aws-sdk-sagemaker 1.170.0 → 1.171.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: f1fa5b10ce3610004b782d1192506edfc8b7ce192989de1c3bfc68c7c0b25496
4
- data.tar.gz: e7ef3bdb931828c5f234c9959a12882489a095b098b815c9453097b22160b607
3
+ metadata.gz: a55219fefd240f6db937c8b361276ba3822f6fef7cb0994f0ca3591dc0ce7314
4
+ data.tar.gz: 4fc8412072f173f92f8337ddfaa0b3b6e139dcfec5a7380b621f5983193eee0e
5
5
  SHA512:
6
- metadata.gz: 7c5a70584520362184260b8483aaaa75c0fea5d4b9319bce55079b532e1172fcf2065d39e7e74bfa665395754e7cfbaa861bfcdfca527646c4cd2dc7dad4172e
7
- data.tar.gz: d43a0f658c62f83a0ad8171b293b9c7db2018a66d06bf11aaf3b9d56b8029821f0833db2ee4de8493241354d39080be439a30f01741d5465ba465627054e6543
6
+ metadata.gz: cc6031e981f1f96e304676a6e2a8cc76d7d487ec621a5df616dd1c674a4686076aee06efdf62c87b6838545dfc9550a985a882aec74b05baf3514df50ea555ce
7
+ data.tar.gz: cb2605cd2eab41976db322a67a138dfa4a25866c2e6c9e6d31b969307ab48e8f17c2b1daed0068330c253405705c400209096a3daebf9a17eb33b9d58a39e34d
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.171.0 (2023-03-27)
5
+ ------------------
6
+
7
+ * Feature - Fixed some improperly rendered links in SDK documentation.
8
+
4
9
  1.170.0 (2023-03-23)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.170.0
1
+ 1.171.0
@@ -1174,7 +1174,7 @@ module Aws::SageMaker
1174
1174
  # Creates an Autopilot job.
1175
1175
  #
1176
1176
  # Find the best-performing model after you run an Autopilot job by
1177
- # calling .
1177
+ # calling ` DescribeAutoMLJob `.
1178
1178
  #
1179
1179
  # For information about how to use Autopilot, see [Automate Model
1180
1180
  # Development with Amazon SageMaker Autopilot][1].
@@ -1190,9 +1190,10 @@ module Aws::SageMaker
1190
1190
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1191
1191
  # An array of channel objects that describes the input data and its
1192
1192
  # location. Each channel is a named input source. Similar to
1193
- # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet. A
1194
- # minimum of 500 rows is required for the training dataset. There is not
1195
- # a minimum number of rows required for the validation dataset.
1193
+ # `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
1194
+ # `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
1195
+ # required for the training dataset. There is not a minimum number of
1196
+ # rows required for the validation dataset.
1196
1197
  #
1197
1198
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1198
1199
  # Provides information about encryption and the Amazon S3 output path
@@ -1202,17 +1203,17 @@ module Aws::SageMaker
1202
1203
  # @option params [String] :problem_type
1203
1204
  # Defines the type of supervised learning problem available for the
1204
1205
  # candidates. For more information, see [ Amazon SageMaker Autopilot
1205
- # problem types and algorithm support][1].
1206
+ # problem types][1].
1206
1207
  #
1207
1208
  #
1208
1209
  #
1209
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
1210
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
1210
1211
  #
1211
1212
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1212
1213
  # Defines the objective metric used to measure the predictive quality of
1213
- # an AutoML job. You provide an AutoMLJobObjective$MetricName and
1214
- # Autopilot infers whether to minimize or maximize it. For , only
1215
- # `Accuracy` is supported.
1214
+ # an AutoML job. You provide an ` AutoMLJobObjective$MetricName ` and
1215
+ # Autopilot infers whether to minimize or maximize it. For `
1216
+ # CreateAutoMLJobV2 `, only `Accuracy` is supported.
1216
1217
  #
1217
1218
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1218
1219
  # A collection of settings used to configure an AutoML job.
@@ -1328,9 +1329,10 @@ module Aws::SageMaker
1328
1329
  # as images or text for Computer Vision or Natural Language Processing
1329
1330
  # problems.
1330
1331
  #
1331
- # Find the resulting model after you run an AutoML job V2 by calling .
1332
+ # Find the resulting model after you run an AutoML job V2 by calling `
1333
+ # DescribeAutoMLJobV2 `.
1332
1334
  #
1333
- # To create an `AutoMLJob` using tabular data, see .
1335
+ # To create an `AutoMLJob` using tabular data, see ` CreateAutoMLJob `.
1334
1336
  #
1335
1337
  # <note markdown="1"> This API action is callable through SageMaker Canvas only. Calling it
1336
1338
  # directly from the CLI or an SDK results in an error.
@@ -1343,8 +1345,8 @@ module Aws::SageMaker
1343
1345
  #
1344
1346
  # @option params [required, Array<Types::AutoMLJobChannel>] :auto_ml_job_input_data_config
1345
1347
  # An array of channel objects describing the input data and their
1346
- # location. Each channel is a named input source. Similar to
1347
- # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
1348
+ # location. Each channel is a named input source. Similar to `
1349
+ # InputDataConfig ` supported by `CreateAutoMLJob`. The supported
1348
1350
  # formats depend on the problem type:
1349
1351
  #
1350
1352
  # * ImageClassification: S3Prefix, `ManifestFile`,
@@ -1352,10 +1354,6 @@ module Aws::SageMaker
1352
1354
  #
1353
1355
  # * TextClassification: S3Prefix
1354
1356
  #
1355
- #
1356
- #
1357
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
1358
- #
1359
1357
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1360
1358
  # Provides information about encryption and the Amazon S3 output path
1361
1359
  # needed to store artifacts from an AutoML job.
@@ -1383,7 +1381,7 @@ module Aws::SageMaker
1383
1381
  #
1384
1382
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1385
1383
  # Specifies a metric to minimize or maximize as the objective of a job.
1386
- # For , only `Accuracy` is supported.
1384
+ # For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
1387
1385
  #
1388
1386
  # @option params [Types::ModelDeployConfig] :model_deploy_config
1389
1387
  # Specifies how to generate the endpoint name for an automatic one-click
@@ -23224,7 +23222,7 @@ module Aws::SageMaker
23224
23222
  params: params,
23225
23223
  config: config)
23226
23224
  context[:gem_name] = 'aws-sdk-sagemaker'
23227
- context[:gem_version] = '1.170.0'
23225
+ context[:gem_version] = '1.171.0'
23228
23226
  Seahorse::Client::Request.new(handlers, context)
23229
23227
  end
23230
23228
 
@@ -1822,7 +1822,8 @@ module Aws::SageMaker
1822
1822
  # `AutoMLCandidateGenerationConfig` uses the full set of algorithms
1823
1823
  # for the given training mode.
1824
1824
  #
1825
- # For the list of all algorithms per training mode, see .
1825
+ # For the list of all algorithms per training mode, see `
1826
+ # AutoMLAlgorithmConfig `.
1826
1827
  #
1827
1828
  # For more information on each algorithm, see the [Algorithm
1828
1829
  # support][2] section in Autopilot developer guide.
@@ -1871,7 +1872,7 @@ module Aws::SageMaker
1871
1872
  # A channel is a named input source that training algorithms can
1872
1873
  # consume. The validation dataset size is limited to less than 2 GB. The
1873
1874
  # training dataset size must be less than 100 GB. For more information,
1874
- # see .
1875
+ # see ` Channel `.
1875
1876
  #
1876
1877
  # <note markdown="1"> A validation dataset must contain the same headers as the training
1877
1878
  # dataset.
@@ -1922,20 +1923,22 @@ module Aws::SageMaker
1922
1923
  end
1923
1924
 
1924
1925
  # A list of container definitions that describe the different containers
1925
- # that make up an AutoML candidate. For more information, see .
1926
+ # that make up an AutoML candidate. For more information, see `
1927
+ # ContainerDefinition `.
1926
1928
  #
1927
1929
  # @!attribute [rw] image
1928
1930
  # The Amazon Elastic Container Registry (Amazon ECR) path of the
1929
- # container. For more information, see .
1931
+ # container. For more information, see ` ContainerDefinition `.
1930
1932
  # @return [String]
1931
1933
  #
1932
1934
  # @!attribute [rw] model_data_url
1933
- # The location of the model artifacts. For more information, see .
1935
+ # The location of the model artifacts. For more information, see `
1936
+ # ContainerDefinition `.
1934
1937
  # @return [String]
1935
1938
  #
1936
1939
  # @!attribute [rw] environment
1937
1940
  # The environment variables to set in the container. For more
1938
- # information, see .
1941
+ # information, see ` ContainerDefinition `.
1939
1942
  # @return [Hash<String,String>]
1940
1943
  #
1941
1944
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -2008,8 +2011,8 @@ module Aws::SageMaker
2008
2011
 
2009
2012
  # A channel is a named input source that training algorithms can
2010
2013
  # consume. This channel is used for the non tabular training data of an
2011
- # AutoML job using the V2 API. For tabular training data, see . For more
2012
- # information, see .
2014
+ # AutoML job using the V2 API. For tabular training data, see `
2015
+ # AutoMLChannel `. For more information, see ` Channel `.
2013
2016
  #
2014
2017
  # @!attribute [rw] channel_type
2015
2018
  # The type of channel. Defines whether the data are used for training
@@ -2061,7 +2064,8 @@ module Aws::SageMaker
2061
2064
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
2062
2065
  # The maximum time, in seconds, that each training job executed inside
2063
2066
  # hyperparameter tuning is allowed to run as part of a hyperparameter
2064
- # tuning job. For more information, see the used by the action.
2067
+ # tuning job. For more information, see the ` StoppingCondition ` used
2068
+ # by the ` CreateHyperParameterTuningJob ` action.
2065
2069
  #
2066
2070
  # For V2 jobs (jobs created by calling `CreateAutoMLJobV2`), this
2067
2071
  # field controls the runtime of the job candidate.
@@ -4485,9 +4489,10 @@ module Aws::SageMaker
4485
4489
  # @!attribute [rw] input_data_config
4486
4490
  # An array of channel objects that describes the input data and its
4487
4491
  # location. Each channel is a named input source. Similar to
4488
- # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet.
4489
- # A minimum of 500 rows is required for the training dataset. There is
4490
- # not a minimum number of rows required for the validation dataset.
4492
+ # `InputDataConfig` supported by ` HyperParameterTrainingJobDefinition
4493
+ # `. Format(s) supported: CSV, Parquet. A minimum of 500 rows is
4494
+ # required for the training dataset. There is not a minimum number of
4495
+ # rows required for the validation dataset.
4491
4496
  # @return [Array<Types::AutoMLChannel>]
4492
4497
  #
4493
4498
  # @!attribute [rw] output_data_config
@@ -4499,18 +4504,18 @@ module Aws::SageMaker
4499
4504
  # @!attribute [rw] problem_type
4500
4505
  # Defines the type of supervised learning problem available for the
4501
4506
  # candidates. For more information, see [ Amazon SageMaker Autopilot
4502
- # problem types and algorithm support][1].
4507
+ # problem types][1].
4503
4508
  #
4504
4509
  #
4505
4510
  #
4506
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
4511
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types
4507
4512
  # @return [String]
4508
4513
  #
4509
4514
  # @!attribute [rw] auto_ml_job_objective
4510
4515
  # Defines the objective metric used to measure the predictive quality
4511
- # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
4512
- # Autopilot infers whether to minimize or maximize it. For , only
4513
- # `Accuracy` is supported.
4516
+ # of an AutoML job. You provide an ` AutoMLJobObjective$MetricName `
4517
+ # and Autopilot infers whether to minimize or maximize it. For `
4518
+ # CreateAutoMLJobV2 `, only `Accuracy` is supported.
4514
4519
  # @return [Types::AutoMLJobObjective]
4515
4520
  #
4516
4521
  # @!attribute [rw] auto_ml_job_config
@@ -4580,18 +4585,14 @@ module Aws::SageMaker
4580
4585
  #
4581
4586
  # @!attribute [rw] auto_ml_job_input_data_config
4582
4587
  # An array of channel objects describing the input data and their
4583
- # location. Each channel is a named input source. Similar to
4584
- # [InputDataConfig][1] supported by `CreateAutoMLJob`. The supported
4588
+ # location. Each channel is a named input source. Similar to `
4589
+ # InputDataConfig ` supported by `CreateAutoMLJob`. The supported
4585
4590
  # formats depend on the problem type:
4586
4591
  #
4587
4592
  # * ImageClassification: S3Prefix, `ManifestFile`,
4588
4593
  # `AugmentedManifestFile`
4589
4594
  #
4590
4595
  # * TextClassification: S3Prefix
4591
- #
4592
- #
4593
- #
4594
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig
4595
4596
  # @return [Array<Types::AutoMLJobChannel>]
4596
4597
  #
4597
4598
  # @!attribute [rw] output_data_config
@@ -4626,7 +4627,7 @@ module Aws::SageMaker
4626
4627
  #
4627
4628
  # @!attribute [rw] auto_ml_job_objective
4628
4629
  # Specifies a metric to minimize or maximize as the objective of a
4629
- # job. For , only `Accuracy` is supported.
4630
+ # job. For ` CreateAutoMLJobV2 `, only `Accuracy` is supported.
4630
4631
  # @return [Types::AutoMLJobObjective]
4631
4632
  #
4632
4633
  # @!attribute [rw] model_deploy_config
@@ -17598,7 +17599,8 @@ module Aws::SageMaker
17598
17599
  #
17599
17600
  # @!attribute [rw] metric_name
17600
17601
  # The name of the metric with the best result. For a description of
17601
- # the possible objective metrics, see AutoMLJobObjective$MetricName.
17602
+ # the possible objective metrics, see ` AutoMLJobObjective$MetricName
17603
+ # `.
17602
17604
  # @return [String]
17603
17605
  #
17604
17606
  # @!attribute [rw] value
@@ -19494,7 +19496,7 @@ module Aws::SageMaker
19494
19496
  #
19495
19497
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
19496
19498
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment
19497
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
19499
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
19498
19500
  # @return [Hash<String,String>]
19499
19501
  #
19500
19502
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
@@ -20252,8 +20254,8 @@ module Aws::SageMaker
20252
20254
  # reaches the `MaxResource` value, it is stopped. If a value for
20253
20255
  # `MaxResource` is not provided, and `Hyperband` is selected as the
20254
20256
  # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
20255
- # infer `MaxResource` from the following keys (if present) in
20256
- # [StaticsHyperParameters][1]:
20257
+ # infer `MaxResource` from the following keys (if present) in `
20258
+ # StaticsHyperParameters `:
20257
20259
  #
20258
20260
  # * `epochs`
20259
20261
  #
@@ -20268,8 +20270,8 @@ module Aws::SageMaker
20268
20270
  # If `HyperbandStrategyConfig` is unable to infer a value for
20269
20271
  # `MaxResource`, it generates a validation error. The maximum value is
20270
20272
  # 20,000 epochs. All metrics that correspond to an objective metric
20271
- # are used to derive [early stopping decisions][2]. For
20272
- # [distributive][3] training jobs, ensure that duplicate metrics are
20273
+ # are used to derive [early stopping decisions][1]. For
20274
+ # [distributive][2] training jobs, ensure that duplicate metrics are
20273
20275
  # not printed in the logs across the individual nodes in a training
20274
20276
  # job. If multiple nodes are publishing duplicate or incorrect
20275
20277
  # metrics, training jobs may make an incorrect stopping decision and
@@ -20277,9 +20279,8 @@ module Aws::SageMaker
20277
20279
  #
20278
20280
  #
20279
20281
  #
20280
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
20281
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
20282
- # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
20282
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
20283
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
20283
20284
  # @return [Integer]
20284
20285
  #
20285
20286
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
@@ -27087,9 +27088,17 @@ module Aws::SageMaker
27087
27088
  end
27088
27089
 
27089
27090
  # Specifies a metric that the training algorithm writes to `stderr` or
27090
- # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
27091
- # You specify one metric that a hyperparameter tuning job uses as its
27092
- # objective metric to choose the best training job.
27091
+ # `stdout`. You can view these logs to understand how your training job
27092
+ # performs and check for any errors encountered during training.
27093
+ # SageMaker hyperparameter tuning captures all defined metrics. Specify
27094
+ # one of the defined metrics to use as an objective metric using the
27095
+ # [TuningObjective][1] parameter in the
27096
+ # `HyperParameterTrainingJobDefinition` API to evaluate job performance
27097
+ # during hyperparameter tuning.
27098
+ #
27099
+ #
27100
+ #
27101
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective
27093
27102
  #
27094
27103
  # @!attribute [rw] name
27095
27104
  # The name of the metric.
@@ -27098,12 +27107,12 @@ module Aws::SageMaker
27098
27107
  # @!attribute [rw] regex
27099
27108
  # A regular expression that searches the output of a training job and
27100
27109
  # gets the value of the metric. For more information about using
27101
- # regular expressions to define metrics, see [Defining Objective
27102
- # Metrics][1].
27110
+ # regular expressions to define metrics, see [Defining metrics and
27111
+ # environment variables][1].
27103
27112
  #
27104
27113
  #
27105
27114
  #
27106
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html
27115
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
27107
27116
  # @return [String]
27108
27117
  #
27109
27118
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDefinition AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.170.0'
56
+ GEM_VERSION = '1.171.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.170.0
4
+ version: 1.171.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-03-23 00:00:00.000000000 Z
11
+ date: 2023-03-27 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core