aws-sdk-sagemaker 1.170.0 → 1.171.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: f1fa5b10ce3610004b782d1192506edfc8b7ce192989de1c3bfc68c7c0b25496
4
- data.tar.gz: e7ef3bdb931828c5f234c9959a12882489a095b098b815c9453097b22160b607
3
+ metadata.gz: a55219fefd240f6db937c8b361276ba3822f6fef7cb0994f0ca3591dc0ce7314
4
+ data.tar.gz: 4fc8412072f173f92f8337ddfaa0b3b6e139dcfec5a7380b621f5983193eee0e
5
5
  SHA512:
6
- metadata.gz: 7c5a70584520362184260b8483aaaa75c0fea5d4b9319bce55079b532e1172fcf2065d39e7e74bfa665395754e7cfbaa861bfcdfca527646c4cd2dc7dad4172e
7
- data.tar.gz: d43a0f658c62f83a0ad8171b293b9c7db2018a66d06bf11aaf3b9d56b8029821f0833db2ee4de8493241354d39080be439a30f01741d5465ba465627054e6543
6
+ metadata.gz: cc6031e981f1f96e304676a6e2a8cc76d7d487ec621a5df616dd1c674a4686076aee06efdf62c87b6838545dfc9550a985a882aec74b05baf3514df50ea555ce
7
+ data.tar.gz: cb2605cd2eab41976db322a67a138dfa4a25866c2e6c9e6d31b969307ab48e8f17c2b1daed0068330c253405705c400209096a3daebf9a17eb33b9d58a39e34d
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.171.0 (2023-03-27)
5
+ ------------------
6
+
7
+ * Feature - Fixed some improperly rendered links in SDK documentation.
8
+
4
9
  1.170.0 (2023-03-23)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.170.0
1
+ 1.171.0
@@ -1174,7 +1174,7 @@ module Aws::SageMaker
1174
1174
  # Creates an Autopilot job.
1175
1175
  #
1176
1176
  # Find the best-performing model after you run an Autopilot job by
1177
- # calling .
1177
+ # calling ` DescribeAutoMLJob `.
1178
1178
  #
1179
1179
  # For information about how to use Autopilot, see [Automate Model
1180
1180
  # Development with Amazon SageMaker Autopilot][1].
@@ -1190,9 +1190,10 @@ module Aws::SageMaker
1190
1190
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1191
1191
  # An array of channel objects that describes the input data and its
1192
1192
  # location. Each channel is a named input source. Similar to
1193
- # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet. A
1194
- # minimum of 500 rows is required for the training dataset. There is not
1195
- # a minimum number of rows required for the validation dataset.
1193
+ # `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
1194
+ # `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
1195
+ # required for the training dataset. There is not a minimum number of
1196
+ # rows required for the validation dataset.
1196
1197
  #
1197
1198
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1198
1199
  # Provides information about encryption and the Amazon S3 output path
@@ -1202,17 +1203,17 @@ module Aws::SageMaker
1202
1203
  # @option params [String] :problem_type
1203
1204
  # Defines the type of supervised learning problem available for the
1204
1205
  # candidates. For more information, see [ Amazon SageMaker Autopilot
1205
- # problem types and algorithm support][1].
1206
+ # problem types][1].
1206
1207
  #
1207
1208
  #
1208
1209
  #
1209
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
1210
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
1210
1211
  #
1211
1212
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1212
1213
  # Defines the objective metric used to measure the predictive quality of
1213
- # an AutoML job. You provide an AutoMLJobObjective$MetricName and
1214
- # Autopilot infers whether to minimize or maximize it. For , only
1215
- # `Accuracy` is supported.
1214
+ # an AutoML job. You provide an ` AutoMLJobObjective$MetricName ` and
1215
+ # Autopilot infers whether to minimize or maximize it. For `
1216
+ # CreateAutoMLJobV2 `, only `Accuracy` is supported.
1216
1217
  #
1217
1218
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1218
1219
  # A collection of settings used to configure an AutoML job.
@@ -1328,9 +1329,10 @@ module Aws::SageMaker
1328
1329
  # as images or text for Computer Vision or Natural Language Processing
1329
1330
  # problems.
1330
1331
  #
1331
- # Find the resulting model after you run an AutoML job V2 by calling .
1332
+ # Find the resulting model after you run an AutoML job V2 by calling `
1333
+ # DescribeAutoMLJobV2 `.
1332
1334
  #
1333
- # To create an `AutoMLJob` using tabular data, see .
1335
+ # To create an `AutoMLJob` using tabular data, see ` CreateAutoMLJob `.
1334
1336
  #
1335
1337
  # <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
1336
1338
  # directly from the CLI or an SDK results in an error.
@@ -1343,8 +1345,8 @@ module Aws::SageMaker
1343
1345
  #
1344
1346
  # @option params [required, Array<Types::AutoMLJobChannel>] :auto_ml_job_input_data_config
1345
1347
  # An array of channel objects describing the input data and their
1346
- # location. Each channel is a named input source. Similar to
1347
- # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
1348
+ # location. Each channel is a named input source. Similar to `
1349
+ # InputDataConfig ` supported by `CreateAutoMLJob`. The supported
1348
1350
  # formats depend on the problem type:
1349
1351
  #
1350
1352
  # * ImageClassification: S3Prefix, `ManifestFile`,
@@ -1352,10 +1354,6 @@ module Aws::SageMaker
1352
1354
  #
1353
1355
  # * TextClassification: S3Prefix
1354
1356
  #
1355
- #
1356
- #
1357
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
1358
- #
1359
1357
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1360
1358
  # Provides information about encryption and the Amazon S3 output path
1361
1359
  # needed to store artifacts from an AutoML job.
@@ -1383,7 +1381,7 @@ module Aws::SageMaker
1383
1381
  #
1384
1382
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1385
1383
  # Specifies a metric to minimize or maximize as the objective of a job.
1386
- # For , only `Accuracy` is supported.
1384
+ # For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
1387
1385
  #
1388
1386
  # @option params [Types::ModelDeployConfig] :model_deploy_config
1389
1387
  # Specifies how to generate the endpoint name for an automatic one-click
@@ -23224,7 +23222,7 @@ module Aws::SageMaker
23224
23222
  params: params,
23225
23223
  config: config)
23226
23224
  context[:gem_name] = 'aws-sdk-sagemaker'
23227
- context[:gem_version] = '1.170.0'
23225
+ context[:gem_version] = '1.171.0'
23228
23226
  Seahorse::Client::Request.new(handlers, context)
23229
23227
  end
23230
23228
 
@@ -1822,7 +1822,8 @@ module Aws::SageMaker
1822
1822
  # `AutoMLCandidateGenerationConfig` uses the full set of algorithms
1823
1823
  # for the given training mode.
1824
1824
  #
1825
- # For the list of all algorithms per training mode, see .
1825
+ # For the list of all algorithms per training mode, see `
1826
+ # AutoMLAlgorithmConfig `.
1826
1827
  #
1827
1828
  # For more information on each algorithm, see the [Algorithm
1828
1829
  # support][2] section in Autopilot developer guide.
@@ -1871,7 +1872,7 @@ module Aws::SageMaker
1871
1872
  # A channel is a named input source that training algorithms can
1872
1873
  # consume. The validation dataset size is limited to less than 2 GB. The
1873
1874
  # training dataset size must be less than 100 GB. For more information,
1874
- # see .
1875
+ # see ` Channel `.
1875
1876
  #
1876
1877
  # <note markdown="1"> A validation dataset must contain the same headers as the training
1877
1878
  # dataset.
@@ -1922,20 +1923,22 @@ module Aws::SageMaker
1922
1923
  end
1923
1924
 
1924
1925
  # A list of container definitions that describe the different containers
1925
- # that make up an AutoML candidate. For more information, see .
1926
+ # that make up an AutoML candidate. For more information, see `
1927
+ # ContainerDefinition `.
1926
1928
  #
1927
1929
  # @!attribute [rw] image
1928
1930
  # The Amazon Elastic Container Registry (Amazon ECR) path of the
1929
- # container. For more information, see .
1931
+ # container. For more information, see ` ContainerDefinition `.
1930
1932
  # @return [String]
1931
1933
  #
1932
1934
  # @!attribute [rw] model_data_url
1933
- # The location of the model artifacts. For more information, see .
1935
+ # The location of the model artifacts. For more information, see `
1936
+ # ContainerDefinition `.
1934
1937
  # @return [String]
1935
1938
  #
1936
1939
  # @!attribute [rw] environment
1937
1940
  # The environment variables to set in the container. For more
1938
- # information, see .
1941
+ # information, see ` ContainerDefinition `.
1939
1942
  # @return [Hash<String,String>]
1940
1943
  #
1941
1944
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -2008,8 +2011,8 @@ module Aws::SageMaker
2008
2011
 
2009
2012
  # A channel is a named input source that training algorithms can
2010
2013
  # consume. This channel is used for the non tabular training data of an
2011
- # AutoML job using the V2 API. For tabular training data, see . For more
2012
- # information, see .
2014
+ # AutoML job using the V2 API. For tabular training data, see `
2015
+ # AutoMLChannel `. For more information, see ` Channel `.
2013
2016
  #
2014
2017
  # @!attribute [rw] channel_type
2015
2018
  # The type of channel. Defines whether the data are used for training
@@ -2061,7 +2064,8 @@ module Aws::SageMaker
2061
2064
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2062
2065
  # The maximum time, in seconds, that each training job executed inside
2063
2066
  # hyperparameter tuning is allowed to run as part of a hyperparameter
2064
- # tuning job. For more information, see the used by the action.
2067
+ # tuning job. For more information, see the ` StoppingCondition ` used
2068
+ # by the ` CreateHyperParameterTuningJob ` action.
2065
2069
  #
2066
2070
  # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2067
2071
  # field controls the runtime of the job candidate.
@@ -4485,9 +4489,10 @@ module Aws::SageMaker
4485
4489
  # @!attribute [rw] input_data_config
4486
4490
  # An array of channel objects that describes the input data and its
4487
4491
  # location. Each channel is a named input source. Similar to
4488
- # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet.
4489
- # A minimum of 500 rows is required for the training dataset. There is
4490
- # not a minimum number of rows required for the validation dataset.
4492
+ # `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
4493
+ # `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
4494
+ # required for the training dataset. There is not a minimum number of
4495
+ # rows required for the validation dataset.
4491
4496
  # @return [Array<Types::AutoMLChannel>]
4492
4497
  #
4493
4498
  # @!attribute [rw] output_data_config
@@ -4499,18 +4504,18 @@ module Aws::SageMaker
4499
4504
  # @!attribute [rw] problem_type
4500
4505
  # Defines the type of supervised learning problem available for the
4501
4506
  # candidates. For more information, see [ Amazon SageMaker Autopilot
4502
- # problem types and algorithm support][1].
4507
+ # problem types][1].
4503
4508
  #
4504
4509
  #
4505
4510
  #
4506
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
4511
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
4507
4512
  # @return [String]
4508
4513
  #
4509
4514
  # @!attribute [rw] auto_ml_job_objective
4510
4515
  # Defines the objective metric used to measure the predictive quality
4511
- # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
4512
- # Autopilot infers whether to minimize or maximize it. For , only
4513
- # `Accuracy` is supported.
4516
+ # of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
4517
+ # and Autopilot infers whether to minimize or maximize it. For `
4518
+ # CreateAutoMLJobV2 `, only `Accuracy` is supported.
4514
4519
  # @return [Types::AutoMLJobObjective]
4515
4520
  #
4516
4521
  # @!attribute [rw] auto_ml_job_config
@@ -4580,18 +4585,14 @@ module Aws::SageMaker
4580
4585
  #
4581
4586
  # @!attribute [rw] auto_ml_job_input_data_config
4582
4587
  # An array of channel objects describing the input data and their
4583
- # location. Each channel is a named input source. Similar to
4584
- # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
4588
+ # location. Each channel is a named input source. Similar to `
4589
+ # InputDataConfig ` supported by `CreateAutoMLJob`. The supported
4585
4590
  # formats depend on the problem type:
4586
4591
  #
4587
4592
  # * ImageClassification: S3Prefix, `ManifestFile`,
4588
4593
  # `AugmentedManifestFile`
4589
4594
  #
4590
4595
  # * TextClassification: S3Prefix
4591
- #
4592
- #
4593
- #
4594
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
4595
4596
  # @return [Array<Types::AutoMLJobChannel>]
4596
4597
  #
4597
4598
  # @!attribute [rw] output_data_config
@@ -4626,7 +4627,7 @@ module Aws::SageMaker
4626
4627
  #
4627
4628
  # @!attribute [rw] auto_ml_job_objective
4628
4629
  # Specifies a metric to minimize or maximize as the objective of a
4629
- # job. For , only `Accuracy` is supported.
4630
+ # job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
4630
4631
  # @return [Types::AutoMLJobObjective]
4631
4632
  #
4632
4633
  # @!attribute [rw] model_deploy_config
@@ -17598,7 +17599,8 @@ module Aws::SageMaker
17598
17599
  #
17599
17600
  # @!attribute [rw] metric_name
17600
17601
  # The name of the metric with the best result. For a description of
17601
- # the possible objective metrics, see AutoMLJobObjective$MetricName.
17602
+ # the possible objective metrics, see ` AutoMLJobObjective$MetricName
17603
+ # `.
17602
17604
  # @return [String]
17603
17605
  #
17604
17606
  # @!attribute [rw] value
@@ -19494,7 +19496,7 @@ module Aws::SageMaker
19494
19496
  #
19495
19497
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
19496
19498
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
19497
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
19499
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
19498
19500
  # @return [Hash<String,String>]
19499
19501
  #
19500
19502
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
@@ -20252,8 +20254,8 @@ module Aws::SageMaker
20252
20254
  # reaches the `MaxResource` value, it is stopped. If a value for
20253
20255
  # `MaxResource` is not provided, and `Hyperband` is selected as the
20254
20256
  # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
20255
- # infer `MaxResource` from the following keys (if present) in
20256
- # [StaticsHyperParameters][1]:
20257
+ # infer `MaxResource` from the following keys (if present) in `
20258
+ # StaticsHyperParameters `:
20257
20259
  #
20258
20260
  # * `epochs`
20259
20261
  #
@@ -20268,8 +20270,8 @@ module Aws::SageMaker
20268
20270
  # If `HyperbandStrategyConfig` is unable to infer a value for
20269
20271
  # `MaxResource`, it generates a validation error. The maximum value is
20270
20272
  # 20,000 epochs. All metrics that correspond to an objective metric
20271
- # are used to derive [early stopping decisions][2]. For
20272
- # [distributive][3] training jobs, ensure that duplicate metrics are
20273
+ # are used to derive [early stopping decisions][1]. For
20274
+ # [distributive][2] training jobs, ensure that duplicate metrics are
20273
20275
  # not printed in the logs across the individual nodes in a training
20274
20276
  # job. If multiple nodes are publishing duplicate or incorrect
20275
20277
  # metrics, training jobs may make an incorrect stopping decision and
@@ -20277,9 +20279,8 @@ module Aws::SageMaker
20277
20279
  #
20278
20280
  #
20279
20281
  #
20280
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
20281
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
20282
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
20282
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
20283
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
20283
20284
  # @return [Integer]
20284
20285
  #
20285
20286
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
@@ -27087,9 +27088,17 @@ module Aws::SageMaker
27087
27088
  end
27088
27089
 
27089
27090
  # Specifies a metric that the training algorithm writes to `stderr` or
27090
- # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
27091
- # You specify one metric that a hyperparameter tuning job uses as its
27092
- # objective metric to choose the best training job.
27091
+ # `stdout`. You can view these logs to understand how your training job
27092
+ # performs and check for any errors encountered during training.
27093
+ # SageMaker hyperparameter tuning captures all defined metrics. Specify
27094
+ # one of the defined metrics to use as an objective metric using the
27095
+ # [TuningObjective][1] parameter in the
27096
+ # `HyperParameterTrainingJobDefinition` API to evaluate job performance
27097
+ # during hyperparameter tuning.
27098
+ #
27099
+ #
27100
+ #
27101
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
27093
27102
  #
27094
27103
  # @!attribute [rw] name
27095
27104
  # The name of the metric.
@@ -27098,12 +27107,12 @@ module Aws::SageMaker
27098
27107
  # @!attribute [rw] regex
27099
27108
  # A regular expression that searches the output of a training job and
27100
27109
  # gets the value of the metric. For more information about using
27101
- # regular expressions to define metrics, see [Defining Objective
27102
- # Metrics][1].
27110
+ # regular expressions to define metrics, see [Defining metrics and
27111
+ # environment variables][1].
27103
27112
  #
27104
27113
  #
27105
27114
  #
27106
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
27115
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
27107
27116
  # @return [String]
27108
27117
  #
27109
27118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.170.0'
56
+ GEM_VERSION = '1.171.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.170.0
4
+ version: 1.171.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-03-23 00:00:00.000000000 Z
11
+ date: 2023-03-27 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core