aws-sdk-sagemaker 1.190.0 → 1.192.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +87 -27
- data/lib/aws-sdk-sagemaker/client_api.rb +55 -0
- data/lib/aws-sdk-sagemaker/types.rb +258 -11
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +4 -4
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: ea2b0bfd3b4390fa357475a5d054208271cd3aaf4e450e89531bf0f205b22a66
|
4
|
+
data.tar.gz: b84a2185dffd514d6f76fa68a05b2f546939b70177779278f88853e7e328be0a
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: d8835cdf47bbb5c4e1b3bbc42cb782b0da023e3cb3790deeb32d6f006c901999aa620e04aea27f688410d70c0fed4efe8d970f592c0b1d9a36b6514f765c5d0c
|
7
|
+
data.tar.gz: abe87a3fa189453639cb875bdcd2750775c3f9716ea8fca2803879cfbc3252ed496954e2bd1f53452e4f0a0c9932331c05e80c36e1dfa138dc1a83d720c509e1
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.192.0 (2023-06-29)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
|
8
|
+
|
9
|
+
1.191.0 (2023-06-28)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - This release adds support for Model Cards Model Registry integration.
|
13
|
+
|
4
14
|
1.190.0 (2023-06-27)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.192.0
|
@@ -1307,7 +1307,7 @@ module Aws::SageMaker
|
|
1307
1307
|
# },
|
1308
1308
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
1309
1309
|
# auto_ml_job_objective: {
|
1310
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1310
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
|
1311
1311
|
# },
|
1312
1312
|
# auto_ml_job_config: {
|
1313
1313
|
# completion_criteria: {
|
@@ -1405,12 +1405,14 @@ module Aws::SageMaker
|
|
1405
1405
|
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
1406
1406
|
# parameters. The supported formats depend on the problem type:
|
1407
1407
|
#
|
1408
|
-
# * For
|
1408
|
+
# * For tabular problem types: `S3Prefix`, `ManifestFile`.
|
1409
1409
|
#
|
1410
|
-
# * For
|
1410
|
+
# * For image classification: `S3Prefix`, `ManifestFile`,
|
1411
1411
|
# `AugmentedManifestFile`.
|
1412
1412
|
#
|
1413
|
-
# * For
|
1413
|
+
# * For text classification: `S3Prefix`.
|
1414
|
+
#
|
1415
|
+
# * For time-series forecasting: `S3Prefix`.
|
1414
1416
|
#
|
1415
1417
|
#
|
1416
1418
|
#
|
@@ -1470,6 +1472,12 @@ module Aws::SageMaker
|
|
1470
1472
|
# For jobs created by calling `CreateAutoMLJob`, the validation dataset
|
1471
1473
|
# must be less than 2 GB in size.
|
1472
1474
|
#
|
1475
|
+
# <note markdown="1"> This attribute must not be set for the time-series forecasting problem
|
1476
|
+
# type, as Autopilot automatically splits the input dataset into
|
1477
|
+
# training and validation sets.
|
1478
|
+
#
|
1479
|
+
# </note>
|
1480
|
+
#
|
1473
1481
|
# @return [Types::CreateAutoMLJobV2Response] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1474
1482
|
#
|
1475
1483
|
# * {Types::CreateAutoMLJobV2Response#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1532,6 +1540,33 @@ module Aws::SageMaker
|
|
1532
1540
|
# target_attribute_name: "TargetAttributeName", # required
|
1533
1541
|
# sample_weight_attribute_name: "SampleWeightAttributeName",
|
1534
1542
|
# },
|
1543
|
+
# time_series_forecasting_job_config: {
|
1544
|
+
# feature_specification_s3_uri: "S3Uri",
|
1545
|
+
# completion_criteria: {
|
1546
|
+
# max_candidates: 1,
|
1547
|
+
# max_runtime_per_training_job_in_seconds: 1,
|
1548
|
+
# max_auto_ml_job_runtime_in_seconds: 1,
|
1549
|
+
# },
|
1550
|
+
# forecast_frequency: "ForecastFrequency", # required
|
1551
|
+
# forecast_horizon: 1, # required
|
1552
|
+
# forecast_quantiles: ["ForecastQuantile"],
|
1553
|
+
# transformations: {
|
1554
|
+
# filling: {
|
1555
|
+
# "TransformationAttributeName" => {
|
1556
|
+
# "frontfill" => "FillingTransformationValue",
|
1557
|
+
# },
|
1558
|
+
# },
|
1559
|
+
# aggregation: {
|
1560
|
+
# "TransformationAttributeName" => "sum", # accepts sum, avg, first, min, max
|
1561
|
+
# },
|
1562
|
+
# },
|
1563
|
+
# time_series_config: { # required
|
1564
|
+
# target_attribute_name: "TargetAttributeName", # required
|
1565
|
+
# timestamp_attribute_name: "TimestampAttributeName", # required
|
1566
|
+
# item_identifier_attribute_name: "ItemIdentifierAttributeName", # required
|
1567
|
+
# grouping_attribute_names: ["GroupingAttributeName"],
|
1568
|
+
# },
|
1569
|
+
# },
|
1535
1570
|
# },
|
1536
1571
|
# role_arn: "RoleArn", # required
|
1537
1572
|
# tags: [
|
@@ -1549,7 +1584,7 @@ module Aws::SageMaker
|
|
1549
1584
|
# },
|
1550
1585
|
# },
|
1551
1586
|
# auto_ml_job_objective: {
|
1552
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1587
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro, MAPE, MASE, WAPE, AverageWeightedQuantileLoss
|
1553
1588
|
# },
|
1554
1589
|
# model_deploy_config: {
|
1555
1590
|
# auto_generate_endpoint_name: false,
|
@@ -6459,7 +6494,11 @@ module Aws::SageMaker
|
|
6459
6494
|
# The display name of the pipeline.
|
6460
6495
|
#
|
6461
6496
|
# @option params [String] :pipeline_definition
|
6462
|
-
# The JSON pipeline definition of the pipeline.
|
6497
|
+
# The [JSON pipeline definition][1] of the pipeline.
|
6498
|
+
#
|
6499
|
+
#
|
6500
|
+
#
|
6501
|
+
# [1]: https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/
|
6463
6502
|
#
|
6464
6503
|
# @option params [Types::PipelineDefinitionS3Location] :pipeline_definition_s3_location
|
6465
6504
|
# The location of the pipeline definition stored in Amazon S3. If
|
@@ -10087,7 +10126,7 @@ module Aws::SageMaker
|
|
10087
10126
|
# resp.output_data_config.kms_key_id #=> String
|
10088
10127
|
# resp.output_data_config.s3_output_path #=> String
|
10089
10128
|
# resp.role_arn #=> String
|
10090
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10129
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10091
10130
|
# resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10092
10131
|
# resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
|
10093
10132
|
# resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -10112,9 +10151,9 @@ module Aws::SageMaker
|
|
10112
10151
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
10113
10152
|
# resp.best_candidate.candidate_name #=> String
|
10114
10153
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
10115
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10154
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10116
10155
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
10117
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10156
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10118
10157
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
10119
10158
|
# resp.best_candidate.candidate_steps #=> Array
|
10120
10159
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10132,11 +10171,12 @@ module Aws::SageMaker
|
|
10132
10171
|
# resp.best_candidate.failure_reason #=> String
|
10133
10172
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
10134
10173
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
10174
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
10135
10175
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
10136
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10176
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10137
10177
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10138
10178
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10139
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
10179
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10140
10180
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10141
10181
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10142
10182
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10144,11 +10184,11 @@ module Aws::SageMaker
|
|
10144
10184
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
|
10145
10185
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
|
10146
10186
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
10147
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
10187
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
10148
10188
|
# resp.generate_candidate_definitions_only #=> Boolean
|
10149
10189
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10150
10190
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10151
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10191
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10152
10192
|
# resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10153
10193
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10154
10194
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -10221,7 +10261,7 @@ module Aws::SageMaker
|
|
10221
10261
|
# resp.output_data_config.kms_key_id #=> String
|
10222
10262
|
# resp.output_data_config.s3_output_path #=> String
|
10223
10263
|
# resp.role_arn #=> String
|
10224
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10264
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10225
10265
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_candidates #=> Integer
|
10226
10266
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10227
10267
|
# resp.auto_ml_problem_type_config.image_classification_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
@@ -10242,6 +10282,24 @@ module Aws::SageMaker
|
|
10242
10282
|
# resp.auto_ml_problem_type_config.tabular_job_config.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10243
10283
|
# resp.auto_ml_problem_type_config.tabular_job_config.target_attribute_name #=> String
|
10244
10284
|
# resp.auto_ml_problem_type_config.tabular_job_config.sample_weight_attribute_name #=> String
|
10285
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.feature_specification_s3_uri #=> String
|
10286
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_candidates #=> Integer
|
10287
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10288
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10289
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_frequency #=> String
|
10290
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_horizon #=> Integer
|
10291
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles #=> Array
|
10292
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.forecast_quantiles[0] #=> String
|
10293
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling #=> Hash
|
10294
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"] #=> Hash
|
10295
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.filling["TransformationAttributeName"]["FillingType"] #=> String
|
10296
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation #=> Hash
|
10297
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.transformations.aggregation["TransformationAttributeName"] #=> String, one of "sum", "avg", "first", "min", "max"
|
10298
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.target_attribute_name #=> String
|
10299
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.timestamp_attribute_name #=> String
|
10300
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.item_identifier_attribute_name #=> String
|
10301
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names #=> Array
|
10302
|
+
# resp.auto_ml_problem_type_config.time_series_forecasting_job_config.time_series_config.grouping_attribute_names[0] #=> String
|
10245
10303
|
# resp.creation_time #=> Time
|
10246
10304
|
# resp.end_time #=> Time
|
10247
10305
|
# resp.last_modified_time #=> Time
|
@@ -10250,9 +10308,9 @@ module Aws::SageMaker
|
|
10250
10308
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
10251
10309
|
# resp.best_candidate.candidate_name #=> String
|
10252
10310
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
10253
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10311
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10254
10312
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
10255
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10313
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10256
10314
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
10257
10315
|
# resp.best_candidate.candidate_steps #=> Array
|
10258
10316
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10270,11 +10328,12 @@ module Aws::SageMaker
|
|
10270
10328
|
# resp.best_candidate.failure_reason #=> String
|
10271
10329
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
10272
10330
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
10331
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
10273
10332
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
10274
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10333
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10275
10334
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
10276
10335
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
10277
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
10336
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10278
10337
|
# resp.best_candidate.inference_container_definitions #=> Hash
|
10279
10338
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
10280
10339
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -10282,7 +10341,7 @@ module Aws::SageMaker
|
|
10282
10341
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment #=> Hash
|
10283
10342
|
# resp.best_candidate.inference_container_definitions["AutoMLProcessingUnit"][0].environment["EnvironmentKey"] #=> String
|
10284
10343
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
10285
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
10344
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
10286
10345
|
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
10287
10346
|
# resp.model_deploy_config.endpoint_name #=> String
|
10288
10347
|
# resp.model_deploy_result.endpoint_name #=> String
|
@@ -10295,12 +10354,12 @@ module Aws::SageMaker
|
|
10295
10354
|
# resp.security_config.vpc_config.subnets[0] #=> String
|
10296
10355
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
10297
10356
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
10298
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
10357
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
10299
10358
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
10300
10359
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
10301
10360
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
10302
10361
|
# resp.resolved_attributes.auto_ml_problem_type_resolved_attributes.tabular_resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
10303
|
-
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular"
|
10362
|
+
# resp.auto_ml_problem_type_config_name #=> String, one of "ImageClassification", "TextClassification", "Tabular", "TimeSeriesForecasting"
|
10304
10363
|
#
|
10305
10364
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobV2 AWS API Documentation
|
10306
10365
|
#
|
@@ -15450,7 +15509,7 @@ module Aws::SageMaker
|
|
15450
15509
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
15451
15510
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
15452
15511
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
15453
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels"
|
15512
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError", "TrainingModels", "PreTraining"
|
15454
15513
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
15455
15514
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
15456
15515
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
@@ -15517,9 +15576,9 @@ module Aws::SageMaker
|
|
15517
15576
|
# resp.candidates #=> Array
|
15518
15577
|
# resp.candidates[0].candidate_name #=> String
|
15519
15578
|
# resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
15520
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15579
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15521
15580
|
# resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
|
15522
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15581
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15523
15582
|
# resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
15524
15583
|
# resp.candidates[0].candidate_steps #=> Array
|
15525
15584
|
# resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -15537,11 +15596,12 @@ module Aws::SageMaker
|
|
15537
15596
|
# resp.candidates[0].failure_reason #=> String
|
15538
15597
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
15539
15598
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
|
15599
|
+
# resp.candidates[0].candidate_properties.candidate_artifact_locations.backtest_results #=> String
|
15540
15600
|
# resp.candidates[0].candidate_properties.candidate_metrics #=> Array
|
15541
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
15601
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15542
15602
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
15543
15603
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
15544
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
15604
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency", "MAPE", "MASE", "WAPE", "AverageWeightedQuantileLoss"
|
15545
15605
|
# resp.candidates[0].inference_container_definitions #=> Hash
|
15546
15606
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"] #=> Array
|
15547
15607
|
# resp.candidates[0].inference_container_definitions["AutoMLProcessingUnit"][0].image #=> String
|
@@ -23758,7 +23818,7 @@ module Aws::SageMaker
|
|
23758
23818
|
params: params,
|
23759
23819
|
config: config)
|
23760
23820
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23761
|
-
context[:gem_version] = '1.
|
23821
|
+
context[:gem_version] = '1.192.0'
|
23762
23822
|
Seahorse::Client::Request.new(handlers, context)
|
23763
23823
|
end
|
23764
23824
|
|
@@ -29,6 +29,8 @@ module Aws::SageMaker
|
|
29
29
|
AdditionalInferenceSpecifications = Shapes::ListShape.new(name: 'AdditionalInferenceSpecifications')
|
30
30
|
AgentVersion = Shapes::StructureShape.new(name: 'AgentVersion')
|
31
31
|
AgentVersions = Shapes::ListShape.new(name: 'AgentVersions')
|
32
|
+
AggregationTransformationValue = Shapes::StringShape.new(name: 'AggregationTransformationValue')
|
33
|
+
AggregationTransformations = Shapes::MapShape.new(name: 'AggregationTransformations')
|
32
34
|
Alarm = Shapes::StructureShape.new(name: 'Alarm')
|
33
35
|
AlarmList = Shapes::ListShape.new(name: 'AlarmList')
|
34
36
|
AlarmName = Shapes::StringShape.new(name: 'AlarmName')
|
@@ -152,6 +154,7 @@ module Aws::SageMaker
|
|
152
154
|
Autotune = Shapes::StructureShape.new(name: 'Autotune')
|
153
155
|
AutotuneMode = Shapes::StringShape.new(name: 'AutotuneMode')
|
154
156
|
AwsManagedHumanLoopRequestSource = Shapes::StringShape.new(name: 'AwsManagedHumanLoopRequestSource')
|
157
|
+
BacktestResultsLocation = Shapes::StringShape.new(name: 'BacktestResultsLocation')
|
155
158
|
BatchDataCaptureConfig = Shapes::StructureShape.new(name: 'BatchDataCaptureConfig')
|
156
159
|
BatchDescribeModelPackageError = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageError')
|
157
160
|
BatchDescribeModelPackageErrorMap = Shapes::MapShape.new(name: 'BatchDescribeModelPackageErrorMap')
|
@@ -781,6 +784,10 @@ module Aws::SageMaker
|
|
781
784
|
FileSystemDataSource = Shapes::StructureShape.new(name: 'FileSystemDataSource')
|
782
785
|
FileSystemId = Shapes::StringShape.new(name: 'FileSystemId')
|
783
786
|
FileSystemType = Shapes::StringShape.new(name: 'FileSystemType')
|
787
|
+
FillingTransformationMap = Shapes::MapShape.new(name: 'FillingTransformationMap')
|
788
|
+
FillingTransformationValue = Shapes::StringShape.new(name: 'FillingTransformationValue')
|
789
|
+
FillingTransformations = Shapes::MapShape.new(name: 'FillingTransformations')
|
790
|
+
FillingType = Shapes::StringShape.new(name: 'FillingType')
|
784
791
|
Filter = Shapes::StructureShape.new(name: 'Filter')
|
785
792
|
FilterList = Shapes::ListShape.new(name: 'FilterList')
|
786
793
|
FilterValue = Shapes::StringShape.new(name: 'FilterValue')
|
@@ -801,6 +808,10 @@ module Aws::SageMaker
|
|
801
808
|
FlowDefinitionTaskKeywords = Shapes::ListShape.new(name: 'FlowDefinitionTaskKeywords')
|
802
809
|
FlowDefinitionTaskTimeLimitInSeconds = Shapes::IntegerShape.new(name: 'FlowDefinitionTaskTimeLimitInSeconds')
|
803
810
|
FlowDefinitionTaskTitle = Shapes::StringShape.new(name: 'FlowDefinitionTaskTitle')
|
811
|
+
ForecastFrequency = Shapes::StringShape.new(name: 'ForecastFrequency')
|
812
|
+
ForecastHorizon = Shapes::IntegerShape.new(name: 'ForecastHorizon')
|
813
|
+
ForecastQuantile = Shapes::StringShape.new(name: 'ForecastQuantile')
|
814
|
+
ForecastQuantiles = Shapes::ListShape.new(name: 'ForecastQuantiles')
|
804
815
|
Framework = Shapes::StringShape.new(name: 'Framework')
|
805
816
|
FrameworkVersion = Shapes::StringShape.new(name: 'FrameworkVersion')
|
806
817
|
GenerateCandidateDefinitionsOnly = Shapes::BooleanShape.new(name: 'GenerateCandidateDefinitionsOnly')
|
@@ -818,6 +829,8 @@ module Aws::SageMaker
|
|
818
829
|
GitConfigForUpdate = Shapes::StructureShape.new(name: 'GitConfigForUpdate')
|
819
830
|
GitConfigUrl = Shapes::StringShape.new(name: 'GitConfigUrl')
|
820
831
|
Group = Shapes::StringShape.new(name: 'Group')
|
832
|
+
GroupingAttributeName = Shapes::StringShape.new(name: 'GroupingAttributeName')
|
833
|
+
GroupingAttributeNames = Shapes::ListShape.new(name: 'GroupingAttributeNames')
|
821
834
|
Groups = Shapes::ListShape.new(name: 'Groups')
|
822
835
|
HookParameters = Shapes::MapShape.new(name: 'HookParameters')
|
823
836
|
Horovod = Shapes::BooleanShape.new(name: 'Horovod')
|
@@ -972,6 +985,7 @@ module Aws::SageMaker
|
|
972
985
|
InvocationsMaxRetries = Shapes::IntegerShape.new(name: 'InvocationsMaxRetries')
|
973
986
|
InvocationsTimeoutInSeconds = Shapes::IntegerShape.new(name: 'InvocationsTimeoutInSeconds')
|
974
987
|
IotRoleAlias = Shapes::StringShape.new(name: 'IotRoleAlias')
|
988
|
+
ItemIdentifierAttributeName = Shapes::StringShape.new(name: 'ItemIdentifierAttributeName')
|
975
989
|
JobDurationInSeconds = Shapes::IntegerShape.new(name: 'JobDurationInSeconds')
|
976
990
|
JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
|
977
991
|
JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
|
@@ -1829,8 +1843,12 @@ module Aws::SageMaker
|
|
1829
1843
|
TerminationWaitInSeconds = Shapes::IntegerShape.new(name: 'TerminationWaitInSeconds')
|
1830
1844
|
TextClassificationJobConfig = Shapes::StructureShape.new(name: 'TextClassificationJobConfig')
|
1831
1845
|
ThingName = Shapes::StringShape.new(name: 'ThingName')
|
1846
|
+
TimeSeriesConfig = Shapes::StructureShape.new(name: 'TimeSeriesConfig')
|
1847
|
+
TimeSeriesForecastingJobConfig = Shapes::StructureShape.new(name: 'TimeSeriesForecastingJobConfig')
|
1832
1848
|
TimeSeriesForecastingSettings = Shapes::StructureShape.new(name: 'TimeSeriesForecastingSettings')
|
1849
|
+
TimeSeriesTransformations = Shapes::StructureShape.new(name: 'TimeSeriesTransformations')
|
1833
1850
|
Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
|
1851
|
+
TimestampAttributeName = Shapes::StringShape.new(name: 'TimestampAttributeName')
|
1834
1852
|
TrafficDurationInSeconds = Shapes::IntegerShape.new(name: 'TrafficDurationInSeconds')
|
1835
1853
|
TrafficPattern = Shapes::StructureShape.new(name: 'TrafficPattern')
|
1836
1854
|
TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
|
@@ -1884,6 +1902,7 @@ module Aws::SageMaker
|
|
1884
1902
|
TransformOutput = Shapes::StructureShape.new(name: 'TransformOutput')
|
1885
1903
|
TransformResources = Shapes::StructureShape.new(name: 'TransformResources')
|
1886
1904
|
TransformS3DataSource = Shapes::StructureShape.new(name: 'TransformS3DataSource')
|
1905
|
+
TransformationAttributeName = Shapes::StringShape.new(name: 'TransformationAttributeName')
|
1887
1906
|
Trial = Shapes::StructureShape.new(name: 'Trial')
|
1888
1907
|
TrialArn = Shapes::StringShape.new(name: 'TrialArn')
|
1889
1908
|
TrialComponent = Shapes::StructureShape.new(name: 'TrialComponent')
|
@@ -2084,6 +2103,9 @@ module Aws::SageMaker
|
|
2084
2103
|
|
2085
2104
|
AgentVersions.member = Shapes::ShapeRef.new(shape: AgentVersion)
|
2086
2105
|
|
2106
|
+
AggregationTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
|
2107
|
+
AggregationTransformations.value = Shapes::ShapeRef.new(shape: AggregationTransformationValue)
|
2108
|
+
|
2087
2109
|
Alarm.add_member(:alarm_name, Shapes::ShapeRef.new(shape: AlarmName, location_name: "AlarmName"))
|
2088
2110
|
Alarm.struct_class = Types::Alarm
|
2089
2111
|
|
@@ -2344,10 +2366,12 @@ module Aws::SageMaker
|
|
2344
2366
|
AutoMLProblemTypeConfig.add_member(:image_classification_job_config, Shapes::ShapeRef.new(shape: ImageClassificationJobConfig, location_name: "ImageClassificationJobConfig"))
|
2345
2367
|
AutoMLProblemTypeConfig.add_member(:text_classification_job_config, Shapes::ShapeRef.new(shape: TextClassificationJobConfig, location_name: "TextClassificationJobConfig"))
|
2346
2368
|
AutoMLProblemTypeConfig.add_member(:tabular_job_config, Shapes::ShapeRef.new(shape: TabularJobConfig, location_name: "TabularJobConfig"))
|
2369
|
+
AutoMLProblemTypeConfig.add_member(:time_series_forecasting_job_config, Shapes::ShapeRef.new(shape: TimeSeriesForecastingJobConfig, location_name: "TimeSeriesForecastingJobConfig"))
|
2347
2370
|
AutoMLProblemTypeConfig.add_member(:unknown, Shapes::ShapeRef.new(shape: nil, location_name: 'unknown'))
|
2348
2371
|
AutoMLProblemTypeConfig.add_member_subclass(:image_classification_job_config, Types::AutoMLProblemTypeConfig::ImageClassificationJobConfig)
|
2349
2372
|
AutoMLProblemTypeConfig.add_member_subclass(:text_classification_job_config, Types::AutoMLProblemTypeConfig::TextClassificationJobConfig)
|
2350
2373
|
AutoMLProblemTypeConfig.add_member_subclass(:tabular_job_config, Types::AutoMLProblemTypeConfig::TabularJobConfig)
|
2374
|
+
AutoMLProblemTypeConfig.add_member_subclass(:time_series_forecasting_job_config, Types::AutoMLProblemTypeConfig::TimeSeriesForecastingJobConfig)
|
2351
2375
|
AutoMLProblemTypeConfig.add_member_subclass(:unknown, Types::AutoMLProblemTypeConfig::Unknown)
|
2352
2376
|
AutoMLProblemTypeConfig.struct_class = Types::AutoMLProblemTypeConfig
|
2353
2377
|
|
@@ -2448,6 +2472,7 @@ module Aws::SageMaker
|
|
2448
2472
|
|
2449
2473
|
CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
|
2450
2474
|
CandidateArtifactLocations.add_member(:model_insights, Shapes::ShapeRef.new(shape: ModelInsightsLocation, location_name: "ModelInsights"))
|
2475
|
+
CandidateArtifactLocations.add_member(:backtest_results, Shapes::ShapeRef.new(shape: BacktestResultsLocation, location_name: "BacktestResults"))
|
2451
2476
|
CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
|
2452
2477
|
|
2453
2478
|
CandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
|
@@ -5102,6 +5127,12 @@ module Aws::SageMaker
|
|
5102
5127
|
FileSystemDataSource.add_member(:directory_path, Shapes::ShapeRef.new(shape: DirectoryPath, required: true, location_name: "DirectoryPath"))
|
5103
5128
|
FileSystemDataSource.struct_class = Types::FileSystemDataSource
|
5104
5129
|
|
5130
|
+
FillingTransformationMap.key = Shapes::ShapeRef.new(shape: FillingType)
|
5131
|
+
FillingTransformationMap.value = Shapes::ShapeRef.new(shape: FillingTransformationValue)
|
5132
|
+
|
5133
|
+
FillingTransformations.key = Shapes::ShapeRef.new(shape: TransformationAttributeName)
|
5134
|
+
FillingTransformations.value = Shapes::ShapeRef.new(shape: FillingTransformationMap)
|
5135
|
+
|
5105
5136
|
Filter.add_member(:name, Shapes::ShapeRef.new(shape: ResourcePropertyName, required: true, location_name: "Name"))
|
5106
5137
|
Filter.add_member(:operator, Shapes::ShapeRef.new(shape: Operator, location_name: "Operator"))
|
5107
5138
|
Filter.add_member(:value, Shapes::ShapeRef.new(shape: FilterValue, location_name: "Value"))
|
@@ -5137,6 +5168,8 @@ module Aws::SageMaker
|
|
5137
5168
|
|
5138
5169
|
FlowDefinitionTaskKeywords.member = Shapes::ShapeRef.new(shape: FlowDefinitionTaskKeyword)
|
5139
5170
|
|
5171
|
+
ForecastQuantiles.member = Shapes::ShapeRef.new(shape: ForecastQuantile)
|
5172
|
+
|
5140
5173
|
GetDeviceFleetReportRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
|
5141
5174
|
GetDeviceFleetReportRequest.struct_class = Types::GetDeviceFleetReportRequest
|
5142
5175
|
|
@@ -5183,6 +5216,8 @@ module Aws::SageMaker
|
|
5183
5216
|
GitConfigForUpdate.add_member(:secret_arn, Shapes::ShapeRef.new(shape: SecretArn, location_name: "SecretArn"))
|
5184
5217
|
GitConfigForUpdate.struct_class = Types::GitConfigForUpdate
|
5185
5218
|
|
5219
|
+
GroupingAttributeNames.member = Shapes::ShapeRef.new(shape: GroupingAttributeName)
|
5220
|
+
|
5186
5221
|
Groups.member = Shapes::ShapeRef.new(shape: Group)
|
5187
5222
|
|
5188
5223
|
HookParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
|
@@ -6762,6 +6797,7 @@ module Aws::SageMaker
|
|
6762
6797
|
ModelCard.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
6763
6798
|
ModelCard.add_member(:model_id, Shapes::ShapeRef.new(shape: String, location_name: "ModelId"))
|
6764
6799
|
ModelCard.add_member(:risk_rating, Shapes::ShapeRef.new(shape: String, location_name: "RiskRating"))
|
6800
|
+
ModelCard.add_member(:model_package_group_name, Shapes::ShapeRef.new(shape: String, location_name: "ModelPackageGroupName"))
|
6765
6801
|
ModelCard.struct_class = Types::ModelCard
|
6766
6802
|
|
6767
6803
|
ModelCardExportArtifacts.add_member(:s3_export_artifacts, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3ExportArtifacts"))
|
@@ -8289,10 +8325,29 @@ module Aws::SageMaker
|
|
8289
8325
|
TextClassificationJobConfig.add_member(:target_label_column, Shapes::ShapeRef.new(shape: TargetLabelColumn, location_name: "TargetLabelColumn"))
|
8290
8326
|
TextClassificationJobConfig.struct_class = Types::TextClassificationJobConfig
|
8291
8327
|
|
8328
|
+
TimeSeriesConfig.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
8329
|
+
TimeSeriesConfig.add_member(:timestamp_attribute_name, Shapes::ShapeRef.new(shape: TimestampAttributeName, required: true, location_name: "TimestampAttributeName"))
|
8330
|
+
TimeSeriesConfig.add_member(:item_identifier_attribute_name, Shapes::ShapeRef.new(shape: ItemIdentifierAttributeName, required: true, location_name: "ItemIdentifierAttributeName"))
|
8331
|
+
TimeSeriesConfig.add_member(:grouping_attribute_names, Shapes::ShapeRef.new(shape: GroupingAttributeNames, location_name: "GroupingAttributeNames"))
|
8332
|
+
TimeSeriesConfig.struct_class = Types::TimeSeriesConfig
|
8333
|
+
|
8334
|
+
TimeSeriesForecastingJobConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
|
8335
|
+
TimeSeriesForecastingJobConfig.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
8336
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_frequency, Shapes::ShapeRef.new(shape: ForecastFrequency, required: true, location_name: "ForecastFrequency"))
|
8337
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: ForecastHorizon, required: true, location_name: "ForecastHorizon"))
|
8338
|
+
TimeSeriesForecastingJobConfig.add_member(:forecast_quantiles, Shapes::ShapeRef.new(shape: ForecastQuantiles, location_name: "ForecastQuantiles"))
|
8339
|
+
TimeSeriesForecastingJobConfig.add_member(:transformations, Shapes::ShapeRef.new(shape: TimeSeriesTransformations, location_name: "Transformations"))
|
8340
|
+
TimeSeriesForecastingJobConfig.add_member(:time_series_config, Shapes::ShapeRef.new(shape: TimeSeriesConfig, required: true, location_name: "TimeSeriesConfig"))
|
8341
|
+
TimeSeriesForecastingJobConfig.struct_class = Types::TimeSeriesForecastingJobConfig
|
8342
|
+
|
8292
8343
|
TimeSeriesForecastingSettings.add_member(:status, Shapes::ShapeRef.new(shape: FeatureStatus, location_name: "Status"))
|
8293
8344
|
TimeSeriesForecastingSettings.add_member(:amazon_forecast_role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "AmazonForecastRoleArn"))
|
8294
8345
|
TimeSeriesForecastingSettings.struct_class = Types::TimeSeriesForecastingSettings
|
8295
8346
|
|
8347
|
+
TimeSeriesTransformations.add_member(:filling, Shapes::ShapeRef.new(shape: FillingTransformations, location_name: "Filling"))
|
8348
|
+
TimeSeriesTransformations.add_member(:aggregation, Shapes::ShapeRef.new(shape: AggregationTransformations, location_name: "Aggregation"))
|
8349
|
+
TimeSeriesTransformations.struct_class = Types::TimeSeriesTransformations
|
8350
|
+
|
8296
8351
|
TrafficPattern.add_member(:traffic_type, Shapes::ShapeRef.new(shape: TrafficType, location_name: "TrafficType"))
|
8297
8352
|
TrafficPattern.add_member(:phases, Shapes::ShapeRef.new(shape: Phases, location_name: "Phases"))
|
8298
8353
|
TrafficPattern.struct_class = Types::TrafficPattern
|
@@ -2086,20 +2086,29 @@ module Aws::SageMaker
|
|
2086
2086
|
# The type of channel. Defines whether the data are used for training
|
2087
2087
|
# or validation. The default value is `training`. Channels for
|
2088
2088
|
# `training` and `validation` must share the same `ContentType`
|
2089
|
+
#
|
2090
|
+
# <note markdown="1"> The type of channel defaults to `training` for the time-series
|
2091
|
+
# forecasting problem type.
|
2092
|
+
#
|
2093
|
+
# </note>
|
2089
2094
|
# @return [String]
|
2090
2095
|
#
|
2091
2096
|
# @!attribute [rw] content_type
|
2092
2097
|
# The content type of the data from the input source. The following
|
2093
2098
|
# are the allowed content types for different problems:
|
2094
2099
|
#
|
2095
|
-
# * For
|
2100
|
+
# * For tabular problem types: `text/csv;header=present` or
|
2096
2101
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2097
2102
|
# `text/csv;header=present`.
|
2098
2103
|
#
|
2099
|
-
# * For
|
2104
|
+
# * For image classification: `image/png`, `image/jpeg`, or `image/*`.
|
2100
2105
|
# The default value is `image/*`.
|
2101
2106
|
#
|
2102
|
-
# * For
|
2107
|
+
# * For text classification: `text/csv;header=present` or
|
2108
|
+
# `x-application/vnd.amazon+parquet`. The default value is
|
2109
|
+
# `text/csv;header=present`.
|
2110
|
+
#
|
2111
|
+
# * For time-series forecasting: `text/csv;header=present` or
|
2103
2112
|
# `x-application/vnd.amazon+parquet`. The default value is
|
2104
2113
|
# `text/csv;header=present`.
|
2105
2114
|
# @return [String]
|
@@ -2132,8 +2141,9 @@ module Aws::SageMaker
|
|
2132
2141
|
# @!attribute [rw] max_candidates
|
2133
2142
|
# The maximum number of times a training job is allowed to run.
|
2134
2143
|
#
|
2135
|
-
# For
|
2136
|
-
# supported value is 1.
|
2144
|
+
# For text and image classification, as well as time-series
|
2145
|
+
# forecasting problem types, the supported value is 1. For tabular
|
2146
|
+
# problem types, the maximum value is 750.
|
2137
2147
|
# @return [Integer]
|
2138
2148
|
#
|
2139
2149
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
@@ -2261,6 +2271,9 @@ module Aws::SageMaker
|
|
2261
2271
|
#
|
2262
2272
|
# * For image or text classification problem types: `Accuracy`
|
2263
2273
|
#
|
2274
|
+
# * For time-series forecasting problem types:
|
2275
|
+
# `AverageWeightedQuantileLoss`
|
2276
|
+
#
|
2264
2277
|
#
|
2265
2278
|
#
|
2266
2279
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
@@ -2399,12 +2412,18 @@ module Aws::SageMaker
|
|
2399
2412
|
# type (regression, classification).
|
2400
2413
|
# @return [Types::TabularJobConfig]
|
2401
2414
|
#
|
2415
|
+
# @!attribute [rw] time_series_forecasting_job_config
|
2416
|
+
# Settings used to configure an AutoML job V2 for a time-series
|
2417
|
+
# forecasting problem type.
|
2418
|
+
# @return [Types::TimeSeriesForecastingJobConfig]
|
2419
|
+
#
|
2402
2420
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLProblemTypeConfig AWS API Documentation
|
2403
2421
|
#
|
2404
2422
|
class AutoMLProblemTypeConfig < Struct.new(
|
2405
2423
|
:image_classification_job_config,
|
2406
2424
|
:text_classification_job_config,
|
2407
2425
|
:tabular_job_config,
|
2426
|
+
:time_series_forecasting_job_config,
|
2408
2427
|
:unknown)
|
2409
2428
|
SENSITIVE = []
|
2410
2429
|
include Aws::Structure
|
@@ -2413,6 +2432,7 @@ module Aws::SageMaker
|
|
2413
2432
|
class ImageClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2414
2433
|
class TextClassificationJobConfig < AutoMLProblemTypeConfig; end
|
2415
2434
|
class TabularJobConfig < AutoMLProblemTypeConfig; end
|
2435
|
+
class TimeSeriesForecastingJobConfig < AutoMLProblemTypeConfig; end
|
2416
2436
|
class Unknown < AutoMLProblemTypeConfig; end
|
2417
2437
|
end
|
2418
2438
|
|
@@ -2987,11 +3007,18 @@ module Aws::SageMaker
|
|
2987
3007
|
# the AutoML candidate.
|
2988
3008
|
# @return [String]
|
2989
3009
|
#
|
3010
|
+
# @!attribute [rw] backtest_results
|
3011
|
+
# The Amazon S3 prefix to the accuracy metrics and the inference
|
3012
|
+
# results observed over the testing window. Available only for the
|
3013
|
+
# time-series forecasting problem type.
|
3014
|
+
# @return [String]
|
3015
|
+
#
|
2990
3016
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
|
2991
3017
|
#
|
2992
3018
|
class CandidateArtifactLocations < Struct.new(
|
2993
3019
|
:explainability,
|
2994
|
-
:model_insights
|
3020
|
+
:model_insights,
|
3021
|
+
:backtest_results)
|
2995
3022
|
SENSITIVE = []
|
2996
3023
|
include Aws::Structure
|
2997
3024
|
end
|
@@ -4717,12 +4744,14 @@ module Aws::SageMaker
|
|
4717
4744
|
# [InputDataConfig][1] attribute in the `CreateAutoMLJob` input
|
4718
4745
|
# parameters. The supported formats depend on the problem type:
|
4719
4746
|
#
|
4720
|
-
# * For
|
4747
|
+
# * For tabular problem types: `S3Prefix`, `ManifestFile`.
|
4721
4748
|
#
|
4722
|
-
# * For
|
4749
|
+
# * For image classification: `S3Prefix`, `ManifestFile`,
|
4723
4750
|
# `AugmentedManifestFile`.
|
4724
4751
|
#
|
4725
|
-
# * For
|
4752
|
+
# * For text classification: `S3Prefix`.
|
4753
|
+
#
|
4754
|
+
# * For time-series forecasting: `S3Prefix`.
|
4726
4755
|
#
|
4727
4756
|
#
|
4728
4757
|
#
|
@@ -4789,6 +4818,12 @@ module Aws::SageMaker
|
|
4789
4818
|
# The validation and training datasets must contain the same headers.
|
4790
4819
|
# For jobs created by calling `CreateAutoMLJob`, the validation
|
4791
4820
|
# dataset must be less than 2 GB in size.
|
4821
|
+
#
|
4822
|
+
# <note markdown="1"> This attribute must not be set for the time-series forecasting
|
4823
|
+
# problem type, as Autopilot automatically splits the input dataset
|
4824
|
+
# into training and validation sets.
|
4825
|
+
#
|
4826
|
+
# </note>
|
4792
4827
|
# @return [Types::AutoMLDataSplitConfig]
|
4793
4828
|
#
|
4794
4829
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobV2Request AWS API Documentation
|
@@ -7566,7 +7601,11 @@ module Aws::SageMaker
|
|
7566
7601
|
# @return [String]
|
7567
7602
|
#
|
7568
7603
|
# @!attribute [rw] pipeline_definition
|
7569
|
-
# The JSON pipeline definition of the pipeline.
|
7604
|
+
# The [JSON pipeline definition][1] of the pipeline.
|
7605
|
+
#
|
7606
|
+
#
|
7607
|
+
#
|
7608
|
+
# [1]: https://aws-sagemaker-mlops.github.io/sagemaker-model-building-pipeline-definition-JSON-schema/
|
7570
7609
|
# @return [String]
|
7571
7610
|
#
|
7572
7611
|
# @!attribute [rw] pipeline_definition_s3_location
|
@@ -27982,6 +28021,12 @@ module Aws::SageMaker
|
|
27982
28021
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-risk-rating.html
|
27983
28022
|
# @return [String]
|
27984
28023
|
#
|
28024
|
+
# @!attribute [rw] model_package_group_name
|
28025
|
+
# The model package group that contains the model package. Only
|
28026
|
+
# relevant for model cards created for model packages in the Amazon
|
28027
|
+
# SageMaker Model Registry.
|
28028
|
+
# @return [String]
|
28029
|
+
#
|
27985
28030
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelCard AWS API Documentation
|
27986
28031
|
#
|
27987
28032
|
class ModelCard < Struct.new(
|
@@ -27997,7 +28042,8 @@ module Aws::SageMaker
|
|
27997
28042
|
:last_modified_by,
|
27998
28043
|
:tags,
|
27999
28044
|
:model_id,
|
28000
|
-
:risk_rating
|
28045
|
+
:risk_rating,
|
28046
|
+
:model_package_group_name)
|
28001
28047
|
SENSITIVE = [:content]
|
28002
28048
|
include Aws::Structure
|
28003
28049
|
end
|
@@ -36909,6 +36955,157 @@ module Aws::SageMaker
|
|
36909
36955
|
include Aws::Structure
|
36910
36956
|
end
|
36911
36957
|
|
36958
|
+
# The collection of components that defines the time-series.
|
36959
|
+
#
|
36960
|
+
# @!attribute [rw] target_attribute_name
|
36961
|
+
# The name of the column representing the target variable that you
|
36962
|
+
# want to predict for each item in your dataset. The data type of the
|
36963
|
+
# target variable must be numerical.
|
36964
|
+
# @return [String]
|
36965
|
+
#
|
36966
|
+
# @!attribute [rw] timestamp_attribute_name
|
36967
|
+
# The name of the column indicating a point in time at which the
|
36968
|
+
# target value of a given item is recorded.
|
36969
|
+
# @return [String]
|
36970
|
+
#
|
36971
|
+
# @!attribute [rw] item_identifier_attribute_name
|
36972
|
+
# The name of the column that represents the set of item identifiers
|
36973
|
+
# for which you want to predict the target value.
|
36974
|
+
# @return [String]
|
36975
|
+
#
|
36976
|
+
# @!attribute [rw] grouping_attribute_names
|
36977
|
+
# A set of columns names that can be grouped with the item identifier
|
36978
|
+
# column to create a composite key for which a target value is
|
36979
|
+
# predicted.
|
36980
|
+
# @return [Array<String>]
|
36981
|
+
#
|
36982
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesConfig AWS API Documentation
|
36983
|
+
#
|
36984
|
+
class TimeSeriesConfig < Struct.new(
|
36985
|
+
:target_attribute_name,
|
36986
|
+
:timestamp_attribute_name,
|
36987
|
+
:item_identifier_attribute_name,
|
36988
|
+
:grouping_attribute_names)
|
36989
|
+
SENSITIVE = []
|
36990
|
+
include Aws::Structure
|
36991
|
+
end
|
36992
|
+
|
36993
|
+
# The collection of settings used by an AutoML job V2 for the
|
36994
|
+
# time-series forecasting problem type.
|
36995
|
+
#
|
36996
|
+
# <note markdown="1"> The `TimeSeriesForecastingJobConfig` problem type is only available in
|
36997
|
+
# private beta. Contact Amazon Web Services Support or your account
|
36998
|
+
# manager to learn more about access privileges.
|
36999
|
+
#
|
37000
|
+
# </note>
|
37001
|
+
#
|
37002
|
+
# @!attribute [rw] feature_specification_s3_uri
|
37003
|
+
# A URL to the Amazon S3 data source containing additional selected
|
37004
|
+
# features that complement the target, itemID, timestamp, and grouped
|
37005
|
+
# columns set in `TimeSeriesConfig`. When not provided, the AutoML job
|
37006
|
+
# V2 includes all the columns from the original dataset that are not
|
37007
|
+
# already declared in `TimeSeriesConfig`. If provided, the AutoML job
|
37008
|
+
# V2 only considers these additional columns as a complement to the
|
37009
|
+
# ones declared in `TimeSeriesConfig`.
|
37010
|
+
#
|
37011
|
+
# You can input `FeatureAttributeNames` (optional) in JSON format as
|
37012
|
+
# shown below:
|
37013
|
+
#
|
37014
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
37015
|
+
#
|
37016
|
+
# You can also specify the data type of the feature (optional) in the
|
37017
|
+
# format shown below:
|
37018
|
+
#
|
37019
|
+
# `\{ "FeatureDataTypes":\{"col1":"numeric", "col2":"categorical" ...
|
37020
|
+
# \} \}`
|
37021
|
+
#
|
37022
|
+
# Autopilot supports the following data types: `numeric`,
|
37023
|
+
# `categorical`, `text`, and `datetime`.
|
37024
|
+
#
|
37025
|
+
# <note markdown="1"> These column keys must not include any column set in
|
37026
|
+
# `TimeSeriesConfig`.
|
37027
|
+
#
|
37028
|
+
# </note>
|
37029
|
+
#
|
37030
|
+
# When not provided, the AutoML job V2 includes all the columns from
|
37031
|
+
# the original dataset that are not already declared in
|
37032
|
+
# `TimeSeriesConfig`. If provided, the AutoML job V2 only considers
|
37033
|
+
# these additional columns as a complement to the ones declared in
|
37034
|
+
# `TimeSeriesConfig`.
|
37035
|
+
#
|
37036
|
+
# Autopilot supports the following data types: `numeric`,
|
37037
|
+
# `categorical`, `text`, and `datetime`.
|
37038
|
+
# @return [String]
|
37039
|
+
#
|
37040
|
+
# @!attribute [rw] completion_criteria
|
37041
|
+
# How long a job is allowed to run, or how many candidates a job is
|
37042
|
+
# allowed to generate.
|
37043
|
+
# @return [Types::AutoMLJobCompletionCriteria]
|
37044
|
+
#
|
37045
|
+
# @!attribute [rw] forecast_frequency
|
37046
|
+
# The frequency of predictions in a forecast.
|
37047
|
+
#
|
37048
|
+
# Valid intervals are an integer followed by Y (Year), M (Month), W
|
37049
|
+
# (Week), D (Day), H (Hour), and min (Minute). For example, `1D`
|
37050
|
+
# indicates every day and `15min` indicates every 15 minutes. The
|
37051
|
+
# value of a frequency must not overlap with the next larger
|
37052
|
+
# frequency. For example, you must use a frequency of `1H` instead of
|
37053
|
+
# `60min`.
|
37054
|
+
#
|
37055
|
+
# The valid values for each frequency are the following:
|
37056
|
+
#
|
37057
|
+
# * Minute - 1-59
|
37058
|
+
#
|
37059
|
+
# * Hour - 1-23
|
37060
|
+
#
|
37061
|
+
# * Day - 1-6
|
37062
|
+
#
|
37063
|
+
# * Week - 1-4
|
37064
|
+
#
|
37065
|
+
# * Month - 1-11
|
37066
|
+
#
|
37067
|
+
# * Year - 1
|
37068
|
+
# @return [String]
|
37069
|
+
#
|
37070
|
+
# @!attribute [rw] forecast_horizon
|
37071
|
+
# The number of time-steps that the model predicts. The forecast
|
37072
|
+
# horizon is also called the prediction length. The maximum forecast
|
37073
|
+
# horizon is the lesser of 500 time-steps or 1/4 of the time-steps in
|
37074
|
+
# the dataset.
|
37075
|
+
# @return [Integer]
|
37076
|
+
#
|
37077
|
+
# @!attribute [rw] forecast_quantiles
|
37078
|
+
# The quantiles used to train the model for forecasts at a specified
|
37079
|
+
# quantile. You can specify quantiles from `0.01` (p1) to `0.99`
|
37080
|
+
# (p99), by increments of 0.01 or higher. Up to five forecast
|
37081
|
+
# quantiles can be specified. When `ForecastQuantiles` is not
|
37082
|
+
# provided, the AutoML job uses the quantiles p10, p50, and p90 as
|
37083
|
+
# default.
|
37084
|
+
# @return [Array<String>]
|
37085
|
+
#
|
37086
|
+
# @!attribute [rw] transformations
|
37087
|
+
# The transformations modifying specific attributes of the
|
37088
|
+
# time-series, such as filling strategies for missing values.
|
37089
|
+
# @return [Types::TimeSeriesTransformations]
|
37090
|
+
#
|
37091
|
+
# @!attribute [rw] time_series_config
|
37092
|
+
# The collection of components that defines the time-series.
|
37093
|
+
# @return [Types::TimeSeriesConfig]
|
37094
|
+
#
|
37095
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesForecastingJobConfig AWS API Documentation
|
37096
|
+
#
|
37097
|
+
class TimeSeriesForecastingJobConfig < Struct.new(
|
37098
|
+
:feature_specification_s3_uri,
|
37099
|
+
:completion_criteria,
|
37100
|
+
:forecast_frequency,
|
37101
|
+
:forecast_horizon,
|
37102
|
+
:forecast_quantiles,
|
37103
|
+
:transformations,
|
37104
|
+
:time_series_config)
|
37105
|
+
SENSITIVE = []
|
37106
|
+
include Aws::Structure
|
37107
|
+
end
|
37108
|
+
|
36912
37109
|
# Time series forecast settings for the SageMaker Canvas application.
|
36913
37110
|
#
|
36914
37111
|
# @!attribute [rw] status
|
@@ -36941,6 +37138,56 @@ module Aws::SageMaker
|
|
36941
37138
|
include Aws::Structure
|
36942
37139
|
end
|
36943
37140
|
|
37141
|
+
# Transformations allowed on the dataset. Supported transformations are
|
37142
|
+
# `Filling` and `Aggregation`. `Filling` specifies how to add values to
|
37143
|
+
# missing values in the dataset. `Aggregation` defines how to aggregate
|
37144
|
+
# data that does not align with forecast frequency.
|
37145
|
+
#
|
37146
|
+
# @!attribute [rw] filling
|
37147
|
+
# A key value pair defining the filling method for a column, where the
|
37148
|
+
# key is the column name and the value is an object which defines the
|
37149
|
+
# filling logic. You can specify multiple filling methods for a single
|
37150
|
+
# column.
|
37151
|
+
#
|
37152
|
+
# The supported filling methods and their corresponding options are:
|
37153
|
+
#
|
37154
|
+
# * `frontfill`: `none` (Supported only for target column)
|
37155
|
+
#
|
37156
|
+
# * `middlefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37157
|
+
#
|
37158
|
+
# * `backfill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37159
|
+
#
|
37160
|
+
# * `futurefill`: `zero`, `value`, `median`, `mean`, `min`, `max`
|
37161
|
+
#
|
37162
|
+
# To set a filling method to a specific value, set the fill parameter
|
37163
|
+
# to the chosen filling method value (for example `"backfill" :
|
37164
|
+
# "value"`), and define the filling value in an additional parameter
|
37165
|
+
# prefixed with "\_value". For example, to set `backfill` to a value
|
37166
|
+
# of `2`, you must include two parameters: `"backfill": "value"` and
|
37167
|
+
# `"backfill_value":"2"`.
|
37168
|
+
# @return [Hash<String,Hash<String,String>>]
|
37169
|
+
#
|
37170
|
+
# @!attribute [rw] aggregation
|
37171
|
+
# A key value pair defining the aggregation method for a column, where
|
37172
|
+
# the key is the column name and the value is the aggregation method.
|
37173
|
+
#
|
37174
|
+
# The supported aggregation methods are `sum` (default), `avg`,
|
37175
|
+
# `first`, `min`, `max`.
|
37176
|
+
#
|
37177
|
+
# <note markdown="1"> Aggregation is only supported for the target column.
|
37178
|
+
#
|
37179
|
+
# </note>
|
37180
|
+
# @return [Hash<String,String>]
|
37181
|
+
#
|
37182
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TimeSeriesTransformations AWS API Documentation
|
37183
|
+
#
|
37184
|
+
class TimeSeriesTransformations < Struct.new(
|
37185
|
+
:filling,
|
37186
|
+
:aggregation)
|
37187
|
+
SENSITIVE = []
|
37188
|
+
include Aws::Structure
|
37189
|
+
end
|
37190
|
+
|
36944
37191
|
# Defines the traffic pattern of the load test.
|
36945
37192
|
#
|
36946
37193
|
# @!attribute [rw] traffic_type
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.192.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-06-
|
11
|
+
date: 2023-06-29 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|
@@ -19,7 +19,7 @@ dependencies:
|
|
19
19
|
version: '3'
|
20
20
|
- - ">="
|
21
21
|
- !ruby/object:Gem::Version
|
22
|
-
version: 3.
|
22
|
+
version: 3.176.0
|
23
23
|
type: :runtime
|
24
24
|
prerelease: false
|
25
25
|
version_requirements: !ruby/object:Gem::Requirement
|
@@ -29,7 +29,7 @@ dependencies:
|
|
29
29
|
version: '3'
|
30
30
|
- - ">="
|
31
31
|
- !ruby/object:Gem::Version
|
32
|
-
version: 3.
|
32
|
+
version: 3.176.0
|
33
33
|
- !ruby/object:Gem::Dependency
|
34
34
|
name: aws-sigv4
|
35
35
|
requirement: !ruby/object:Gem::Requirement
|