aws-sdk-sagemaker 1.14.0 → 1.15.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +44 -19
- data/lib/aws-sdk-sagemaker/client_api.rb +3 -0
- data/lib/aws-sdk-sagemaker/types.rb +39 -22
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e6c6d54003180ce52b39107c7adfa377392801eb
|
4
|
+
data.tar.gz: cdb65654ff3d1595eb4430c17ff137cff94ed601
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: '06142596aae38449858815a979b91a1b513ae992375098afef34279b1926ec15675503dc905e00768b9b79cfa7aa92d25ceccd818be0c63e1368085cc92cc0dc'
|
7
|
+
data.tar.gz: a04f192489cc2ce3ee6e1a537f60e461df0fd34a99e4486cfc6c5a01443362e633f80f5fe12ab386dbc006839c683a0c3536796e897ba704cefb471491cc8e3b
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -544,28 +544,33 @@ module Aws::SageMaker
|
|
544
544
|
end
|
545
545
|
|
546
546
|
# Creates a model in Amazon SageMaker. In the request, you name the
|
547
|
-
# model and describe
|
547
|
+
# model and describe a primary container. For the primary container, you
|
548
548
|
# specify the docker image containing inference code, artifacts (from
|
549
549
|
# prior training), and custom environment map that the inference code
|
550
|
-
# uses when you deploy the model
|
550
|
+
# uses when you deploy the model for predictions.
|
551
551
|
#
|
552
|
-
# Use this API to create a model
|
553
|
-
#
|
554
|
-
# configuration with the `CreateEndpointConfig` API, and then create an
|
555
|
-
# endpoint with the `CreateEndpoint` API.
|
552
|
+
# Use this API to create a model if you want to use Amazon SageMaker
|
553
|
+
# hosting services or run a batch transform job.
|
556
554
|
#
|
557
|
-
#
|
558
|
-
#
|
555
|
+
# To host your model, you create an endpoint configuration with the
|
556
|
+
# `CreateEndpointConfig` API, and then create an endpoint with the
|
557
|
+
# `CreateEndpoint` API. Amazon SageMaker then deploys all of the
|
558
|
+
# containers that you defined for the model in the hosting environment.
|
559
|
+
#
|
560
|
+
# To run a batch transform using your model, you start a job with the
|
561
|
+
# `CreateTransformJob` API. Amazon SageMaker uses your model and your
|
562
|
+
# dataset to get inferences which are then saved to a specified S3
|
563
|
+
# location.
|
559
564
|
#
|
560
565
|
# In the `CreateModel` request, you must define a container with the
|
561
566
|
# `PrimaryContainer` parameter.
|
562
567
|
#
|
563
568
|
# In the request, you also provide an IAM role that Amazon SageMaker can
|
564
569
|
# assume to access model artifacts and docker image for deployment on ML
|
565
|
-
# compute hosting instances
|
566
|
-
#
|
567
|
-
# inference code access any other AWS
|
568
|
-
# permissions via this role.
|
570
|
+
# compute hosting instances or for batch transform jobs. In addition,
|
571
|
+
# you also use the IAM role to manage permissions the inference code
|
572
|
+
# needs. For example, if the inference code access any other AWS
|
573
|
+
# resources, you grant necessary permissions via this role.
|
569
574
|
#
|
570
575
|
# @option params [required, String] :model_name
|
571
576
|
# The name of the new model.
|
@@ -573,13 +578,14 @@ module Aws::SageMaker
|
|
573
578
|
# @option params [required, Types::ContainerDefinition] :primary_container
|
574
579
|
# The location of the primary docker image containing inference code,
|
575
580
|
# associated artifacts, and custom environment map that the inference
|
576
|
-
# code uses when the model is deployed
|
581
|
+
# code uses when the model is deployed for predictions.
|
577
582
|
#
|
578
583
|
# @option params [required, String] :execution_role_arn
|
579
584
|
# The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
|
580
585
|
# can assume to access model artifacts and docker image for deployment
|
581
|
-
# on ML compute instances
|
582
|
-
# model hosting. For more information, see
|
586
|
+
# on ML compute instances or for batch transform jobs. Deploying on ML
|
587
|
+
# compute instances is part of model hosting. For more information, see
|
588
|
+
# [Amazon SageMaker Roles][1].
|
583
589
|
#
|
584
590
|
# <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
|
585
591
|
# API must have the `iam:PassRole` permission.
|
@@ -602,7 +608,8 @@ module Aws::SageMaker
|
|
602
608
|
# @option params [Types::VpcConfig] :vpc_config
|
603
609
|
# A VpcConfig object that specifies the VPC that you want your model to
|
604
610
|
# connect to. Control access to and from your model container by
|
605
|
-
# configuring the VPC.
|
611
|
+
# configuring the VPC. `VpcConfig` is currently used in hosting services
|
612
|
+
# but not in batch transform. For more information, see host-vpc.
|
606
613
|
#
|
607
614
|
# @return [Types::CreateModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
608
615
|
#
|
@@ -1121,8 +1128,9 @@ module Aws::SageMaker
|
|
1121
1128
|
# unique within an AWS Region in an AWS account.
|
1122
1129
|
#
|
1123
1130
|
# * `ModelName` - Identifies the model to use. `ModelName` must be the
|
1124
|
-
# name of an existing Amazon SageMaker model
|
1125
|
-
#
|
1131
|
+
# name of an existing Amazon SageMaker model in the same AWS Region
|
1132
|
+
# and AWS account. For information on creating a model, see
|
1133
|
+
# CreateModel.
|
1126
1134
|
#
|
1127
1135
|
# * `TransformInput` - Describes the dataset to be transformed and the
|
1128
1136
|
# Amazon S3 location where it is stored.
|
@@ -1173,6 +1181,12 @@ module Aws::SageMaker
|
|
1173
1181
|
# `MultiRecord` means a mini-batch is set to contain as many records
|
1174
1182
|
# that can fit within the `MaxPayloadInMB` limit.
|
1175
1183
|
#
|
1184
|
+
# Batch transform will automatically split your input data into whatever
|
1185
|
+
# payload size is specified if you set `SplitType` to `Line` and
|
1186
|
+
# `BatchStrategy` to `MultiRecord`. There's no need to split the
|
1187
|
+
# dataset into smaller files or to use larger payload sizes unless the
|
1188
|
+
# records in your dataset are very large.
|
1189
|
+
#
|
1176
1190
|
# @option params [Hash<String,String>] :environment
|
1177
1191
|
# The environment variables to set in the Docker container. We support
|
1178
1192
|
# up to 16 key and values entries in the map.
|
@@ -2926,6 +2940,15 @@ module Aws::SageMaker
|
|
2926
2940
|
#
|
2927
2941
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
|
2928
2942
|
#
|
2943
|
+
# @option params [String] :lifecycle_config_name
|
2944
|
+
# The name of a lifecycle configuration to associate with the notebook
|
2945
|
+
# instance. For information about lifestyle configurations, see
|
2946
|
+
# notebook-lifecycle-config.
|
2947
|
+
#
|
2948
|
+
# @option params [Boolean] :disassociate_lifecycle_config
|
2949
|
+
# Set to `true` to remove the notebook instance lifecycle configuration
|
2950
|
+
# currently associated with the notebook instance.
|
2951
|
+
#
|
2929
2952
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
2930
2953
|
#
|
2931
2954
|
# @example Request syntax with placeholder values
|
@@ -2934,6 +2957,8 @@ module Aws::SageMaker
|
|
2934
2957
|
# notebook_instance_name: "NotebookInstanceName", # required
|
2935
2958
|
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
2936
2959
|
# role_arn: "RoleArn",
|
2960
|
+
# lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
|
2961
|
+
# disassociate_lifecycle_config: false,
|
2937
2962
|
# })
|
2938
2963
|
#
|
2939
2964
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstance AWS API Documentation
|
@@ -2999,7 +3024,7 @@ module Aws::SageMaker
|
|
2999
3024
|
params: params,
|
3000
3025
|
config: config)
|
3001
3026
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
3002
|
-
context[:gem_version] = '1.
|
3027
|
+
context[:gem_version] = '1.15.0'
|
3003
3028
|
Seahorse::Client::Request.new(handlers, context)
|
3004
3029
|
end
|
3005
3030
|
|
@@ -76,6 +76,7 @@ module Aws::SageMaker
|
|
76
76
|
DesiredWeightAndCapacity = Shapes::StructureShape.new(name: 'DesiredWeightAndCapacity')
|
77
77
|
DesiredWeightAndCapacityList = Shapes::ListShape.new(name: 'DesiredWeightAndCapacityList')
|
78
78
|
DirectInternetAccess = Shapes::StringShape.new(name: 'DirectInternetAccess')
|
79
|
+
DisassociateNotebookInstanceLifecycleConfig = Shapes::BooleanShape.new(name: 'DisassociateNotebookInstanceLifecycleConfig')
|
79
80
|
EndpointArn = Shapes::StringShape.new(name: 'EndpointArn')
|
80
81
|
EndpointConfigArn = Shapes::StringShape.new(name: 'EndpointConfigArn')
|
81
82
|
EndpointConfigName = Shapes::StringShape.new(name: 'EndpointConfigName')
|
@@ -999,6 +1000,8 @@ module Aws::SageMaker
|
|
999
1000
|
UpdateNotebookInstanceInput.add_member(:notebook_instance_name, Shapes::ShapeRef.new(shape: NotebookInstanceName, required: true, location_name: "NotebookInstanceName"))
|
1000
1001
|
UpdateNotebookInstanceInput.add_member(:instance_type, Shapes::ShapeRef.new(shape: InstanceType, location_name: "InstanceType"))
|
1001
1002
|
UpdateNotebookInstanceInput.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "RoleArn"))
|
1003
|
+
UpdateNotebookInstanceInput.add_member(:lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, location_name: "LifecycleConfigName"))
|
1004
|
+
UpdateNotebookInstanceInput.add_member(:disassociate_lifecycle_config, Shapes::ShapeRef.new(shape: DisassociateNotebookInstanceLifecycleConfig, location_name: "DisassociateLifecycleConfig"))
|
1002
1005
|
UpdateNotebookInstanceInput.struct_class = Types::UpdateNotebookInstanceInput
|
1003
1006
|
|
1004
1007
|
UpdateNotebookInstanceLifecycleConfigInput.add_member(:notebook_instance_lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, required: true, location_name: "NotebookInstanceLifecycleConfigName"))
|
@@ -618,15 +618,15 @@ module Aws::SageMaker
|
|
618
618
|
# @!attribute [rw] primary_container
|
619
619
|
# The location of the primary docker image containing inference code,
|
620
620
|
# associated artifacts, and custom environment map that the inference
|
621
|
-
# code uses when the model is deployed
|
621
|
+
# code uses when the model is deployed for predictions.
|
622
622
|
# @return [Types::ContainerDefinition]
|
623
623
|
#
|
624
624
|
# @!attribute [rw] execution_role_arn
|
625
625
|
# The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
|
626
626
|
# can assume to access model artifacts and docker image for deployment
|
627
|
-
# on ML compute instances. Deploying on ML
|
628
|
-
# of model hosting. For more information,
|
629
|
-
# Roles][1].
|
627
|
+
# on ML compute instances or for batch transform jobs. Deploying on ML
|
628
|
+
# compute instances is part of model hosting. For more information,
|
629
|
+
# see [Amazon SageMaker Roles][1].
|
630
630
|
#
|
631
631
|
# <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
|
632
632
|
# API must have the `iam:PassRole` permission.
|
@@ -651,7 +651,9 @@ module Aws::SageMaker
|
|
651
651
|
# @!attribute [rw] vpc_config
|
652
652
|
# A VpcConfig object that specifies the VPC that you want your model
|
653
653
|
# to connect to. Control access to and from your model container by
|
654
|
-
# configuring the VPC.
|
654
|
+
# configuring the VPC. `VpcConfig` is currently used in hosting
|
655
|
+
# services but not in batch transform. For more information, see
|
656
|
+
# host-vpc.
|
655
657
|
# @return [Types::VpcConfig]
|
656
658
|
#
|
657
659
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelInput AWS API Documentation
|
@@ -1150,6 +1152,12 @@ module Aws::SageMaker
|
|
1150
1152
|
# `SingleRecord` means only one record is used per mini-batch.
|
1151
1153
|
# `MultiRecord` means a mini-batch is set to contain as many records
|
1152
1154
|
# that can fit within the `MaxPayloadInMB` limit.
|
1155
|
+
#
|
1156
|
+
# Batch transform will automatically split your input data into
|
1157
|
+
# whatever payload size is specified if you set `SplitType` to `Line`
|
1158
|
+
# and `BatchStrategy` to `MultiRecord`. There's no need to split the
|
1159
|
+
# dataset into smaller files or to use larger payload sizes unless the
|
1160
|
+
# records in your dataset are very large.
|
1153
1161
|
# @return [String]
|
1154
1162
|
#
|
1155
1163
|
# @!attribute [rw] environment
|
@@ -1894,17 +1902,8 @@ module Aws::SageMaker
|
|
1894
1902
|
#
|
1895
1903
|
# * `Starting` - starting the training job.
|
1896
1904
|
#
|
1897
|
-
# * `LaunchingMLInstances` - launching ML instances for the training
|
1898
|
-
# job.
|
1899
|
-
#
|
1900
|
-
# * `PreparingTrainingStack` - preparing the ML instances for the
|
1901
|
-
# training job.
|
1902
|
-
#
|
1903
1905
|
# * `Downloading` - downloading the input data.
|
1904
1906
|
#
|
1905
|
-
# * `DownloadingTrainingImage` - downloading the training algorithm
|
1906
|
-
# image.
|
1907
|
-
#
|
1908
1907
|
# * `Training` - model training is in progress.
|
1909
1908
|
#
|
1910
1909
|
# * `Uploading` - uploading the trained model.
|
@@ -1913,16 +1912,17 @@ module Aws::SageMaker
|
|
1913
1912
|
#
|
1914
1913
|
# * `Stopped` - the training job has stopped.
|
1915
1914
|
#
|
1916
|
-
# * `MaxRuntimeExceeded` - the training
|
1917
|
-
# run time
|
1915
|
+
# * `MaxRuntimeExceeded` - the training job exceeded the specified max
|
1916
|
+
# run time and has been stopped.
|
1918
1917
|
#
|
1919
1918
|
# * `Completed` - the training job has completed.
|
1920
1919
|
#
|
1921
1920
|
# * `Failed` - the training job has failed. The failure reason is
|
1922
|
-
#
|
1921
|
+
# stored in the `FailureReason` field of
|
1922
|
+
# `DescribeTrainingJobResponse`.
|
1923
1923
|
#
|
1924
1924
|
# The valid values for `SecondaryStatus` are subject to change. They
|
1925
|
-
#
|
1925
|
+
# primarily provide information on the progress of the training job.
|
1926
1926
|
# @return [String]
|
1927
1927
|
#
|
1928
1928
|
# @!attribute [rw] failure_reason
|
@@ -1996,8 +1996,9 @@ module Aws::SageMaker
|
|
1996
1996
|
# @return [Time]
|
1997
1997
|
#
|
1998
1998
|
# @!attribute [rw] secondary_status_transitions
|
1999
|
-
#
|
2000
|
-
#
|
1999
|
+
# To give an overview of the training job lifecycle,
|
2000
|
+
# `SecondaryStatusTransitions` is a log of time-ordered secondary
|
2001
|
+
# statuses that a training job has transitioned.
|
2001
2002
|
# @return [Array<Types::SecondaryStatusTransition>]
|
2002
2003
|
#
|
2003
2004
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
|
@@ -4217,7 +4218,8 @@ module Aws::SageMaker
|
|
4217
4218
|
#
|
4218
4219
|
# @!attribute [rw] end_time
|
4219
4220
|
# A timestamp that shows when the secondary status has ended and the
|
4220
|
-
# job has transitioned into another secondary status.
|
4221
|
+
# job has transitioned into another secondary status. The `EndTime`
|
4222
|
+
# timestamp is also set after the training job has ended.
|
4221
4223
|
# @return [Time]
|
4222
4224
|
#
|
4223
4225
|
# @!attribute [rw] status_message
|
@@ -4869,6 +4871,8 @@ module Aws::SageMaker
|
|
4869
4871
|
# notebook_instance_name: "NotebookInstanceName", # required
|
4870
4872
|
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
4871
4873
|
# role_arn: "RoleArn",
|
4874
|
+
# lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
|
4875
|
+
# disassociate_lifecycle_config: false,
|
4872
4876
|
# }
|
4873
4877
|
#
|
4874
4878
|
# @!attribute [rw] notebook_instance_name
|
@@ -4894,12 +4898,25 @@ module Aws::SageMaker
|
|
4894
4898
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
|
4895
4899
|
# @return [String]
|
4896
4900
|
#
|
4901
|
+
# @!attribute [rw] lifecycle_config_name
|
4902
|
+
# The name of a lifecycle configuration to associate with the notebook
|
4903
|
+
# instance. For information about lifestyle configurations, see
|
4904
|
+
# notebook-lifecycle-config.
|
4905
|
+
# @return [String]
|
4906
|
+
#
|
4907
|
+
# @!attribute [rw] disassociate_lifecycle_config
|
4908
|
+
# Set to `true` to remove the notebook instance lifecycle
|
4909
|
+
# configuration currently associated with the notebook instance.
|
4910
|
+
# @return [Boolean]
|
4911
|
+
#
|
4897
4912
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
|
4898
4913
|
#
|
4899
4914
|
class UpdateNotebookInstanceInput < Struct.new(
|
4900
4915
|
:notebook_instance_name,
|
4901
4916
|
:instance_type,
|
4902
|
-
:role_arn
|
4917
|
+
:role_arn,
|
4918
|
+
:lifecycle_config_name,
|
4919
|
+
:disassociate_lifecycle_config)
|
4903
4920
|
include Aws::Structure
|
4904
4921
|
end
|
4905
4922
|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.15.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-08-
|
11
|
+
date: 2018-08-17 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|