aws-sdk-sagemaker 1.170.0 → 1.173.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +46 -16
- data/lib/aws-sdk-sagemaker/client_api.rb +7 -1
- data/lib/aws-sdk-sagemaker/types.rb +127 -35
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 90becff4fc2ef31c7dfe2646033396b7b751c3661e3c5ece1f8ee42ab14a07eb
|
4
|
+
data.tar.gz: fe8bf66b1d034a39f11591511d4ba61eb76d6a0e4dd549cd8a5ca48cca7e9e40
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 35d3bd1b47ace1655d04fd1637eab670f09ca5f657587dd29bf8a4c679a3045ed060122a4f00d62429e96928581aa694d24ead51da00e37b6e46a1bdebc9766c
|
7
|
+
data.tar.gz: f35131f7e74815dc3ef5d646581a9db6529950f80cdbda76a1b252b9565b685f43ec1177566d6d5d628cab1a0723fef1048f0c5baabc4bb5eae183dbdaa120ff
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,21 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.173.0 (2023-04-04)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon SageMaker Asynchronous Inference now allows customer's to receive failure model responses in S3 and receive success/failure model responses in SNS notifications.
|
8
|
+
|
9
|
+
1.172.0 (2023-04-04)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Amazon SageMaker Asynchronous Inference now allows customer's to receive failure model responses in S3 and receive success/failure model responses in SNS notifications.
|
13
|
+
|
14
|
+
1.171.0 (2023-03-27)
|
15
|
+
------------------
|
16
|
+
|
17
|
+
* Feature - Fixed some improperly rendered links in SDK documentation.
|
18
|
+
|
4
19
|
1.170.0 (2023-03-23)
|
5
20
|
------------------
|
6
21
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.173.0
|
@@ -1174,14 +1174,15 @@ module Aws::SageMaker
|
|
1174
1174
|
# Creates an Autopilot job.
|
1175
1175
|
#
|
1176
1176
|
# Find the best-performing model after you run an Autopilot job by
|
1177
|
-
# calling .
|
1177
|
+
# calling [DescribeAutoMLJob][1].
|
1178
1178
|
#
|
1179
1179
|
# For information about how to use Autopilot, see [Automate Model
|
1180
|
-
# Development with Amazon SageMaker Autopilot][
|
1180
|
+
# Development with Amazon SageMaker Autopilot][2].
|
1181
1181
|
#
|
1182
1182
|
#
|
1183
1183
|
#
|
1184
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
1184
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html
|
1185
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1185
1186
|
#
|
1186
1187
|
# @option params [required, String] :auto_ml_job_name
|
1187
1188
|
# Identifies an Autopilot job. The name must be unique to your account
|
@@ -1190,9 +1191,15 @@ module Aws::SageMaker
|
|
1190
1191
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1191
1192
|
# An array of channel objects that describes the input data and its
|
1192
1193
|
# location. Each channel is a named input source. Similar to
|
1193
|
-
# `InputDataConfig` supported by
|
1194
|
-
#
|
1195
|
-
#
|
1194
|
+
# `InputDataConfig` supported by
|
1195
|
+
# [HyperParameterTrainingJobDefinition][1]. Format(s) supported: CSV,
|
1196
|
+
# Parquet. A minimum of 500 rows is required for the training dataset.
|
1197
|
+
# There is not a minimum number of rows required for the validation
|
1198
|
+
# dataset.
|
1199
|
+
#
|
1200
|
+
#
|
1201
|
+
#
|
1202
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
|
1196
1203
|
#
|
1197
1204
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1198
1205
|
# Provides information about encryption and the Amazon S3 output path
|
@@ -1202,17 +1209,22 @@ module Aws::SageMaker
|
|
1202
1209
|
# @option params [String] :problem_type
|
1203
1210
|
# Defines the type of supervised learning problem available for the
|
1204
1211
|
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
1205
|
-
# problem types
|
1212
|
+
# problem types][1].
|
1206
1213
|
#
|
1207
1214
|
#
|
1208
1215
|
#
|
1209
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
|
1216
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
1210
1217
|
#
|
1211
1218
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1212
1219
|
# Defines the objective metric used to measure the predictive quality of
|
1213
|
-
# an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
1214
|
-
# Autopilot infers whether to minimize or maximize it. For
|
1215
|
-
# `Accuracy` is supported.
|
1220
|
+
# an AutoML job. You provide an [AutoMLJobObjective$MetricName][1] and
|
1221
|
+
# Autopilot infers whether to minimize or maximize it. For
|
1222
|
+
# [CreateAutoMLJobV2][2], only `Accuracy` is supported.
|
1223
|
+
#
|
1224
|
+
#
|
1225
|
+
#
|
1226
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
1227
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1216
1228
|
#
|
1217
1229
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1218
1230
|
# A collection of settings used to configure an AutoML job.
|
@@ -1328,15 +1340,21 @@ module Aws::SageMaker
|
|
1328
1340
|
# as images or text for Computer Vision or Natural Language Processing
|
1329
1341
|
# problems.
|
1330
1342
|
#
|
1331
|
-
# Find the resulting model after you run an AutoML job V2 by calling
|
1343
|
+
# Find the resulting model after you run an AutoML job V2 by calling
|
1344
|
+
# [DescribeAutoMLJobV2][1].
|
1332
1345
|
#
|
1333
|
-
# To create an `AutoMLJob` using tabular data, see .
|
1346
|
+
# To create an `AutoMLJob` using tabular data, see [CreateAutoMLJob][2].
|
1334
1347
|
#
|
1335
1348
|
# <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
|
1336
1349
|
# directly from the CLI or an SDK results in an error.
|
1337
1350
|
#
|
1338
1351
|
# </note>
|
1339
1352
|
#
|
1353
|
+
#
|
1354
|
+
#
|
1355
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html
|
1356
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html
|
1357
|
+
#
|
1340
1358
|
# @option params [required, String] :auto_ml_job_name
|
1341
1359
|
# Identifies an Autopilot job. The name must be unique to your account
|
1342
1360
|
# and is case insensitive.
|
@@ -1383,7 +1401,11 @@ module Aws::SageMaker
|
|
1383
1401
|
#
|
1384
1402
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1385
1403
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
1386
|
-
# For , only `Accuracy` is supported.
|
1404
|
+
# For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
|
1405
|
+
#
|
1406
|
+
#
|
1407
|
+
#
|
1408
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
1387
1409
|
#
|
1388
1410
|
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1389
1411
|
# Specifies how to generate the endpoint name for an automatic one-click
|
@@ -2799,11 +2821,13 @@ module Aws::SageMaker
|
|
2799
2821
|
# },
|
2800
2822
|
# output_config: { # required
|
2801
2823
|
# kms_key_id: "KmsKeyId",
|
2802
|
-
# s3_output_path: "DestinationS3Uri",
|
2824
|
+
# s3_output_path: "DestinationS3Uri",
|
2803
2825
|
# notification_config: {
|
2804
2826
|
# success_topic: "SnsTopicArn",
|
2805
2827
|
# error_topic: "SnsTopicArn",
|
2828
|
+
# include_inference_response_in: ["SUCCESS_NOTIFICATION_TOPIC"], # accepts SUCCESS_NOTIFICATION_TOPIC, ERROR_NOTIFICATION_TOPIC
|
2806
2829
|
# },
|
2830
|
+
# s3_failure_path: "DestinationS3Uri",
|
2807
2831
|
# },
|
2808
2832
|
# },
|
2809
2833
|
# explainer_config: {
|
@@ -10692,6 +10716,9 @@ module Aws::SageMaker
|
|
10692
10716
|
# resp.async_inference_config.output_config.s3_output_path #=> String
|
10693
10717
|
# resp.async_inference_config.output_config.notification_config.success_topic #=> String
|
10694
10718
|
# resp.async_inference_config.output_config.notification_config.error_topic #=> String
|
10719
|
+
# resp.async_inference_config.output_config.notification_config.include_inference_response_in #=> Array
|
10720
|
+
# resp.async_inference_config.output_config.notification_config.include_inference_response_in[0] #=> String, one of "SUCCESS_NOTIFICATION_TOPIC", "ERROR_NOTIFICATION_TOPIC"
|
10721
|
+
# resp.async_inference_config.output_config.s3_failure_path #=> String
|
10695
10722
|
# resp.pending_deployment_summary.endpoint_config_name #=> String
|
10696
10723
|
# resp.pending_deployment_summary.production_variants #=> Array
|
10697
10724
|
# resp.pending_deployment_summary.production_variants[0].variant_name #=> String
|
@@ -10851,6 +10878,9 @@ module Aws::SageMaker
|
|
10851
10878
|
# resp.async_inference_config.output_config.s3_output_path #=> String
|
10852
10879
|
# resp.async_inference_config.output_config.notification_config.success_topic #=> String
|
10853
10880
|
# resp.async_inference_config.output_config.notification_config.error_topic #=> String
|
10881
|
+
# resp.async_inference_config.output_config.notification_config.include_inference_response_in #=> Array
|
10882
|
+
# resp.async_inference_config.output_config.notification_config.include_inference_response_in[0] #=> String, one of "SUCCESS_NOTIFICATION_TOPIC", "ERROR_NOTIFICATION_TOPIC"
|
10883
|
+
# resp.async_inference_config.output_config.s3_failure_path #=> String
|
10854
10884
|
# resp.explainer_config.clarify_explainer_config.enable_explanations #=> String
|
10855
10885
|
# resp.explainer_config.clarify_explainer_config.inference_config.features_attribute #=> String
|
10856
10886
|
# resp.explainer_config.clarify_explainer_config.inference_config.content_template #=> String
|
@@ -23224,7 +23254,7 @@ module Aws::SageMaker
|
|
23224
23254
|
params: params,
|
23225
23255
|
config: config)
|
23226
23256
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23227
|
-
context[:gem_version] = '1.
|
23257
|
+
context[:gem_version] = '1.173.0'
|
23228
23258
|
Seahorse::Client::Request.new(handlers, context)
|
23229
23259
|
end
|
23230
23260
|
|
@@ -84,6 +84,8 @@ module Aws::SageMaker
|
|
84
84
|
AsyncInferenceConfig = Shapes::StructureShape.new(name: 'AsyncInferenceConfig')
|
85
85
|
AsyncInferenceNotificationConfig = Shapes::StructureShape.new(name: 'AsyncInferenceNotificationConfig')
|
86
86
|
AsyncInferenceOutputConfig = Shapes::StructureShape.new(name: 'AsyncInferenceOutputConfig')
|
87
|
+
AsyncNotificationTopicTypeList = Shapes::ListShape.new(name: 'AsyncNotificationTopicTypeList')
|
88
|
+
AsyncNotificationTopicTypes = Shapes::StringShape.new(name: 'AsyncNotificationTopicTypes')
|
87
89
|
AthenaCatalog = Shapes::StringShape.new(name: 'AthenaCatalog')
|
88
90
|
AthenaDatabase = Shapes::StringShape.new(name: 'AthenaDatabase')
|
89
91
|
AthenaDatasetDefinition = Shapes::StructureShape.new(name: 'AthenaDatasetDefinition')
|
@@ -2172,13 +2174,17 @@ module Aws::SageMaker
|
|
2172
2174
|
|
2173
2175
|
AsyncInferenceNotificationConfig.add_member(:success_topic, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "SuccessTopic"))
|
2174
2176
|
AsyncInferenceNotificationConfig.add_member(:error_topic, Shapes::ShapeRef.new(shape: SnsTopicArn, location_name: "ErrorTopic"))
|
2177
|
+
AsyncInferenceNotificationConfig.add_member(:include_inference_response_in, Shapes::ShapeRef.new(shape: AsyncNotificationTopicTypeList, location_name: "IncludeInferenceResponseIn"))
|
2175
2178
|
AsyncInferenceNotificationConfig.struct_class = Types::AsyncInferenceNotificationConfig
|
2176
2179
|
|
2177
2180
|
AsyncInferenceOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
|
2178
|
-
AsyncInferenceOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: DestinationS3Uri,
|
2181
|
+
AsyncInferenceOutputConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: DestinationS3Uri, location_name: "S3OutputPath"))
|
2179
2182
|
AsyncInferenceOutputConfig.add_member(:notification_config, Shapes::ShapeRef.new(shape: AsyncInferenceNotificationConfig, location_name: "NotificationConfig"))
|
2183
|
+
AsyncInferenceOutputConfig.add_member(:s3_failure_path, Shapes::ShapeRef.new(shape: DestinationS3Uri, location_name: "S3FailurePath"))
|
2180
2184
|
AsyncInferenceOutputConfig.struct_class = Types::AsyncInferenceOutputConfig
|
2181
2185
|
|
2186
|
+
AsyncNotificationTopicTypeList.member = Shapes::ShapeRef.new(shape: AsyncNotificationTopicTypes)
|
2187
|
+
|
2182
2188
|
AthenaDatasetDefinition.add_member(:catalog, Shapes::ShapeRef.new(shape: AthenaCatalog, required: true, location_name: "Catalog"))
|
2183
2189
|
AthenaDatasetDefinition.add_member(:database, Shapes::ShapeRef.new(shape: AthenaDatabase, required: true, location_name: "Database"))
|
2184
2190
|
AthenaDatasetDefinition.add_member(:query_string, Shapes::ShapeRef.new(shape: AthenaQueryString, required: true, location_name: "QueryString"))
|
@@ -1553,11 +1553,17 @@ module Aws::SageMaker
|
|
1553
1553
|
# no topic is provided, no notification is sent on failure.
|
1554
1554
|
# @return [String]
|
1555
1555
|
#
|
1556
|
+
# @!attribute [rw] include_inference_response_in
|
1557
|
+
# The Amazon SNS topics where you want the inference response to be
|
1558
|
+
# included.
|
1559
|
+
# @return [Array<String>]
|
1560
|
+
#
|
1556
1561
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceNotificationConfig AWS API Documentation
|
1557
1562
|
#
|
1558
1563
|
class AsyncInferenceNotificationConfig < Struct.new(
|
1559
1564
|
:success_topic,
|
1560
|
-
:error_topic
|
1565
|
+
:error_topic,
|
1566
|
+
:include_inference_response_in)
|
1561
1567
|
SENSITIVE = []
|
1562
1568
|
include Aws::Structure
|
1563
1569
|
end
|
@@ -1580,12 +1586,17 @@ module Aws::SageMaker
|
|
1580
1586
|
# for asynchronous inference.
|
1581
1587
|
# @return [Types::AsyncInferenceNotificationConfig]
|
1582
1588
|
#
|
1589
|
+
# @!attribute [rw] s3_failure_path
|
1590
|
+
# The Amazon S3 location to upload failure inference responses to.
|
1591
|
+
# @return [String]
|
1592
|
+
#
|
1583
1593
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceOutputConfig AWS API Documentation
|
1584
1594
|
#
|
1585
1595
|
class AsyncInferenceOutputConfig < Struct.new(
|
1586
1596
|
:kms_key_id,
|
1587
1597
|
:s3_output_path,
|
1588
|
-
:notification_config
|
1598
|
+
:notification_config,
|
1599
|
+
:s3_failure_path)
|
1589
1600
|
SENSITIVE = []
|
1590
1601
|
include Aws::Structure
|
1591
1602
|
end
|
@@ -1650,7 +1661,7 @@ module Aws::SageMaker
|
|
1650
1661
|
# candidates of an Autopilot job.
|
1651
1662
|
#
|
1652
1663
|
# <note markdown="1"> Selected algorithms must belong to the list corresponding to the
|
1653
|
-
# training mode set in
|
1664
|
+
# training mode set in [AutoMLJobConfig.Mode][1] (`ENSEMBLING` or
|
1654
1665
|
# `HYPERPARAMETER_TUNING`). Choose a minimum of 1 algorithm.
|
1655
1666
|
#
|
1656
1667
|
# </note>
|
@@ -1680,6 +1691,10 @@ module Aws::SageMaker
|
|
1680
1691
|
# * "mlp"
|
1681
1692
|
#
|
1682
1693
|
# * "xgboost"
|
1694
|
+
#
|
1695
|
+
#
|
1696
|
+
#
|
1697
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode
|
1683
1698
|
# @return [Array<String>]
|
1684
1699
|
#
|
1685
1700
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLAlgorithmConfig AWS API Documentation
|
@@ -1822,15 +1837,17 @@ module Aws::SageMaker
|
|
1822
1837
|
# `AutoMLCandidateGenerationConfig` uses the full set of algorithms
|
1823
1838
|
# for the given training mode.
|
1824
1839
|
#
|
1825
|
-
# For the list of all algorithms per training mode, see
|
1840
|
+
# For the list of all algorithms per training mode, see [
|
1841
|
+
# AutoMLAlgorithmConfig][2].
|
1826
1842
|
#
|
1827
1843
|
# For more information on each algorithm, see the [Algorithm
|
1828
|
-
# support][
|
1844
|
+
# support][3] section in Autopilot developer guide.
|
1829
1845
|
#
|
1830
1846
|
#
|
1831
1847
|
#
|
1832
1848
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html
|
1833
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/
|
1849
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
1850
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
1834
1851
|
# @return [Array<Types::AutoMLAlgorithmConfig>]
|
1835
1852
|
#
|
1836
1853
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateGenerationConfig AWS API Documentation
|
@@ -1871,13 +1888,19 @@ module Aws::SageMaker
|
|
1871
1888
|
# A channel is a named input source that training algorithms can
|
1872
1889
|
# consume. The validation dataset size is limited to less than 2 GB. The
|
1873
1890
|
# training dataset size must be less than 100 GB. For more information,
|
1874
|
-
# see .
|
1891
|
+
# see [ Channel][1].
|
1875
1892
|
#
|
1876
1893
|
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
1877
1894
|
# dataset.
|
1878
1895
|
#
|
1879
1896
|
# </note>
|
1880
1897
|
#
|
1898
|
+
#
|
1899
|
+
#
|
1900
|
+
#
|
1901
|
+
#
|
1902
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
|
1903
|
+
#
|
1881
1904
|
# @!attribute [rw] data_source
|
1882
1905
|
# The data source for an AutoML channel.
|
1883
1906
|
# @return [Types::AutoMLDataSource]
|
@@ -1901,8 +1924,8 @@ module Aws::SageMaker
|
|
1901
1924
|
# The channel type (optional) is an `enum` string. The default value
|
1902
1925
|
# is `training`. Channels for training and validation must share the
|
1903
1926
|
# same `ContentType` and `TargetAttributeName`. For information on
|
1904
|
-
# specifying training and validation channel types, see [
|
1905
|
-
# specify training and validation datasets
|
1927
|
+
# specifying training and validation channel types, see [How to
|
1928
|
+
# specify training and validation datasets][1].
|
1906
1929
|
#
|
1907
1930
|
#
|
1908
1931
|
#
|
@@ -1922,20 +1945,38 @@ module Aws::SageMaker
|
|
1922
1945
|
end
|
1923
1946
|
|
1924
1947
|
# A list of container definitions that describe the different containers
|
1925
|
-
# that make up an AutoML candidate. For more information, see
|
1948
|
+
# that make up an AutoML candidate. For more information, see [
|
1949
|
+
# ContainerDefinition][1].
|
1950
|
+
#
|
1951
|
+
#
|
1952
|
+
#
|
1953
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
|
1926
1954
|
#
|
1927
1955
|
# @!attribute [rw] image
|
1928
1956
|
# The Amazon Elastic Container Registry (Amazon ECR) path of the
|
1929
|
-
# container. For more information, see .
|
1957
|
+
# container. For more information, see [ ContainerDefinition][1].
|
1958
|
+
#
|
1959
|
+
#
|
1960
|
+
#
|
1961
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
|
1930
1962
|
# @return [String]
|
1931
1963
|
#
|
1932
1964
|
# @!attribute [rw] model_data_url
|
1933
|
-
# The location of the model artifacts. For more information, see
|
1965
|
+
# The location of the model artifacts. For more information, see [
|
1966
|
+
# ContainerDefinition][1].
|
1967
|
+
#
|
1968
|
+
#
|
1969
|
+
#
|
1970
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
|
1934
1971
|
# @return [String]
|
1935
1972
|
#
|
1936
1973
|
# @!attribute [rw] environment
|
1937
1974
|
# The environment variables to set in the container. For more
|
1938
|
-
# information, see .
|
1975
|
+
# information, see [ ContainerDefinition][1].
|
1976
|
+
#
|
1977
|
+
#
|
1978
|
+
#
|
1979
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html
|
1939
1980
|
# @return [Hash<String,String>]
|
1940
1981
|
#
|
1941
1982
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -2008,8 +2049,13 @@ module Aws::SageMaker
|
|
2008
2049
|
|
2009
2050
|
# A channel is a named input source that training algorithms can
|
2010
2051
|
# consume. This channel is used for the non tabular training data of an
|
2011
|
-
# AutoML job using the V2 API. For tabular training data, see
|
2012
|
-
# information, see .
|
2052
|
+
# AutoML job using the V2 API. For tabular training data, see [
|
2053
|
+
# AutoMLChannel][1]. For more information, see [ Channel][2].
|
2054
|
+
#
|
2055
|
+
#
|
2056
|
+
#
|
2057
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html
|
2058
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
|
2013
2059
|
#
|
2014
2060
|
# @!attribute [rw] channel_type
|
2015
2061
|
# The type of channel. Defines whether the data are used for training
|
@@ -2061,10 +2107,16 @@ module Aws::SageMaker
|
|
2061
2107
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
2062
2108
|
# The maximum time, in seconds, that each training job executed inside
|
2063
2109
|
# hyperparameter tuning is allowed to run as part of a hyperparameter
|
2064
|
-
# tuning job. For more information, see the
|
2110
|
+
# tuning job. For more information, see the [StoppingCondition][1]
|
2111
|
+
# used by the [CreateHyperParameterTuningJob][2] action.
|
2065
2112
|
#
|
2066
2113
|
# For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
|
2067
2114
|
# field controls the runtime of the job candidate.
|
2115
|
+
#
|
2116
|
+
#
|
2117
|
+
#
|
2118
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html
|
2119
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
|
2068
2120
|
# @return [Integer]
|
2069
2121
|
#
|
2070
2122
|
# @!attribute [rw] max_auto_ml_job_runtime_in_seconds
|
@@ -3911,7 +3963,13 @@ module Aws::SageMaker
|
|
3911
3963
|
# requirements. SageMaker supports both `registry/repository[:tag]`
|
3912
3964
|
# and `registry/repository[@digest]` image path formats. For more
|
3913
3965
|
# information, see [Using Your Own Algorithms with Amazon
|
3914
|
-
# SageMaker][1]
|
3966
|
+
# SageMaker][1].
|
3967
|
+
#
|
3968
|
+
# <note markdown="1"> The model artifacts in an Amazon S3 bucket and the Docker image for
|
3969
|
+
# inference container in Amazon EC2 Container Registry must be in the
|
3970
|
+
# same region as the model or endpoint you are creating.
|
3971
|
+
#
|
3972
|
+
# </note>
|
3915
3973
|
#
|
3916
3974
|
#
|
3917
3975
|
#
|
@@ -3923,7 +3981,13 @@ module Aws::SageMaker
|
|
3923
3981
|
# Docker registry accessible from your Amazon Virtual Private Cloud
|
3924
3982
|
# (VPC). For information about storing containers in a private Docker
|
3925
3983
|
# registry, see [Use a Private Docker Registry for Real-Time Inference
|
3926
|
-
# Containers][1]
|
3984
|
+
# Containers][1].
|
3985
|
+
#
|
3986
|
+
# <note markdown="1"> The model artifacts in an Amazon S3 bucket and the Docker image for
|
3987
|
+
# inference container in Amazon EC2 Container Registry must be in the
|
3988
|
+
# same region as the model or endpoint you are creating.
|
3989
|
+
#
|
3990
|
+
# </note>
|
3927
3991
|
#
|
3928
3992
|
#
|
3929
3993
|
#
|
@@ -4485,9 +4549,15 @@ module Aws::SageMaker
|
|
4485
4549
|
# @!attribute [rw] input_data_config
|
4486
4550
|
# An array of channel objects that describes the input data and its
|
4487
4551
|
# location. Each channel is a named input source. Similar to
|
4488
|
-
# `InputDataConfig` supported by
|
4489
|
-
#
|
4490
|
-
#
|
4552
|
+
# `InputDataConfig` supported by
|
4553
|
+
# [HyperParameterTrainingJobDefinition][1]. Format(s) supported: CSV,
|
4554
|
+
# Parquet. A minimum of 500 rows is required for the training dataset.
|
4555
|
+
# There is not a minimum number of rows required for the validation
|
4556
|
+
# dataset.
|
4557
|
+
#
|
4558
|
+
#
|
4559
|
+
#
|
4560
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html
|
4491
4561
|
# @return [Array<Types::AutoMLChannel>]
|
4492
4562
|
#
|
4493
4563
|
# @!attribute [rw] output_data_config
|
@@ -4499,18 +4569,23 @@ module Aws::SageMaker
|
|
4499
4569
|
# @!attribute [rw] problem_type
|
4500
4570
|
# Defines the type of supervised learning problem available for the
|
4501
4571
|
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
4502
|
-
# problem types
|
4572
|
+
# problem types][1].
|
4503
4573
|
#
|
4504
4574
|
#
|
4505
4575
|
#
|
4506
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
|
4576
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
4507
4577
|
# @return [String]
|
4508
4578
|
#
|
4509
4579
|
# @!attribute [rw] auto_ml_job_objective
|
4510
4580
|
# Defines the objective metric used to measure the predictive quality
|
4511
|
-
# of an AutoML job. You provide an AutoMLJobObjective$MetricName
|
4512
|
-
# Autopilot infers whether to minimize or maximize it. For
|
4513
|
-
# `Accuracy` is supported.
|
4581
|
+
# of an AutoML job. You provide an [AutoMLJobObjective$MetricName][1]
|
4582
|
+
# and Autopilot infers whether to minimize or maximize it. For
|
4583
|
+
# [CreateAutoMLJobV2][2], only `Accuracy` is supported.
|
4584
|
+
#
|
4585
|
+
#
|
4586
|
+
#
|
4587
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
4588
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
4514
4589
|
# @return [Types::AutoMLJobObjective]
|
4515
4590
|
#
|
4516
4591
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4626,7 +4701,11 @@ module Aws::SageMaker
|
|
4626
4701
|
#
|
4627
4702
|
# @!attribute [rw] auto_ml_job_objective
|
4628
4703
|
# Specifies a metric to minimize or maximize as the objective of a
|
4629
|
-
# job. For , only `Accuracy` is supported.
|
4704
|
+
# job. For [CreateAutoMLJobV2][1], only `Accuracy` is supported.
|
4705
|
+
#
|
4706
|
+
#
|
4707
|
+
#
|
4708
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html
|
4630
4709
|
# @return [Types::AutoMLJobObjective]
|
4631
4710
|
#
|
4632
4711
|
# @!attribute [rw] model_deploy_config
|
@@ -17598,7 +17677,12 @@ module Aws::SageMaker
|
|
17598
17677
|
#
|
17599
17678
|
# @!attribute [rw] metric_name
|
17600
17679
|
# The name of the metric with the best result. For a description of
|
17601
|
-
# the possible objective metrics, see
|
17680
|
+
# the possible objective metrics, see
|
17681
|
+
# [AutoMLJobObjective$MetricName][1].
|
17682
|
+
#
|
17683
|
+
#
|
17684
|
+
#
|
17685
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
|
17602
17686
|
# @return [String]
|
17603
17687
|
#
|
17604
17688
|
# @!attribute [rw] value
|
@@ -19494,7 +19578,7 @@ module Aws::SageMaker
|
|
19494
19578
|
#
|
19495
19579
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
|
19496
19580
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
|
19497
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
19581
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
19498
19582
|
# @return [Hash<String,String>]
|
19499
19583
|
#
|
19500
19584
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
|
@@ -27087,9 +27171,17 @@ module Aws::SageMaker
|
|
27087
27171
|
end
|
27088
27172
|
|
27089
27173
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
27090
|
-
# `stdout`.
|
27091
|
-
#
|
27092
|
-
#
|
27174
|
+
# `stdout`. You can view these logs to understand how your training job
|
27175
|
+
# performs and check for any errors encountered during training.
|
27176
|
+
# SageMaker hyperparameter tuning captures all defined metrics. Specify
|
27177
|
+
# one of the defined metrics to use as an objective metric using the
|
27178
|
+
# [TuningObjective][1] parameter in the
|
27179
|
+
# `HyperParameterTrainingJobDefinition` API to evaluate job performance
|
27180
|
+
# during hyperparameter tuning.
|
27181
|
+
#
|
27182
|
+
#
|
27183
|
+
#
|
27184
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
|
27093
27185
|
#
|
27094
27186
|
# @!attribute [rw] name
|
27095
27187
|
# The name of the metric.
|
@@ -27098,12 +27190,12 @@ module Aws::SageMaker
|
|
27098
27190
|
# @!attribute [rw] regex
|
27099
27191
|
# A regular expression that searches the output of a training job and
|
27100
27192
|
# gets the value of the metric. For more information about using
|
27101
|
-
# regular expressions to define metrics, see [Defining
|
27102
|
-
#
|
27193
|
+
# regular expressions to define metrics, see [Defining metrics and
|
27194
|
+
# environment variables][1].
|
27103
27195
|
#
|
27104
27196
|
#
|
27105
27197
|
#
|
27106
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
27198
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
27107
27199
|
# @return [String]
|
27108
27200
|
#
|
27109
27201
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.173.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-
|
11
|
+
date: 2023-04-04 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|