aws-sdk-sagemaker 1.191.0 → 1.193.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: c5a11a92ae9b1f7dd4576c7bb6eae1b62aa9a1c0ed7ae60f9e9ed65530576e78
4
- data.tar.gz: 20605cdbe5d1510b493fc76073591c26216eda6e4f87c492a119b07981bde826
3
+ metadata.gz: e8563212194efe3f885db18ded340750c68719059405c10110a98fe0a254de83
4
+ data.tar.gz: 8c32b946394f67fac58c560a9a048ec39d56ab2ea1f1416484de48dbeb99947c
5
5
  SHA512:
6
- metadata.gz: ff5009d9104e86b816c8d1e5c888b5a62685dde25be5409dff164ecefb2f1e12bc3f45d48eb09871d0bd2913235b361230a8dfd13328def19821dc6e30953e4f
7
- data.tar.gz: ae8df2ffe98ba597b35358eb42a32387d2371c05192aa72630445205b11fe68018b1d9f79f52ffa1052139abf3c452fb6dd5b4869da308e9ce294d6f06d0688e
6
+ metadata.gz: 1632e061172d86fd8998029d2b91c397c527dc6329297cacff63dd191a7b81e349ad4ba938c85a178d7056a47b4bbe084f7adc327087dc8c652d87effcc75be5
7
+ data.tar.gz: 6e7c6e026568146cea2404421c7ce6028e509a6d042af8c25ede1c4e5b141f0b89303e1c4d801d7405338204ea4f27d75c1f7670de963cb6593951988c110559
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.193.0 (2023-06-30)
5
+ ------------------
6
+
7
+ * Feature - This release adds support for rolling deployment in SageMaker Inference.
8
+
9
+ 1.192.0 (2023-06-29)
10
+ ------------------
11
+
12
+ * Feature - Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
13
+
4
14
  1.191.0 (2023-06-28)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.191.0
1
+ 1.193.0
@@ -1307,7 +1307,7 @@ module Aws::SageMaker
1307
1307
  # },
1308
1308
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
1309
1309
  # auto_ml_job_objective: {
1310
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1310
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
1311
1311
  # },
1312
1312
  # auto_ml_job_config: {
1313
1313
  # completion_criteria: {
@@ -1405,12 +1405,14 @@ module Aws::SageMaker
1405
1405
  # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
1406
1406
  # parameters. The supported formats depend on the problem type:
1407
1407
  #
1408
- # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
1408
+ # * For tabular problem types: `S3Prefix`, `ManifestFile`.
1409
1409
  #
1410
- # * For ImageClassification: `S3Prefix`, `ManifestFile`,
1410
+ # * For image classification: `S3Prefix`, `ManifestFile`,
1411
1411
  # `AugmentedManifestFile`.
1412
1412
  #
1413
- # * For TextClassification: `S3Prefix`.
1413
+ # * For text classification: `S3Prefix`.
1414
+ #
1415
+ # * For time-series forecasting: `S3Prefix`.
1414
1416
  #
1415
1417
  #
1416
1418
  #
@@ -1470,6 +1472,12 @@ module Aws::SageMaker
1470
1472
  # For jobs created by calling `CreateAutoMLJob`, the validation dataset
1471
1473
  # must be less than 2 GB in size.
1472
1474
  #
1475
+ # <note markdown="1"> This attribute must not be set for the time-series forecasting problem
1476
+ # type, as Autopilot automatically splits the input dataset into
1477
+ # training and validation sets.
1478
+ #
1479
+ # </note>
1480
+ #
1473
1481
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1474
1482
  #
1475
1483
  # * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1532,6 +1540,33 @@ module Aws::SageMaker
1532
1540
  # target_attribute_name: "TargetAttributeName", # required
1533
1541
  # sample_weight_attribute_name: "SampleWeightAttributeName",
1534
1542
  # },
1543
+ # time_series_forecasting_job_config: {
1544
+ # feature_specification_s3_uri: "S3Uri",
1545
+ # completion_criteria: {
1546
+ # max_candidates: 1,
1547
+ # max_runtime_per_training_job_in_seconds: 1,
1548
+ # max_auto_ml_job_runtime_in_seconds: 1,
1549
+ # },
1550
+ # forecast_frequency: "ForecastFrequency", # required
1551
+ # forecast_horizon: 1, # required
1552
+ # forecast_quantiles: ["ForecastQuantile"],
1553
+ # transformations: {
1554
+ # filling: {
1555
+ # "TransformationAttributeName" => {
1556
+ # "frontfill" => "FillingTransformationValue",
1557
+ # },
1558
+ # },
1559
+ # aggregation: {
1560
+ # "TransformationAttributeName" => "sum", # accepts sum, avg, first, min, max
1561
+ # },
1562
+ # },
1563
+ # time_series_config: { # required
1564
+ # target_attribute_name: "TargetAttributeName", # required
1565
+ # timestamp_attribute_name: "TimestampAttributeName", # required
1566
+ # item_identifier_attribute_name: "ItemIdentifierAttributeName", # required
1567
+ # grouping_attribute_names: ["GroupingAttributeName"],
1568
+ # },
1569
+ # },
1535
1570
  # },
1536
1571
  # role_arn: "RoleArn", # required
1537
1572
  # tags: [
@@ -1549,7 +1584,7 @@ module Aws::SageMaker
1549
1584
  # },
1550
1585
  # },
1551
1586
  # auto_ml_job_objective: {
1552
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1587
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
1553
1588
  # },
1554
1589
  # model_deploy_config: {
1555
1590
  # auto_generate_endpoint_name: false,
@@ -2684,7 +2719,7 @@ module Aws::SageMaker
2684
2719
  # endpoint_name: "EndpointName", # required
2685
2720
  # endpoint_config_name: "EndpointConfigName", # required
2686
2721
  # deployment_config: {
2687
- # blue_green_update_policy: { # required
2722
+ # blue_green_update_policy: {
2688
2723
  # traffic_routing_configuration: { # required
2689
2724
  # type: "ALL_AT_ONCE", # required, accepts ALL_AT_ONCE, CANARY, LINEAR
2690
2725
  # wait_interval_in_seconds: 1, # required
@@ -2707,6 +2742,18 @@ module Aws::SageMaker
2707
2742
  # },
2708
2743
  # ],
2709
2744
  # },
2745
+ # rolling_update_policy: {
2746
+ # maximum_batch_size: { # required
2747
+ # type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
2748
+ # value: 1, # required
2749
+ # },
2750
+ # wait_interval_in_seconds: 1, # required
2751
+ # maximum_execution_timeout_in_seconds: 1,
2752
+ # rollback_maximum_batch_size: {
2753
+ # type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
2754
+ # value: 1, # required
2755
+ # },
2756
+ # },
2710
2757
  # },
2711
2758
  # tags: [
2712
2759
  # {
@@ -10091,7 +10138,7 @@ module Aws::SageMaker
10091
10138
  # resp.output_data_config.kms_key_id #=> String
10092
10139
  # resp.output_data_config.s3_output_path #=> String
10093
10140
  # resp.role_arn #=> String
10094
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10141
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10095
10142
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10096
10143
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
10097
10144
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -10116,9 +10163,9 @@ module Aws::SageMaker
10116
10163
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
10117
10164
  # resp.best_candidate.candidate_name #=> String
10118
10165
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
10119
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10166
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10120
10167
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
10121
- # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10168
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10122
10169
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
10123
10170
  # resp.best_candidate.candidate_steps #=> Array
10124
10171
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10136,11 +10183,12 @@ module Aws::SageMaker
10136
10183
  # resp.best_candidate.failure_reason #=> String
10137
10184
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
10138
10185
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
10186
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
10139
10187
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
10140
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10188
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10141
10189
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10142
10190
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10143
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
10191
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10144
10192
  # resp.best_candidate.inference_container_definitions #=> Hash
10145
10193
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10146
10194
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10148,11 +10196,11 @@ module Aws::SageMaker
10148
10196
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
10149
10197
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
10150
10198
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
10151
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
10199
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
10152
10200
  # resp.generate_candidate_definitions_only #=> Boolean
10153
10201
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10154
10202
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10155
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10203
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10156
10204
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10157
10205
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10158
10206
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -10225,7 +10273,7 @@ module Aws::SageMaker
10225
10273
  # resp.output_data_config.kms_key_id #=> String
10226
10274
  # resp.output_data_config.s3_output_path #=> String
10227
10275
  # resp.role_arn #=> String
10228
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10276
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10229
10277
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_candidates #=> Integer
10230
10278
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10231
10279
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
@@ -10246,6 +10294,24 @@ module Aws::SageMaker
10246
10294
  # resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10247
10295
  # resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
10248
10296
  # resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
10297
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.feature_specification_s3_uri #=> String
10298
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_candidates #=> Integer
10299
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10300
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10301
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_frequency #=> String
10302
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_horizon #=> Integer
10303
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles #=> Array
10304
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles[0] #=> String
10305
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling #=> Hash
10306
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"] #=> Hash
10307
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"]["FillingType"] #=> String
10308
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation #=> Hash
10309
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation["TransformationAttributeName"] #=> String, one of "sum", "avg", "first", "min", "max"
10310
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.target_attribute_name #=> String
10311
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.timestamp_attribute_name #=> String
10312
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.item_identifier_attribute_name #=> String
10313
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names #=> Array
10314
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
10249
10315
  # resp.creation_time #=> Time
10250
10316
  # resp.end_time #=> Time
10251
10317
  # resp.last_modified_time #=> Time
@@ -10254,9 +10320,9 @@ module Aws::SageMaker
10254
10320
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
10255
10321
  # resp.best_candidate.candidate_name #=> String
10256
10322
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
10257
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10323
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10258
10324
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
10259
- # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10325
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10260
10326
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
10261
10327
  # resp.best_candidate.candidate_steps #=> Array
10262
10328
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10274,11 +10340,12 @@ module Aws::SageMaker
10274
10340
  # resp.best_candidate.failure_reason #=> String
10275
10341
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
10276
10342
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
10343
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
10277
10344
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
10278
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10345
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10279
10346
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10280
10347
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10281
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
10348
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10282
10349
  # resp.best_candidate.inference_container_definitions #=> Hash
10283
10350
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10284
10351
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10286,7 +10353,7 @@ module Aws::SageMaker
10286
10353
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
10287
10354
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
10288
10355
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
10289
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
10356
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
10290
10357
  # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
10291
10358
  # resp.model_deploy_config.endpoint_name #=> String
10292
10359
  # resp.model_deploy_result.endpoint_name #=> String
@@ -10299,12 +10366,12 @@ module Aws::SageMaker
10299
10366
  # resp.security_config.vpc_config.subnets[0] #=> String
10300
10367
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10301
10368
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10302
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10369
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10303
10370
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10304
10371
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10305
10372
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10306
10373
  # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10307
- # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
10374
+ # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
10308
10375
  #
10309
10376
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
10310
10377
  #
@@ -11023,7 +11090,7 @@ module Aws::SageMaker
11023
11090
  # resp.data_capture_config.current_sampling_percentage #=> Integer
11024
11091
  # resp.data_capture_config.destination_s3_uri #=> String
11025
11092
  # resp.data_capture_config.kms_key_id #=> String
11026
- # resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
11093
+ # resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
11027
11094
  # resp.failure_reason #=> String
11028
11095
  # resp.creation_time #=> Time
11029
11096
  # resp.last_modified_time #=> Time
@@ -11037,6 +11104,12 @@ module Aws::SageMaker
11037
11104
  # resp.last_deployment_config.blue_green_update_policy.maximum_execution_timeout_in_seconds #=> Integer
11038
11105
  # resp.last_deployment_config.auto_rollback_configuration.alarms #=> Array
11039
11106
  # resp.last_deployment_config.auto_rollback_configuration.alarms[0].alarm_name #=> String
11107
+ # resp.last_deployment_config.rolling_update_policy.maximum_batch_size.type #=> String, one of "INSTANCE_COUNT", "CAPACITY_PERCENT"
11108
+ # resp.last_deployment_config.rolling_update_policy.maximum_batch_size.value #=> Integer
11109
+ # resp.last_deployment_config.rolling_update_policy.wait_interval_in_seconds #=> Integer
11110
+ # resp.last_deployment_config.rolling_update_policy.maximum_execution_timeout_in_seconds #=> Integer
11111
+ # resp.last_deployment_config.rolling_update_policy.rollback_maximum_batch_size.type #=> String, one of "INSTANCE_COUNT", "CAPACITY_PERCENT"
11112
+ # resp.last_deployment_config.rolling_update_policy.rollback_maximum_batch_size.value #=> Integer
11040
11113
  # resp.async_inference_config.client_config.max_concurrent_invocations_per_instance #=> Integer
11041
11114
  # resp.async_inference_config.output_config.kms_key_id #=> String
11042
11115
  # resp.async_inference_config.output_config.s3_output_path #=> String
@@ -12135,7 +12208,7 @@ module Aws::SageMaker
12135
12208
  # resp.role_arn #=> String
12136
12209
  # resp.endpoint_metadata.endpoint_name #=> String
12137
12210
  # resp.endpoint_metadata.endpoint_config_name #=> String
12138
- # resp.endpoint_metadata.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
12211
+ # resp.endpoint_metadata.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
12139
12212
  # resp.endpoint_metadata.failure_reason #=> String
12140
12213
  # resp.model_variants #=> Array
12141
12214
  # resp.model_variants[0].model_name #=> String
@@ -15454,7 +15527,7 @@ module Aws::SageMaker
15454
15527
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
15455
15528
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
15456
15529
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
15457
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
15530
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
15458
15531
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
15459
15532
  # resp.auto_ml_job_summaries[0].end_time #=> Time
15460
15533
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
@@ -15521,9 +15594,9 @@ module Aws::SageMaker
15521
15594
  # resp.candidates #=> Array
15522
15595
  # resp.candidates[0].candidate_name #=> String
15523
15596
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
15524
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15597
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15525
15598
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
15526
- # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15599
+ # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15527
15600
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
15528
15601
  # resp.candidates[0].candidate_steps #=> Array
15529
15602
  # resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -15541,11 +15614,12 @@ module Aws::SageMaker
15541
15614
  # resp.candidates[0].failure_reason #=> String
15542
15615
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
15543
15616
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
15617
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
15544
15618
  # resp.candidates[0].candidate_properties.candidate_metrics #=> Array
15545
- # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15619
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15546
15620
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
15547
15621
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
15548
- # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
15622
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15549
15623
  # resp.candidates[0].inference_container_definitions #=> Hash
15550
15624
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
15551
15625
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -16346,7 +16420,7 @@ module Aws::SageMaker
16346
16420
  # creation_time_after: Time.now,
16347
16421
  # last_modified_time_before: Time.now,
16348
16422
  # last_modified_time_after: Time.now,
16349
- # status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed
16423
+ # status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed, UpdateRollbackFailed
16350
16424
  # })
16351
16425
  #
16352
16426
  # @example Response structure
@@ -16356,7 +16430,7 @@ module Aws::SageMaker
16356
16430
  # resp.endpoints[0].endpoint_arn #=> String
16357
16431
  # resp.endpoints[0].creation_time #=> Time
16358
16432
  # resp.endpoints[0].last_modified_time #=> Time
16359
- # resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
16433
+ # resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
16360
16434
  # resp.next_token #=> String
16361
16435
  #
16362
16436
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpoints AWS API Documentation
@@ -21938,7 +22012,7 @@ module Aws::SageMaker
21938
22012
  # },
21939
22013
  # ],
21940
22014
  # deployment_config: {
21941
- # blue_green_update_policy: { # required
22015
+ # blue_green_update_policy: {
21942
22016
  # traffic_routing_configuration: { # required
21943
22017
  # type: "ALL_AT_ONCE", # required, accepts ALL_AT_ONCE, CANARY, LINEAR
21944
22018
  # wait_interval_in_seconds: 1, # required
@@ -21961,6 +22035,18 @@ module Aws::SageMaker
21961
22035
  # },
21962
22036
  # ],
21963
22037
  # },
22038
+ # rolling_update_policy: {
22039
+ # maximum_batch_size: { # required
22040
+ # type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
22041
+ # value: 1, # required
22042
+ # },
22043
+ # wait_interval_in_seconds: 1, # required
22044
+ # maximum_execution_timeout_in_seconds: 1,
22045
+ # rollback_maximum_batch_size: {
22046
+ # type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
22047
+ # value: 1, # required
22048
+ # },
22049
+ # },
21964
22050
  # },
21965
22051
  # retain_deployment_config: false,
21966
22052
  # })
@@ -23762,7 +23848,7 @@ module Aws::SageMaker
23762
23848
  params: params,
23763
23849
  config: config)
23764
23850
  context[:gem_name] = 'aws-sdk-sagemaker'
23765
- context[:gem_version] = '1.191.0'
23851
+ context[:gem_version] = '1.193.0'
23766
23852
  Seahorse::Client::Request.new(handlers, context)
23767
23853
  end
23768
23854
 
@@ -29,6 +29,8 @@ module Aws::SageMaker
29
29
  AdditionalInferenceSpecifications = Shapes::ListShape.new(name: 'AdditionalInferenceSpecifications')
30
30
  AgentVersion = Shapes::StructureShape.new(name: 'AgentVersion')
31
31
  AgentVersions = Shapes::ListShape.new(name: 'AgentVersions')
32
+ AggregationTransformationValue = Shapes::StringShape.new(name: 'AggregationTransformationValue')
33
+ AggregationTransformations = Shapes::MapShape.new(name: 'AggregationTransformations')
32
34
  Alarm = Shapes::StructureShape.new(name: 'Alarm')
33
35
  AlarmList = Shapes::ListShape.new(name: 'AlarmList')
34
36
  AlarmName = Shapes::StringShape.new(name: 'AlarmName')
@@ -152,6 +154,7 @@ module Aws::SageMaker
152
154
  Autotune = Shapes::StructureShape.new(name: 'Autotune')
153
155
  AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
154
156
  AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
157
+ BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
155
158
  BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
156
159
  BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
157
160
  BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
@@ -781,6 +784,10 @@ module Aws::SageMaker
781
784
  FileSystemDataSource = Shapes::StructureShape.new(name: 'FileSystemDataSource')
782
785
  FileSystemId = Shapes::StringShape.new(name: 'FileSystemId')
783
786
  FileSystemType = Shapes::StringShape.new(name: 'FileSystemType')
787
+ FillingTransformationMap = Shapes::MapShape.new(name: 'FillingTransformationMap')
788
+ FillingTransformationValue = Shapes::StringShape.new(name: 'FillingTransformationValue')
789
+ FillingTransformations = Shapes::MapShape.new(name: 'FillingTransformations')
790
+ FillingType = Shapes::StringShape.new(name: 'FillingType')
784
791
  Filter = Shapes::StructureShape.new(name: 'Filter')
785
792
  FilterList = Shapes::ListShape.new(name: 'FilterList')
786
793
  FilterValue = Shapes::StringShape.new(name: 'FilterValue')
@@ -801,6 +808,10 @@ module Aws::SageMaker
801
808
  FlowDefinitionTaskKeywords = Shapes::ListShape.new(name: 'FlowDefinitionTaskKeywords')
802
809
  FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
803
810
  FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
811
+ ForecastFrequency = Shapes::StringShape.new(name: 'ForecastFrequency')
812
+ ForecastHorizon = Shapes::IntegerShape.new(name: 'ForecastHorizon')
813
+ ForecastQuantile = Shapes::StringShape.new(name: 'ForecastQuantile')
814
+ ForecastQuantiles = Shapes::ListShape.new(name: 'ForecastQuantiles')
804
815
  Framework = Shapes::StringShape.new(name: 'Framework')
805
816
  FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
806
817
  GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
@@ -818,6 +829,8 @@ module Aws::SageMaker
818
829
  GitConfigForUpdate = Shapes::StructureShape.new(name: 'GitConfigForUpdate')
819
830
  GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
820
831
  Group = Shapes::StringShape.new(name: 'Group')
832
+ GroupingAttributeName = Shapes::StringShape.new(name: 'GroupingAttributeName')
833
+ GroupingAttributeNames = Shapes::ListShape.new(name: 'GroupingAttributeNames')
821
834
  Groups = Shapes::ListShape.new(name: 'Groups')
822
835
  HookParameters = Shapes::MapShape.new(name: 'HookParameters')
823
836
  Horovod = Shapes::BooleanShape.new(name: 'Horovod')
@@ -972,6 +985,7 @@ module Aws::SageMaker
972
985
  InvocationsMaxRetries = Shapes::IntegerShape.new(name: 'InvocationsMaxRetries')
973
986
  InvocationsTimeoutInSeconds = Shapes::IntegerShape.new(name: 'InvocationsTimeoutInSeconds')
974
987
  IotRoleAlias = Shapes::StringShape.new(name: 'IotRoleAlias')
988
+ ItemIdentifierAttributeName = Shapes::StringShape.new(name: 'ItemIdentifierAttributeName')
975
989
  JobDurationInSeconds = Shapes::IntegerShape.new(name: 'JobDurationInSeconds')
976
990
  JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
977
991
  JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
@@ -1654,6 +1668,7 @@ module Aws::SageMaker
1654
1668
  RetryPipelineExecutionResponse = Shapes::StructureShape.new(name: 'RetryPipelineExecutionResponse')
1655
1669
  RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
1656
1670
  RoleArn = Shapes::StringShape.new(name: 'RoleArn')
1671
+ RollingUpdatePolicy = Shapes::StructureShape.new(name: 'RollingUpdatePolicy')
1657
1672
  RootAccess = Shapes::StringShape.new(name: 'RootAccess')
1658
1673
  RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
1659
1674
  RuleEvaluationStatus = Shapes::StringShape.new(name: 'RuleEvaluationStatus')
@@ -1829,8 +1844,12 @@ module Aws::SageMaker
1829
1844
  TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
1830
1845
  TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
1831
1846
  ThingName = Shapes::StringShape.new(name: 'ThingName')
1847
+ TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
1848
+ TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
1832
1849
  TimeSeriesForecastingSettings = Shapes::StructureShape.new(name: 'TimeSeriesForecastingSettings')
1850
+ TimeSeriesTransformations = Shapes::StructureShape.new(name: 'TimeSeriesTransformations')
1833
1851
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1852
+ TimestampAttributeName = Shapes::StringShape.new(name: 'TimestampAttributeName')
1834
1853
  TrafficDurationInSeconds = Shapes::IntegerShape.new(name: 'TrafficDurationInSeconds')
1835
1854
  TrafficPattern = Shapes::StructureShape.new(name: 'TrafficPattern')
1836
1855
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
@@ -1884,6 +1903,7 @@ module Aws::SageMaker
1884
1903
  TransformOutput = Shapes::StructureShape.new(name: 'TransformOutput')
1885
1904
  TransformResources = Shapes::StructureShape.new(name: 'TransformResources')
1886
1905
  TransformS3DataSource = Shapes::StructureShape.new(name: 'TransformS3DataSource')
1906
+ TransformationAttributeName = Shapes::StringShape.new(name: 'TransformationAttributeName')
1887
1907
  Trial = Shapes::StructureShape.new(name: 'Trial')
1888
1908
  TrialArn = Shapes::StringShape.new(name: 'TrialArn')
1889
1909
  TrialComponent = Shapes::StructureShape.new(name: 'TrialComponent')
@@ -2084,6 +2104,9 @@ module Aws::SageMaker
2084
2104
 
2085
2105
  AgentVersions.member = Shapes::ShapeRef.new(shape: AgentVersion)
2086
2106
 
2107
+ AggregationTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
2108
+ AggregationTransformations.value = Shapes::ShapeRef.new(shape: AggregationTransformationValue)
2109
+
2087
2110
  Alarm.add_member(:alarm_name, Shapes::ShapeRef.new(shape: AlarmName, location_name: "AlarmName"))
2088
2111
  Alarm.struct_class = Types::Alarm
2089
2112
 
@@ -2344,10 +2367,12 @@ module Aws::SageMaker
2344
2367
  AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
2345
2368
  AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
2346
2369
  AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
2370
+ AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
2347
2371
  AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2348
2372
  AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
2349
2373
  AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
2350
2374
  AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
2375
+ AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
2351
2376
  AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
2352
2377
  AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
2353
2378
 
@@ -2448,6 +2473,7 @@ module Aws::SageMaker
2448
2473
 
2449
2474
  CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
2450
2475
  CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
2476
+ CandidateArtifactLocations.add_member(:backtest_results, Shapes::ShapeRef.new(shape: BacktestResultsLocation, location_name: "BacktestResults"))
2451
2477
  CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
2452
2478
 
2453
2479
  CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
@@ -3641,8 +3667,9 @@ module Aws::SageMaker
3641
3667
 
3642
3668
  DeployedImages.member = Shapes::ShapeRef.new(shape: DeployedImage)
3643
3669
 
3644
- DeploymentConfig.add_member(:blue_green_update_policy, Shapes::ShapeRef.new(shape: BlueGreenUpdatePolicy, required: true, location_name: "BlueGreenUpdatePolicy"))
3670
+ DeploymentConfig.add_member(:blue_green_update_policy, Shapes::ShapeRef.new(shape: BlueGreenUpdatePolicy, location_name: "BlueGreenUpdatePolicy"))
3645
3671
  DeploymentConfig.add_member(:auto_rollback_configuration, Shapes::ShapeRef.new(shape: AutoRollbackConfig, location_name: "AutoRollbackConfiguration"))
3672
+ DeploymentConfig.add_member(:rolling_update_policy, Shapes::ShapeRef.new(shape: RollingUpdatePolicy, location_name: "RollingUpdatePolicy"))
3646
3673
  DeploymentConfig.struct_class = Types::DeploymentConfig
3647
3674
 
3648
3675
  DeploymentRecommendation.add_member(:recommendation_status, Shapes::ShapeRef.new(shape: RecommendationStatus, required: true, location_name: "RecommendationStatus"))
@@ -5102,6 +5129,12 @@ module Aws::SageMaker
5102
5129
  FileSystemDataSource.add_member(:directory_path, Shapes::ShapeRef.new(shape: DirectoryPath, required: true, location_name: "DirectoryPath"))
5103
5130
  FileSystemDataSource.struct_class = Types::FileSystemDataSource
5104
5131
 
5132
+ FillingTransformationMap.key = Shapes::ShapeRef.new(shape: FillingType)
5133
+ FillingTransformationMap.value = Shapes::ShapeRef.new(shape: FillingTransformationValue)
5134
+
5135
+ FillingTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
5136
+ FillingTransformations.value = Shapes::ShapeRef.new(shape: FillingTransformationMap)
5137
+
5105
5138
  Filter.add_member(:name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "Name"))
5106
5139
  Filter.add_member(:operator, Shapes::ShapeRef.new(shape: Operator, location_name: "Operator"))
5107
5140
  Filter.add_member(:value, Shapes::ShapeRef.new(shape: FilterValue, location_name: "Value"))
@@ -5137,6 +5170,8 @@ module Aws::SageMaker
5137
5170
 
5138
5171
  FlowDefinitionTaskKeywords.member = Shapes::ShapeRef.new(shape: FlowDefinitionTaskKeyword)
5139
5172
 
5173
+ ForecastQuantiles.member = Shapes::ShapeRef.new(shape: ForecastQuantile)
5174
+
5140
5175
  GetDeviceFleetReportRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
5141
5176
  GetDeviceFleetReportRequest.struct_class = Types::GetDeviceFleetReportRequest
5142
5177
 
@@ -5183,6 +5218,8 @@ module Aws::SageMaker
5183
5218
  GitConfigForUpdate.add_member(:secret_arn, Shapes::ShapeRef.new(shape: SecretArn, location_name: "SecretArn"))
5184
5219
  GitConfigForUpdate.struct_class = Types::GitConfigForUpdate
5185
5220
 
5221
+ GroupingAttributeNames.member = Shapes::ShapeRef.new(shape: GroupingAttributeName)
5222
+
5186
5223
  Groups.member = Shapes::ShapeRef.new(shape: Group)
5187
5224
 
5188
5225
  HookParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
@@ -7982,6 +8019,12 @@ module Aws::SageMaker
7982
8019
  RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
7983
8020
  RetryStrategy.struct_class = Types::RetryStrategy
7984
8021
 
8022
+ RollingUpdatePolicy.add_member(:maximum_batch_size, Shapes::ShapeRef.new(shape: CapacitySize, required: true, location_name: "MaximumBatchSize"))
8023
+ RollingUpdatePolicy.add_member(:wait_interval_in_seconds, Shapes::ShapeRef.new(shape: WaitIntervalInSeconds, required: true, location_name: "WaitIntervalInSeconds"))
8024
+ RollingUpdatePolicy.add_member(:maximum_execution_timeout_in_seconds, Shapes::ShapeRef.new(shape: MaximumExecutionTimeoutInSeconds, location_name: "MaximumExecutionTimeoutInSeconds"))
8025
+ RollingUpdatePolicy.add_member(:rollback_maximum_batch_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "RollbackMaximumBatchSize"))
8026
+ RollingUpdatePolicy.struct_class = Types::RollingUpdatePolicy
8027
+
7985
8028
  RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
7986
8029
  RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
7987
8030
 
@@ -8290,10 +8333,29 @@ module Aws::SageMaker
8290
8333
  TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, location_name: "TargetLabelColumn"))
8291
8334
  TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
8292
8335
 
8336
+ TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
8337
+ TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
8338
+ TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
8339
+ TimeSeriesConfig.add_member(:grouping_attribute_names, Shapes::ShapeRef.new(shape: GroupingAttributeNames, location_name: "GroupingAttributeNames"))
8340
+ TimeSeriesConfig.struct_class = Types::TimeSeriesConfig
8341
+
8342
+ TimeSeriesForecastingJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
8343
+ TimeSeriesForecastingJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
8344
+ TimeSeriesForecastingJobConfig.add_member(:forecast_frequency, Shapes::ShapeRef.new(shape: ForecastFrequency, required: true, location_name: "ForecastFrequency"))
8345
+ TimeSeriesForecastingJobConfig.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: ForecastHorizon, required: true, location_name: "ForecastHorizon"))
8346
+ TimeSeriesForecastingJobConfig.add_member(:forecast_quantiles, Shapes::ShapeRef.new(shape: ForecastQuantiles, location_name: "ForecastQuantiles"))
8347
+ TimeSeriesForecastingJobConfig.add_member(:transformations, Shapes::ShapeRef.new(shape: TimeSeriesTransformations, location_name: "Transformations"))
8348
+ TimeSeriesForecastingJobConfig.add_member(:time_series_config, Shapes::ShapeRef.new(shape: TimeSeriesConfig, required: true, location_name: "TimeSeriesConfig"))
8349
+ TimeSeriesForecastingJobConfig.struct_class = Types::TimeSeriesForecastingJobConfig
8350
+
8293
8351
  TimeSeriesForecastingSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
8294
8352
  TimeSeriesForecastingSettings.add_member(:amazon_forecast_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "AmazonForecastRoleArn"))
8295
8353
  TimeSeriesForecastingSettings.struct_class = Types::TimeSeriesForecastingSettings
8296
8354
 
8355
+ TimeSeriesTransformations.add_member(:filling, Shapes::ShapeRef.new(shape: FillingTransformations, location_name: "Filling"))
8356
+ TimeSeriesTransformations.add_member(:aggregation, Shapes::ShapeRef.new(shape: AggregationTransformations, location_name: "Aggregation"))
8357
+ TimeSeriesTransformations.struct_class = Types::TimeSeriesTransformations
8358
+
8297
8359
  TrafficPattern.add_member(:traffic_type, Shapes::ShapeRef.new(shape: TrafficType, location_name: "TrafficType"))
8298
8360
  TrafficPattern.add_member(:phases, Shapes::ShapeRef.new(shape: Phases, location_name: "Phases"))
8299
8361
  TrafficPattern.struct_class = Types::TrafficPattern
@@ -2086,20 +2086,29 @@ module Aws::SageMaker
2086
2086
  # The type of channel. Defines whether the data are used for training
2087
2087
  # or validation. The default value is `training`. Channels for
2088
2088
  # `training` and `validation` must share the same `ContentType`
2089
+ #
2090
+ # <note markdown="1"> The type of channel defaults to `training` for the time-series
2091
+ # forecasting problem type.
2092
+ #
2093
+ # </note>
2089
2094
  # @return [String]
2090
2095
  #
2091
2096
  # @!attribute [rw] content_type
2092
2097
  # The content type of the data from the input source. The following
2093
2098
  # are the allowed content types for different problems:
2094
2099
  #
2095
- # * For Tabular problem types: `text/csv;header=present` or
2100
+ # * For tabular problem types: `text/csv;header=present` or
2096
2101
  # `x-application/vnd.amazon+parquet`. The default value is
2097
2102
  # `text/csv;header=present`.
2098
2103
  #
2099
- # * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
2104
+ # * For image classification: `image/png`, `image/jpeg`, or `image/*`.
2100
2105
  # The default value is `image/*`.
2101
2106
  #
2102
- # * For TextClassification: `text/csv;header=present` or
2107
+ # * For text classification: `text/csv;header=present` or
2108
+ # `x-application/vnd.amazon+parquet`. The default value is
2109
+ # `text/csv;header=present`.
2110
+ #
2111
+ # * For time-series forecasting: `text/csv;header=present` or
2103
2112
  # `x-application/vnd.amazon+parquet`. The default value is
2104
2113
  # `text/csv;header=present`.
2105
2114
  # @return [String]
@@ -2132,8 +2141,9 @@ module Aws::SageMaker
2132
2141
  # @!attribute [rw] max_candidates
2133
2142
  # The maximum number of times a training job is allowed to run.
2134
2143
  #
2135
- # For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
2136
- # supported value is 1.
2144
+ # For text and image classification, as well as time-series
2145
+ # forecasting problem types, the supported value is 1. For tabular
2146
+ # problem types, the maximum value is 750.
2137
2147
  # @return [Integer]
2138
2148
  #
2139
2149
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
@@ -2261,6 +2271,9 @@ module Aws::SageMaker
2261
2271
  #
2262
2272
  # * For image or text classification problem types: `Accuracy`
2263
2273
  #
2274
+ # * For time-series forecasting problem types:
2275
+ # `AverageWeightedQuantileLoss`
2276
+ #
2264
2277
  #
2265
2278
  #
2266
2279
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
@@ -2399,12 +2412,18 @@ module Aws::SageMaker
2399
2412
  # type (regression, classification).
2400
2413
  # @return [Types::TabularJobConfig]
2401
2414
  #
2415
+ # @!attribute [rw] time_series_forecasting_job_config
2416
+ # Settings used to configure an AutoML job V2 for a time-series
2417
+ # forecasting problem type.
2418
+ # @return [Types::TimeSeriesForecastingJobConfig]
2419
+ #
2402
2420
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2403
2421
  #
2404
2422
  class AutoMLProblemTypeConfig < Struct.new(
2405
2423
  :image_classification_job_config,
2406
2424
  :text_classification_job_config,
2407
2425
  :tabular_job_config,
2426
+ :time_series_forecasting_job_config,
2408
2427
  :unknown)
2409
2428
  SENSITIVE = []
2410
2429
  include Aws::Structure
@@ -2413,6 +2432,7 @@ module Aws::SageMaker
2413
2432
  class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2414
2433
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2415
2434
  class TabularJobConfig < AutoMLProblemTypeConfig; end
2435
+ class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
2416
2436
  class Unknown < AutoMLProblemTypeConfig; end
2417
2437
  end
2418
2438
 
@@ -2987,11 +3007,18 @@ module Aws::SageMaker
2987
3007
  # the AutoML candidate.
2988
3008
  # @return [String]
2989
3009
  #
3010
+ # @!attribute [rw] backtest_results
3011
+ # The Amazon S3 prefix to the accuracy metrics and the inference
3012
+ # results observed over the testing window. Available only for the
3013
+ # time-series forecasting problem type.
3014
+ # @return [String]
3015
+ #
2990
3016
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2991
3017
  #
2992
3018
  class CandidateArtifactLocations < Struct.new(
2993
3019
  :explainability,
2994
- :model_insights)
3020
+ :model_insights,
3021
+ :backtest_results)
2995
3022
  SENSITIVE = []
2996
3023
  include Aws::Structure
2997
3024
  end
@@ -3079,7 +3106,15 @@ module Aws::SageMaker
3079
3106
  include Aws::Structure
3080
3107
  end
3081
3108
 
3082
- # Specifies the endpoint capacity to activate for production.
3109
+ # Specifies the type and size of the endpoint capacity to activate for a
3110
+ # blue/green deployment, a rolling deployment, or a rollback strategy.
3111
+ # You can specify your batches as either instance count or the overall
3112
+ # percentage or your fleet.
3113
+ #
3114
+ # For a rollback strategy, if you don't specify the fields in this
3115
+ # object, or if you set the `Value` to 100%, then SageMaker uses a
3116
+ # blue/green rollback strategy and rolls all traffic back to the blue
3117
+ # fleet.
3083
3118
  #
3084
3119
  # @!attribute [rw] type
3085
3120
  # Specifies the endpoint capacity type.
@@ -4717,12 +4752,14 @@ module Aws::SageMaker
4717
4752
  # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
4718
4753
  # parameters. The supported formats depend on the problem type:
4719
4754
  #
4720
- # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
4755
+ # * For tabular problem types: `S3Prefix`, `ManifestFile`.
4721
4756
  #
4722
- # * For ImageClassification: `S3Prefix`, `ManifestFile`,
4757
+ # * For image classification: `S3Prefix`, `ManifestFile`,
4723
4758
  # `AugmentedManifestFile`.
4724
4759
  #
4725
- # * For TextClassification: `S3Prefix`.
4760
+ # * For text classification: `S3Prefix`.
4761
+ #
4762
+ # * For time-series forecasting: `S3Prefix`.
4726
4763
  #
4727
4764
  #
4728
4765
  #
@@ -4789,6 +4826,12 @@ module Aws::SageMaker
4789
4826
  # The validation and training datasets must contain the same headers.
4790
4827
  # For jobs created by calling `CreateAutoMLJob`, the validation
4791
4828
  # dataset must be less than 2 GB in size.
4829
+ #
4830
+ # <note markdown="1"> This attribute must not be set for the time-series forecasting
4831
+ # problem type, as Autopilot automatically splits the input dataset
4832
+ # into training and validation sets.
4833
+ #
4834
+ # </note>
4792
4835
  # @return [Types::AutoMLDataSplitConfig]
4793
4836
  #
4794
4837
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
@@ -10159,11 +10202,17 @@ module Aws::SageMaker
10159
10202
  # failures and recovery.
10160
10203
  # @return [Types::AutoRollbackConfig]
10161
10204
  #
10205
+ # @!attribute [rw] rolling_update_policy
10206
+ # Specifies a rolling deployment strategy for updating a SageMaker
10207
+ # endpoint.
10208
+ # @return [Types::RollingUpdatePolicy]
10209
+ #
10162
10210
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeploymentConfig AWS API Documentation
10163
10211
  #
10164
10212
  class DeploymentConfig < Struct.new(
10165
10213
  :blue_green_update_policy,
10166
- :auto_rollback_configuration)
10214
+ :auto_rollback_configuration,
10215
+ :rolling_update_policy)
10167
10216
  SENSITIVE = []
10168
10217
  include Aws::Structure
10169
10218
  end
@@ -34959,6 +35008,46 @@ module Aws::SageMaker
34959
35008
  include Aws::Structure
34960
35009
  end
34961
35010
 
35011
+ # Specifies a rolling deployment strategy for updating a SageMaker
35012
+ # endpoint.
35013
+ #
35014
+ # @!attribute [rw] maximum_batch_size
35015
+ # Batch size for each rolling step to provision capacity and turn on
35016
+ # traffic on the new endpoint fleet, and terminate capacity on the old
35017
+ # endpoint fleet. Value must be between 5% to 50% of the variant's
35018
+ # total instance count.
35019
+ # @return [Types::CapacitySize]
35020
+ #
35021
+ # @!attribute [rw] wait_interval_in_seconds
35022
+ # The length of the baking period, during which SageMaker monitors
35023
+ # alarms for each batch on the new fleet.
35024
+ # @return [Integer]
35025
+ #
35026
+ # @!attribute [rw] maximum_execution_timeout_in_seconds
35027
+ # The time limit for the total deployment. Exceeding this limit causes
35028
+ # a timeout.
35029
+ # @return [Integer]
35030
+ #
35031
+ # @!attribute [rw] rollback_maximum_batch_size
35032
+ # Batch size for rollback to the old endpoint fleet. Each rolling step
35033
+ # to provision capacity and turn on traffic on the old endpoint fleet,
35034
+ # and terminate capacity on the new endpoint fleet. If this field is
35035
+ # absent, the default value will be set to 100% of total capacity
35036
+ # which means to bring up the whole capacity of the old fleet at once
35037
+ # during rollback.
35038
+ # @return [Types::CapacitySize]
35039
+ #
35040
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RollingUpdatePolicy AWS API Documentation
35041
+ #
35042
+ class RollingUpdatePolicy < Struct.new(
35043
+ :maximum_batch_size,
35044
+ :wait_interval_in_seconds,
35045
+ :maximum_execution_timeout_in_seconds,
35046
+ :rollback_maximum_batch_size)
35047
+ SENSITIVE = []
35048
+ include Aws::Structure
35049
+ end
35050
+
34962
35051
  # Describes the S3 data source.
34963
35052
  #
34964
35053
  # Your input bucket must be in the same Amazon Web Services region as
@@ -36920,6 +37009,157 @@ module Aws::SageMaker
36920
37009
  include Aws::Structure
36921
37010
  end
36922
37011
 
37012
+ # The collection of components that defines the time-series.
37013
+ #
37014
+ # @!attribute [rw] target_attribute_name
37015
+ # The name of the column representing the target variable that you
37016
+ # want to predict for each item in your dataset. The data type of the
37017
+ # target variable must be numerical.
37018
+ # @return [String]
37019
+ #
37020
+ # @!attribute [rw] timestamp_attribute_name
37021
+ # The name of the column indicating a point in time at which the
37022
+ # target value of a given item is recorded.
37023
+ # @return [String]
37024
+ #
37025
+ # @!attribute [rw] item_identifier_attribute_name
37026
+ # The name of the column that represents the set of item identifiers
37027
+ # for which you want to predict the target value.
37028
+ # @return [String]
37029
+ #
37030
+ # @!attribute [rw] grouping_attribute_names
37031
+ # A set of columns names that can be grouped with the item identifier
37032
+ # column to create a composite key for which a target value is
37033
+ # predicted.
37034
+ # @return [Array<String>]
37035
+ #
37036
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesConfig AWS API Documentation
37037
+ #
37038
+ class TimeSeriesConfig < Struct.new(
37039
+ :target_attribute_name,
37040
+ :timestamp_attribute_name,
37041
+ :item_identifier_attribute_name,
37042
+ :grouping_attribute_names)
37043
+ SENSITIVE = []
37044
+ include Aws::Structure
37045
+ end
37046
+
37047
+ # The collection of settings used by an AutoML job V2 for the
37048
+ # time-series forecasting problem type.
37049
+ #
37050
+ # <note markdown="1"> The `TimeSeriesForecastingJobConfig` problem type is only available in
37051
+ # private beta. Contact Amazon Web Services Support or your account
37052
+ # manager to learn more about access privileges.
37053
+ #
37054
+ # </note>
37055
+ #
37056
+ # @!attribute [rw] feature_specification_s3_uri
37057
+ # A URL to the Amazon S3 data source containing additional selected
37058
+ # features that complement the target, itemID, timestamp, and grouped
37059
+ # columns set in `TimeSeriesConfig`. When not provided, the AutoML job
37060
+ # V2 includes all the columns from the original dataset that are not
37061
+ # already declared in `TimeSeriesConfig`. If provided, the AutoML job
37062
+ # V2 only considers these additional columns as a complement to the
37063
+ # ones declared in `TimeSeriesConfig`.
37064
+ #
37065
+ # You can input `FeatureAttributeNames` (optional) in JSON format as
37066
+ # shown below:
37067
+ #
37068
+ # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
37069
+ #
37070
+ # You can also specify the data type of the feature (optional) in the
37071
+ # format shown below:
37072
+ #
37073
+ # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
37074
+ # \} \}`
37075
+ #
37076
+ # Autopilot supports the following data types: `numeric`,
37077
+ # `categorical`, `text`, and `datetime`.
37078
+ #
37079
+ # <note markdown="1"> These column keys must not include any column set in
37080
+ # `TimeSeriesConfig`.
37081
+ #
37082
+ # </note>
37083
+ #
37084
+ # When not provided, the AutoML job V2 includes all the columns from
37085
+ # the original dataset that are not already declared in
37086
+ # `TimeSeriesConfig`. If provided, the AutoML job V2 only considers
37087
+ # these additional columns as a complement to the ones declared in
37088
+ # `TimeSeriesConfig`.
37089
+ #
37090
+ # Autopilot supports the following data types: `numeric`,
37091
+ # `categorical`, `text`, and `datetime`.
37092
+ # @return [String]
37093
+ #
37094
+ # @!attribute [rw] completion_criteria
37095
+ # How long a job is allowed to run, or how many candidates a job is
37096
+ # allowed to generate.
37097
+ # @return [Types::AutoMLJobCompletionCriteria]
37098
+ #
37099
+ # @!attribute [rw] forecast_frequency
37100
+ # The frequency of predictions in a forecast.
37101
+ #
37102
+ # Valid intervals are an integer followed by Y (Year), M (Month), W
37103
+ # (Week), D (Day), H (Hour), and min (Minute). For example, `1D`
37104
+ # indicates every day and `15min` indicates every 15 minutes. The
37105
+ # value of a frequency must not overlap with the next larger
37106
+ # frequency. For example, you must use a frequency of `1H` instead of
37107
+ # `60min`.
37108
+ #
37109
+ # The valid values for each frequency are the following:
37110
+ #
37111
+ # * Minute - 1-59
37112
+ #
37113
+ # * Hour - 1-23
37114
+ #
37115
+ # * Day - 1-6
37116
+ #
37117
+ # * Week - 1-4
37118
+ #
37119
+ # * Month - 1-11
37120
+ #
37121
+ # * Year - 1
37122
+ # @return [String]
37123
+ #
37124
+ # @!attribute [rw] forecast_horizon
37125
+ # The number of time-steps that the model predicts. The forecast
37126
+ # horizon is also called the prediction length. The maximum forecast
37127
+ # horizon is the lesser of 500 time-steps or 1/4 of the time-steps in
37128
+ # the dataset.
37129
+ # @return [Integer]
37130
+ #
37131
+ # @!attribute [rw] forecast_quantiles
37132
+ # The quantiles used to train the model for forecasts at a specified
37133
+ # quantile. You can specify quantiles from `0.01` (p1) to `0.99`
37134
+ # (p99), by increments of 0.01 or higher. Up to five forecast
37135
+ # quantiles can be specified. When `ForecastQuantiles` is not
37136
+ # provided, the AutoML job uses the quantiles p10, p50, and p90 as
37137
+ # default.
37138
+ # @return [Array<String>]
37139
+ #
37140
+ # @!attribute [rw] transformations
37141
+ # The transformations modifying specific attributes of the
37142
+ # time-series, such as filling strategies for missing values.
37143
+ # @return [Types::TimeSeriesTransformations]
37144
+ #
37145
+ # @!attribute [rw] time_series_config
37146
+ # The collection of components that defines the time-series.
37147
+ # @return [Types::TimeSeriesConfig]
37148
+ #
37149
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesForecastingJobConfig AWS API Documentation
37150
+ #
37151
+ class TimeSeriesForecastingJobConfig < Struct.new(
37152
+ :feature_specification_s3_uri,
37153
+ :completion_criteria,
37154
+ :forecast_frequency,
37155
+ :forecast_horizon,
37156
+ :forecast_quantiles,
37157
+ :transformations,
37158
+ :time_series_config)
37159
+ SENSITIVE = []
37160
+ include Aws::Structure
37161
+ end
37162
+
36923
37163
  # Time series forecast settings for the SageMaker Canvas application.
36924
37164
  #
36925
37165
  # @!attribute [rw] status
@@ -36952,6 +37192,56 @@ module Aws::SageMaker
36952
37192
  include Aws::Structure
36953
37193
  end
36954
37194
 
37195
+ # Transformations allowed on the dataset. Supported transformations are
37196
+ # `Filling` and `Aggregation`. `Filling` specifies how to add values to
37197
+ # missing values in the dataset. `Aggregation` defines how to aggregate
37198
+ # data that does not align with forecast frequency.
37199
+ #
37200
+ # @!attribute [rw] filling
37201
+ # A key value pair defining the filling method for a column, where the
37202
+ # key is the column name and the value is an object which defines the
37203
+ # filling logic. You can specify multiple filling methods for a single
37204
+ # column.
37205
+ #
37206
+ # The supported filling methods and their corresponding options are:
37207
+ #
37208
+ # * `frontfill`: `none` (Supported only for target column)
37209
+ #
37210
+ # * `middlefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37211
+ #
37212
+ # * `backfill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37213
+ #
37214
+ # * `futurefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37215
+ #
37216
+ # To set a filling method to a specific value, set the fill parameter
37217
+ # to the chosen filling method value (for example `"backfill" :
37218
+ # "value"`), and define the filling value in an additional parameter
37219
+ # prefixed with "\_value". For example, to set `backfill` to a value
37220
+ # of `2`, you must include two parameters: `"backfill": "value"` and
37221
+ # `"backfill_value":"2"`.
37222
+ # @return [Hash<String,Hash<String,String>>]
37223
+ #
37224
+ # @!attribute [rw] aggregation
37225
+ # A key value pair defining the aggregation method for a column, where
37226
+ # the key is the column name and the value is the aggregation method.
37227
+ #
37228
+ # The supported aggregation methods are `sum` (default), `avg`,
37229
+ # `first`, `min`, `max`.
37230
+ #
37231
+ # <note markdown="1"> Aggregation is only supported for the target column.
37232
+ #
37233
+ # </note>
37234
+ # @return [Hash<String,String>]
37235
+ #
37236
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesTransformations AWS API Documentation
37237
+ #
37238
+ class TimeSeriesTransformations < Struct.new(
37239
+ :filling,
37240
+ :aggregation)
37241
+ SENSITIVE = []
37242
+ include Aws::Structure
37243
+ end
37244
+
36955
37245
  # Defines the traffic pattern of the load test.
36956
37246
  #
36957
37247
  # @!attribute [rw] traffic_type
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.191.0'
56
+ GEM_VERSION = '1.193.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.191.0
4
+ version: 1.193.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-06-28 00:00:00.000000000 Z
11
+ date: 2023-06-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core