aws-sdk-sagemaker 1.190.0 → 1.192.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +87 -27
- data/lib/aws-sdk-sagemaker/client_api.rb +55 -0
- data/lib/aws-sdk-sagemaker/types.rb +258 -11
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +4 -4
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: ea2b0bfd3b4390fa357475a5d054208271cd3aaf4e450e89531bf0f205b22a66
|
4
|
+
data.tar.gz: b84a2185dffd514d6f76fa68a05b2f546939b70177779278f88853e7e328be0a
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: d8835cdf47bbb5c4e1b3bbc42cb782b0da023e3cb3790deeb32d6f006c901999aa620e04aea27f688410d70c0fed4efe8d970f592c0b1d9a36b6514f765c5d0c
|
7
|
+
data.tar.gz: abe87a3fa189453639cb875bdcd2750775c3f9716ea8fca2803879cfbc3252ed496954e2bd1f53452e4f0a0c9932331c05e80c36e1dfa138dc1a83d720c509e1
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.192.0 (2023-06-29)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
|
8
|
+
|
9
|
+
1.191.0 (2023-06-28)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - This release adds support for Model Cards Model Registry integration.
|
13
|
+
|
4
14
|
1.190.0 (2023-06-27)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.192.0
|
@@ -1307,7 +1307,7 @@ module Aws::SageMaker
|
|
1307
1307
|
# },
|
1308
1308
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
1309
1309
|
# auto_ml_job_objective: {
|
1310
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1310
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
|
1311
1311
|
# },
|
1312
1312
|
# auto_ml_job_config: {
|
1313
1313
|
# completion_criteria: {
|
@@ -1405,12 +1405,14 @@ module Aws::SageMaker
|
|
1405
1405
|
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
1406
1406
|
# parameters. The supported formats depend on the problem type:
|
1407
1407
|
#
|
1408
|
-
# * For
|
1408
|
+
# * For tabular problem types: `S3Prefix`, `ManifestFile`.
|
1409
1409
|
#
|
1410
|
-
# * For
|
1410
|
+
# * For image classification: `S3Prefix`, `ManifestFile`,
|
1411
1411
|
# `AugmentedManifestFile`.
|
1412
1412
|
#
|
1413
|
-
# * For
|
1413
|
+
# * For text classification: `S3Prefix`.
|
1414
|
+
#
|
1415
|
+
# * For time-series forecasting: `S3Prefix`.
|
1414
1416
|
#
|
1415
1417
|
#
|
1416
1418
|
#
|
@@ -1470,6 +1472,12 @@ module Aws::SageMaker
|
|
1470
1472
|
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
1471
1473
|
# must be less than 2 GB in size.
|
1472
1474
|
#
|
1475
|
+
# <note markdown="1"> This attribute must not be set for the time-series forecasting problem
|
1476
|
+
# type, as Autopilot automatically splits the input dataset into
|
1477
|
+
# training and validation sets.
|
1478
|
+
#
|
1479
|
+
# </note>
|
1480
|
+
#
|
1473
1481
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1474
1482
|
#
|
1475
1483
|
# * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1532,6 +1540,33 @@ module Aws::SageMaker
|
|
1532
1540
|
# target_attribute_name: "TargetAttributeName", # required
|
1533
1541
|
# sample_weight_attribute_name: "SampleWeightAttributeName",
|
1534
1542
|
# },
|
1543
|
+
# time_series_forecasting_job_config: {
|
1544
|
+
# feature_specification_s3_uri: "S3Uri",
|
1545
|
+
# completion_criteria: {
|
1546
|
+
# max_candidates: 1,
|
1547
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1548
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1549
|
+
# },
|
1550
|
+
# forecast_frequency: "ForecastFrequency", # required
|
1551
|
+
# forecast_horizon: 1, # required
|
1552
|
+
# forecast_quantiles: ["ForecastQuantile"],
|
1553
|
+
# transformations: {
|
1554
|
+
# filling: {
|
1555
|
+
# "TransformationAttributeName" => {
|
1556
|
+
# "frontfill" => "FillingTransformationValue",
|
1557
|
+
# },
|
1558
|
+
# },
|
1559
|
+
# aggregation: {
|
1560
|
+
# "TransformationAttributeName" => "sum", # accepts sum, avg, first, min, max
|
1561
|
+
# },
|
1562
|
+
# },
|
1563
|
+
# time_series_config: { # required
|
1564
|
+
# target_attribute_name: "TargetAttributeName", # required
|
1565
|
+
# timestamp_attribute_name: "TimestampAttributeName", # required
|
1566
|
+
# item_identifier_attribute_name: "ItemIdentifierAttributeName", # required
|
1567
|
+
# grouping_attribute_names: ["GroupingAttributeName"],
|
1568
|
+
# },
|
1569
|
+
# },
|
1535
1570
|
# },
|
1536
1571
|
# role_arn: "RoleArn", # required
|
1537
1572
|
# tags: [
|
@@ -1549,7 +1584,7 @@ module Aws::SageMaker
|
|
1549
1584
|
# },
|
1550
1585
|
# },
|
1551
1586
|
# auto_ml_job_objective: {
|
1552
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1587
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
|
1553
1588
|
# },
|
1554
1589
|
# model_deploy_config: {
|
1555
1590
|
# auto_generate_endpoint_name: false,
|
@@ -6459,7 +6494,11 @@ module Aws::SageMaker
|
|
6459
6494
|
# The display name of the pipeline.
|
6460
6495
|
#
|
6461
6496
|
# @option params [String] :pipeline_definition
|
6462
|
-
# The JSON pipeline definition of the pipeline.
|
6497
|
+
# The [JSON pipeline definition][1] of the pipeline.
|
6498
|
+
#
|
6499
|
+
#
|
6500
|
+
#
|
6501
|
+
# [1]: https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/
|
6463
6502
|
#
|
6464
6503
|
# @option params [Types::PipelineDefinitionS3Location] :pipeline_definition_s3_location
|
6465
6504
|
# The location of the pipeline definition stored in Amazon S3. If
|
@@ -10087,7 +10126,7 @@ module Aws::SageMaker
|
|
10087
10126
|
# resp.output_data_config.kms_key_id #=> String
|
10088
10127
|
# resp.output_data_config.s3_output_path #=> String
|
10089
10128
|
# resp.role_arn #=> String
|
10090
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10129
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10091
10130
|
# resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10092
10131
|
# resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
|
10093
10132
|
# resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -10112,9 +10151,9 @@ module Aws::SageMaker
|
|
10112
10151
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
10113
10152
|
# resp.best_candidate.candidate_name #=> String
|
10114
10153
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
10115
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10154
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10116
10155
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
10117
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10156
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10118
10157
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
10119
10158
|
# resp.best_candidate.candidate_steps #=> Array
|
10120
10159
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10132,11 +10171,12 @@ module Aws::SageMaker
|
|
10132
10171
|
# resp.best_candidate.failure_reason #=> String
|
10133
10172
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
10134
10173
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
10174
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
10135
10175
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
10136
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10176
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10137
10177
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10138
10178
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10139
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
10179
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10140
10180
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10141
10181
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10142
10182
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10144,11 +10184,11 @@ module Aws::SageMaker
|
|
10144
10184
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
|
10145
10185
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
|
10146
10186
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
10147
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
10187
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
10148
10188
|
# resp.generate_candidate_definitions_only #=> Boolean
|
10149
10189
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10150
10190
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10151
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10191
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10152
10192
|
# resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10153
10193
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10154
10194
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -10221,7 +10261,7 @@ module Aws::SageMaker
|
|
10221
10261
|
# resp.output_data_config.kms_key_id #=> String
|
10222
10262
|
# resp.output_data_config.s3_output_path #=> String
|
10223
10263
|
# resp.role_arn #=> String
|
10224
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10264
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10225
10265
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_candidates #=> Integer
|
10226
10266
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10227
10267
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
@@ -10242,6 +10282,24 @@ module Aws::SageMaker
|
|
10242
10282
|
# resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10243
10283
|
# resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
|
10244
10284
|
# resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
|
10285
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.feature_specification_s3_uri #=> String
|
10286
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_candidates #=> Integer
|
10287
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10288
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10289
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_frequency #=> String
|
10290
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_horizon #=> Integer
|
10291
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles #=> Array
|
10292
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles[0] #=> String
|
10293
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling #=> Hash
|
10294
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"] #=> Hash
|
10295
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"]["FillingType"] #=> String
|
10296
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation #=> Hash
|
10297
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation["TransformationAttributeName"] #=> String, one of "sum", "avg", "first", "min", "max"
|
10298
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.target_attribute_name #=> String
|
10299
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.timestamp_attribute_name #=> String
|
10300
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.item_identifier_attribute_name #=> String
|
10301
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names #=> Array
|
10302
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
|
10245
10303
|
# resp.creation_time #=> Time
|
10246
10304
|
# resp.end_time #=> Time
|
10247
10305
|
# resp.last_modified_time #=> Time
|
@@ -10250,9 +10308,9 @@ module Aws::SageMaker
|
|
10250
10308
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
10251
10309
|
# resp.best_candidate.candidate_name #=> String
|
10252
10310
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
10253
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10311
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10254
10312
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
10255
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10313
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10256
10314
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
10257
10315
|
# resp.best_candidate.candidate_steps #=> Array
|
10258
10316
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10270,11 +10328,12 @@ module Aws::SageMaker
|
|
10270
10328
|
# resp.best_candidate.failure_reason #=> String
|
10271
10329
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
10272
10330
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
10331
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
10273
10332
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
10274
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10333
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10275
10334
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10276
10335
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10277
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
10336
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10278
10337
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10279
10338
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10280
10339
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10282,7 +10341,7 @@ module Aws::SageMaker
|
|
10282
10341
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
|
10283
10342
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
|
10284
10343
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
10285
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
10344
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
10286
10345
|
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
10287
10346
|
# resp.model_deploy_config.endpoint_name #=> String
|
10288
10347
|
# resp.model_deploy_result.endpoint_name #=> String
|
@@ -10295,12 +10354,12 @@ module Aws::SageMaker
|
|
10295
10354
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
10296
10355
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10297
10356
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10298
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10357
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10299
10358
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10300
10359
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10301
10360
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10302
10361
|
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10303
|
-
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
|
10362
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
|
10304
10363
|
#
|
10305
10364
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10306
10365
|
#
|
@@ -15450,7 +15509,7 @@ module Aws::SageMaker
|
|
15450
15509
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
15451
15510
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
15452
15511
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
15453
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
15512
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
15454
15513
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
15455
15514
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
15456
15515
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
@@ -15517,9 +15576,9 @@ module Aws::SageMaker
|
|
15517
15576
|
# resp.candidates #=> Array
|
15518
15577
|
# resp.candidates[0].candidate_name #=> String
|
15519
15578
|
# resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
15520
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15579
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15521
15580
|
# resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
|
15522
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15581
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15523
15582
|
# resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
15524
15583
|
# resp.candidates[0].candidate_steps #=> Array
|
15525
15584
|
# resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -15537,11 +15596,12 @@ module Aws::SageMaker
|
|
15537
15596
|
# resp.candidates[0].failure_reason #=> String
|
15538
15597
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
15539
15598
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
|
15599
|
+
# resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
15540
15600
|
# resp.candidates[0].candidate_properties.candidate_metrics #=> Array
|
15541
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15601
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15542
15602
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
15543
15603
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
15544
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
15604
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15545
15605
|
# resp.candidates[0].inference_container_definitions #=> Hash
|
15546
15606
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
15547
15607
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -23758,7 +23818,7 @@ module Aws::SageMaker
|
|
23758
23818
|
params: params,
|
23759
23819
|
config: config)
|
23760
23820
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23761
|
-
context[:gem_version] = '1.
|
23821
|
+
context[:gem_version] = '1.192.0'
|
23762
23822
|
Seahorse::Client::Request.new(handlers, context)
|
23763
23823
|
end
|
23764
23824
|
|
@@ -29,6 +29,8 @@ module Aws::SageMaker
|
|
29
29
|
AdditionalInferenceSpecifications = Shapes::ListShape.new(name: 'AdditionalInferenceSpecifications')
|
30
30
|
AgentVersion = Shapes::StructureShape.new(name: 'AgentVersion')
|
31
31
|
AgentVersions = Shapes::ListShape.new(name: 'AgentVersions')
|
32
|
+
AggregationTransformationValue = Shapes::StringShape.new(name: 'AggregationTransformationValue')
|
33
|
+
AggregationTransformations = Shapes::MapShape.new(name: 'AggregationTransformations')
|
32
34
|
Alarm = Shapes::StructureShape.new(name: 'Alarm')
|
33
35
|
AlarmList = Shapes::ListShape.new(name: 'AlarmList')
|
34
36
|
AlarmName = Shapes::StringShape.new(name: 'AlarmName')
|
@@ -152,6 +154,7 @@ module Aws::SageMaker
|
|
152
154
|
Autotune = Shapes::StructureShape.new(name: 'Autotune')
|
153
155
|
AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
|
154
156
|
AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
|
157
|
+
BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
|
155
158
|
BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
|
156
159
|
BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
|
157
160
|
BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
|
@@ -781,6 +784,10 @@ module Aws::SageMaker
|
|
781
784
|
FileSystemDataSource = Shapes::StructureShape.new(name: 'FileSystemDataSource')
|
782
785
|
FileSystemId = Shapes::StringShape.new(name: 'FileSystemId')
|
783
786
|
FileSystemType = Shapes::StringShape.new(name: 'FileSystemType')
|
787
|
+
FillingTransformationMap = Shapes::MapShape.new(name: 'FillingTransformationMap')
|
788
|
+
FillingTransformationValue = Shapes::StringShape.new(name: 'FillingTransformationValue')
|
789
|
+
FillingTransformations = Shapes::MapShape.new(name: 'FillingTransformations')
|
790
|
+
FillingType = Shapes::StringShape.new(name: 'FillingType')
|
784
791
|
Filter = Shapes::StructureShape.new(name: 'Filter')
|
785
792
|
FilterList = Shapes::ListShape.new(name: 'FilterList')
|
786
793
|
FilterValue = Shapes::StringShape.new(name: 'FilterValue')
|
@@ -801,6 +808,10 @@ module Aws::SageMaker
|
|
801
808
|
FlowDefinitionTaskKeywords = Shapes::ListShape.new(name: 'FlowDefinitionTaskKeywords')
|
802
809
|
FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
|
803
810
|
FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
|
811
|
+
ForecastFrequency = Shapes::StringShape.new(name: 'ForecastFrequency')
|
812
|
+
ForecastHorizon = Shapes::IntegerShape.new(name: 'ForecastHorizon')
|
813
|
+
ForecastQuantile = Shapes::StringShape.new(name: 'ForecastQuantile')
|
814
|
+
ForecastQuantiles = Shapes::ListShape.new(name: 'ForecastQuantiles')
|
804
815
|
Framework = Shapes::StringShape.new(name: 'Framework')
|
805
816
|
FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
|
806
817
|
GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
|
@@ -818,6 +829,8 @@ module Aws::SageMaker
|
|
818
829
|
GitConfigForUpdate = Shapes::StructureShape.new(name: 'GitConfigForUpdate')
|
819
830
|
GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
|
820
831
|
Group = Shapes::StringShape.new(name: 'Group')
|
832
|
+
GroupingAttributeName = Shapes::StringShape.new(name: 'GroupingAttributeName')
|
833
|
+
GroupingAttributeNames = Shapes::ListShape.new(name: 'GroupingAttributeNames')
|
821
834
|
Groups = Shapes::ListShape.new(name: 'Groups')
|
822
835
|
HookParameters = Shapes::MapShape.new(name: 'HookParameters')
|
823
836
|
Horovod = Shapes::BooleanShape.new(name: 'Horovod')
|
@@ -972,6 +985,7 @@ module Aws::SageMaker
|
|
972
985
|
InvocationsMaxRetries = Shapes::IntegerShape.new(name: 'InvocationsMaxRetries')
|
973
986
|
InvocationsTimeoutInSeconds = Shapes::IntegerShape.new(name: 'InvocationsTimeoutInSeconds')
|
974
987
|
IotRoleAlias = Shapes::StringShape.new(name: 'IotRoleAlias')
|
988
|
+
ItemIdentifierAttributeName = Shapes::StringShape.new(name: 'ItemIdentifierAttributeName')
|
975
989
|
JobDurationInSeconds = Shapes::IntegerShape.new(name: 'JobDurationInSeconds')
|
976
990
|
JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
|
977
991
|
JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
|
@@ -1829,8 +1843,12 @@ module Aws::SageMaker
|
|
1829
1843
|
TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
|
1830
1844
|
TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
|
1831
1845
|
ThingName = Shapes::StringShape.new(name: 'ThingName')
|
1846
|
+
TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
|
1847
|
+
TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
|
1832
1848
|
TimeSeriesForecastingSettings = Shapes::StructureShape.new(name: 'TimeSeriesForecastingSettings')
|
1849
|
+
TimeSeriesTransformations = Shapes::StructureShape.new(name: 'TimeSeriesTransformations')
|
1833
1850
|
Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
|
1851
|
+
TimestampAttributeName = Shapes::StringShape.new(name: 'TimestampAttributeName')
|
1834
1852
|
TrafficDurationInSeconds = Shapes::IntegerShape.new(name: 'TrafficDurationInSeconds')
|
1835
1853
|
TrafficPattern = Shapes::StructureShape.new(name: 'TrafficPattern')
|
1836
1854
|
TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
|
@@ -1884,6 +1902,7 @@ module Aws::SageMaker
|
|
1884
1902
|
TransformOutput = Shapes::StructureShape.new(name: 'TransformOutput')
|
1885
1903
|
TransformResources = Shapes::StructureShape.new(name: 'TransformResources')
|
1886
1904
|
TransformS3DataSource = Shapes::StructureShape.new(name: 'TransformS3DataSource')
|
1905
|
+
TransformationAttributeName = Shapes::StringShape.new(name: 'TransformationAttributeName')
|
1887
1906
|
Trial = Shapes::StructureShape.new(name: 'Trial')
|
1888
1907
|
TrialArn = Shapes::StringShape.new(name: 'TrialArn')
|
1889
1908
|
TrialComponent = Shapes::StructureShape.new(name: 'TrialComponent')
|
@@ -2084,6 +2103,9 @@ module Aws::SageMaker
|
|
2084
2103
|
|
2085
2104
|
AgentVersions.member = Shapes::ShapeRef.new(shape: AgentVersion)
|
2086
2105
|
|
2106
|
+
AggregationTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
|
2107
|
+
AggregationTransformations.value = Shapes::ShapeRef.new(shape: AggregationTransformationValue)
|
2108
|
+
|
2087
2109
|
Alarm.add_member(:alarm_name, Shapes::ShapeRef.new(shape: AlarmName, location_name: "AlarmName"))
|
2088
2110
|
Alarm.struct_class = Types::Alarm
|
2089
2111
|
|
@@ -2344,10 +2366,12 @@ module Aws::SageMaker
|
|
2344
2366
|
AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
|
2345
2367
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2346
2368
|
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2369
|
+
AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
|
2347
2370
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2348
2371
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2349
2372
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2350
2373
|
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2374
|
+
AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
|
2351
2375
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2352
2376
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2353
2377
|
|
@@ -2448,6 +2472,7 @@ module Aws::SageMaker
|
|
2448
2472
|
|
2449
2473
|
CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
|
2450
2474
|
CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
|
2475
|
+
CandidateArtifactLocations.add_member(:backtest_results, Shapes::ShapeRef.new(shape: BacktestResultsLocation, location_name: "BacktestResults"))
|
2451
2476
|
CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
|
2452
2477
|
|
2453
2478
|
CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
|
@@ -5102,6 +5127,12 @@ module Aws::SageMaker
|
|
5102
5127
|
FileSystemDataSource.add_member(:directory_path, Shapes::ShapeRef.new(shape: DirectoryPath, required: true, location_name: "DirectoryPath"))
|
5103
5128
|
FileSystemDataSource.struct_class = Types::FileSystemDataSource
|
5104
5129
|
|
5130
|
+
FillingTransformationMap.key = Shapes::ShapeRef.new(shape: FillingType)
|
5131
|
+
FillingTransformationMap.value = Shapes::ShapeRef.new(shape: FillingTransformationValue)
|
5132
|
+
|
5133
|
+
FillingTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
|
5134
|
+
FillingTransformations.value = Shapes::ShapeRef.new(shape: FillingTransformationMap)
|
5135
|
+
|
5105
5136
|
Filter.add_member(:name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "Name"))
|
5106
5137
|
Filter.add_member(:operator, Shapes::ShapeRef.new(shape: Operator, location_name: "Operator"))
|
5107
5138
|
Filter.add_member(:value, Shapes::ShapeRef.new(shape: FilterValue, location_name: "Value"))
|
@@ -5137,6 +5168,8 @@ module Aws::SageMaker
|
|
5137
5168
|
|
5138
5169
|
FlowDefinitionTaskKeywords.member = Shapes::ShapeRef.new(shape: FlowDefinitionTaskKeyword)
|
5139
5170
|
|
5171
|
+
ForecastQuantiles.member = Shapes::ShapeRef.new(shape: ForecastQuantile)
|
5172
|
+
|
5140
5173
|
GetDeviceFleetReportRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
|
5141
5174
|
GetDeviceFleetReportRequest.struct_class = Types::GetDeviceFleetReportRequest
|
5142
5175
|
|
@@ -5183,6 +5216,8 @@ module Aws::SageMaker
|
|
5183
5216
|
GitConfigForUpdate.add_member(:secret_arn, Shapes::ShapeRef.new(shape: SecretArn, location_name: "SecretArn"))
|
5184
5217
|
GitConfigForUpdate.struct_class = Types::GitConfigForUpdate
|
5185
5218
|
|
5219
|
+
GroupingAttributeNames.member = Shapes::ShapeRef.new(shape: GroupingAttributeName)
|
5220
|
+
|
5186
5221
|
Groups.member = Shapes::ShapeRef.new(shape: Group)
|
5187
5222
|
|
5188
5223
|
HookParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
|
@@ -6762,6 +6797,7 @@ module Aws::SageMaker
|
|
6762
6797
|
ModelCard.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
6763
6798
|
ModelCard.add_member(:model_id, Shapes::ShapeRef.new(shape: String, location_name: "ModelId"))
|
6764
6799
|
ModelCard.add_member(:risk_rating, Shapes::ShapeRef.new(shape: String, location_name: "RiskRating"))
|
6800
|
+
ModelCard.add_member(:model_package_group_name, Shapes::ShapeRef.new(shape: String, location_name: "ModelPackageGroupName"))
|
6765
6801
|
ModelCard.struct_class = Types::ModelCard
|
6766
6802
|
|
6767
6803
|
ModelCardExportArtifacts.add_member(:s3_export_artifacts, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3ExportArtifacts"))
|
@@ -8289,10 +8325,29 @@ module Aws::SageMaker
|
|
8289
8325
|
TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, location_name: "TargetLabelColumn"))
|
8290
8326
|
TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
|
8291
8327
|
|
8328
|
+
TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8329
|
+
TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
|
8330
|
+
TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
|
8331
|
+
TimeSeriesConfig.add_member(:grouping_attribute_names, Shapes::ShapeRef.new(shape: GroupingAttributeNames, location_name: "GroupingAttributeNames"))
|
8332
|
+
TimeSeriesConfig.struct_class = Types::TimeSeriesConfig
|
8333
|
+
|
8334
|
+
TimeSeriesForecastingJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
|
8335
|
+
TimeSeriesForecastingJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8336
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_frequency, Shapes::ShapeRef.new(shape: ForecastFrequency, required: true, location_name: "ForecastFrequency"))
|
8337
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: ForecastHorizon, required: true, location_name: "ForecastHorizon"))
|
8338
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_quantiles, Shapes::ShapeRef.new(shape: ForecastQuantiles, location_name: "ForecastQuantiles"))
|
8339
|
+
TimeSeriesForecastingJobConfig.add_member(:transformations, Shapes::ShapeRef.new(shape: TimeSeriesTransformations, location_name: "Transformations"))
|
8340
|
+
TimeSeriesForecastingJobConfig.add_member(:time_series_config, Shapes::ShapeRef.new(shape: TimeSeriesConfig, required: true, location_name: "TimeSeriesConfig"))
|
8341
|
+
TimeSeriesForecastingJobConfig.struct_class = Types::TimeSeriesForecastingJobConfig
|
8342
|
+
|
8292
8343
|
TimeSeriesForecastingSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
8293
8344
|
TimeSeriesForecastingSettings.add_member(:amazon_forecast_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "AmazonForecastRoleArn"))
|
8294
8345
|
TimeSeriesForecastingSettings.struct_class = Types::TimeSeriesForecastingSettings
|
8295
8346
|
|
8347
|
+
TimeSeriesTransformations.add_member(:filling, Shapes::ShapeRef.new(shape: FillingTransformations, location_name: "Filling"))
|
8348
|
+
TimeSeriesTransformations.add_member(:aggregation, Shapes::ShapeRef.new(shape: AggregationTransformations, location_name: "Aggregation"))
|
8349
|
+
TimeSeriesTransformations.struct_class = Types::TimeSeriesTransformations
|
8350
|
+
|
8296
8351
|
TrafficPattern.add_member(:traffic_type, Shapes::ShapeRef.new(shape: TrafficType, location_name: "TrafficType"))
|
8297
8352
|
TrafficPattern.add_member(:phases, Shapes::ShapeRef.new(shape: Phases, location_name: "Phases"))
|
8298
8353
|
TrafficPattern.struct_class = Types::TrafficPattern
|
@@ -2086,20 +2086,29 @@ module Aws::SageMaker
|
|
2086
2086
|
# The type of channel. Defines whether the data are used for training
|
2087
2087
|
# or validation. The default value is `training`. Channels for
|
2088
2088
|
# `training` and `validation` must share the same `ContentType`
|
2089
|
+
#
|
2090
|
+
# <note markdown="1"> The type of channel defaults to `training` for the time-series
|
2091
|
+
# forecasting problem type.
|
2092
|
+
#
|
2093
|
+
# </note>
|
2089
2094
|
# @return [String]
|
2090
2095
|
#
|
2091
2096
|
# @!attribute [rw] content_type
|
2092
2097
|
# The content type of the data from the input source. The following
|
2093
2098
|
# are the allowed content types for different problems:
|
2094
2099
|
#
|
2095
|
-
# * For
|
2100
|
+
# * For tabular problem types: `text/csv;header=present` or
|
2096
2101
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2097
2102
|
# `text/csv;header=present`.
|
2098
2103
|
#
|
2099
|
-
# * For
|
2104
|
+
# * For image classification: `image/png`, `image/jpeg`, or `image/*`.
|
2100
2105
|
# The default value is `image/*`.
|
2101
2106
|
#
|
2102
|
-
# * For
|
2107
|
+
# * For text classification: `text/csv;header=present` or
|
2108
|
+
# `x-application/vnd.amazon+parquet`. The default value is
|
2109
|
+
# `text/csv;header=present`.
|
2110
|
+
#
|
2111
|
+
# * For time-series forecasting: `text/csv;header=present` or
|
2103
2112
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2104
2113
|
# `text/csv;header=present`.
|
2105
2114
|
# @return [String]
|
@@ -2132,8 +2141,9 @@ module Aws::SageMaker
|
|
2132
2141
|
# @!attribute [rw] max_candidates
|
2133
2142
|
# The maximum number of times a training job is allowed to run.
|
2134
2143
|
#
|
2135
|
-
# For
|
2136
|
-
# supported value is 1.
|
2144
|
+
# For text and image classification, as well as time-series
|
2145
|
+
# forecasting problem types, the supported value is 1. For tabular
|
2146
|
+
# problem types, the maximum value is 750.
|
2137
2147
|
# @return [Integer]
|
2138
2148
|
#
|
2139
2149
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
@@ -2261,6 +2271,9 @@ module Aws::SageMaker
|
|
2261
2271
|
#
|
2262
2272
|
# * For image or text classification problem types: `Accuracy`
|
2263
2273
|
#
|
2274
|
+
# * For time-series forecasting problem types:
|
2275
|
+
# `AverageWeightedQuantileLoss`
|
2276
|
+
#
|
2264
2277
|
#
|
2265
2278
|
#
|
2266
2279
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
@@ -2399,12 +2412,18 @@ module Aws::SageMaker
|
|
2399
2412
|
# type (regression, classification).
|
2400
2413
|
# @return [Types::TabularJobConfig]
|
2401
2414
|
#
|
2415
|
+
# @!attribute [rw] time_series_forecasting_job_config
|
2416
|
+
# Settings used to configure an AutoML job V2 for a time-series
|
2417
|
+
# forecasting problem type.
|
2418
|
+
# @return [Types::TimeSeriesForecastingJobConfig]
|
2419
|
+
#
|
2402
2420
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2403
2421
|
#
|
2404
2422
|
class AutoMLProblemTypeConfig < Struct.new(
|
2405
2423
|
:image_classification_job_config,
|
2406
2424
|
:text_classification_job_config,
|
2407
2425
|
:tabular_job_config,
|
2426
|
+
:time_series_forecasting_job_config,
|
2408
2427
|
:unknown)
|
2409
2428
|
SENSITIVE = []
|
2410
2429
|
include Aws::Structure
|
@@ -2413,6 +2432,7 @@ module Aws::SageMaker
|
|
2413
2432
|
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2414
2433
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2415
2434
|
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2435
|
+
class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
|
2416
2436
|
class Unknown < AutoMLProblemTypeConfig; end
|
2417
2437
|
end
|
2418
2438
|
|
@@ -2987,11 +3007,18 @@ module Aws::SageMaker
|
|
2987
3007
|
# the AutoML candidate.
|
2988
3008
|
# @return [String]
|
2989
3009
|
#
|
3010
|
+
# @!attribute [rw] backtest_results
|
3011
|
+
# The Amazon S3 prefix to the accuracy metrics and the inference
|
3012
|
+
# results observed over the testing window. Available only for the
|
3013
|
+
# time-series forecasting problem type.
|
3014
|
+
# @return [String]
|
3015
|
+
#
|
2990
3016
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
|
2991
3017
|
#
|
2992
3018
|
class CandidateArtifactLocations < Struct.new(
|
2993
3019
|
:explainability,
|
2994
|
-
:model_insights
|
3020
|
+
:model_insights,
|
3021
|
+
:backtest_results)
|
2995
3022
|
SENSITIVE = []
|
2996
3023
|
include Aws::Structure
|
2997
3024
|
end
|
@@ -4717,12 +4744,14 @@ module Aws::SageMaker
|
|
4717
4744
|
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
4718
4745
|
# parameters. The supported formats depend on the problem type:
|
4719
4746
|
#
|
4720
|
-
# * For
|
4747
|
+
# * For tabular problem types: `S3Prefix`, `ManifestFile`.
|
4721
4748
|
#
|
4722
|
-
# * For
|
4749
|
+
# * For image classification: `S3Prefix`, `ManifestFile`,
|
4723
4750
|
# `AugmentedManifestFile`.
|
4724
4751
|
#
|
4725
|
-
# * For
|
4752
|
+
# * For text classification: `S3Prefix`.
|
4753
|
+
#
|
4754
|
+
# * For time-series forecasting: `S3Prefix`.
|
4726
4755
|
#
|
4727
4756
|
#
|
4728
4757
|
#
|
@@ -4789,6 +4818,12 @@ module Aws::SageMaker
|
|
4789
4818
|
# The validation and training datasets must contain the same headers.
|
4790
4819
|
# For jobs created by calling `CreateAutoMLJob`, the validation
|
4791
4820
|
# dataset must be less than 2 GB in size.
|
4821
|
+
#
|
4822
|
+
# <note markdown="1"> This attribute must not be set for the time-series forecasting
|
4823
|
+
# problem type, as Autopilot automatically splits the input dataset
|
4824
|
+
# into training and validation sets.
|
4825
|
+
#
|
4826
|
+
# </note>
|
4792
4827
|
# @return [Types::AutoMLDataSplitConfig]
|
4793
4828
|
#
|
4794
4829
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
@@ -7566,7 +7601,11 @@ module Aws::SageMaker
|
|
7566
7601
|
# @return [String]
|
7567
7602
|
#
|
7568
7603
|
# @!attribute [rw] pipeline_definition
|
7569
|
-
# The JSON pipeline definition of the pipeline.
|
7604
|
+
# The [JSON pipeline definition][1] of the pipeline.
|
7605
|
+
#
|
7606
|
+
#
|
7607
|
+
#
|
7608
|
+
# [1]: https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/
|
7570
7609
|
# @return [String]
|
7571
7610
|
#
|
7572
7611
|
# @!attribute [rw] pipeline_definition_s3_location
|
@@ -27982,6 +28021,12 @@ module Aws::SageMaker
|
|
27982
28021
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-risk-rating.html
|
27983
28022
|
# @return [String]
|
27984
28023
|
#
|
28024
|
+
# @!attribute [rw] model_package_group_name
|
28025
|
+
# The model package group that contains the model package. Only
|
28026
|
+
# relevant for model cards created for model packages in the Amazon
|
28027
|
+
# SageMaker Model Registry.
|
28028
|
+
# @return [String]
|
28029
|
+
#
|
27985
28030
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelCard AWS API Documentation
|
27986
28031
|
#
|
27987
28032
|
class ModelCard < Struct.new(
|
@@ -27997,7 +28042,8 @@ module Aws::SageMaker
|
|
27997
28042
|
:last_modified_by,
|
27998
28043
|
:tags,
|
27999
28044
|
:model_id,
|
28000
|
-
:risk_rating
|
28045
|
+
:risk_rating,
|
28046
|
+
:model_package_group_name)
|
28001
28047
|
SENSITIVE = [:content]
|
28002
28048
|
include Aws::Structure
|
28003
28049
|
end
|
@@ -36909,6 +36955,157 @@ module Aws::SageMaker
|
|
36909
36955
|
include Aws::Structure
|
36910
36956
|
end
|
36911
36957
|
|
36958
|
+
# The collection of components that defines the time-series.
|
36959
|
+
#
|
36960
|
+
# @!attribute [rw] target_attribute_name
|
36961
|
+
# The name of the column representing the target variable that you
|
36962
|
+
# want to predict for each item in your dataset. The data type of the
|
36963
|
+
# target variable must be numerical.
|
36964
|
+
# @return [String]
|
36965
|
+
#
|
36966
|
+
# @!attribute [rw] timestamp_attribute_name
|
36967
|
+
# The name of the column indicating a point in time at which the
|
36968
|
+
# target value of a given item is recorded.
|
36969
|
+
# @return [String]
|
36970
|
+
#
|
36971
|
+
# @!attribute [rw] item_identifier_attribute_name
|
36972
|
+
# The name of the column that represents the set of item identifiers
|
36973
|
+
# for which you want to predict the target value.
|
36974
|
+
# @return [String]
|
36975
|
+
#
|
36976
|
+
# @!attribute [rw] grouping_attribute_names
|
36977
|
+
# A set of columns names that can be grouped with the item identifier
|
36978
|
+
# column to create a composite key for which a target value is
|
36979
|
+
# predicted.
|
36980
|
+
# @return [Array<String>]
|
36981
|
+
#
|
36982
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesConfig AWS API Documentation
|
36983
|
+
#
|
36984
|
+
class TimeSeriesConfig < Struct.new(
|
36985
|
+
:target_attribute_name,
|
36986
|
+
:timestamp_attribute_name,
|
36987
|
+
:item_identifier_attribute_name,
|
36988
|
+
:grouping_attribute_names)
|
36989
|
+
SENSITIVE = []
|
36990
|
+
include Aws::Structure
|
36991
|
+
end
|
36992
|
+
|
36993
|
+
# The collection of settings used by an AutoML job V2 for the
|
36994
|
+
# time-series forecasting problem type.
|
36995
|
+
#
|
36996
|
+
# <note markdown="1"> The `TimeSeriesForecastingJobConfig` problem type is only available in
|
36997
|
+
# private beta. Contact Amazon Web Services Support or your account
|
36998
|
+
# manager to learn more about access privileges.
|
36999
|
+
#
|
37000
|
+
# </note>
|
37001
|
+
#
|
37002
|
+
# @!attribute [rw] feature_specification_s3_uri
|
37003
|
+
# A URL to the Amazon S3 data source containing additional selected
|
37004
|
+
# features that complement the target, itemID, timestamp, and grouped
|
37005
|
+
# columns set in `TimeSeriesConfig`. When not provided, the AutoML job
|
37006
|
+
# V2 includes all the columns from the original dataset that are not
|
37007
|
+
# already declared in `TimeSeriesConfig`. If provided, the AutoML job
|
37008
|
+
# V2 only considers these additional columns as a complement to the
|
37009
|
+
# ones declared in `TimeSeriesConfig`.
|
37010
|
+
#
|
37011
|
+
# You can input `FeatureAttributeNames` (optional) in JSON format as
|
37012
|
+
# shown below:
|
37013
|
+
#
|
37014
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
37015
|
+
#
|
37016
|
+
# You can also specify the data type of the feature (optional) in the
|
37017
|
+
# format shown below:
|
37018
|
+
#
|
37019
|
+
# `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
|
37020
|
+
# \} \}`
|
37021
|
+
#
|
37022
|
+
# Autopilot supports the following data types: `numeric`,
|
37023
|
+
# `categorical`, `text`, and `datetime`.
|
37024
|
+
#
|
37025
|
+
# <note markdown="1"> These column keys must not include any column set in
|
37026
|
+
# `TimeSeriesConfig`.
|
37027
|
+
#
|
37028
|
+
# </note>
|
37029
|
+
#
|
37030
|
+
# When not provided, the AutoML job V2 includes all the columns from
|
37031
|
+
# the original dataset that are not already declared in
|
37032
|
+
# `TimeSeriesConfig`. If provided, the AutoML job V2 only considers
|
37033
|
+
# these additional columns as a complement to the ones declared in
|
37034
|
+
# `TimeSeriesConfig`.
|
37035
|
+
#
|
37036
|
+
# Autopilot supports the following data types: `numeric`,
|
37037
|
+
# `categorical`, `text`, and `datetime`.
|
37038
|
+
# @return [String]
|
37039
|
+
#
|
37040
|
+
# @!attribute [rw] completion_criteria
|
37041
|
+
# How long a job is allowed to run, or how many candidates a job is
|
37042
|
+
# allowed to generate.
|
37043
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
37044
|
+
#
|
37045
|
+
# @!attribute [rw] forecast_frequency
|
37046
|
+
# The frequency of predictions in a forecast.
|
37047
|
+
#
|
37048
|
+
# Valid intervals are an integer followed by Y (Year), M (Month), W
|
37049
|
+
# (Week), D (Day), H (Hour), and min (Minute). For example, `1D`
|
37050
|
+
# indicates every day and `15min` indicates every 15 minutes. The
|
37051
|
+
# value of a frequency must not overlap with the next larger
|
37052
|
+
# frequency. For example, you must use a frequency of `1H` instead of
|
37053
|
+
# `60min`.
|
37054
|
+
#
|
37055
|
+
# The valid values for each frequency are the following:
|
37056
|
+
#
|
37057
|
+
# * Minute - 1-59
|
37058
|
+
#
|
37059
|
+
# * Hour - 1-23
|
37060
|
+
#
|
37061
|
+
# * Day - 1-6
|
37062
|
+
#
|
37063
|
+
# * Week - 1-4
|
37064
|
+
#
|
37065
|
+
# * Month - 1-11
|
37066
|
+
#
|
37067
|
+
# * Year - 1
|
37068
|
+
# @return [String]
|
37069
|
+
#
|
37070
|
+
# @!attribute [rw] forecast_horizon
|
37071
|
+
# The number of time-steps that the model predicts. The forecast
|
37072
|
+
# horizon is also called the prediction length. The maximum forecast
|
37073
|
+
# horizon is the lesser of 500 time-steps or 1/4 of the time-steps in
|
37074
|
+
# the dataset.
|
37075
|
+
# @return [Integer]
|
37076
|
+
#
|
37077
|
+
# @!attribute [rw] forecast_quantiles
|
37078
|
+
# The quantiles used to train the model for forecasts at a specified
|
37079
|
+
# quantile. You can specify quantiles from `0.01` (p1) to `0.99`
|
37080
|
+
# (p99), by increments of 0.01 or higher. Up to five forecast
|
37081
|
+
# quantiles can be specified. When `ForecastQuantiles` is not
|
37082
|
+
# provided, the AutoML job uses the quantiles p10, p50, and p90 as
|
37083
|
+
# default.
|
37084
|
+
# @return [Array<String>]
|
37085
|
+
#
|
37086
|
+
# @!attribute [rw] transformations
|
37087
|
+
# The transformations modifying specific attributes of the
|
37088
|
+
# time-series, such as filling strategies for missing values.
|
37089
|
+
# @return [Types::TimeSeriesTransformations]
|
37090
|
+
#
|
37091
|
+
# @!attribute [rw] time_series_config
|
37092
|
+
# The collection of components that defines the time-series.
|
37093
|
+
# @return [Types::TimeSeriesConfig]
|
37094
|
+
#
|
37095
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesForecastingJobConfig AWS API Documentation
|
37096
|
+
#
|
37097
|
+
class TimeSeriesForecastingJobConfig < Struct.new(
|
37098
|
+
:feature_specification_s3_uri,
|
37099
|
+
:completion_criteria,
|
37100
|
+
:forecast_frequency,
|
37101
|
+
:forecast_horizon,
|
37102
|
+
:forecast_quantiles,
|
37103
|
+
:transformations,
|
37104
|
+
:time_series_config)
|
37105
|
+
SENSITIVE = []
|
37106
|
+
include Aws::Structure
|
37107
|
+
end
|
37108
|
+
|
36912
37109
|
# Time series forecast settings for the SageMaker Canvas application.
|
36913
37110
|
#
|
36914
37111
|
# @!attribute [rw] status
|
@@ -36941,6 +37138,56 @@ module Aws::SageMaker
|
|
36941
37138
|
include Aws::Structure
|
36942
37139
|
end
|
36943
37140
|
|
37141
|
+
# Transformations allowed on the dataset. Supported transformations are
|
37142
|
+
# `Filling` and `Aggregation`. `Filling` specifies how to add values to
|
37143
|
+
# missing values in the dataset. `Aggregation` defines how to aggregate
|
37144
|
+
# data that does not align with forecast frequency.
|
37145
|
+
#
|
37146
|
+
# @!attribute [rw] filling
|
37147
|
+
# A key value pair defining the filling method for a column, where the
|
37148
|
+
# key is the column name and the value is an object which defines the
|
37149
|
+
# filling logic. You can specify multiple filling methods for a single
|
37150
|
+
# column.
|
37151
|
+
#
|
37152
|
+
# The supported filling methods and their corresponding options are:
|
37153
|
+
#
|
37154
|
+
# * `frontfill`: `none` (Supported only for target column)
|
37155
|
+
#
|
37156
|
+
# * `middlefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37157
|
+
#
|
37158
|
+
# * `backfill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37159
|
+
#
|
37160
|
+
# * `futurefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37161
|
+
#
|
37162
|
+
# To set a filling method to a specific value, set the fill parameter
|
37163
|
+
# to the chosen filling method value (for example `"backfill" :
|
37164
|
+
# "value"`), and define the filling value in an additional parameter
|
37165
|
+
# prefixed with "\_value". For example, to set `backfill` to a value
|
37166
|
+
# of `2`, you must include two parameters: `"backfill": "value"` and
|
37167
|
+
# `"backfill_value":"2"`.
|
37168
|
+
# @return [Hash<String,Hash<String,String>>]
|
37169
|
+
#
|
37170
|
+
# @!attribute [rw] aggregation
|
37171
|
+
# A key value pair defining the aggregation method for a column, where
|
37172
|
+
# the key is the column name and the value is the aggregation method.
|
37173
|
+
#
|
37174
|
+
# The supported aggregation methods are `sum` (default), `avg`,
|
37175
|
+
# `first`, `min`, `max`.
|
37176
|
+
#
|
37177
|
+
# <note markdown="1"> Aggregation is only supported for the target column.
|
37178
|
+
#
|
37179
|
+
# </note>
|
37180
|
+
# @return [Hash<String,String>]
|
37181
|
+
#
|
37182
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesTransformations AWS API Documentation
|
37183
|
+
#
|
37184
|
+
class TimeSeriesTransformations < Struct.new(
|
37185
|
+
:filling,
|
37186
|
+
:aggregation)
|
37187
|
+
SENSITIVE = []
|
37188
|
+
include Aws::Structure
|
37189
|
+
end
|
37190
|
+
|
36944
37191
|
# Defines the traffic pattern of the load test.
|
36945
37192
|
#
|
36946
37193
|
# @!attribute [rw] traffic_type
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.192.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-06-
|
11
|
+
date: 2023-06-29 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|
@@ -19,7 +19,7 @@ dependencies:
|
|
19
19
|
version: '3'
|
20
20
|
- - ">="
|
21
21
|
- !ruby/object:Gem::Version
|
22
|
-
version: 3.
|
22
|
+
version: 3.176.0
|
23
23
|
type: :runtime
|
24
24
|
prerelease: false
|
25
25
|
version_requirements: !ruby/object:Gem::Requirement
|
@@ -29,7 +29,7 @@ dependencies:
|
|
29
29
|
version: '3'
|
30
30
|
- - ">="
|
31
31
|
- !ruby/object:Gem::Version
|
32
|
-
version: 3.
|
32
|
+
version: 3.176.0
|
33
33
|
- !ruby/object:Gem::Dependency
|
34
34
|
name: aws-sigv4
|
35
35
|
requirement: !ruby/object:Gem::Requirement
|