] item_identifier_attribute_name
|
37026
|
+
# The name of the column that represents the set of item identifiers
|
37027
|
+
# for which you want to predict the target value.
|
37028
|
+
# @return [String]
|
37029
|
+
#
|
37030
|
+
# @!attribute [rw] grouping_attribute_names
|
37031
|
+
# A set of columns names that can be grouped with the item identifier
|
37032
|
+
# column to create a composite key for which a target value is
|
37033
|
+
# predicted.
|
37034
|
+
# @return [Array<String>]
|
37035
|
+
#
|
37036
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesConfig AWS API Documentation
|
37037
|
+
#
|
37038
|
+
class TimeSeriesConfig < Struct.new(
|
37039
|
+
:target_attribute_name,
|
37040
|
+
:timestamp_attribute_name,
|
37041
|
+
:item_identifier_attribute_name,
|
37042
|
+
:grouping_attribute_names)
|
37043
|
+
SENSITIVE = []
|
37044
|
+
include Aws::Structure
|
37045
|
+
end
|
37046
|
+
|
37047
|
+
# The collection of settings used by an AutoML job V2 for the
|
37048
|
+
# time-series forecasting problem type.
|
37049
|
+
#
|
37050
|
+
# <note markdown="1"> The `TimeSeriesForecastingJobConfig` problem type is only available in
|
37051
|
+
# private beta. Contact Amazon Web Services Support or your account
|
37052
|
+
# manager to learn more about access privileges.
|
37053
|
+
#
|
37054
|
+
# </note>
|
37055
|
+
#
|
37056
|
+
# @!attribute [rw] feature_specification_s3_uri
|
37057
|
+
# A URL to the Amazon S3 data source containing additional selected
|
37058
|
+
# features that complement the target, itemID, timestamp, and grouped
|
37059
|
+
# columns set in `TimeSeriesConfig`. When not provided, the AutoML job
|
37060
|
+
# V2 includes all the columns from the original dataset that are not
|
37061
|
+
# already declared in `TimeSeriesConfig`. If provided, the AutoML job
|
37062
|
+
# V2 only considers these additional columns as a complement to the
|
37063
|
+
# ones declared in `TimeSeriesConfig`.
|
37064
|
+
#
|
37065
|
+
# You can input `FeatureAttributeNames` (optional) in JSON format as
|
37066
|
+
# shown below:
|
37067
|
+
#
|
37068
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
37069
|
+
#
|
37070
|
+
# You can also specify the data type of the feature (optional) in the
|
37071
|
+
# format shown below:
|
37072
|
+
#
|
37073
|
+
# `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
|
37074
|
+
# \} \}`
|
37075
|
+
#
|
37076
|
+
# Autopilot supports the following data types: `numeric`,
|
37077
|
+
# `categorical`, `text`, and `datetime`.
|
37078
|
+
#
|
37079
|
+
# <note markdown="1"> These column keys must not include any column set in
|
37080
|
+
# `TimeSeriesConfig`.
|
37081
|
+
#
|
37082
|
+
# </note>
|
37083
|
+
#
|
37084
|
+
# When not provided, the AutoML job V2 includes all the columns from
|
37085
|
+
# the original dataset that are not already declared in
|
37086
|
+
# `TimeSeriesConfig`. If provided, the AutoML job V2 only considers
|
37087
|
+
# these additional columns as a complement to the ones declared in
|
37088
|
+
# `TimeSeriesConfig`.
|
37089
|
+
#
|
37090
|
+
# Autopilot supports the following data types: `numeric`,
|
37091
|
+
# `categorical`, `text`, and `datetime`.
|
37092
|
+
# @return [String]
|
37093
|
+
#
|
37094
|
+
# @!attribute [rw] completion_criteria
|
37095
|
+
# How long a job is allowed to run, or how many candidates a job is
|
37096
|
+
# allowed to generate.
|
37097
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
37098
|
+
#
|
37099
|
+
# @!attribute [rw] forecast_frequency
|
37100
|
+
# The frequency of predictions in a forecast.
|
37101
|
+
#
|
37102
|
+
# Valid intervals are an integer followed by Y (Year), M (Month), W
|
37103
|
+
# (Week), D (Day), H (Hour), and min (Minute). For example, `1D`
|
37104
|
+
# indicates every day and `15min` indicates every 15 minutes. The
|
37105
|
+
# value of a frequency must not overlap with the next larger
|
37106
|
+
# frequency. For example, you must use a frequency of `1H` instead of
|
37107
|
+
# `60min`.
|
37108
|
+
#
|
37109
|
+
# The valid values for each frequency are the following:
|
37110
|
+
#
|
37111
|
+
# * Minute - 1-59
|
37112
|
+
#
|
37113
|
+
# * Hour - 1-23
|
37114
|
+
#
|
37115
|
+
# * Day - 1-6
|
37116
|
+
#
|
37117
|
+
# * Week - 1-4
|
37118
|
+
#
|
37119
|
+
# * Month - 1-11
|
37120
|
+
#
|
37121
|
+
# * Year - 1
|
37122
|
+
# @return [String]
|
37123
|
+
#
|
37124
|
+
# @!attribute [rw] forecast_horizon
|
37125
|
+
# The number of time-steps that the model predicts. The forecast
|
37126
|
+
# horizon is also called the prediction length. The maximum forecast
|
37127
|
+
# horizon is the lesser of 500 time-steps or 1/4 of the time-steps in
|
37128
|
+
# the dataset.
|
37129
|
+
# @return [Integer]
|
37130
|
+
#
|
37131
|
+
# @!attribute [rw] forecast_quantiles
|
37132
|
+
# The quantiles used to train the model for forecasts at a specified
|
37133
|
+
# quantile. You can specify quantiles from `0.01` (p1) to `0.99`
|
37134
|
+
# (p99), by increments of 0.01 or higher. Up to five forecast
|
37135
|
+
# quantiles can be specified. When `ForecastQuantiles` is not
|
37136
|
+
# provided, the AutoML job uses the quantiles p10, p50, and p90 as
|
37137
|
+
# default.
|
37138
|
+
# @return [Array<String>]
|
37139
|
+
#
|
37140
|
+
# @!attribute [rw] transformations
|
37141
|
+
# The transformations modifying specific attributes of the
|
37142
|
+
# time-series, such as filling strategies for missing values.
|
37143
|
+
# @return [Types::TimeSeriesTransformations]
|
37144
|
+
#
|
37145
|
+
# @!attribute [rw] time_series_config
|
37146
|
+
# The collection of components that defines the time-series.
|
37147
|
+
# @return [Types::TimeSeriesConfig]
|
37148
|
+
#
|
37149
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesForecastingJobConfig AWS API Documentation
|
37150
|
+
#
|
37151
|
+
class TimeSeriesForecastingJobConfig < Struct.new(
|
37152
|
+
:feature_specification_s3_uri,
|
37153
|
+
:completion_criteria,
|
37154
|
+
:forecast_frequency,
|
37155
|
+
:forecast_horizon,
|
37156
|
+
:forecast_quantiles,
|
37157
|
+
:transformations,
|
37158
|
+
:time_series_config)
|
37159
|
+
SENSITIVE = []
|
37160
|
+
include Aws::Structure
|
37161
|
+
end
|
37162
|
+
|
36923
37163
|
# Time series forecast settings for the SageMaker Canvas application.
|
36924
37164
|
#
|
36925
37165
|
# @!attribute [rw] status
|
@@ -36952,6 +37192,56 @@ module Aws::SageMaker
|
|
36952
37192
|
include Aws::Structure
|
36953
37193
|
end
|
36954
37194
|
|
37195
|
+
# Transformations allowed on the dataset. Supported transformations are
|
37196
|
+
# `Filling` and `Aggregation`. `Filling` specifies how to add values to
|
37197
|
+
# missing values in the dataset. `Aggregation` defines how to aggregate
|
37198
|
+
# data that does not align with forecast frequency.
|
37199
|
+
#
|
37200
|
+
# @!attribute [rw] filling
|
37201
|
+
# A key value pair defining the filling method for a column, where the
|
37202
|
+
# key is the column name and the value is an object which defines the
|
37203
|
+
# filling logic. You can specify multiple filling methods for a single
|
37204
|
+
# column.
|
37205
|
+
#
|
37206
|
+
# The supported filling methods and their corresponding options are:
|
37207
|
+
#
|
37208
|
+
# * `frontfill`: `none` (Supported only for target column)
|
37209
|
+
#
|
37210
|
+
# * `middlefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37211
|
+
#
|
37212
|
+
# * `backfill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37213
|
+
#
|
37214
|
+
# * `futurefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37215
|
+
#
|
37216
|
+
# To set a filling method to a specific value, set the fill parameter
|
37217
|
+
# to the chosen filling method value (for example `"backfill" :
|
37218
|
+
# "value"`), and define the filling value in an additional parameter
|
37219
|
+
# prefixed with "\_value". For example, to set `backfill` to a value
|
37220
|
+
# of `2`, you must include two parameters: `"backfill": "value"` and
|
37221
|
+
# `"backfill_value":"2"`.
|
37222
|
+
# @return [Hash<String,Hash<String,String>>]
|
37223
|
+
#
|
37224
|
+
# @!attribute [rw] aggregation
|
37225
|
+
# A key value pair defining the aggregation method for a column, where
|
37226
|
+
# the key is the column name and the value is the aggregation method.
|
37227
|
+
#
|
37228
|
+
# The supported aggregation methods are `sum` (default), `avg`,
|
37229
|
+
# `first`, `min`, `max`.
|
37230
|
+
#
|
37231
|
+
# <note markdown="1"> Aggregation is only supported for the target column.
|
37232
|
+
#
|
37233
|
+
# </note>
|
37234
|
+
# @return [Hash<String,String>]
|
37235
|
+
#
|
37236
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesTransformations AWS API Documentation
|
37237
|
+
#
|
37238
|
+
class TimeSeriesTransformations < Struct.new(
|
37239
|
+
:filling,
|
37240
|
+
:aggregation)
|
37241
|
+
SENSITIVE = []
|
37242
|
+
include Aws::Structure
|
37243
|
+
end
|
37244
|
+
|
36955
37245
|
# Defines the traffic pattern of the load test.
|
36956
37246
|
#
|
36957
37247
|
# @!attribute [rw] traffic_type
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.193.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-06-
|
11
|
+
date: 2023-06-30 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|