aws-sdk-sagemaker 1.170.0 → 1.171.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +17 -19
- data/lib/aws-sdk-sagemaker/types.rb +48 -39
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: a55219fefd240f6db937c8b361276ba3822f6fef7cb0994f0ca3591dc0ce7314
|
4
|
+
data.tar.gz: 4fc8412072f173f92f8337ddfaa0b3b6e139dcfec5a7380b621f5983193eee0e
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: cc6031e981f1f96e304676a6e2a8cc76d7d487ec621a5df616dd1c674a4686076aee06efdf62c87b6838545dfc9550a985a882aec74b05baf3514df50ea555ce
|
7
|
+
data.tar.gz: cb2605cd2eab41976db322a67a138dfa4a25866c2e6c9e6d31b969307ab48e8f17c2b1daed0068330c253405705c400209096a3daebf9a17eb33b9d58a39e34d
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.171.0
|
@@ -1174,7 +1174,7 @@ module Aws::SageMaker
|
|
1174
1174
|
# Creates an Autopilot job.
|
1175
1175
|
#
|
1176
1176
|
# Find the best-performing model after you run an Autopilot job by
|
1177
|
-
# calling
|
1177
|
+
# calling ` DescribeAutoMLJob `.
|
1178
1178
|
#
|
1179
1179
|
# For information about how to use Autopilot, see [Automate Model
|
1180
1180
|
# Development with Amazon SageMaker Autopilot][1].
|
@@ -1190,9 +1190,10 @@ module Aws::SageMaker
|
|
1190
1190
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1191
1191
|
# An array of channel objects that describes the input data and its
|
1192
1192
|
# location. Each channel is a named input source. Similar to
|
1193
|
-
# `InputDataConfig` supported by
|
1194
|
-
#
|
1195
|
-
#
|
1193
|
+
# `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
|
1194
|
+
# `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
|
1195
|
+
# required for the training dataset. There is not a minimum number of
|
1196
|
+
# rows required for the validation dataset.
|
1196
1197
|
#
|
1197
1198
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1198
1199
|
# Provides information about encryption and the Amazon S3 output path
|
@@ -1202,17 +1203,17 @@ module Aws::SageMaker
|
|
1202
1203
|
# @option params [String] :problem_type
|
1203
1204
|
# Defines the type of supervised learning problem available for the
|
1204
1205
|
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
1205
|
-
# problem types
|
1206
|
+
# problem types][1].
|
1206
1207
|
#
|
1207
1208
|
#
|
1208
1209
|
#
|
1209
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
|
1210
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
1210
1211
|
#
|
1211
1212
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1212
1213
|
# Defines the objective metric used to measure the predictive quality of
|
1213
|
-
# an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
1214
|
-
# Autopilot infers whether to minimize or maximize it. For
|
1215
|
-
# `Accuracy` is supported.
|
1214
|
+
# an AutoML job. You provide an ` AutoMLJobObjective$MetricName ` and
|
1215
|
+
# Autopilot infers whether to minimize or maximize it. For `
|
1216
|
+
# CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
1216
1217
|
#
|
1217
1218
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1218
1219
|
# A collection of settings used to configure an AutoML job.
|
@@ -1328,9 +1329,10 @@ module Aws::SageMaker
|
|
1328
1329
|
# as images or text for Computer Vision or Natural Language Processing
|
1329
1330
|
# problems.
|
1330
1331
|
#
|
1331
|
-
# Find the resulting model after you run an AutoML job V2 by calling
|
1332
|
+
# Find the resulting model after you run an AutoML job V2 by calling `
|
1333
|
+
# DescribeAutoMLJobV2 `.
|
1332
1334
|
#
|
1333
|
-
# To create an `AutoMLJob` using tabular data, see
|
1335
|
+
# To create an `AutoMLJob` using tabular data, see ` CreateAutoMLJob `.
|
1334
1336
|
#
|
1335
1337
|
# <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
|
1336
1338
|
# directly from the CLI or an SDK results in an error.
|
@@ -1343,8 +1345,8 @@ module Aws::SageMaker
|
|
1343
1345
|
#
|
1344
1346
|
# @option params [required, Array<Types::AutoMLJobChannel>] :auto_ml_job_input_data_config
|
1345
1347
|
# An array of channel objects describing the input data and their
|
1346
|
-
# location. Each channel is a named input source. Similar to
|
1347
|
-
#
|
1348
|
+
# location. Each channel is a named input source. Similar to `
|
1349
|
+
# InputDataConfig ` supported by `CreateAutoMLJob`. The supported
|
1348
1350
|
# formats depend on the problem type:
|
1349
1351
|
#
|
1350
1352
|
# * ImageClassification: S3Prefix, `ManifestFile`,
|
@@ -1352,10 +1354,6 @@ module Aws::SageMaker
|
|
1352
1354
|
#
|
1353
1355
|
# * TextClassification: S3Prefix
|
1354
1356
|
#
|
1355
|
-
#
|
1356
|
-
#
|
1357
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
1358
|
-
#
|
1359
1357
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1360
1358
|
# Provides information about encryption and the Amazon S3 output path
|
1361
1359
|
# needed to store artifacts from an AutoML job.
|
@@ -1383,7 +1381,7 @@ module Aws::SageMaker
|
|
1383
1381
|
#
|
1384
1382
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1385
1383
|
# Specifies a metric to minimize or maximize as the objective of a job.
|
1386
|
-
# For
|
1384
|
+
# For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
1387
1385
|
#
|
1388
1386
|
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1389
1387
|
# Specifies how to generate the endpoint name for an automatic one-click
|
@@ -23224,7 +23222,7 @@ module Aws::SageMaker
|
|
23224
23222
|
params: params,
|
23225
23223
|
config: config)
|
23226
23224
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23227
|
-
context[:gem_version] = '1.
|
23225
|
+
context[:gem_version] = '1.171.0'
|
23228
23226
|
Seahorse::Client::Request.new(handlers, context)
|
23229
23227
|
end
|
23230
23228
|
|
@@ -1822,7 +1822,8 @@ module Aws::SageMaker
|
|
1822
1822
|
# `AutoMLCandidateGenerationConfig` uses the full set of algorithms
|
1823
1823
|
# for the given training mode.
|
1824
1824
|
#
|
1825
|
-
# For the list of all algorithms per training mode, see
|
1825
|
+
# For the list of all algorithms per training mode, see `
|
1826
|
+
# AutoMLAlgorithmConfig `.
|
1826
1827
|
#
|
1827
1828
|
# For more information on each algorithm, see the [Algorithm
|
1828
1829
|
# support][2] section in Autopilot developer guide.
|
@@ -1871,7 +1872,7 @@ module Aws::SageMaker
|
|
1871
1872
|
# A channel is a named input source that training algorithms can
|
1872
1873
|
# consume. The validation dataset size is limited to less than 2 GB. The
|
1873
1874
|
# training dataset size must be less than 100 GB. For more information,
|
1874
|
-
# see
|
1875
|
+
# see ` Channel `.
|
1875
1876
|
#
|
1876
1877
|
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
1877
1878
|
# dataset.
|
@@ -1922,20 +1923,22 @@ module Aws::SageMaker
|
|
1922
1923
|
end
|
1923
1924
|
|
1924
1925
|
# A list of container definitions that describe the different containers
|
1925
|
-
# that make up an AutoML candidate. For more information, see
|
1926
|
+
# that make up an AutoML candidate. For more information, see `
|
1927
|
+
# ContainerDefinition `.
|
1926
1928
|
#
|
1927
1929
|
# @!attribute [rw] image
|
1928
1930
|
# The Amazon Elastic Container Registry (Amazon ECR) path of the
|
1929
|
-
# container. For more information, see
|
1931
|
+
# container. For more information, see ` ContainerDefinition `.
|
1930
1932
|
# @return [String]
|
1931
1933
|
#
|
1932
1934
|
# @!attribute [rw] model_data_url
|
1933
|
-
# The location of the model artifacts. For more information, see
|
1935
|
+
# The location of the model artifacts. For more information, see `
|
1936
|
+
# ContainerDefinition `.
|
1934
1937
|
# @return [String]
|
1935
1938
|
#
|
1936
1939
|
# @!attribute [rw] environment
|
1937
1940
|
# The environment variables to set in the container. For more
|
1938
|
-
# information, see
|
1941
|
+
# information, see ` ContainerDefinition `.
|
1939
1942
|
# @return [Hash<String,String>]
|
1940
1943
|
#
|
1941
1944
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -2008,8 +2011,8 @@ module Aws::SageMaker
|
|
2008
2011
|
|
2009
2012
|
# A channel is a named input source that training algorithms can
|
2010
2013
|
# consume. This channel is used for the non tabular training data of an
|
2011
|
-
# AutoML job using the V2 API. For tabular training data, see
|
2012
|
-
# information, see
|
2014
|
+
# AutoML job using the V2 API. For tabular training data, see `
|
2015
|
+
# AutoMLChannel `. For more information, see ` Channel `.
|
2013
2016
|
#
|
2014
2017
|
# @!attribute [rw] channel_type
|
2015
2018
|
# The type of channel. Defines whether the data are used for training
|
@@ -2061,7 +2064,8 @@ module Aws::SageMaker
|
|
2061
2064
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
2062
2065
|
# The maximum time, in seconds, that each training job executed inside
|
2063
2066
|
# hyperparameter tuning is allowed to run as part of a hyperparameter
|
2064
|
-
# tuning job. For more information, see the
|
2067
|
+
# tuning job. For more information, see the ` StoppingCondition ` used
|
2068
|
+
# by the ` CreateHyperParameterTuningJob ` action.
|
2065
2069
|
#
|
2066
2070
|
# For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
|
2067
2071
|
# field controls the runtime of the job candidate.
|
@@ -4485,9 +4489,10 @@ module Aws::SageMaker
|
|
4485
4489
|
# @!attribute [rw] input_data_config
|
4486
4490
|
# An array of channel objects that describes the input data and its
|
4487
4491
|
# location. Each channel is a named input source. Similar to
|
4488
|
-
# `InputDataConfig` supported by
|
4489
|
-
# A minimum of 500 rows is
|
4490
|
-
#
|
4492
|
+
# `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
|
4493
|
+
# `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
|
4494
|
+
# required for the training dataset. There is not a minimum number of
|
4495
|
+
# rows required for the validation dataset.
|
4491
4496
|
# @return [Array<Types::AutoMLChannel>]
|
4492
4497
|
#
|
4493
4498
|
# @!attribute [rw] output_data_config
|
@@ -4499,18 +4504,18 @@ module Aws::SageMaker
|
|
4499
4504
|
# @!attribute [rw] problem_type
|
4500
4505
|
# Defines the type of supervised learning problem available for the
|
4501
4506
|
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
4502
|
-
# problem types
|
4507
|
+
# problem types][1].
|
4503
4508
|
#
|
4504
4509
|
#
|
4505
4510
|
#
|
4506
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
|
4511
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
|
4507
4512
|
# @return [String]
|
4508
4513
|
#
|
4509
4514
|
# @!attribute [rw] auto_ml_job_objective
|
4510
4515
|
# Defines the objective metric used to measure the predictive quality
|
4511
|
-
# of an AutoML job. You provide an AutoMLJobObjective$MetricName
|
4512
|
-
# Autopilot infers whether to minimize or maximize it. For
|
4513
|
-
# `Accuracy` is supported.
|
4516
|
+
# of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
|
4517
|
+
# and Autopilot infers whether to minimize or maximize it. For `
|
4518
|
+
# CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
4514
4519
|
# @return [Types::AutoMLJobObjective]
|
4515
4520
|
#
|
4516
4521
|
# @!attribute [rw] auto_ml_job_config
|
@@ -4580,18 +4585,14 @@ module Aws::SageMaker
|
|
4580
4585
|
#
|
4581
4586
|
# @!attribute [rw] auto_ml_job_input_data_config
|
4582
4587
|
# An array of channel objects describing the input data and their
|
4583
|
-
# location. Each channel is a named input source. Similar to
|
4584
|
-
#
|
4588
|
+
# location. Each channel is a named input source. Similar to `
|
4589
|
+
# InputDataConfig ` supported by `CreateAutoMLJob`. The supported
|
4585
4590
|
# formats depend on the problem type:
|
4586
4591
|
#
|
4587
4592
|
# * ImageClassification: S3Prefix, `ManifestFile`,
|
4588
4593
|
# `AugmentedManifestFile`
|
4589
4594
|
#
|
4590
4595
|
# * TextClassification: S3Prefix
|
4591
|
-
#
|
4592
|
-
#
|
4593
|
-
#
|
4594
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
|
4595
4596
|
# @return [Array<Types::AutoMLJobChannel>]
|
4596
4597
|
#
|
4597
4598
|
# @!attribute [rw] output_data_config
|
@@ -4626,7 +4627,7 @@ module Aws::SageMaker
|
|
4626
4627
|
#
|
4627
4628
|
# @!attribute [rw] auto_ml_job_objective
|
4628
4629
|
# Specifies a metric to minimize or maximize as the objective of a
|
4629
|
-
# job. For
|
4630
|
+
# job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
|
4630
4631
|
# @return [Types::AutoMLJobObjective]
|
4631
4632
|
#
|
4632
4633
|
# @!attribute [rw] model_deploy_config
|
@@ -17598,7 +17599,8 @@ module Aws::SageMaker
|
|
17598
17599
|
#
|
17599
17600
|
# @!attribute [rw] metric_name
|
17600
17601
|
# The name of the metric with the best result. For a description of
|
17601
|
-
# the possible objective metrics, see AutoMLJobObjective$MetricName
|
17602
|
+
# the possible objective metrics, see ` AutoMLJobObjective$MetricName
|
17603
|
+
# `.
|
17602
17604
|
# @return [String]
|
17603
17605
|
#
|
17604
17606
|
# @!attribute [rw] value
|
@@ -19494,7 +19496,7 @@ module Aws::SageMaker
|
|
19494
19496
|
#
|
19495
19497
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
|
19496
19498
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
|
19497
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
19499
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
19498
19500
|
# @return [Hash<String,String>]
|
19499
19501
|
#
|
19500
19502
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
|
@@ -20252,8 +20254,8 @@ module Aws::SageMaker
|
|
20252
20254
|
# reaches the `MaxResource` value, it is stopped. If a value for
|
20253
20255
|
# `MaxResource` is not provided, and `Hyperband` is selected as the
|
20254
20256
|
# hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
|
20255
|
-
# infer `MaxResource` from the following keys (if present) in
|
20256
|
-
#
|
20257
|
+
# infer `MaxResource` from the following keys (if present) in `
|
20258
|
+
# StaticsHyperParameters `:
|
20257
20259
|
#
|
20258
20260
|
# * `epochs`
|
20259
20261
|
#
|
@@ -20268,8 +20270,8 @@ module Aws::SageMaker
|
|
20268
20270
|
# If `HyperbandStrategyConfig` is unable to infer a value for
|
20269
20271
|
# `MaxResource`, it generates a validation error. The maximum value is
|
20270
20272
|
# 20,000 epochs. All metrics that correspond to an objective metric
|
20271
|
-
# are used to derive [early stopping decisions][
|
20272
|
-
# [distributive][
|
20273
|
+
# are used to derive [early stopping decisions][1]. For
|
20274
|
+
# [distributive][2] training jobs, ensure that duplicate metrics are
|
20273
20275
|
# not printed in the logs across the individual nodes in a training
|
20274
20276
|
# job. If multiple nodes are publishing duplicate or incorrect
|
20275
20277
|
# metrics, training jobs may make an incorrect stopping decision and
|
@@ -20277,9 +20279,8 @@ module Aws::SageMaker
|
|
20277
20279
|
#
|
20278
20280
|
#
|
20279
20281
|
#
|
20280
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
20281
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/
|
20282
|
-
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
20282
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
|
20283
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
20283
20284
|
# @return [Integer]
|
20284
20285
|
#
|
20285
20286
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
|
@@ -27087,9 +27088,17 @@ module Aws::SageMaker
|
|
27087
27088
|
end
|
27088
27089
|
|
27089
27090
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
27090
|
-
# `stdout`.
|
27091
|
-
#
|
27092
|
-
#
|
27091
|
+
# `stdout`. You can view these logs to understand how your training job
|
27092
|
+
# performs and check for any errors encountered during training.
|
27093
|
+
# SageMaker hyperparameter tuning captures all defined metrics. Specify
|
27094
|
+
# one of the defined metrics to use as an objective metric using the
|
27095
|
+
# [TuningObjective][1] parameter in the
|
27096
|
+
# `HyperParameterTrainingJobDefinition` API to evaluate job performance
|
27097
|
+
# during hyperparameter tuning.
|
27098
|
+
#
|
27099
|
+
#
|
27100
|
+
#
|
27101
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
|
27093
27102
|
#
|
27094
27103
|
# @!attribute [rw] name
|
27095
27104
|
# The name of the metric.
|
@@ -27098,12 +27107,12 @@ module Aws::SageMaker
|
|
27098
27107
|
# @!attribute [rw] regex
|
27099
27108
|
# A regular expression that searches the output of a training job and
|
27100
27109
|
# gets the value of the metric. For more information about using
|
27101
|
-
# regular expressions to define metrics, see [Defining
|
27102
|
-
#
|
27110
|
+
# regular expressions to define metrics, see [Defining metrics and
|
27111
|
+
# environment variables][1].
|
27103
27112
|
#
|
27104
27113
|
#
|
27105
27114
|
#
|
27106
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
|
27115
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
|
27107
27116
|
# @return [String]
|
27108
27117
|
#
|
27109
27118
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.171.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-03-
|
11
|
+
date: 2023-03-27 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|