aws-sdk-sagemaker 1.164.0 → 1.166.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 2bddb889de853dbfb3618f6625c40548f6eb4dbc611bf617305804d69228cd6b
4
- data.tar.gz: 27659e743febca9ae1cd3db7cc72292bdee4a925f01ac1a613f4de3eb1d7396a
3
+ metadata.gz: 2d24aff05be5414dfff87518cccbfb8d8f3f8c36d3e7ddc606a3e1357f31112a
4
+ data.tar.gz: cff37812eb7cdd821e792661a0d8708af48a9c886fecbe88125bc9f21da71f7c
5
5
  SHA512:
6
- metadata.gz: e113ee2512a60a2ad7239dc8f9eb3b92dd2d31303be2ceb062fbca6ba9c7be9d44fc98334d8ad073b08b09a98240f33ebe19c5747d17f9c21574ae839830d073
7
- data.tar.gz: b95e8973128115123299dcd2b5e465a760ec8b1f2a050c99c6d0408f9f26193938b211bb57fd60920efd605eaa2f8ea439c5dadfb407b285a92ad94423e0d8c8
6
+ metadata.gz: e0d8e9613582f76e3ae6ed19bada97001250b3e04c0476d626235b043c4472384a67bf53656131300aff7637695ed3627a861305efde0c3991271ca39961e12b
7
+ data.tar.gz: 3ea211b73508d09134a31484c09757299c3089725f7e452c1c72452ed9cefe06129678596c522e87e6f277ef85bbec2c644eb932c818723aed5a001ee5b6650f
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.166.0 (2023-02-10)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Autopilot adds support for selecting algorithms in CreateAutoMLJob API.
8
+
9
+ 1.165.0 (2023-01-31)
10
+ ------------------
11
+
12
+ * Feature - Amazon SageMaker Automatic Model Tuning now supports more completion criteria for Hyperparameter Optimization.
13
+
4
14
  1.164.0 (2023-01-27)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.164.0
1
+ 1.166.0
@@ -1185,7 +1185,7 @@ module Aws::SageMaker
1185
1185
  #
1186
1186
  # @option params [required, String] :auto_ml_job_name
1187
1187
  # Identifies an Autopilot job. The name must be unique to your account
1188
- # and is case-insensitive.
1188
+ # and is case insensitive.
1189
1189
  #
1190
1190
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1191
1191
  # An array of channel objects that describes the input data and its
@@ -1281,6 +1281,11 @@ module Aws::SageMaker
1281
1281
  # },
1282
1282
  # candidate_generation_config: {
1283
1283
  # feature_specification_s3_uri: "S3Uri",
1284
+ # algorithms_config: [
1285
+ # {
1286
+ # auto_ml_algorithms: ["xgboost"], # required, accepts xgboost, linear-learner, mlp, lightgbm, catboost, randomforest, extra-trees, nn-torch, fastai
1287
+ # },
1288
+ # ],
1284
1289
  # },
1285
1290
  # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
1286
1291
  # },
@@ -1825,8 +1830,7 @@ module Aws::SageMaker
1825
1830
  # Creates a `Domain` used by Amazon SageMaker Studio. A domain consists
1826
1831
  # of an associated Amazon Elastic File System (EFS) volume, a list of
1827
1832
  # authorized users, and a variety of security, application, policy, and
1828
- # Amazon Virtual Private Cloud (VPC) configurations. An Amazon Web
1829
- # Services account is limited to one domain per region. Users within a
1833
+ # Amazon Virtual Private Cloud (VPC) configurations. Users within a
1830
1834
  # domain can share notebook files and other artifacts with each other.
1831
1835
  #
1832
1836
  # **EFS storage**
@@ -2320,12 +2324,12 @@ module Aws::SageMaker
2320
2324
  # If any of the models hosted at this endpoint get model data from an
2321
2325
  # Amazon S3 location, SageMaker uses Amazon Web Services Security Token
2322
2326
  # Service to download model artifacts from the S3 path you provided.
2323
- # Amazon Web Services STS is activated in your IAM user account by
2324
- # default. If you previously deactivated Amazon Web Services STS for a
2325
- # region, you need to reactivate Amazon Web Services STS for that
2326
- # region. For more information, see [Activating and Deactivating Amazon
2327
- # Web Services STS in an Amazon Web Services Region][3] in the *Amazon
2328
- # Web Services Identity and Access Management User Guide*.
2327
+ # Amazon Web Services STS is activated in your Amazon Web Services
2328
+ # account by default. If you previously deactivated Amazon Web Services
2329
+ # STS for a region, you need to reactivate Amazon Web Services STS for
2330
+ # that region. For more information, see [Activating and Deactivating
2331
+ # Amazon Web Services STS in an Amazon Web Services Region][3] in the
2332
+ # *Amazon Web Services Identity and Access Management User Guide*.
2329
2333
  #
2330
2334
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
2331
2335
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -3056,6 +3060,10 @@ module Aws::SageMaker
3056
3060
 
3057
3061
  # Create a hub.
3058
3062
  #
3063
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
3064
+ #
3065
+ # </note>
3066
+ #
3059
3067
  # @option params [required, String] :hub_name
3060
3068
  # The name of the hub to create.
3061
3069
  #
@@ -3264,6 +3272,7 @@ module Aws::SageMaker
3264
3272
  # resource_limits: { # required
3265
3273
  # max_number_of_training_jobs: 1,
3266
3274
  # max_parallel_training_jobs: 1, # required
3275
+ # max_runtime_in_seconds: 1,
3267
3276
  # },
3268
3277
  # parameter_ranges: {
3269
3278
  # integer_parameter_ranges: [
@@ -3291,7 +3300,13 @@ module Aws::SageMaker
3291
3300
  # },
3292
3301
  # training_job_early_stopping_type: "Off", # accepts Off, Auto
3293
3302
  # tuning_job_completion_criteria: {
3294
- # target_objective_metric_value: 1.0, # required
3303
+ # target_objective_metric_value: 1.0,
3304
+ # best_objective_not_improving: {
3305
+ # max_number_of_training_jobs_not_improving: 1,
3306
+ # },
3307
+ # convergence_detected: {
3308
+ # complete_on_convergence: "Disabled", # accepts Disabled, Enabled
3309
+ # },
3295
3310
  # },
3296
3311
  # random_seed: 1,
3297
3312
  # },
@@ -8361,6 +8376,10 @@ module Aws::SageMaker
8361
8376
 
8362
8377
  # Delete a hub.
8363
8378
  #
8379
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
8380
+ #
8381
+ # </note>
8382
+ #
8364
8383
  # @option params [required, String] :hub_name
8365
8384
  # The name of the hub to delete.
8366
8385
  #
@@ -8383,6 +8402,10 @@ module Aws::SageMaker
8383
8402
 
8384
8403
  # Delete the contents of a hub.
8385
8404
  #
8405
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
8406
+ #
8407
+ # </note>
8408
+ #
8386
8409
  # @option params [required, String] :hub_name
8387
8410
  # The name of the hub that you want to delete content in.
8388
8411
  #
@@ -9577,6 +9600,9 @@ module Aws::SageMaker
9577
9600
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
9578
9601
  # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
9579
9602
  # resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
9603
+ # resp.auto_ml_job_config.candidate_generation_config.algorithms_config #=> Array
9604
+ # resp.auto_ml_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms #=> Array
9605
+ # resp.auto_ml_job_config.candidate_generation_config.algorithms_config[0].auto_ml_algorithms[0] #=> String, one of "xgboost", "linear-learner", "mlp", "lightgbm", "catboost", "randomforest", "extra-trees", "nn-torch", "fastai"
9580
9606
  # resp.auto_ml_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
9581
9607
  # resp.creation_time #=> Time
9582
9608
  # resp.end_time #=> Time
@@ -9588,6 +9614,7 @@ module Aws::SageMaker
9588
9614
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
9589
9615
  # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
9590
9616
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
9617
+ # resp.best_candidate.final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
9591
9618
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
9592
9619
  # resp.best_candidate.candidate_steps #=> Array
9593
9620
  # resp.best_candidate.candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -10786,6 +10813,10 @@ module Aws::SageMaker
10786
10813
 
10787
10814
  # Describe a hub.
10788
10815
  #
10816
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
10817
+ #
10818
+ # </note>
10819
+ #
10789
10820
  # @option params [required, String] :hub_name
10790
10821
  # The name of the hub to describe.
10791
10822
  #
@@ -10833,6 +10864,10 @@ module Aws::SageMaker
10833
10864
 
10834
10865
  # Describe the content of a hub.
10835
10866
  #
10867
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
10868
+ #
10869
+ # </note>
10870
+ #
10836
10871
  # @option params [required, String] :hub_name
10837
10872
  # The name of the hub that contains the content to describe.
10838
10873
  #
@@ -10965,6 +11000,8 @@ module Aws::SageMaker
10965
11000
  # * {Types::DescribeHyperParameterTuningJobResponse#overall_best_training_job #overall_best_training_job} => Types::HyperParameterTrainingJobSummary
10966
11001
  # * {Types::DescribeHyperParameterTuningJobResponse#warm_start_config #warm_start_config} => Types::HyperParameterTuningJobWarmStartConfig
10967
11002
  # * {Types::DescribeHyperParameterTuningJobResponse#failure_reason #failure_reason} => String
11003
+ # * {Types::DescribeHyperParameterTuningJobResponse#tuning_job_completion_details #tuning_job_completion_details} => Types::HyperParameterTuningJobCompletionDetails
11004
+ # * {Types::DescribeHyperParameterTuningJobResponse#consumed_resources #consumed_resources} => Types::HyperParameterTuningJobConsumedResources
10968
11005
  #
10969
11006
  # @example Request syntax with placeholder values
10970
11007
  #
@@ -10983,6 +11020,7 @@ module Aws::SageMaker
10983
11020
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
10984
11021
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
10985
11022
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_parallel_training_jobs #=> Integer
11023
+ # resp.hyper_parameter_tuning_job_config.resource_limits.max_runtime_in_seconds #=> Integer
10986
11024
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges #=> Array
10987
11025
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
10988
11026
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
@@ -10999,6 +11037,8 @@ module Aws::SageMaker
10999
11037
  # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
11000
11038
  # resp.hyper_parameter_tuning_job_config.training_job_early_stopping_type #=> String, one of "Off", "Auto"
11001
11039
  # resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.target_objective_metric_value #=> Float
11040
+ # resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.best_objective_not_improving.max_number_of_training_jobs_not_improving #=> Integer
11041
+ # resp.hyper_parameter_tuning_job_config.tuning_job_completion_criteria.convergence_detected.complete_on_convergence #=> String, one of "Disabled", "Enabled"
11002
11042
  # resp.hyper_parameter_tuning_job_config.random_seed #=> Integer
11003
11043
  # resp.training_job_definition.definition_name #=> String
11004
11044
  # resp.training_job_definition.tuning_objective.type #=> String, one of "Maximize", "Minimize"
@@ -11203,6 +11243,9 @@ module Aws::SageMaker
11203
11243
  # resp.warm_start_config.parent_hyper_parameter_tuning_jobs[0].hyper_parameter_tuning_job_name #=> String
11204
11244
  # resp.warm_start_config.warm_start_type #=> String, one of "IdenticalDataAndAlgorithm", "TransferLearning"
11205
11245
  # resp.failure_reason #=> String
11246
+ # resp.tuning_job_completion_details.number_of_training_jobs_objective_not_improving #=> Integer
11247
+ # resp.tuning_job_completion_details.convergence_detected_time #=> Time
11248
+ # resp.consumed_resources.runtime_in_seconds #=> Integer
11206
11249
  #
11207
11250
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJob AWS API Documentation
11208
11251
  #
@@ -13962,6 +14005,10 @@ module Aws::SageMaker
13962
14005
 
13963
14006
  # Import hub content.
13964
14007
  #
14008
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
14009
+ #
14010
+ # </note>
14011
+ #
13965
14012
  # @option params [required, String] :hub_content_name
13966
14013
  # The name of the hub content to import.
13967
14014
  #
@@ -13984,7 +14031,8 @@ module Aws::SageMaker
13984
14031
  # A description of the hub content to import.
13985
14032
  #
13986
14033
  # @option params [String] :hub_content_markdown
13987
- # Markdown files associated with the hub content to import.
14034
+ # A string that provides a description of the hub content. This string
14035
+ # can include links, tables, and standard markdown formating.
13988
14036
  #
13989
14037
  # @option params [required, String] :hub_content_document
13990
14038
  # The hub content document that describes information about the hub
@@ -14678,6 +14726,7 @@ module Aws::SageMaker
14678
14726
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
14679
14727
  # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
14680
14728
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
14729
+ # resp.candidates[0].final_auto_ml_job_objective_metric.standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
14681
14730
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
14682
14731
  # resp.candidates[0].candidate_steps #=> Array
14683
14732
  # resp.candidates[0].candidate_steps[0].candidate_step_type #=> String, one of "AWS::SageMaker::TrainingJob", "AWS::SageMaker::TransformJob", "AWS::SageMaker::ProcessingJob"
@@ -15708,6 +15757,10 @@ module Aws::SageMaker
15708
15757
 
15709
15758
  # List hub content versions.
15710
15759
  #
15760
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
15761
+ #
15762
+ # </note>
15763
+ #
15711
15764
  # @option params [required, String] :hub_name
15712
15765
  # The name of the hub to list the content versions of.
15713
15766
  #
@@ -15793,6 +15846,10 @@ module Aws::SageMaker
15793
15846
 
15794
15847
  # List the contents of a hub.
15795
15848
  #
15849
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
15850
+ #
15851
+ # </note>
15852
+ #
15796
15853
  # @option params [required, String] :hub_name
15797
15854
  # The name of the hub to list the contents of.
15798
15855
  #
@@ -15872,6 +15929,10 @@ module Aws::SageMaker
15872
15929
 
15873
15930
  # List all existing hubs.
15874
15931
  #
15932
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
15933
+ #
15934
+ # </note>
15935
+ #
15875
15936
  # @option params [String] :name_contains
15876
15937
  # Only list hubs with names that contain the specified string.
15877
15938
  #
@@ -16083,6 +16144,7 @@ module Aws::SageMaker
16083
16144
  # resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.failed #=> Integer
16084
16145
  # resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_number_of_training_jobs #=> Integer
16085
16146
  # resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_parallel_training_jobs #=> Integer
16147
+ # resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_runtime_in_seconds #=> Integer
16086
16148
  # resp.next_token #=> String
16087
16149
  #
16088
16150
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListHyperParameterTuningJobs AWS API Documentation
@@ -19993,7 +20055,7 @@ module Aws::SageMaker
19993
20055
  req.send_request(options)
19994
20056
  end
19995
20057
 
19996
- # A method for forcing the termination of a running job.
20058
+ # A method for forcing a running job to shut down.
19997
20059
  #
19998
20060
  # @option params [required, String] :auto_ml_job_name
19999
20061
  # The name of the object you are requesting.
@@ -21182,6 +21244,10 @@ module Aws::SageMaker
21182
21244
 
21183
21245
  # Update a hub.
21184
21246
  #
21247
+ # <note markdown="1"> Hub APIs are only callable through SageMaker Studio.
21248
+ #
21249
+ # </note>
21250
+ #
21185
21251
  # @option params [required, String] :hub_name
21186
21252
  # The name of the hub to update.
21187
21253
  #
@@ -22746,7 +22812,7 @@ module Aws::SageMaker
22746
22812
  params: params,
22747
22813
  config: config)
22748
22814
  context[:gem_name] = 'aws-sdk-sagemaker'
22749
- context[:gem_version] = '1.164.0'
22815
+ context[:gem_version] = '1.166.0'
22750
22816
  Seahorse::Client::Request.new(handlers, context)
22751
22817
  end
22752
22818
 
@@ -95,6 +95,10 @@ module Aws::SageMaker
95
95
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
96
96
  AuthMode = Shapes::StringShape.new(name: 'AuthMode')
97
97
  AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
98
+ AutoMLAlgorithm = Shapes::StringShape.new(name: 'AutoMLAlgorithm')
99
+ AutoMLAlgorithmConfig = Shapes::StructureShape.new(name: 'AutoMLAlgorithmConfig')
100
+ AutoMLAlgorithms = Shapes::ListShape.new(name: 'AutoMLAlgorithms')
101
+ AutoMLAlgorithmsConfig = Shapes::ListShape.new(name: 'AutoMLAlgorithmsConfig')
98
102
  AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
99
103
  AutoMLCandidateGenerationConfig = Shapes::StructureShape.new(name: 'AutoMLCandidateGenerationConfig')
100
104
  AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
@@ -142,6 +146,7 @@ module Aws::SageMaker
142
146
  BatchDescribeModelPackageSummary = Shapes::StructureShape.new(name: 'BatchDescribeModelPackageSummary')
143
147
  BatchStrategy = Shapes::StringShape.new(name: 'BatchStrategy')
144
148
  BatchTransformInput = Shapes::StructureShape.new(name: 'BatchTransformInput')
149
+ BestObjectiveNotImproving = Shapes::StructureShape.new(name: 'BestObjectiveNotImproving')
145
150
  Bias = Shapes::StructureShape.new(name: 'Bias')
146
151
  BillableTimeInSeconds = Shapes::IntegerShape.new(name: 'BillableTimeInSeconds')
147
152
  BlockedReason = Shapes::StringShape.new(name: 'BlockedReason')
@@ -241,6 +246,7 @@ module Aws::SageMaker
241
246
  CompilationJobSummaries = Shapes::ListShape.new(name: 'CompilationJobSummaries')
242
247
  CompilationJobSummary = Shapes::StructureShape.new(name: 'CompilationJobSummary')
243
248
  CompilerOptions = Shapes::StringShape.new(name: 'CompilerOptions')
249
+ CompleteOnConvergence = Shapes::StringShape.new(name: 'CompleteOnConvergence')
244
250
  CompressionType = Shapes::StringShape.new(name: 'CompressionType')
245
251
  CompressionTypes = Shapes::ListShape.new(name: 'CompressionTypes')
246
252
  ConditionOutcome = Shapes::StringShape.new(name: 'ConditionOutcome')
@@ -269,6 +275,7 @@ module Aws::SageMaker
269
275
  ContinuousParameterRange = Shapes::StructureShape.new(name: 'ContinuousParameterRange')
270
276
  ContinuousParameterRangeSpecification = Shapes::StructureShape.new(name: 'ContinuousParameterRangeSpecification')
271
277
  ContinuousParameterRanges = Shapes::ListShape.new(name: 'ContinuousParameterRanges')
278
+ ConvergenceDetected = Shapes::StructureShape.new(name: 'ConvergenceDetected')
272
279
  CreateActionRequest = Shapes::StructureShape.new(name: 'CreateActionRequest')
273
280
  CreateActionResponse = Shapes::StructureShape.new(name: 'CreateActionResponse')
274
281
  CreateAlgorithmInput = Shapes::StructureShape.new(name: 'CreateAlgorithmInput')
@@ -847,7 +854,9 @@ module Aws::SageMaker
847
854
  HyperParameterTuningInstanceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningInstanceConfig')
848
855
  HyperParameterTuningInstanceConfigs = Shapes::ListShape.new(name: 'HyperParameterTuningInstanceConfigs')
849
856
  HyperParameterTuningJobArn = Shapes::StringShape.new(name: 'HyperParameterTuningJobArn')
857
+ HyperParameterTuningJobCompletionDetails = Shapes::StructureShape.new(name: 'HyperParameterTuningJobCompletionDetails')
850
858
  HyperParameterTuningJobConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobConfig')
859
+ HyperParameterTuningJobConsumedResources = Shapes::StructureShape.new(name: 'HyperParameterTuningJobConsumedResources')
851
860
  HyperParameterTuningJobName = Shapes::StringShape.new(name: 'HyperParameterTuningJobName')
852
861
  HyperParameterTuningJobObjective = Shapes::StructureShape.new(name: 'HyperParameterTuningJobObjective')
853
862
  HyperParameterTuningJobObjectiveType = Shapes::StringShape.new(name: 'HyperParameterTuningJobObjectiveType')
@@ -861,6 +870,7 @@ module Aws::SageMaker
861
870
  HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
862
871
  HyperParameterTuningJobWarmStartConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobWarmStartConfig')
863
872
  HyperParameterTuningJobWarmStartType = Shapes::StringShape.new(name: 'HyperParameterTuningJobWarmStartType')
873
+ HyperParameterTuningMaxRuntimeInSeconds = Shapes::IntegerShape.new(name: 'HyperParameterTuningMaxRuntimeInSeconds')
864
874
  HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
865
875
  HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
866
876
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
@@ -1153,6 +1163,7 @@ module Aws::SageMaker
1153
1163
  MaxHumanLabeledObjectCount = Shapes::IntegerShape.new(name: 'MaxHumanLabeledObjectCount')
1154
1164
  MaxNumberOfTests = Shapes::IntegerShape.new(name: 'MaxNumberOfTests')
1155
1165
  MaxNumberOfTrainingJobs = Shapes::IntegerShape.new(name: 'MaxNumberOfTrainingJobs')
1166
+ MaxNumberOfTrainingJobsNotImproving = Shapes::IntegerShape.new(name: 'MaxNumberOfTrainingJobsNotImproving')
1156
1167
  MaxParallelExecutionSteps = Shapes::IntegerShape.new(name: 'MaxParallelExecutionSteps')
1157
1168
  MaxParallelOfTests = Shapes::IntegerShape.new(name: 'MaxParallelOfTests')
1158
1169
  MaxParallelTrainingJobs = Shapes::IntegerShape.new(name: 'MaxParallelTrainingJobs')
@@ -2165,6 +2176,13 @@ module Aws::SageMaker
2165
2176
 
2166
2177
  AttributeNames.member = Shapes::ShapeRef.new(shape: AttributeName)
2167
2178
 
2179
+ AutoMLAlgorithmConfig.add_member(:auto_ml_algorithms, Shapes::ShapeRef.new(shape: AutoMLAlgorithms, required: true, location_name: "AutoMLAlgorithms"))
2180
+ AutoMLAlgorithmConfig.struct_class = Types::AutoMLAlgorithmConfig
2181
+
2182
+ AutoMLAlgorithms.member = Shapes::ShapeRef.new(shape: AutoMLAlgorithm)
2183
+
2184
+ AutoMLAlgorithmsConfig.member = Shapes::ShapeRef.new(shape: AutoMLAlgorithmConfig)
2185
+
2168
2186
  AutoMLCandidate.add_member(:candidate_name, Shapes::ShapeRef.new(shape: CandidateName, required: true, location_name: "CandidateName"))
2169
2187
  AutoMLCandidate.add_member(:final_auto_ml_job_objective_metric, Shapes::ShapeRef.new(shape: FinalAutoMLJobObjectiveMetric, location_name: "FinalAutoMLJobObjectiveMetric"))
2170
2188
  AutoMLCandidate.add_member(:objective_status, Shapes::ShapeRef.new(shape: ObjectiveStatus, required: true, location_name: "ObjectiveStatus"))
@@ -2179,6 +2197,7 @@ module Aws::SageMaker
2179
2197
  AutoMLCandidate.struct_class = Types::AutoMLCandidate
2180
2198
 
2181
2199
  AutoMLCandidateGenerationConfig.add_member(:feature_specification_s3_uri, Shapes::ShapeRef.new(shape: S3Uri, location_name: "FeatureSpecificationS3Uri"))
2200
+ AutoMLCandidateGenerationConfig.add_member(:algorithms_config, Shapes::ShapeRef.new(shape: AutoMLAlgorithmsConfig, location_name: "AlgorithmsConfig"))
2182
2201
  AutoMLCandidateGenerationConfig.struct_class = Types::AutoMLCandidateGenerationConfig
2183
2202
 
2184
2203
  AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
@@ -2308,6 +2327,9 @@ module Aws::SageMaker
2308
2327
  BatchTransformInput.add_member(:end_time_offset, Shapes::ShapeRef.new(shape: MonitoringTimeOffsetString, location_name: "EndTimeOffset"))
2309
2328
  BatchTransformInput.struct_class = Types::BatchTransformInput
2310
2329
 
2330
+ BestObjectiveNotImproving.add_member(:max_number_of_training_jobs_not_improving, Shapes::ShapeRef.new(shape: MaxNumberOfTrainingJobsNotImproving, location_name: "MaxNumberOfTrainingJobsNotImproving"))
2331
+ BestObjectiveNotImproving.struct_class = Types::BestObjectiveNotImproving
2332
+
2311
2333
  Bias.add_member(:report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Report"))
2312
2334
  Bias.add_member(:pre_training_report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "PreTrainingReport"))
2313
2335
  Bias.add_member(:post_training_report, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "PostTrainingReport"))
@@ -2547,6 +2569,9 @@ module Aws::SageMaker
2547
2569
 
2548
2570
  ContinuousParameterRanges.member = Shapes::ShapeRef.new(shape: ContinuousParameterRange)
2549
2571
 
2572
+ ConvergenceDetected.add_member(:complete_on_convergence, Shapes::ShapeRef.new(shape: CompleteOnConvergence, location_name: "CompleteOnConvergence"))
2573
+ ConvergenceDetected.struct_class = Types::ConvergenceDetected
2574
+
2550
2575
  CreateActionRequest.add_member(:action_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, required: true, location_name: "ActionName"))
2551
2576
  CreateActionRequest.add_member(:source, Shapes::ShapeRef.new(shape: ActionSource, required: true, location_name: "Source"))
2552
2577
  CreateActionRequest.add_member(:action_type, Shapes::ShapeRef.new(shape: String256, required: true, location_name: "ActionType"))
@@ -3952,6 +3977,8 @@ module Aws::SageMaker
3952
3977
  DescribeHyperParameterTuningJobResponse.add_member(:overall_best_training_job, Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary, location_name: "OverallBestTrainingJob"))
3953
3978
  DescribeHyperParameterTuningJobResponse.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
3954
3979
  DescribeHyperParameterTuningJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
3980
+ DescribeHyperParameterTuningJobResponse.add_member(:tuning_job_completion_details, Shapes::ShapeRef.new(shape: HyperParameterTuningJobCompletionDetails, location_name: "TuningJobCompletionDetails"))
3981
+ DescribeHyperParameterTuningJobResponse.add_member(:consumed_resources, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConsumedResources, location_name: "ConsumedResources"))
3955
3982
  DescribeHyperParameterTuningJobResponse.struct_class = Types::DescribeHyperParameterTuningJobResponse
3956
3983
 
3957
3984
  DescribeImageRequest.add_member(:image_name, Shapes::ShapeRef.new(shape: ImageName, required: true, location_name: "ImageName"))
@@ -4931,6 +4958,7 @@ module Aws::SageMaker
4931
4958
  FinalAutoMLJobObjectiveMetric.add_member(:type, Shapes::ShapeRef.new(shape: AutoMLJobObjectiveType, location_name: "Type"))
4932
4959
  FinalAutoMLJobObjectiveMetric.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, required: true, location_name: "MetricName"))
4933
4960
  FinalAutoMLJobObjectiveMetric.add_member(:value, Shapes::ShapeRef.new(shape: MetricValue, required: true, location_name: "Value"))
4961
+ FinalAutoMLJobObjectiveMetric.add_member(:standard_metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, location_name: "StandardMetricName"))
4934
4962
  FinalAutoMLJobObjectiveMetric.struct_class = Types::FinalAutoMLJobObjectiveMetric
4935
4963
 
4936
4964
  FinalHyperParameterTuningJobObjectiveMetric.add_member(:type, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjectiveType, location_name: "Type"))
@@ -5151,6 +5179,10 @@ module Aws::SageMaker
5151
5179
 
5152
5180
  HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
5153
5181
 
5182
+ HyperParameterTuningJobCompletionDetails.add_member(:number_of_training_jobs_objective_not_improving, Shapes::ShapeRef.new(shape: Integer, location_name: "NumberOfTrainingJobsObjectiveNotImproving"))
5183
+ HyperParameterTuningJobCompletionDetails.add_member(:convergence_detected_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "ConvergenceDetectedTime"))
5184
+ HyperParameterTuningJobCompletionDetails.struct_class = Types::HyperParameterTuningJobCompletionDetails
5185
+
5154
5186
  HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
5155
5187
  HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
5156
5188
  HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
@@ -5161,6 +5193,9 @@ module Aws::SageMaker
5161
5193
  HyperParameterTuningJobConfig.add_member(:random_seed, Shapes::ShapeRef.new(shape: RandomSeed, location_name: "RandomSeed"))
5162
5194
  HyperParameterTuningJobConfig.struct_class = Types::HyperParameterTuningJobConfig
5163
5195
 
5196
+ HyperParameterTuningJobConsumedResources.add_member(:runtime_in_seconds, Shapes::ShapeRef.new(shape: Integer, location_name: "RuntimeInSeconds"))
5197
+ HyperParameterTuningJobConsumedResources.struct_class = Types::HyperParameterTuningJobConsumedResources
5198
+
5164
5199
  HyperParameterTuningJobObjective.add_member(:type, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjectiveType, required: true, location_name: "Type"))
5165
5200
  HyperParameterTuningJobObjective.add_member(:metric_name, Shapes::ShapeRef.new(shape: MetricName, required: true, location_name: "MetricName"))
5166
5201
  HyperParameterTuningJobObjective.struct_class = Types::HyperParameterTuningJobObjective
@@ -5183,6 +5218,8 @@ module Aws::SageMaker
5183
5218
  HyperParameterTuningJobSearchEntity.add_member(:warm_start_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobWarmStartConfig, location_name: "WarmStartConfig"))
5184
5219
  HyperParameterTuningJobSearchEntity.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "FailureReason"))
5185
5220
  HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5221
+ HyperParameterTuningJobSearchEntity.add_member(:tuning_job_completion_details, Shapes::ShapeRef.new(shape: HyperParameterTuningJobCompletionDetails, location_name: "TuningJobCompletionDetails"))
5222
+ HyperParameterTuningJobSearchEntity.add_member(:consumed_resources, Shapes::ShapeRef.new(shape: HyperParameterTuningJobConsumedResources, location_name: "ConsumedResources"))
5186
5223
  HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
5187
5224
 
5188
5225
  HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
@@ -7715,6 +7752,7 @@ module Aws::SageMaker
7715
7752
 
7716
7753
  ResourceLimits.add_member(:max_number_of_training_jobs, Shapes::ShapeRef.new(shape: MaxNumberOfTrainingJobs, location_name: "MaxNumberOfTrainingJobs"))
7717
7754
  ResourceLimits.add_member(:max_parallel_training_jobs, Shapes::ShapeRef.new(shape: MaxParallelTrainingJobs, required: true, location_name: "MaxParallelTrainingJobs"))
7755
+ ResourceLimits.add_member(:max_runtime_in_seconds, Shapes::ShapeRef.new(shape: HyperParameterTuningMaxRuntimeInSeconds, location_name: "MaxRuntimeInSeconds"))
7718
7756
  ResourceLimits.struct_class = Types::ResourceLimits
7719
7757
 
7720
7758
  ResourceNotFound.add_member(:message, Shapes::ShapeRef.new(shape: FailureReason, location_name: "Message"))
@@ -8315,7 +8353,9 @@ module Aws::SageMaker
8315
8353
  TrialSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
8316
8354
  TrialSummary.struct_class = Types::TrialSummary
8317
8355
 
8318
- TuningJobCompletionCriteria.add_member(:target_objective_metric_value, Shapes::ShapeRef.new(shape: TargetObjectiveMetricValue, required: true, location_name: "TargetObjectiveMetricValue"))
8356
+ TuningJobCompletionCriteria.add_member(:target_objective_metric_value, Shapes::ShapeRef.new(shape: TargetObjectiveMetricValue, location_name: "TargetObjectiveMetricValue"))
8357
+ TuningJobCompletionCriteria.add_member(:best_objective_not_improving, Shapes::ShapeRef.new(shape: BestObjectiveNotImproving, location_name: "BestObjectiveNotImproving"))
8358
+ TuningJobCompletionCriteria.add_member(:convergence_detected, Shapes::ShapeRef.new(shape: ConvergenceDetected, location_name: "ConvergenceDetected"))
8319
8359
  TuningJobCompletionCriteria.struct_class = Types::TuningJobCompletionCriteria
8320
8360
 
8321
8361
  TuningJobStepMetaData.add_member(:arn, Shapes::ShapeRef.new(shape: HyperParameterTuningJobArn, location_name: "Arn"))
@@ -50,9 +50,6 @@ module Aws::SageMaker
50
50
 
51
51
  def initialize(options = {})
52
52
  self[:region] = options[:region]
53
- if self[:region].nil?
54
- raise ArgumentError, "Missing required EndpointParameter: :region"
55
- end
56
53
  self[:use_dual_stack] = options[:use_dual_stack]
57
54
  self[:use_dual_stack] = false if self[:use_dual_stack].nil?
58
55
  if self[:use_dual_stack].nil?
@@ -14,42 +14,45 @@ module Aws::SageMaker
14
14
  use_dual_stack = parameters.use_dual_stack
15
15
  use_fips = parameters.use_fips
16
16
  endpoint = parameters.endpoint
17
- if (partition_result = Aws::Endpoints::Matchers.aws_partition(region))
18
- if Aws::Endpoints::Matchers.set?(endpoint)
19
- if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
20
- raise ArgumentError, "Invalid Configuration: FIPS and custom endpoint are not supported"
21
- end
22
- if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
23
- raise ArgumentError, "Invalid Configuration: Dualstack and custom endpoint are not supported"
24
- end
25
- return Aws::Endpoints::Endpoint.new(url: endpoint, headers: {}, properties: {})
17
+ if Aws::Endpoints::Matchers.set?(endpoint)
18
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
19
+ raise ArgumentError, "Invalid Configuration: FIPS and custom endpoint are not supported"
26
20
  end
27
- if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true) && Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
28
- if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS")) && Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
29
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
30
- end
31
- raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
21
+ if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
22
+ raise ArgumentError, "Invalid Configuration: Dualstack and custom endpoint are not supported"
32
23
  end
33
- if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
34
- if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
35
- if Aws::Endpoints::Matchers.string_equals?("aws", Aws::Endpoints::Matchers.attr(partition_result, "name"))
36
- return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
24
+ return Aws::Endpoints::Endpoint.new(url: endpoint, headers: {}, properties: {})
25
+ end
26
+ if Aws::Endpoints::Matchers.set?(region)
27
+ if (partition_result = Aws::Endpoints::Matchers.aws_partition(region))
28
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true) && Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
29
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS")) && Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
30
+ return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
37
31
  end
38
- if Aws::Endpoints::Matchers.string_equals?("aws-us-gov", Aws::Endpoints::Matchers.attr(partition_result, "name"))
39
- return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
32
+ raise ArgumentError, "FIPS and DualStack are enabled, but this partition does not support one or both"
33
+ end
34
+ if Aws::Endpoints::Matchers.boolean_equals?(use_fips, true)
35
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsFIPS"))
36
+ if Aws::Endpoints::Matchers.string_equals?("aws", Aws::Endpoints::Matchers.attr(partition_result, "name"))
37
+ return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
38
+ end
39
+ if Aws::Endpoints::Matchers.string_equals?("aws-us-gov", Aws::Endpoints::Matchers.attr(partition_result, "name"))
40
+ return Aws::Endpoints::Endpoint.new(url: "https://api-fips.sagemaker.#{region}.amazonaws.com", headers: {}, properties: {})
41
+ end
42
+ return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
40
43
  end
41
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker-fips.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
44
+ raise ArgumentError, "FIPS is enabled but this partition does not support FIPS"
42
45
  end
43
- raise ArgumentError, "FIPS is enabled but this partition does not support FIPS"
44
- end
45
- if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
46
- if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
47
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
46
+ if Aws::Endpoints::Matchers.boolean_equals?(use_dual_stack, true)
47
+ if Aws::Endpoints::Matchers.boolean_equals?(true, Aws::Endpoints::Matchers.attr(partition_result, "supportsDualStack"))
48
+ return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dualStackDnsSuffix']}", headers: {}, properties: {})
49
+ end
50
+ raise ArgumentError, "DualStack is enabled but this partition does not support DualStack"
48
51
  end
49
- raise ArgumentError, "DualStack is enabled but this partition does not support DualStack"
52
+ return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
50
53
  end
51
- return Aws::Endpoints::Endpoint.new(url: "https://api.sagemaker.#{region}.#{partition_result['dnsSuffix']}", headers: {}, properties: {})
52
54
  end
55
+ raise ArgumentError, "Invalid Configuration: Missing Region"
53
56
  raise ArgumentError, 'No endpoint could be resolved'
54
57
 
55
58
  end
@@ -1642,6 +1642,54 @@ module Aws::SageMaker
1642
1642
  include Aws::Structure
1643
1643
  end
1644
1644
 
1645
+ # The collection of algorithms run on a dataset for training the model
1646
+ # candidates of an Autopilot job.
1647
+ #
1648
+ # @!attribute [rw] auto_ml_algorithms
1649
+ # The selection of algorithms run on a dataset to train the model
1650
+ # candidates of an Autopilot job.
1651
+ #
1652
+ # <note markdown="1"> Selected algorithms must belong to the list corresponding to the
1653
+ # training mode set in ` AutoMLJobConfig.Mode ` (`ENSEMBLING` or
1654
+ # `HYPERPARAMETER_TUNING`). Choose a minimum of 1 algorithm.
1655
+ #
1656
+ # </note>
1657
+ #
1658
+ # * In `ENSEMBLING` mode:
1659
+ #
1660
+ # * "catboost"
1661
+ #
1662
+ # * "extra-trees"
1663
+ #
1664
+ # * "fastai"
1665
+ #
1666
+ # * "lightgbm"
1667
+ #
1668
+ # * "linear-learner"
1669
+ #
1670
+ # * "nn-torch"
1671
+ #
1672
+ # * "randomforest"
1673
+ #
1674
+ # * "xgboost"
1675
+ #
1676
+ # * In `HYPERPARAMETER_TUNING` mode:
1677
+ #
1678
+ # * "linear-learner"
1679
+ #
1680
+ # * "mlp"
1681
+ #
1682
+ # * "xgboost"
1683
+ # @return [Array<String>]
1684
+ #
1685
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLAlgorithmConfig AWS API Documentation
1686
+ #
1687
+ class AutoMLAlgorithmConfig < Struct.new(
1688
+ :auto_ml_algorithms)
1689
+ SENSITIVE = []
1690
+ include Aws::Structure
1691
+ end
1692
+
1645
1693
  # Information about a candidate produced by an AutoML training job,
1646
1694
  # including its status, steps, and other properties.
1647
1695
  #
@@ -1707,7 +1755,7 @@ module Aws::SageMaker
1707
1755
  include Aws::Structure
1708
1756
  end
1709
1757
 
1710
- # Stores the config information for how a candidate is generated
1758
+ # Stores the configuration information for how a candidate is generated
1711
1759
  # (optional).
1712
1760
  #
1713
1761
  # @!attribute [rw] feature_specification_s3_uri
@@ -1727,10 +1775,10 @@ module Aws::SageMaker
1727
1775
  #
1728
1776
  # </note>
1729
1777
  #
1730
- # In ensembling mode, Autopilot will only support the following data
1731
- # types: `numeric`, `categorical`, `text` and `datetime`. In HPO mode,
1732
- # Autopilot can support `numeric`, `categorical`, `text`, `datetime`
1733
- # and `sequence`.
1778
+ # In ensembling mode, Autopilot only supports the following data
1779
+ # types: `numeric`, `categorical`, `text`, and `datetime`. In HPO
1780
+ # mode, Autopilot can support `numeric`, `categorical`, `text`,
1781
+ # `datetime`, and `sequence`.
1734
1782
  #
1735
1783
  # If only `FeatureDataTypes` is provided, the column keys (`col1`,
1736
1784
  # `col2`,..) should be a subset of the column names in the input data.
@@ -1740,16 +1788,48 @@ module Aws::SageMaker
1740
1788
  # in `FeatureAttributeNames`.
1741
1789
  #
1742
1790
  # The key name `FeatureAttributeNames` is fixed. The values listed in
1743
- # `["col1", "col2", ...]` is case sensitive and should be a list of
1791
+ # `["col1", "col2", ...]` are case sensitive and should be a list of
1744
1792
  # strings containing unique values that are a subset of the column
1745
1793
  # names in the input data. The list of columns provided must not
1746
1794
  # include the target column.
1747
1795
  # @return [String]
1748
1796
  #
1797
+ # @!attribute [rw] algorithms_config
1798
+ # Stores the configuration information for the selection of algorithms
1799
+ # used to train the model candidates.
1800
+ #
1801
+ # The list of available algorithms to choose from depends on the
1802
+ # training mode set in [ `AutoMLJobConfig.Mode` ][1].
1803
+ #
1804
+ # * `AlgorithmsConfig` should not be set in `AUTO` training mode.
1805
+ #
1806
+ # * When `AlgorithmsConfig` is provided, one `AutoMLAlgorithms`
1807
+ # attribute must be set and one only.
1808
+ #
1809
+ # If the list of algorithms provided as values for
1810
+ # `AutoMLAlgorithms` is empty, `AutoMLCandidateGenerationConfig`
1811
+ # uses the full set of algorithms for the given training mode.
1812
+ #
1813
+ # * When `AlgorithmsConfig` is not provided,
1814
+ # `AutoMLCandidateGenerationConfig` uses the full set of algorithms
1815
+ # for the given training mode.
1816
+ #
1817
+ # For the list of all algorithms per training mode, see .
1818
+ #
1819
+ # For more information on each algorithm, see the [Algorithm
1820
+ # support][2] section in Autopilot developer guide.
1821
+ #
1822
+ #
1823
+ #
1824
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html
1825
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support
1826
+ # @return [Array<Types::AutoMLAlgorithmConfig>]
1827
+ #
1749
1828
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateGenerationConfig AWS API Documentation
1750
1829
  #
1751
1830
  class AutoMLCandidateGenerationConfig < Struct.new(
1752
- :feature_specification_s3_uri)
1831
+ :feature_specification_s3_uri,
1832
+ :algorithms_config)
1753
1833
  SENSITIVE = []
1754
1834
  include Aws::Structure
1755
1835
  end
@@ -1933,7 +2013,7 @@ module Aws::SageMaker
1933
2013
  # automatically and its processing is ended gracefully. The AutoML job
1934
2014
  # identifies the best model whose training was completed and marks it
1935
2015
  # as the best-performing model. Any unfinished steps of the job, such
1936
- # as automatic one-click Autopilot model deployment, will not be
2016
+ # as automatic one-click Autopilot model deployment, are not
1937
2017
  # completed.
1938
2018
  # @return [Integer]
1939
2019
  #
@@ -1988,11 +2068,11 @@ module Aws::SageMaker
1988
2068
  # by `ENSEMBLING` mode.
1989
2069
  #
1990
2070
  # The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
1991
- # to train the best version of a model. HPO will automatically select
1992
- # an algorithm for the type of problem you want to solve. Then HPO
1993
- # finds the best hyperparameters according to your objective metric.
1994
- # See [Autopilot algorithm support][1] for a list of algorithms
1995
- # supported by `HYPERPARAMETER_TUNING` mode.
2071
+ # to train the best version of a model. HPO automatically selects an
2072
+ # algorithm for the type of problem you want to solve. Then HPO finds
2073
+ # the best hyperparameters according to your objective metric. See
2074
+ # [Autopilot algorithm support][1] for a list of algorithms supported
2075
+ # by `HYPERPARAMETER_TUNING` mode.
1996
2076
  #
1997
2077
  #
1998
2078
  #
@@ -2162,7 +2242,7 @@ module Aws::SageMaker
2162
2242
  # find all of the true positives. A false positive (FP) reflects a
2163
2243
  # positive prediction that is actually negative in the data. It is
2164
2244
  # often insufficient to measure only recall, because predicting
2165
- # every output as a true positive will yield a perfect recall score.
2245
+ # every output as a true positive yield a perfect recall score.
2166
2246
  #
2167
2247
  # RecallMacro
2168
2248
  #
@@ -2173,8 +2253,8 @@ module Aws::SageMaker
2173
2253
  # true positives (TP) in a dataset. Whereas, a true positive
2174
2254
  # reflects a positive prediction that is also an actual positive
2175
2255
  # value in the data. It is often insufficient to measure only
2176
- # recall, because predicting every output as a true positive will
2177
- # yield a perfect recall score.
2256
+ # recall, because predicting every output as a true positive yields
2257
+ # a perfect recall score.
2178
2258
  #
2179
2259
  # RMSE
2180
2260
  #
@@ -2604,6 +2684,24 @@ module Aws::SageMaker
2604
2684
  include Aws::Structure
2605
2685
  end
2606
2686
 
2687
+ # A structure that keeps track of which training jobs launched by your
2688
+ # hyperparameter tuning job are not improving model performance as
2689
+ # evaluated against an objective function.
2690
+ #
2691
+ # @!attribute [rw] max_number_of_training_jobs_not_improving
2692
+ # The number of training jobs that have failed to improve model
2693
+ # performance by 1% or greater over prior training jobs as evaluated
2694
+ # against an objective function.
2695
+ # @return [Integer]
2696
+ #
2697
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/BestObjectiveNotImproving AWS API Documentation
2698
+ #
2699
+ class BestObjectiveNotImproving < Struct.new(
2700
+ :max_number_of_training_jobs_not_improving)
2701
+ SENSITIVE = []
2702
+ include Aws::Structure
2703
+ end
2704
+
2607
2705
  # Contains bias metrics for a model.
2608
2706
  #
2609
2707
  # @!attribute [rw] report
@@ -3725,12 +3823,12 @@ module Aws::SageMaker
3725
3823
  # If you provide a value for this parameter, SageMaker uses Amazon Web
3726
3824
  # Services Security Token Service to download model artifacts from the
3727
3825
  # S3 path you provide. Amazon Web Services STS is activated in your
3728
- # IAM user account by default. If you previously deactivated Amazon
3729
- # Web Services STS for a region, you need to reactivate Amazon Web
3730
- # Services STS for that region. For more information, see [Activating
3731
- # and Deactivating Amazon Web Services STS in an Amazon Web Services
3732
- # Region][2] in the *Amazon Web Services Identity and Access
3733
- # Management User Guide*.
3826
+ # Amazon Web Services account by default. If you previously
3827
+ # deactivated Amazon Web Services STS for a region, you need to
3828
+ # reactivate Amazon Web Services STS for that region. For more
3829
+ # information, see [Activating and Deactivating Amazon Web Services
3830
+ # STS in an Amazon Web Services Region][2] in the *Amazon Web Services
3831
+ # Identity and Access Management User Guide*.
3734
3832
  #
3735
3833
  # If you use a built-in algorithm to create a model, SageMaker
3736
3834
  # requires that you provide a S3 path to the model artifacts in
@@ -3925,6 +4023,23 @@ module Aws::SageMaker
3925
4023
  include Aws::Structure
3926
4024
  end
3927
4025
 
4026
+ # A flag to indicating that automatic model tuning (AMT) has detected
4027
+ # model convergence, defined as a lack of significant improvement (1% or
4028
+ # less) against an objective metric.
4029
+ #
4030
+ # @!attribute [rw] complete_on_convergence
4031
+ # A flag to stop a tuning job once AMT has detected that the job has
4032
+ # converged.
4033
+ # @return [String]
4034
+ #
4035
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ConvergenceDetected AWS API Documentation
4036
+ #
4037
+ class ConvergenceDetected < Struct.new(
4038
+ :complete_on_convergence)
4039
+ SENSITIVE = []
4040
+ include Aws::Structure
4041
+ end
4042
+
3928
4043
  # @!attribute [rw] action_name
3929
4044
  # The name of the action. Must be unique to your account in an Amazon
3930
4045
  # Web Services Region.
@@ -4237,7 +4352,7 @@ module Aws::SageMaker
4237
4352
 
4238
4353
  # @!attribute [rw] auto_ml_job_name
4239
4354
  # Identifies an Autopilot job. The name must be unique to your account
4240
- # and is case-insensitive.
4355
+ # and is case insensitive.
4241
4356
  # @return [String]
4242
4357
  #
4243
4358
  # @!attribute [rw] input_data_config
@@ -10041,7 +10156,7 @@ module Aws::SageMaker
10041
10156
  # @return [String]
10042
10157
  #
10043
10158
  # @!attribute [rw] input_data_config
10044
- # Returns the input data configuration for the AutoML job..
10159
+ # Returns the input data configuration for the AutoML job.
10045
10160
  # @return [Array<Types::AutoMLChannel>]
10046
10161
  #
10047
10162
  # @!attribute [rw] output_data_config
@@ -10115,7 +10230,7 @@ module Aws::SageMaker
10115
10230
  # @return [Types::AutoMLJobArtifacts]
10116
10231
  #
10117
10232
  # @!attribute [rw] resolved_attributes
10118
- # This contains `ProblemType`, `AutoMLJobObjective`, and
10233
+ # Contains `ProblemType`, `AutoMLJobObjective`, and
10119
10234
  # `CompletionCriteria`. If you do not provide these values, they are
10120
10235
  # auto-inferred. If you do provide them, the values used are the ones
10121
10236
  # you provide.
@@ -11586,7 +11701,8 @@ module Aws::SageMaker
11586
11701
  # @return [String]
11587
11702
  #
11588
11703
  # @!attribute [rw] hub_content_markdown
11589
- # Markdown files associated with the hub content to import.
11704
+ # A string that provides a description of the hub content. This string
11705
+ # can include links, tables, and standard markdown formating.
11590
11706
  # @return [String]
11591
11707
  #
11592
11708
  # @!attribute [rw] hub_content_document
@@ -11842,6 +11958,18 @@ module Aws::SageMaker
11842
11958
  # If the tuning job failed, the reason it failed.
11843
11959
  # @return [String]
11844
11960
  #
11961
+ # @!attribute [rw] tuning_job_completion_details
11962
+ # Tuning job completion information returned as the response from a
11963
+ # hyperparameter tuning job. This information tells if your tuning job
11964
+ # has or has not converged. It also includes the number of training
11965
+ # jobs that have not improved model performance as evaluated against
11966
+ # the objective function.
11967
+ # @return [Types::HyperParameterTuningJobCompletionDetails]
11968
+ #
11969
+ # @!attribute [rw] consumed_resources
11970
+ # The total resources consumed by your hyperparameter tuning job.
11971
+ # @return [Types::HyperParameterTuningJobConsumedResources]
11972
+ #
11845
11973
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJobResponse AWS API Documentation
11846
11974
  #
11847
11975
  class DescribeHyperParameterTuningJobResponse < Struct.new(
@@ -11859,7 +11987,9 @@ module Aws::SageMaker
11859
11987
  :best_training_job,
11860
11988
  :overall_best_training_job,
11861
11989
  :warm_start_config,
11862
- :failure_reason)
11990
+ :failure_reason,
11991
+ :tuning_job_completion_details,
11992
+ :consumed_resources)
11863
11993
  SENSITIVE = []
11864
11994
  include Aws::Structure
11865
11995
  end
@@ -17108,12 +17238,22 @@ module Aws::SageMaker
17108
17238
  # The value of the metric with the best result.
17109
17239
  # @return [Float]
17110
17240
  #
17241
+ # @!attribute [rw] standard_metric_name
17242
+ # The name of the standard metric. For a description of the standard
17243
+ # metrics, see [Autopilot candidate metrics][1].
17244
+ #
17245
+ #
17246
+ #
17247
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
17248
+ # @return [String]
17249
+ #
17111
17250
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/FinalAutoMLJobObjectiveMetric AWS API Documentation
17112
17251
  #
17113
17252
  class FinalAutoMLJobObjectiveMetric < Struct.new(
17114
17253
  :type,
17115
17254
  :metric_name,
17116
- :value)
17255
+ :value,
17256
+ :standard_metric_name)
17117
17257
  SENSITIVE = []
17118
17258
  include Aws::Structure
17119
17259
  end
@@ -17552,7 +17692,7 @@ module Aws::SageMaker
17552
17692
  # The Amazon S3 storage configuration of a hub.
17553
17693
  #
17554
17694
  # @!attribute [rw] s3_output_path
17555
- # The Amazon S3 output path for the hub.
17695
+ # The Amazon S3 bucket prefix for hosting hub content.
17556
17696
  # @return [String]
17557
17697
  #
17558
17698
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HubS3StorageConfig AWS API Documentation
@@ -19147,6 +19287,30 @@ module Aws::SageMaker
19147
19287
  include Aws::Structure
19148
19288
  end
19149
19289
 
19290
+ # A structure that contains runtime information about both current and
19291
+ # completed hyperparameter tuning jobs.
19292
+ #
19293
+ # @!attribute [rw] number_of_training_jobs_objective_not_improving
19294
+ # The number of training jobs launched by a tuning job that are not
19295
+ # improving (1% or less) as measured by model performance evaluated
19296
+ # against an objective function.
19297
+ # @return [Integer]
19298
+ #
19299
+ # @!attribute [rw] convergence_detected_time
19300
+ # The time in timestamp format that AMT detected model convergence, as
19301
+ # defined by a lack of significant improvement over time based on
19302
+ # criteria developed over a wide range of diverse benchmarking tests.
19303
+ # @return [Time]
19304
+ #
19305
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobCompletionDetails AWS API Documentation
19306
+ #
19307
+ class HyperParameterTuningJobCompletionDetails < Struct.new(
19308
+ :number_of_training_jobs_objective_not_improving,
19309
+ :convergence_detected_time)
19310
+ SENSITIVE = []
19311
+ include Aws::Structure
19312
+ end
19313
+
19150
19314
  # Configures a hyperparameter tuning job.
19151
19315
  #
19152
19316
  # @!attribute [rw] strategy
@@ -19236,6 +19400,21 @@ module Aws::SageMaker
19236
19400
  include Aws::Structure
19237
19401
  end
19238
19402
 
19403
+ # The total resources consumed by your hyperparameter tuning job.
19404
+ #
19405
+ # @!attribute [rw] runtime_in_seconds
19406
+ # The wall clock runtime in seconds used by your hyperparameter tuning
19407
+ # job.
19408
+ # @return [Integer]
19409
+ #
19410
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobConsumedResources AWS API Documentation
19411
+ #
19412
+ class HyperParameterTuningJobConsumedResources < Struct.new(
19413
+ :runtime_in_seconds)
19414
+ SENSITIVE = []
19415
+ include Aws::Structure
19416
+ end
19417
+
19239
19418
  # Defines the objective metric for a hyperparameter tuning job.
19240
19419
  # Hyperparameter tuning uses the value of this metric to evaluate the
19241
19420
  # training jobs it launches, and returns the training job that results
@@ -19357,6 +19536,16 @@ module Aws::SageMaker
19357
19536
  # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
19358
19537
  # @return [Array<Types::Tag>]
19359
19538
  #
19539
+ # @!attribute [rw] tuning_job_completion_details
19540
+ # Information about either a current or completed hyperparameter
19541
+ # tuning job.
19542
+ # @return [Types::HyperParameterTuningJobCompletionDetails]
19543
+ #
19544
+ # @!attribute [rw] consumed_resources
19545
+ # The total amount of resources consumed by a hyperparameter tuning
19546
+ # job.
19547
+ # @return [Types::HyperParameterTuningJobConsumedResources]
19548
+ #
19360
19549
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobSearchEntity AWS API Documentation
19361
19550
  #
19362
19551
  class HyperParameterTuningJobSearchEntity < Struct.new(
@@ -19375,7 +19564,9 @@ module Aws::SageMaker
19375
19564
  :overall_best_training_job,
19376
19565
  :warm_start_config,
19377
19566
  :failure_reason,
19378
- :tags)
19567
+ :tags,
19568
+ :tuning_job_completion_details,
19569
+ :consumed_resources)
19379
19570
  SENSITIVE = []
19380
19571
  include Aws::Structure
19381
19572
  end
@@ -19675,7 +19866,7 @@ module Aws::SageMaker
19675
19866
  # @!attribute [rw] min_resource
19676
19867
  # The minimum number of resources (such as epochs) that can be used by
19677
19868
  # a training job launched by a hyperparameter tuning job. If the value
19678
- # for `MinResource` has not been reached, the training job will not be
19869
+ # for `MinResource` has not been reached, the training job is not
19679
19870
  # stopped by `Hyperband`.
19680
19871
  # @return [Integer]
19681
19872
  #
@@ -19880,7 +20071,8 @@ module Aws::SageMaker
19880
20071
  # @return [String]
19881
20072
  #
19882
20073
  # @!attribute [rw] hub_content_markdown
19883
- # Markdown files associated with the hub content to import.
20074
+ # A string that provides a description of the hub content. This string
20075
+ # can include links, tables, and standard markdown formating.
19884
20076
  # @return [String]
19885
20077
  #
19886
20078
  # @!attribute [rw] hub_content_document
@@ -29677,7 +29869,7 @@ module Aws::SageMaker
29677
29869
  #
29678
29870
  # * `"kms:RevokeGrant"`
29679
29871
  #
29680
- # The caller (either IAM user or IAM role) to all DataPlane operations
29872
+ # The caller (either user or IAM role) to all DataPlane operations
29681
29873
  # (`PutRecord`, `GetRecord`, `DeleteRecord`) must have the following
29682
29874
  # permissions to the `KmsKeyId`\:
29683
29875
  #
@@ -33350,11 +33542,17 @@ module Aws::SageMaker
33350
33542
  # tuning job can launch.
33351
33543
  # @return [Integer]
33352
33544
  #
33545
+ # @!attribute [rw] max_runtime_in_seconds
33546
+ # The maximum time in seconds that a training job launched by a
33547
+ # hyperparameter tuning job can run.
33548
+ # @return [Integer]
33549
+ #
33353
33550
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ResourceLimits AWS API Documentation
33354
33551
  #
33355
33552
  class ResourceLimits < Struct.new(
33356
33553
  :max_number_of_training_jobs,
33357
- :max_parallel_training_jobs)
33554
+ :max_parallel_training_jobs,
33555
+ :max_runtime_in_seconds)
33358
33556
  SENSITIVE = []
33359
33557
  include Aws::Structure
33360
33558
  end
@@ -36956,10 +37154,23 @@ module Aws::SageMaker
36956
37154
  # The value of the objective metric.
36957
37155
  # @return [Float]
36958
37156
  #
37157
+ # @!attribute [rw] best_objective_not_improving
37158
+ # A flag to stop your hyperparameter tuning job if model performance
37159
+ # fails to improve as evaluated against an objective function.
37160
+ # @return [Types::BestObjectiveNotImproving]
37161
+ #
37162
+ # @!attribute [rw] convergence_detected
37163
+ # A flag to top your hyperparameter tuning job if automatic model
37164
+ # tuning (AMT) has detected that your model has converged as evaluated
37165
+ # against your objective function.
37166
+ # @return [Types::ConvergenceDetected]
37167
+ #
36959
37168
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TuningJobCompletionCriteria AWS API Documentation
36960
37169
  #
36961
37170
  class TuningJobCompletionCriteria < Struct.new(
36962
- :target_objective_metric_value)
37171
+ :target_objective_metric_value,
37172
+ :best_objective_not_improving,
37173
+ :convergence_detected)
36963
37174
  SENSITIVE = []
36964
37175
  include Aws::Structure
36965
37176
  end
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.164.0'
56
+ GEM_VERSION = '1.166.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.164.0
4
+ version: 1.166.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-01-27 00:00:00.000000000 Z
11
+ date: 2023-02-10 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core