aws-sdk-sagemaker 1.164.0 → 1.166.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +79 -13
- data/lib/aws-sdk-sagemaker/client_api.rb +41 -1
- data/lib/aws-sdk-sagemaker/endpoint_parameters.rb +0 -3
- data/lib/aws-sdk-sagemaker/endpoint_provider.rb +31 -28
- data/lib/aws-sdk-sagemaker/types.rb +246 -35
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 2d24aff05be5414dfff87518cccbfb8d8f3f8c36d3e7ddc606a3e1357f31112a
|
4
|
+
data.tar.gz: cff37812eb7cdd821e792661a0d8708af48a9c886fecbe88125bc9f21da71f7c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e0d8e9613582f76e3ae6ed19bada97001250b3e04c0476d626235b043c4472384a67bf53656131300aff7637695ed3627a861305efde0c3991271ca39961e12b
|
7
|
+
data.tar.gz: 3ea211b73508d09134a31484c09757299c3089725f7e452c1c72452ed9cefe06129678596c522e87e6f277ef85bbec2c644eb932c818723aed5a001ee5b6650f
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.166.0 (2023-02-10)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon SageMaker Autopilot adds support for selecting algorithms in CreateAutoMLJob API.
|
8
|
+
|
9
|
+
1.165.0 (2023-01-31)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Amazon SageMaker Automatic Model Tuning now supports more completion criteria for Hyperparameter Optimization.
|
13
|
+
|
4
14
|
1.164.0 (2023-01-27)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.166.0
|
@@ -1185,7 +1185,7 @@ module Aws::SageMaker
|
|
1185
1185
|
#
|
1186
1186
|
# @option params [required, String] :auto_ml_job_name
|
1187
1187
|
# Identifies an Autopilot job. The name must be unique to your account
|
1188
|
-
# and is case
|
1188
|
+
# and is case insensitive.
|
1189
1189
|
#
|
1190
1190
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1191
1191
|
# An array of channel objects that describes the input data and its
|
@@ -1281,6 +1281,11 @@ module Aws::SageMaker
|
|
1281
1281
|
# },
|
1282
1282
|
# candidate_generation_config: {
|
1283
1283
|
# feature_specification_s3_uri: "S3Uri",
|
1284
|
+
# algorithms_config: [
|
1285
|
+
# {
|
1286
|
+
# auto_ml_algorithms: ["xgboost"], # required, accepts xgboost, linear-learner, mlp, lightgbm, catboost, randomforest, extra-trees, nn-torch, fastai
|
1287
|
+
# },
|
1288
|
+
# ],
|
1284
1289
|
# },
|
1285
1290
|
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
1286
1291
|
# },
|
@@ -1825,8 +1830,7 @@ module Aws::SageMaker
|
|
1825
1830
|
# Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
|
1826
1831
|
# of an associated Amazon Elastic File System (EFS) volume, a list of
|
1827
1832
|
# authorized users, and a variety of security, application, policy, and
|
1828
|
-
# Amazon Virtual Private Cloud (VPC) configurations.
|
1829
|
-
# Services account is limited to one domain per region. Users within a
|
1833
|
+
# Amazon Virtual Private Cloud (VPC) configurations. Users within a
|
1830
1834
|
# domain can share notebook files and other artifacts with each other.
|
1831
1835
|
#
|
1832
1836
|
# **EFS storage**
|
@@ -2320,12 +2324,12 @@ module Aws::SageMaker
|
|
2320
2324
|
# If any of the models hosted at this endpoint get model data from an
|
2321
2325
|
# Amazon S3 location, SageMaker uses Amazon Web Services Security Token
|
2322
2326
|
# Service to download model artifacts from the S3 path you provided.
|
2323
|
-
# Amazon Web Services STS is activated in your
|
2324
|
-
# default. If you previously deactivated Amazon Web Services
|
2325
|
-
# region, you need to reactivate Amazon Web Services STS for
|
2326
|
-
# region. For more information, see [Activating and Deactivating
|
2327
|
-
# Web Services STS in an Amazon Web Services Region][3] in the
|
2328
|
-
# Web Services Identity and Access Management User Guide*.
|
2327
|
+
# Amazon Web Services STS is activated in your Amazon Web Services
|
2328
|
+
# account by default. If you previously deactivated Amazon Web Services
|
2329
|
+
# STS for a region, you need to reactivate Amazon Web Services STS for
|
2330
|
+
# that region. For more information, see [Activating and Deactivating
|
2331
|
+
# Amazon Web Services STS in an Amazon Web Services Region][3] in the
|
2332
|
+
# *Amazon Web Services Identity and Access Management User Guide*.
|
2329
2333
|
#
|
2330
2334
|
# <note markdown="1"> To add the IAM role policies for using this API operation, go to the
|
2331
2335
|
# [IAM console][4], and choose Roles in the left navigation pane. Search
|
@@ -3056,6 +3060,10 @@ module Aws::SageMaker
|
|
3056
3060
|
|
3057
3061
|
# Create a hub.
|
3058
3062
|
#
|
3063
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
3064
|
+
#
|
3065
|
+
# </note>
|
3066
|
+
#
|
3059
3067
|
# @option params [required, String] :hub_name
|
3060
3068
|
# The name of the hub to create.
|
3061
3069
|
#
|
@@ -3264,6 +3272,7 @@ module Aws::SageMaker
|
|
3264
3272
|
# resource_limits: { # required
|
3265
3273
|
# max_number_of_training_jobs: 1,
|
3266
3274
|
# max_parallel_training_jobs: 1, # required
|
3275
|
+
# max_runtime_in_seconds: 1,
|
3267
3276
|
# },
|
3268
3277
|
# parameter_ranges: {
|
3269
3278
|
# integer_parameter_ranges: [
|
@@ -3291,7 +3300,13 @@ module Aws::SageMaker
|
|
3291
3300
|
# },
|
3292
3301
|
# training_job_early_stopping_type: "Off", # accepts Off, Auto
|
3293
3302
|
# tuning_job_completion_criteria: {
|
3294
|
-
# target_objective_metric_value: 1.0,
|
3303
|
+
# target_objective_metric_value: 1.0,
|
3304
|
+
# best_objective_not_improving: {
|
3305
|
+
# max_number_of_training_jobs_not_improving: 1,
|
3306
|
+
# },
|
3307
|
+
# convergence_detected: {
|
3308
|
+
# complete_on_convergence: "Disabled", # accepts Disabled, Enabled
|
3309
|
+
# },
|
3295
3310
|
# },
|
3296
3311
|
# random_seed: 1,
|
3297
3312
|
# },
|
@@ -8361,6 +8376,10 @@ module Aws::SageMaker
|
|
8361
8376
|
|
8362
8377
|
# Delete a hub.
|
8363
8378
|
#
|
8379
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
8380
|
+
#
|
8381
|
+
# </note>
|
8382
|
+
#
|
8364
8383
|
# @option params [required, String] :hub_name
|
8365
8384
|
# The name of the hub to delete.
|
8366
8385
|
#
|
@@ -8383,6 +8402,10 @@ module Aws::SageMaker
|
|
8383
8402
|
|
8384
8403
|
# Delete the contents of a hub.
|
8385
8404
|
#
|
8405
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
8406
|
+
#
|
8407
|
+
# </note>
|
8408
|
+
#
|
8386
8409
|
# @option params [required, String] :hub_name
|
8387
8410
|
# The name of the hub that you want to delete content in.
|
8388
8411
|
#
|
@@ -9577,6 +9600,9 @@ module Aws::SageMaker
|
|
9577
9600
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
|
9578
9601
|
# resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
|
9579
9602
|
# resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
|
9603
|
+
# resp.auto_ml_job_config.candidate_generation_config.algorithms_config #=> Array
|
9604
|
+
# resp.auto_ml_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms #=> Array
|
9605
|
+
# resp.auto_ml_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms[0] #=> String, one of "xgboost", "linear-learner", "mlp", "lightgbm", "catboost", "randomforest", "extra-trees", "nn-torch", "fastai"
|
9580
9606
|
# resp.auto_ml_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
|
9581
9607
|
# resp.creation_time #=> Time
|
9582
9608
|
# resp.end_time #=> Time
|
@@ -9588,6 +9614,7 @@ module Aws::SageMaker
|
|
9588
9614
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
9589
9615
|
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
9590
9616
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
9617
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
9591
9618
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
9592
9619
|
# resp.best_candidate.candidate_steps #=> Array
|
9593
9620
|
# resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -10786,6 +10813,10 @@ module Aws::SageMaker
|
|
10786
10813
|
|
10787
10814
|
# Describe a hub.
|
10788
10815
|
#
|
10816
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
10817
|
+
#
|
10818
|
+
# </note>
|
10819
|
+
#
|
10789
10820
|
# @option params [required, String] :hub_name
|
10790
10821
|
# The name of the hub to describe.
|
10791
10822
|
#
|
@@ -10833,6 +10864,10 @@ module Aws::SageMaker
|
|
10833
10864
|
|
10834
10865
|
# Describe the content of a hub.
|
10835
10866
|
#
|
10867
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
10868
|
+
#
|
10869
|
+
# </note>
|
10870
|
+
#
|
10836
10871
|
# @option params [required, String] :hub_name
|
10837
10872
|
# The name of the hub that contains the content to describe.
|
10838
10873
|
#
|
@@ -10965,6 +11000,8 @@ module Aws::SageMaker
|
|
10965
11000
|
# * {Types::DescribeHyperParameterTuningJobResponse#overall_best_training_job #overall_best_training_job} => Types::HyperParameterTrainingJobSummary
|
10966
11001
|
# * {Types::DescribeHyperParameterTuningJobResponse#warm_start_config #warm_start_config} => Types::HyperParameterTuningJobWarmStartConfig
|
10967
11002
|
# * {Types::DescribeHyperParameterTuningJobResponse#failure_reason #failure_reason} => String
|
11003
|
+
# * {Types::DescribeHyperParameterTuningJobResponse#tuning_job_completion_details #tuning_job_completion_details} => Types::HyperParameterTuningJobCompletionDetails
|
11004
|
+
# * {Types::DescribeHyperParameterTuningJobResponse#consumed_resources #consumed_resources} => Types::HyperParameterTuningJobConsumedResources
|
10968
11005
|
#
|
10969
11006
|
# @example Request syntax with placeholder values
|
10970
11007
|
#
|
@@ -10983,6 +11020,7 @@ module Aws::SageMaker
|
|
10983
11020
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
|
10984
11021
|
# resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
|
10985
11022
|
# resp.hyper_parameter_tuning_job_config.resource_limits.max_parallel_training_jobs #=> Integer
|
11023
|
+
# resp.hyper_parameter_tuning_job_config.resource_limits.max_runtime_in_seconds #=> Integer
|
10986
11024
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges #=> Array
|
10987
11025
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
|
10988
11026
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
|
@@ -10999,6 +11037,8 @@ module Aws::SageMaker
|
|
10999
11037
|
# resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
|
11000
11038
|
# resp.hyper_parameter_tuning_job_config.training_job_early_stopping_type #=> String, one of "Off", "Auto"
|
11001
11039
|
# resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.target_objective_metric_value #=> Float
|
11040
|
+
# resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.best_objective_not_improving.max_number_of_training_jobs_not_improving #=> Integer
|
11041
|
+
# resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.convergence_detected.complete_on_convergence #=> String, one of "Disabled", "Enabled"
|
11002
11042
|
# resp.hyper_parameter_tuning_job_config.random_seed #=> Integer
|
11003
11043
|
# resp.training_job_definition.definition_name #=> String
|
11004
11044
|
# resp.training_job_definition.tuning_objective.type #=> String, one of "Maximize", "Minimize"
|
@@ -11203,6 +11243,9 @@ module Aws::SageMaker
|
|
11203
11243
|
# resp.warm_start_config.parent_hyper_parameter_tuning_jobs[0].hyper_parameter_tuning_job_name #=> String
|
11204
11244
|
# resp.warm_start_config.warm_start_type #=> String, one of "IdenticalDataAndAlgorithm", "TransferLearning"
|
11205
11245
|
# resp.failure_reason #=> String
|
11246
|
+
# resp.tuning_job_completion_details.number_of_training_jobs_objective_not_improving #=> Integer
|
11247
|
+
# resp.tuning_job_completion_details.convergence_detected_time #=> Time
|
11248
|
+
# resp.consumed_resources.runtime_in_seconds #=> Integer
|
11206
11249
|
#
|
11207
11250
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJob AWS API Documentation
|
11208
11251
|
#
|
@@ -13962,6 +14005,10 @@ module Aws::SageMaker
|
|
13962
14005
|
|
13963
14006
|
# Import hub content.
|
13964
14007
|
#
|
14008
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
14009
|
+
#
|
14010
|
+
# </note>
|
14011
|
+
#
|
13965
14012
|
# @option params [required, String] :hub_content_name
|
13966
14013
|
# The name of the hub content to import.
|
13967
14014
|
#
|
@@ -13984,7 +14031,8 @@ module Aws::SageMaker
|
|
13984
14031
|
# A description of the hub content to import.
|
13985
14032
|
#
|
13986
14033
|
# @option params [String] :hub_content_markdown
|
13987
|
-
#
|
14034
|
+
# A string that provides a description of the hub content. This string
|
14035
|
+
# can include links, tables, and standard markdown formating.
|
13988
14036
|
#
|
13989
14037
|
# @option params [required, String] :hub_content_document
|
13990
14038
|
# The hub content document that describes information about the hub
|
@@ -14678,6 +14726,7 @@ module Aws::SageMaker
|
|
14678
14726
|
# resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
14679
14727
|
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
14680
14728
|
# resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
|
14729
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
14681
14730
|
# resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
14682
14731
|
# resp.candidates[0].candidate_steps #=> Array
|
14683
14732
|
# resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
|
@@ -15708,6 +15757,10 @@ module Aws::SageMaker
|
|
15708
15757
|
|
15709
15758
|
# List hub content versions.
|
15710
15759
|
#
|
15760
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
15761
|
+
#
|
15762
|
+
# </note>
|
15763
|
+
#
|
15711
15764
|
# @option params [required, String] :hub_name
|
15712
15765
|
# The name of the hub to list the content versions of.
|
15713
15766
|
#
|
@@ -15793,6 +15846,10 @@ module Aws::SageMaker
|
|
15793
15846
|
|
15794
15847
|
# List the contents of a hub.
|
15795
15848
|
#
|
15849
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
15850
|
+
#
|
15851
|
+
# </note>
|
15852
|
+
#
|
15796
15853
|
# @option params [required, String] :hub_name
|
15797
15854
|
# The name of the hub to list the contents of.
|
15798
15855
|
#
|
@@ -15872,6 +15929,10 @@ module Aws::SageMaker
|
|
15872
15929
|
|
15873
15930
|
# List all existing hubs.
|
15874
15931
|
#
|
15932
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
15933
|
+
#
|
15934
|
+
# </note>
|
15935
|
+
#
|
15875
15936
|
# @option params [String] :name_contains
|
15876
15937
|
# Only list hubs with names that contain the specified string.
|
15877
15938
|
#
|
@@ -16083,6 +16144,7 @@ module Aws::SageMaker
|
|
16083
16144
|
# resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.failed #=> Integer
|
16084
16145
|
# resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_number_of_training_jobs #=> Integer
|
16085
16146
|
# resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_parallel_training_jobs #=> Integer
|
16147
|
+
# resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_runtime_in_seconds #=> Integer
|
16086
16148
|
# resp.next_token #=> String
|
16087
16149
|
#
|
16088
16150
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListHyperParameterTuningJobs AWS API Documentation
|
@@ -19993,7 +20055,7 @@ module Aws::SageMaker
|
|
19993
20055
|
req.send_request(options)
|
19994
20056
|
end
|
19995
20057
|
|
19996
|
-
# A method for forcing
|
20058
|
+
# A method for forcing a running job to shut down.
|
19997
20059
|
#
|
19998
20060
|
# @option params [required, String] :auto_ml_job_name
|
19999
20061
|
# The name of the object you are requesting.
|
@@ -21182,6 +21244,10 @@ module Aws::SageMaker
|
|
21182
21244
|
|
21183
21245
|
# Update a hub.
|
21184
21246
|
#
|
21247
|
+
# <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
|
21248
|
+
#
|
21249
|
+
# </note>
|
21250
|
+
#
|
21185
21251
|
# @option params [required, String] :hub_name
|
21186
21252
|
# The name of the hub to update.
|
21187
21253
|
#
|
@@ -22746,7 +22812,7 @@ module Aws::SageMaker
|
|
22746
22812
|
params: params,
|
22747
22813
|
config: config)
|
22748
22814
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
22749
|
-
context[:gem_version] = '1.
|
22815
|
+
context[:gem_version] = '1.166.0'
|
22750
22816
|
Seahorse::Client::Request.new(handlers, context)
|
22751
22817
|
end
|
22752
22818
|
|
@@ -95,6 +95,10 @@ module Aws::SageMaker
|
|
95
95
|
AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
|
96
96
|
AuthMode = Shapes::StringShape.new(name: 'AuthMode')
|
97
97
|
AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
|
98
|
+
AutoMLAlgorithm = Shapes::StringShape.new(name: 'AutoMLAlgorithm')
|
99
|
+
AutoMLAlgorithmConfig = Shapes::StructureShape.new(name: 'AutoMLAlgorithmConfig')
|
100
|
+
AutoMLAlgorithms = Shapes::ListShape.new(name: 'AutoMLAlgorithms')
|
101
|
+
AutoMLAlgorithmsConfig = Shapes::ListShape.new(name: 'AutoMLAlgorithmsConfig')
|
98
102
|
AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
|
99
103
|
AutoMLCandidateGenerationConfig = Shapes::StructureShape.new(name: 'AutoMLCandidateGenerationConfig')
|
100
104
|
AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
|
@@ -142,6 +146,7 @@ module Aws::SageMaker
|
|
142
146
|
BatchDescribeModelPackageSummary = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageSummary')
|
143
147
|
BatchStrategy = Shapes::StringShape.new(name: 'BatchStrategy')
|
144
148
|
BatchTransformInput = Shapes::StructureShape.new(name: 'BatchTransformInput')
|
149
|
+
BestObjectiveNotImproving = Shapes::StructureShape.new(name: 'BestObjectiveNotImproving')
|
145
150
|
Bias = Shapes::StructureShape.new(name: 'Bias')
|
146
151
|
BillableTimeInSeconds = Shapes::IntegerShape.new(name: 'BillableTimeInSeconds')
|
147
152
|
BlockedReason = Shapes::StringShape.new(name: 'BlockedReason')
|
@@ -241,6 +246,7 @@ module Aws::SageMaker
|
|
241
246
|
CompilationJobSummaries = Shapes::ListShape.new(name: 'CompilationJobSummaries')
|
242
247
|
CompilationJobSummary = Shapes::StructureShape.new(name: 'CompilationJobSummary')
|
243
248
|
CompilerOptions = Shapes::StringShape.new(name: 'CompilerOptions')
|
249
|
+
CompleteOnConvergence = Shapes::StringShape.new(name: 'CompleteOnConvergence')
|
244
250
|
CompressionType = Shapes::StringShape.new(name: 'CompressionType')
|
245
251
|
CompressionTypes = Shapes::ListShape.new(name: 'CompressionTypes')
|
246
252
|
ConditionOutcome = Shapes::StringShape.new(name: 'ConditionOutcome')
|
@@ -269,6 +275,7 @@ module Aws::SageMaker
|
|
269
275
|
ContinuousParameterRange = Shapes::StructureShape.new(name: 'ContinuousParameterRange')
|
270
276
|
ContinuousParameterRangeSpecification = Shapes::StructureShape.new(name: 'ContinuousParameterRangeSpecification')
|
271
277
|
ContinuousParameterRanges = Shapes::ListShape.new(name: 'ContinuousParameterRanges')
|
278
|
+
ConvergenceDetected = Shapes::StructureShape.new(name: 'ConvergenceDetected')
|
272
279
|
CreateActionRequest = Shapes::StructureShape.new(name: 'CreateActionRequest')
|
273
280
|
CreateActionResponse = Shapes::StructureShape.new(name: 'CreateActionResponse')
|
274
281
|
CreateAlgorithmInput = Shapes::StructureShape.new(name: 'CreateAlgorithmInput')
|
@@ -847,7 +854,9 @@ module Aws::SageMaker
|
|
847
854
|
HyperParameterTuningInstanceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningInstanceConfig')
|
848
855
|
HyperParameterTuningInstanceConfigs = Shapes::ListShape.new(name: 'HyperParameterTuningInstanceConfigs')
|
849
856
|
HyperParameterTuningJobArn = Shapes::StringShape.new(name: 'HyperParameterTuningJobArn')
|
857
|
+
HyperParameterTuningJobCompletionDetails = Shapes::StructureShape.new(name: 'HyperParameterTuningJobCompletionDetails')
|
850
858
|
HyperParameterTuningJobConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobConfig')
|
859
|
+
HyperParameterTuningJobConsumedResources = Shapes::StructureShape.new(name: 'HyperParameterTuningJobConsumedResources')
|
851
860
|
HyperParameterTuningJobName = Shapes::StringShape.new(name: 'HyperParameterTuningJobName')
|
852
861
|
HyperParameterTuningJobObjective = Shapes::StructureShape.new(name: 'HyperParameterTuningJobObjective')
|
853
862
|
HyperParameterTuningJobObjectiveType = Shapes::StringShape.new(name: 'HyperParameterTuningJobObjectiveType')
|
@@ -861,6 +870,7 @@ module Aws::SageMaker
|
|
861
870
|
HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
|
862
871
|
HyperParameterTuningJobWarmStartConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobWarmStartConfig')
|
863
872
|
HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
|
873
|
+
HyperParameterTuningMaxRuntimeInSeconds = Shapes::IntegerShape.new(name: 'HyperParameterTuningMaxRuntimeInSeconds')
|
864
874
|
HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
|
865
875
|
HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
|
866
876
|
HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
|
@@ -1153,6 +1163,7 @@ module Aws::SageMaker
|
|
1153
1163
|
MaxHumanLabeledObjectCount = Shapes::IntegerShape.new(name: 'MaxHumanLabeledObjectCount')
|
1154
1164
|
MaxNumberOfTests = Shapes::IntegerShape.new(name: 'MaxNumberOfTests')
|
1155
1165
|
MaxNumberOfTrainingJobs = Shapes::IntegerShape.new(name: 'MaxNumberOfTrainingJobs')
|
1166
|
+
MaxNumberOfTrainingJobsNotImproving = Shapes::IntegerShape.new(name: 'MaxNumberOfTrainingJobsNotImproving')
|
1156
1167
|
MaxParallelExecutionSteps = Shapes::IntegerShape.new(name: 'MaxParallelExecutionSteps')
|
1157
1168
|
MaxParallelOfTests = Shapes::IntegerShape.new(name: 'MaxParallelOfTests')
|
1158
1169
|
MaxParallelTrainingJobs = Shapes::IntegerShape.new(name: 'MaxParallelTrainingJobs')
|
@@ -2165,6 +2176,13 @@ module Aws::SageMaker
|
|
2165
2176
|
|
2166
2177
|
AttributeNames.member = Shapes::ShapeRef.new(shape: AttributeName)
|
2167
2178
|
|
2179
|
+
AutoMLAlgorithmConfig.add_member(:auto_ml_algorithms, Shapes::ShapeRef.new(shape: AutoMLAlgorithms, required: true, location_name: "AutoMLAlgorithms"))
|
2180
|
+
AutoMLAlgorithmConfig.struct_class = Types::AutoMLAlgorithmConfig
|
2181
|
+
|
2182
|
+
AutoMLAlgorithms.member = Shapes::ShapeRef.new(shape: AutoMLAlgorithm)
|
2183
|
+
|
2184
|
+
AutoMLAlgorithmsConfig.member = Shapes::ShapeRef.new(shape: AutoMLAlgorithmConfig)
|
2185
|
+
|
2168
2186
|
AutoMLCandidate.add_member(:candidate_name, Shapes::ShapeRef.new(shape: CandidateName, required: true, location_name: "CandidateName"))
|
2169
2187
|
AutoMLCandidate.add_member(:final_auto_ml_job_objective_metric, Shapes::ShapeRef.new(shape: FinalAutoMLJobObjectiveMetric, location_name: "FinalAutoMLJobObjectiveMetric"))
|
2170
2188
|
AutoMLCandidate.add_member(:objective_status, Shapes::ShapeRef.new(shape: ObjectiveStatus, required: true, location_name: "ObjectiveStatus"))
|
@@ -2179,6 +2197,7 @@ module Aws::SageMaker
|
|
2179
2197
|
AutoMLCandidate.struct_class = Types::AutoMLCandidate
|
2180
2198
|
|
2181
2199
|
AutoMLCandidateGenerationConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
|
2200
|
+
AutoMLCandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
|
2182
2201
|
AutoMLCandidateGenerationConfig.struct_class = Types::AutoMLCandidateGenerationConfig
|
2183
2202
|
|
2184
2203
|
AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
|
@@ -2308,6 +2327,9 @@ module Aws::SageMaker
|
|
2308
2327
|
BatchTransformInput.add_member(:end_time_offset, Shapes::ShapeRef.new(shape: MonitoringTimeOffsetString, location_name: "EndTimeOffset"))
|
2309
2328
|
BatchTransformInput.struct_class = Types::BatchTransformInput
|
2310
2329
|
|
2330
|
+
BestObjectiveNotImproving.add_member(:max_number_of_training_jobs_not_improving, Shapes::ShapeRef.new(shape: MaxNumberOfTrainingJobsNotImproving, location_name: "MaxNumberOfTrainingJobsNotImproving"))
|
2331
|
+
BestObjectiveNotImproving.struct_class = Types::BestObjectiveNotImproving
|
2332
|
+
|
2311
2333
|
Bias.add_member(:report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Report"))
|
2312
2334
|
Bias.add_member(:pre_training_report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "PreTrainingReport"))
|
2313
2335
|
Bias.add_member(:post_training_report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "PostTrainingReport"))
|
@@ -2547,6 +2569,9 @@ module Aws::SageMaker
|
|
2547
2569
|
|
2548
2570
|
ContinuousParameterRanges.member = Shapes::ShapeRef.new(shape: ContinuousParameterRange)
|
2549
2571
|
|
2572
|
+
ConvergenceDetected.add_member(:complete_on_convergence, Shapes::ShapeRef.new(shape: CompleteOnConvergence, location_name: "CompleteOnConvergence"))
|
2573
|
+
ConvergenceDetected.struct_class = Types::ConvergenceDetected
|
2574
|
+
|
2550
2575
|
CreateActionRequest.add_member(:action_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, required: true, location_name: "ActionName"))
|
2551
2576
|
CreateActionRequest.add_member(:source, Shapes::ShapeRef.new(shape: ActionSource, required: true, location_name: "Source"))
|
2552
2577
|
CreateActionRequest.add_member(:action_type, Shapes::ShapeRef.new(shape: String256, required: true, location_name: "ActionType"))
|
@@ -3952,6 +3977,8 @@ module Aws::SageMaker
|
|
3952
3977
|
DescribeHyperParameterTuningJobResponse.add_member(:overall_best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "OverallBestTrainingJob"))
|
3953
3978
|
DescribeHyperParameterTuningJobResponse.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
|
3954
3979
|
DescribeHyperParameterTuningJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
|
3980
|
+
DescribeHyperParameterTuningJobResponse.add_member(:tuning_job_completion_details, Shapes::ShapeRef.new(shape: HyperParameterTuningJobCompletionDetails, location_name: "TuningJobCompletionDetails"))
|
3981
|
+
DescribeHyperParameterTuningJobResponse.add_member(:consumed_resources, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConsumedResources, location_name: "ConsumedResources"))
|
3955
3982
|
DescribeHyperParameterTuningJobResponse.struct_class = Types::DescribeHyperParameterTuningJobResponse
|
3956
3983
|
|
3957
3984
|
DescribeImageRequest.add_member(:image_name, Shapes::ShapeRef.new(shape: ImageName, required: true, location_name: "ImageName"))
|
@@ -4931,6 +4958,7 @@ module Aws::SageMaker
|
|
4931
4958
|
FinalAutoMLJobObjectiveMetric.add_member(:type, Shapes::ShapeRef.new(shape: AutoMLJobObjectiveType, location_name: "Type"))
|
4932
4959
|
FinalAutoMLJobObjectiveMetric.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, required: true, location_name: "MetricName"))
|
4933
4960
|
FinalAutoMLJobObjectiveMetric.add_member(:value, Shapes::ShapeRef.new(shape: MetricValue, required: true, location_name: "Value"))
|
4961
|
+
FinalAutoMLJobObjectiveMetric.add_member(:standard_metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, location_name: "StandardMetricName"))
|
4934
4962
|
FinalAutoMLJobObjectiveMetric.struct_class = Types::FinalAutoMLJobObjectiveMetric
|
4935
4963
|
|
4936
4964
|
FinalHyperParameterTuningJobObjectiveMetric.add_member(:type, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjectiveType, location_name: "Type"))
|
@@ -5151,6 +5179,10 @@ module Aws::SageMaker
|
|
5151
5179
|
|
5152
5180
|
HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
|
5153
5181
|
|
5182
|
+
HyperParameterTuningJobCompletionDetails.add_member(:number_of_training_jobs_objective_not_improving, Shapes::ShapeRef.new(shape: Integer, location_name: "NumberOfTrainingJobsObjectiveNotImproving"))
|
5183
|
+
HyperParameterTuningJobCompletionDetails.add_member(:convergence_detected_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "ConvergenceDetectedTime"))
|
5184
|
+
HyperParameterTuningJobCompletionDetails.struct_class = Types::HyperParameterTuningJobCompletionDetails
|
5185
|
+
|
5154
5186
|
HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
|
5155
5187
|
HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
|
5156
5188
|
HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
|
@@ -5161,6 +5193,9 @@ module Aws::SageMaker
|
|
5161
5193
|
HyperParameterTuningJobConfig.add_member(:random_seed, Shapes::ShapeRef.new(shape: RandomSeed, location_name: "RandomSeed"))
|
5162
5194
|
HyperParameterTuningJobConfig.struct_class = Types::HyperParameterTuningJobConfig
|
5163
5195
|
|
5196
|
+
HyperParameterTuningJobConsumedResources.add_member(:runtime_in_seconds, Shapes::ShapeRef.new(shape: Integer, location_name: "RuntimeInSeconds"))
|
5197
|
+
HyperParameterTuningJobConsumedResources.struct_class = Types::HyperParameterTuningJobConsumedResources
|
5198
|
+
|
5164
5199
|
HyperParameterTuningJobObjective.add_member(:type, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjectiveType, required: true, location_name: "Type"))
|
5165
5200
|
HyperParameterTuningJobObjective.add_member(:metric_name, Shapes::ShapeRef.new(shape: MetricName, required: true, location_name: "MetricName"))
|
5166
5201
|
HyperParameterTuningJobObjective.struct_class = Types::HyperParameterTuningJobObjective
|
@@ -5183,6 +5218,8 @@ module Aws::SageMaker
|
|
5183
5218
|
HyperParameterTuningJobSearchEntity.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
|
5184
5219
|
HyperParameterTuningJobSearchEntity.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
|
5185
5220
|
HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
5221
|
+
HyperParameterTuningJobSearchEntity.add_member(:tuning_job_completion_details, Shapes::ShapeRef.new(shape: HyperParameterTuningJobCompletionDetails, location_name: "TuningJobCompletionDetails"))
|
5222
|
+
HyperParameterTuningJobSearchEntity.add_member(:consumed_resources, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConsumedResources, location_name: "ConsumedResources"))
|
5186
5223
|
HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
|
5187
5224
|
|
5188
5225
|
HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
|
@@ -7715,6 +7752,7 @@ module Aws::SageMaker
|
|
7715
7752
|
|
7716
7753
|
ResourceLimits.add_member(:max_number_of_training_jobs, Shapes::ShapeRef.new(shape: MaxNumberOfTrainingJobs, location_name: "MaxNumberOfTrainingJobs"))
|
7717
7754
|
ResourceLimits.add_member(:max_parallel_training_jobs, Shapes::ShapeRef.new(shape: MaxParallelTrainingJobs, required: true, location_name: "MaxParallelTrainingJobs"))
|
7755
|
+
ResourceLimits.add_member(:max_runtime_in_seconds, Shapes::ShapeRef.new(shape: HyperParameterTuningMaxRuntimeInSeconds, location_name: "MaxRuntimeInSeconds"))
|
7718
7756
|
ResourceLimits.struct_class = Types::ResourceLimits
|
7719
7757
|
|
7720
7758
|
ResourceNotFound.add_member(:message, Shapes::ShapeRef.new(shape: FailureReason, location_name: "Message"))
|
@@ -8315,7 +8353,9 @@ module Aws::SageMaker
|
|
8315
8353
|
TrialSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
|
8316
8354
|
TrialSummary.struct_class = Types::TrialSummary
|
8317
8355
|
|
8318
|
-
TuningJobCompletionCriteria.add_member(:target_objective_metric_value, Shapes::ShapeRef.new(shape: TargetObjectiveMetricValue,
|
8356
|
+
TuningJobCompletionCriteria.add_member(:target_objective_metric_value, Shapes::ShapeRef.new(shape: TargetObjectiveMetricValue, location_name: "TargetObjectiveMetricValue"))
|
8357
|
+
TuningJobCompletionCriteria.add_member(:best_objective_not_improving, Shapes::ShapeRef.new(shape: BestObjectiveNotImproving, location_name: "BestObjectiveNotImproving"))
|
8358
|
+
TuningJobCompletionCriteria.add_member(:convergence_detected, Shapes::ShapeRef.new(shape: ConvergenceDetected, location_name: "ConvergenceDetected"))
|
8319
8359
|
TuningJobCompletionCriteria.struct_class = Types::TuningJobCompletionCriteria
|
8320
8360
|
|
8321
8361
|
TuningJobStepMetaData.add_member(:arn, Shapes::ShapeRef.new(shape: HyperParameterTuningJobArn, location_name: "Arn"))
|
@@ -50,9 +50,6 @@ module Aws::SageMaker
|
|
50
50
|
|
51
51
|
def initialize(options = {})
|
52
52
|
self[:region] = options[:region]
|
53
|
-
if self[:region].nil?
|
54
|
-
raise ArgumentError, "Missing required EndpointParameter: :region"
|
55
|
-
end
|
56
53
|
self[:use_dual_stack] = options[:use_dual_stack]
|
57
54
|
self[:use_dual_stack] = false if self[:use_dual_stack].nil?
|
58
55
|
if self[:use_dual_stack].nil?
|
@@ -14,42 +14,45 @@ module Aws::SageMaker
|
|
14
14
|
use_dual_stack = parameters.use_dual_stack
|
15
15
|
use_fips = parameters.use_fips
|
16
16
|
endpoint = parameters.endpoint
|
17
|
-
if
|
18
|
-
if Aws::Endpoints::Matchers.
|
19
|
-
|
20
|
-
raise ArgumentError, "Invalid Configuration: FIPS and custom endpoint are not supported"
|
21
|
-
end
|
22
|
-
if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
|
23
|
-
raise ArgumentError, "Invalid Configuration: Dualstack and custom endpoint are not supported"
|
24
|
-
end
|
25
|
-
return Aws::Endpoints::Endpoint.new(url: endpoint, headers: {}, properties: {})
|
17
|
+
if Aws::Endpoints::Matchers.set?(endpoint)
|
18
|
+
if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
|
19
|
+
raise ArgumentError, "Invalid Configuration: FIPS and custom endpoint are not supported"
|
26
20
|
end
|
27
|
-
if Aws::Endpoints::Matchers.boolean_equals?(
|
28
|
-
|
29
|
-
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
|
30
|
-
end
|
31
|
-
raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
|
21
|
+
if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
|
22
|
+
raise ArgumentError, "Invalid Configuration: Dualstack and custom endpoint are not supported"
|
32
23
|
end
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
24
|
+
return Aws::Endpoints::Endpoint.new(url: endpoint, headers: {}, properties: {})
|
25
|
+
end
|
26
|
+
if Aws::Endpoints::Matchers.set?(region)
|
27
|
+
if (partition_result = Aws::Endpoints::Matchers.aws_partition(region))
|
28
|
+
if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true) && Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
|
29
|
+
if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS")) && Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
|
30
|
+
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
|
37
31
|
end
|
38
|
-
|
39
|
-
|
32
|
+
raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
|
33
|
+
end
|
34
|
+
if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
|
35
|
+
if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
|
36
|
+
if Aws::Endpoints::Matchers.string_equals?("aws", Aws::Endpoints::Matchers.attr(partition_result, "name"))
|
37
|
+
return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
|
38
|
+
end
|
39
|
+
if Aws::Endpoints::Matchers.string_equals?("aws-us-gov", Aws::Endpoints::Matchers.attr(partition_result, "name"))
|
40
|
+
return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
|
41
|
+
end
|
42
|
+
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
|
40
43
|
end
|
41
|
-
|
44
|
+
raise ArgumentError, "FIPS is enabled but this partition does not support FIPS"
|
42
45
|
end
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
46
|
+
if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
|
47
|
+
if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
|
48
|
+
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
|
49
|
+
end
|
50
|
+
raise ArgumentError, "DualStack is enabled but this partition does not support DualStack"
|
48
51
|
end
|
49
|
-
|
52
|
+
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
|
50
53
|
end
|
51
|
-
return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
|
52
54
|
end
|
55
|
+
raise ArgumentError, "Invalid Configuration: Missing Region"
|
53
56
|
raise ArgumentError, 'No endpoint could be resolved'
|
54
57
|
|
55
58
|
end
|
@@ -1642,6 +1642,54 @@ module Aws::SageMaker
|
|
1642
1642
|
include Aws::Structure
|
1643
1643
|
end
|
1644
1644
|
|
1645
|
+
# The collection of algorithms run on a dataset for training the model
|
1646
|
+
# candidates of an Autopilot job.
|
1647
|
+
#
|
1648
|
+
# @!attribute [rw] auto_ml_algorithms
|
1649
|
+
# The selection of algorithms run on a dataset to train the model
|
1650
|
+
# candidates of an Autopilot job.
|
1651
|
+
#
|
1652
|
+
# <note markdown="1"> Selected algorithms must belong to the list corresponding to the
|
1653
|
+
# training mode set in ` AutoMLJobConfig.Mode ` (`ENSEMBLING` or
|
1654
|
+
# `HYPERPARAMETER_TUNING`). Choose a minimum of 1 algorithm.
|
1655
|
+
#
|
1656
|
+
# </note>
|
1657
|
+
#
|
1658
|
+
# * In `ENSEMBLING` mode:
|
1659
|
+
#
|
1660
|
+
# * "catboost"
|
1661
|
+
#
|
1662
|
+
# * "extra-trees"
|
1663
|
+
#
|
1664
|
+
# * "fastai"
|
1665
|
+
#
|
1666
|
+
# * "lightgbm"
|
1667
|
+
#
|
1668
|
+
# * "linear-learner"
|
1669
|
+
#
|
1670
|
+
# * "nn-torch"
|
1671
|
+
#
|
1672
|
+
# * "randomforest"
|
1673
|
+
#
|
1674
|
+
# * "xgboost"
|
1675
|
+
#
|
1676
|
+
# * In `HYPERPARAMETER_TUNING` mode:
|
1677
|
+
#
|
1678
|
+
# * "linear-learner"
|
1679
|
+
#
|
1680
|
+
# * "mlp"
|
1681
|
+
#
|
1682
|
+
# * "xgboost"
|
1683
|
+
# @return [Array<String>]
|
1684
|
+
#
|
1685
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLAlgorithmConfig AWS API Documentation
|
1686
|
+
#
|
1687
|
+
class AutoMLAlgorithmConfig < Struct.new(
|
1688
|
+
:auto_ml_algorithms)
|
1689
|
+
SENSITIVE = []
|
1690
|
+
include Aws::Structure
|
1691
|
+
end
|
1692
|
+
|
1645
1693
|
# Information about a candidate produced by an AutoML training job,
|
1646
1694
|
# including its status, steps, and other properties.
|
1647
1695
|
#
|
@@ -1707,7 +1755,7 @@ module Aws::SageMaker
|
|
1707
1755
|
include Aws::Structure
|
1708
1756
|
end
|
1709
1757
|
|
1710
|
-
# Stores the
|
1758
|
+
# Stores the configuration information for how a candidate is generated
|
1711
1759
|
# (optional).
|
1712
1760
|
#
|
1713
1761
|
# @!attribute [rw] feature_specification_s3_uri
|
@@ -1727,10 +1775,10 @@ module Aws::SageMaker
|
|
1727
1775
|
#
|
1728
1776
|
# </note>
|
1729
1777
|
#
|
1730
|
-
# In ensembling mode, Autopilot
|
1731
|
-
# types: `numeric`, `categorical`, `text
|
1732
|
-
# Autopilot can support `numeric`, `categorical`, `text`,
|
1733
|
-
# and `sequence`.
|
1778
|
+
# In ensembling mode, Autopilot only supports the following data
|
1779
|
+
# types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
|
1780
|
+
# mode, Autopilot can support `numeric`, `categorical`, `text`,
|
1781
|
+
# `datetime`, and `sequence`.
|
1734
1782
|
#
|
1735
1783
|
# If only `FeatureDataTypes` is provided, the column keys (`col1`,
|
1736
1784
|
# `col2`,..) should be a subset of the column names in the input data.
|
@@ -1740,16 +1788,48 @@ module Aws::SageMaker
|
|
1740
1788
|
# in `FeatureAttributeNames`.
|
1741
1789
|
#
|
1742
1790
|
# The key name `FeatureAttributeNames` is fixed. The values listed in
|
1743
|
-
# `["col1", "col2", ...]`
|
1791
|
+
# `["col1", "col2", ...]` are case sensitive and should be a list of
|
1744
1792
|
# strings containing unique values that are a subset of the column
|
1745
1793
|
# names in the input data. The list of columns provided must not
|
1746
1794
|
# include the target column.
|
1747
1795
|
# @return [String]
|
1748
1796
|
#
|
1797
|
+
# @!attribute [rw] algorithms_config
|
1798
|
+
# Stores the configuration information for the selection of algorithms
|
1799
|
+
# used to train the model candidates.
|
1800
|
+
#
|
1801
|
+
# The list of available algorithms to choose from depends on the
|
1802
|
+
# training mode set in [ `AutoMLJobConfig.Mode` ][1].
|
1803
|
+
#
|
1804
|
+
# * `AlgorithmsConfig` should not be set in `AUTO` training mode.
|
1805
|
+
#
|
1806
|
+
# * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
|
1807
|
+
# attribute must be set and one only.
|
1808
|
+
#
|
1809
|
+
# If the list of algorithms provided as values for
|
1810
|
+
# `AutoMLAlgorithms` is empty, `AutoMLCandidateGenerationConfig`
|
1811
|
+
# uses the full set of algorithms for the given training mode.
|
1812
|
+
#
|
1813
|
+
# * When `AlgorithmsConfig` is not provided,
|
1814
|
+
# `AutoMLCandidateGenerationConfig` uses the full set of algorithms
|
1815
|
+
# for the given training mode.
|
1816
|
+
#
|
1817
|
+
# For the list of all algorithms per training mode, see .
|
1818
|
+
#
|
1819
|
+
# For more information on each algorithm, see the [Algorithm
|
1820
|
+
# support][2] section in Autopilot developer guide.
|
1821
|
+
#
|
1822
|
+
#
|
1823
|
+
#
|
1824
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html
|
1825
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
|
1826
|
+
# @return [Array<Types::AutoMLAlgorithmConfig>]
|
1827
|
+
#
|
1749
1828
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateGenerationConfig AWS API Documentation
|
1750
1829
|
#
|
1751
1830
|
class AutoMLCandidateGenerationConfig < Struct.new(
|
1752
|
-
:feature_specification_s3_uri
|
1831
|
+
:feature_specification_s3_uri,
|
1832
|
+
:algorithms_config)
|
1753
1833
|
SENSITIVE = []
|
1754
1834
|
include Aws::Structure
|
1755
1835
|
end
|
@@ -1933,7 +2013,7 @@ module Aws::SageMaker
|
|
1933
2013
|
# automatically and its processing is ended gracefully. The AutoML job
|
1934
2014
|
# identifies the best model whose training was completed and marks it
|
1935
2015
|
# as the best-performing model. Any unfinished steps of the job, such
|
1936
|
-
# as automatic one-click Autopilot model deployment,
|
2016
|
+
# as automatic one-click Autopilot model deployment, are not
|
1937
2017
|
# completed.
|
1938
2018
|
# @return [Integer]
|
1939
2019
|
#
|
@@ -1988,11 +2068,11 @@ module Aws::SageMaker
|
|
1988
2068
|
# by `ENSEMBLING` mode.
|
1989
2069
|
#
|
1990
2070
|
# The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
|
1991
|
-
# to train the best version of a model. HPO
|
1992
|
-
#
|
1993
|
-
#
|
1994
|
-
#
|
1995
|
-
#
|
2071
|
+
# to train the best version of a model. HPO automatically selects an
|
2072
|
+
# algorithm for the type of problem you want to solve. Then HPO finds
|
2073
|
+
# the best hyperparameters according to your objective metric. See
|
2074
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
2075
|
+
# by `HYPERPARAMETER_TUNING` mode.
|
1996
2076
|
#
|
1997
2077
|
#
|
1998
2078
|
#
|
@@ -2162,7 +2242,7 @@ module Aws::SageMaker
|
|
2162
2242
|
# find all of the true positives. A false positive (FP) reflects a
|
2163
2243
|
# positive prediction that is actually negative in the data. It is
|
2164
2244
|
# often insufficient to measure only recall, because predicting
|
2165
|
-
# every output as a true positive
|
2245
|
+
# every output as a true positive yield a perfect recall score.
|
2166
2246
|
#
|
2167
2247
|
# RecallMacro
|
2168
2248
|
#
|
@@ -2173,8 +2253,8 @@ module Aws::SageMaker
|
|
2173
2253
|
# true positives (TP) in a dataset. Whereas, a true positive
|
2174
2254
|
# reflects a positive prediction that is also an actual positive
|
2175
2255
|
# value in the data. It is often insufficient to measure only
|
2176
|
-
# recall, because predicting every output as a true positive
|
2177
|
-
#
|
2256
|
+
# recall, because predicting every output as a true positive yields
|
2257
|
+
# a perfect recall score.
|
2178
2258
|
#
|
2179
2259
|
# RMSE
|
2180
2260
|
#
|
@@ -2604,6 +2684,24 @@ module Aws::SageMaker
|
|
2604
2684
|
include Aws::Structure
|
2605
2685
|
end
|
2606
2686
|
|
2687
|
+
# A structure that keeps track of which training jobs launched by your
|
2688
|
+
# hyperparameter tuning job are not improving model performance as
|
2689
|
+
# evaluated against an objective function.
|
2690
|
+
#
|
2691
|
+
# @!attribute [rw] max_number_of_training_jobs_not_improving
|
2692
|
+
# The number of training jobs that have failed to improve model
|
2693
|
+
# performance by 1% or greater over prior training jobs as evaluated
|
2694
|
+
# against an objective function.
|
2695
|
+
# @return [Integer]
|
2696
|
+
#
|
2697
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BestObjectiveNotImproving AWS API Documentation
|
2698
|
+
#
|
2699
|
+
class BestObjectiveNotImproving < Struct.new(
|
2700
|
+
:max_number_of_training_jobs_not_improving)
|
2701
|
+
SENSITIVE = []
|
2702
|
+
include Aws::Structure
|
2703
|
+
end
|
2704
|
+
|
2607
2705
|
# Contains bias metrics for a model.
|
2608
2706
|
#
|
2609
2707
|
# @!attribute [rw] report
|
@@ -3725,12 +3823,12 @@ module Aws::SageMaker
|
|
3725
3823
|
# If you provide a value for this parameter, SageMaker uses Amazon Web
|
3726
3824
|
# Services Security Token Service to download model artifacts from the
|
3727
3825
|
# S3 path you provide. Amazon Web Services STS is activated in your
|
3728
|
-
#
|
3729
|
-
# Web Services STS for a region, you need to
|
3730
|
-
# Services STS for that region. For more
|
3731
|
-
#
|
3732
|
-
# Region][2] in the *Amazon Web Services
|
3733
|
-
# Management User Guide*.
|
3826
|
+
# Amazon Web Services account by default. If you previously
|
3827
|
+
# deactivated Amazon Web Services STS for a region, you need to
|
3828
|
+
# reactivate Amazon Web Services STS for that region. For more
|
3829
|
+
# information, see [Activating and Deactivating Amazon Web Services
|
3830
|
+
# STS in an Amazon Web Services Region][2] in the *Amazon Web Services
|
3831
|
+
# Identity and Access Management User Guide*.
|
3734
3832
|
#
|
3735
3833
|
# If you use a built-in algorithm to create a model, SageMaker
|
3736
3834
|
# requires that you provide a S3 path to the model artifacts in
|
@@ -3925,6 +4023,23 @@ module Aws::SageMaker
|
|
3925
4023
|
include Aws::Structure
|
3926
4024
|
end
|
3927
4025
|
|
4026
|
+
# A flag to indicating that automatic model tuning (AMT) has detected
|
4027
|
+
# model convergence, defined as a lack of significant improvement (1% or
|
4028
|
+
# less) against an objective metric.
|
4029
|
+
#
|
4030
|
+
# @!attribute [rw] complete_on_convergence
|
4031
|
+
# A flag to stop a tuning job once AMT has detected that the job has
|
4032
|
+
# converged.
|
4033
|
+
# @return [String]
|
4034
|
+
#
|
4035
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ConvergenceDetected AWS API Documentation
|
4036
|
+
#
|
4037
|
+
class ConvergenceDetected < Struct.new(
|
4038
|
+
:complete_on_convergence)
|
4039
|
+
SENSITIVE = []
|
4040
|
+
include Aws::Structure
|
4041
|
+
end
|
4042
|
+
|
3928
4043
|
# @!attribute [rw] action_name
|
3929
4044
|
# The name of the action. Must be unique to your account in an Amazon
|
3930
4045
|
# Web Services Region.
|
@@ -4237,7 +4352,7 @@ module Aws::SageMaker
|
|
4237
4352
|
|
4238
4353
|
# @!attribute [rw] auto_ml_job_name
|
4239
4354
|
# Identifies an Autopilot job. The name must be unique to your account
|
4240
|
-
# and is case
|
4355
|
+
# and is case insensitive.
|
4241
4356
|
# @return [String]
|
4242
4357
|
#
|
4243
4358
|
# @!attribute [rw] input_data_config
|
@@ -10041,7 +10156,7 @@ module Aws::SageMaker
|
|
10041
10156
|
# @return [String]
|
10042
10157
|
#
|
10043
10158
|
# @!attribute [rw] input_data_config
|
10044
|
-
# Returns the input data configuration for the AutoML job
|
10159
|
+
# Returns the input data configuration for the AutoML job.
|
10045
10160
|
# @return [Array<Types::AutoMLChannel>]
|
10046
10161
|
#
|
10047
10162
|
# @!attribute [rw] output_data_config
|
@@ -10115,7 +10230,7 @@ module Aws::SageMaker
|
|
10115
10230
|
# @return [Types::AutoMLJobArtifacts]
|
10116
10231
|
#
|
10117
10232
|
# @!attribute [rw] resolved_attributes
|
10118
|
-
#
|
10233
|
+
# Contains `ProblemType`, `AutoMLJobObjective`, and
|
10119
10234
|
# `CompletionCriteria`. If you do not provide these values, they are
|
10120
10235
|
# auto-inferred. If you do provide them, the values used are the ones
|
10121
10236
|
# you provide.
|
@@ -11586,7 +11701,8 @@ module Aws::SageMaker
|
|
11586
11701
|
# @return [String]
|
11587
11702
|
#
|
11588
11703
|
# @!attribute [rw] hub_content_markdown
|
11589
|
-
#
|
11704
|
+
# A string that provides a description of the hub content. This string
|
11705
|
+
# can include links, tables, and standard markdown formating.
|
11590
11706
|
# @return [String]
|
11591
11707
|
#
|
11592
11708
|
# @!attribute [rw] hub_content_document
|
@@ -11842,6 +11958,18 @@ module Aws::SageMaker
|
|
11842
11958
|
# If the tuning job failed, the reason it failed.
|
11843
11959
|
# @return [String]
|
11844
11960
|
#
|
11961
|
+
# @!attribute [rw] tuning_job_completion_details
|
11962
|
+
# Tuning job completion information returned as the response from a
|
11963
|
+
# hyperparameter tuning job. This information tells if your tuning job
|
11964
|
+
# has or has not converged. It also includes the number of training
|
11965
|
+
# jobs that have not improved model performance as evaluated against
|
11966
|
+
# the objective function.
|
11967
|
+
# @return [Types::HyperParameterTuningJobCompletionDetails]
|
11968
|
+
#
|
11969
|
+
# @!attribute [rw] consumed_resources
|
11970
|
+
# The total resources consumed by your hyperparameter tuning job.
|
11971
|
+
# @return [Types::HyperParameterTuningJobConsumedResources]
|
11972
|
+
#
|
11845
11973
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJobResponse AWS API Documentation
|
11846
11974
|
#
|
11847
11975
|
class DescribeHyperParameterTuningJobResponse < Struct.new(
|
@@ -11859,7 +11987,9 @@ module Aws::SageMaker
|
|
11859
11987
|
:best_training_job,
|
11860
11988
|
:overall_best_training_job,
|
11861
11989
|
:warm_start_config,
|
11862
|
-
:failure_reason
|
11990
|
+
:failure_reason,
|
11991
|
+
:tuning_job_completion_details,
|
11992
|
+
:consumed_resources)
|
11863
11993
|
SENSITIVE = []
|
11864
11994
|
include Aws::Structure
|
11865
11995
|
end
|
@@ -17108,12 +17238,22 @@ module Aws::SageMaker
|
|
17108
17238
|
# The value of the metric with the best result.
|
17109
17239
|
# @return [Float]
|
17110
17240
|
#
|
17241
|
+
# @!attribute [rw] standard_metric_name
|
17242
|
+
# The name of the standard metric. For a description of the standard
|
17243
|
+
# metrics, see [Autopilot candidate metrics][1].
|
17244
|
+
#
|
17245
|
+
#
|
17246
|
+
#
|
17247
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
17248
|
+
# @return [String]
|
17249
|
+
#
|
17111
17250
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
|
17112
17251
|
#
|
17113
17252
|
class FinalAutoMLJobObjectiveMetric < Struct.new(
|
17114
17253
|
:type,
|
17115
17254
|
:metric_name,
|
17116
|
-
:value
|
17255
|
+
:value,
|
17256
|
+
:standard_metric_name)
|
17117
17257
|
SENSITIVE = []
|
17118
17258
|
include Aws::Structure
|
17119
17259
|
end
|
@@ -17552,7 +17692,7 @@ module Aws::SageMaker
|
|
17552
17692
|
# The Amazon S3 storage configuration of a hub.
|
17553
17693
|
#
|
17554
17694
|
# @!attribute [rw] s3_output_path
|
17555
|
-
# The Amazon S3
|
17695
|
+
# The Amazon S3 bucket prefix for hosting hub content.
|
17556
17696
|
# @return [String]
|
17557
17697
|
#
|
17558
17698
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HubS3StorageConfig AWS API Documentation
|
@@ -19147,6 +19287,30 @@ module Aws::SageMaker
|
|
19147
19287
|
include Aws::Structure
|
19148
19288
|
end
|
19149
19289
|
|
19290
|
+
# A structure that contains runtime information about both current and
|
19291
|
+
# completed hyperparameter tuning jobs.
|
19292
|
+
#
|
19293
|
+
# @!attribute [rw] number_of_training_jobs_objective_not_improving
|
19294
|
+
# The number of training jobs launched by a tuning job that are not
|
19295
|
+
# improving (1% or less) as measured by model performance evaluated
|
19296
|
+
# against an objective function.
|
19297
|
+
# @return [Integer]
|
19298
|
+
#
|
19299
|
+
# @!attribute [rw] convergence_detected_time
|
19300
|
+
# The time in timestamp format that AMT detected model convergence, as
|
19301
|
+
# defined by a lack of significant improvement over time based on
|
19302
|
+
# criteria developed over a wide range of diverse benchmarking tests.
|
19303
|
+
# @return [Time]
|
19304
|
+
#
|
19305
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobCompletionDetails AWS API Documentation
|
19306
|
+
#
|
19307
|
+
class HyperParameterTuningJobCompletionDetails < Struct.new(
|
19308
|
+
:number_of_training_jobs_objective_not_improving,
|
19309
|
+
:convergence_detected_time)
|
19310
|
+
SENSITIVE = []
|
19311
|
+
include Aws::Structure
|
19312
|
+
end
|
19313
|
+
|
19150
19314
|
# Configures a hyperparameter tuning job.
|
19151
19315
|
#
|
19152
19316
|
# @!attribute [rw] strategy
|
@@ -19236,6 +19400,21 @@ module Aws::SageMaker
|
|
19236
19400
|
include Aws::Structure
|
19237
19401
|
end
|
19238
19402
|
|
19403
|
+
# The total resources consumed by your hyperparameter tuning job.
|
19404
|
+
#
|
19405
|
+
# @!attribute [rw] runtime_in_seconds
|
19406
|
+
# The wall clock runtime in seconds used by your hyperparameter tuning
|
19407
|
+
# job.
|
19408
|
+
# @return [Integer]
|
19409
|
+
#
|
19410
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobConsumedResources AWS API Documentation
|
19411
|
+
#
|
19412
|
+
class HyperParameterTuningJobConsumedResources < Struct.new(
|
19413
|
+
:runtime_in_seconds)
|
19414
|
+
SENSITIVE = []
|
19415
|
+
include Aws::Structure
|
19416
|
+
end
|
19417
|
+
|
19239
19418
|
# Defines the objective metric for a hyperparameter tuning job.
|
19240
19419
|
# Hyperparameter tuning uses the value of this metric to evaluate the
|
19241
19420
|
# training jobs it launches, and returns the training job that results
|
@@ -19357,6 +19536,16 @@ module Aws::SageMaker
|
|
19357
19536
|
# [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
|
19358
19537
|
# @return [Array<Types::Tag>]
|
19359
19538
|
#
|
19539
|
+
# @!attribute [rw] tuning_job_completion_details
|
19540
|
+
# Information about either a current or completed hyperparameter
|
19541
|
+
# tuning job.
|
19542
|
+
# @return [Types::HyperParameterTuningJobCompletionDetails]
|
19543
|
+
#
|
19544
|
+
# @!attribute [rw] consumed_resources
|
19545
|
+
# The total amount of resources consumed by a hyperparameter tuning
|
19546
|
+
# job.
|
19547
|
+
# @return [Types::HyperParameterTuningJobConsumedResources]
|
19548
|
+
#
|
19360
19549
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobSearchEntity AWS API Documentation
|
19361
19550
|
#
|
19362
19551
|
class HyperParameterTuningJobSearchEntity < Struct.new(
|
@@ -19375,7 +19564,9 @@ module Aws::SageMaker
|
|
19375
19564
|
:overall_best_training_job,
|
19376
19565
|
:warm_start_config,
|
19377
19566
|
:failure_reason,
|
19378
|
-
:tags
|
19567
|
+
:tags,
|
19568
|
+
:tuning_job_completion_details,
|
19569
|
+
:consumed_resources)
|
19379
19570
|
SENSITIVE = []
|
19380
19571
|
include Aws::Structure
|
19381
19572
|
end
|
@@ -19675,7 +19866,7 @@ module Aws::SageMaker
|
|
19675
19866
|
# @!attribute [rw] min_resource
|
19676
19867
|
# The minimum number of resources (such as epochs) that can be used by
|
19677
19868
|
# a training job launched by a hyperparameter tuning job. If the value
|
19678
|
-
# for `MinResource` has not been reached, the training job
|
19869
|
+
# for `MinResource` has not been reached, the training job is not
|
19679
19870
|
# stopped by `Hyperband`.
|
19680
19871
|
# @return [Integer]
|
19681
19872
|
#
|
@@ -19880,7 +20071,8 @@ module Aws::SageMaker
|
|
19880
20071
|
# @return [String]
|
19881
20072
|
#
|
19882
20073
|
# @!attribute [rw] hub_content_markdown
|
19883
|
-
#
|
20074
|
+
# A string that provides a description of the hub content. This string
|
20075
|
+
# can include links, tables, and standard markdown formating.
|
19884
20076
|
# @return [String]
|
19885
20077
|
#
|
19886
20078
|
# @!attribute [rw] hub_content_document
|
@@ -29677,7 +29869,7 @@ module Aws::SageMaker
|
|
29677
29869
|
#
|
29678
29870
|
# * `"kms:RevokeGrant"`
|
29679
29871
|
#
|
29680
|
-
# The caller (either
|
29872
|
+
# The caller (either user or IAM role) to all DataPlane operations
|
29681
29873
|
# (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
|
29682
29874
|
# permissions to the `KmsKeyId`\:
|
29683
29875
|
#
|
@@ -33350,11 +33542,17 @@ module Aws::SageMaker
|
|
33350
33542
|
# tuning job can launch.
|
33351
33543
|
# @return [Integer]
|
33352
33544
|
#
|
33545
|
+
# @!attribute [rw] max_runtime_in_seconds
|
33546
|
+
# The maximum time in seconds that a training job launched by a
|
33547
|
+
# hyperparameter tuning job can run.
|
33548
|
+
# @return [Integer]
|
33549
|
+
#
|
33353
33550
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ResourceLimits AWS API Documentation
|
33354
33551
|
#
|
33355
33552
|
class ResourceLimits < Struct.new(
|
33356
33553
|
:max_number_of_training_jobs,
|
33357
|
-
:max_parallel_training_jobs
|
33554
|
+
:max_parallel_training_jobs,
|
33555
|
+
:max_runtime_in_seconds)
|
33358
33556
|
SENSITIVE = []
|
33359
33557
|
include Aws::Structure
|
33360
33558
|
end
|
@@ -36956,10 +37154,23 @@ module Aws::SageMaker
|
|
36956
37154
|
# The value of the objective metric.
|
36957
37155
|
# @return [Float]
|
36958
37156
|
#
|
37157
|
+
# @!attribute [rw] best_objective_not_improving
|
37158
|
+
# A flag to stop your hyperparameter tuning job if model performance
|
37159
|
+
# fails to improve as evaluated against an objective function.
|
37160
|
+
# @return [Types::BestObjectiveNotImproving]
|
37161
|
+
#
|
37162
|
+
# @!attribute [rw] convergence_detected
|
37163
|
+
# A flag to top your hyperparameter tuning job if automatic model
|
37164
|
+
# tuning (AMT) has detected that your model has converged as evaluated
|
37165
|
+
# against your objective function.
|
37166
|
+
# @return [Types::ConvergenceDetected]
|
37167
|
+
#
|
36959
37168
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
|
36960
37169
|
#
|
36961
37170
|
class TuningJobCompletionCriteria < Struct.new(
|
36962
|
-
:target_objective_metric_value
|
37171
|
+
:target_objective_metric_value,
|
37172
|
+
:best_objective_not_improving,
|
37173
|
+
:convergence_detected)
|
36963
37174
|
SENSITIVE = []
|
36964
37175
|
include Aws::Structure
|
36965
37176
|
end
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.166.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-
|
11
|
+
date: 2023-02-10 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|