aws-sdk-sagemaker 1.190.0 → 1.192.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 8953db051e1dac139e51b19da6df9abf774ab717601ee34a250b124863d8d314
4
- data.tar.gz: 1f8d8fb9af2d2f1eec3a226cda316912993ae515b3484aee34faf69de7dfd258
3
+ metadata.gz: ea2b0bfd3b4390fa357475a5d054208271cd3aaf4e450e89531bf0f205b22a66
4
+ data.tar.gz: b84a2185dffd514d6f76fa68a05b2f546939b70177779278f88853e7e328be0a
5
5
  SHA512:
6
- metadata.gz: cc46416a136c19e15e3b9e2c12bf497a5d181d2c514552bd1890a5b917a871f6beac5413db3cd30d296662e55f96a9df4ffb5cdace8ccc46edeb2f8bbc4ea579
7
- data.tar.gz: b95d619ca2cd9deceab158d09d46b7db69bbaf56b38369d03e73fc67632f0501fec23baa70256b38915b5f5efe75361419ca4052efe37a883ec57332a90b5498
6
+ metadata.gz: d8835cdf47bbb5c4e1b3bbc42cb782b0da023e3cb3790deeb32d6f006c901999aa620e04aea27f688410d70c0fed4efe8d970f592c0b1d9a36b6514f765c5d0c
7
+ data.tar.gz: abe87a3fa189453639cb875bdcd2750775c3f9716ea8fca2803879cfbc3252ed496954e2bd1f53452e4f0a0c9932331c05e80c36e1dfa138dc1a83d720c509e1
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.192.0 (2023-06-29)
5
+ ------------------
6
+
7
+ * Feature - Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
8
+
9
+ 1.191.0 (2023-06-28)
10
+ ------------------
11
+
12
+ * Feature - This release adds support for Model Cards Model Registry integration.
13
+
4
14
  1.190.0 (2023-06-27)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.190.0
1
+ 1.192.0
@@ -1307,7 +1307,7 @@ module Aws::SageMaker
1307
1307
  # },
1308
1308
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
1309
1309
  # auto_ml_job_objective: {
1310
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1310
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
1311
1311
  # },
1312
1312
  # auto_ml_job_config: {
1313
1313
  # completion_criteria: {
@@ -1405,12 +1405,14 @@ module Aws::SageMaker
1405
1405
  # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
1406
1406
  # parameters. The supported formats depend on the problem type:
1407
1407
  #
1408
- # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
1408
+ # * For tabular problem types: `S3Prefix`, `ManifestFile`.
1409
1409
  #
1410
- # * For ImageClassification: `S3Prefix`, `ManifestFile`,
1410
+ # * For image classification: `S3Prefix`, `ManifestFile`,
1411
1411
  # `AugmentedManifestFile`.
1412
1412
  #
1413
- # * For TextClassification: `S3Prefix`.
1413
+ # * For text classification: `S3Prefix`.
1414
+ #
1415
+ # * For time-series forecasting: `S3Prefix`.
1414
1416
  #
1415
1417
  #
1416
1418
  #
@@ -1470,6 +1472,12 @@ module Aws::SageMaker
1470
1472
  # For jobs created by calling `CreateAutoMLJob`, the validation dataset
1471
1473
  # must be less than 2 GB in size.
1472
1474
  #
1475
+ # <note markdown="1"> This attribute must not be set for the time-series forecasting problem
1476
+ # type, as Autopilot automatically splits the input dataset into
1477
+ # training and validation sets.
1478
+ #
1479
+ # </note>
1480
+ #
1473
1481
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1474
1482
  #
1475
1483
  # * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1532,6 +1540,33 @@ module Aws::SageMaker
1532
1540
  # target_attribute_name: "TargetAttributeName", # required
1533
1541
  # sample_weight_attribute_name: "SampleWeightAttributeName",
1534
1542
  # },
1543
+ # time_series_forecasting_job_config: {
1544
+ # feature_specification_s3_uri: "S3Uri",
1545
+ # completion_criteria: {
1546
+ # max_candidates: 1,
1547
+ # max_runtime_per_training_job_in_seconds: 1,
1548
+ # max_auto_ml_job_runtime_in_seconds: 1,
1549
+ # },
1550
+ # forecast_frequency: "ForecastFrequency", # required
1551
+ # forecast_horizon: 1, # required
1552
+ # forecast_quantiles: ["ForecastQuantile"],
1553
+ # transformations: {
1554
+ # filling: {
1555
+ # "TransformationAttributeName" => {
1556
+ # "frontfill" => "FillingTransformationValue",
1557
+ # },
1558
+ # },
1559
+ # aggregation: {
1560
+ # "TransformationAttributeName" => "sum", # accepts sum, avg, first, min, max
1561
+ # },
1562
+ # },
1563
+ # time_series_config: { # required
1564
+ # target_attribute_name: "TargetAttributeName", # required
1565
+ # timestamp_attribute_name: "TimestampAttributeName", # required
1566
+ # item_identifier_attribute_name: "ItemIdentifierAttributeName", # required
1567
+ # grouping_attribute_names: ["GroupingAttributeName"],
1568
+ # },
1569
+ # },
1535
1570
  # },
1536
1571
  # role_arn: "RoleArn", # required
1537
1572
  # tags: [
@@ -1549,7 +1584,7 @@ module Aws::SageMaker
1549
1584
  # },
1550
1585
  # },
1551
1586
  # auto_ml_job_objective: {
1552
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1587
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
1553
1588
  # },
1554
1589
  # model_deploy_config: {
1555
1590
  # auto_generate_endpoint_name: false,
@@ -6459,7 +6494,11 @@ module Aws::SageMaker
6459
6494
  # The display name of the pipeline.
6460
6495
  #
6461
6496
  # @option params [String] :pipeline_definition
6462
- # The JSON pipeline definition of the pipeline.
6497
+ # The [JSON pipeline definition][1] of the pipeline.
6498
+ #
6499
+ #
6500
+ #
6501
+ # [1]: https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/
6463
6502
  #
6464
6503
  # @option params [Types::PipelineDefinitionS3Location] :pipeline_definition_s3_location
6465
6504
  # The location of the pipeline definition stored in Amazon S3. If
@@ -10087,7 +10126,7 @@ module Aws::SageMaker
10087
10126
  # resp.output_data_config.kms_key_id #=> String
10088
10127
  # resp.output_data_config.s3_output_path #=> String
10089
10128
  # resp.role_arn #=> String
10090
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10129
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10091
10130
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10092
10131
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
10093
10132
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -10112,9 +10151,9 @@ module Aws::SageMaker
10112
10151
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
10113
10152
  # resp.best_candidate.candidate_name #=> String
10114
10153
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
10115
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10154
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10116
10155
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
10117
- # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10156
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10118
10157
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
10119
10158
  # resp.best_candidate.candidate_steps #=> Array
10120
10159
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10132,11 +10171,12 @@ module Aws::SageMaker
10132
10171
  # resp.best_candidate.failure_reason #=> String
10133
10172
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
10134
10173
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
10174
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
10135
10175
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
10136
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10176
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10137
10177
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10138
10178
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10139
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
10179
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10140
10180
  # resp.best_candidate.inference_container_definitions #=> Hash
10141
10181
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10142
10182
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10144,11 +10184,11 @@ module Aws::SageMaker
10144
10184
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
10145
10185
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
10146
10186
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
10147
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
10187
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
10148
10188
  # resp.generate_candidate_definitions_only #=> Boolean
10149
10189
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10150
10190
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10151
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10191
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10152
10192
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10153
10193
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10154
10194
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -10221,7 +10261,7 @@ module Aws::SageMaker
10221
10261
  # resp.output_data_config.kms_key_id #=> String
10222
10262
  # resp.output_data_config.s3_output_path #=> String
10223
10263
  # resp.role_arn #=> String
10224
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10264
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10225
10265
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_candidates #=> Integer
10226
10266
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10227
10267
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
@@ -10242,6 +10282,24 @@ module Aws::SageMaker
10242
10282
  # resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10243
10283
  # resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
10244
10284
  # resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
10285
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.feature_specification_s3_uri #=> String
10286
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_candidates #=> Integer
10287
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10288
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10289
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_frequency #=> String
10290
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_horizon #=> Integer
10291
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles #=> Array
10292
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles[0] #=> String
10293
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling #=> Hash
10294
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"] #=> Hash
10295
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"]["FillingType"] #=> String
10296
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation #=> Hash
10297
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation["TransformationAttributeName"] #=> String, one of "sum", "avg", "first", "min", "max"
10298
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.target_attribute_name #=> String
10299
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.timestamp_attribute_name #=> String
10300
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.item_identifier_attribute_name #=> String
10301
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names #=> Array
10302
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
10245
10303
  # resp.creation_time #=> Time
10246
10304
  # resp.end_time #=> Time
10247
10305
  # resp.last_modified_time #=> Time
@@ -10250,9 +10308,9 @@ module Aws::SageMaker
10250
10308
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
10251
10309
  # resp.best_candidate.candidate_name #=> String
10252
10310
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
10253
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10311
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10254
10312
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
10255
- # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10313
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10256
10314
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
10257
10315
  # resp.best_candidate.candidate_steps #=> Array
10258
10316
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10270,11 +10328,12 @@ module Aws::SageMaker
10270
10328
  # resp.best_candidate.failure_reason #=> String
10271
10329
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
10272
10330
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
10331
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
10273
10332
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
10274
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10333
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10275
10334
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10276
10335
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10277
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
10336
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10278
10337
  # resp.best_candidate.inference_container_definitions #=> Hash
10279
10338
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10280
10339
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10282,7 +10341,7 @@ module Aws::SageMaker
10282
10341
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
10283
10342
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
10284
10343
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
10285
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
10344
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
10286
10345
  # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
10287
10346
  # resp.model_deploy_config.endpoint_name #=> String
10288
10347
  # resp.model_deploy_result.endpoint_name #=> String
@@ -10295,12 +10354,12 @@ module Aws::SageMaker
10295
10354
  # resp.security_config.vpc_config.subnets[0] #=> String
10296
10355
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10297
10356
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10298
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10357
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10299
10358
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10300
10359
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10301
10360
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10302
10361
  # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10303
- # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
10362
+ # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
10304
10363
  #
10305
10364
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
10306
10365
  #
@@ -15450,7 +15509,7 @@ module Aws::SageMaker
15450
15509
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
15451
15510
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
15452
15511
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
15453
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
15512
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
15454
15513
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
15455
15514
  # resp.auto_ml_job_summaries[0].end_time #=> Time
15456
15515
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
@@ -15517,9 +15576,9 @@ module Aws::SageMaker
15517
15576
  # resp.candidates #=> Array
15518
15577
  # resp.candidates[0].candidate_name #=> String
15519
15578
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
15520
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15579
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15521
15580
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
15522
- # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15581
+ # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15523
15582
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
15524
15583
  # resp.candidates[0].candidate_steps #=> Array
15525
15584
  # resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -15537,11 +15596,12 @@ module Aws::SageMaker
15537
15596
  # resp.candidates[0].failure_reason #=> String
15538
15597
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
15539
15598
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
15599
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
15540
15600
  # resp.candidates[0].candidate_properties.candidate_metrics #=> Array
15541
- # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15601
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15542
15602
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
15543
15603
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
15544
- # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
15604
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15545
15605
  # resp.candidates[0].inference_container_definitions #=> Hash
15546
15606
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
15547
15607
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -23758,7 +23818,7 @@ module Aws::SageMaker
23758
23818
  params: params,
23759
23819
  config: config)
23760
23820
  context[:gem_name] = 'aws-sdk-sagemaker'
23761
- context[:gem_version] = '1.190.0'
23821
+ context[:gem_version] = '1.192.0'
23762
23822
  Seahorse::Client::Request.new(handlers, context)
23763
23823
  end
23764
23824
 
@@ -29,6 +29,8 @@ module Aws::SageMaker
29
29
  AdditionalInferenceSpecifications = Shapes::ListShape.new(name: 'AdditionalInferenceSpecifications')
30
30
  AgentVersion = Shapes::StructureShape.new(name: 'AgentVersion')
31
31
  AgentVersions = Shapes::ListShape.new(name: 'AgentVersions')
32
+ AggregationTransformationValue = Shapes::StringShape.new(name: 'AggregationTransformationValue')
33
+ AggregationTransformations = Shapes::MapShape.new(name: 'AggregationTransformations')
32
34
  Alarm = Shapes::StructureShape.new(name: 'Alarm')
33
35
  AlarmList = Shapes::ListShape.new(name: 'AlarmList')
34
36
  AlarmName = Shapes::StringShape.new(name: 'AlarmName')
@@ -152,6 +154,7 @@ module Aws::SageMaker
152
154
  Autotune = Shapes::StructureShape.new(name: 'Autotune')
153
155
  AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
154
156
  AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
157
+ BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
155
158
  BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
156
159
  BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
157
160
  BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
@@ -781,6 +784,10 @@ module Aws::SageMaker
781
784
  FileSystemDataSource = Shapes::StructureShape.new(name: 'FileSystemDataSource')
782
785
  FileSystemId = Shapes::StringShape.new(name: 'FileSystemId')
783
786
  FileSystemType = Shapes::StringShape.new(name: 'FileSystemType')
787
+ FillingTransformationMap = Shapes::MapShape.new(name: 'FillingTransformationMap')
788
+ FillingTransformationValue = Shapes::StringShape.new(name: 'FillingTransformationValue')
789
+ FillingTransformations = Shapes::MapShape.new(name: 'FillingTransformations')
790
+ FillingType = Shapes::StringShape.new(name: 'FillingType')
784
791
  Filter = Shapes::StructureShape.new(name: 'Filter')
785
792
  FilterList = Shapes::ListShape.new(name: 'FilterList')
786
793
  FilterValue = Shapes::StringShape.new(name: 'FilterValue')
@@ -801,6 +808,10 @@ module Aws::SageMaker
801
808
  FlowDefinitionTaskKeywords = Shapes::ListShape.new(name: 'FlowDefinitionTaskKeywords')
802
809
  FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
803
810
  FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
811
+ ForecastFrequency = Shapes::StringShape.new(name: 'ForecastFrequency')
812
+ ForecastHorizon = Shapes::IntegerShape.new(name: 'ForecastHorizon')
813
+ ForecastQuantile = Shapes::StringShape.new(name: 'ForecastQuantile')
814
+ ForecastQuantiles = Shapes::ListShape.new(name: 'ForecastQuantiles')
804
815
  Framework = Shapes::StringShape.new(name: 'Framework')
805
816
  FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
806
817
  GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
@@ -818,6 +829,8 @@ module Aws::SageMaker
818
829
  GitConfigForUpdate = Shapes::StructureShape.new(name: 'GitConfigForUpdate')
819
830
  GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
820
831
  Group = Shapes::StringShape.new(name: 'Group')
832
+ GroupingAttributeName = Shapes::StringShape.new(name: 'GroupingAttributeName')
833
+ GroupingAttributeNames = Shapes::ListShape.new(name: 'GroupingAttributeNames')
821
834
  Groups = Shapes::ListShape.new(name: 'Groups')
822
835
  HookParameters = Shapes::MapShape.new(name: 'HookParameters')
823
836
  Horovod = Shapes::BooleanShape.new(name: 'Horovod')
@@ -972,6 +985,7 @@ module Aws::SageMaker
972
985
  InvocationsMaxRetries = Shapes::IntegerShape.new(name: 'InvocationsMaxRetries')
973
986
  InvocationsTimeoutInSeconds = Shapes::IntegerShape.new(name: 'InvocationsTimeoutInSeconds')
974
987
  IotRoleAlias = Shapes::StringShape.new(name: 'IotRoleAlias')
988
+ ItemIdentifierAttributeName = Shapes::StringShape.new(name: 'ItemIdentifierAttributeName')
975
989
  JobDurationInSeconds = Shapes::IntegerShape.new(name: 'JobDurationInSeconds')
976
990
  JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
977
991
  JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
@@ -1829,8 +1843,12 @@ module Aws::SageMaker
1829
1843
  TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
1830
1844
  TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
1831
1845
  ThingName = Shapes::StringShape.new(name: 'ThingName')
1846
+ TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
1847
+ TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
1832
1848
  TimeSeriesForecastingSettings = Shapes::StructureShape.new(name: 'TimeSeriesForecastingSettings')
1849
+ TimeSeriesTransformations = Shapes::StructureShape.new(name: 'TimeSeriesTransformations')
1833
1850
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1851
+ TimestampAttributeName = Shapes::StringShape.new(name: 'TimestampAttributeName')
1834
1852
  TrafficDurationInSeconds = Shapes::IntegerShape.new(name: 'TrafficDurationInSeconds')
1835
1853
  TrafficPattern = Shapes::StructureShape.new(name: 'TrafficPattern')
1836
1854
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
@@ -1884,6 +1902,7 @@ module Aws::SageMaker
1884
1902
  TransformOutput = Shapes::StructureShape.new(name: 'TransformOutput')
1885
1903
  TransformResources = Shapes::StructureShape.new(name: 'TransformResources')
1886
1904
  TransformS3DataSource = Shapes::StructureShape.new(name: 'TransformS3DataSource')
1905
+ TransformationAttributeName = Shapes::StringShape.new(name: 'TransformationAttributeName')
1887
1906
  Trial = Shapes::StructureShape.new(name: 'Trial')
1888
1907
  TrialArn = Shapes::StringShape.new(name: 'TrialArn')
1889
1908
  TrialComponent = Shapes::StructureShape.new(name: 'TrialComponent')
@@ -2084,6 +2103,9 @@ module Aws::SageMaker
2084
2103
 
2085
2104
  AgentVersions.member = Shapes::ShapeRef.new(shape: AgentVersion)
2086
2105
 
2106
+ AggregationTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
2107
+ AggregationTransformations.value = Shapes::ShapeRef.new(shape: AggregationTransformationValue)
2108
+
2087
2109
  Alarm.add_member(:alarm_name, Shapes::ShapeRef.new(shape: AlarmName, location_name: "AlarmName"))
2088
2110
  Alarm.struct_class = Types::Alarm
2089
2111
 
@@ -2344,10 +2366,12 @@ module Aws::SageMaker
2344
2366
  AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
2345
2367
  AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
2346
2368
  AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
2369
+ AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
2347
2370
  AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2348
2371
  AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
2349
2372
  AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
2350
2373
  AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
2374
+ AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
2351
2375
  AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
2352
2376
  AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
2353
2377
 
@@ -2448,6 +2472,7 @@ module Aws::SageMaker
2448
2472
 
2449
2473
  CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
2450
2474
  CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
2475
+ CandidateArtifactLocations.add_member(:backtest_results, Shapes::ShapeRef.new(shape: BacktestResultsLocation, location_name: "BacktestResults"))
2451
2476
  CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
2452
2477
 
2453
2478
  CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
@@ -5102,6 +5127,12 @@ module Aws::SageMaker
5102
5127
  FileSystemDataSource.add_member(:directory_path, Shapes::ShapeRef.new(shape: DirectoryPath, required: true, location_name: "DirectoryPath"))
5103
5128
  FileSystemDataSource.struct_class = Types::FileSystemDataSource
5104
5129
 
5130
+ FillingTransformationMap.key = Shapes::ShapeRef.new(shape: FillingType)
5131
+ FillingTransformationMap.value = Shapes::ShapeRef.new(shape: FillingTransformationValue)
5132
+
5133
+ FillingTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
5134
+ FillingTransformations.value = Shapes::ShapeRef.new(shape: FillingTransformationMap)
5135
+
5105
5136
  Filter.add_member(:name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "Name"))
5106
5137
  Filter.add_member(:operator, Shapes::ShapeRef.new(shape: Operator, location_name: "Operator"))
5107
5138
  Filter.add_member(:value, Shapes::ShapeRef.new(shape: FilterValue, location_name: "Value"))
@@ -5137,6 +5168,8 @@ module Aws::SageMaker
5137
5168
 
5138
5169
  FlowDefinitionTaskKeywords.member = Shapes::ShapeRef.new(shape: FlowDefinitionTaskKeyword)
5139
5170
 
5171
+ ForecastQuantiles.member = Shapes::ShapeRef.new(shape: ForecastQuantile)
5172
+
5140
5173
  GetDeviceFleetReportRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
5141
5174
  GetDeviceFleetReportRequest.struct_class = Types::GetDeviceFleetReportRequest
5142
5175
 
@@ -5183,6 +5216,8 @@ module Aws::SageMaker
5183
5216
  GitConfigForUpdate.add_member(:secret_arn, Shapes::ShapeRef.new(shape: SecretArn, location_name: "SecretArn"))
5184
5217
  GitConfigForUpdate.struct_class = Types::GitConfigForUpdate
5185
5218
 
5219
+ GroupingAttributeNames.member = Shapes::ShapeRef.new(shape: GroupingAttributeName)
5220
+
5186
5221
  Groups.member = Shapes::ShapeRef.new(shape: Group)
5187
5222
 
5188
5223
  HookParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
@@ -6762,6 +6797,7 @@ module Aws::SageMaker
6762
6797
  ModelCard.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
6763
6798
  ModelCard.add_member(:model_id, Shapes::ShapeRef.new(shape: String, location_name: "ModelId"))
6764
6799
  ModelCard.add_member(:risk_rating, Shapes::ShapeRef.new(shape: String, location_name: "RiskRating"))
6800
+ ModelCard.add_member(:model_package_group_name, Shapes::ShapeRef.new(shape: String, location_name: "ModelPackageGroupName"))
6765
6801
  ModelCard.struct_class = Types::ModelCard
6766
6802
 
6767
6803
  ModelCardExportArtifacts.add_member(:s3_export_artifacts, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3ExportArtifacts"))
@@ -8289,10 +8325,29 @@ module Aws::SageMaker
8289
8325
  TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, location_name: "TargetLabelColumn"))
8290
8326
  TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
8291
8327
 
8328
+ TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
8329
+ TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
8330
+ TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
8331
+ TimeSeriesConfig.add_member(:grouping_attribute_names, Shapes::ShapeRef.new(shape: GroupingAttributeNames, location_name: "GroupingAttributeNames"))
8332
+ TimeSeriesConfig.struct_class = Types::TimeSeriesConfig
8333
+
8334
+ TimeSeriesForecastingJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
8335
+ TimeSeriesForecastingJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
8336
+ TimeSeriesForecastingJobConfig.add_member(:forecast_frequency, Shapes::ShapeRef.new(shape: ForecastFrequency, required: true, location_name: "ForecastFrequency"))
8337
+ TimeSeriesForecastingJobConfig.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: ForecastHorizon, required: true, location_name: "ForecastHorizon"))
8338
+ TimeSeriesForecastingJobConfig.add_member(:forecast_quantiles, Shapes::ShapeRef.new(shape: ForecastQuantiles, location_name: "ForecastQuantiles"))
8339
+ TimeSeriesForecastingJobConfig.add_member(:transformations, Shapes::ShapeRef.new(shape: TimeSeriesTransformations, location_name: "Transformations"))
8340
+ TimeSeriesForecastingJobConfig.add_member(:time_series_config, Shapes::ShapeRef.new(shape: TimeSeriesConfig, required: true, location_name: "TimeSeriesConfig"))
8341
+ TimeSeriesForecastingJobConfig.struct_class = Types::TimeSeriesForecastingJobConfig
8342
+
8292
8343
  TimeSeriesForecastingSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
8293
8344
  TimeSeriesForecastingSettings.add_member(:amazon_forecast_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "AmazonForecastRoleArn"))
8294
8345
  TimeSeriesForecastingSettings.struct_class = Types::TimeSeriesForecastingSettings
8295
8346
 
8347
+ TimeSeriesTransformations.add_member(:filling, Shapes::ShapeRef.new(shape: FillingTransformations, location_name: "Filling"))
8348
+ TimeSeriesTransformations.add_member(:aggregation, Shapes::ShapeRef.new(shape: AggregationTransformations, location_name: "Aggregation"))
8349
+ TimeSeriesTransformations.struct_class = Types::TimeSeriesTransformations
8350
+
8296
8351
  TrafficPattern.add_member(:traffic_type, Shapes::ShapeRef.new(shape: TrafficType, location_name: "TrafficType"))
8297
8352
  TrafficPattern.add_member(:phases, Shapes::ShapeRef.new(shape: Phases, location_name: "Phases"))
8298
8353
  TrafficPattern.struct_class = Types::TrafficPattern
@@ -2086,20 +2086,29 @@ module Aws::SageMaker
2086
2086
  # The type of channel. Defines whether the data are used for training
2087
2087
  # or validation. The default value is `training`. Channels for
2088
2088
  # `training` and `validation` must share the same `ContentType`
2089
+ #
2090
+ # <note markdown="1"> The type of channel defaults to `training` for the time-series
2091
+ # forecasting problem type.
2092
+ #
2093
+ # </note>
2089
2094
  # @return [String]
2090
2095
  #
2091
2096
  # @!attribute [rw] content_type
2092
2097
  # The content type of the data from the input source. The following
2093
2098
  # are the allowed content types for different problems:
2094
2099
  #
2095
- # * For Tabular problem types: `text/csv;header=present` or
2100
+ # * For tabular problem types: `text/csv;header=present` or
2096
2101
  # `x-application/vnd.amazon+parquet`. The default value is
2097
2102
  # `text/csv;header=present`.
2098
2103
  #
2099
- # * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
2104
+ # * For image classification: `image/png`, `image/jpeg`, or `image/*`.
2100
2105
  # The default value is `image/*`.
2101
2106
  #
2102
- # * For TextClassification: `text/csv;header=present` or
2107
+ # * For text classification: `text/csv;header=present` or
2108
+ # `x-application/vnd.amazon+parquet`. The default value is
2109
+ # `text/csv;header=present`.
2110
+ #
2111
+ # * For time-series forecasting: `text/csv;header=present` or
2103
2112
  # `x-application/vnd.amazon+parquet`. The default value is
2104
2113
  # `text/csv;header=present`.
2105
2114
  # @return [String]
@@ -2132,8 +2141,9 @@ module Aws::SageMaker
2132
2141
  # @!attribute [rw] max_candidates
2133
2142
  # The maximum number of times a training job is allowed to run.
2134
2143
  #
2135
- # For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
2136
- # supported value is 1.
2144
+ # For text and image classification, as well as time-series
2145
+ # forecasting problem types, the supported value is 1. For tabular
2146
+ # problem types, the maximum value is 750.
2137
2147
  # @return [Integer]
2138
2148
  #
2139
2149
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
@@ -2261,6 +2271,9 @@ module Aws::SageMaker
2261
2271
  #
2262
2272
  # * For image or text classification problem types: `Accuracy`
2263
2273
  #
2274
+ # * For time-series forecasting problem types:
2275
+ # `AverageWeightedQuantileLoss`
2276
+ #
2264
2277
  #
2265
2278
  #
2266
2279
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
@@ -2399,12 +2412,18 @@ module Aws::SageMaker
2399
2412
  # type (regression, classification).
2400
2413
  # @return [Types::TabularJobConfig]
2401
2414
  #
2415
+ # @!attribute [rw] time_series_forecasting_job_config
2416
+ # Settings used to configure an AutoML job V2 for a time-series
2417
+ # forecasting problem type.
2418
+ # @return [Types::TimeSeriesForecastingJobConfig]
2419
+ #
2402
2420
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2403
2421
  #
2404
2422
  class AutoMLProblemTypeConfig < Struct.new(
2405
2423
  :image_classification_job_config,
2406
2424
  :text_classification_job_config,
2407
2425
  :tabular_job_config,
2426
+ :time_series_forecasting_job_config,
2408
2427
  :unknown)
2409
2428
  SENSITIVE = []
2410
2429
  include Aws::Structure
@@ -2413,6 +2432,7 @@ module Aws::SageMaker
2413
2432
  class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2414
2433
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2415
2434
  class TabularJobConfig < AutoMLProblemTypeConfig; end
2435
+ class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
2416
2436
  class Unknown < AutoMLProblemTypeConfig; end
2417
2437
  end
2418
2438
 
@@ -2987,11 +3007,18 @@ module Aws::SageMaker
2987
3007
  # the AutoML candidate.
2988
3008
  # @return [String]
2989
3009
  #
3010
+ # @!attribute [rw] backtest_results
3011
+ # The Amazon S3 prefix to the accuracy metrics and the inference
3012
+ # results observed over the testing window. Available only for the
3013
+ # time-series forecasting problem type.
3014
+ # @return [String]
3015
+ #
2990
3016
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2991
3017
  #
2992
3018
  class CandidateArtifactLocations < Struct.new(
2993
3019
  :explainability,
2994
- :model_insights)
3020
+ :model_insights,
3021
+ :backtest_results)
2995
3022
  SENSITIVE = []
2996
3023
  include Aws::Structure
2997
3024
  end
@@ -4717,12 +4744,14 @@ module Aws::SageMaker
4717
4744
  # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
4718
4745
  # parameters. The supported formats depend on the problem type:
4719
4746
  #
4720
- # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
4747
+ # * For tabular problem types: `S3Prefix`, `ManifestFile`.
4721
4748
  #
4722
- # * For ImageClassification: `S3Prefix`, `ManifestFile`,
4749
+ # * For image classification: `S3Prefix`, `ManifestFile`,
4723
4750
  # `AugmentedManifestFile`.
4724
4751
  #
4725
- # * For TextClassification: `S3Prefix`.
4752
+ # * For text classification: `S3Prefix`.
4753
+ #
4754
+ # * For time-series forecasting: `S3Prefix`.
4726
4755
  #
4727
4756
  #
4728
4757
  #
@@ -4789,6 +4818,12 @@ module Aws::SageMaker
4789
4818
  # The validation and training datasets must contain the same headers.
4790
4819
  # For jobs created by calling `CreateAutoMLJob`, the validation
4791
4820
  # dataset must be less than 2 GB in size.
4821
+ #
4822
+ # <note markdown="1"> This attribute must not be set for the time-series forecasting
4823
+ # problem type, as Autopilot automatically splits the input dataset
4824
+ # into training and validation sets.
4825
+ #
4826
+ # </note>
4792
4827
  # @return [Types::AutoMLDataSplitConfig]
4793
4828
  #
4794
4829
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
@@ -7566,7 +7601,11 @@ module Aws::SageMaker
7566
7601
  # @return [String]
7567
7602
  #
7568
7603
  # @!attribute [rw] pipeline_definition
7569
- # The JSON pipeline definition of the pipeline.
7604
+ # The [JSON pipeline definition][1] of the pipeline.
7605
+ #
7606
+ #
7607
+ #
7608
+ # [1]: https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/
7570
7609
  # @return [String]
7571
7610
  #
7572
7611
  # @!attribute [rw] pipeline_definition_s3_location
@@ -27982,6 +28021,12 @@ module Aws::SageMaker
27982
28021
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-risk-rating.html
27983
28022
  # @return [String]
27984
28023
  #
28024
+ # @!attribute [rw] model_package_group_name
28025
+ # The model package group that contains the model package. Only
28026
+ # relevant for model cards created for model packages in the Amazon
28027
+ # SageMaker Model Registry.
28028
+ # @return [String]
28029
+ #
27985
28030
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelCard AWS API Documentation
27986
28031
  #
27987
28032
  class ModelCard < Struct.new(
@@ -27997,7 +28042,8 @@ module Aws::SageMaker
27997
28042
  :last_modified_by,
27998
28043
  :tags,
27999
28044
  :model_id,
28000
- :risk_rating)
28045
+ :risk_rating,
28046
+ :model_package_group_name)
28001
28047
  SENSITIVE = [:content]
28002
28048
  include Aws::Structure
28003
28049
  end
@@ -36909,6 +36955,157 @@ module Aws::SageMaker
36909
36955
  include Aws::Structure
36910
36956
  end
36911
36957
 
36958
+ # The collection of components that defines the time-series.
36959
+ #
36960
+ # @!attribute [rw] target_attribute_name
36961
+ # The name of the column representing the target variable that you
36962
+ # want to predict for each item in your dataset. The data type of the
36963
+ # target variable must be numerical.
36964
+ # @return [String]
36965
+ #
36966
+ # @!attribute [rw] timestamp_attribute_name
36967
+ # The name of the column indicating a point in time at which the
36968
+ # target value of a given item is recorded.
36969
+ # @return [String]
36970
+ #
36971
+ # @!attribute [rw] item_identifier_attribute_name
36972
+ # The name of the column that represents the set of item identifiers
36973
+ # for which you want to predict the target value.
36974
+ # @return [String]
36975
+ #
36976
+ # @!attribute [rw] grouping_attribute_names
36977
+ # A set of columns names that can be grouped with the item identifier
36978
+ # column to create a composite key for which a target value is
36979
+ # predicted.
36980
+ # @return [Array<String>]
36981
+ #
36982
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesConfig AWS API Documentation
36983
+ #
36984
+ class TimeSeriesConfig < Struct.new(
36985
+ :target_attribute_name,
36986
+ :timestamp_attribute_name,
36987
+ :item_identifier_attribute_name,
36988
+ :grouping_attribute_names)
36989
+ SENSITIVE = []
36990
+ include Aws::Structure
36991
+ end
36992
+
36993
+ # The collection of settings used by an AutoML job V2 for the
36994
+ # time-series forecasting problem type.
36995
+ #
36996
+ # <note markdown="1"> The `TimeSeriesForecastingJobConfig` problem type is only available in
36997
+ # private beta. Contact Amazon Web Services Support or your account
36998
+ # manager to learn more about access privileges.
36999
+ #
37000
+ # </note>
37001
+ #
37002
+ # @!attribute [rw] feature_specification_s3_uri
37003
+ # A URL to the Amazon S3 data source containing additional selected
37004
+ # features that complement the target, itemID, timestamp, and grouped
37005
+ # columns set in `TimeSeriesConfig`. When not provided, the AutoML job
37006
+ # V2 includes all the columns from the original dataset that are not
37007
+ # already declared in `TimeSeriesConfig`. If provided, the AutoML job
37008
+ # V2 only considers these additional columns as a complement to the
37009
+ # ones declared in `TimeSeriesConfig`.
37010
+ #
37011
+ # You can input `FeatureAttributeNames` (optional) in JSON format as
37012
+ # shown below:
37013
+ #
37014
+ # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
37015
+ #
37016
+ # You can also specify the data type of the feature (optional) in the
37017
+ # format shown below:
37018
+ #
37019
+ # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
37020
+ # \} \}`
37021
+ #
37022
+ # Autopilot supports the following data types: `numeric`,
37023
+ # `categorical`, `text`, and `datetime`.
37024
+ #
37025
+ # <note markdown="1"> These column keys must not include any column set in
37026
+ # `TimeSeriesConfig`.
37027
+ #
37028
+ # </note>
37029
+ #
37030
+ # When not provided, the AutoML job V2 includes all the columns from
37031
+ # the original dataset that are not already declared in
37032
+ # `TimeSeriesConfig`. If provided, the AutoML job V2 only considers
37033
+ # these additional columns as a complement to the ones declared in
37034
+ # `TimeSeriesConfig`.
37035
+ #
37036
+ # Autopilot supports the following data types: `numeric`,
37037
+ # `categorical`, `text`, and `datetime`.
37038
+ # @return [String]
37039
+ #
37040
+ # @!attribute [rw] completion_criteria
37041
+ # How long a job is allowed to run, or how many candidates a job is
37042
+ # allowed to generate.
37043
+ # @return [Types::AutoMLJobCompletionCriteria]
37044
+ #
37045
+ # @!attribute [rw] forecast_frequency
37046
+ # The frequency of predictions in a forecast.
37047
+ #
37048
+ # Valid intervals are an integer followed by Y (Year), M (Month), W
37049
+ # (Week), D (Day), H (Hour), and min (Minute). For example, `1D`
37050
+ # indicates every day and `15min` indicates every 15 minutes. The
37051
+ # value of a frequency must not overlap with the next larger
37052
+ # frequency. For example, you must use a frequency of `1H` instead of
37053
+ # `60min`.
37054
+ #
37055
+ # The valid values for each frequency are the following:
37056
+ #
37057
+ # * Minute - 1-59
37058
+ #
37059
+ # * Hour - 1-23
37060
+ #
37061
+ # * Day - 1-6
37062
+ #
37063
+ # * Week - 1-4
37064
+ #
37065
+ # * Month - 1-11
37066
+ #
37067
+ # * Year - 1
37068
+ # @return [String]
37069
+ #
37070
+ # @!attribute [rw] forecast_horizon
37071
+ # The number of time-steps that the model predicts. The forecast
37072
+ # horizon is also called the prediction length. The maximum forecast
37073
+ # horizon is the lesser of 500 time-steps or 1/4 of the time-steps in
37074
+ # the dataset.
37075
+ # @return [Integer]
37076
+ #
37077
+ # @!attribute [rw] forecast_quantiles
37078
+ # The quantiles used to train the model for forecasts at a specified
37079
+ # quantile. You can specify quantiles from `0.01` (p1) to `0.99`
37080
+ # (p99), by increments of 0.01 or higher. Up to five forecast
37081
+ # quantiles can be specified. When `ForecastQuantiles` is not
37082
+ # provided, the AutoML job uses the quantiles p10, p50, and p90 as
37083
+ # default.
37084
+ # @return [Array<String>]
37085
+ #
37086
+ # @!attribute [rw] transformations
37087
+ # The transformations modifying specific attributes of the
37088
+ # time-series, such as filling strategies for missing values.
37089
+ # @return [Types::TimeSeriesTransformations]
37090
+ #
37091
+ # @!attribute [rw] time_series_config
37092
+ # The collection of components that defines the time-series.
37093
+ # @return [Types::TimeSeriesConfig]
37094
+ #
37095
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesForecastingJobConfig AWS API Documentation
37096
+ #
37097
+ class TimeSeriesForecastingJobConfig < Struct.new(
37098
+ :feature_specification_s3_uri,
37099
+ :completion_criteria,
37100
+ :forecast_frequency,
37101
+ :forecast_horizon,
37102
+ :forecast_quantiles,
37103
+ :transformations,
37104
+ :time_series_config)
37105
+ SENSITIVE = []
37106
+ include Aws::Structure
37107
+ end
37108
+
36912
37109
  # Time series forecast settings for the SageMaker Canvas application.
36913
37110
  #
36914
37111
  # @!attribute [rw] status
@@ -36941,6 +37138,56 @@ module Aws::SageMaker
36941
37138
  include Aws::Structure
36942
37139
  end
36943
37140
 
37141
+ # Transformations allowed on the dataset. Supported transformations are
37142
+ # `Filling` and `Aggregation`. `Filling` specifies how to add values to
37143
+ # missing values in the dataset. `Aggregation` defines how to aggregate
37144
+ # data that does not align with forecast frequency.
37145
+ #
37146
+ # @!attribute [rw] filling
37147
+ # A key value pair defining the filling method for a column, where the
37148
+ # key is the column name and the value is an object which defines the
37149
+ # filling logic. You can specify multiple filling methods for a single
37150
+ # column.
37151
+ #
37152
+ # The supported filling methods and their corresponding options are:
37153
+ #
37154
+ # * `frontfill`: `none` (Supported only for target column)
37155
+ #
37156
+ # * `middlefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37157
+ #
37158
+ # * `backfill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37159
+ #
37160
+ # * `futurefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37161
+ #
37162
+ # To set a filling method to a specific value, set the fill parameter
37163
+ # to the chosen filling method value (for example `"backfill" :
37164
+ # "value"`), and define the filling value in an additional parameter
37165
+ # prefixed with "\_value". For example, to set `backfill` to a value
37166
+ # of `2`, you must include two parameters: `"backfill": "value"` and
37167
+ # `"backfill_value":"2"`.
37168
+ # @return [Hash<String,Hash<String,String>>]
37169
+ #
37170
+ # @!attribute [rw] aggregation
37171
+ # A key value pair defining the aggregation method for a column, where
37172
+ # the key is the column name and the value is the aggregation method.
37173
+ #
37174
+ # The supported aggregation methods are `sum` (default), `avg`,
37175
+ # `first`, `min`, `max`.
37176
+ #
37177
+ # <note markdown="1"> Aggregation is only supported for the target column.
37178
+ #
37179
+ # </note>
37180
+ # @return [Hash<String,String>]
37181
+ #
37182
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesTransformations AWS API Documentation
37183
+ #
37184
+ class TimeSeriesTransformations < Struct.new(
37185
+ :filling,
37186
+ :aggregation)
37187
+ SENSITIVE = []
37188
+ include Aws::Structure
37189
+ end
37190
+
36944
37191
  # Defines the traffic pattern of the load test.
36945
37192
  #
36946
37193
  # @!attribute [rw] traffic_type
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.190.0'
56
+ GEM_VERSION = '1.192.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.190.0
4
+ version: 1.192.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-06-27 00:00:00.000000000 Z
11
+ date: 2023-06-29 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.174.0
22
+ version: 3.176.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.174.0
32
+ version: 3.176.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement