aws-sdk-sagemaker 1.170.0 → 1.171.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +17 -19
- data/lib/aws-sdk-sagemaker/types.rb +48 -39
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: a55219fefd240f6db937c8b361276ba3822f6fef7cb0994f0ca3591dc0ce7314
|
4
|
+
data.tar.gz: 4fc8412072f173f92f8337ddfaa0b3b6e139dcfec5a7380b621f5983193eee0e
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: cc6031e981f1f96e304676a6e2a8cc76d7d487ec621a5df616dd1c674a4686076aee06efdf62c87b6838545dfc9550a985a882aec74b05baf3514df50ea555ce
|
7
|
+
data.tar.gz: cb2605cd2eab41976db322a67a138dfa4a25866c2e6c9e6d31b969307ab48e8f17c2b1daed0068330c253405705c400209096a3daebf9a17eb33b9d58a39e34d
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.171.0
|
@@ -1174,7 +1174,7 @@ module Aws::SageMaker
|
|
1174
1174
|
# Creates an Autopilot job.
|
1175
1175
|
#
|
1176
1176
|
# Find the best-performing model after you run an Autopilot job by
|
1177
|
-
# calling
|
1177
|
+
# calling ` DescribeAutoMLJob `.
|
1178
1178
|
#
|
1179
1179
|
# For information about how to use Autopilot, see [Automate Model
|
1180
1180
|
# Development with Amazon SageMaker Autopilot][1].
|
@@ -1190,9 +1190,10 @@ module Aws::SageMaker
|
|
1190
1190
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1191
1191
|
# An array of channel objects that describes the input data and its
|
1192
1192
|
# location. Each channel is a named input source. Similar to
|
1193
|
-
# `InputDataConfig` supported by
|
1194
|
-
#
|
1195
|
-
#
|
1193
|
+
# `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
|
1194
|
+
# `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
|
1195
|
+
# required for the training dataset. There is not a minimum number of
|
1196
|
+
# rows required for the validation dataset.
|
1196
1197
|
#
|
1197
1198
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1198
1199
|
# Provides information about encryption and the Amazon S3 output path
|
@@ -1202,17 +1203,17 @@ module Aws::SageMaker
|
|
1202
1203
|
# @option params [String] :problem_type
|
1203
1204
|
# Defines the type of supervised learning problem available for the
|
1204
1205
|
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
1205
|
-
# problem types
|
1206
|
+
# problem types][1].
|
1206
1207
|
#
|
1207
1208
|
#
|
1208
1209
|
#
|
1209
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
|
1210
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
1210
1211
|
#
|
1211
1212
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1212
1213
|
# Defines the objective metric used to measure the predictive quality of
|
1213
|
-
# an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
1214
|
-
# Autopilot infers whether to minimize or maximize it. For
|
1215
|
-
# `Accuracy` is supported.
|
1214
|
+
# an AutoML job. You provide an ` AutoMLJobObjective$MetricName ` and
|
1215
|
+
# Autopilot infers whether to minimize or maximize it. For `
|
1216
|
+
# CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
1216
1217
|
#
|
1217
1218
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1218
1219
|
# A collection of settings used to configure an AutoML job.
|
@@ -1328,9 +1329,10 @@ module Aws::SageMaker
|
|
1328
1329
|
# as images or text for Computer Vision or Natural Language Processing
|
1329
1330
|
# problems.
|
1330
1331
|
#
|
1331
|
-
# Find the resulting model after you run an AutoML job V2 by calling
|
1332
|
+
# Find the resulting model after you run an AutoML job V2 by calling `
|
1333
|
+
# DescribeAutoMLJobV2 `.
|
1332
1334
|
#
|
1333
|
-
# To create an `AutoMLJob` using tabular data, see
|
1335
|
+
# To create an `AutoMLJob` using tabular data, see ` CreateAutoMLJob `.
|
1334
1336
|
#
|
1335
1337
|
# <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
|
1336
1338
|
# directly from the CLI or an SDK results in an error.
|
@@ -1343,8 +1345,8 @@ module Aws::SageMaker
|
|
1343
1345
|
#
|
1344
1346
|
# @option params [required, Array<Types::AutoMLJobChannel>] :auto_ml_job_input_data_config
|
1345
1347
|
# An array of channel objects describing the input data and their
|
1346
|
-
# location. Each channel is a named input source. Similar to
|
1347
|
-
#
|
1348
|
+
# location. Each channel is a named input source. Similar to `
|
1349
|
+
# InputDataConfig ` supported by `CreateAutoMLJob`. The supported
|
1348
1350
|
# formats depend on the problem type:
|
1349
1351
|
#
|
1350
1352
|
# * ImageClassification: S3Prefix, `ManifestFile`,
|
@@ -1352,10 +1354,6 @@ module Aws::SageMaker
|
|
1352
1354
|
#
|
1353
1355
|
# * TextClassification: S3Prefix
|
1354
1356
|
#
|
1355
|
-
#
|
1356
|
-
#
|
1357
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
1358
|
-
#
|
1359
1357
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1360
1358
|
# Provides information about encryption and the Amazon S3 output path
|
1361
1359
|
# needed to store artifacts from an AutoML job.
|
@@ -1383,7 +1381,7 @@ module Aws::SageMaker
|
|
1383
1381
|
#
|
1384
1382
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1385
1383
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
1386
|
-
# For
|
1384
|
+
# For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
1387
1385
|
#
|
1388
1386
|
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1389
1387
|
# Specifies how to generate the endpoint name for an automatic one-click
|
@@ -23224,7 +23222,7 @@ module Aws::SageMaker
|
|
23224
23222
|
params: params,
|
23225
23223
|
config: config)
|
23226
23224
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23227
|
-
context[:gem_version] = '1.
|
23225
|
+
context[:gem_version] = '1.171.0'
|
23228
23226
|
Seahorse::Client::Request.new(handlers, context)
|
23229
23227
|
end
|
23230
23228
|
|
@@ -1822,7 +1822,8 @@ module Aws::SageMaker
|
|
1822
1822
|
# `AutoMLCandidateGenerationConfig` uses the full set of algorithms
|
1823
1823
|
# for the given training mode.
|
1824
1824
|
#
|
1825
|
-
# For the list of all algorithms per training mode, see
|
1825
|
+
# For the list of all algorithms per training mode, see `
|
1826
|
+
# AutoMLAlgorithmConfig `.
|
1826
1827
|
#
|
1827
1828
|
# For more information on each algorithm, see the [Algorithm
|
1828
1829
|
# support][2] section in Autopilot developer guide.
|
@@ -1871,7 +1872,7 @@ module Aws::SageMaker
|
|
1871
1872
|
# A channel is a named input source that training algorithms can
|
1872
1873
|
# consume. The validation dataset size is limited to less than 2 GB. The
|
1873
1874
|
# training dataset size must be less than 100 GB. For more information,
|
1874
|
-
# see
|
1875
|
+
# see ` Channel `.
|
1875
1876
|
#
|
1876
1877
|
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
1877
1878
|
# dataset.
|
@@ -1922,20 +1923,22 @@ module Aws::SageMaker
|
|
1922
1923
|
end
|
1923
1924
|
|
1924
1925
|
# A list of container definitions that describe the different containers
|
1925
|
-
# that make up an AutoML candidate. For more information, see
|
1926
|
+
# that make up an AutoML candidate. For more information, see `
|
1927
|
+
# ContainerDefinition `.
|
1926
1928
|
#
|
1927
1929
|
# @!attribute [rw] image
|
1928
1930
|
# The Amazon Elastic Container Registry (Amazon ECR) path of the
|
1929
|
-
# container. For more information, see
|
1931
|
+
# container. For more information, see ` ContainerDefinition `.
|
1930
1932
|
# @return [String]
|
1931
1933
|
#
|
1932
1934
|
# @!attribute [rw] model_data_url
|
1933
|
-
# The location of the model artifacts. For more information, see
|
1935
|
+
# The location of the model artifacts. For more information, see `
|
1936
|
+
# ContainerDefinition `.
|
1934
1937
|
# @return [String]
|
1935
1938
|
#
|
1936
1939
|
# @!attribute [rw] environment
|
1937
1940
|
# The environment variables to set in the container. For more
|
1938
|
-
# information, see
|
1941
|
+
# information, see ` ContainerDefinition `.
|
1939
1942
|
# @return [Hash<String,String>]
|
1940
1943
|
#
|
1941
1944
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -2008,8 +2011,8 @@ module Aws::SageMaker
|
|
2008
2011
|
|
2009
2012
|
# A channel is a named input source that training algorithms can
|
2010
2013
|
# consume. This channel is used for the non tabular training data of an
|
2011
|
-
# AutoML job using the V2 API. For tabular training data, see
|
2012
|
-
# information, see
|
2014
|
+
# AutoML job using the V2 API. For tabular training data, see `
|
2015
|
+
# AutoMLChannel `. For more information, see ` Channel `.
|
2013
2016
|
#
|
2014
2017
|
# @!attribute [rw] channel_type
|
2015
2018
|
# The type of channel. Defines whether the data are used for training
|
@@ -2061,7 +2064,8 @@ module Aws::SageMaker
|
|
2061
2064
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
2062
2065
|
# The maximum time, in seconds, that each training job executed inside
|
2063
2066
|
# hyperparameter tuning is allowed to run as part of a hyperparameter
|
2064
|
-
# tuning job. For more information, see the
|
2067
|
+
# tuning job. For more information, see the ` StoppingCondition ` used
|
2068
|
+
# by the ` CreateHyperParameterTuningJob ` action.
|
2065
2069
|
#
|
2066
2070
|
# For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
|
2067
2071
|
# field controls the runtime of the job candidate.
|
@@ -4485,9 +4489,10 @@ module Aws::SageMaker
|
|
4485
4489
|
# @!attribute [rw] input_data_config
|
4486
4490
|
# An array of channel objects that describes the input data and its
|
4487
4491
|
# location. Each channel is a named input source. Similar to
|
4488
|
-
# `InputDataConfig` supported by
|
4489
|
-
# A minimum of 500 rows is
|
4490
|
-
#
|
4492
|
+
# `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
|
4493
|
+
# `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
|
4494
|
+
# required for the training dataset. There is not a minimum number of
|
4495
|
+
# rows required for the validation dataset.
|
4491
4496
|
# @return [Array<Types::AutoMLChannel>]
|
4492
4497
|
#
|
4493
4498
|
# @!attribute [rw] output_data_config
|
@@ -4499,18 +4504,18 @@ module Aws::SageMaker
|
|
4499
4504
|
# @!attribute [rw] problem_type
|
4500
4505
|
# Defines the type of supervised learning problem available for the
|
4501
4506
|
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
4502
|
-
# problem types
|
4507
|
+
# problem types][1].
|
4503
4508
|
#
|
4504
4509
|
#
|
4505
4510
|
#
|
4506
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
|
4511
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
4507
4512
|
# @return [String]
|
4508
4513
|
#
|
4509
4514
|
# @!attribute [rw] auto_ml_job_objective
|
4510
4515
|
# Defines the objective metric used to measure the predictive quality
|
4511
|
-
# of an AutoML job. You provide an AutoMLJobObjective$MetricName
|
4512
|
-
# Autopilot infers whether to minimize or maximize it. For
|
4513
|
-
# `Accuracy` is supported.
|
4516
|
+
# of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
|
4517
|
+
# and Autopilot infers whether to minimize or maximize it. For `
|
4518
|
+
# CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
4514
4519
|
# @return [Types::AutoMLJobObjective]
|
4515
4520
|
#
|
4516
4521
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4580,18 +4585,14 @@ module Aws::SageMaker
|
|
4580
4585
|
#
|
4581
4586
|
# @!attribute [rw] auto_ml_job_input_data_config
|
4582
4587
|
# An array of channel objects describing the input data and their
|
4583
|
-
# location. Each channel is a named input source. Similar to
|
4584
|
-
#
|
4588
|
+
# location. Each channel is a named input source. Similar to `
|
4589
|
+
# InputDataConfig ` supported by `CreateAutoMLJob`. The supported
|
4585
4590
|
# formats depend on the problem type:
|
4586
4591
|
#
|
4587
4592
|
# * ImageClassification: S3Prefix, `ManifestFile`,
|
4588
4593
|
# `AugmentedManifestFile`
|
4589
4594
|
#
|
4590
4595
|
# * TextClassification: S3Prefix
|
4591
|
-
#
|
4592
|
-
#
|
4593
|
-
#
|
4594
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
4595
4596
|
# @return [Array<Types::AutoMLJobChannel>]
|
4596
4597
|
#
|
4597
4598
|
# @!attribute [rw] output_data_config
|
@@ -4626,7 +4627,7 @@ module Aws::SageMaker
|
|
4626
4627
|
#
|
4627
4628
|
# @!attribute [rw] auto_ml_job_objective
|
4628
4629
|
# Specifies a metric to minimize or maximize as the objective of a
|
4629
|
-
# job. For
|
4630
|
+
# job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
4630
4631
|
# @return [Types::AutoMLJobObjective]
|
4631
4632
|
#
|
4632
4633
|
# @!attribute [rw] model_deploy_config
|
@@ -17598,7 +17599,8 @@ module Aws::SageMaker
|
|
17598
17599
|
#
|
17599
17600
|
# @!attribute [rw] metric_name
|
17600
17601
|
# The name of the metric with the best result. For a description of
|
17601
|
-
# the possible objective metrics, see AutoMLJobObjective$MetricName
|
17602
|
+
# the possible objective metrics, see ` AutoMLJobObjective$MetricName
|
17603
|
+
# `.
|
17602
17604
|
# @return [String]
|
17603
17605
|
#
|
17604
17606
|
# @!attribute [rw] value
|
@@ -19494,7 +19496,7 @@ module Aws::SageMaker
|
|
19494
19496
|
#
|
19495
19497
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
|
19496
19498
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
|
19497
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
19499
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
19498
19500
|
# @return [Hash<String,String>]
|
19499
19501
|
#
|
19500
19502
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
|
@@ -20252,8 +20254,8 @@ module Aws::SageMaker
|
|
20252
20254
|
# reaches the `MaxResource` value, it is stopped. If a value for
|
20253
20255
|
# `MaxResource` is not provided, and `Hyperband` is selected as the
|
20254
20256
|
# hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
|
20255
|
-
# infer `MaxResource` from the following keys (if present) in
|
20256
|
-
#
|
20257
|
+
# infer `MaxResource` from the following keys (if present) in `
|
20258
|
+
# StaticsHyperParameters `:
|
20257
20259
|
#
|
20258
20260
|
# * `epochs`
|
20259
20261
|
#
|
@@ -20268,8 +20270,8 @@ module Aws::SageMaker
|
|
20268
20270
|
# If `HyperbandStrategyConfig` is unable to infer a value for
|
20269
20271
|
# `MaxResource`, it generates a validation error. The maximum value is
|
20270
20272
|
# 20,000 epochs. All metrics that correspond to an objective metric
|
20271
|
-
# are used to derive [early stopping decisions][
|
20272
|
-
# [distributive][
|
20273
|
+
# are used to derive [early stopping decisions][1]. For
|
20274
|
+
# [distributive][2] training jobs, ensure that duplicate metrics are
|
20273
20275
|
# not printed in the logs across the individual nodes in a training
|
20274
20276
|
# job. If multiple nodes are publishing duplicate or incorrect
|
20275
20277
|
# metrics, training jobs may make an incorrect stopping decision and
|
@@ -20277,9 +20279,8 @@ module Aws::SageMaker
|
|
20277
20279
|
#
|
20278
20280
|
#
|
20279
20281
|
#
|
20280
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
20281
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/
|
20282
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
20282
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
|
20283
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
20283
20284
|
# @return [Integer]
|
20284
20285
|
#
|
20285
20286
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
|
@@ -27087,9 +27088,17 @@ module Aws::SageMaker
|
|
27087
27088
|
end
|
27088
27089
|
|
27089
27090
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
27090
|
-
# `stdout`.
|
27091
|
-
#
|
27092
|
-
#
|
27091
|
+
# `stdout`. You can view these logs to understand how your training job
|
27092
|
+
# performs and check for any errors encountered during training.
|
27093
|
+
# SageMaker hyperparameter tuning captures all defined metrics. Specify
|
27094
|
+
# one of the defined metrics to use as an objective metric using the
|
27095
|
+
# [TuningObjective][1] parameter in the
|
27096
|
+
# `HyperParameterTrainingJobDefinition` API to evaluate job performance
|
27097
|
+
# during hyperparameter tuning.
|
27098
|
+
#
|
27099
|
+
#
|
27100
|
+
#
|
27101
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
|
27093
27102
|
#
|
27094
27103
|
# @!attribute [rw] name
|
27095
27104
|
# The name of the metric.
|
@@ -27098,12 +27107,12 @@ module Aws::SageMaker
|
|
27098
27107
|
# @!attribute [rw] regex
|
27099
27108
|
# A regular expression that searches the output of a training job and
|
27100
27109
|
# gets the value of the metric. For more information about using
|
27101
|
-
# regular expressions to define metrics, see [Defining
|
27102
|
-
#
|
27110
|
+
# regular expressions to define metrics, see [Defining metrics and
|
27111
|
+
# environment variables][1].
|
27103
27112
|
#
|
27104
27113
|
#
|
27105
27114
|
#
|
27106
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
27115
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
27107
27116
|
# @return [String]
|
27108
27117
|
#
|
27109
27118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.171.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-03-
|
11
|
+
date: 2023-03-27 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|