aws-sdk-sagemaker 1.157.0 → 1.159.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +25 -9
- data/lib/aws-sdk-sagemaker/client_api.rb +4 -0
- data/lib/aws-sdk-sagemaker/types.rb +209 -72
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: '0890d98eddadde040eac5ef7d4ed869dd3bb6461060f0859d47518379b660a1b'
|
4
|
+
data.tar.gz: 16aeb1fc5318f4b9d0dea72a879d43b4189e592c55c405dddb801cf999cd241b
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 75d8ae6495bdd8f4c52f7005715d31cc775da29ec8266a14eecff3347a025fb3e068707fca46c592a98d207efbc464a0e576c3001e612915d7cac4fc880de535
|
7
|
+
data.tar.gz: 26511dfec195d859f21ad3a0d914c8c57f12ac8f85157460e7a3d0a7b31ca6b8332d63294e767ea1523e4b5f98f69fb745b707bd36036b48388ad874e36670fb
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.159.0 (2022-12-21)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - This release enables adding RStudio Workbench support to an existing Amazon SageMaker Studio domain. It allows setting your RStudio on SageMaker environment configuration parameters and also updating the RStudioConnectUrl and RStudioPackageManagerUrl parameters for existing domains
|
8
|
+
|
9
|
+
1.158.0 (2022-12-20)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Amazon SageMaker Autopilot adds support for new objective metrics in CreateAutoMLJob API.
|
13
|
+
|
4
14
|
1.157.0 (2022-12-19)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.159.0
|
@@ -1260,7 +1260,7 @@ module Aws::SageMaker
|
|
1260
1260
|
# },
|
1261
1261
|
# problem_type: "BinaryClassification", # accepts BinaryClassification, MulticlassClassification, Regression
|
1262
1262
|
# auto_ml_job_objective: {
|
1263
|
-
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC
|
1263
|
+
# metric_name: "Accuracy", # required, accepts Accuracy, MSE, F1, F1macro, AUC, RMSE, MAE, R2, BalancedAccuracy, Precision, PrecisionMacro, Recall, RecallMacro
|
1264
1264
|
# },
|
1265
1265
|
# auto_ml_job_config: {
|
1266
1266
|
# completion_criteria: {
|
@@ -2702,11 +2702,16 @@ module Aws::SageMaker
|
|
2702
2702
|
req.send_request(options)
|
2703
2703
|
end
|
2704
2704
|
|
2705
|
-
# Creates
|
2705
|
+
# Creates a SageMaker *experiment*. An experiment is a collection of
|
2706
2706
|
# *trials* that are observed, compared and evaluated as a group. A trial
|
2707
2707
|
# is a set of steps, called *trial components*, that produce a machine
|
2708
2708
|
# learning model.
|
2709
2709
|
#
|
2710
|
+
# <note markdown="1"> In the Studio UI, trials are referred to as *run groups* and trial
|
2711
|
+
# components are referred to as *runs*.
|
2712
|
+
#
|
2713
|
+
# </note>
|
2714
|
+
#
|
2710
2715
|
# The goal of an experiment is to determine the components that produce
|
2711
2716
|
# the best model. Multiple trials are performed, each one isolating and
|
2712
2717
|
# measuring the impact of a change to one or more inputs, while keeping
|
@@ -9545,7 +9550,7 @@ module Aws::SageMaker
|
|
9545
9550
|
# resp.output_data_config.kms_key_id #=> String
|
9546
9551
|
# resp.output_data_config.s3_output_path #=> String
|
9547
9552
|
# resp.role_arn #=> String
|
9548
|
-
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
9553
|
+
# resp.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
9549
9554
|
# resp.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
9550
9555
|
# resp.auto_ml_job_config.completion_criteria.max_candidates #=> Integer
|
9551
9556
|
# resp.auto_ml_job_config.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -9567,7 +9572,7 @@ module Aws::SageMaker
|
|
9567
9572
|
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
9568
9573
|
# resp.best_candidate.candidate_name #=> String
|
9569
9574
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
9570
|
-
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
9575
|
+
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
9571
9576
|
# resp.best_candidate.final_auto_ml_job_objective_metric.value #=> Float
|
9572
9577
|
# resp.best_candidate.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
9573
9578
|
# resp.best_candidate.candidate_steps #=> Array
|
@@ -9587,7 +9592,7 @@ module Aws::SageMaker
|
|
9587
9592
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
9588
9593
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.model_insights #=> String
|
9589
9594
|
# resp.best_candidate.candidate_properties.candidate_metrics #=> Array
|
9590
|
-
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
9595
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
9591
9596
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
9592
9597
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
9593
9598
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
@@ -9596,7 +9601,7 @@ module Aws::SageMaker
|
|
9596
9601
|
# resp.generate_candidate_definitions_only #=> Boolean
|
9597
9602
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
9598
9603
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
9599
|
-
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
9604
|
+
# resp.resolved_attributes.auto_ml_job_objective.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
9600
9605
|
# resp.resolved_attributes.problem_type #=> String, one of "BinaryClassification", "MulticlassClassification", "Regression"
|
9601
9606
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
9602
9607
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
@@ -14645,7 +14650,7 @@ module Aws::SageMaker
|
|
14645
14650
|
# resp.candidates #=> Array
|
14646
14651
|
# resp.candidates[0].candidate_name #=> String
|
14647
14652
|
# resp.candidates[0].final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
14648
|
-
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
14653
|
+
# resp.candidates[0].final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
14649
14654
|
# resp.candidates[0].final_auto_ml_job_objective_metric.value #=> Float
|
14650
14655
|
# resp.candidates[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
|
14651
14656
|
# resp.candidates[0].candidate_steps #=> Array
|
@@ -14665,7 +14670,7 @@ module Aws::SageMaker
|
|
14665
14670
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
14666
14671
|
# resp.candidates[0].candidate_properties.candidate_artifact_locations.model_insights #=> String
|
14667
14672
|
# resp.candidates[0].candidate_properties.candidate_metrics #=> Array
|
14668
|
-
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
14673
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro"
|
14669
14674
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
14670
14675
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
14671
14676
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss", "InferenceLatency"
|
@@ -20712,6 +20717,13 @@ module Aws::SageMaker
|
|
20712
20717
|
# @option params [Types::DefaultSpaceSettings] :default_space_settings
|
20713
20718
|
# The default settings used to create a space within the Domain.
|
20714
20719
|
#
|
20720
|
+
# @option params [String] :app_security_group_management
|
20721
|
+
# The entity that creates and manages the required security groups for
|
20722
|
+
# inter-app communication in `VPCOnly` mode. Required when
|
20723
|
+
# `CreateDomain.AppNetworkAccessType` is `VPCOnly` and
|
20724
|
+
# `DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn`
|
20725
|
+
# is provided.
|
20726
|
+
#
|
20715
20727
|
# @return [Types::UpdateDomainResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
20716
20728
|
#
|
20717
20729
|
# * {Types::UpdateDomainResponse#domain_arn #domain_arn} => String
|
@@ -20801,8 +20813,11 @@ module Aws::SageMaker
|
|
20801
20813
|
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
|
20802
20814
|
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
20803
20815
|
# },
|
20816
|
+
# r_studio_connect_url: "String",
|
20817
|
+
# r_studio_package_manager_url: "String",
|
20804
20818
|
# },
|
20805
20819
|
# execution_role_identity_config: "USER_PROFILE_NAME", # accepts USER_PROFILE_NAME, DISABLED
|
20820
|
+
# security_group_ids: ["SecurityGroupId"],
|
20806
20821
|
# },
|
20807
20822
|
# default_space_settings: {
|
20808
20823
|
# execution_role: "RoleArn",
|
@@ -20838,6 +20853,7 @@ module Aws::SageMaker
|
|
20838
20853
|
# lifecycle_config_arns: ["StudioLifecycleConfigArn"],
|
20839
20854
|
# },
|
20840
20855
|
# },
|
20856
|
+
# app_security_group_management: "Service", # accepts Service, Customer
|
20841
20857
|
# })
|
20842
20858
|
#
|
20843
20859
|
# @example Response structure
|
@@ -22700,7 +22716,7 @@ module Aws::SageMaker
|
|
22700
22716
|
params: params,
|
22701
22717
|
config: config)
|
22702
22718
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
22703
|
-
context[:gem_version] = '1.
|
22719
|
+
context[:gem_version] = '1.159.0'
|
22704
22720
|
Seahorse::Client::Request.new(handlers, context)
|
22705
22721
|
end
|
22706
22722
|
|
@@ -4593,6 +4593,7 @@ module Aws::SageMaker
|
|
4593
4593
|
|
4594
4594
|
DomainSettingsForUpdate.add_member(:r_studio_server_pro_domain_settings_for_update, Shapes::ShapeRef.new(shape: RStudioServerProDomainSettingsForUpdate, location_name: "RStudioServerProDomainSettingsForUpdate"))
|
4595
4595
|
DomainSettingsForUpdate.add_member(:execution_role_identity_config, Shapes::ShapeRef.new(shape: ExecutionRoleIdentityConfig, location_name: "ExecutionRoleIdentityConfig"))
|
4596
|
+
DomainSettingsForUpdate.add_member(:security_group_ids, Shapes::ShapeRef.new(shape: DomainSecurityGroupIds, location_name: "SecurityGroupIds"))
|
4596
4597
|
DomainSettingsForUpdate.struct_class = Types::DomainSettingsForUpdate
|
4597
4598
|
|
4598
4599
|
DriftCheckBaselines.add_member(:bias, Shapes::ShapeRef.new(shape: DriftCheckBias, location_name: "Bias"))
|
@@ -7555,6 +7556,8 @@ module Aws::SageMaker
|
|
7555
7556
|
|
7556
7557
|
RStudioServerProDomainSettingsForUpdate.add_member(:domain_execution_role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "DomainExecutionRoleArn"))
|
7557
7558
|
RStudioServerProDomainSettingsForUpdate.add_member(:default_resource_spec, Shapes::ShapeRef.new(shape: ResourceSpec, location_name: "DefaultResourceSpec"))
|
7559
|
+
RStudioServerProDomainSettingsForUpdate.add_member(:r_studio_connect_url, Shapes::ShapeRef.new(shape: String, location_name: "RStudioConnectUrl"))
|
7560
|
+
RStudioServerProDomainSettingsForUpdate.add_member(:r_studio_package_manager_url, Shapes::ShapeRef.new(shape: String, location_name: "RStudioPackageManagerUrl"))
|
7558
7561
|
RStudioServerProDomainSettingsForUpdate.struct_class = Types::RStudioServerProDomainSettingsForUpdate
|
7559
7562
|
|
7560
7563
|
RealTimeInferenceConfig.add_member(:instance_type, Shapes::ShapeRef.new(shape: InstanceType, required: true, location_name: "InstanceType"))
|
@@ -8363,6 +8366,7 @@ module Aws::SageMaker
|
|
8363
8366
|
UpdateDomainRequest.add_member(:default_user_settings, Shapes::ShapeRef.new(shape: UserSettings, location_name: "DefaultUserSettings"))
|
8364
8367
|
UpdateDomainRequest.add_member(:domain_settings_for_update, Shapes::ShapeRef.new(shape: DomainSettingsForUpdate, location_name: "DomainSettingsForUpdate"))
|
8365
8368
|
UpdateDomainRequest.add_member(:default_space_settings, Shapes::ShapeRef.new(shape: DefaultSpaceSettings, location_name: "DefaultSpaceSettings"))
|
8369
|
+
UpdateDomainRequest.add_member(:app_security_group_management, Shapes::ShapeRef.new(shape: AppSecurityGroupManagement, location_name: "AppSecurityGroupManagement"))
|
8366
8370
|
UpdateDomainRequest.struct_class = Types::UpdateDomainRequest
|
8367
8371
|
|
8368
8372
|
UpdateDomainResponse.add_member(:domain_arn, Shapes::ShapeRef.new(shape: DomainArn, location_name: "DomainArn"))
|
@@ -2015,66 +2015,171 @@ module Aws::SageMaker
|
|
2015
2015
|
#
|
2016
2016
|
# Here are the options:
|
2017
2017
|
#
|
2018
|
-
#
|
2019
|
-
#
|
2020
|
-
#
|
2021
|
-
#
|
2022
|
-
#
|
2023
|
-
#
|
2024
|
-
#
|
2025
|
-
#
|
2026
|
-
#
|
2027
|
-
#
|
2028
|
-
#
|
2029
|
-
#
|
2030
|
-
#
|
2031
|
-
#
|
2032
|
-
#
|
2033
|
-
#
|
2018
|
+
# Accuracy
|
2019
|
+
#
|
2020
|
+
# : The ratio of the number of correctly classified items to the total
|
2021
|
+
# number of (correctly and incorrectly) classified items. It is used
|
2022
|
+
# for both binary and multiclass classification. Accuracy measures
|
2023
|
+
# how close the predicted class values are to the actual values.
|
2024
|
+
# Values for accuracy metrics vary between zero (0) and one (1). A
|
2025
|
+
# value of 1 indicates perfect accuracy, and 0 indicates perfect
|
2026
|
+
# inaccuracy.
|
2027
|
+
#
|
2028
|
+
# AUC
|
2029
|
+
#
|
2030
|
+
# : The area under the curve (AUC) metric is used to compare and
|
2031
|
+
# evaluate binary classification by algorithms that return
|
2032
|
+
# probabilities, such as logistic regression. To map the
|
2033
|
+
# probabilities into classifications, these are compared against a
|
2034
|
+
# threshold value.
|
2035
|
+
#
|
2036
|
+
# The relevant curve is the receiver operating characteristic curve
|
2037
|
+
# (ROC curve). The ROC curve plots the true positive rate (TPR) of
|
2038
|
+
# predictions (or recall) against the false positive rate (FPR) as a
|
2039
|
+
# function of the threshold value, above which a prediction is
|
2040
|
+
# considered positive. Increasing the threshold results in fewer
|
2041
|
+
# false positives, but more false negatives.
|
2042
|
+
#
|
2043
|
+
# AUC is the area under this ROC curve. Therefore, AUC provides an
|
2044
|
+
# aggregated measure of the model performance across all possible
|
2045
|
+
# classification thresholds. AUC scores vary between 0 and 1. A
|
2046
|
+
# score of 1 indicates perfect accuracy, and a score of one half
|
2047
|
+
# (0.5) indicates that the prediction is not better than a random
|
2048
|
+
# classifier.
|
2049
|
+
#
|
2050
|
+
# BalancedAccuracy
|
2051
|
+
#
|
2052
|
+
# : `BalancedAccuracy` is a metric that measures the ratio of accurate
|
2053
|
+
# predictions to all predictions. This ratio is calculated after
|
2054
|
+
# normalizing true positives (TP) and true negatives (TN) by the
|
2055
|
+
# total number of positive (P) and negative (N) values. It is used
|
2056
|
+
# in both binary and multiclass classification and is defined as
|
2057
|
+
# follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
|
2058
|
+
# `BalancedAccuracy` gives a better measure of accuracy when the
|
2059
|
+
# number of positives or negatives differ greatly from each other in
|
2060
|
+
# an imbalanced dataset. For example, when only 1% of email is spam.
|
2061
|
+
#
|
2062
|
+
# F1
|
2063
|
+
#
|
2064
|
+
# : The `F1` score is the harmonic mean of the precision and recall,
|
2065
|
+
# defined as follows: F1 = 2 * (precision * recall) / (precision +
|
2066
|
+
# recall). It is used for binary classification into classes
|
2034
2067
|
# traditionally referred to as positive and negative. Predictions
|
2035
|
-
# are said to be true when they match their actual (correct) class
|
2036
|
-
# and false when they do not.
|
2037
|
-
#
|
2038
|
-
#
|
2039
|
-
#
|
2040
|
-
#
|
2041
|
-
#
|
2042
|
-
#
|
2043
|
-
#
|
2044
|
-
#
|
2045
|
-
#
|
2046
|
-
#
|
2047
|
-
#
|
2048
|
-
#
|
2049
|
-
#
|
2050
|
-
#
|
2051
|
-
#
|
2052
|
-
#
|
2053
|
-
#
|
2054
|
-
#
|
2055
|
-
#
|
2056
|
-
#
|
2057
|
-
#
|
2058
|
-
#
|
2059
|
-
#
|
2060
|
-
#
|
2061
|
-
#
|
2062
|
-
#
|
2063
|
-
#
|
2064
|
-
#
|
2065
|
-
#
|
2066
|
-
#
|
2067
|
-
#
|
2068
|
-
#
|
2069
|
-
#
|
2070
|
-
#
|
2071
|
-
#
|
2072
|
-
#
|
2073
|
-
#
|
2074
|
-
#
|
2075
|
-
#
|
2076
|
-
#
|
2077
|
-
#
|
2068
|
+
# are said to be true when they match their actual (correct) class,
|
2069
|
+
# and false when they do not.
|
2070
|
+
#
|
2071
|
+
# Precision is the ratio of the true positive predictions to all
|
2072
|
+
# positive predictions, and it includes the false positives in a
|
2073
|
+
# dataset. Precision measures the quality of the prediction when it
|
2074
|
+
# predicts the positive class.
|
2075
|
+
#
|
2076
|
+
# Recall (or sensitivity) is the ratio of the true positive
|
2077
|
+
# predictions to all actual positive instances. Recall measures how
|
2078
|
+
# completely a model predicts the actual class members in a dataset.
|
2079
|
+
#
|
2080
|
+
# F1 scores vary between 0 and 1. A score of 1 indicates the best
|
2081
|
+
# possible performance, and 0 indicates the worst.
|
2082
|
+
#
|
2083
|
+
# F1macro
|
2084
|
+
#
|
2085
|
+
# : The `F1macro` score applies F1 scoring to multiclass
|
2086
|
+
# classification problems. It does this by calculating the precision
|
2087
|
+
# and recall, and then taking their harmonic mean to calculate the
|
2088
|
+
# F1 score for each class. Lastly, the F1macro averages the
|
2089
|
+
# individual scores to obtain the `F1macro` score. `F1macro` scores
|
2090
|
+
# vary between 0 and 1. A score of 1 indicates the best possible
|
2091
|
+
# performance, and 0 indicates the worst.
|
2092
|
+
#
|
2093
|
+
# MAE
|
2094
|
+
#
|
2095
|
+
# : The mean absolute error (MAE) is a measure of how different the
|
2096
|
+
# predicted and actual values are, when they're averaged over all
|
2097
|
+
# values. MAE is commonly used in regression analysis to understand
|
2098
|
+
# model prediction error. If there is linear regression, MAE
|
2099
|
+
# represents the average distance from a predicted line to the
|
2100
|
+
# actual value. MAE is defined as the sum of absolute errors divided
|
2101
|
+
# by the number of observations. Values range from 0 to infinity,
|
2102
|
+
# with smaller numbers indicating a better model fit to the data.
|
2103
|
+
#
|
2104
|
+
# MSE
|
2105
|
+
#
|
2106
|
+
# : The mean squared error (MSE) is the average of the squared
|
2107
|
+
# differences between the predicted and actual values. It is used
|
2108
|
+
# for regression. MSE values are always positive. The better a model
|
2109
|
+
# is at predicting the actual values, the smaller the MSE value is
|
2110
|
+
#
|
2111
|
+
# Precision
|
2112
|
+
#
|
2113
|
+
# : Precision measures how well an algorithm predicts the true
|
2114
|
+
# positives (TP) out of all of the positives that it identifies. It
|
2115
|
+
# is defined as follows: Precision = TP/(TP+FP), with values ranging
|
2116
|
+
# from zero (0) to one (1), and is used in binary classification.
|
2117
|
+
# Precision is an important metric when the cost of a false positive
|
2118
|
+
# is high. For example, the cost of a false positive is very high if
|
2119
|
+
# an airplane safety system is falsely deemed safe to fly. A false
|
2120
|
+
# positive (FP) reflects a positive prediction that is actually
|
2121
|
+
# negative in the data.
|
2122
|
+
#
|
2123
|
+
# PrecisionMacro
|
2124
|
+
#
|
2125
|
+
# : The precision macro computes precision for multiclass
|
2126
|
+
# classification problems. It does this by calculating precision for
|
2127
|
+
# each class and averaging scores to obtain precision for several
|
2128
|
+
# classes. `PrecisionMacro` scores range from zero (0) to one (1).
|
2129
|
+
# Higher scores reflect the model's ability to predict true
|
2130
|
+
# positives (TP) out of all of the positives that it identifies,
|
2131
|
+
# averaged across multiple classes.
|
2132
|
+
#
|
2133
|
+
# R2
|
2134
|
+
#
|
2135
|
+
# : R2, also known as the coefficient of determination, is used in
|
2136
|
+
# regression to quantify how much a model can explain the variance
|
2137
|
+
# of a dependent variable. Values range from one (1) to negative one
|
2138
|
+
# (-1). Higher numbers indicate a higher fraction of explained
|
2139
|
+
# variability. `R2` values close to zero (0) indicate that very
|
2140
|
+
# little of the dependent variable can be explained by the model.
|
2141
|
+
# Negative values indicate a poor fit and that the model is
|
2142
|
+
# outperformed by a constant function. For linear regression, this
|
2143
|
+
# is a horizontal line.
|
2144
|
+
#
|
2145
|
+
# Recall
|
2146
|
+
#
|
2147
|
+
# : Recall measures how well an algorithm correctly predicts all of
|
2148
|
+
# the true positives (TP) in a dataset. A true positive is a
|
2149
|
+
# positive prediction that is also an actual positive value in the
|
2150
|
+
# data. Recall is defined as follows: Recall = TP/(TP+FN), with
|
2151
|
+
# values ranging from 0 to 1. Higher scores reflect a better ability
|
2152
|
+
# of the model to predict true positives (TP) in the data, and is
|
2153
|
+
# used in binary classification.
|
2154
|
+
#
|
2155
|
+
# Recall is important when testing for cancer because it's used to
|
2156
|
+
# find all of the true positives. A false positive (FP) reflects a
|
2157
|
+
# positive prediction that is actually negative in the data. It is
|
2158
|
+
# often insufficient to measure only recall, because predicting
|
2159
|
+
# every output as a true positive will yield a perfect recall score.
|
2160
|
+
#
|
2161
|
+
# RecallMacro
|
2162
|
+
#
|
2163
|
+
# : The RecallMacro computes recall for multiclass classification
|
2164
|
+
# problems by calculating recall for each class and averaging scores
|
2165
|
+
# to obtain recall for several classes. RecallMacro scores range
|
2166
|
+
# from 0 to 1. Higher scores reflect the model's ability to predict
|
2167
|
+
# true positives (TP) in a dataset. Whereas, a true positive
|
2168
|
+
# reflects a positive prediction that is also an actual positive
|
2169
|
+
# value in the data. It is often insufficient to measure only
|
2170
|
+
# recall, because predicting every output as a true positive will
|
2171
|
+
# yield a perfect recall score.
|
2172
|
+
#
|
2173
|
+
# RMSE
|
2174
|
+
#
|
2175
|
+
# : Root mean squared error (RMSE) measures the square root of the
|
2176
|
+
# squared difference between predicted and actual values, and it's
|
2177
|
+
# averaged over all values. It is used in regression analysis to
|
2178
|
+
# understand model prediction error. It's an important metric to
|
2179
|
+
# indicate the presence of large model errors and outliers. Values
|
2180
|
+
# range from zero (0) to infinity, with smaller numbers indicating a
|
2181
|
+
# better model fit to the data. RMSE is dependent on scale, and
|
2182
|
+
# should not be used to compare datasets of different sizes.
|
2078
2183
|
#
|
2079
2184
|
# If you do not specify a metric explicitly, the default behavior is
|
2080
2185
|
# to automatically use:
|
@@ -9976,7 +10081,13 @@ module Aws::SageMaker
|
|
9976
10081
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
9977
10082
|
#
|
9978
10083
|
# @!attribute [rw] best_candidate
|
9979
|
-
#
|
10084
|
+
# The best model candidate selected by SageMaker Autopilot using both
|
10085
|
+
# the best objective metric and lowest [InferenceLatency][1] for an
|
10086
|
+
# experiment.
|
10087
|
+
#
|
10088
|
+
#
|
10089
|
+
#
|
10090
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
|
9980
10091
|
# @return [Types::AutoMLCandidate]
|
9981
10092
|
#
|
9982
10093
|
# @!attribute [rw] auto_ml_job_status
|
@@ -14654,8 +14765,8 @@ module Aws::SageMaker
|
|
14654
14765
|
# @return [String]
|
14655
14766
|
#
|
14656
14767
|
# @!attribute [rw] sources
|
14657
|
-
# A list of
|
14658
|
-
#
|
14768
|
+
# A list of ARNs and, if applicable, job types for multiple sources of
|
14769
|
+
# an experiment run.
|
14659
14770
|
# @return [Array<Types::TrialComponentSource>]
|
14660
14771
|
#
|
14661
14772
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrialComponentResponse AWS API Documentation
|
@@ -15277,11 +15388,18 @@ module Aws::SageMaker
|
|
15277
15388
|
# [1]: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
|
15278
15389
|
# @return [String]
|
15279
15390
|
#
|
15391
|
+
# @!attribute [rw] security_group_ids
|
15392
|
+
# The security groups for the Amazon Virtual Private Cloud that the
|
15393
|
+
# `Domain` uses for communication between Domain-level apps and user
|
15394
|
+
# apps.
|
15395
|
+
# @return [Array<String>]
|
15396
|
+
#
|
15280
15397
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DomainSettingsForUpdate AWS API Documentation
|
15281
15398
|
#
|
15282
15399
|
class DomainSettingsForUpdate < Struct.new(
|
15283
15400
|
:r_studio_server_pro_domain_settings_for_update,
|
15284
|
-
:execution_role_identity_config
|
15401
|
+
:execution_role_identity_config,
|
15402
|
+
:security_group_ids)
|
15285
15403
|
SENSITIVE = []
|
15286
15404
|
include Aws::Structure
|
15287
15405
|
end
|
@@ -16336,8 +16454,8 @@ module Aws::SageMaker
|
|
16336
16454
|
# * CreateTransformJob
|
16337
16455
|
#
|
16338
16456
|
# @!attribute [rw] experiment_name
|
16339
|
-
# The name of an existing experiment to associate the trial
|
16340
|
-
#
|
16457
|
+
# The name of an existing experiment to associate with the trial
|
16458
|
+
# component.
|
16341
16459
|
# @return [String]
|
16342
16460
|
#
|
16343
16461
|
# @!attribute [rw] trial_name
|
@@ -16351,8 +16469,8 @@ module Aws::SageMaker
|
|
16351
16469
|
# @return [String]
|
16352
16470
|
#
|
16353
16471
|
# @!attribute [rw] run_name
|
16354
|
-
# The name of the experiment run to associate the trial
|
16355
|
-
#
|
16472
|
+
# The name of the experiment run to associate with the trial
|
16473
|
+
# component.
|
16356
16474
|
# @return [String]
|
16357
16475
|
#
|
16358
16476
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ExperimentConfig AWS API Documentation
|
@@ -18978,7 +19096,7 @@ module Aws::SageMaker
|
|
18978
19096
|
# The number of instances of the type specified by `InstanceType`.
|
18979
19097
|
# Choose an instance count larger than 1 for distributed training
|
18980
19098
|
# algorithms. See [SageMaker distributed training jobs][1] for more
|
18981
|
-
#
|
19099
|
+
# informcration.
|
18982
19100
|
#
|
18983
19101
|
#
|
18984
19102
|
#
|
@@ -19034,8 +19152,8 @@ module Aws::SageMaker
|
|
19034
19152
|
# @!attribute [rw] parameter_ranges
|
19035
19153
|
# The ParameterRanges object that specifies the ranges of
|
19036
19154
|
# hyperparameters that this tuning job searches over to find the
|
19037
|
-
# optimal configuration for the highest model performance against
|
19038
|
-
#
|
19155
|
+
# optimal configuration for the highest model performance against your
|
19156
|
+
# chosen objective metric.
|
19039
19157
|
# @return [Types::ParameterRanges]
|
19040
19158
|
#
|
19041
19159
|
# @!attribute [rw] training_job_early_stopping_type
|
@@ -32312,11 +32430,21 @@ module Aws::SageMaker
|
|
32312
32430
|
# version, and the instance type that the version runs on.
|
32313
32431
|
# @return [Types::ResourceSpec]
|
32314
32432
|
#
|
32433
|
+
# @!attribute [rw] r_studio_connect_url
|
32434
|
+
# A URL pointing to an RStudio Connect server.
|
32435
|
+
# @return [String]
|
32436
|
+
#
|
32437
|
+
# @!attribute [rw] r_studio_package_manager_url
|
32438
|
+
# A URL pointing to an RStudio Package Manager server.
|
32439
|
+
# @return [String]
|
32440
|
+
#
|
32315
32441
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RStudioServerProDomainSettingsForUpdate AWS API Documentation
|
32316
32442
|
#
|
32317
32443
|
class RStudioServerProDomainSettingsForUpdate < Struct.new(
|
32318
32444
|
:domain_execution_role_arn,
|
32319
|
-
:default_resource_spec
|
32445
|
+
:default_resource_spec,
|
32446
|
+
:r_studio_connect_url,
|
32447
|
+
:r_studio_package_manager_url)
|
32320
32448
|
SENSITIVE = []
|
32321
32449
|
include Aws::Structure
|
32322
32450
|
end
|
@@ -37142,13 +37270,22 @@ module Aws::SageMaker
|
|
37142
37270
|
# The default settings used to create a space within the Domain.
|
37143
37271
|
# @return [Types::DefaultSpaceSettings]
|
37144
37272
|
#
|
37273
|
+
# @!attribute [rw] app_security_group_management
|
37274
|
+
# The entity that creates and manages the required security groups for
|
37275
|
+
# inter-app communication in `VPCOnly` mode. Required when
|
37276
|
+
# `CreateDomain.AppNetworkAccessType` is `VPCOnly` and
|
37277
|
+
# `DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn`
|
37278
|
+
# is provided.
|
37279
|
+
# @return [String]
|
37280
|
+
#
|
37145
37281
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateDomainRequest AWS API Documentation
|
37146
37282
|
#
|
37147
37283
|
class UpdateDomainRequest < Struct.new(
|
37148
37284
|
:domain_id,
|
37149
37285
|
:default_user_settings,
|
37150
37286
|
:domain_settings_for_update,
|
37151
|
-
:default_space_settings
|
37287
|
+
:default_space_settings,
|
37288
|
+
:app_security_group_management)
|
37152
37289
|
SENSITIVE = []
|
37153
37290
|
include Aws::Structure
|
37154
37291
|
end
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.159.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-12-
|
11
|
+
date: 2022-12-21 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|