aws-sdk-sagemaker 1.190.0 → 1.192.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 8953db051e1dac139e51b19da6df9abf774ab717601ee34a250b124863d8d314
4
- data.tar.gz: 1f8d8fb9af2d2f1eec3a226cda316912993ae515b3484aee34faf69de7dfd258
3
+ metadata.gz: ea2b0bfd3b4390fa357475a5d054208271cd3aaf4e450e89531bf0f205b22a66
4
+ data.tar.gz: b84a2185dffd514d6f76fa68a05b2f546939b70177779278f88853e7e328be0a
5
5
  SHA512:
6
- metadata.gz: cc46416a136c19e15e3b9e2c12bf497a5d181d2c514552bd1890a5b917a871f6beac5413db3cd30d296662e55f96a9df4ffb5cdace8ccc46edeb2f8bbc4ea579
7
- data.tar.gz: b95d619ca2cd9deceab158d09d46b7db69bbaf56b38369d03e73fc67632f0501fec23baa70256b38915b5f5efe75361419ca4052efe37a883ec57332a90b5498
6
+ metadata.gz: d8835cdf47bbb5c4e1b3bbc42cb782b0da023e3cb3790deeb32d6f006c901999aa620e04aea27f688410d70c0fed4efe8d970f592c0b1d9a36b6514f765c5d0c
7
+ data.tar.gz: abe87a3fa189453639cb875bdcd2750775c3f9716ea8fca2803879cfbc3252ed496954e2bd1f53452e4f0a0c9932331c05e80c36e1dfa138dc1a83d720c509e1
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.192.0 (2023-06-29)
5
+ ------------------
6
+
7
+ * Feature - Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
8
+
9
+ 1.191.0 (2023-06-28)
10
+ ------------------
11
+
12
+ * Feature - This release adds support for Model Cards Model Registry integration.
13
+
4
14
  1.190.0 (2023-06-27)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.190.0
1
+ 1.192.0
@@ -1307,7 +1307,7 @@ module Aws::SageMaker
1307
1307
  # },
1308
1308
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
1309
1309
  # auto_ml_job_objective: {
1310
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1310
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
1311
1311
  # },
1312
1312
  # auto_ml_job_config: {
1313
1313
  # completion_criteria: {
@@ -1405,12 +1405,14 @@ module Aws::SageMaker
1405
1405
  # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
1406
1406
  # parameters. The supported formats depend on the problem type:
1407
1407
  #
1408
- # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
1408
+ # * For tabular problem types: `S3Prefix`, `ManifestFile`.
1409
1409
  #
1410
- # * For ImageClassification: `S3Prefix`, `ManifestFile`,
1410
+ # * For image classification: `S3Prefix`, `ManifestFile`,
1411
1411
  # `AugmentedManifestFile`.
1412
1412
  #
1413
- # * For TextClassification: `S3Prefix`.
1413
+ # * For text classification: `S3Prefix`.
1414
+ #
1415
+ # * For time-series forecasting: `S3Prefix`.
1414
1416
  #
1415
1417
  #
1416
1418
  #
@@ -1470,6 +1472,12 @@ module Aws::SageMaker
1470
1472
  # For jobs created by calling `CreateAutoMLJob`, the validation dataset
1471
1473
  # must be less than 2 GB in size.
1472
1474
  #
1475
+ # <note markdown="1"> This attribute must not be set for the time-series forecasting problem
1476
+ # type, as Autopilot automatically splits the input dataset into
1477
+ # training and validation sets.
1478
+ #
1479
+ # </note>
1480
+ #
1473
1481
  # @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1474
1482
  #
1475
1483
  # * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1532,6 +1540,33 @@ module Aws::SageMaker
1532
1540
  # target_attribute_name: "TargetAttributeName", # required
1533
1541
  # sample_weight_attribute_name: "SampleWeightAttributeName",
1534
1542
  # },
1543
+ # time_series_forecasting_job_config: {
1544
+ # feature_specification_s3_uri: "S3Uri",
1545
+ # completion_criteria: {
1546
+ # max_candidates: 1,
1547
+ # max_runtime_per_training_job_in_seconds: 1,
1548
+ # max_auto_ml_job_runtime_in_seconds: 1,
1549
+ # },
1550
+ # forecast_frequency: "ForecastFrequency", # required
1551
+ # forecast_horizon: 1, # required
1552
+ # forecast_quantiles: ["ForecastQuantile"],
1553
+ # transformations: {
1554
+ # filling: {
1555
+ # "TransformationAttributeName" => {
1556
+ # "frontfill" => "FillingTransformationValue",
1557
+ # },
1558
+ # },
1559
+ # aggregation: {
1560
+ # "TransformationAttributeName" => "sum", # accepts sum, avg, first, min, max
1561
+ # },
1562
+ # },
1563
+ # time_series_config: { # required
1564
+ # target_attribute_name: "TargetAttributeName", # required
1565
+ # timestamp_attribute_name: "TimestampAttributeName", # required
1566
+ # item_identifier_attribute_name: "ItemIdentifierAttributeName", # required
1567
+ # grouping_attribute_names: ["GroupingAttributeName"],
1568
+ # },
1569
+ # },
1535
1570
  # },
1536
1571
  # role_arn: "RoleArn", # required
1537
1572
  # tags: [
@@ -1549,7 +1584,7 @@ module Aws::SageMaker
1549
1584
  # },
1550
1585
  # },
1551
1586
  # auto_ml_job_objective: {
1552
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1587
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
1553
1588
  # },
1554
1589
  # model_deploy_config: {
1555
1590
  # auto_generate_endpoint_name: false,
@@ -6459,7 +6494,11 @@ module Aws::SageMaker
6459
6494
  # The display name of the pipeline.
6460
6495
  #
6461
6496
  # @option params [String] :pipeline_definition
6462
- # The JSON pipeline definition of the pipeline.
6497
+ # The [JSON pipeline definition][1] of the pipeline.
6498
+ #
6499
+ #
6500
+ #
6501
+ # [1]: https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/
6463
6502
  #
6464
6503
  # @option params [Types::PipelineDefinitionS3Location] :pipeline_definition_s3_location
6465
6504
  # The location of the pipeline definition stored in Amazon S3. If
@@ -10087,7 +10126,7 @@ module Aws::SageMaker
10087
10126
  # resp.output_data_config.kms_key_id #=> String
10088
10127
  # resp.output_data_config.s3_output_path #=> String
10089
10128
  # resp.role_arn #=> String
10090
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10129
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10091
10130
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10092
10131
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
10093
10132
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -10112,9 +10151,9 @@ module Aws::SageMaker
10112
10151
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
10113
10152
  # resp.best_candidate.candidate_name #=> String
10114
10153
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
10115
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10154
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10116
10155
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
10117
- # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10156
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10118
10157
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
10119
10158
  # resp.best_candidate.candidate_steps #=> Array
10120
10159
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10132,11 +10171,12 @@ module Aws::SageMaker
10132
10171
  # resp.best_candidate.failure_reason #=> String
10133
10172
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
10134
10173
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
10174
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
10135
10175
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
10136
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10176
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10137
10177
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10138
10178
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10139
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
10179
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10140
10180
  # resp.best_candidate.inference_container_definitions #=> Hash
10141
10181
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10142
10182
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10144,11 +10184,11 @@ module Aws::SageMaker
10144
10184
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
10145
10185
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
10146
10186
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
10147
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
10187
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
10148
10188
  # resp.generate_candidate_definitions_only #=> Boolean
10149
10189
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10150
10190
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10151
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10191
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10152
10192
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10153
10193
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10154
10194
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -10221,7 +10261,7 @@ module Aws::SageMaker
10221
10261
  # resp.output_data_config.kms_key_id #=> String
10222
10262
  # resp.output_data_config.s3_output_path #=> String
10223
10263
  # resp.role_arn #=> String
10224
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10264
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10225
10265
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_candidates #=> Integer
10226
10266
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10227
10267
  # resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
@@ -10242,6 +10282,24 @@ module Aws::SageMaker
10242
10282
  # resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10243
10283
  # resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
10244
10284
  # resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
10285
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.feature_specification_s3_uri #=> String
10286
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_candidates #=> Integer
10287
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10288
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10289
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_frequency #=> String
10290
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_horizon #=> Integer
10291
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles #=> Array
10292
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles[0] #=> String
10293
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling #=> Hash
10294
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"] #=> Hash
10295
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"]["FillingType"] #=> String
10296
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation #=> Hash
10297
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation["TransformationAttributeName"] #=> String, one of "sum", "avg", "first", "min", "max"
10298
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.target_attribute_name #=> String
10299
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.timestamp_attribute_name #=> String
10300
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.item_identifier_attribute_name #=> String
10301
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names #=> Array
10302
+ # resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
10245
10303
  # resp.creation_time #=> Time
10246
10304
  # resp.end_time #=> Time
10247
10305
  # resp.last_modified_time #=> Time
@@ -10250,9 +10308,9 @@ module Aws::SageMaker
10250
10308
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
10251
10309
  # resp.best_candidate.candidate_name #=> String
10252
10310
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
10253
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10311
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10254
10312
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
10255
- # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10313
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10256
10314
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
10257
10315
  # resp.best_candidate.candidate_steps #=> Array
10258
10316
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10270,11 +10328,12 @@ module Aws::SageMaker
10270
10328
  # resp.best_candidate.failure_reason #=> String
10271
10329
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
10272
10330
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
10331
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
10273
10332
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
10274
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10333
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10275
10334
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
10276
10335
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
10277
- # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
10336
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10278
10337
  # resp.best_candidate.inference_container_definitions #=> Hash
10279
10338
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
10280
10339
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -10282,7 +10341,7 @@ module Aws::SageMaker
10282
10341
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
10283
10342
  # resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
10284
10343
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
10285
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
10344
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
10286
10345
  # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
10287
10346
  # resp.model_deploy_config.endpoint_name #=> String
10288
10347
  # resp.model_deploy_result.endpoint_name #=> String
@@ -10295,12 +10354,12 @@ module Aws::SageMaker
10295
10354
  # resp.security_config.vpc_config.subnets[0] #=> String
10296
10355
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
10297
10356
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
10298
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
10357
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
10299
10358
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
10300
10359
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
10301
10360
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
10302
10361
  # resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
10303
- # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
10362
+ # resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
10304
10363
  #
10305
10364
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
10306
10365
  #
@@ -15450,7 +15509,7 @@ module Aws::SageMaker
15450
15509
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
15451
15510
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
15452
15511
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
15453
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
15512
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
15454
15513
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
15455
15514
  # resp.auto_ml_job_summaries[0].end_time #=> Time
15456
15515
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
@@ -15517,9 +15576,9 @@ module Aws::SageMaker
15517
15576
  # resp.candidates #=> Array
15518
15577
  # resp.candidates[0].candidate_name #=> String
15519
15578
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
15520
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15579
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15521
15580
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
15522
- # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15581
+ # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15523
15582
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
15524
15583
  # resp.candidates[0].candidate_steps #=> Array
15525
15584
  # resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -15537,11 +15596,12 @@ module Aws::SageMaker
15537
15596
  # resp.candidates[0].failure_reason #=> String
15538
15597
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
15539
15598
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
15599
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
15540
15600
  # resp.candidates[0].candidate_properties.candidate_metrics #=> Array
15541
- # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
15601
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15542
15602
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
15543
15603
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
15544
- # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
15604
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
15545
15605
  # resp.candidates[0].inference_container_definitions #=> Hash
15546
15606
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
15547
15607
  # resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
@@ -23758,7 +23818,7 @@ module Aws::SageMaker
23758
23818
  params: params,
23759
23819
  config: config)
23760
23820
  context[:gem_name] = 'aws-sdk-sagemaker'
23761
- context[:gem_version] = '1.190.0'
23821
+ context[:gem_version] = '1.192.0'
23762
23822
  Seahorse::Client::Request.new(handlers, context)
23763
23823
  end
23764
23824
 
@@ -29,6 +29,8 @@ module Aws::SageMaker
29
29
  AdditionalInferenceSpecifications = Shapes::ListShape.new(name: 'AdditionalInferenceSpecifications')
30
30
  AgentVersion = Shapes::StructureShape.new(name: 'AgentVersion')
31
31
  AgentVersions = Shapes::ListShape.new(name: 'AgentVersions')
32
+ AggregationTransformationValue = Shapes::StringShape.new(name: 'AggregationTransformationValue')
33
+ AggregationTransformations = Shapes::MapShape.new(name: 'AggregationTransformations')
32
34
  Alarm = Shapes::StructureShape.new(name: 'Alarm')
33
35
  AlarmList = Shapes::ListShape.new(name: 'AlarmList')
34
36
  AlarmName = Shapes::StringShape.new(name: 'AlarmName')
@@ -152,6 +154,7 @@ module Aws::SageMaker
152
154
  Autotune = Shapes::StructureShape.new(name: 'Autotune')
153
155
  AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
154
156
  AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
157
+ BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
155
158
  BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
156
159
  BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
157
160
  BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
@@ -781,6 +784,10 @@ module Aws::SageMaker
781
784
  FileSystemDataSource = Shapes::StructureShape.new(name: 'FileSystemDataSource')
782
785
  FileSystemId = Shapes::StringShape.new(name: 'FileSystemId')
783
786
  FileSystemType = Shapes::StringShape.new(name: 'FileSystemType')
787
+ FillingTransformationMap = Shapes::MapShape.new(name: 'FillingTransformationMap')
788
+ FillingTransformationValue = Shapes::StringShape.new(name: 'FillingTransformationValue')
789
+ FillingTransformations = Shapes::MapShape.new(name: 'FillingTransformations')
790
+ FillingType = Shapes::StringShape.new(name: 'FillingType')
784
791
  Filter = Shapes::StructureShape.new(name: 'Filter')
785
792
  FilterList = Shapes::ListShape.new(name: 'FilterList')
786
793
  FilterValue = Shapes::StringShape.new(name: 'FilterValue')
@@ -801,6 +808,10 @@ module Aws::SageMaker
801
808
  FlowDefinitionTaskKeywords = Shapes::ListShape.new(name: 'FlowDefinitionTaskKeywords')
802
809
  FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
803
810
  FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
811
+ ForecastFrequency = Shapes::StringShape.new(name: 'ForecastFrequency')
812
+ ForecastHorizon = Shapes::IntegerShape.new(name: 'ForecastHorizon')
813
+ ForecastQuantile = Shapes::StringShape.new(name: 'ForecastQuantile')
814
+ ForecastQuantiles = Shapes::ListShape.new(name: 'ForecastQuantiles')
804
815
  Framework = Shapes::StringShape.new(name: 'Framework')
805
816
  FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
806
817
  GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
@@ -818,6 +829,8 @@ module Aws::SageMaker
818
829
  GitConfigForUpdate = Shapes::StructureShape.new(name: 'GitConfigForUpdate')
819
830
  GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
820
831
  Group = Shapes::StringShape.new(name: 'Group')
832
+ GroupingAttributeName = Shapes::StringShape.new(name: 'GroupingAttributeName')
833
+ GroupingAttributeNames = Shapes::ListShape.new(name: 'GroupingAttributeNames')
821
834
  Groups = Shapes::ListShape.new(name: 'Groups')
822
835
  HookParameters = Shapes::MapShape.new(name: 'HookParameters')
823
836
  Horovod = Shapes::BooleanShape.new(name: 'Horovod')
@@ -972,6 +985,7 @@ module Aws::SageMaker
972
985
  InvocationsMaxRetries = Shapes::IntegerShape.new(name: 'InvocationsMaxRetries')
973
986
  InvocationsTimeoutInSeconds = Shapes::IntegerShape.new(name: 'InvocationsTimeoutInSeconds')
974
987
  IotRoleAlias = Shapes::StringShape.new(name: 'IotRoleAlias')
988
+ ItemIdentifierAttributeName = Shapes::StringShape.new(name: 'ItemIdentifierAttributeName')
975
989
  JobDurationInSeconds = Shapes::IntegerShape.new(name: 'JobDurationInSeconds')
976
990
  JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
977
991
  JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
@@ -1829,8 +1843,12 @@ module Aws::SageMaker
1829
1843
  TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
1830
1844
  TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
1831
1845
  ThingName = Shapes::StringShape.new(name: 'ThingName')
1846
+ TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
1847
+ TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
1832
1848
  TimeSeriesForecastingSettings = Shapes::StructureShape.new(name: 'TimeSeriesForecastingSettings')
1849
+ TimeSeriesTransformations = Shapes::StructureShape.new(name: 'TimeSeriesTransformations')
1833
1850
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1851
+ TimestampAttributeName = Shapes::StringShape.new(name: 'TimestampAttributeName')
1834
1852
  TrafficDurationInSeconds = Shapes::IntegerShape.new(name: 'TrafficDurationInSeconds')
1835
1853
  TrafficPattern = Shapes::StructureShape.new(name: 'TrafficPattern')
1836
1854
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
@@ -1884,6 +1902,7 @@ module Aws::SageMaker
1884
1902
  TransformOutput = Shapes::StructureShape.new(name: 'TransformOutput')
1885
1903
  TransformResources = Shapes::StructureShape.new(name: 'TransformResources')
1886
1904
  TransformS3DataSource = Shapes::StructureShape.new(name: 'TransformS3DataSource')
1905
+ TransformationAttributeName = Shapes::StringShape.new(name: 'TransformationAttributeName')
1887
1906
  Trial = Shapes::StructureShape.new(name: 'Trial')
1888
1907
  TrialArn = Shapes::StringShape.new(name: 'TrialArn')
1889
1908
  TrialComponent = Shapes::StructureShape.new(name: 'TrialComponent')
@@ -2084,6 +2103,9 @@ module Aws::SageMaker
2084
2103
 
2085
2104
  AgentVersions.member = Shapes::ShapeRef.new(shape: AgentVersion)
2086
2105
 
2106
+ AggregationTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
2107
+ AggregationTransformations.value = Shapes::ShapeRef.new(shape: AggregationTransformationValue)
2108
+
2087
2109
  Alarm.add_member(:alarm_name, Shapes::ShapeRef.new(shape: AlarmName, location_name: "AlarmName"))
2088
2110
  Alarm.struct_class = Types::Alarm
2089
2111
 
@@ -2344,10 +2366,12 @@ module Aws::SageMaker
2344
2366
  AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
2345
2367
  AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
2346
2368
  AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
2369
+ AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
2347
2370
  AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
2348
2371
  AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
2349
2372
  AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
2350
2373
  AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
2374
+ AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
2351
2375
  AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
2352
2376
  AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
2353
2377
 
@@ -2448,6 +2472,7 @@ module Aws::SageMaker
2448
2472
 
2449
2473
  CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
2450
2474
  CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
2475
+ CandidateArtifactLocations.add_member(:backtest_results, Shapes::ShapeRef.new(shape: BacktestResultsLocation, location_name: "BacktestResults"))
2451
2476
  CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
2452
2477
 
2453
2478
  CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
@@ -5102,6 +5127,12 @@ module Aws::SageMaker
5102
5127
  FileSystemDataSource.add_member(:directory_path, Shapes::ShapeRef.new(shape: DirectoryPath, required: true, location_name: "DirectoryPath"))
5103
5128
  FileSystemDataSource.struct_class = Types::FileSystemDataSource
5104
5129
 
5130
+ FillingTransformationMap.key = Shapes::ShapeRef.new(shape: FillingType)
5131
+ FillingTransformationMap.value = Shapes::ShapeRef.new(shape: FillingTransformationValue)
5132
+
5133
+ FillingTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
5134
+ FillingTransformations.value = Shapes::ShapeRef.new(shape: FillingTransformationMap)
5135
+
5105
5136
  Filter.add_member(:name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "Name"))
5106
5137
  Filter.add_member(:operator, Shapes::ShapeRef.new(shape: Operator, location_name: "Operator"))
5107
5138
  Filter.add_member(:value, Shapes::ShapeRef.new(shape: FilterValue, location_name: "Value"))
@@ -5137,6 +5168,8 @@ module Aws::SageMaker
5137
5168
 
5138
5169
  FlowDefinitionTaskKeywords.member = Shapes::ShapeRef.new(shape: FlowDefinitionTaskKeyword)
5139
5170
 
5171
+ ForecastQuantiles.member = Shapes::ShapeRef.new(shape: ForecastQuantile)
5172
+
5140
5173
  GetDeviceFleetReportRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
5141
5174
  GetDeviceFleetReportRequest.struct_class = Types::GetDeviceFleetReportRequest
5142
5175
 
@@ -5183,6 +5216,8 @@ module Aws::SageMaker
5183
5216
  GitConfigForUpdate.add_member(:secret_arn, Shapes::ShapeRef.new(shape: SecretArn, location_name: "SecretArn"))
5184
5217
  GitConfigForUpdate.struct_class = Types::GitConfigForUpdate
5185
5218
 
5219
+ GroupingAttributeNames.member = Shapes::ShapeRef.new(shape: GroupingAttributeName)
5220
+
5186
5221
  Groups.member = Shapes::ShapeRef.new(shape: Group)
5187
5222
 
5188
5223
  HookParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
@@ -6762,6 +6797,7 @@ module Aws::SageMaker
6762
6797
  ModelCard.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
6763
6798
  ModelCard.add_member(:model_id, Shapes::ShapeRef.new(shape: String, location_name: "ModelId"))
6764
6799
  ModelCard.add_member(:risk_rating, Shapes::ShapeRef.new(shape: String, location_name: "RiskRating"))
6800
+ ModelCard.add_member(:model_package_group_name, Shapes::ShapeRef.new(shape: String, location_name: "ModelPackageGroupName"))
6765
6801
  ModelCard.struct_class = Types::ModelCard
6766
6802
 
6767
6803
  ModelCardExportArtifacts.add_member(:s3_export_artifacts, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3ExportArtifacts"))
@@ -8289,10 +8325,29 @@ module Aws::SageMaker
8289
8325
  TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, location_name: "TargetLabelColumn"))
8290
8326
  TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
8291
8327
 
8328
+ TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
8329
+ TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
8330
+ TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
8331
+ TimeSeriesConfig.add_member(:grouping_attribute_names, Shapes::ShapeRef.new(shape: GroupingAttributeNames, location_name: "GroupingAttributeNames"))
8332
+ TimeSeriesConfig.struct_class = Types::TimeSeriesConfig
8333
+
8334
+ TimeSeriesForecastingJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
8335
+ TimeSeriesForecastingJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
8336
+ TimeSeriesForecastingJobConfig.add_member(:forecast_frequency, Shapes::ShapeRef.new(shape: ForecastFrequency, required: true, location_name: "ForecastFrequency"))
8337
+ TimeSeriesForecastingJobConfig.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: ForecastHorizon, required: true, location_name: "ForecastHorizon"))
8338
+ TimeSeriesForecastingJobConfig.add_member(:forecast_quantiles, Shapes::ShapeRef.new(shape: ForecastQuantiles, location_name: "ForecastQuantiles"))
8339
+ TimeSeriesForecastingJobConfig.add_member(:transformations, Shapes::ShapeRef.new(shape: TimeSeriesTransformations, location_name: "Transformations"))
8340
+ TimeSeriesForecastingJobConfig.add_member(:time_series_config, Shapes::ShapeRef.new(shape: TimeSeriesConfig, required: true, location_name: "TimeSeriesConfig"))
8341
+ TimeSeriesForecastingJobConfig.struct_class = Types::TimeSeriesForecastingJobConfig
8342
+
8292
8343
  TimeSeriesForecastingSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
8293
8344
  TimeSeriesForecastingSettings.add_member(:amazon_forecast_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "AmazonForecastRoleArn"))
8294
8345
  TimeSeriesForecastingSettings.struct_class = Types::TimeSeriesForecastingSettings
8295
8346
 
8347
+ TimeSeriesTransformations.add_member(:filling, Shapes::ShapeRef.new(shape: FillingTransformations, location_name: "Filling"))
8348
+ TimeSeriesTransformations.add_member(:aggregation, Shapes::ShapeRef.new(shape: AggregationTransformations, location_name: "Aggregation"))
8349
+ TimeSeriesTransformations.struct_class = Types::TimeSeriesTransformations
8350
+
8296
8351
  TrafficPattern.add_member(:traffic_type, Shapes::ShapeRef.new(shape: TrafficType, location_name: "TrafficType"))
8297
8352
  TrafficPattern.add_member(:phases, Shapes::ShapeRef.new(shape: Phases, location_name: "Phases"))
8298
8353
  TrafficPattern.struct_class = Types::TrafficPattern
@@ -2086,20 +2086,29 @@ module Aws::SageMaker
2086
2086
  # The type of channel. Defines whether the data are used for training
2087
2087
  # or validation. The default value is `training`. Channels for
2088
2088
  # `training` and `validation` must share the same `ContentType`
2089
+ #
2090
+ # <note markdown="1"> The type of channel defaults to `training` for the time-series
2091
+ # forecasting problem type.
2092
+ #
2093
+ # </note>
2089
2094
  # @return [String]
2090
2095
  #
2091
2096
  # @!attribute [rw] content_type
2092
2097
  # The content type of the data from the input source. The following
2093
2098
  # are the allowed content types for different problems:
2094
2099
  #
2095
- # * For Tabular problem types: `text/csv;header=present` or
2100
+ # * For tabular problem types: `text/csv;header=present` or
2096
2101
  # `x-application/vnd.amazon+parquet`. The default value is
2097
2102
  # `text/csv;header=present`.
2098
2103
  #
2099
- # * For ImageClassification: `image/png`, `image/jpeg`, or `image/*`.
2104
+ # * For image classification: `image/png`, `image/jpeg`, or `image/*`.
2100
2105
  # The default value is `image/*`.
2101
2106
  #
2102
- # * For TextClassification: `text/csv;header=present` or
2107
+ # * For text classification: `text/csv;header=present` or
2108
+ # `x-application/vnd.amazon+parquet`. The default value is
2109
+ # `text/csv;header=present`.
2110
+ #
2111
+ # * For time-series forecasting: `text/csv;header=present` or
2103
2112
  # `x-application/vnd.amazon+parquet`. The default value is
2104
2113
  # `text/csv;header=present`.
2105
2114
  # @return [String]
@@ -2132,8 +2141,9 @@ module Aws::SageMaker
2132
2141
  # @!attribute [rw] max_candidates
2133
2142
  # The maximum number of times a training job is allowed to run.
2134
2143
  #
2135
- # For job V2s (jobs created by calling `CreateAutoMLJobV2`), the
2136
- # supported value is 1.
2144
+ # For text and image classification, as well as time-series
2145
+ # forecasting problem types, the supported value is 1. For tabular
2146
+ # problem types, the maximum value is 750.
2137
2147
  # @return [Integer]
2138
2148
  #
2139
2149
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
@@ -2261,6 +2271,9 @@ module Aws::SageMaker
2261
2271
  #
2262
2272
  # * For image or text classification problem types: `Accuracy`
2263
2273
  #
2274
+ # * For time-series forecasting problem types:
2275
+ # `AverageWeightedQuantileLoss`
2276
+ #
2264
2277
  #
2265
2278
  #
2266
2279
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
@@ -2399,12 +2412,18 @@ module Aws::SageMaker
2399
2412
  # type (regression, classification).
2400
2413
  # @return [Types::TabularJobConfig]
2401
2414
  #
2415
+ # @!attribute [rw] time_series_forecasting_job_config
2416
+ # Settings used to configure an AutoML job V2 for a time-series
2417
+ # forecasting problem type.
2418
+ # @return [Types::TimeSeriesForecastingJobConfig]
2419
+ #
2402
2420
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
2403
2421
  #
2404
2422
  class AutoMLProblemTypeConfig < Struct.new(
2405
2423
  :image_classification_job_config,
2406
2424
  :text_classification_job_config,
2407
2425
  :tabular_job_config,
2426
+ :time_series_forecasting_job_config,
2408
2427
  :unknown)
2409
2428
  SENSITIVE = []
2410
2429
  include Aws::Structure
@@ -2413,6 +2432,7 @@ module Aws::SageMaker
2413
2432
  class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
2414
2433
  class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
2415
2434
  class TabularJobConfig < AutoMLProblemTypeConfig; end
2435
+ class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
2416
2436
  class Unknown < AutoMLProblemTypeConfig; end
2417
2437
  end
2418
2438
 
@@ -2987,11 +3007,18 @@ module Aws::SageMaker
2987
3007
  # the AutoML candidate.
2988
3008
  # @return [String]
2989
3009
  #
3010
+ # @!attribute [rw] backtest_results
3011
+ # The Amazon S3 prefix to the accuracy metrics and the inference
3012
+ # results observed over the testing window. Available only for the
3013
+ # time-series forecasting problem type.
3014
+ # @return [String]
3015
+ #
2990
3016
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2991
3017
  #
2992
3018
  class CandidateArtifactLocations < Struct.new(
2993
3019
  :explainability,
2994
- :model_insights)
3020
+ :model_insights,
3021
+ :backtest_results)
2995
3022
  SENSITIVE = []
2996
3023
  include Aws::Structure
2997
3024
  end
@@ -4717,12 +4744,14 @@ module Aws::SageMaker
4717
4744
  # [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
4718
4745
  # parameters. The supported formats depend on the problem type:
4719
4746
  #
4720
- # * For Tabular problem types: `S3Prefix`, `ManifestFile`.
4747
+ # * For tabular problem types: `S3Prefix`, `ManifestFile`.
4721
4748
  #
4722
- # * For ImageClassification: `S3Prefix`, `ManifestFile`,
4749
+ # * For image classification: `S3Prefix`, `ManifestFile`,
4723
4750
  # `AugmentedManifestFile`.
4724
4751
  #
4725
- # * For TextClassification: `S3Prefix`.
4752
+ # * For text classification: `S3Prefix`.
4753
+ #
4754
+ # * For time-series forecasting: `S3Prefix`.
4726
4755
  #
4727
4756
  #
4728
4757
  #
@@ -4789,6 +4818,12 @@ module Aws::SageMaker
4789
4818
  # The validation and training datasets must contain the same headers.
4790
4819
  # For jobs created by calling `CreateAutoMLJob`, the validation
4791
4820
  # dataset must be less than 2 GB in size.
4821
+ #
4822
+ # <note markdown="1"> This attribute must not be set for the time-series forecasting
4823
+ # problem type, as Autopilot automatically splits the input dataset
4824
+ # into training and validation sets.
4825
+ #
4826
+ # </note>
4792
4827
  # @return [Types::AutoMLDataSplitConfig]
4793
4828
  #
4794
4829
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
@@ -7566,7 +7601,11 @@ module Aws::SageMaker
7566
7601
  # @return [String]
7567
7602
  #
7568
7603
  # @!attribute [rw] pipeline_definition
7569
- # The JSON pipeline definition of the pipeline.
7604
+ # The [JSON pipeline definition][1] of the pipeline.
7605
+ #
7606
+ #
7607
+ #
7608
+ # [1]: https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/
7570
7609
  # @return [String]
7571
7610
  #
7572
7611
  # @!attribute [rw] pipeline_definition_s3_location
@@ -27982,6 +28021,12 @@ module Aws::SageMaker
27982
28021
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-risk-rating.html
27983
28022
  # @return [String]
27984
28023
  #
28024
+ # @!attribute [rw] model_package_group_name
28025
+ # The model package group that contains the model package. Only
28026
+ # relevant for model cards created for model packages in the Amazon
28027
+ # SageMaker Model Registry.
28028
+ # @return [String]
28029
+ #
27985
28030
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelCard AWS API Documentation
27986
28031
  #
27987
28032
  class ModelCard < Struct.new(
@@ -27997,7 +28042,8 @@ module Aws::SageMaker
27997
28042
  :last_modified_by,
27998
28043
  :tags,
27999
28044
  :model_id,
28000
- :risk_rating)
28045
+ :risk_rating,
28046
+ :model_package_group_name)
28001
28047
  SENSITIVE = [:content]
28002
28048
  include Aws::Structure
28003
28049
  end
@@ -36909,6 +36955,157 @@ module Aws::SageMaker
36909
36955
  include Aws::Structure
36910
36956
  end
36911
36957
 
36958
+ # The collection of components that defines the time-series.
36959
+ #
36960
+ # @!attribute [rw] target_attribute_name
36961
+ # The name of the column representing the target variable that you
36962
+ # want to predict for each item in your dataset. The data type of the
36963
+ # target variable must be numerical.
36964
+ # @return [String]
36965
+ #
36966
+ # @!attribute [rw] timestamp_attribute_name
36967
+ # The name of the column indicating a point in time at which the
36968
+ # target value of a given item is recorded.
36969
+ # @return [String]
36970
+ #
36971
+ # @!attribute [rw] item_identifier_attribute_name
36972
+ # The name of the column that represents the set of item identifiers
36973
+ # for which you want to predict the target value.
36974
+ # @return [String]
36975
+ #
36976
+ # @!attribute [rw] grouping_attribute_names
36977
+ # A set of columns names that can be grouped with the item identifier
36978
+ # column to create a composite key for which a target value is
36979
+ # predicted.
36980
+ # @return [Array<String>]
36981
+ #
36982
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesConfig AWS API Documentation
36983
+ #
36984
+ class TimeSeriesConfig < Struct.new(
36985
+ :target_attribute_name,
36986
+ :timestamp_attribute_name,
36987
+ :item_identifier_attribute_name,
36988
+ :grouping_attribute_names)
36989
+ SENSITIVE = []
36990
+ include Aws::Structure
36991
+ end
36992
+
36993
+ # The collection of settings used by an AutoML job V2 for the
36994
+ # time-series forecasting problem type.
36995
+ #
36996
+ # <note markdown="1"> The `TimeSeriesForecastingJobConfig` problem type is only available in
36997
+ # private beta. Contact Amazon Web Services Support or your account
36998
+ # manager to learn more about access privileges.
36999
+ #
37000
+ # </note>
37001
+ #
37002
+ # @!attribute [rw] feature_specification_s3_uri
37003
+ # A URL to the Amazon S3 data source containing additional selected
37004
+ # features that complement the target, itemID, timestamp, and grouped
37005
+ # columns set in `TimeSeriesConfig`. When not provided, the AutoML job
37006
+ # V2 includes all the columns from the original dataset that are not
37007
+ # already declared in `TimeSeriesConfig`. If provided, the AutoML job
37008
+ # V2 only considers these additional columns as a complement to the
37009
+ # ones declared in `TimeSeriesConfig`.
37010
+ #
37011
+ # You can input `FeatureAttributeNames` (optional) in JSON format as
37012
+ # shown below:
37013
+ #
37014
+ # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
37015
+ #
37016
+ # You can also specify the data type of the feature (optional) in the
37017
+ # format shown below:
37018
+ #
37019
+ # `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
37020
+ # \} \}`
37021
+ #
37022
+ # Autopilot supports the following data types: `numeric`,
37023
+ # `categorical`, `text`, and `datetime`.
37024
+ #
37025
+ # <note markdown="1"> These column keys must not include any column set in
37026
+ # `TimeSeriesConfig`.
37027
+ #
37028
+ # </note>
37029
+ #
37030
+ # When not provided, the AutoML job V2 includes all the columns from
37031
+ # the original dataset that are not already declared in
37032
+ # `TimeSeriesConfig`. If provided, the AutoML job V2 only considers
37033
+ # these additional columns as a complement to the ones declared in
37034
+ # `TimeSeriesConfig`.
37035
+ #
37036
+ # Autopilot supports the following data types: `numeric`,
37037
+ # `categorical`, `text`, and `datetime`.
37038
+ # @return [String]
37039
+ #
37040
+ # @!attribute [rw] completion_criteria
37041
+ # How long a job is allowed to run, or how many candidates a job is
37042
+ # allowed to generate.
37043
+ # @return [Types::AutoMLJobCompletionCriteria]
37044
+ #
37045
+ # @!attribute [rw] forecast_frequency
37046
+ # The frequency of predictions in a forecast.
37047
+ #
37048
+ # Valid intervals are an integer followed by Y (Year), M (Month), W
37049
+ # (Week), D (Day), H (Hour), and min (Minute). For example, `1D`
37050
+ # indicates every day and `15min` indicates every 15 minutes. The
37051
+ # value of a frequency must not overlap with the next larger
37052
+ # frequency. For example, you must use a frequency of `1H` instead of
37053
+ # `60min`.
37054
+ #
37055
+ # The valid values for each frequency are the following:
37056
+ #
37057
+ # * Minute - 1-59
37058
+ #
37059
+ # * Hour - 1-23
37060
+ #
37061
+ # * Day - 1-6
37062
+ #
37063
+ # * Week - 1-4
37064
+ #
37065
+ # * Month - 1-11
37066
+ #
37067
+ # * Year - 1
37068
+ # @return [String]
37069
+ #
37070
+ # @!attribute [rw] forecast_horizon
37071
+ # The number of time-steps that the model predicts. The forecast
37072
+ # horizon is also called the prediction length. The maximum forecast
37073
+ # horizon is the lesser of 500 time-steps or 1/4 of the time-steps in
37074
+ # the dataset.
37075
+ # @return [Integer]
37076
+ #
37077
+ # @!attribute [rw] forecast_quantiles
37078
+ # The quantiles used to train the model for forecasts at a specified
37079
+ # quantile. You can specify quantiles from `0.01` (p1) to `0.99`
37080
+ # (p99), by increments of 0.01 or higher. Up to five forecast
37081
+ # quantiles can be specified. When `ForecastQuantiles` is not
37082
+ # provided, the AutoML job uses the quantiles p10, p50, and p90 as
37083
+ # default.
37084
+ # @return [Array<String>]
37085
+ #
37086
+ # @!attribute [rw] transformations
37087
+ # The transformations modifying specific attributes of the
37088
+ # time-series, such as filling strategies for missing values.
37089
+ # @return [Types::TimeSeriesTransformations]
37090
+ #
37091
+ # @!attribute [rw] time_series_config
37092
+ # The collection of components that defines the time-series.
37093
+ # @return [Types::TimeSeriesConfig]
37094
+ #
37095
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesForecastingJobConfig AWS API Documentation
37096
+ #
37097
+ class TimeSeriesForecastingJobConfig < Struct.new(
37098
+ :feature_specification_s3_uri,
37099
+ :completion_criteria,
37100
+ :forecast_frequency,
37101
+ :forecast_horizon,
37102
+ :forecast_quantiles,
37103
+ :transformations,
37104
+ :time_series_config)
37105
+ SENSITIVE = []
37106
+ include Aws::Structure
37107
+ end
37108
+
36912
37109
  # Time series forecast settings for the SageMaker Canvas application.
36913
37110
  #
36914
37111
  # @!attribute [rw] status
@@ -36941,6 +37138,56 @@ module Aws::SageMaker
36941
37138
  include Aws::Structure
36942
37139
  end
36943
37140
 
37141
+ # Transformations allowed on the dataset. Supported transformations are
37142
+ # `Filling` and `Aggregation`. `Filling` specifies how to add values to
37143
+ # missing values in the dataset. `Aggregation` defines how to aggregate
37144
+ # data that does not align with forecast frequency.
37145
+ #
37146
+ # @!attribute [rw] filling
37147
+ # A key value pair defining the filling method for a column, where the
37148
+ # key is the column name and the value is an object which defines the
37149
+ # filling logic. You can specify multiple filling methods for a single
37150
+ # column.
37151
+ #
37152
+ # The supported filling methods and their corresponding options are:
37153
+ #
37154
+ # * `frontfill`: `none` (Supported only for target column)
37155
+ #
37156
+ # * `middlefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37157
+ #
37158
+ # * `backfill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37159
+ #
37160
+ # * `futurefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
37161
+ #
37162
+ # To set a filling method to a specific value, set the fill parameter
37163
+ # to the chosen filling method value (for example `"backfill" :
37164
+ # "value"`), and define the filling value in an additional parameter
37165
+ # prefixed with "\_value". For example, to set `backfill` to a value
37166
+ # of `2`, you must include two parameters: `"backfill": "value"` and
37167
+ # `"backfill_value":"2"`.
37168
+ # @return [Hash<String,Hash<String,String>>]
37169
+ #
37170
+ # @!attribute [rw] aggregation
37171
+ # A key value pair defining the aggregation method for a column, where
37172
+ # the key is the column name and the value is the aggregation method.
37173
+ #
37174
+ # The supported aggregation methods are `sum` (default), `avg`,
37175
+ # `first`, `min`, `max`.
37176
+ #
37177
+ # <note markdown="1"> Aggregation is only supported for the target column.
37178
+ #
37179
+ # </note>
37180
+ # @return [Hash<String,String>]
37181
+ #
37182
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesTransformations AWS API Documentation
37183
+ #
37184
+ class TimeSeriesTransformations < Struct.new(
37185
+ :filling,
37186
+ :aggregation)
37187
+ SENSITIVE = []
37188
+ include Aws::Structure
37189
+ end
37190
+
36944
37191
  # Defines the traffic pattern of the load test.
36945
37192
  #
36946
37193
  # @!attribute [rw] traffic_type
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.190.0'
56
+ GEM_VERSION = '1.192.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.190.0
4
+ version: 1.192.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-06-27 00:00:00.000000000 Z
11
+ date: 2023-06-29 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.174.0
22
+ version: 3.176.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.174.0
32
+ version: 3.176.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement