aws-sdk-sagemaker 1.14.0 → 1.15.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +44 -19
- data/lib/aws-sdk-sagemaker/client_api.rb +3 -0
- data/lib/aws-sdk-sagemaker/types.rb +39 -22
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e6c6d54003180ce52b39107c7adfa377392801eb
|
4
|
+
data.tar.gz: cdb65654ff3d1595eb4430c17ff137cff94ed601
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: '06142596aae38449858815a979b91a1b513ae992375098afef34279b1926ec15675503dc905e00768b9b79cfa7aa92d25ceccd818be0c63e1368085cc92cc0dc'
|
7
|
+
data.tar.gz: a04f192489cc2ce3ee6e1a537f60e461df0fd34a99e4486cfc6c5a01443362e633f80f5fe12ab386dbc006839c683a0c3536796e897ba704cefb471491cc8e3b
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -544,28 +544,33 @@ module Aws::SageMaker
|
|
544
544
|
end
|
545
545
|
|
546
546
|
# Creates a model in Amazon SageMaker. In the request, you name the
|
547
|
-
# model and describe
|
547
|
+
# model and describe a primary container. For the primary container, you
|
548
548
|
# specify the docker image containing inference code, artifacts (from
|
549
549
|
# prior training), and custom environment map that the inference code
|
550
|
-
# uses when you deploy the model
|
550
|
+
# uses when you deploy the model for predictions.
|
551
551
|
#
|
552
|
-
# Use this API to create a model
|
553
|
-
#
|
554
|
-
# configuration with the `CreateEndpointConfig` API, and then create an
|
555
|
-
# endpoint with the `CreateEndpoint` API.
|
552
|
+
# Use this API to create a model if you want to use Amazon SageMaker
|
553
|
+
# hosting services or run a batch transform job.
|
556
554
|
#
|
557
|
-
#
|
558
|
-
#
|
555
|
+
# To host your model, you create an endpoint configuration with the
|
556
|
+
# `CreateEndpointConfig` API, and then create an endpoint with the
|
557
|
+
# `CreateEndpoint` API. Amazon SageMaker then deploys all of the
|
558
|
+
# containers that you defined for the model in the hosting environment.
|
559
|
+
#
|
560
|
+
# To run a batch transform using your model, you start a job with the
|
561
|
+
# `CreateTransformJob` API. Amazon SageMaker uses your model and your
|
562
|
+
# dataset to get inferences which are then saved to a specified S3
|
563
|
+
# location.
|
559
564
|
#
|
560
565
|
# In the `CreateModel` request, you must define a container with the
|
561
566
|
# `PrimaryContainer` parameter.
|
562
567
|
#
|
563
568
|
# In the request, you also provide an IAM role that Amazon SageMaker can
|
564
569
|
# assume to access model artifacts and docker image for deployment on ML
|
565
|
-
# compute hosting instances
|
566
|
-
#
|
567
|
-
# inference code access any other AWS
|
568
|
-
# permissions via this role.
|
570
|
+
# compute hosting instances or for batch transform jobs. In addition,
|
571
|
+
# you also use the IAM role to manage permissions the inference code
|
572
|
+
# needs. For example, if the inference code access any other AWS
|
573
|
+
# resources, you grant necessary permissions via this role.
|
569
574
|
#
|
570
575
|
# @option params [required, String] :model_name
|
571
576
|
# The name of the new model.
|
@@ -573,13 +578,14 @@ module Aws::SageMaker
|
|
573
578
|
# @option params [required, Types::ContainerDefinition] :primary_container
|
574
579
|
# The location of the primary docker image containing inference code,
|
575
580
|
# associated artifacts, and custom environment map that the inference
|
576
|
-
# code uses when the model is deployed
|
581
|
+
# code uses when the model is deployed for predictions.
|
577
582
|
#
|
578
583
|
# @option params [required, String] :execution_role_arn
|
579
584
|
# The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
|
580
585
|
# can assume to access model artifacts and docker image for deployment
|
581
|
-
# on ML compute instances
|
582
|
-
# model hosting. For more information, see
|
586
|
+
# on ML compute instances or for batch transform jobs. Deploying on ML
|
587
|
+
# compute instances is part of model hosting. For more information, see
|
588
|
+
# [Amazon SageMaker Roles][1].
|
583
589
|
#
|
584
590
|
# <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
|
585
591
|
# API must have the `iam:PassRole` permission.
|
@@ -602,7 +608,8 @@ module Aws::SageMaker
|
|
602
608
|
# @option params [Types::VpcConfig] :vpc_config
|
603
609
|
# A VpcConfig object that specifies the VPC that you want your model to
|
604
610
|
# connect to. Control access to and from your model container by
|
605
|
-
# configuring the VPC.
|
611
|
+
# configuring the VPC. `VpcConfig` is currently used in hosting services
|
612
|
+
# but not in batch transform. For more information, see host-vpc.
|
606
613
|
#
|
607
614
|
# @return [Types::CreateModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
608
615
|
#
|
@@ -1121,8 +1128,9 @@ module Aws::SageMaker
|
|
1121
1128
|
# unique within an AWS Region in an AWS account.
|
1122
1129
|
#
|
1123
1130
|
# * `ModelName` - Identifies the model to use. `ModelName` must be the
|
1124
|
-
# name of an existing Amazon SageMaker model
|
1125
|
-
#
|
1131
|
+
# name of an existing Amazon SageMaker model in the same AWS Region
|
1132
|
+
# and AWS account. For information on creating a model, see
|
1133
|
+
# CreateModel.
|
1126
1134
|
#
|
1127
1135
|
# * `TransformInput` - Describes the dataset to be transformed and the
|
1128
1136
|
# Amazon S3 location where it is stored.
|
@@ -1173,6 +1181,12 @@ module Aws::SageMaker
|
|
1173
1181
|
# `MultiRecord` means a mini-batch is set to contain as many records
|
1174
1182
|
# that can fit within the `MaxPayloadInMB` limit.
|
1175
1183
|
#
|
1184
|
+
# Batch transform will automatically split your input data into whatever
|
1185
|
+
# payload size is specified if you set `SplitType` to `Line` and
|
1186
|
+
# `BatchStrategy` to `MultiRecord`. There's no need to split the
|
1187
|
+
# dataset into smaller files or to use larger payload sizes unless the
|
1188
|
+
# records in your dataset are very large.
|
1189
|
+
#
|
1176
1190
|
# @option params [Hash<String,String>] :environment
|
1177
1191
|
# The environment variables to set in the Docker container. We support
|
1178
1192
|
# up to 16 key and values entries in the map.
|
@@ -2926,6 +2940,15 @@ module Aws::SageMaker
|
|
2926
2940
|
#
|
2927
2941
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
|
2928
2942
|
#
|
2943
|
+
# @option params [String] :lifecycle_config_name
|
2944
|
+
# The name of a lifecycle configuration to associate with the notebook
|
2945
|
+
# instance. For information about lifestyle configurations, see
|
2946
|
+
# notebook-lifecycle-config.
|
2947
|
+
#
|
2948
|
+
# @option params [Boolean] :disassociate_lifecycle_config
|
2949
|
+
# Set to `true` to remove the notebook instance lifecycle configuration
|
2950
|
+
# currently associated with the notebook instance.
|
2951
|
+
#
|
2929
2952
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
2930
2953
|
#
|
2931
2954
|
# @example Request syntax with placeholder values
|
@@ -2934,6 +2957,8 @@ module Aws::SageMaker
|
|
2934
2957
|
# notebook_instance_name: "NotebookInstanceName", # required
|
2935
2958
|
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
2936
2959
|
# role_arn: "RoleArn",
|
2960
|
+
# lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
|
2961
|
+
# disassociate_lifecycle_config: false,
|
2937
2962
|
# })
|
2938
2963
|
#
|
2939
2964
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstance AWS API Documentation
|
@@ -2999,7 +3024,7 @@ module Aws::SageMaker
|
|
2999
3024
|
params: params,
|
3000
3025
|
config: config)
|
3001
3026
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
3002
|
-
context[:gem_version] = '1.
|
3027
|
+
context[:gem_version] = '1.15.0'
|
3003
3028
|
Seahorse::Client::Request.new(handlers, context)
|
3004
3029
|
end
|
3005
3030
|
|
@@ -76,6 +76,7 @@ module Aws::SageMaker
|
|
76
76
|
DesiredWeightAndCapacity = Shapes::StructureShape.new(name: 'DesiredWeightAndCapacity')
|
77
77
|
DesiredWeightAndCapacityList = Shapes::ListShape.new(name: 'DesiredWeightAndCapacityList')
|
78
78
|
DirectInternetAccess = Shapes::StringShape.new(name: 'DirectInternetAccess')
|
79
|
+
DisassociateNotebookInstanceLifecycleConfig = Shapes::BooleanShape.new(name: 'DisassociateNotebookInstanceLifecycleConfig')
|
79
80
|
EndpointArn = Shapes::StringShape.new(name: 'EndpointArn')
|
80
81
|
EndpointConfigArn = Shapes::StringShape.new(name: 'EndpointConfigArn')
|
81
82
|
EndpointConfigName = Shapes::StringShape.new(name: 'EndpointConfigName')
|
@@ -999,6 +1000,8 @@ module Aws::SageMaker
|
|
999
1000
|
UpdateNotebookInstanceInput.add_member(:notebook_instance_name, Shapes::ShapeRef.new(shape: NotebookInstanceName, required: true, location_name: "NotebookInstanceName"))
|
1000
1001
|
UpdateNotebookInstanceInput.add_member(:instance_type, Shapes::ShapeRef.new(shape: InstanceType, location_name: "InstanceType"))
|
1001
1002
|
UpdateNotebookInstanceInput.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "RoleArn"))
|
1003
|
+
UpdateNotebookInstanceInput.add_member(:lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, location_name: "LifecycleConfigName"))
|
1004
|
+
UpdateNotebookInstanceInput.add_member(:disassociate_lifecycle_config, Shapes::ShapeRef.new(shape: DisassociateNotebookInstanceLifecycleConfig, location_name: "DisassociateLifecycleConfig"))
|
1002
1005
|
UpdateNotebookInstanceInput.struct_class = Types::UpdateNotebookInstanceInput
|
1003
1006
|
|
1004
1007
|
UpdateNotebookInstanceLifecycleConfigInput.add_member(:notebook_instance_lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, required: true, location_name: "NotebookInstanceLifecycleConfigName"))
|
@@ -618,15 +618,15 @@ module Aws::SageMaker
|
|
618
618
|
# @!attribute [rw] primary_container
|
619
619
|
# The location of the primary docker image containing inference code,
|
620
620
|
# associated artifacts, and custom environment map that the inference
|
621
|
-
# code uses when the model is deployed
|
621
|
+
# code uses when the model is deployed for predictions.
|
622
622
|
# @return [Types::ContainerDefinition]
|
623
623
|
#
|
624
624
|
# @!attribute [rw] execution_role_arn
|
625
625
|
# The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
|
626
626
|
# can assume to access model artifacts and docker image for deployment
|
627
|
-
# on ML compute instances. Deploying on ML
|
628
|
-
# of model hosting. For more information,
|
629
|
-
# Roles][1].
|
627
|
+
# on ML compute instances or for batch transform jobs. Deploying on ML
|
628
|
+
# compute instances is part of model hosting. For more information,
|
629
|
+
# see [Amazon SageMaker Roles][1].
|
630
630
|
#
|
631
631
|
# <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
|
632
632
|
# API must have the `iam:PassRole` permission.
|
@@ -651,7 +651,9 @@ module Aws::SageMaker
|
|
651
651
|
# @!attribute [rw] vpc_config
|
652
652
|
# A VpcConfig object that specifies the VPC that you want your model
|
653
653
|
# to connect to. Control access to and from your model container by
|
654
|
-
# configuring the VPC.
|
654
|
+
# configuring the VPC. `VpcConfig` is currently used in hosting
|
655
|
+
# services but not in batch transform. For more information, see
|
656
|
+
# host-vpc.
|
655
657
|
# @return [Types::VpcConfig]
|
656
658
|
#
|
657
659
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelInput AWS API Documentation
|
@@ -1150,6 +1152,12 @@ module Aws::SageMaker
|
|
1150
1152
|
# `SingleRecord` means only one record is used per mini-batch.
|
1151
1153
|
# `MultiRecord` means a mini-batch is set to contain as many records
|
1152
1154
|
# that can fit within the `MaxPayloadInMB` limit.
|
1155
|
+
#
|
1156
|
+
# Batch transform will automatically split your input data into
|
1157
|
+
# whatever payload size is specified if you set `SplitType` to `Line`
|
1158
|
+
# and `BatchStrategy` to `MultiRecord`. There's no need to split the
|
1159
|
+
# dataset into smaller files or to use larger payload sizes unless the
|
1160
|
+
# records in your dataset are very large.
|
1153
1161
|
# @return [String]
|
1154
1162
|
#
|
1155
1163
|
# @!attribute [rw] environment
|
@@ -1894,17 +1902,8 @@ module Aws::SageMaker
|
|
1894
1902
|
#
|
1895
1903
|
# * `Starting` - starting the training job.
|
1896
1904
|
#
|
1897
|
-
# * `LaunchingMLInstances` - launching ML instances for the training
|
1898
|
-
# job.
|
1899
|
-
#
|
1900
|
-
# * `PreparingTrainingStack` - preparing the ML instances for the
|
1901
|
-
# training job.
|
1902
|
-
#
|
1903
1905
|
# * `Downloading` - downloading the input data.
|
1904
1906
|
#
|
1905
|
-
# * `DownloadingTrainingImage` - downloading the training algorithm
|
1906
|
-
# image.
|
1907
|
-
#
|
1908
1907
|
# * `Training` - model training is in progress.
|
1909
1908
|
#
|
1910
1909
|
# * `Uploading` - uploading the trained model.
|
@@ -1913,16 +1912,17 @@ module Aws::SageMaker
|
|
1913
1912
|
#
|
1914
1913
|
# * `Stopped` - the training job has stopped.
|
1915
1914
|
#
|
1916
|
-
# * `MaxRuntimeExceeded` - the training
|
1917
|
-
# run time
|
1915
|
+
# * `MaxRuntimeExceeded` - the training job exceeded the specified max
|
1916
|
+
# run time and has been stopped.
|
1918
1917
|
#
|
1919
1918
|
# * `Completed` - the training job has completed.
|
1920
1919
|
#
|
1921
1920
|
# * `Failed` - the training job has failed. The failure reason is
|
1922
|
-
#
|
1921
|
+
# stored in the `FailureReason` field of
|
1922
|
+
# `DescribeTrainingJobResponse`.
|
1923
1923
|
#
|
1924
1924
|
# The valid values for `SecondaryStatus` are subject to change. They
|
1925
|
-
#
|
1925
|
+
# primarily provide information on the progress of the training job.
|
1926
1926
|
# @return [String]
|
1927
1927
|
#
|
1928
1928
|
# @!attribute [rw] failure_reason
|
@@ -1996,8 +1996,9 @@ module Aws::SageMaker
|
|
1996
1996
|
# @return [Time]
|
1997
1997
|
#
|
1998
1998
|
# @!attribute [rw] secondary_status_transitions
|
1999
|
-
#
|
2000
|
-
#
|
1999
|
+
# To give an overview of the training job lifecycle,
|
2000
|
+
# `SecondaryStatusTransitions` is a log of time-ordered secondary
|
2001
|
+
# statuses that a training job has transitioned.
|
2001
2002
|
# @return [Array<Types::SecondaryStatusTransition>]
|
2002
2003
|
#
|
2003
2004
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
|
@@ -4217,7 +4218,8 @@ module Aws::SageMaker
|
|
4217
4218
|
#
|
4218
4219
|
# @!attribute [rw] end_time
|
4219
4220
|
# A timestamp that shows when the secondary status has ended and the
|
4220
|
-
# job has transitioned into another secondary status.
|
4221
|
+
# job has transitioned into another secondary status. The `EndTime`
|
4222
|
+
# timestamp is also set after the training job has ended.
|
4221
4223
|
# @return [Time]
|
4222
4224
|
#
|
4223
4225
|
# @!attribute [rw] status_message
|
@@ -4869,6 +4871,8 @@ module Aws::SageMaker
|
|
4869
4871
|
# notebook_instance_name: "NotebookInstanceName", # required
|
4870
4872
|
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
|
4871
4873
|
# role_arn: "RoleArn",
|
4874
|
+
# lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
|
4875
|
+
# disassociate_lifecycle_config: false,
|
4872
4876
|
# }
|
4873
4877
|
#
|
4874
4878
|
# @!attribute [rw] notebook_instance_name
|
@@ -4894,12 +4898,25 @@ module Aws::SageMaker
|
|
4894
4898
|
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
|
4895
4899
|
# @return [String]
|
4896
4900
|
#
|
4901
|
+
# @!attribute [rw] lifecycle_config_name
|
4902
|
+
# The name of a lifecycle configuration to associate with the notebook
|
4903
|
+
# instance. For information about lifestyle configurations, see
|
4904
|
+
# notebook-lifecycle-config.
|
4905
|
+
# @return [String]
|
4906
|
+
#
|
4907
|
+
# @!attribute [rw] disassociate_lifecycle_config
|
4908
|
+
# Set to `true` to remove the notebook instance lifecycle
|
4909
|
+
# configuration currently associated with the notebook instance.
|
4910
|
+
# @return [Boolean]
|
4911
|
+
#
|
4897
4912
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
|
4898
4913
|
#
|
4899
4914
|
class UpdateNotebookInstanceInput < Struct.new(
|
4900
4915
|
:notebook_instance_name,
|
4901
4916
|
:instance_type,
|
4902
|
-
:role_arn
|
4917
|
+
:role_arn,
|
4918
|
+
:lifecycle_config_name,
|
4919
|
+
:disassociate_lifecycle_config)
|
4903
4920
|
include Aws::Structure
|
4904
4921
|
end
|
4905
4922
|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.15.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-08-
|
11
|
+
date: 2018-08-17 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|