aws-sdk-sagemaker 1.170.0 → 1.173.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: f1fa5b10ce3610004b782d1192506edfc8b7ce192989de1c3bfc68c7c0b25496
4
- data.tar.gz: e7ef3bdb931828c5f234c9959a12882489a095b098b815c9453097b22160b607
3
+ metadata.gz: 90becff4fc2ef31c7dfe2646033396b7b751c3661e3c5ece1f8ee42ab14a07eb
4
+ data.tar.gz: fe8bf66b1d034a39f11591511d4ba61eb76d6a0e4dd549cd8a5ca48cca7e9e40
5
5
  SHA512:
6
- metadata.gz: 7c5a70584520362184260b8483aaaa75c0fea5d4b9319bce55079b532e1172fcf2065d39e7e74bfa665395754e7cfbaa861bfcdfca527646c4cd2dc7dad4172e
7
- data.tar.gz: d43a0f658c62f83a0ad8171b293b9c7db2018a66d06bf11aaf3b9d56b8029821f0833db2ee4de8493241354d39080be439a30f01741d5465ba465627054e6543
6
+ metadata.gz: 35d3bd1b47ace1655d04fd1637eab670f09ca5f657587dd29bf8a4c679a3045ed060122a4f00d62429e96928581aa694d24ead51da00e37b6e46a1bdebc9766c
7
+ data.tar.gz: f35131f7e74815dc3ef5d646581a9db6529950f80cdbda76a1b252b9565b685f43ec1177566d6d5d628cab1a0723fef1048f0c5baabc4bb5eae183dbdaa120ff
data/CHANGELOG.md CHANGED
@@ -1,6 +1,21 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.173.0 (2023-04-04)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Asynchronous Inference now allows customer's to receive failure model responses in S3 and receive success/failure model responses in SNS notifications.
8
+
9
+ 1.172.0 (2023-04-04)
10
+ ------------------
11
+
12
+ * Feature - Amazon SageMaker Asynchronous Inference now allows customer's to receive failure model responses in S3 and receive success/failure model responses in SNS notifications.
13
+
14
+ 1.171.0 (2023-03-27)
15
+ ------------------
16
+
17
+ * Feature - Fixed some improperly rendered links in SDK documentation.
18
+
4
19
  1.170.0 (2023-03-23)
5
20
  ------------------
6
21
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.170.0
1
+ 1.173.0
@@ -1174,14 +1174,15 @@ module Aws::SageMaker
1174
1174
  # Creates an Autopilot job.
1175
1175
  #
1176
1176
  # Find the best-performing model after you run an Autopilot job by
1177
- # calling .
1177
+ # calling [DescribeAutoMLJob][1].
1178
1178
  #
1179
1179
  # For information about how to use Autopilot, see [Automate Model
1180
- # Development with Amazon SageMaker Autopilot][1].
1180
+ # Development with Amazon SageMaker Autopilot][2].
1181
1181
  #
1182
1182
  #
1183
1183
  #
1184
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1184
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
1185
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1185
1186
  #
1186
1187
  # @option params [required, String] :auto_ml_job_name
1187
1188
  # Identifies an Autopilot job. The name must be unique to your account
@@ -1190,9 +1191,15 @@ module Aws::SageMaker
1190
1191
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1191
1192
  # An array of channel objects that describes the input data and its
1192
1193
  # location. Each channel is a named input source. Similar to
1193
- # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet. A
1194
- # minimum of 500 rows is required for the training dataset. There is not
1195
- # a minimum number of rows required for the validation dataset.
1194
+ # `InputDataConfig` supported by
1195
+ # [HyperParameterTrainingJobDefinition][1]. Format(s) supported: CSV,
1196
+ # Parquet. A minimum of 500 rows is required for the training dataset.
1197
+ # There is not a minimum number of rows required for the validation
1198
+ # dataset.
1199
+ #
1200
+ #
1201
+ #
1202
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
1196
1203
  #
1197
1204
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1198
1205
  # Provides information about encryption and the Amazon S3 output path
@@ -1202,17 +1209,22 @@ module Aws::SageMaker
1202
1209
  # @option params [String] :problem_type
1203
1210
  # Defines the type of supervised learning problem available for the
1204
1211
  # candidates. For more information, see [ Amazon SageMaker Autopilot
1205
- # problem types and algorithm support][1].
1212
+ # problem types][1].
1206
1213
  #
1207
1214
  #
1208
1215
  #
1209
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
1216
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
1210
1217
  #
1211
1218
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1212
1219
  # Defines the objective metric used to measure the predictive quality of
1213
- # an AutoML job. You provide an AutoMLJobObjective$MetricName and
1214
- # Autopilot infers whether to minimize or maximize it. For , only
1215
- # `Accuracy` is supported.
1220
+ # an AutoML job. You provide an [AutoMLJobObjective$MetricName][1] and
1221
+ # Autopilot infers whether to minimize or maximize it. For
1222
+ # [CreateAutoMLJobV2][2], only `Accuracy` is supported.
1223
+ #
1224
+ #
1225
+ #
1226
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
1227
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1216
1228
  #
1217
1229
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1218
1230
  # A collection of settings used to configure an AutoML job.
@@ -1328,15 +1340,21 @@ module Aws::SageMaker
1328
1340
  # as images or text for Computer Vision or Natural Language Processing
1329
1341
  # problems.
1330
1342
  #
1331
- # Find the resulting model after you run an AutoML job V2 by calling .
1343
+ # Find the resulting model after you run an AutoML job V2 by calling
1344
+ # [DescribeAutoMLJobV2][1].
1332
1345
  #
1333
- # To create an `AutoMLJob` using tabular data, see .
1346
+ # To create an `AutoMLJob` using tabular data, see [CreateAutoMLJob][2].
1334
1347
  #
1335
1348
  # <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
1336
1349
  # directly from the CLI or an SDK results in an error.
1337
1350
  #
1338
1351
  # </note>
1339
1352
  #
1353
+ #
1354
+ #
1355
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
1356
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
1357
+ #
1340
1358
  # @option params [required, String] :auto_ml_job_name
1341
1359
  # Identifies an Autopilot job. The name must be unique to your account
1342
1360
  # and is case insensitive.
@@ -1383,7 +1401,11 @@ module Aws::SageMaker
1383
1401
  #
1384
1402
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1385
1403
  # Specifies a metric to minimize or maximize as the objective of a job.
1386
- # For , only `Accuracy` is supported.
1404
+ # For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
1405
+ #
1406
+ #
1407
+ #
1408
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
1387
1409
  #
1388
1410
  # @option params [Types::ModelDeployConfig] :model_deploy_config
1389
1411
  # Specifies how to generate the endpoint name for an automatic one-click
@@ -2799,11 +2821,13 @@ module Aws::SageMaker
2799
2821
  # },
2800
2822
  # output_config: { # required
2801
2823
  # kms_key_id: "KmsKeyId",
2802
- # s3_output_path: "DestinationS3Uri", # required
2824
+ # s3_output_path: "DestinationS3Uri",
2803
2825
  # notification_config: {
2804
2826
  # success_topic: "SnsTopicArn",
2805
2827
  # error_topic: "SnsTopicArn",
2828
+ # include_inference_response_in: ["SUCCESS_NOTIFICATION_TOPIC"], # accepts SUCCESS_NOTIFICATION_TOPIC, ERROR_NOTIFICATION_TOPIC
2806
2829
  # },
2830
+ # s3_failure_path: "DestinationS3Uri",
2807
2831
  # },
2808
2832
  # },
2809
2833
  # explainer_config: {
@@ -10692,6 +10716,9 @@ module Aws::SageMaker
10692
10716
  # resp.async_inference_config.output_config.s3_output_path #=> String
10693
10717
  # resp.async_inference_config.output_config.notification_config.success_topic #=> String
10694
10718
  # resp.async_inference_config.output_config.notification_config.error_topic #=> String
10719
+ # resp.async_inference_config.output_config.notification_config.include_inference_response_in #=> Array
10720
+ # resp.async_inference_config.output_config.notification_config.include_inference_response_in[0] #=> String, one of "SUCCESS_NOTIFICATION_TOPIC", "ERROR_NOTIFICATION_TOPIC"
10721
+ # resp.async_inference_config.output_config.s3_failure_path #=> String
10695
10722
  # resp.pending_deployment_summary.endpoint_config_name #=> String
10696
10723
  # resp.pending_deployment_summary.production_variants #=> Array
10697
10724
  # resp.pending_deployment_summary.production_variants[0].variant_name #=> String
@@ -10851,6 +10878,9 @@ module Aws::SageMaker
10851
10878
  # resp.async_inference_config.output_config.s3_output_path #=> String
10852
10879
  # resp.async_inference_config.output_config.notification_config.success_topic #=> String
10853
10880
  # resp.async_inference_config.output_config.notification_config.error_topic #=> String
10881
+ # resp.async_inference_config.output_config.notification_config.include_inference_response_in #=> Array
10882
+ # resp.async_inference_config.output_config.notification_config.include_inference_response_in[0] #=> String, one of "SUCCESS_NOTIFICATION_TOPIC", "ERROR_NOTIFICATION_TOPIC"
10883
+ # resp.async_inference_config.output_config.s3_failure_path #=> String
10854
10884
  # resp.explainer_config.clarify_explainer_config.enable_explanations #=> String
10855
10885
  # resp.explainer_config.clarify_explainer_config.inference_config.features_attribute #=> String
10856
10886
  # resp.explainer_config.clarify_explainer_config.inference_config.content_template #=> String
@@ -23224,7 +23254,7 @@ module Aws::SageMaker
23224
23254
  params: params,
23225
23255
  config: config)
23226
23256
  context[:gem_name] = 'aws-sdk-sagemaker'
23227
- context[:gem_version] = '1.170.0'
23257
+ context[:gem_version] = '1.173.0'
23228
23258
  Seahorse::Client::Request.new(handlers, context)
23229
23259
  end
23230
23260
 
@@ -84,6 +84,8 @@ module Aws::SageMaker
84
84
  AsyncInferenceConfig = Shapes::StructureShape.new(name: 'AsyncInferenceConfig')
85
85
  AsyncInferenceNotificationConfig = Shapes::StructureShape.new(name: 'AsyncInferenceNotificationConfig')
86
86
  AsyncInferenceOutputConfig = Shapes::StructureShape.new(name: 'AsyncInferenceOutputConfig')
87
+ AsyncNotificationTopicTypeList = Shapes::ListShape.new(name: 'AsyncNotificationTopicTypeList')
88
+ AsyncNotificationTopicTypes = Shapes::StringShape.new(name: 'AsyncNotificationTopicTypes')
87
89
  AthenaCatalog = Shapes::StringShape.new(name: 'AthenaCatalog')
88
90
  AthenaDatabase = Shapes::StringShape.new(name: 'AthenaDatabase')
89
91
  AthenaDatasetDefinition = Shapes::StructureShape.new(name: 'AthenaDatasetDefinition')
@@ -2172,13 +2174,17 @@ module Aws::SageMaker
2172
2174
 
2173
2175
  AsyncInferenceNotificationConfig.add_member(:success_topic, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SuccessTopic"))
2174
2176
  AsyncInferenceNotificationConfig.add_member(:error_topic, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "ErrorTopic"))
2177
+ AsyncInferenceNotificationConfig.add_member(:include_inference_response_in, Shapes::ShapeRef.new(shape: AsyncNotificationTopicTypeList, location_name: "IncludeInferenceResponseIn"))
2175
2178
  AsyncInferenceNotificationConfig.struct_class = Types::AsyncInferenceNotificationConfig
2176
2179
 
2177
2180
  AsyncInferenceOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
2178
- AsyncInferenceOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: DestinationS3Uri, required: true, location_name: "S3OutputPath"))
2181
+ AsyncInferenceOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: DestinationS3Uri, location_name: "S3OutputPath"))
2179
2182
  AsyncInferenceOutputConfig.add_member(:notification_config, Shapes::ShapeRef.new(shape: AsyncInferenceNotificationConfig, location_name: "NotificationConfig"))
2183
+ AsyncInferenceOutputConfig.add_member(:s3_failure_path, Shapes::ShapeRef.new(shape: DestinationS3Uri, location_name: "S3FailurePath"))
2180
2184
  AsyncInferenceOutputConfig.struct_class = Types::AsyncInferenceOutputConfig
2181
2185
 
2186
+ AsyncNotificationTopicTypeList.member = Shapes::ShapeRef.new(shape: AsyncNotificationTopicTypes)
2187
+
2182
2188
  AthenaDatasetDefinition.add_member(:catalog, Shapes::ShapeRef.new(shape: AthenaCatalog, required: true, location_name: "Catalog"))
2183
2189
  AthenaDatasetDefinition.add_member(:database, Shapes::ShapeRef.new(shape: AthenaDatabase, required: true, location_name: "Database"))
2184
2190
  AthenaDatasetDefinition.add_member(:query_string, Shapes::ShapeRef.new(shape: AthenaQueryString, required: true, location_name: "QueryString"))
@@ -1553,11 +1553,17 @@ module Aws::SageMaker
1553
1553
  # no topic is provided, no notification is sent on failure.
1554
1554
  # @return [String]
1555
1555
  #
1556
+ # @!attribute [rw] include_inference_response_in
1557
+ # The Amazon SNS topics where you want the inference response to be
1558
+ # included.
1559
+ # @return [Array<String>]
1560
+ #
1556
1561
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceNotificationConfig AWS API Documentation
1557
1562
  #
1558
1563
  class AsyncInferenceNotificationConfig < Struct.new(
1559
1564
  :success_topic,
1560
- :error_topic)
1565
+ :error_topic,
1566
+ :include_inference_response_in)
1561
1567
  SENSITIVE = []
1562
1568
  include Aws::Structure
1563
1569
  end
@@ -1580,12 +1586,17 @@ module Aws::SageMaker
1580
1586
  # for asynchronous inference.
1581
1587
  # @return [Types::AsyncInferenceNotificationConfig]
1582
1588
  #
1589
+ # @!attribute [rw] s3_failure_path
1590
+ # The Amazon S3 location to upload failure inference responses to.
1591
+ # @return [String]
1592
+ #
1583
1593
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceOutputConfig AWS API Documentation
1584
1594
  #
1585
1595
  class AsyncInferenceOutputConfig < Struct.new(
1586
1596
  :kms_key_id,
1587
1597
  :s3_output_path,
1588
- :notification_config)
1598
+ :notification_config,
1599
+ :s3_failure_path)
1589
1600
  SENSITIVE = []
1590
1601
  include Aws::Structure
1591
1602
  end
@@ -1650,7 +1661,7 @@ module Aws::SageMaker
1650
1661
  # candidates of an Autopilot job.
1651
1662
  #
1652
1663
  # <note markdown="1"> Selected algorithms must belong to the list corresponding to the
1653
- # training mode set in ` AutoMLJobConfig.Mode ` (`ENSEMBLING` or
1664
+ # training mode set in [AutoMLJobConfig.Mode][1] (`ENSEMBLING` or
1654
1665
  # `HYPERPARAMETER_TUNING`). Choose a minimum of 1 algorithm.
1655
1666
  #
1656
1667
  # </note>
@@ -1680,6 +1691,10 @@ module Aws::SageMaker
1680
1691
  # * "mlp"
1681
1692
  #
1682
1693
  # * "xgboost"
1694
+ #
1695
+ #
1696
+ #
1697
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode
1683
1698
  # @return [Array<String>]
1684
1699
  #
1685
1700
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLAlgorithmConfig AWS API Documentation
@@ -1822,15 +1837,17 @@ module Aws::SageMaker
1822
1837
  # `AutoMLCandidateGenerationConfig` uses the full set of algorithms
1823
1838
  # for the given training mode.
1824
1839
  #
1825
- # For the list of all algorithms per training mode, see .
1840
+ # For the list of all algorithms per training mode, see [
1841
+ # AutoMLAlgorithmConfig][2].
1826
1842
  #
1827
1843
  # For more information on each algorithm, see the [Algorithm
1828
- # support][2] section in Autopilot developer guide.
1844
+ # support][3] section in Autopilot developer guide.
1829
1845
  #
1830
1846
  #
1831
1847
  #
1832
1848
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html
1833
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
1849
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
1850
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
1834
1851
  # @return [Array<Types::AutoMLAlgorithmConfig>]
1835
1852
  #
1836
1853
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateGenerationConfig AWS API Documentation
@@ -1871,13 +1888,19 @@ module Aws::SageMaker
1871
1888
  # A channel is a named input source that training algorithms can
1872
1889
  # consume. The validation dataset size is limited to less than 2 GB. The
1873
1890
  # training dataset size must be less than 100 GB. For more information,
1874
- # see .
1891
+ # see [ Channel][1].
1875
1892
  #
1876
1893
  # <note markdown="1"> A validation dataset must contain the same headers as the training
1877
1894
  # dataset.
1878
1895
  #
1879
1896
  # </note>
1880
1897
  #
1898
+ #
1899
+ #
1900
+ #
1901
+ #
1902
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
1903
+ #
1881
1904
  # @!attribute [rw] data_source
1882
1905
  # The data source for an AutoML channel.
1883
1906
  # @return [Types::AutoMLDataSource]
@@ -1901,8 +1924,8 @@ module Aws::SageMaker
1901
1924
  # The channel type (optional) is an `enum` string. The default value
1902
1925
  # is `training`. Channels for training and validation must share the
1903
1926
  # same `ContentType` and `TargetAttributeName`. For information on
1904
- # specifying training and validation channel types, see [ `How to
1905
- # specify training and validation datasets` ][1].
1927
+ # specifying training and validation channel types, see [How to
1928
+ # specify training and validation datasets][1].
1906
1929
  #
1907
1930
  #
1908
1931
  #
@@ -1922,20 +1945,38 @@ module Aws::SageMaker
1922
1945
  end
1923
1946
 
1924
1947
  # A list of container definitions that describe the different containers
1925
- # that make up an AutoML candidate. For more information, see .
1948
+ # that make up an AutoML candidate. For more information, see [
1949
+ # ContainerDefinition][1].
1950
+ #
1951
+ #
1952
+ #
1953
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
1926
1954
  #
1927
1955
  # @!attribute [rw] image
1928
1956
  # The Amazon Elastic Container Registry (Amazon ECR) path of the
1929
- # container. For more information, see .
1957
+ # container. For more information, see [ ContainerDefinition][1].
1958
+ #
1959
+ #
1960
+ #
1961
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
1930
1962
  # @return [String]
1931
1963
  #
1932
1964
  # @!attribute [rw] model_data_url
1933
- # The location of the model artifacts. For more information, see .
1965
+ # The location of the model artifacts. For more information, see [
1966
+ # ContainerDefinition][1].
1967
+ #
1968
+ #
1969
+ #
1970
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
1934
1971
  # @return [String]
1935
1972
  #
1936
1973
  # @!attribute [rw] environment
1937
1974
  # The environment variables to set in the container. For more
1938
- # information, see .
1975
+ # information, see [ ContainerDefinition][1].
1976
+ #
1977
+ #
1978
+ #
1979
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
1939
1980
  # @return [Hash<String,String>]
1940
1981
  #
1941
1982
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -2008,8 +2049,13 @@ module Aws::SageMaker
2008
2049
 
2009
2050
  # A channel is a named input source that training algorithms can
2010
2051
  # consume. This channel is used for the non tabular training data of an
2011
- # AutoML job using the V2 API. For tabular training data, see . For more
2012
- # information, see .
2052
+ # AutoML job using the V2 API. For tabular training data, see [
2053
+ # AutoMLChannel][1]. For more information, see [ Channel][2].
2054
+ #
2055
+ #
2056
+ #
2057
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
2058
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
2013
2059
  #
2014
2060
  # @!attribute [rw] channel_type
2015
2061
  # The type of channel. Defines whether the data are used for training
@@ -2061,10 +2107,16 @@ module Aws::SageMaker
2061
2107
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2062
2108
  # The maximum time, in seconds, that each training job executed inside
2063
2109
  # hyperparameter tuning is allowed to run as part of a hyperparameter
2064
- # tuning job. For more information, see the used by the action.
2110
+ # tuning job. For more information, see the [StoppingCondition][1]
2111
+ # used by the [CreateHyperParameterTuningJob][2] action.
2065
2112
  #
2066
2113
  # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2067
2114
  # field controls the runtime of the job candidate.
2115
+ #
2116
+ #
2117
+ #
2118
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html
2119
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
2068
2120
  # @return [Integer]
2069
2121
  #
2070
2122
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
@@ -3911,7 +3963,13 @@ module Aws::SageMaker
3911
3963
  # requirements. SageMaker supports both `registry/repository[:tag]`
3912
3964
  # and `registry/repository[@digest]` image path formats. For more
3913
3965
  # information, see [Using Your Own Algorithms with Amazon
3914
- # SageMaker][1]
3966
+ # SageMaker][1].
3967
+ #
3968
+ # <note markdown="1"> The model artifacts in an Amazon S3 bucket and the Docker image for
3969
+ # inference container in Amazon EC2 Container Registry must be in the
3970
+ # same region as the model or endpoint you are creating.
3971
+ #
3972
+ # </note>
3915
3973
  #
3916
3974
  #
3917
3975
  #
@@ -3923,7 +3981,13 @@ module Aws::SageMaker
3923
3981
  # Docker registry accessible from your Amazon Virtual Private Cloud
3924
3982
  # (VPC). For information about storing containers in a private Docker
3925
3983
  # registry, see [Use a Private Docker Registry for Real-Time Inference
3926
- # Containers][1]
3984
+ # Containers][1].
3985
+ #
3986
+ # <note markdown="1"> The model artifacts in an Amazon S3 bucket and the Docker image for
3987
+ # inference container in Amazon EC2 Container Registry must be in the
3988
+ # same region as the model or endpoint you are creating.
3989
+ #
3990
+ # </note>
3927
3991
  #
3928
3992
  #
3929
3993
  #
@@ -4485,9 +4549,15 @@ module Aws::SageMaker
4485
4549
  # @!attribute [rw] input_data_config
4486
4550
  # An array of channel objects that describes the input data and its
4487
4551
  # location. Each channel is a named input source. Similar to
4488
- # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet.
4489
- # A minimum of 500 rows is required for the training dataset. There is
4490
- # not a minimum number of rows required for the validation dataset.
4552
+ # `InputDataConfig` supported by
4553
+ # [HyperParameterTrainingJobDefinition][1]. Format(s) supported: CSV,
4554
+ # Parquet. A minimum of 500 rows is required for the training dataset.
4555
+ # There is not a minimum number of rows required for the validation
4556
+ # dataset.
4557
+ #
4558
+ #
4559
+ #
4560
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
4491
4561
  # @return [Array<Types::AutoMLChannel>]
4492
4562
  #
4493
4563
  # @!attribute [rw] output_data_config
@@ -4499,18 +4569,23 @@ module Aws::SageMaker
4499
4569
  # @!attribute [rw] problem_type
4500
4570
  # Defines the type of supervised learning problem available for the
4501
4571
  # candidates. For more information, see [ Amazon SageMaker Autopilot
4502
- # problem types and algorithm support][1].
4572
+ # problem types][1].
4503
4573
  #
4504
4574
  #
4505
4575
  #
4506
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
4576
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
4507
4577
  # @return [String]
4508
4578
  #
4509
4579
  # @!attribute [rw] auto_ml_job_objective
4510
4580
  # Defines the objective metric used to measure the predictive quality
4511
- # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
4512
- # Autopilot infers whether to minimize or maximize it. For , only
4513
- # `Accuracy` is supported.
4581
+ # of an AutoML job. You provide an [AutoMLJobObjective$MetricName][1]
4582
+ # and Autopilot infers whether to minimize or maximize it. For
4583
+ # [CreateAutoMLJobV2][2], only `Accuracy` is supported.
4584
+ #
4585
+ #
4586
+ #
4587
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
4588
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4514
4589
  # @return [Types::AutoMLJobObjective]
4515
4590
  #
4516
4591
  # @!attribute [rw] auto_ml_job_config
@@ -4626,7 +4701,11 @@ module Aws::SageMaker
4626
4701
  #
4627
4702
  # @!attribute [rw] auto_ml_job_objective
4628
4703
  # Specifies a metric to minimize or maximize as the objective of a
4629
- # job. For , only `Accuracy` is supported.
4704
+ # job. For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
4705
+ #
4706
+ #
4707
+ #
4708
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
4630
4709
  # @return [Types::AutoMLJobObjective]
4631
4710
  #
4632
4711
  # @!attribute [rw] model_deploy_config
@@ -17598,7 +17677,12 @@ module Aws::SageMaker
17598
17677
  #
17599
17678
  # @!attribute [rw] metric_name
17600
17679
  # The name of the metric with the best result. For a description of
17601
- # the possible objective metrics, see AutoMLJobObjective$MetricName.
17680
+ # the possible objective metrics, see
17681
+ # [AutoMLJobObjective$MetricName][1].
17682
+ #
17683
+ #
17684
+ #
17685
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
17602
17686
  # @return [String]
17603
17687
  #
17604
17688
  # @!attribute [rw] value
@@ -19494,7 +19578,7 @@ module Aws::SageMaker
19494
19578
  #
19495
19579
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
19496
19580
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
19497
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
19581
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
19498
19582
  # @return [Hash<String,String>]
19499
19583
  #
19500
19584
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
@@ -27087,9 +27171,17 @@ module Aws::SageMaker
27087
27171
  end
27088
27172
 
27089
27173
  # Specifies a metric that the training algorithm writes to `stderr` or
27090
- # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
27091
- # You specify one metric that a hyperparameter tuning job uses as its
27092
- # objective metric to choose the best training job.
27174
+ # `stdout`. You can view these logs to understand how your training job
27175
+ # performs and check for any errors encountered during training.
27176
+ # SageMaker hyperparameter tuning captures all defined metrics. Specify
27177
+ # one of the defined metrics to use as an objective metric using the
27178
+ # [TuningObjective][1] parameter in the
27179
+ # `HyperParameterTrainingJobDefinition` API to evaluate job performance
27180
+ # during hyperparameter tuning.
27181
+ #
27182
+ #
27183
+ #
27184
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
27093
27185
  #
27094
27186
  # @!attribute [rw] name
27095
27187
  # The name of the metric.
@@ -27098,12 +27190,12 @@ module Aws::SageMaker
27098
27190
  # @!attribute [rw] regex
27099
27191
  # A regular expression that searches the output of a training job and
27100
27192
  # gets the value of the metric. For more information about using
27101
- # regular expressions to define metrics, see [Defining Objective
27102
- # Metrics][1].
27193
+ # regular expressions to define metrics, see [Defining metrics and
27194
+ # environment variables][1].
27103
27195
  #
27104
27196
  #
27105
27197
  #
27106
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
27198
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
27107
27199
  # @return [String]
27108
27200
  #
27109
27201
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.170.0'
56
+ GEM_VERSION = '1.173.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.170.0
4
+ version: 1.173.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-03-23 00:00:00.000000000 Z
11
+ date: 2023-04-04 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core