aws-sdk-sagemaker 1.191.0 → 1.193.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +118 -32
- data/lib/aws-sdk-sagemaker/client_api.rb +63 -1
- data/lib/aws-sdk-sagemaker/types.rb +301 -11
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e8563212194efe3f885db18ded340750c68719059405c10110a98fe0a254de83
|
4
|
+
data.tar.gz: 8c32b946394f67fac58c560a9a048ec39d56ab2ea1f1416484de48dbeb99947c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 1632e061172d86fd8998029d2b91c397c527dc6329297cacff63dd191a7b81e349ad4ba938c85a178d7056a47b4bbe084f7adc327087dc8c652d87effcc75be5
|
7
|
+
data.tar.gz: 6e7c6e026568146cea2404421c7ce6028e509a6d042af8c25ede1c4e5b141f0b89303e1c4d801d7405338204ea4f27d75c1f7670de963cb6593951988c110559
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.193.0 (2023-06-30)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - This release adds support for rolling deployment in SageMaker Inference.
|
8
|
+
|
9
|
+
1.192.0 (2023-06-29)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
|
13
|
+
|
4
14
|
1.191.0 (2023-06-28)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.193.0
|
@@ -1307,7 +1307,7 @@ module Aws::SageMaker
|
|
1307
1307
|
# },
|
1308
1308
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
1309
1309
|
# auto_ml_job_objective: {
|
1310
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1310
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
|
1311
1311
|
# },
|
1312
1312
|
# auto_ml_job_config: {
|
1313
1313
|
# completion_criteria: {
|
@@ -1405,12 +1405,14 @@ module Aws::SageMaker
|
|
1405
1405
|
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
1406
1406
|
# parameters. The supported formats depend on the problem type:
|
1407
1407
|
#
|
1408
|
-
# * For
|
1408
|
+
# * For tabular problem types: `S3Prefix`, `ManifestFile`.
|
1409
1409
|
#
|
1410
|
-
# * For
|
1410
|
+
# * For image classification: `S3Prefix`, `ManifestFile`,
|
1411
1411
|
# `AugmentedManifestFile`.
|
1412
1412
|
#
|
1413
|
-
# * For
|
1413
|
+
# * For text classification: `S3Prefix`.
|
1414
|
+
#
|
1415
|
+
# * For time-series forecasting: `S3Prefix`.
|
1414
1416
|
#
|
1415
1417
|
#
|
1416
1418
|
#
|
@@ -1470,6 +1472,12 @@ module Aws::SageMaker
|
|
1470
1472
|
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
1471
1473
|
# must be less than 2 GB in size.
|
1472
1474
|
#
|
1475
|
+
# <note markdown="1"> This attribute must not be set for the time-series forecasting problem
|
1476
|
+
# type, as Autopilot automatically splits the input dataset into
|
1477
|
+
# training and validation sets.
|
1478
|
+
#
|
1479
|
+
# </note>
|
1480
|
+
#
|
1473
1481
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1474
1482
|
#
|
1475
1483
|
# * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1532,6 +1540,33 @@ module Aws::SageMaker
|
|
1532
1540
|
# target_attribute_name: "TargetAttributeName", # required
|
1533
1541
|
# sample_weight_attribute_name: "SampleWeightAttributeName",
|
1534
1542
|
# },
|
1543
|
+
# time_series_forecasting_job_config: {
|
1544
|
+
# feature_specification_s3_uri: "S3Uri",
|
1545
|
+
# completion_criteria: {
|
1546
|
+
# max_candidates: 1,
|
1547
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1548
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1549
|
+
# },
|
1550
|
+
# forecast_frequency: "ForecastFrequency", # required
|
1551
|
+
# forecast_horizon: 1, # required
|
1552
|
+
# forecast_quantiles: ["ForecastQuantile"],
|
1553
|
+
# transformations: {
|
1554
|
+
# filling: {
|
1555
|
+
# "TransformationAttributeName" => {
|
1556
|
+
# "frontfill" => "FillingTransformationValue",
|
1557
|
+
# },
|
1558
|
+
# },
|
1559
|
+
# aggregation: {
|
1560
|
+
# "TransformationAttributeName" => "sum", # accepts sum, avg, first, min, max
|
1561
|
+
# },
|
1562
|
+
# },
|
1563
|
+
# time_series_config: { # required
|
1564
|
+
# target_attribute_name: "TargetAttributeName", # required
|
1565
|
+
# timestamp_attribute_name: "TimestampAttributeName", # required
|
1566
|
+
# item_identifier_attribute_name: "ItemIdentifierAttributeName", # required
|
1567
|
+
# grouping_attribute_names: ["GroupingAttributeName"],
|
1568
|
+
# },
|
1569
|
+
# },
|
1535
1570
|
# },
|
1536
1571
|
# role_arn: "RoleArn", # required
|
1537
1572
|
# tags: [
|
@@ -1549,7 +1584,7 @@ module Aws::SageMaker
|
|
1549
1584
|
# },
|
1550
1585
|
# },
|
1551
1586
|
# auto_ml_job_objective: {
|
1552
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1587
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
|
1553
1588
|
# },
|
1554
1589
|
# model_deploy_config: {
|
1555
1590
|
# auto_generate_endpoint_name: false,
|
@@ -2684,7 +2719,7 @@ module Aws::SageMaker
|
|
2684
2719
|
# endpoint_name: "EndpointName", # required
|
2685
2720
|
# endpoint_config_name: "EndpointConfigName", # required
|
2686
2721
|
# deployment_config: {
|
2687
|
-
# blue_green_update_policy: {
|
2722
|
+
# blue_green_update_policy: {
|
2688
2723
|
# traffic_routing_configuration: { # required
|
2689
2724
|
# type: "ALL_AT_ONCE", # required, accepts ALL_AT_ONCE, CANARY, LINEAR
|
2690
2725
|
# wait_interval_in_seconds: 1, # required
|
@@ -2707,6 +2742,18 @@ module Aws::SageMaker
|
|
2707
2742
|
# },
|
2708
2743
|
# ],
|
2709
2744
|
# },
|
2745
|
+
# rolling_update_policy: {
|
2746
|
+
# maximum_batch_size: { # required
|
2747
|
+
# type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
|
2748
|
+
# value: 1, # required
|
2749
|
+
# },
|
2750
|
+
# wait_interval_in_seconds: 1, # required
|
2751
|
+
# maximum_execution_timeout_in_seconds: 1,
|
2752
|
+
# rollback_maximum_batch_size: {
|
2753
|
+
# type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
|
2754
|
+
# value: 1, # required
|
2755
|
+
# },
|
2756
|
+
# },
|
2710
2757
|
# },
|
2711
2758
|
# tags: [
|
2712
2759
|
# {
|
@@ -10091,7 +10138,7 @@ module Aws::SageMaker
|
|
10091
10138
|
# resp.output_data_config.kms_key_id #=> String
|
10092
10139
|
# resp.output_data_config.s3_output_path #=> String
|
10093
10140
|
# resp.role_arn #=> String
|
10094
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10141
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10095
10142
|
# resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10096
10143
|
# resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
|
10097
10144
|
# resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -10116,9 +10163,9 @@ module Aws::SageMaker
|
|
10116
10163
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
10117
10164
|
# resp.best_candidate.candidate_name #=> String
|
10118
10165
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
10119
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10166
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10120
10167
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
10121
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10168
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10122
10169
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
10123
10170
|
# resp.best_candidate.candidate_steps #=> Array
|
10124
10171
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10136,11 +10183,12 @@ module Aws::SageMaker
|
|
10136
10183
|
# resp.best_candidate.failure_reason #=> String
|
10137
10184
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
10138
10185
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
10186
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
10139
10187
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
10140
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10188
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10141
10189
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10142
10190
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10143
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
10191
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10144
10192
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10145
10193
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10146
10194
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10148,11 +10196,11 @@ module Aws::SageMaker
|
|
10148
10196
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
|
10149
10197
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
|
10150
10198
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
10151
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
10199
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
10152
10200
|
# resp.generate_candidate_definitions_only #=> Boolean
|
10153
10201
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10154
10202
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10155
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10203
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10156
10204
|
# resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10157
10205
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10158
10206
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -10225,7 +10273,7 @@ module Aws::SageMaker
|
|
10225
10273
|
# resp.output_data_config.kms_key_id #=> String
|
10226
10274
|
# resp.output_data_config.s3_output_path #=> String
|
10227
10275
|
# resp.role_arn #=> String
|
10228
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10276
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10229
10277
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_candidates #=> Integer
|
10230
10278
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10231
10279
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
@@ -10246,6 +10294,24 @@ module Aws::SageMaker
|
|
10246
10294
|
# resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10247
10295
|
# resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
|
10248
10296
|
# resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
|
10297
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.feature_specification_s3_uri #=> String
|
10298
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_candidates #=> Integer
|
10299
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10300
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10301
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_frequency #=> String
|
10302
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_horizon #=> Integer
|
10303
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles #=> Array
|
10304
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles[0] #=> String
|
10305
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling #=> Hash
|
10306
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"] #=> Hash
|
10307
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"]["FillingType"] #=> String
|
10308
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation #=> Hash
|
10309
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation["TransformationAttributeName"] #=> String, one of "sum", "avg", "first", "min", "max"
|
10310
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.target_attribute_name #=> String
|
10311
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.timestamp_attribute_name #=> String
|
10312
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.item_identifier_attribute_name #=> String
|
10313
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names #=> Array
|
10314
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
|
10249
10315
|
# resp.creation_time #=> Time
|
10250
10316
|
# resp.end_time #=> Time
|
10251
10317
|
# resp.last_modified_time #=> Time
|
@@ -10254,9 +10320,9 @@ module Aws::SageMaker
|
|
10254
10320
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
10255
10321
|
# resp.best_candidate.candidate_name #=> String
|
10256
10322
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
10257
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10323
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10258
10324
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
10259
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10325
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10260
10326
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
10261
10327
|
# resp.best_candidate.candidate_steps #=> Array
|
10262
10328
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10274,11 +10340,12 @@ module Aws::SageMaker
|
|
10274
10340
|
# resp.best_candidate.failure_reason #=> String
|
10275
10341
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
10276
10342
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
10343
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
10277
10344
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
10278
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10345
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10279
10346
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10280
10347
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10281
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
10348
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10282
10349
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10283
10350
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10284
10351
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10286,7 +10353,7 @@ module Aws::SageMaker
|
|
10286
10353
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
|
10287
10354
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
|
10288
10355
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
10289
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
10356
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
10290
10357
|
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
10291
10358
|
# resp.model_deploy_config.endpoint_name #=> String
|
10292
10359
|
# resp.model_deploy_result.endpoint_name #=> String
|
@@ -10299,12 +10366,12 @@ module Aws::SageMaker
|
|
10299
10366
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
10300
10367
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10301
10368
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10302
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10369
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10303
10370
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10304
10371
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10305
10372
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10306
10373
|
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10307
|
-
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
|
10374
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
|
10308
10375
|
#
|
10309
10376
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10310
10377
|
#
|
@@ -11023,7 +11090,7 @@ module Aws::SageMaker
|
|
11023
11090
|
# resp.data_capture_config.current_sampling_percentage #=> Integer
|
11024
11091
|
# resp.data_capture_config.destination_s3_uri #=> String
|
11025
11092
|
# resp.data_capture_config.kms_key_id #=> String
|
11026
|
-
# resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
|
11093
|
+
# resp.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
|
11027
11094
|
# resp.failure_reason #=> String
|
11028
11095
|
# resp.creation_time #=> Time
|
11029
11096
|
# resp.last_modified_time #=> Time
|
@@ -11037,6 +11104,12 @@ module Aws::SageMaker
|
|
11037
11104
|
# resp.last_deployment_config.blue_green_update_policy.maximum_execution_timeout_in_seconds #=> Integer
|
11038
11105
|
# resp.last_deployment_config.auto_rollback_configuration.alarms #=> Array
|
11039
11106
|
# resp.last_deployment_config.auto_rollback_configuration.alarms[0].alarm_name #=> String
|
11107
|
+
# resp.last_deployment_config.rolling_update_policy.maximum_batch_size.type #=> String, one of "INSTANCE_COUNT", "CAPACITY_PERCENT"
|
11108
|
+
# resp.last_deployment_config.rolling_update_policy.maximum_batch_size.value #=> Integer
|
11109
|
+
# resp.last_deployment_config.rolling_update_policy.wait_interval_in_seconds #=> Integer
|
11110
|
+
# resp.last_deployment_config.rolling_update_policy.maximum_execution_timeout_in_seconds #=> Integer
|
11111
|
+
# resp.last_deployment_config.rolling_update_policy.rollback_maximum_batch_size.type #=> String, one of "INSTANCE_COUNT", "CAPACITY_PERCENT"
|
11112
|
+
# resp.last_deployment_config.rolling_update_policy.rollback_maximum_batch_size.value #=> Integer
|
11040
11113
|
# resp.async_inference_config.client_config.max_concurrent_invocations_per_instance #=> Integer
|
11041
11114
|
# resp.async_inference_config.output_config.kms_key_id #=> String
|
11042
11115
|
# resp.async_inference_config.output_config.s3_output_path #=> String
|
@@ -12135,7 +12208,7 @@ module Aws::SageMaker
|
|
12135
12208
|
# resp.role_arn #=> String
|
12136
12209
|
# resp.endpoint_metadata.endpoint_name #=> String
|
12137
12210
|
# resp.endpoint_metadata.endpoint_config_name #=> String
|
12138
|
-
# resp.endpoint_metadata.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
|
12211
|
+
# resp.endpoint_metadata.endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
|
12139
12212
|
# resp.endpoint_metadata.failure_reason #=> String
|
12140
12213
|
# resp.model_variants #=> Array
|
12141
12214
|
# resp.model_variants[0].model_name #=> String
|
@@ -15454,7 +15527,7 @@ module Aws::SageMaker
|
|
15454
15527
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
15455
15528
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
15456
15529
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
15457
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
15530
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
15458
15531
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
15459
15532
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
15460
15533
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
@@ -15521,9 +15594,9 @@ module Aws::SageMaker
|
|
15521
15594
|
# resp.candidates #=> Array
|
15522
15595
|
# resp.candidates[0].candidate_name #=> String
|
15523
15596
|
# resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
15524
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15597
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15525
15598
|
# resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
|
15526
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15599
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15527
15600
|
# resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
15528
15601
|
# resp.candidates[0].candidate_steps #=> Array
|
15529
15602
|
# resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -15541,11 +15614,12 @@ module Aws::SageMaker
|
|
15541
15614
|
# resp.candidates[0].failure_reason #=> String
|
15542
15615
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
15543
15616
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
|
15617
|
+
# resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
15544
15618
|
# resp.candidates[0].candidate_properties.candidate_metrics #=> Array
|
15545
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15619
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15546
15620
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
15547
15621
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
15548
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
15622
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15549
15623
|
# resp.candidates[0].inference_container_definitions #=> Hash
|
15550
15624
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
15551
15625
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -16346,7 +16420,7 @@ module Aws::SageMaker
|
|
16346
16420
|
# creation_time_after: Time.now,
|
16347
16421
|
# last_modified_time_before: Time.now,
|
16348
16422
|
# last_modified_time_after: Time.now,
|
16349
|
-
# status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed
|
16423
|
+
# status_equals: "OutOfService", # accepts OutOfService, Creating, Updating, SystemUpdating, RollingBack, InService, Deleting, Failed, UpdateRollbackFailed
|
16350
16424
|
# })
|
16351
16425
|
#
|
16352
16426
|
# @example Response structure
|
@@ -16356,7 +16430,7 @@ module Aws::SageMaker
|
|
16356
16430
|
# resp.endpoints[0].endpoint_arn #=> String
|
16357
16431
|
# resp.endpoints[0].creation_time #=> Time
|
16358
16432
|
# resp.endpoints[0].last_modified_time #=> Time
|
16359
|
-
# resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed"
|
16433
|
+
# resp.endpoints[0].endpoint_status #=> String, one of "OutOfService", "Creating", "Updating", "SystemUpdating", "RollingBack", "InService", "Deleting", "Failed", "UpdateRollbackFailed"
|
16360
16434
|
# resp.next_token #=> String
|
16361
16435
|
#
|
16362
16436
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListEndpoints AWS API Documentation
|
@@ -21938,7 +22012,7 @@ module Aws::SageMaker
|
|
21938
22012
|
# },
|
21939
22013
|
# ],
|
21940
22014
|
# deployment_config: {
|
21941
|
-
# blue_green_update_policy: {
|
22015
|
+
# blue_green_update_policy: {
|
21942
22016
|
# traffic_routing_configuration: { # required
|
21943
22017
|
# type: "ALL_AT_ONCE", # required, accepts ALL_AT_ONCE, CANARY, LINEAR
|
21944
22018
|
# wait_interval_in_seconds: 1, # required
|
@@ -21961,6 +22035,18 @@ module Aws::SageMaker
|
|
21961
22035
|
# },
|
21962
22036
|
# ],
|
21963
22037
|
# },
|
22038
|
+
# rolling_update_policy: {
|
22039
|
+
# maximum_batch_size: { # required
|
22040
|
+
# type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
|
22041
|
+
# value: 1, # required
|
22042
|
+
# },
|
22043
|
+
# wait_interval_in_seconds: 1, # required
|
22044
|
+
# maximum_execution_timeout_in_seconds: 1,
|
22045
|
+
# rollback_maximum_batch_size: {
|
22046
|
+
# type: "INSTANCE_COUNT", # required, accepts INSTANCE_COUNT, CAPACITY_PERCENT
|
22047
|
+
# value: 1, # required
|
22048
|
+
# },
|
22049
|
+
# },
|
21964
22050
|
# },
|
21965
22051
|
# retain_deployment_config: false,
|
21966
22052
|
# })
|
@@ -23762,7 +23848,7 @@ module Aws::SageMaker
|
|
23762
23848
|
params: params,
|
23763
23849
|
config: config)
|
23764
23850
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23765
|
-
context[:gem_version] = '1.
|
23851
|
+
context[:gem_version] = '1.193.0'
|
23766
23852
|
Seahorse::Client::Request.new(handlers, context)
|
23767
23853
|
end
|
23768
23854
|
|
@@ -29,6 +29,8 @@ module Aws::SageMaker
|
|
29
29
|
AdditionalInferenceSpecifications = Shapes::ListShape.new(name: 'AdditionalInferenceSpecifications')
|
30
30
|
AgentVersion = Shapes::StructureShape.new(name: 'AgentVersion')
|
31
31
|
AgentVersions = Shapes::ListShape.new(name: 'AgentVersions')
|
32
|
+
AggregationTransformationValue = Shapes::StringShape.new(name: 'AggregationTransformationValue')
|
33
|
+
AggregationTransformations = Shapes::MapShape.new(name: 'AggregationTransformations')
|
32
34
|
Alarm = Shapes::StructureShape.new(name: 'Alarm')
|
33
35
|
AlarmList = Shapes::ListShape.new(name: 'AlarmList')
|
34
36
|
AlarmName = Shapes::StringShape.new(name: 'AlarmName')
|
@@ -152,6 +154,7 @@ module Aws::SageMaker
|
|
152
154
|
Autotune = Shapes::StructureShape.new(name: 'Autotune')
|
153
155
|
AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
|
154
156
|
AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
|
157
|
+
BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
|
155
158
|
BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
|
156
159
|
BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
|
157
160
|
BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
|
@@ -781,6 +784,10 @@ module Aws::SageMaker
|
|
781
784
|
FileSystemDataSource = Shapes::StructureShape.new(name: 'FileSystemDataSource')
|
782
785
|
FileSystemId = Shapes::StringShape.new(name: 'FileSystemId')
|
783
786
|
FileSystemType = Shapes::StringShape.new(name: 'FileSystemType')
|
787
|
+
FillingTransformationMap = Shapes::MapShape.new(name: 'FillingTransformationMap')
|
788
|
+
FillingTransformationValue = Shapes::StringShape.new(name: 'FillingTransformationValue')
|
789
|
+
FillingTransformations = Shapes::MapShape.new(name: 'FillingTransformations')
|
790
|
+
FillingType = Shapes::StringShape.new(name: 'FillingType')
|
784
791
|
Filter = Shapes::StructureShape.new(name: 'Filter')
|
785
792
|
FilterList = Shapes::ListShape.new(name: 'FilterList')
|
786
793
|
FilterValue = Shapes::StringShape.new(name: 'FilterValue')
|
@@ -801,6 +808,10 @@ module Aws::SageMaker
|
|
801
808
|
FlowDefinitionTaskKeywords = Shapes::ListShape.new(name: 'FlowDefinitionTaskKeywords')
|
802
809
|
FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
|
803
810
|
FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
|
811
|
+
ForecastFrequency = Shapes::StringShape.new(name: 'ForecastFrequency')
|
812
|
+
ForecastHorizon = Shapes::IntegerShape.new(name: 'ForecastHorizon')
|
813
|
+
ForecastQuantile = Shapes::StringShape.new(name: 'ForecastQuantile')
|
814
|
+
ForecastQuantiles = Shapes::ListShape.new(name: 'ForecastQuantiles')
|
804
815
|
Framework = Shapes::StringShape.new(name: 'Framework')
|
805
816
|
FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
|
806
817
|
GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
|
@@ -818,6 +829,8 @@ module Aws::SageMaker
|
|
818
829
|
GitConfigForUpdate = Shapes::StructureShape.new(name: 'GitConfigForUpdate')
|
819
830
|
GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
|
820
831
|
Group = Shapes::StringShape.new(name: 'Group')
|
832
|
+
GroupingAttributeName = Shapes::StringShape.new(name: 'GroupingAttributeName')
|
833
|
+
GroupingAttributeNames = Shapes::ListShape.new(name: 'GroupingAttributeNames')
|
821
834
|
Groups = Shapes::ListShape.new(name: 'Groups')
|
822
835
|
HookParameters = Shapes::MapShape.new(name: 'HookParameters')
|
823
836
|
Horovod = Shapes::BooleanShape.new(name: 'Horovod')
|
@@ -972,6 +985,7 @@ module Aws::SageMaker
|
|
972
985
|
InvocationsMaxRetries = Shapes::IntegerShape.new(name: 'InvocationsMaxRetries')
|
973
986
|
InvocationsTimeoutInSeconds = Shapes::IntegerShape.new(name: 'InvocationsTimeoutInSeconds')
|
974
987
|
IotRoleAlias = Shapes::StringShape.new(name: 'IotRoleAlias')
|
988
|
+
ItemIdentifierAttributeName = Shapes::StringShape.new(name: 'ItemIdentifierAttributeName')
|
975
989
|
JobDurationInSeconds = Shapes::IntegerShape.new(name: 'JobDurationInSeconds')
|
976
990
|
JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
|
977
991
|
JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
|
@@ -1654,6 +1668,7 @@ module Aws::SageMaker
|
|
1654
1668
|
RetryPipelineExecutionResponse = Shapes::StructureShape.new(name: 'RetryPipelineExecutionResponse')
|
1655
1669
|
RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
|
1656
1670
|
RoleArn = Shapes::StringShape.new(name: 'RoleArn')
|
1671
|
+
RollingUpdatePolicy = Shapes::StructureShape.new(name: 'RollingUpdatePolicy')
|
1657
1672
|
RootAccess = Shapes::StringShape.new(name: 'RootAccess')
|
1658
1673
|
RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
|
1659
1674
|
RuleEvaluationStatus = Shapes::StringShape.new(name: 'RuleEvaluationStatus')
|
@@ -1829,8 +1844,12 @@ module Aws::SageMaker
|
|
1829
1844
|
TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
|
1830
1845
|
TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
|
1831
1846
|
ThingName = Shapes::StringShape.new(name: 'ThingName')
|
1847
|
+
TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
|
1848
|
+
TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
|
1832
1849
|
TimeSeriesForecastingSettings = Shapes::StructureShape.new(name: 'TimeSeriesForecastingSettings')
|
1850
|
+
TimeSeriesTransformations = Shapes::StructureShape.new(name: 'TimeSeriesTransformations')
|
1833
1851
|
Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
|
1852
|
+
TimestampAttributeName = Shapes::StringShape.new(name: 'TimestampAttributeName')
|
1834
1853
|
TrafficDurationInSeconds = Shapes::IntegerShape.new(name: 'TrafficDurationInSeconds')
|
1835
1854
|
TrafficPattern = Shapes::StructureShape.new(name: 'TrafficPattern')
|
1836
1855
|
TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
|
@@ -1884,6 +1903,7 @@ module Aws::SageMaker
|
|
1884
1903
|
TransformOutput = Shapes::StructureShape.new(name: 'TransformOutput')
|
1885
1904
|
TransformResources = Shapes::StructureShape.new(name: 'TransformResources')
|
1886
1905
|
TransformS3DataSource = Shapes::StructureShape.new(name: 'TransformS3DataSource')
|
1906
|
+
TransformationAttributeName = Shapes::StringShape.new(name: 'TransformationAttributeName')
|
1887
1907
|
Trial = Shapes::StructureShape.new(name: 'Trial')
|
1888
1908
|
TrialArn = Shapes::StringShape.new(name: 'TrialArn')
|
1889
1909
|
TrialComponent = Shapes::StructureShape.new(name: 'TrialComponent')
|
@@ -2084,6 +2104,9 @@ module Aws::SageMaker
|
|
2084
2104
|
|
2085
2105
|
AgentVersions.member = Shapes::ShapeRef.new(shape: AgentVersion)
|
2086
2106
|
|
2107
|
+
AggregationTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
|
2108
|
+
AggregationTransformations.value = Shapes::ShapeRef.new(shape: AggregationTransformationValue)
|
2109
|
+
|
2087
2110
|
Alarm.add_member(:alarm_name, Shapes::ShapeRef.new(shape: AlarmName, location_name: "AlarmName"))
|
2088
2111
|
Alarm.struct_class = Types::Alarm
|
2089
2112
|
|
@@ -2344,10 +2367,12 @@ module Aws::SageMaker
|
|
2344
2367
|
AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
|
2345
2368
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2346
2369
|
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2370
|
+
AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
|
2347
2371
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2348
2372
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2349
2373
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2350
2374
|
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2375
|
+
AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
|
2351
2376
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2352
2377
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2353
2378
|
|
@@ -2448,6 +2473,7 @@ module Aws::SageMaker
|
|
2448
2473
|
|
2449
2474
|
CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
|
2450
2475
|
CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
|
2476
|
+
CandidateArtifactLocations.add_member(:backtest_results, Shapes::ShapeRef.new(shape: BacktestResultsLocation, location_name: "BacktestResults"))
|
2451
2477
|
CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
|
2452
2478
|
|
2453
2479
|
CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
|
@@ -3641,8 +3667,9 @@ module Aws::SageMaker
|
|
3641
3667
|
|
3642
3668
|
DeployedImages.member = Shapes::ShapeRef.new(shape: DeployedImage)
|
3643
3669
|
|
3644
|
-
DeploymentConfig.add_member(:blue_green_update_policy, Shapes::ShapeRef.new(shape: BlueGreenUpdatePolicy,
|
3670
|
+
DeploymentConfig.add_member(:blue_green_update_policy, Shapes::ShapeRef.new(shape: BlueGreenUpdatePolicy, location_name: "BlueGreenUpdatePolicy"))
|
3645
3671
|
DeploymentConfig.add_member(:auto_rollback_configuration, Shapes::ShapeRef.new(shape: AutoRollbackConfig, location_name: "AutoRollbackConfiguration"))
|
3672
|
+
DeploymentConfig.add_member(:rolling_update_policy, Shapes::ShapeRef.new(shape: RollingUpdatePolicy, location_name: "RollingUpdatePolicy"))
|
3646
3673
|
DeploymentConfig.struct_class = Types::DeploymentConfig
|
3647
3674
|
|
3648
3675
|
DeploymentRecommendation.add_member(:recommendation_status, Shapes::ShapeRef.new(shape: RecommendationStatus, required: true, location_name: "RecommendationStatus"))
|
@@ -5102,6 +5129,12 @@ module Aws::SageMaker
|
|
5102
5129
|
FileSystemDataSource.add_member(:directory_path, Shapes::ShapeRef.new(shape: DirectoryPath, required: true, location_name: "DirectoryPath"))
|
5103
5130
|
FileSystemDataSource.struct_class = Types::FileSystemDataSource
|
5104
5131
|
|
5132
|
+
FillingTransformationMap.key = Shapes::ShapeRef.new(shape: FillingType)
|
5133
|
+
FillingTransformationMap.value = Shapes::ShapeRef.new(shape: FillingTransformationValue)
|
5134
|
+
|
5135
|
+
FillingTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
|
5136
|
+
FillingTransformations.value = Shapes::ShapeRef.new(shape: FillingTransformationMap)
|
5137
|
+
|
5105
5138
|
Filter.add_member(:name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "Name"))
|
5106
5139
|
Filter.add_member(:operator, Shapes::ShapeRef.new(shape: Operator, location_name: "Operator"))
|
5107
5140
|
Filter.add_member(:value, Shapes::ShapeRef.new(shape: FilterValue, location_name: "Value"))
|
@@ -5137,6 +5170,8 @@ module Aws::SageMaker
|
|
5137
5170
|
|
5138
5171
|
FlowDefinitionTaskKeywords.member = Shapes::ShapeRef.new(shape: FlowDefinitionTaskKeyword)
|
5139
5172
|
|
5173
|
+
ForecastQuantiles.member = Shapes::ShapeRef.new(shape: ForecastQuantile)
|
5174
|
+
|
5140
5175
|
GetDeviceFleetReportRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
|
5141
5176
|
GetDeviceFleetReportRequest.struct_class = Types::GetDeviceFleetReportRequest
|
5142
5177
|
|
@@ -5183,6 +5218,8 @@ module Aws::SageMaker
|
|
5183
5218
|
GitConfigForUpdate.add_member(:secret_arn, Shapes::ShapeRef.new(shape: SecretArn, location_name: "SecretArn"))
|
5184
5219
|
GitConfigForUpdate.struct_class = Types::GitConfigForUpdate
|
5185
5220
|
|
5221
|
+
GroupingAttributeNames.member = Shapes::ShapeRef.new(shape: GroupingAttributeName)
|
5222
|
+
|
5186
5223
|
Groups.member = Shapes::ShapeRef.new(shape: Group)
|
5187
5224
|
|
5188
5225
|
HookParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
|
@@ -7982,6 +8019,12 @@ module Aws::SageMaker
|
|
7982
8019
|
RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
|
7983
8020
|
RetryStrategy.struct_class = Types::RetryStrategy
|
7984
8021
|
|
8022
|
+
RollingUpdatePolicy.add_member(:maximum_batch_size, Shapes::ShapeRef.new(shape: CapacitySize, required: true, location_name: "MaximumBatchSize"))
|
8023
|
+
RollingUpdatePolicy.add_member(:wait_interval_in_seconds, Shapes::ShapeRef.new(shape: WaitIntervalInSeconds, required: true, location_name: "WaitIntervalInSeconds"))
|
8024
|
+
RollingUpdatePolicy.add_member(:maximum_execution_timeout_in_seconds, Shapes::ShapeRef.new(shape: MaximumExecutionTimeoutInSeconds, location_name: "MaximumExecutionTimeoutInSeconds"))
|
8025
|
+
RollingUpdatePolicy.add_member(:rollback_maximum_batch_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "RollbackMaximumBatchSize"))
|
8026
|
+
RollingUpdatePolicy.struct_class = Types::RollingUpdatePolicy
|
8027
|
+
|
7985
8028
|
RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
|
7986
8029
|
RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
|
7987
8030
|
|
@@ -8290,10 +8333,29 @@ module Aws::SageMaker
|
|
8290
8333
|
TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, location_name: "TargetLabelColumn"))
|
8291
8334
|
TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
|
8292
8335
|
|
8336
|
+
TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8337
|
+
TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
|
8338
|
+
TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
|
8339
|
+
TimeSeriesConfig.add_member(:grouping_attribute_names, Shapes::ShapeRef.new(shape: GroupingAttributeNames, location_name: "GroupingAttributeNames"))
|
8340
|
+
TimeSeriesConfig.struct_class = Types::TimeSeriesConfig
|
8341
|
+
|
8342
|
+
TimeSeriesForecastingJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
|
8343
|
+
TimeSeriesForecastingJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8344
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_frequency, Shapes::ShapeRef.new(shape: ForecastFrequency, required: true, location_name: "ForecastFrequency"))
|
8345
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: ForecastHorizon, required: true, location_name: "ForecastHorizon"))
|
8346
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_quantiles, Shapes::ShapeRef.new(shape: ForecastQuantiles, location_name: "ForecastQuantiles"))
|
8347
|
+
TimeSeriesForecastingJobConfig.add_member(:transformations, Shapes::ShapeRef.new(shape: TimeSeriesTransformations, location_name: "Transformations"))
|
8348
|
+
TimeSeriesForecastingJobConfig.add_member(:time_series_config, Shapes::ShapeRef.new(shape: TimeSeriesConfig, required: true, location_name: "TimeSeriesConfig"))
|
8349
|
+
TimeSeriesForecastingJobConfig.struct_class = Types::TimeSeriesForecastingJobConfig
|
8350
|
+
|
8293
8351
|
TimeSeriesForecastingSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
8294
8352
|
TimeSeriesForecastingSettings.add_member(:amazon_forecast_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "AmazonForecastRoleArn"))
|
8295
8353
|
TimeSeriesForecastingSettings.struct_class = Types::TimeSeriesForecastingSettings
|
8296
8354
|
|
8355
|
+
TimeSeriesTransformations.add_member(:filling, Shapes::ShapeRef.new(shape: FillingTransformations, location_name: "Filling"))
|
8356
|
+
TimeSeriesTransformations.add_member(:aggregation, Shapes::ShapeRef.new(shape: AggregationTransformations, location_name: "Aggregation"))
|
8357
|
+
TimeSeriesTransformations.struct_class = Types::TimeSeriesTransformations
|
8358
|
+
|
8297
8359
|
TrafficPattern.add_member(:traffic_type, Shapes::ShapeRef.new(shape: TrafficType, location_name: "TrafficType"))
|
8298
8360
|
TrafficPattern.add_member(:phases, Shapes::ShapeRef.new(shape: Phases, location_name: "Phases"))
|
8299
8361
|
TrafficPattern.struct_class = Types::TrafficPattern
|
@@ -2086,20 +2086,29 @@ module Aws::SageMaker
|
|
2086
2086
|
# The type of channel. Defines whether the data are used for training
|
2087
2087
|
# or validation. The default value is `training`. Channels for
|
2088
2088
|
# `training` and `validation` must share the same `ContentType`
|
2089
|
+
#
|
2090
|
+
# <note markdown="1"> The type of channel defaults to `training` for the time-series
|
2091
|
+
# forecasting problem type.
|
2092
|
+
#
|
2093
|
+
# </note>
|
2089
2094
|
# @return [String]
|
2090
2095
|
#
|
2091
2096
|
# @!attribute [rw] content_type
|
2092
2097
|
# The content type of the data from the input source. The following
|
2093
2098
|
# are the allowed content types for different problems:
|
2094
2099
|
#
|
2095
|
-
# * For
|
2100
|
+
# * For tabular problem types: `text/csv;header=present` or
|
2096
2101
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2097
2102
|
# `text/csv;header=present`.
|
2098
2103
|
#
|
2099
|
-
# * For
|
2104
|
+
# * For image classification: `image/png`, `image/jpeg`, or `image/*`.
|
2100
2105
|
# The default value is `image/*`.
|
2101
2106
|
#
|
2102
|
-
# * For
|
2107
|
+
# * For text classification: `text/csv;header=present` or
|
2108
|
+
# `x-application/vnd.amazon+parquet`. The default value is
|
2109
|
+
# `text/csv;header=present`.
|
2110
|
+
#
|
2111
|
+
# * For time-series forecasting: `text/csv;header=present` or
|
2103
2112
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2104
2113
|
# `text/csv;header=present`.
|
2105
2114
|
# @return [String]
|
@@ -2132,8 +2141,9 @@ module Aws::SageMaker
|
|
2132
2141
|
# @!attribute [rw] max_candidates
|
2133
2142
|
# The maximum number of times a training job is allowed to run.
|
2134
2143
|
#
|
2135
|
-
# For
|
2136
|
-
# supported value is 1.
|
2144
|
+
# For text and image classification, as well as time-series
|
2145
|
+
# forecasting problem types, the supported value is 1. For tabular
|
2146
|
+
# problem types, the maximum value is 750.
|
2137
2147
|
# @return [Integer]
|
2138
2148
|
#
|
2139
2149
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
@@ -2261,6 +2271,9 @@ module Aws::SageMaker
|
|
2261
2271
|
#
|
2262
2272
|
# * For image or text classification problem types: `Accuracy`
|
2263
2273
|
#
|
2274
|
+
# * For time-series forecasting problem types:
|
2275
|
+
# `AverageWeightedQuantileLoss`
|
2276
|
+
#
|
2264
2277
|
#
|
2265
2278
|
#
|
2266
2279
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
@@ -2399,12 +2412,18 @@ module Aws::SageMaker
|
|
2399
2412
|
# type (regression, classification).
|
2400
2413
|
# @return [Types::TabularJobConfig]
|
2401
2414
|
#
|
2415
|
+
# @!attribute [rw] time_series_forecasting_job_config
|
2416
|
+
# Settings used to configure an AutoML job V2 for a time-series
|
2417
|
+
# forecasting problem type.
|
2418
|
+
# @return [Types::TimeSeriesForecastingJobConfig]
|
2419
|
+
#
|
2402
2420
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2403
2421
|
#
|
2404
2422
|
class AutoMLProblemTypeConfig < Struct.new(
|
2405
2423
|
:image_classification_job_config,
|
2406
2424
|
:text_classification_job_config,
|
2407
2425
|
:tabular_job_config,
|
2426
|
+
:time_series_forecasting_job_config,
|
2408
2427
|
:unknown)
|
2409
2428
|
SENSITIVE = []
|
2410
2429
|
include Aws::Structure
|
@@ -2413,6 +2432,7 @@ module Aws::SageMaker
|
|
2413
2432
|
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2414
2433
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2415
2434
|
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2435
|
+
class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
|
2416
2436
|
class Unknown < AutoMLProblemTypeConfig; end
|
2417
2437
|
end
|
2418
2438
|
|
@@ -2987,11 +3007,18 @@ module Aws::SageMaker
|
|
2987
3007
|
# the AutoML candidate.
|
2988
3008
|
# @return [String]
|
2989
3009
|
#
|
3010
|
+
# @!attribute [rw] backtest_results
|
3011
|
+
# The Amazon S3 prefix to the accuracy metrics and the inference
|
3012
|
+
# results observed over the testing window. Available only for the
|
3013
|
+
# time-series forecasting problem type.
|
3014
|
+
# @return [String]
|
3015
|
+
#
|
2990
3016
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
|
2991
3017
|
#
|
2992
3018
|
class CandidateArtifactLocations < Struct.new(
|
2993
3019
|
:explainability,
|
2994
|
-
:model_insights
|
3020
|
+
:model_insights,
|
3021
|
+
:backtest_results)
|
2995
3022
|
SENSITIVE = []
|
2996
3023
|
include Aws::Structure
|
2997
3024
|
end
|
@@ -3079,7 +3106,15 @@ module Aws::SageMaker
|
|
3079
3106
|
include Aws::Structure
|
3080
3107
|
end
|
3081
3108
|
|
3082
|
-
# Specifies the endpoint capacity to activate for
|
3109
|
+
# Specifies the type and size of the endpoint capacity to activate for a
|
3110
|
+
# blue/green deployment, a rolling deployment, or a rollback strategy.
|
3111
|
+
# You can specify your batches as either instance count or the overall
|
3112
|
+
# percentage or your fleet.
|
3113
|
+
#
|
3114
|
+
# For a rollback strategy, if you don't specify the fields in this
|
3115
|
+
# object, or if you set the `Value` to 100%, then SageMaker uses a
|
3116
|
+
# blue/green rollback strategy and rolls all traffic back to the blue
|
3117
|
+
# fleet.
|
3083
3118
|
#
|
3084
3119
|
# @!attribute [rw] type
|
3085
3120
|
# Specifies the endpoint capacity type.
|
@@ -4717,12 +4752,14 @@ module Aws::SageMaker
|
|
4717
4752
|
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
4718
4753
|
# parameters. The supported formats depend on the problem type:
|
4719
4754
|
#
|
4720
|
-
# * For
|
4755
|
+
# * For tabular problem types: `S3Prefix`, `ManifestFile`.
|
4721
4756
|
#
|
4722
|
-
# * For
|
4757
|
+
# * For image classification: `S3Prefix`, `ManifestFile`,
|
4723
4758
|
# `AugmentedManifestFile`.
|
4724
4759
|
#
|
4725
|
-
# * For
|
4760
|
+
# * For text classification: `S3Prefix`.
|
4761
|
+
#
|
4762
|
+
# * For time-series forecasting: `S3Prefix`.
|
4726
4763
|
#
|
4727
4764
|
#
|
4728
4765
|
#
|
@@ -4789,6 +4826,12 @@ module Aws::SageMaker
|
|
4789
4826
|
# The validation and training datasets must contain the same headers.
|
4790
4827
|
# For jobs created by calling `CreateAutoMLJob`, the validation
|
4791
4828
|
# dataset must be less than 2 GB in size.
|
4829
|
+
#
|
4830
|
+
# <note markdown="1"> This attribute must not be set for the time-series forecasting
|
4831
|
+
# problem type, as Autopilot automatically splits the input dataset
|
4832
|
+
# into training and validation sets.
|
4833
|
+
#
|
4834
|
+
# </note>
|
4792
4835
|
# @return [Types::AutoMLDataSplitConfig]
|
4793
4836
|
#
|
4794
4837
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
@@ -10159,11 +10202,17 @@ module Aws::SageMaker
|
|
10159
10202
|
# failures and recovery.
|
10160
10203
|
# @return [Types::AutoRollbackConfig]
|
10161
10204
|
#
|
10205
|
+
# @!attribute [rw] rolling_update_policy
|
10206
|
+
# Specifies a rolling deployment strategy for updating a SageMaker
|
10207
|
+
# endpoint.
|
10208
|
+
# @return [Types::RollingUpdatePolicy]
|
10209
|
+
#
|
10162
10210
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeploymentConfig AWS API Documentation
|
10163
10211
|
#
|
10164
10212
|
class DeploymentConfig < Struct.new(
|
10165
10213
|
:blue_green_update_policy,
|
10166
|
-
:auto_rollback_configuration
|
10214
|
+
:auto_rollback_configuration,
|
10215
|
+
:rolling_update_policy)
|
10167
10216
|
SENSITIVE = []
|
10168
10217
|
include Aws::Structure
|
10169
10218
|
end
|
@@ -34959,6 +35008,46 @@ module Aws::SageMaker
|
|
34959
35008
|
include Aws::Structure
|
34960
35009
|
end
|
34961
35010
|
|
35011
|
+
# Specifies a rolling deployment strategy for updating a SageMaker
|
35012
|
+
# endpoint.
|
35013
|
+
#
|
35014
|
+
# @!attribute [rw] maximum_batch_size
|
35015
|
+
# Batch size for each rolling step to provision capacity and turn on
|
35016
|
+
# traffic on the new endpoint fleet, and terminate capacity on the old
|
35017
|
+
# endpoint fleet. Value must be between 5% to 50% of the variant's
|
35018
|
+
# total instance count.
|
35019
|
+
# @return [Types::CapacitySize]
|
35020
|
+
#
|
35021
|
+
# @!attribute [rw] wait_interval_in_seconds
|
35022
|
+
# The length of the baking period, during which SageMaker monitors
|
35023
|
+
# alarms for each batch on the new fleet.
|
35024
|
+
# @return [Integer]
|
35025
|
+
#
|
35026
|
+
# @!attribute [rw] maximum_execution_timeout_in_seconds
|
35027
|
+
# The time limit for the total deployment. Exceeding this limit causes
|
35028
|
+
# a timeout.
|
35029
|
+
# @return [Integer]
|
35030
|
+
#
|
35031
|
+
# @!attribute [rw] rollback_maximum_batch_size
|
35032
|
+
# Batch size for rollback to the old endpoint fleet. Each rolling step
|
35033
|
+
# to provision capacity and turn on traffic on the old endpoint fleet,
|
35034
|
+
# and terminate capacity on the new endpoint fleet. If this field is
|
35035
|
+
# absent, the default value will be set to 100% of total capacity
|
35036
|
+
# which means to bring up the whole capacity of the old fleet at once
|
35037
|
+
# during rollback.
|
35038
|
+
# @return [Types::CapacitySize]
|
35039
|
+
#
|
35040
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RollingUpdatePolicy AWS API Documentation
|
35041
|
+
#
|
35042
|
+
class RollingUpdatePolicy < Struct.new(
|
35043
|
+
:maximum_batch_size,
|
35044
|
+
:wait_interval_in_seconds,
|
35045
|
+
:maximum_execution_timeout_in_seconds,
|
35046
|
+
:rollback_maximum_batch_size)
|
35047
|
+
SENSITIVE = []
|
35048
|
+
include Aws::Structure
|
35049
|
+
end
|
35050
|
+
|
34962
35051
|
# Describes the S3 data source.
|
34963
35052
|
#
|
34964
35053
|
# Your input bucket must be in the same Amazon Web Services region as
|
@@ -36920,6 +37009,157 @@ module Aws::SageMaker
|
|
36920
37009
|
include Aws::Structure
|
36921
37010
|
end
|
36922
37011
|
|
37012
|
+
# The collection of components that defines the time-series.
|
37013
|
+
#
|
37014
|
+
# @!attribute [rw] target_attribute_name
|
37015
|
+
# The name of the column representing the target variable that you
|
37016
|
+
# want to predict for each item in your dataset. The data type of the
|
37017
|
+
# target variable must be numerical.
|
37018
|
+
# @return [String]
|
37019
|
+
#
|
37020
|
+
# @!attribute [rw] timestamp_attribute_name
|
37021
|
+
# The name of the column indicating a point in time at which the
|
37022
|
+
# target value of a given item is recorded.
|
37023
|
+
# @return [String]
|
37024
|
+
#
|
37025
|
+
# @!attribute [rw] item_identifier_attribute_name
|
37026
|
+
# The name of the column that represents the set of item identifiers
|
37027
|
+
# for which you want to predict the target value.
|
37028
|
+
# @return [String]
|
37029
|
+
#
|
37030
|
+
# @!attribute [rw] grouping_attribute_names
|
37031
|
+
# A set of columns names that can be grouped with the item identifier
|
37032
|
+
# column to create a composite key for which a target value is
|
37033
|
+
# predicted.
|
37034
|
+
# @return [Array<String>]
|
37035
|
+
#
|
37036
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesConfig AWS API Documentation
|
37037
|
+
#
|
37038
|
+
class TimeSeriesConfig < Struct.new(
|
37039
|
+
:target_attribute_name,
|
37040
|
+
:timestamp_attribute_name,
|
37041
|
+
:item_identifier_attribute_name,
|
37042
|
+
:grouping_attribute_names)
|
37043
|
+
SENSITIVE = []
|
37044
|
+
include Aws::Structure
|
37045
|
+
end
|
37046
|
+
|
37047
|
+
# The collection of settings used by an AutoML job V2 for the
|
37048
|
+
# time-series forecasting problem type.
|
37049
|
+
#
|
37050
|
+
# <note markdown="1"> The `TimeSeriesForecastingJobConfig` problem type is only available in
|
37051
|
+
# private beta. Contact Amazon Web Services Support or your account
|
37052
|
+
# manager to learn more about access privileges.
|
37053
|
+
#
|
37054
|
+
# </note>
|
37055
|
+
#
|
37056
|
+
# @!attribute [rw] feature_specification_s3_uri
|
37057
|
+
# A URL to the Amazon S3 data source containing additional selected
|
37058
|
+
# features that complement the target, itemID, timestamp, and grouped
|
37059
|
+
# columns set in `TimeSeriesConfig`. When not provided, the AutoML job
|
37060
|
+
# V2 includes all the columns from the original dataset that are not
|
37061
|
+
# already declared in `TimeSeriesConfig`. If provided, the AutoML job
|
37062
|
+
# V2 only considers these additional columns as a complement to the
|
37063
|
+
# ones declared in `TimeSeriesConfig`.
|
37064
|
+
#
|
37065
|
+
# You can input `FeatureAttributeNames` (optional) in JSON format as
|
37066
|
+
# shown below:
|
37067
|
+
#
|
37068
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
37069
|
+
#
|
37070
|
+
# You can also specify the data type of the feature (optional) in the
|
37071
|
+
# format shown below:
|
37072
|
+
#
|
37073
|
+
# `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
|
37074
|
+
# \} \}`
|
37075
|
+
#
|
37076
|
+
# Autopilot supports the following data types: `numeric`,
|
37077
|
+
# `categorical`, `text`, and `datetime`.
|
37078
|
+
#
|
37079
|
+
# <note markdown="1"> These column keys must not include any column set in
|
37080
|
+
# `TimeSeriesConfig`.
|
37081
|
+
#
|
37082
|
+
# </note>
|
37083
|
+
#
|
37084
|
+
# When not provided, the AutoML job V2 includes all the columns from
|
37085
|
+
# the original dataset that are not already declared in
|
37086
|
+
# `TimeSeriesConfig`. If provided, the AutoML job V2 only considers
|
37087
|
+
# these additional columns as a complement to the ones declared in
|
37088
|
+
# `TimeSeriesConfig`.
|
37089
|
+
#
|
37090
|
+
# Autopilot supports the following data types: `numeric`,
|
37091
|
+
# `categorical`, `text`, and `datetime`.
|
37092
|
+
# @return [String]
|
37093
|
+
#
|
37094
|
+
# @!attribute [rw] completion_criteria
|
37095
|
+
# How long a job is allowed to run, or how many candidates a job is
|
37096
|
+
# allowed to generate.
|
37097
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
37098
|
+
#
|
37099
|
+
# @!attribute [rw] forecast_frequency
|
37100
|
+
# The frequency of predictions in a forecast.
|
37101
|
+
#
|
37102
|
+
# Valid intervals are an integer followed by Y (Year), M (Month), W
|
37103
|
+
# (Week), D (Day), H (Hour), and min (Minute). For example, `1D`
|
37104
|
+
# indicates every day and `15min` indicates every 15 minutes. The
|
37105
|
+
# value of a frequency must not overlap with the next larger
|
37106
|
+
# frequency. For example, you must use a frequency of `1H` instead of
|
37107
|
+
# `60min`.
|
37108
|
+
#
|
37109
|
+
# The valid values for each frequency are the following:
|
37110
|
+
#
|
37111
|
+
# * Minute - 1-59
|
37112
|
+
#
|
37113
|
+
# * Hour - 1-23
|
37114
|
+
#
|
37115
|
+
# * Day - 1-6
|
37116
|
+
#
|
37117
|
+
# * Week - 1-4
|
37118
|
+
#
|
37119
|
+
# * Month - 1-11
|
37120
|
+
#
|
37121
|
+
# * Year - 1
|
37122
|
+
# @return [String]
|
37123
|
+
#
|
37124
|
+
# @!attribute [rw] forecast_horizon
|
37125
|
+
# The number of time-steps that the model predicts. The forecast
|
37126
|
+
# horizon is also called the prediction length. The maximum forecast
|
37127
|
+
# horizon is the lesser of 500 time-steps or 1/4 of the time-steps in
|
37128
|
+
# the dataset.
|
37129
|
+
# @return [Integer]
|
37130
|
+
#
|
37131
|
+
# @!attribute [rw] forecast_quantiles
|
37132
|
+
# The quantiles used to train the model for forecasts at a specified
|
37133
|
+
# quantile. You can specify quantiles from `0.01` (p1) to `0.99`
|
37134
|
+
# (p99), by increments of 0.01 or higher. Up to five forecast
|
37135
|
+
# quantiles can be specified. When `ForecastQuantiles` is not
|
37136
|
+
# provided, the AutoML job uses the quantiles p10, p50, and p90 as
|
37137
|
+
# default.
|
37138
|
+
# @return [Array<String>]
|
37139
|
+
#
|
37140
|
+
# @!attribute [rw] transformations
|
37141
|
+
# The transformations modifying specific attributes of the
|
37142
|
+
# time-series, such as filling strategies for missing values.
|
37143
|
+
# @return [Types::TimeSeriesTransformations]
|
37144
|
+
#
|
37145
|
+
# @!attribute [rw] time_series_config
|
37146
|
+
# The collection of components that defines the time-series.
|
37147
|
+
# @return [Types::TimeSeriesConfig]
|
37148
|
+
#
|
37149
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesForecastingJobConfig AWS API Documentation
|
37150
|
+
#
|
37151
|
+
class TimeSeriesForecastingJobConfig < Struct.new(
|
37152
|
+
:feature_specification_s3_uri,
|
37153
|
+
:completion_criteria,
|
37154
|
+
:forecast_frequency,
|
37155
|
+
:forecast_horizon,
|
37156
|
+
:forecast_quantiles,
|
37157
|
+
:transformations,
|
37158
|
+
:time_series_config)
|
37159
|
+
SENSITIVE = []
|
37160
|
+
include Aws::Structure
|
37161
|
+
end
|
37162
|
+
|
36923
37163
|
# Time series forecast settings for the SageMaker Canvas application.
|
36924
37164
|
#
|
36925
37165
|
# @!attribute [rw] status
|
@@ -36952,6 +37192,56 @@ module Aws::SageMaker
|
|
36952
37192
|
include Aws::Structure
|
36953
37193
|
end
|
36954
37194
|
|
37195
|
+
# Transformations allowed on the dataset. Supported transformations are
|
37196
|
+
# `Filling` and `Aggregation`. `Filling` specifies how to add values to
|
37197
|
+
# missing values in the dataset. `Aggregation` defines how to aggregate
|
37198
|
+
# data that does not align with forecast frequency.
|
37199
|
+
#
|
37200
|
+
# @!attribute [rw] filling
|
37201
|
+
# A key value pair defining the filling method for a column, where the
|
37202
|
+
# key is the column name and the value is an object which defines the
|
37203
|
+
# filling logic. You can specify multiple filling methods for a single
|
37204
|
+
# column.
|
37205
|
+
#
|
37206
|
+
# The supported filling methods and their corresponding options are:
|
37207
|
+
#
|
37208
|
+
# * `frontfill`: `none` (Supported only for target column)
|
37209
|
+
#
|
37210
|
+
# * `middlefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37211
|
+
#
|
37212
|
+
# * `backfill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37213
|
+
#
|
37214
|
+
# * `futurefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37215
|
+
#
|
37216
|
+
# To set a filling method to a specific value, set the fill parameter
|
37217
|
+
# to the chosen filling method value (for example `"backfill" :
|
37218
|
+
# "value"`), and define the filling value in an additional parameter
|
37219
|
+
# prefixed with "\_value". For example, to set `backfill` to a value
|
37220
|
+
# of `2`, you must include two parameters: `"backfill": "value"` and
|
37221
|
+
# `"backfill_value":"2"`.
|
37222
|
+
# @return [Hash<String,Hash<String,String>>]
|
37223
|
+
#
|
37224
|
+
# @!attribute [rw] aggregation
|
37225
|
+
# A key value pair defining the aggregation method for a column, where
|
37226
|
+
# the key is the column name and the value is the aggregation method.
|
37227
|
+
#
|
37228
|
+
# The supported aggregation methods are `sum` (default), `avg`,
|
37229
|
+
# `first`, `min`, `max`.
|
37230
|
+
#
|
37231
|
+
# <note markdown="1"> Aggregation is only supported for the target column.
|
37232
|
+
#
|
37233
|
+
# </note>
|
37234
|
+
# @return [Hash<String,String>]
|
37235
|
+
#
|
37236
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesTransformations AWS API Documentation
|
37237
|
+
#
|
37238
|
+
class TimeSeriesTransformations < Struct.new(
|
37239
|
+
:filling,
|
37240
|
+
:aggregation)
|
37241
|
+
SENSITIVE = []
|
37242
|
+
include Aws::Structure
|
37243
|
+
end
|
37244
|
+
|
36955
37245
|
# Defines the traffic pattern of the load test.
|
36956
37246
|
#
|
36957
37247
|
# @!attribute [rw] traffic_type
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.193.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-06-
|
11
|
+
date: 2023-06-30 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|