aws-sdk-sagemaker 1.14.0 → 1.15.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 99ef949e6f0b1282afee78b159f1d351efe23506
4
- data.tar.gz: '093fc8763fd8929f0d805631c5bbf4747a4edeec'
3
+ metadata.gz: e6c6d54003180ce52b39107c7adfa377392801eb
4
+ data.tar.gz: cdb65654ff3d1595eb4430c17ff137cff94ed601
5
5
  SHA512:
6
- metadata.gz: afebc55e11f3ad4c599ec69cc9003ab5d851c7e2845e3fdea050e9369b5d2bc32580744199083c9a2bc595af083fbbb503f5ce3e7ec9eca8d952c8fb4f2c28a1
7
- data.tar.gz: 12adc4c524cb89615517baf1a47a65634db72128109478ac8a11a5eb7c35af15664e9e2ba5949363e6603932e7e03bd4a3a5426847e2408ea54881a76fe2e6e0
6
+ metadata.gz: '06142596aae38449858815a979b91a1b513ae992375098afef34279b1926ec15675503dc905e00768b9b79cfa7aa92d25ceccd818be0c63e1368085cc92cc0dc'
7
+ data.tar.gz: a04f192489cc2ce3ee6e1a537f60e461df0fd34a99e4486cfc6c5a01443362e633f80f5fe12ab386dbc006839c683a0c3536796e897ba704cefb471491cc8e3b
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.14.0'
46
+ GEM_VERSION = '1.15.0'
47
47
 
48
48
  end
@@ -544,28 +544,33 @@ module Aws::SageMaker
544
544
  end
545
545
 
546
546
  # Creates a model in Amazon SageMaker. In the request, you name the
547
- # model and describe one or more containers. For each container, you
547
+ # model and describe a primary container. For the primary container, you
548
548
  # specify the docker image containing inference code, artifacts (from
549
549
  # prior training), and custom environment map that the inference code
550
- # uses when you deploy the model into production.
550
+ # uses when you deploy the model for predictions.
551
551
  #
552
- # Use this API to create a model only if you want to use Amazon
553
- # SageMaker hosting services. To host your model, you create an endpoint
554
- # configuration with the `CreateEndpointConfig` API, and then create an
555
- # endpoint with the `CreateEndpoint` API.
552
+ # Use this API to create a model if you want to use Amazon SageMaker
553
+ # hosting services or run a batch transform job.
556
554
  #
557
- # Amazon SageMaker then deploys all of the containers that you defined
558
- # for the model in the hosting environment.
555
+ # To host your model, you create an endpoint configuration with the
556
+ # `CreateEndpointConfig` API, and then create an endpoint with the
557
+ # `CreateEndpoint` API. Amazon SageMaker then deploys all of the
558
+ # containers that you defined for the model in the hosting environment.
559
+ #
560
+ # To run a batch transform using your model, you start a job with the
561
+ # `CreateTransformJob` API. Amazon SageMaker uses your model and your
562
+ # dataset to get inferences which are then saved to a specified S3
563
+ # location.
559
564
  #
560
565
  # In the `CreateModel` request, you must define a container with the
561
566
  # `PrimaryContainer` parameter.
562
567
  #
563
568
  # In the request, you also provide an IAM role that Amazon SageMaker can
564
569
  # assume to access model artifacts and docker image for deployment on ML
565
- # compute hosting instances. In addition, you also use the IAM role to
566
- # manage permissions the inference code needs. For example, if the
567
- # inference code access any other AWS resources, you grant necessary
568
- # permissions via this role.
570
+ # compute hosting instances or for batch transform jobs. In addition,
571
+ # you also use the IAM role to manage permissions the inference code
572
+ # needs. For example, if the inference code access any other AWS
573
+ # resources, you grant necessary permissions via this role.
569
574
  #
570
575
  # @option params [required, String] :model_name
571
576
  # The name of the new model.
@@ -573,13 +578,14 @@ module Aws::SageMaker
573
578
  # @option params [required, Types::ContainerDefinition] :primary_container
574
579
  # The location of the primary docker image containing inference code,
575
580
  # associated artifacts, and custom environment map that the inference
576
- # code uses when the model is deployed into production.
581
+ # code uses when the model is deployed for predictions.
577
582
  #
578
583
  # @option params [required, String] :execution_role_arn
579
584
  # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
580
585
  # can assume to access model artifacts and docker image for deployment
581
- # on ML compute instances. Deploying on ML compute instances is part of
582
- # model hosting. For more information, see [Amazon SageMaker Roles][1].
586
+ # on ML compute instances or for batch transform jobs. Deploying on ML
587
+ # compute instances is part of model hosting. For more information, see
588
+ # [Amazon SageMaker Roles][1].
583
589
  #
584
590
  # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
585
591
  # API must have the `iam:PassRole` permission.
@@ -602,7 +608,8 @@ module Aws::SageMaker
602
608
  # @option params [Types::VpcConfig] :vpc_config
603
609
  # A VpcConfig object that specifies the VPC that you want your model to
604
610
  # connect to. Control access to and from your model container by
605
- # configuring the VPC. For more information, see host-vpc.
611
+ # configuring the VPC. `VpcConfig` is currently used in hosting services
612
+ # but not in batch transform. For more information, see host-vpc.
606
613
  #
607
614
  # @return [Types::CreateModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
608
615
  #
@@ -1121,8 +1128,9 @@ module Aws::SageMaker
1121
1128
  # unique within an AWS Region in an AWS account.
1122
1129
  #
1123
1130
  # * `ModelName` - Identifies the model to use. `ModelName` must be the
1124
- # name of an existing Amazon SageMaker model within an AWS Region in
1125
- # an AWS account.
1131
+ # name of an existing Amazon SageMaker model in the same AWS Region
1132
+ # and AWS account. For information on creating a model, see
1133
+ # CreateModel.
1126
1134
  #
1127
1135
  # * `TransformInput` - Describes the dataset to be transformed and the
1128
1136
  # Amazon S3 location where it is stored.
@@ -1173,6 +1181,12 @@ module Aws::SageMaker
1173
1181
  # `MultiRecord` means a mini-batch is set to contain as many records
1174
1182
  # that can fit within the `MaxPayloadInMB` limit.
1175
1183
  #
1184
+ # Batch transform will automatically split your input data into whatever
1185
+ # payload size is specified if you set `SplitType` to `Line` and
1186
+ # `BatchStrategy` to `MultiRecord`. There's no need to split the
1187
+ # dataset into smaller files or to use larger payload sizes unless the
1188
+ # records in your dataset are very large.
1189
+ #
1176
1190
  # @option params [Hash<String,String>] :environment
1177
1191
  # The environment variables to set in the Docker container. We support
1178
1192
  # up to 16 key and values entries in the map.
@@ -2926,6 +2940,15 @@ module Aws::SageMaker
2926
2940
  #
2927
2941
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
2928
2942
  #
2943
+ # @option params [String] :lifecycle_config_name
2944
+ # The name of a lifecycle configuration to associate with the notebook
2945
+ # instance. For information about lifestyle configurations, see
2946
+ # notebook-lifecycle-config.
2947
+ #
2948
+ # @option params [Boolean] :disassociate_lifecycle_config
2949
+ # Set to `true` to remove the notebook instance lifecycle configuration
2950
+ # currently associated with the notebook instance.
2951
+ #
2929
2952
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
2930
2953
  #
2931
2954
  # @example Request syntax with placeholder values
@@ -2934,6 +2957,8 @@ module Aws::SageMaker
2934
2957
  # notebook_instance_name: "NotebookInstanceName", # required
2935
2958
  # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
2936
2959
  # role_arn: "RoleArn",
2960
+ # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
2961
+ # disassociate_lifecycle_config: false,
2937
2962
  # })
2938
2963
  #
2939
2964
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstance AWS API Documentation
@@ -2999,7 +3024,7 @@ module Aws::SageMaker
2999
3024
  params: params,
3000
3025
  config: config)
3001
3026
  context[:gem_name] = 'aws-sdk-sagemaker'
3002
- context[:gem_version] = '1.14.0'
3027
+ context[:gem_version] = '1.15.0'
3003
3028
  Seahorse::Client::Request.new(handlers, context)
3004
3029
  end
3005
3030
 
@@ -76,6 +76,7 @@ module Aws::SageMaker
76
76
  DesiredWeightAndCapacity = Shapes::StructureShape.new(name: 'DesiredWeightAndCapacity')
77
77
  DesiredWeightAndCapacityList = Shapes::ListShape.new(name: 'DesiredWeightAndCapacityList')
78
78
  DirectInternetAccess = Shapes::StringShape.new(name: 'DirectInternetAccess')
79
+ DisassociateNotebookInstanceLifecycleConfig = Shapes::BooleanShape.new(name: 'DisassociateNotebookInstanceLifecycleConfig')
79
80
  EndpointArn = Shapes::StringShape.new(name: 'EndpointArn')
80
81
  EndpointConfigArn = Shapes::StringShape.new(name: 'EndpointConfigArn')
81
82
  EndpointConfigName = Shapes::StringShape.new(name: 'EndpointConfigName')
@@ -999,6 +1000,8 @@ module Aws::SageMaker
999
1000
  UpdateNotebookInstanceInput.add_member(:notebook_instance_name, Shapes::ShapeRef.new(shape: NotebookInstanceName, required: true, location_name: "NotebookInstanceName"))
1000
1001
  UpdateNotebookInstanceInput.add_member(:instance_type, Shapes::ShapeRef.new(shape: InstanceType, location_name: "InstanceType"))
1001
1002
  UpdateNotebookInstanceInput.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "RoleArn"))
1003
+ UpdateNotebookInstanceInput.add_member(:lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, location_name: "LifecycleConfigName"))
1004
+ UpdateNotebookInstanceInput.add_member(:disassociate_lifecycle_config, Shapes::ShapeRef.new(shape: DisassociateNotebookInstanceLifecycleConfig, location_name: "DisassociateLifecycleConfig"))
1002
1005
  UpdateNotebookInstanceInput.struct_class = Types::UpdateNotebookInstanceInput
1003
1006
 
1004
1007
  UpdateNotebookInstanceLifecycleConfigInput.add_member(:notebook_instance_lifecycle_config_name, Shapes::ShapeRef.new(shape: NotebookInstanceLifecycleConfigName, required: true, location_name: "NotebookInstanceLifecycleConfigName"))
@@ -618,15 +618,15 @@ module Aws::SageMaker
618
618
  # @!attribute [rw] primary_container
619
619
  # The location of the primary docker image containing inference code,
620
620
  # associated artifacts, and custom environment map that the inference
621
- # code uses when the model is deployed into production.
621
+ # code uses when the model is deployed for predictions.
622
622
  # @return [Types::ContainerDefinition]
623
623
  #
624
624
  # @!attribute [rw] execution_role_arn
625
625
  # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
626
626
  # can assume to access model artifacts and docker image for deployment
627
- # on ML compute instances. Deploying on ML compute instances is part
628
- # of model hosting. For more information, see [Amazon SageMaker
629
- # Roles][1].
627
+ # on ML compute instances or for batch transform jobs. Deploying on ML
628
+ # compute instances is part of model hosting. For more information,
629
+ # see [Amazon SageMaker Roles][1].
630
630
  #
631
631
  # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
632
632
  # API must have the `iam:PassRole` permission.
@@ -651,7 +651,9 @@ module Aws::SageMaker
651
651
  # @!attribute [rw] vpc_config
652
652
  # A VpcConfig object that specifies the VPC that you want your model
653
653
  # to connect to. Control access to and from your model container by
654
- # configuring the VPC. For more information, see host-vpc.
654
+ # configuring the VPC. `VpcConfig` is currently used in hosting
655
+ # services but not in batch transform. For more information, see
656
+ # host-vpc.
655
657
  # @return [Types::VpcConfig]
656
658
  #
657
659
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelInput AWS API Documentation
@@ -1150,6 +1152,12 @@ module Aws::SageMaker
1150
1152
  # `SingleRecord` means only one record is used per mini-batch.
1151
1153
  # `MultiRecord` means a mini-batch is set to contain as many records
1152
1154
  # that can fit within the `MaxPayloadInMB` limit.
1155
+ #
1156
+ # Batch transform will automatically split your input data into
1157
+ # whatever payload size is specified if you set `SplitType` to `Line`
1158
+ # and `BatchStrategy` to `MultiRecord`. There's no need to split the
1159
+ # dataset into smaller files or to use larger payload sizes unless the
1160
+ # records in your dataset are very large.
1153
1161
  # @return [String]
1154
1162
  #
1155
1163
  # @!attribute [rw] environment
@@ -1894,17 +1902,8 @@ module Aws::SageMaker
1894
1902
  #
1895
1903
  # * `Starting` - starting the training job.
1896
1904
  #
1897
- # * `LaunchingMLInstances` - launching ML instances for the training
1898
- # job.
1899
- #
1900
- # * `PreparingTrainingStack` - preparing the ML instances for the
1901
- # training job.
1902
- #
1903
1905
  # * `Downloading` - downloading the input data.
1904
1906
  #
1905
- # * `DownloadingTrainingImage` - downloading the training algorithm
1906
- # image.
1907
- #
1908
1907
  # * `Training` - model training is in progress.
1909
1908
  #
1910
1909
  # * `Uploading` - uploading the trained model.
@@ -1913,16 +1912,17 @@ module Aws::SageMaker
1913
1912
  #
1914
1913
  # * `Stopped` - the training job has stopped.
1915
1914
  #
1916
- # * `MaxRuntimeExceeded` - the training exceed the specified the max
1917
- # run time, which means the training job is stopping.
1915
+ # * `MaxRuntimeExceeded` - the training job exceeded the specified max
1916
+ # run time and has been stopped.
1918
1917
  #
1919
1918
  # * `Completed` - the training job has completed.
1920
1919
  #
1921
1920
  # * `Failed` - the training job has failed. The failure reason is
1922
- # provided in the `StatusMessage`.
1921
+ # stored in the `FailureReason` field of
1922
+ # `DescribeTrainingJobResponse`.
1923
1923
  #
1924
1924
  # The valid values for `SecondaryStatus` are subject to change. They
1925
- # primary provide information on the progress of the training job.
1925
+ # primarily provide information on the progress of the training job.
1926
1926
  # @return [String]
1927
1927
  #
1928
1928
  # @!attribute [rw] failure_reason
@@ -1996,8 +1996,9 @@ module Aws::SageMaker
1996
1996
  # @return [Time]
1997
1997
  #
1998
1998
  # @!attribute [rw] secondary_status_transitions
1999
- # A log of time-ordered secondary statuses that a training job has
2000
- # transitioned.
1999
+ # To give an overview of the training job lifecycle,
2000
+ # `SecondaryStatusTransitions` is a log of time-ordered secondary
2001
+ # statuses that a training job has transitioned.
2001
2002
  # @return [Array<Types::SecondaryStatusTransition>]
2002
2003
  #
2003
2004
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
@@ -4217,7 +4218,8 @@ module Aws::SageMaker
4217
4218
  #
4218
4219
  # @!attribute [rw] end_time
4219
4220
  # A timestamp that shows when the secondary status has ended and the
4220
- # job has transitioned into another secondary status.
4221
+ # job has transitioned into another secondary status. The `EndTime`
4222
+ # timestamp is also set after the training job has ended.
4221
4223
  # @return [Time]
4222
4224
  #
4223
4225
  # @!attribute [rw] status_message
@@ -4869,6 +4871,8 @@ module Aws::SageMaker
4869
4871
  # notebook_instance_name: "NotebookInstanceName", # required
4870
4872
  # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge
4871
4873
  # role_arn: "RoleArn",
4874
+ # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
4875
+ # disassociate_lifecycle_config: false,
4872
4876
  # }
4873
4877
  #
4874
4878
  # @!attribute [rw] notebook_instance_name
@@ -4894,12 +4898,25 @@ module Aws::SageMaker
4894
4898
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
4895
4899
  # @return [String]
4896
4900
  #
4901
+ # @!attribute [rw] lifecycle_config_name
4902
+ # The name of a lifecycle configuration to associate with the notebook
4903
+ # instance. For information about lifestyle configurations, see
4904
+ # notebook-lifecycle-config.
4905
+ # @return [String]
4906
+ #
4907
+ # @!attribute [rw] disassociate_lifecycle_config
4908
+ # Set to `true` to remove the notebook instance lifecycle
4909
+ # configuration currently associated with the notebook instance.
4910
+ # @return [Boolean]
4911
+ #
4897
4912
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceInput AWS API Documentation
4898
4913
  #
4899
4914
  class UpdateNotebookInstanceInput < Struct.new(
4900
4915
  :notebook_instance_name,
4901
4916
  :instance_type,
4902
- :role_arn)
4917
+ :role_arn,
4918
+ :lifecycle_config_name,
4919
+ :disassociate_lifecycle_config)
4903
4920
  include Aws::Structure
4904
4921
  end
4905
4922
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.14.0
4
+ version: 1.15.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2018-08-13 00:00:00.000000000 Z
11
+ date: 2018-08-17 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core