aws-sdk-sagemaker 1.14.0 → 1.15.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 99ef949e6f0b1282afee78b159f1d351efe23506
4
- data.tar.gz: '093fc8763fd8929f0d805631c5bbf4747a4edeec'
3
+ metadata.gz: e6c6d54003180ce52b39107c7adfa377392801eb
4
+ data.tar.gz: cdb65654ff3d1595eb4430c17ff137cff94ed601
5
5
  SHA512:
6
- metadata.gz: afebc55e11f3ad4c599ec69cc9003ab5d851c7e2845e3fdea050e9369b5d2bc32580744199083c9a2bc595af083fbbb503f5ce3e7ec9eca8d952c8fb4f2c28a1
7
- data.tar.gz: 12adc4c524cb89615517baf1a47a65634db72128109478ac8a11a5eb7c35af15664e9e2ba5949363e6603932e7e03bd4a3a5426847e2408ea54881a76fe2e6e0
6
+ metadata.gz: '06142596aae38449858815a979b91a1b513ae992375098afef34279b1926ec15675503dc905e00768b9b79cfa7aa92d25ceccd818be0c63e1368085cc92cc0dc'
7
+ data.tar.gz: a04f192489cc2ce3ee6e1a537f60e461df0fd34a99e4486cfc6c5a01443362e633f80f5fe12ab386dbc006839c683a0c3536796e897ba704cefb471491cc8e3b
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.14.0'
46
+ GEM_VERSION = '1.15.0'
47
47
 
48
48
  end
@@ -544,28 +544,33 @@ module Aws::SageMaker
544
544
  end
545
545
 
546
546
  # Creates a model in Amazon SageMaker. In the request, you name the
547
- # model and describe one or more containers. For each container, you
547
+ # model and describe a primary container. For the primary container, you
548
548
  # specify the docker image containing inference code, artifacts (from
549
549
  # prior training), and custom environment map that the inference code
550
- # uses when you deploy the model into production.
550
+ # uses when you deploy the model for predictions.
551
551
  #
552
- # Use this API to create a model only if you want to use Amazon
553
- # SageMaker hosting services. To host your model, you create an endpoint
554
- # configuration with the `CreateEndpointConfig` API, and then create an
555
- # endpoint with the `CreateEndpoint` API.
552
+ # Use this API to create a model if you want to use Amazon SageMaker
553
+ # hosting services or run a batch transform job.
556
554
  #
557
- # Amazon SageMaker then deploys all of the containers that you defined
558
- # for the model in the hosting environment.
555
+ # To host your model, you create an endpoint configuration with the
556
+ # `CreateEndpointConfig` API, and then create an endpoint with the
557
+ # `CreateEndpoint` API. Amazon SageMaker then deploys all of the
558
+ # containers that you defined for the model in the hosting environment.
559
+ #
560
+ # To run a batch transform using your model, you start a job with the
561
+ # `CreateTransformJob` API. Amazon SageMaker uses your model and your
562
+ # dataset to get inferences which are then saved to a specified S3
563
+ # location.
559
564
  #
560
565
  # In the `CreateModel` request, you must define a container with the
561
566
  # `PrimaryContainer` parameter.
562
567
  #
563
568
  # In the request, you also provide an IAM role that Amazon SageMaker can
564
569
  # assume to access model artifacts and docker image for deployment on ML
565
- # compute hosting instances. In addition, you also use the IAM role to
566
- # manage permissions the inference code needs. For example, if the
567
- # inference code access any other AWS resources, you grant necessary
568
- # permissions via this role.
570
+ # compute hosting instances or for batch transform jobs. In addition,
571
+ # you also use the IAM role to manage permissions the inference code
572
+ # needs. For example, if the inference code access any other AWS
573
+ # resources, you grant necessary permissions via this role.
569
574
  #
570
575
  # @option params [required, String] :model_name
571
576
  # The name of the new model.
@@ -573,13 +578,14 @@ module Aws::SageMaker
573
578
  # @option params [required, Types::ContainerDefinition] :primary_container
574
579
  # The location of the primary docker image containing inference code,
575
580
  # associated artifacts, and custom environment map that the inference
576
- # code uses when the model is deployed into production.
581
+ # code uses when the model is deployed for predictions.
577
582
  #
578
583
  # @option params [required, String] :execution_role_arn
579
584
  # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
580
585
  # can assume to access model artifacts and docker image for deployment
581
- # on ML compute instances. Deploying on ML compute instances is part of
582
- # model hosting. For more information, see [Amazon SageMaker Roles][1].
586
+ # on ML compute instances or for batch transform jobs. Deploying on ML
587
+ # compute instances is part of model hosting. For more information, see
588
+ # [Amazon SageMaker Roles][1].
583
589
  #
584
590
  # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
585
591
  # API must have the `iam:PassRole` permission.
@@ -602,7 +608,8 @@ module Aws::SageMaker
602
608
  # @option params [Types::VpcConfig] :vpc_config
603
609
  # A VpcConfig object that specifies the VPC that you want your model to
604
610
  # connect to. Control access to and from your model container by
605
- # configuring the VPC. For more information, see host-vpc.
611
+ # configuring the VPC. `VpcConfig` is currently used in hosting services
612
+ # but not in batch transform. For more information, see host-vpc.
606
613
  #
607
614
  # @return [Types::CreateModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
608
615
  #
@@ -1121,8 +1128,9 @@ module Aws::SageMaker
1121
1128
  # unique within an AWS Region in an AWS account.
1122
1129
  #
1123
1130
  # * `ModelName` - Identifies the model to use. `ModelName` must be the
1124
- # name of an existing Amazon SageMaker model within an AWS Region in
1125
- # an AWS account.
1131
+ # name of an existing Amazon SageMaker model in the same AWS Region
1132
+ # and AWS account. For information on creating a model, see
1133
+ # CreateModel.
1126
1134
  #
1127
1135
  # * `TransformInput` - Describes the dataset to be transformed and the
1128
1136
  # Amazon S3 location where it is stored.
@@ -1173,6 +1181,12 @@ module Aws::SageMaker
1173
1181
  # `MultiRecord` means a mini-batch is set to contain as many records
1174
1182
  # that can fit within the `MaxPayloadInMB` limit.
1175
1183
  #
1184
+ # Batch transform will automatically split your input data into whatever
1185
+ # payload size is specified if you set `SplitType` to `Line` and
1186
+ # `BatchStrategy` to `MultiRecord`. There's no need to split the
1187
+ # dataset into smaller files or to use larger payload sizes unless the
1188
+ # records in your dataset are very large.
1189
+ #
1176
1190
  # @option params [Hash<String,String>] :environment
1177
1191
  # The environment variables to set in the Docker container. We support
1178
1192
  # up to 16 key and values entries in the map.
@@ -2926,6 +2940,15 @@ module Aws::SageMaker
2926
2940
  #
2927
2941
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
2928
2942
  #
2943
+ # @option params [String] :lifecycle_config_name
2944
+ # The name of a lifecycle configuration to associate with the notebook
2945
+ # instance. For information about lifestyle configurations, see
2946
+ # notebook-lifecycle-config.
2947
+ #
2948
+ # @option params [Boolean] :disassociate_lifecycle_config
2949
+ # Set to `true` to remove the notebook instance lifecycle configuration
2950
+ # currently associated with the notebook instance.
2951
+ #
2929
2952
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
2930
2953
  #
2931
2954
  # @example Request syntax with placeholder values
@@ -2934,6 +2957,8 @@ module Aws::SageMaker
2934
2957
  # notebook_instance_name: "NotebookInstanceName", # required
2935
2958
  # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
2936
2959
  # role_arn: "RoleArn",
2960
+ # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
2961
+ # disassociate_lifecycle_config: false,
2937
2962
  # })
2938
2963
  #
2939
2964
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstance AWS API Documentation
@@ -2999,7 +3024,7 @@ module Aws::SageMaker
2999
3024
  params: params,
3000
3025
  config: config)
3001
3026
  context[:gem_name] = 'aws-sdk-sagemaker'
3002
- context[:gem_version] = '1.14.0'
3027
+ context[:gem_version] = '1.15.0'
3003
3028
  Seahorse::Client::Request.new(handlers, context)
3004
3029
  end
3005
3030
 
@@ -76,6 +76,7 @@ module Aws::SageMaker
76
76
  DesiredWeightAndCapacity = Shapes::StructureShape.new(name: 'DesiredWeightAndCapacity')
77
77
  DesiredWeightAndCapacityList = Shapes::ListShape.new(name: 'DesiredWeightAndCapacityList')
78
78
  DirectInternetAccess = Shapes::StringShape.new(name: 'DirectInternetAccess')
79
+ DisassociateNotebookInstanceLifecycleConfig = Shapes::BooleanShape.new(name: 'DisassociateNotebookInstanceLifecycleConfig')
79
80
  EndpointArn = Shapes::StringShape.new(name: 'EndpointArn')
80
81
  EndpointConfigArn = Shapes::StringShape.new(name: 'EndpointConfigArn')
81
82
  EndpointConfigName = Shapes::StringShape.new(name: 'EndpointConfigName')
@@ -999,6 +1000,8 @@ module Aws::SageMaker
999
1000
  UpdateNotebookInstanceInput.add_member(:notebook_instance_name, Shapes::ShapeRef.new(shape: NotebookInstanceName, required: true, location_name: "NotebookInstanceName"))
1000
1001
  UpdateNotebookInstanceInput.add_member(:instance_type, Shapes::ShapeRef.new(shape: InstanceType, location_name: "InstanceType"))
1001
1002
  UpdateNotebookInstanceInput.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "RoleArn"))
1003
+ UpdateNotebookInstanceInput.add_member(:lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, location_name: "LifecycleConfigName"))
1004
+ UpdateNotebookInstanceInput.add_member(:disassociate_lifecycle_config, Shapes::ShapeRef.new(shape: DisassociateNotebookInstanceLifecycleConfig, location_name: "DisassociateLifecycleConfig"))
1002
1005
  UpdateNotebookInstanceInput.struct_class = Types::UpdateNotebookInstanceInput
1003
1006
 
1004
1007
  UpdateNotebookInstanceLifecycleConfigInput.add_member(:notebook_instance_lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, required: true, location_name: "NotebookInstanceLifecycleConfigName"))
@@ -618,15 +618,15 @@ module Aws::SageMaker
618
618
  # @!attribute [rw] primary_container
619
619
  # The location of the primary docker image containing inference code,
620
620
  # associated artifacts, and custom environment map that the inference
621
- # code uses when the model is deployed into production.
621
+ # code uses when the model is deployed for predictions.
622
622
  # @return [Types::ContainerDefinition]
623
623
  #
624
624
  # @!attribute [rw] execution_role_arn
625
625
  # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
626
626
  # can assume to access model artifacts and docker image for deployment
627
- # on ML compute instances. Deploying on ML compute instances is part
628
- # of model hosting. For more information, see [Amazon SageMaker
629
- # Roles][1].
627
+ # on ML compute instances or for batch transform jobs. Deploying on ML
628
+ # compute instances is part of model hosting. For more information,
629
+ # see [Amazon SageMaker Roles][1].
630
630
  #
631
631
  # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
632
632
  # API must have the `iam:PassRole` permission.
@@ -651,7 +651,9 @@ module Aws::SageMaker
651
651
  # @!attribute [rw] vpc_config
652
652
  # A VpcConfig object that specifies the VPC that you want your model
653
653
  # to connect to. Control access to and from your model container by
654
- # configuring the VPC. For more information, see host-vpc.
654
+ # configuring the VPC. `VpcConfig` is currently used in hosting
655
+ # services but not in batch transform. For more information, see
656
+ # host-vpc.
655
657
  # @return [Types::VpcConfig]
656
658
  #
657
659
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelInput AWS API Documentation
@@ -1150,6 +1152,12 @@ module Aws::SageMaker
1150
1152
  # `SingleRecord` means only one record is used per mini-batch.
1151
1153
  # `MultiRecord` means a mini-batch is set to contain as many records
1152
1154
  # that can fit within the `MaxPayloadInMB` limit.
1155
+ #
1156
+ # Batch transform will automatically split your input data into
1157
+ # whatever payload size is specified if you set `SplitType` to `Line`
1158
+ # and `BatchStrategy` to `MultiRecord`. There's no need to split the
1159
+ # dataset into smaller files or to use larger payload sizes unless the
1160
+ # records in your dataset are very large.
1153
1161
  # @return [String]
1154
1162
  #
1155
1163
  # @!attribute [rw] environment
@@ -1894,17 +1902,8 @@ module Aws::SageMaker
1894
1902
  #
1895
1903
  # * `Starting` - starting the training job.
1896
1904
  #
1897
- # * `LaunchingMLInstances` - launching ML instances for the training
1898
- # job.
1899
- #
1900
- # * `PreparingTrainingStack` - preparing the ML instances for the
1901
- # training job.
1902
- #
1903
1905
  # * `Downloading` - downloading the input data.
1904
1906
  #
1905
- # * `DownloadingTrainingImage` - downloading the training algorithm
1906
- # image.
1907
- #
1908
1907
  # * `Training` - model training is in progress.
1909
1908
  #
1910
1909
  # * `Uploading` - uploading the trained model.
@@ -1913,16 +1912,17 @@ module Aws::SageMaker
1913
1912
  #
1914
1913
  # * `Stopped` - the training job has stopped.
1915
1914
  #
1916
- # * `MaxRuntimeExceeded` - the training exceed the specified the max
1917
- # run time, which means the training job is stopping.
1915
+ # * `MaxRuntimeExceeded` - the training job exceeded the specified max
1916
+ # run time and has been stopped.
1918
1917
  #
1919
1918
  # * `Completed` - the training job has completed.
1920
1919
  #
1921
1920
  # * `Failed` - the training job has failed. The failure reason is
1922
- # provided in the `StatusMessage`.
1921
+ # stored in the `FailureReason` field of
1922
+ # `DescribeTrainingJobResponse`.
1923
1923
  #
1924
1924
  # The valid values for `SecondaryStatus` are subject to change. They
1925
- # primary provide information on the progress of the training job.
1925
+ # primarily provide information on the progress of the training job.
1926
1926
  # @return [String]
1927
1927
  #
1928
1928
  # @!attribute [rw] failure_reason
@@ -1996,8 +1996,9 @@ module Aws::SageMaker
1996
1996
  # @return [Time]
1997
1997
  #
1998
1998
  # @!attribute [rw] secondary_status_transitions
1999
- # A log of time-ordered secondary statuses that a training job has
2000
- # transitioned.
1999
+ # To give an overview of the training job lifecycle,
2000
+ # `SecondaryStatusTransitions` is a log of time-ordered secondary
2001
+ # statuses that a training job has transitioned.
2001
2002
  # @return [Array<Types::SecondaryStatusTransition>]
2002
2003
  #
2003
2004
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
@@ -4217,7 +4218,8 @@ module Aws::SageMaker
4217
4218
  #
4218
4219
  # @!attribute [rw] end_time
4219
4220
  # A timestamp that shows when the secondary status has ended and the
4220
- # job has transitioned into another secondary status.
4221
+ # job has transitioned into another secondary status. The `EndTime`
4222
+ # timestamp is also set after the training job has ended.
4221
4223
  # @return [Time]
4222
4224
  #
4223
4225
  # @!attribute [rw] status_message
@@ -4869,6 +4871,8 @@ module Aws::SageMaker
4869
4871
  # notebook_instance_name: "NotebookInstanceName", # required
4870
4872
  # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
4871
4873
  # role_arn: "RoleArn",
4874
+ # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
4875
+ # disassociate_lifecycle_config: false,
4872
4876
  # }
4873
4877
  #
4874
4878
  # @!attribute [rw] notebook_instance_name
@@ -4894,12 +4898,25 @@ module Aws::SageMaker
4894
4898
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
4895
4899
  # @return [String]
4896
4900
  #
4901
+ # @!attribute [rw] lifecycle_config_name
4902
+ # The name of a lifecycle configuration to associate with the notebook
4903
+ # instance. For information about lifestyle configurations, see
4904
+ # notebook-lifecycle-config.
4905
+ # @return [String]
4906
+ #
4907
+ # @!attribute [rw] disassociate_lifecycle_config
4908
+ # Set to `true` to remove the notebook instance lifecycle
4909
+ # configuration currently associated with the notebook instance.
4910
+ # @return [Boolean]
4911
+ #
4897
4912
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
4898
4913
  #
4899
4914
  class UpdateNotebookInstanceInput < Struct.new(
4900
4915
  :notebook_instance_name,
4901
4916
  :instance_type,
4902
- :role_arn)
4917
+ :role_arn,
4918
+ :lifecycle_config_name,
4919
+ :disassociate_lifecycle_config)
4903
4920
  include Aws::Structure
4904
4921
  end
4905
4922
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.14.0
4
+ version: 1.15.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2018-08-13 00:00:00.000000000 Z
11
+ date: 2018-08-17 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core