aws-sdk-sagemaker 1.157.0 → 1.159.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: b082ca52f03d7d82732093787abd9b675047c9a234b33d06420bcdf21719061e
4
- data.tar.gz: c2cf439c12b984fb3a8593b8ead44ea6e8d5359f97d6c155d51a4b6716cf6bce
3
+ metadata.gz: '0890d98eddadde040eac5ef7d4ed869dd3bb6461060f0859d47518379b660a1b'
4
+ data.tar.gz: 16aeb1fc5318f4b9d0dea72a879d43b4189e592c55c405dddb801cf999cd241b
5
5
  SHA512:
6
- metadata.gz: ccc8fa1c3a21c62ad46ccbd3e9908d6955a2382fa656ea2a56a894950c457bb5a3afce895b537dc8f47cdd717211da5d1731a6d5cfd1b9a3eef86c0c9732703f
7
- data.tar.gz: a1a16740daeb725a07b7b695b2e59f2c0a919dca9d943bed10c373fe6864af213387af2b994188869624bc2aca0197768ac87b772261ae03d91bb9527329ddea
6
+ metadata.gz: 75d8ae6495bdd8f4c52f7005715d31cc775da29ec8266a14eecff3347a025fb3e068707fca46c592a98d207efbc464a0e576c3001e612915d7cac4fc880de535
7
+ data.tar.gz: 26511dfec195d859f21ad3a0d914c8c57f12ac8f85157460e7a3d0a7b31ca6b8332d63294e767ea1523e4b5f98f69fb745b707bd36036b48388ad874e36670fb
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.159.0 (2022-12-21)
5
+ ------------------
6
+
7
+ * Feature - This release enables adding RStudio Workbench support to an existing Amazon SageMaker Studio domain. It allows setting your RStudio on SageMaker environment configuration parameters and also updating the RStudioConnectUrl and RStudioPackageManagerUrl parameters for existing domains
8
+
9
+ 1.158.0 (2022-12-20)
10
+ ------------------
11
+
12
+ * Feature - Amazon SageMaker Autopilot adds support for new objective metrics in CreateAutoMLJob API.
13
+
4
14
  1.157.0 (2022-12-19)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.157.0
1
+ 1.159.0
@@ -1260,7 +1260,7 @@ module Aws::SageMaker
1260
1260
  # },
1261
1261
  # problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
1262
1262
  # auto_ml_job_objective: {
1263
- # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
1263
+ # metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
1264
1264
  # },
1265
1265
  # auto_ml_job_config: {
1266
1266
  # completion_criteria: {
@@ -2702,11 +2702,16 @@ module Aws::SageMaker
2702
2702
  req.send_request(options)
2703
2703
  end
2704
2704
 
2705
- # Creates an SageMaker *experiment*. An experiment is a collection of
2705
+ # Creates a SageMaker *experiment*. An experiment is a collection of
2706
2706
  # *trials* that are observed, compared and evaluated as a group. A trial
2707
2707
  # is a set of steps, called *trial components*, that produce a machine
2708
2708
  # learning model.
2709
2709
  #
2710
+ # <note markdown="1"> In the Studio UI, trials are referred to as *run groups* and trial
2711
+ # components are referred to as *runs*.
2712
+ #
2713
+ # </note>
2714
+ #
2710
2715
  # The goal of an experiment is to determine the components that produce
2711
2716
  # the best model. Multiple trials are performed, each one isolating and
2712
2717
  # measuring the impact of a change to one or more inputs, while keeping
@@ -9545,7 +9550,7 @@ module Aws::SageMaker
9545
9550
  # resp.output_data_config.kms_key_id #=> String
9546
9551
  # resp.output_data_config.s3_output_path #=> String
9547
9552
  # resp.role_arn #=> String
9548
- # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
9553
+ # resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
9549
9554
  # resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
9550
9555
  # resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
9551
9556
  # resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -9567,7 +9572,7 @@ module Aws::SageMaker
9567
9572
  # resp.partial_failure_reasons[0].partial_failure_message #=> String
9568
9573
  # resp.best_candidate.candidate_name #=> String
9569
9574
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
9570
- # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
9575
+ # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
9571
9576
  # resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
9572
9577
  # resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
9573
9578
  # resp.best_candidate.candidate_steps #=> Array
@@ -9587,7 +9592,7 @@ module Aws::SageMaker
9587
9592
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
9588
9593
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
9589
9594
  # resp.best_candidate.candidate_properties.candidate_metrics #=> Array
9590
- # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
9595
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
9591
9596
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
9592
9597
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
9593
9598
  # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
@@ -9596,7 +9601,7 @@ module Aws::SageMaker
9596
9601
  # resp.generate_candidate_definitions_only #=> Boolean
9597
9602
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
9598
9603
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
9599
- # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
9604
+ # resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
9600
9605
  # resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
9601
9606
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
9602
9607
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
@@ -14645,7 +14650,7 @@ module Aws::SageMaker
14645
14650
  # resp.candidates #=> Array
14646
14651
  # resp.candidates[0].candidate_name #=> String
14647
14652
  # resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
14648
- # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
14653
+ # resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
14649
14654
  # resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
14650
14655
  # resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
14651
14656
  # resp.candidates[0].candidate_steps #=> Array
@@ -14665,7 +14670,7 @@ module Aws::SageMaker
14665
14670
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
14666
14671
  # resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
14667
14672
  # resp.candidates[0].candidate_properties.candidate_metrics #=> Array
14668
- # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
14673
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
14669
14674
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
14670
14675
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
14671
14676
  # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
@@ -20712,6 +20717,13 @@ module Aws::SageMaker
20712
20717
  # @option params [Types::DefaultSpaceSettings] :default_space_settings
20713
20718
  # The default settings used to create a space within the Domain.
20714
20719
  #
20720
+ # @option params [String] :app_security_group_management
20721
+ # The entity that creates and manages the required security groups for
20722
+ # inter-app communication in `VPCOnly` mode. Required when
20723
+ # `CreateDomain.AppNetworkAccessType` is `VPCOnly` and
20724
+ # `DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn`
20725
+ # is provided.
20726
+ #
20715
20727
  # @return [Types::UpdateDomainResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
20716
20728
  #
20717
20729
  # * {Types::UpdateDomainResponse#domain_arn #domain_arn} => String
@@ -20801,8 +20813,11 @@ module Aws::SageMaker
20801
20813
  # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
20802
20814
  # lifecycle_config_arn: "StudioLifecycleConfigArn",
20803
20815
  # },
20816
+ # r_studio_connect_url: "String",
20817
+ # r_studio_package_manager_url: "String",
20804
20818
  # },
20805
20819
  # execution_role_identity_config: "USER_PROFILE_NAME", # accepts USER_PROFILE_NAME, DISABLED
20820
+ # security_group_ids: ["SecurityGroupId"],
20806
20821
  # },
20807
20822
  # default_space_settings: {
20808
20823
  # execution_role: "RoleArn",
@@ -20838,6 +20853,7 @@ module Aws::SageMaker
20838
20853
  # lifecycle_config_arns: ["StudioLifecycleConfigArn"],
20839
20854
  # },
20840
20855
  # },
20856
+ # app_security_group_management: "Service", # accepts Service, Customer
20841
20857
  # })
20842
20858
  #
20843
20859
  # @example Response structure
@@ -22700,7 +22716,7 @@ module Aws::SageMaker
22700
22716
  params: params,
22701
22717
  config: config)
22702
22718
  context[:gem_name] = 'aws-sdk-sagemaker'
22703
- context[:gem_version] = '1.157.0'
22719
+ context[:gem_version] = '1.159.0'
22704
22720
  Seahorse::Client::Request.new(handlers, context)
22705
22721
  end
22706
22722
 
@@ -4593,6 +4593,7 @@ module Aws::SageMaker
4593
4593
 
4594
4594
  DomainSettingsForUpdate.add_member(:r_studio_server_pro_domain_settings_for_update, Shapes::ShapeRef.new(shape: RStudioServerProDomainSettingsForUpdate, location_name: "RStudioServerProDomainSettingsForUpdate"))
4595
4595
  DomainSettingsForUpdate.add_member(:execution_role_identity_config, Shapes::ShapeRef.new(shape: ExecutionRoleIdentityConfig, location_name: "ExecutionRoleIdentityConfig"))
4596
+ DomainSettingsForUpdate.add_member(:security_group_ids, Shapes::ShapeRef.new(shape: DomainSecurityGroupIds, location_name: "SecurityGroupIds"))
4596
4597
  DomainSettingsForUpdate.struct_class = Types::DomainSettingsForUpdate
4597
4598
 
4598
4599
  DriftCheckBaselines.add_member(:bias, Shapes::ShapeRef.new(shape: DriftCheckBias, location_name: "Bias"))
@@ -7555,6 +7556,8 @@ module Aws::SageMaker
7555
7556
 
7556
7557
  RStudioServerProDomainSettingsForUpdate.add_member(:domain_execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "DomainExecutionRoleArn"))
7557
7558
  RStudioServerProDomainSettingsForUpdate.add_member(:default_resource_spec, Shapes::ShapeRef.new(shape: ResourceSpec, location_name: "DefaultResourceSpec"))
7559
+ RStudioServerProDomainSettingsForUpdate.add_member(:r_studio_connect_url, Shapes::ShapeRef.new(shape: String, location_name: "RStudioConnectUrl"))
7560
+ RStudioServerProDomainSettingsForUpdate.add_member(:r_studio_package_manager_url, Shapes::ShapeRef.new(shape: String, location_name: "RStudioPackageManagerUrl"))
7558
7561
  RStudioServerProDomainSettingsForUpdate.struct_class = Types::RStudioServerProDomainSettingsForUpdate
7559
7562
 
7560
7563
  RealTimeInferenceConfig.add_member(:instance_type, Shapes::ShapeRef.new(shape: InstanceType, required: true, location_name: "InstanceType"))
@@ -8363,6 +8366,7 @@ module Aws::SageMaker
8363
8366
  UpdateDomainRequest.add_member(:default_user_settings, Shapes::ShapeRef.new(shape: UserSettings, location_name: "DefaultUserSettings"))
8364
8367
  UpdateDomainRequest.add_member(:domain_settings_for_update, Shapes::ShapeRef.new(shape: DomainSettingsForUpdate, location_name: "DomainSettingsForUpdate"))
8365
8368
  UpdateDomainRequest.add_member(:default_space_settings, Shapes::ShapeRef.new(shape: DefaultSpaceSettings, location_name: "DefaultSpaceSettings"))
8369
+ UpdateDomainRequest.add_member(:app_security_group_management, Shapes::ShapeRef.new(shape: AppSecurityGroupManagement, location_name: "AppSecurityGroupManagement"))
8366
8370
  UpdateDomainRequest.struct_class = Types::UpdateDomainRequest
8367
8371
 
8368
8372
  UpdateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
@@ -2015,66 +2015,171 @@ module Aws::SageMaker
2015
2015
  #
2016
2016
  # Here are the options:
2017
2017
  #
2018
- # * `MSE`\: The mean squared error (MSE) is the average of the squared
2019
- # differences between the predicted and actual values. It is used
2020
- # for regression. MSE values are always positive: the better a model
2021
- # is at predicting the actual values, the smaller the MSE value is.
2022
- # When the data contains outliers, they tend to dominate the MSE,
2023
- # which might cause subpar prediction performance.
2024
- #
2025
- # * `Accuracy`\: The ratio of the number of correctly classified items
2026
- # to the total number of (correctly and incorrectly) classified
2027
- # items. It is used for binary and multiclass classification. It
2028
- # measures how close the predicted class values are to the actual
2029
- # values. Accuracy values vary between zero and one: one indicates
2030
- # perfect accuracy and zero indicates perfect inaccuracy.
2031
- #
2032
- # * `F1`\: The F1 score is the harmonic mean of the precision and
2033
- # recall. It is used for binary classification into classes
2018
+ # Accuracy
2019
+ #
2020
+ # : The ratio of the number of correctly classified items to the total
2021
+ # number of (correctly and incorrectly) classified items. It is used
2022
+ # for both binary and multiclass classification. Accuracy measures
2023
+ # how close the predicted class values are to the actual values.
2024
+ # Values for accuracy metrics vary between zero (0) and one (1). A
2025
+ # value of 1 indicates perfect accuracy, and 0 indicates perfect
2026
+ # inaccuracy.
2027
+ #
2028
+ # AUC
2029
+ #
2030
+ # : The area under the curve (AUC) metric is used to compare and
2031
+ # evaluate binary classification by algorithms that return
2032
+ # probabilities, such as logistic regression. To map the
2033
+ # probabilities into classifications, these are compared against a
2034
+ # threshold value.
2035
+ #
2036
+ # The relevant curve is the receiver operating characteristic curve
2037
+ # (ROC curve). The ROC curve plots the true positive rate (TPR) of
2038
+ # predictions (or recall) against the false positive rate (FPR) as a
2039
+ # function of the threshold value, above which a prediction is
2040
+ # considered positive. Increasing the threshold results in fewer
2041
+ # false positives, but more false negatives.
2042
+ #
2043
+ # AUC is the area under this ROC curve. Therefore, AUC provides an
2044
+ # aggregated measure of the model performance across all possible
2045
+ # classification thresholds. AUC scores vary between 0 and 1. A
2046
+ # score of 1 indicates perfect accuracy, and a score of one half
2047
+ # (0.5) indicates that the prediction is not better than a random
2048
+ # classifier.
2049
+ #
2050
+ # BalancedAccuracy
2051
+ #
2052
+ # : `BalancedAccuracy` is a metric that measures the ratio of accurate
2053
+ # predictions to all predictions. This ratio is calculated after
2054
+ # normalizing true positives (TP) and true negatives (TN) by the
2055
+ # total number of positive (P) and negative (N) values. It is used
2056
+ # in both binary and multiclass classification and is defined as
2057
+ # follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
2058
+ # `BalancedAccuracy` gives a better measure of accuracy when the
2059
+ # number of positives or negatives differ greatly from each other in
2060
+ # an imbalanced dataset. For example, when only 1% of email is spam.
2061
+ #
2062
+ # F1
2063
+ #
2064
+ # : The `F1` score is the harmonic mean of the precision and recall,
2065
+ # defined as follows: F1 = 2 * (precision * recall) / (precision +
2066
+ # recall). It is used for binary classification into classes
2034
2067
  # traditionally referred to as positive and negative. Predictions
2035
- # are said to be true when they match their actual (correct) class
2036
- # and false when they do not. Precision is the ratio of the true
2037
- # positive predictions to all positive predictions (including the
2038
- # false positives) in a data set and measures the quality of the
2039
- # prediction when it predicts the positive class. Recall (or
2040
- # sensitivity) is the ratio of the true positive predictions to all
2041
- # actual positive instances and measures how completely a model
2042
- # predicts the actual class members in a data set. The standard F1
2043
- # score weighs precision and recall equally. But which metric is
2044
- # paramount typically depends on specific aspects of a problem. F1
2045
- # scores vary between zero and one: one indicates the best possible
2046
- # performance and zero the worst.
2047
- #
2048
- # * `AUC`\: The area under the curve (AUC) metric is used to compare
2049
- # and evaluate binary classification by algorithms such as logistic
2050
- # regression that return probabilities. A threshold is needed to map
2051
- # the probabilities into classifications. The relevant curve is the
2052
- # receiver operating characteristic curve that plots the true
2053
- # positive rate (TPR) of predictions (or recall) against the false
2054
- # positive rate (FPR) as a function of the threshold value, above
2055
- # which a prediction is considered positive. Increasing the
2056
- # threshold results in fewer false positives but more false
2057
- # negatives. AUC is the area under this receiver operating
2058
- # characteristic curve and so provides an aggregated measure of the
2059
- # model performance across all possible classification thresholds.
2060
- # The AUC score can also be interpreted as the probability that a
2061
- # randomly selected positive data point is more likely to be
2062
- # predicted positive than a randomly selected negative example. AUC
2063
- # scores vary between zero and one: a score of one indicates perfect
2064
- # accuracy and a score of one half indicates that the prediction is
2065
- # not better than a random classifier. Values under one half predict
2066
- # less accurately than a random predictor. But such consistently bad
2067
- # predictors can simply be inverted to obtain better than random
2068
- # predictors.
2069
- #
2070
- # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2071
- # classification. In this context, you have multiple classes to
2072
- # predict. You just calculate the precision and recall for each
2073
- # class as you did for the positive class in binary classification.
2074
- # Then, use these values to calculate the F1 score for each class
2075
- # and average them to obtain the F1macro score. F1macro scores vary
2076
- # between zero and one: one indicates the best possible performance
2077
- # and zero the worst.
2068
+ # are said to be true when they match their actual (correct) class,
2069
+ # and false when they do not.
2070
+ #
2071
+ # Precision is the ratio of the true positive predictions to all
2072
+ # positive predictions, and it includes the false positives in a
2073
+ # dataset. Precision measures the quality of the prediction when it
2074
+ # predicts the positive class.
2075
+ #
2076
+ # Recall (or sensitivity) is the ratio of the true positive
2077
+ # predictions to all actual positive instances. Recall measures how
2078
+ # completely a model predicts the actual class members in a dataset.
2079
+ #
2080
+ # F1 scores vary between 0 and 1. A score of 1 indicates the best
2081
+ # possible performance, and 0 indicates the worst.
2082
+ #
2083
+ # F1macro
2084
+ #
2085
+ # : The `F1macro` score applies F1 scoring to multiclass
2086
+ # classification problems. It does this by calculating the precision
2087
+ # and recall, and then taking their harmonic mean to calculate the
2088
+ # F1 score for each class. Lastly, the F1macro averages the
2089
+ # individual scores to obtain the `F1macro` score. `F1macro` scores
2090
+ # vary between 0 and 1. A score of 1 indicates the best possible
2091
+ # performance, and 0 indicates the worst.
2092
+ #
2093
+ # MAE
2094
+ #
2095
+ # : The mean absolute error (MAE) is a measure of how different the
2096
+ # predicted and actual values are, when they're averaged over all
2097
+ # values. MAE is commonly used in regression analysis to understand
2098
+ # model prediction error. If there is linear regression, MAE
2099
+ # represents the average distance from a predicted line to the
2100
+ # actual value. MAE is defined as the sum of absolute errors divided
2101
+ # by the number of observations. Values range from 0 to infinity,
2102
+ # with smaller numbers indicating a better model fit to the data.
2103
+ #
2104
+ # MSE
2105
+ #
2106
+ # : The mean squared error (MSE) is the average of the squared
2107
+ # differences between the predicted and actual values. It is used
2108
+ # for regression. MSE values are always positive. The better a model
2109
+ # is at predicting the actual values, the smaller the MSE value is
2110
+ #
2111
+ # Precision
2112
+ #
2113
+ # : Precision measures how well an algorithm predicts the true
2114
+ # positives (TP) out of all of the positives that it identifies. It
2115
+ # is defined as follows: Precision = TP/(TP+FP), with values ranging
2116
+ # from zero (0) to one (1), and is used in binary classification.
2117
+ # Precision is an important metric when the cost of a false positive
2118
+ # is high. For example, the cost of a false positive is very high if
2119
+ # an airplane safety system is falsely deemed safe to fly. A false
2120
+ # positive (FP) reflects a positive prediction that is actually
2121
+ # negative in the data.
2122
+ #
2123
+ # PrecisionMacro
2124
+ #
2125
+ # : The precision macro computes precision for multiclass
2126
+ # classification problems. It does this by calculating precision for
2127
+ # each class and averaging scores to obtain precision for several
2128
+ # classes. `PrecisionMacro` scores range from zero (0) to one (1).
2129
+ # Higher scores reflect the model's ability to predict true
2130
+ # positives (TP) out of all of the positives that it identifies,
2131
+ # averaged across multiple classes.
2132
+ #
2133
+ # R2
2134
+ #
2135
+ # : R2, also known as the coefficient of determination, is used in
2136
+ # regression to quantify how much a model can explain the variance
2137
+ # of a dependent variable. Values range from one (1) to negative one
2138
+ # (-1). Higher numbers indicate a higher fraction of explained
2139
+ # variability. `R2` values close to zero (0) indicate that very
2140
+ # little of the dependent variable can be explained by the model.
2141
+ # Negative values indicate a poor fit and that the model is
2142
+ # outperformed by a constant function. For linear regression, this
2143
+ # is a horizontal line.
2144
+ #
2145
+ # Recall
2146
+ #
2147
+ # : Recall measures how well an algorithm correctly predicts all of
2148
+ # the true positives (TP) in a dataset. A true positive is a
2149
+ # positive prediction that is also an actual positive value in the
2150
+ # data. Recall is defined as follows: Recall = TP/(TP+FN), with
2151
+ # values ranging from 0 to 1. Higher scores reflect a better ability
2152
+ # of the model to predict true positives (TP) in the data, and is
2153
+ # used in binary classification.
2154
+ #
2155
+ # Recall is important when testing for cancer because it's used to
2156
+ # find all of the true positives. A false positive (FP) reflects a
2157
+ # positive prediction that is actually negative in the data. It is
2158
+ # often insufficient to measure only recall, because predicting
2159
+ # every output as a true positive will yield a perfect recall score.
2160
+ #
2161
+ # RecallMacro
2162
+ #
2163
+ # : The RecallMacro computes recall for multiclass classification
2164
+ # problems by calculating recall for each class and averaging scores
2165
+ # to obtain recall for several classes. RecallMacro scores range
2166
+ # from 0 to 1. Higher scores reflect the model's ability to predict
2167
+ # true positives (TP) in a dataset. Whereas, a true positive
2168
+ # reflects a positive prediction that is also an actual positive
2169
+ # value in the data. It is often insufficient to measure only
2170
+ # recall, because predicting every output as a true positive will
2171
+ # yield a perfect recall score.
2172
+ #
2173
+ # RMSE
2174
+ #
2175
+ # : Root mean squared error (RMSE) measures the square root of the
2176
+ # squared difference between predicted and actual values, and it's
2177
+ # averaged over all values. It is used in regression analysis to
2178
+ # understand model prediction error. It's an important metric to
2179
+ # indicate the presence of large model errors and outliers. Values
2180
+ # range from zero (0) to infinity, with smaller numbers indicating a
2181
+ # better model fit to the data. RMSE is dependent on scale, and
2182
+ # should not be used to compare datasets of different sizes.
2078
2183
  #
2079
2184
  # If you do not specify a metric explicitly, the default behavior is
2080
2185
  # to automatically use:
@@ -9976,7 +10081,13 @@ module Aws::SageMaker
9976
10081
  # @return [Array<Types::AutoMLPartialFailureReason>]
9977
10082
  #
9978
10083
  # @!attribute [rw] best_candidate
9979
- # Returns the job's best `AutoMLCandidate`.
10084
+ # The best model candidate selected by SageMaker Autopilot using both
10085
+ # the best objective metric and lowest [InferenceLatency][1] for an
10086
+ # experiment.
10087
+ #
10088
+ #
10089
+ #
10090
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
9980
10091
  # @return [Types::AutoMLCandidate]
9981
10092
  #
9982
10093
  # @!attribute [rw] auto_ml_job_status
@@ -14654,8 +14765,8 @@ module Aws::SageMaker
14654
14765
  # @return [String]
14655
14766
  #
14656
14767
  # @!attribute [rw] sources
14657
- # A list of the Amazon Resource Name (ARN) and, if applicable, job
14658
- # type for multiple sources of an experiment run.
14768
+ # A list of ARNs and, if applicable, job types for multiple sources of
14769
+ # an experiment run.
14659
14770
  # @return [Array<Types::TrialComponentSource>]
14660
14771
  #
14661
14772
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrialComponentResponse AWS API Documentation
@@ -15277,11 +15388,18 @@ module Aws::SageMaker
15277
15388
  # [1]: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
15278
15389
  # @return [String]
15279
15390
  #
15391
+ # @!attribute [rw] security_group_ids
15392
+ # The security groups for the Amazon Virtual Private Cloud that the
15393
+ # `Domain` uses for communication between Domain-level apps and user
15394
+ # apps.
15395
+ # @return [Array<String>]
15396
+ #
15280
15397
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DomainSettingsForUpdate AWS API Documentation
15281
15398
  #
15282
15399
  class DomainSettingsForUpdate < Struct.new(
15283
15400
  :r_studio_server_pro_domain_settings_for_update,
15284
- :execution_role_identity_config)
15401
+ :execution_role_identity_config,
15402
+ :security_group_ids)
15285
15403
  SENSITIVE = []
15286
15404
  include Aws::Structure
15287
15405
  end
@@ -16336,8 +16454,8 @@ module Aws::SageMaker
16336
16454
  # * CreateTransformJob
16337
16455
  #
16338
16456
  # @!attribute [rw] experiment_name
16339
- # The name of an existing experiment to associate the trial component
16340
- # with.
16457
+ # The name of an existing experiment to associate with the trial
16458
+ # component.
16341
16459
  # @return [String]
16342
16460
  #
16343
16461
  # @!attribute [rw] trial_name
@@ -16351,8 +16469,8 @@ module Aws::SageMaker
16351
16469
  # @return [String]
16352
16470
  #
16353
16471
  # @!attribute [rw] run_name
16354
- # The name of the experiment run to associate the trial component
16355
- # with.
16472
+ # The name of the experiment run to associate with the trial
16473
+ # component.
16356
16474
  # @return [String]
16357
16475
  #
16358
16476
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
@@ -18978,7 +19096,7 @@ module Aws::SageMaker
18978
19096
  # The number of instances of the type specified by `InstanceType`.
18979
19097
  # Choose an instance count larger than 1 for distributed training
18980
19098
  # algorithms. See [SageMaker distributed training jobs][1] for more
18981
- # information.
19099
+ # informcration.
18982
19100
  #
18983
19101
  #
18984
19102
  #
@@ -19034,8 +19152,8 @@ module Aws::SageMaker
19034
19152
  # @!attribute [rw] parameter_ranges
19035
19153
  # The ParameterRanges object that specifies the ranges of
19036
19154
  # hyperparameters that this tuning job searches over to find the
19037
- # optimal configuration for the highest model performance against
19038
- # .your chosen objective metric.
19155
+ # optimal configuration for the highest model performance against your
19156
+ # chosen objective metric.
19039
19157
  # @return [Types::ParameterRanges]
19040
19158
  #
19041
19159
  # @!attribute [rw] training_job_early_stopping_type
@@ -32312,11 +32430,21 @@ module Aws::SageMaker
32312
32430
  # version, and the instance type that the version runs on.
32313
32431
  # @return [Types::ResourceSpec]
32314
32432
  #
32433
+ # @!attribute [rw] r_studio_connect_url
32434
+ # A URL pointing to an RStudio Connect server.
32435
+ # @return [String]
32436
+ #
32437
+ # @!attribute [rw] r_studio_package_manager_url
32438
+ # A URL pointing to an RStudio Package Manager server.
32439
+ # @return [String]
32440
+ #
32315
32441
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RStudioServerProDomainSettingsForUpdate AWS API Documentation
32316
32442
  #
32317
32443
  class RStudioServerProDomainSettingsForUpdate < Struct.new(
32318
32444
  :domain_execution_role_arn,
32319
- :default_resource_spec)
32445
+ :default_resource_spec,
32446
+ :r_studio_connect_url,
32447
+ :r_studio_package_manager_url)
32320
32448
  SENSITIVE = []
32321
32449
  include Aws::Structure
32322
32450
  end
@@ -37142,13 +37270,22 @@ module Aws::SageMaker
37142
37270
  # The default settings used to create a space within the Domain.
37143
37271
  # @return [Types::DefaultSpaceSettings]
37144
37272
  #
37273
+ # @!attribute [rw] app_security_group_management
37274
+ # The entity that creates and manages the required security groups for
37275
+ # inter-app communication in `VPCOnly` mode. Required when
37276
+ # `CreateDomain.AppNetworkAccessType` is `VPCOnly` and
37277
+ # `DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn`
37278
+ # is provided.
37279
+ # @return [String]
37280
+ #
37145
37281
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateDomainRequest AWS API Documentation
37146
37282
  #
37147
37283
  class UpdateDomainRequest < Struct.new(
37148
37284
  :domain_id,
37149
37285
  :default_user_settings,
37150
37286
  :domain_settings_for_update,
37151
- :default_space_settings)
37287
+ :default_space_settings,
37288
+ :app_security_group_management)
37152
37289
  SENSITIVE = []
37153
37290
  include Aws::Structure
37154
37291
  end
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.157.0'
56
+ GEM_VERSION = '1.159.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.157.0
4
+ version: 1.159.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-12-19 00:00:00.000000000 Z
11
+ date: 2022-12-21 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core