aws-sdk-sagemaker 1.139.0 → 1.140.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +17 -9
- data/lib/aws-sdk-sagemaker/client_api.rb +12 -0
- data/lib/aws-sdk-sagemaker/types.rb +141 -17
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 183a3d0710845a318335195f1df77b55daec4ac09cce10e3f8d78aa502900df8
|
4
|
+
data.tar.gz: c52b1b8802e3bb268c7461a679e8a40621c2a987889458371e59595708deadbc
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 272cc69827d58efd70a692bd40bfbae65b89fd7e21db5e817ad9fa26785b2001d616a9797c720a7ab88ae5e32b07bd9237edd5dfc8800227d6d4d8385f98ef73
|
7
|
+
data.tar.gz: 87c6ec30a6c56ae2f46ad9ae99f26aded31705b658d707917940ba61a5b90c9423ebf890cf7bf3084fc1e48e763145c911b7094de28cbf259fb8b994a1781063
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.140.0 (2022-09-15)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon SageMaker Automatic Model Tuning now supports specifying Hyperband strategy for tuning jobs, which uses a multi-fidelity based tuning strategy to stop underperforming hyperparameter configurations early.
|
8
|
+
|
4
9
|
1.139.0 (2022-09-08)
|
5
10
|
------------------
|
6
11
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.140.0
|
@@ -940,8 +940,7 @@ module Aws::SageMaker
|
|
940
940
|
req.send_request(options)
|
941
941
|
end
|
942
942
|
|
943
|
-
# Creates a running app for the specified UserProfile.
|
944
|
-
# are `JupyterServer` and `KernelGateway`. This operation is
|
943
|
+
# Creates a running app for the specified UserProfile. This operation is
|
945
944
|
# automatically invoked by Amazon SageMaker Studio upon access to the
|
946
945
|
# associated Domain, and when new kernel configurations are selected by
|
947
946
|
# the user. A user may have multiple Apps active simultaneously.
|
@@ -953,8 +952,7 @@ module Aws::SageMaker
|
|
953
952
|
# The user profile name.
|
954
953
|
#
|
955
954
|
# @option params [required, String] :app_type
|
956
|
-
# The type of app.
|
957
|
-
# `KernelGateway`. `TensorBoard` is not supported.
|
955
|
+
# The type of app.
|
958
956
|
#
|
959
957
|
# @option params [required, String] :app_name
|
960
958
|
# The name of the app.
|
@@ -3015,7 +3013,13 @@ module Aws::SageMaker
|
|
3015
3013
|
# resp = client.create_hyper_parameter_tuning_job({
|
3016
3014
|
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
|
3017
3015
|
# hyper_parameter_tuning_job_config: { # required
|
3018
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
3016
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
3017
|
+
# strategy_config: {
|
3018
|
+
# hyperband_strategy_config: {
|
3019
|
+
# min_resource: 1,
|
3020
|
+
# max_resource: 1,
|
3021
|
+
# },
|
3022
|
+
# },
|
3019
3023
|
# hyper_parameter_tuning_job_objective: {
|
3020
3024
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
3021
3025
|
# metric_name: "MetricName", # required
|
@@ -9722,7 +9726,9 @@ module Aws::SageMaker
|
|
9722
9726
|
#
|
9723
9727
|
# resp.hyper_parameter_tuning_job_name #=> String
|
9724
9728
|
# resp.hyper_parameter_tuning_job_arn #=> String
|
9725
|
-
# resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
|
9729
|
+
# resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
9730
|
+
# resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
|
9731
|
+
# resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
|
9726
9732
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
|
9727
9733
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
|
9728
9734
|
# resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
|
@@ -14078,7 +14084,7 @@ module Aws::SageMaker
|
|
14078
14084
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
|
14079
14085
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
|
14080
14086
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
14081
|
-
# resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
|
14087
|
+
# resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
14082
14088
|
# resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
|
14083
14089
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
|
14084
14090
|
# resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
|
@@ -17947,7 +17953,9 @@ module Aws::SageMaker
|
|
17947
17953
|
# resp.results[0].feature_metadata.parameters[0].value #=> String
|
17948
17954
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
|
17949
17955
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
|
17950
|
-
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
|
17956
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
17957
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
|
17958
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
|
17951
17959
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
|
17952
17960
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
|
17953
17961
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
|
@@ -20596,7 +20604,7 @@ module Aws::SageMaker
|
|
20596
20604
|
params: params,
|
20597
20605
|
config: config)
|
20598
20606
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
20599
|
-
context[:gem_version] = '1.
|
20607
|
+
context[:gem_version] = '1.140.0'
|
20600
20608
|
Seahorse::Client::Request.new(handlers, context)
|
20601
20609
|
end
|
20602
20610
|
|
@@ -754,6 +754,7 @@ module Aws::SageMaker
|
|
754
754
|
HyperParameterTuningJobSearchEntity = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSearchEntity')
|
755
755
|
HyperParameterTuningJobSortByOptions = Shapes::StringShape.new(name: 'HyperParameterTuningJobSortByOptions')
|
756
756
|
HyperParameterTuningJobStatus = Shapes::StringShape.new(name: 'HyperParameterTuningJobStatus')
|
757
|
+
HyperParameterTuningJobStrategyConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobStrategyConfig')
|
757
758
|
HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
|
758
759
|
HyperParameterTuningJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTuningJobSummaries')
|
759
760
|
HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
|
@@ -762,6 +763,9 @@ module Aws::SageMaker
|
|
762
763
|
HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
|
763
764
|
HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
|
764
765
|
HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
|
766
|
+
HyperbandStrategyConfig = Shapes::StructureShape.new(name: 'HyperbandStrategyConfig')
|
767
|
+
HyperbandStrategyMaxResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMaxResource')
|
768
|
+
HyperbandStrategyMinResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMinResource')
|
765
769
|
IdempotencyToken = Shapes::StringShape.new(name: 'IdempotencyToken')
|
766
770
|
Image = Shapes::StructureShape.new(name: 'Image')
|
767
771
|
ImageArn = Shapes::StringShape.new(name: 'ImageArn')
|
@@ -4521,6 +4525,7 @@ module Aws::SageMaker
|
|
4521
4525
|
HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
|
4522
4526
|
|
4523
4527
|
HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
|
4528
|
+
HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
|
4524
4529
|
HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
|
4525
4530
|
HyperParameterTuningJobConfig.add_member(:resource_limits, Shapes::ShapeRef.new(shape: ResourceLimits, required: true, location_name: "ResourceLimits"))
|
4526
4531
|
HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
|
@@ -4552,6 +4557,9 @@ module Aws::SageMaker
|
|
4552
4557
|
HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
4553
4558
|
HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
|
4554
4559
|
|
4560
|
+
HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
|
4561
|
+
HyperParameterTuningJobStrategyConfig.struct_class = Types::HyperParameterTuningJobStrategyConfig
|
4562
|
+
|
4555
4563
|
HyperParameterTuningJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobSummary)
|
4556
4564
|
|
4557
4565
|
HyperParameterTuningJobSummary.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
|
@@ -4581,6 +4589,10 @@ module Aws::SageMaker
|
|
4581
4589
|
HyperParameters.key = Shapes::ShapeRef.new(shape: HyperParameterKey)
|
4582
4590
|
HyperParameters.value = Shapes::ShapeRef.new(shape: HyperParameterValue)
|
4583
4591
|
|
4592
|
+
HyperbandStrategyConfig.add_member(:min_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMinResource, location_name: "MinResource"))
|
4593
|
+
HyperbandStrategyConfig.add_member(:max_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMaxResource, location_name: "MaxResource"))
|
4594
|
+
HyperbandStrategyConfig.struct_class = Types::HyperbandStrategyConfig
|
4595
|
+
|
4584
4596
|
Image.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
|
4585
4597
|
Image.add_member(:description, Shapes::ShapeRef.new(shape: ImageDescription, location_name: "Description"))
|
4586
4598
|
Image.add_member(:display_name, Shapes::ShapeRef.new(shape: ImageDisplayName, location_name: "DisplayName"))
|
@@ -4440,8 +4440,7 @@ module Aws::SageMaker
|
|
4440
4440
|
# @return [String]
|
4441
4441
|
#
|
4442
4442
|
# @!attribute [rw] app_type
|
4443
|
-
# The type of app.
|
4444
|
-
# `KernelGateway`. `TensorBoard` is not supported.
|
4443
|
+
# The type of app.
|
4445
4444
|
# @return [String]
|
4446
4445
|
#
|
4447
4446
|
# @!attribute [rw] app_name
|
@@ -6293,7 +6292,13 @@ module Aws::SageMaker
|
|
6293
6292
|
# {
|
6294
6293
|
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
|
6295
6294
|
# hyper_parameter_tuning_job_config: { # required
|
6296
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
6295
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
6296
|
+
# strategy_config: {
|
6297
|
+
# hyperband_strategy_config: {
|
6298
|
+
# min_resource: 1,
|
6299
|
+
# max_resource: 1,
|
6300
|
+
# },
|
6301
|
+
# },
|
6297
6302
|
# hyper_parameter_tuning_job_objective: {
|
6298
6303
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
6299
6304
|
# metric_name: "MetricName", # required
|
@@ -17732,7 +17737,7 @@ module Aws::SageMaker
|
|
17732
17737
|
#
|
17733
17738
|
# @!attribute [rw] execution_role_identity_config
|
17734
17739
|
# The configuration for attaching a SageMaker user profile name to the
|
17735
|
-
# execution role as a [
|
17740
|
+
# execution role as a [sts:SourceIdentity key][1].
|
17736
17741
|
#
|
17737
17742
|
#
|
17738
17743
|
#
|
@@ -17774,9 +17779,9 @@ module Aws::SageMaker
|
|
17774
17779
|
#
|
17775
17780
|
# @!attribute [rw] execution_role_identity_config
|
17776
17781
|
# The configuration for attaching a SageMaker user profile name to the
|
17777
|
-
# execution role as a [
|
17778
|
-
#
|
17779
|
-
# `
|
17782
|
+
# execution role as a [sts:SourceIdentity key][1]. This configuration
|
17783
|
+
# can only be modified if there are no apps in the `InService` or
|
17784
|
+
# `Pending` state.
|
17780
17785
|
#
|
17781
17786
|
#
|
17782
17787
|
#
|
@@ -21179,7 +21184,8 @@ module Aws::SageMaker
|
|
21179
21184
|
# Defines the maximum number of data objects that can be labeled by
|
21180
21185
|
# human workers at the same time. Also referred to as batch size. Each
|
21181
21186
|
# object may have more than one worker at one time. The default value
|
21182
|
-
# is 1000 objects.
|
21187
|
+
# is 1000 objects. To increase the maximum value to 5000 objects,
|
21188
|
+
# contact Amazon Web Services Support.
|
21183
21189
|
# @return [Integer]
|
21184
21190
|
#
|
21185
21191
|
# @!attribute [rw] annotation_consolidation_config
|
@@ -21848,7 +21854,13 @@ module Aws::SageMaker
|
|
21848
21854
|
# data as a hash:
|
21849
21855
|
#
|
21850
21856
|
# {
|
21851
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
21857
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
21858
|
+
# strategy_config: {
|
21859
|
+
# hyperband_strategy_config: {
|
21860
|
+
# min_resource: 1,
|
21861
|
+
# max_resource: 1,
|
21862
|
+
# },
|
21863
|
+
# },
|
21852
21864
|
# hyper_parameter_tuning_job_objective: {
|
21853
21865
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
21854
21866
|
# metric_name: "MetricName", # required
|
@@ -21889,16 +21901,21 @@ module Aws::SageMaker
|
|
21889
21901
|
#
|
21890
21902
|
# @!attribute [rw] strategy
|
21891
21903
|
# Specifies how hyperparameter tuning chooses the combinations of
|
21892
|
-
# hyperparameter values to use for the training job it launches.
|
21893
|
-
#
|
21894
|
-
#
|
21895
|
-
# strategies, see [How Hyperparameter Tuning Works][1].
|
21904
|
+
# hyperparameter values to use for the training job it launches. For
|
21905
|
+
# information about search strategies, see [How Hyperparameter Tuning
|
21906
|
+
# Works][1].
|
21896
21907
|
#
|
21897
21908
|
#
|
21898
21909
|
#
|
21899
21910
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
|
21900
21911
|
# @return [String]
|
21901
21912
|
#
|
21913
|
+
# @!attribute [rw] strategy_config
|
21914
|
+
# The configuration for the `Hyperband` optimization strategy. This
|
21915
|
+
# parameter should be provided only if `Hyperband` is selected as the
|
21916
|
+
# strategy for `HyperParameterTuningJobConfig`.
|
21917
|
+
# @return [Types::HyperParameterTuningJobStrategyConfig]
|
21918
|
+
#
|
21902
21919
|
# @!attribute [rw] hyper_parameter_tuning_job_objective
|
21903
21920
|
# The HyperParameterTuningJobObjective object that specifies the
|
21904
21921
|
# objective metric for this tuning job.
|
@@ -21916,8 +21933,11 @@ module Aws::SageMaker
|
|
21916
21933
|
#
|
21917
21934
|
# @!attribute [rw] training_job_early_stopping_type
|
21918
21935
|
# Specifies whether to use early stopping for training jobs launched
|
21919
|
-
# by the hyperparameter tuning job.
|
21920
|
-
#
|
21936
|
+
# by the hyperparameter tuning job. Because the `Hyperband` strategy
|
21937
|
+
# has its own advanced internal early stopping mechanism,
|
21938
|
+
# `TrainingJobEarlyStoppingType` must be `OFF` to use `Hyperband`.
|
21939
|
+
# This parameter can take on one of the following values (the default
|
21940
|
+
# value is `OFF`):
|
21921
21941
|
#
|
21922
21942
|
# OFF
|
21923
21943
|
#
|
@@ -21944,6 +21964,7 @@ module Aws::SageMaker
|
|
21944
21964
|
#
|
21945
21965
|
class HyperParameterTuningJobConfig < Struct.new(
|
21946
21966
|
:strategy,
|
21967
|
+
:strategy_config,
|
21947
21968
|
:hyper_parameter_tuning_job_objective,
|
21948
21969
|
:resource_limits,
|
21949
21970
|
:parameter_ranges,
|
@@ -22101,6 +22122,42 @@ module Aws::SageMaker
|
|
22101
22122
|
include Aws::Structure
|
22102
22123
|
end
|
22103
22124
|
|
22125
|
+
# The configuration for a training job launched by a hyperparameter
|
22126
|
+
# tuning job. Choose `Bayesian` for Bayesian optimization, and `Random`
|
22127
|
+
# for random search optimization. For more advanced use cases, use
|
22128
|
+
# `Hyperband`, which evaluates objective metrics for training jobs after
|
22129
|
+
# every epoch. For more information about strategies, see [How
|
22130
|
+
# Hyperparameter Tuning Works][1].
|
22131
|
+
#
|
22132
|
+
#
|
22133
|
+
#
|
22134
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
|
22135
|
+
#
|
22136
|
+
# @note When making an API call, you may pass HyperParameterTuningJobStrategyConfig
|
22137
|
+
# data as a hash:
|
22138
|
+
#
|
22139
|
+
# {
|
22140
|
+
# hyperband_strategy_config: {
|
22141
|
+
# min_resource: 1,
|
22142
|
+
# max_resource: 1,
|
22143
|
+
# },
|
22144
|
+
# }
|
22145
|
+
#
|
22146
|
+
# @!attribute [rw] hyperband_strategy_config
|
22147
|
+
# The configuration for the object that specifies the `Hyperband`
|
22148
|
+
# strategy. This parameter is only supported for the `Hyperband`
|
22149
|
+
# selection for `Strategy` within the `HyperParameterTuningJobConfig`
|
22150
|
+
# API.
|
22151
|
+
# @return [Types::HyperbandStrategyConfig]
|
22152
|
+
#
|
22153
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobStrategyConfig AWS API Documentation
|
22154
|
+
#
|
22155
|
+
class HyperParameterTuningJobStrategyConfig < Struct.new(
|
22156
|
+
:hyperband_strategy_config)
|
22157
|
+
SENSITIVE = []
|
22158
|
+
include Aws::Structure
|
22159
|
+
end
|
22160
|
+
|
22104
22161
|
# Provides summary information about a hyperparameter tuning job.
|
22105
22162
|
#
|
22106
22163
|
# @!attribute [rw] hyper_parameter_tuning_job_name
|
@@ -22117,8 +22174,7 @@ module Aws::SageMaker
|
|
22117
22174
|
#
|
22118
22175
|
# @!attribute [rw] strategy
|
22119
22176
|
# Specifies the search strategy hyperparameter tuning uses to choose
|
22120
|
-
# which hyperparameters to
|
22121
|
-
# valid value is Bayesian.
|
22177
|
+
# which hyperparameters to evaluate at each iteration.
|
22122
22178
|
# @return [String]
|
22123
22179
|
#
|
22124
22180
|
# @!attribute [rw] creation_time
|
@@ -22386,6 +22442,74 @@ module Aws::SageMaker
|
|
22386
22442
|
include Aws::Structure
|
22387
22443
|
end
|
22388
22444
|
|
22445
|
+
# The configuration for `Hyperband`, a multi-fidelity based
|
22446
|
+
# hyperparameter tuning strategy. `Hyperband` uses the final and
|
22447
|
+
# intermediate results of a training job to dynamically allocate
|
22448
|
+
# resources to utilized hyperparameter configurations while
|
22449
|
+
# automatically stopping under-performing configurations. This parameter
|
22450
|
+
# should be provided only if `Hyperband` is selected as the
|
22451
|
+
# `StrategyConfig` under the `HyperParameterTuningJobConfig` API.
|
22452
|
+
#
|
22453
|
+
# @note When making an API call, you may pass HyperbandStrategyConfig
|
22454
|
+
# data as a hash:
|
22455
|
+
#
|
22456
|
+
# {
|
22457
|
+
# min_resource: 1,
|
22458
|
+
# max_resource: 1,
|
22459
|
+
# }
|
22460
|
+
#
|
22461
|
+
# @!attribute [rw] min_resource
|
22462
|
+
# The minimum number of resources (such as epochs) that can be used by
|
22463
|
+
# a training job launched by a hyperparameter tuning job. If the value
|
22464
|
+
# for `MinResource` has not been reached, the training job will not be
|
22465
|
+
# stopped by `Hyperband`.
|
22466
|
+
# @return [Integer]
|
22467
|
+
#
|
22468
|
+
# @!attribute [rw] max_resource
|
22469
|
+
# The maximum number of resources (such as epochs) that can be used by
|
22470
|
+
# a training job launched by a hyperparameter tuning job. Once a job
|
22471
|
+
# reaches the `MaxResource` value, it is stopped. If a value for
|
22472
|
+
# `MaxResource` is not provided, and `Hyperband` is selected as the
|
22473
|
+
# hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
|
22474
|
+
# infer `MaxResource` from the following keys (if present) in
|
22475
|
+
# [StaticsHyperParameters][1]\:
|
22476
|
+
#
|
22477
|
+
# * `epochs`
|
22478
|
+
#
|
22479
|
+
# * `numepochs`
|
22480
|
+
#
|
22481
|
+
# * `n-epochs`
|
22482
|
+
#
|
22483
|
+
# * `n_epochs`
|
22484
|
+
#
|
22485
|
+
# * `num_epochs`
|
22486
|
+
#
|
22487
|
+
# If `HyperbandStrategyConfig` is unable to infer a value for
|
22488
|
+
# `MaxResource`, it generates a validation error. The maximum value is
|
22489
|
+
# 20,000 epochs. All metrics that correspond to an objective metric
|
22490
|
+
# are used to derive [early stopping decisions][2]. For
|
22491
|
+
# [distributive][3] training jobs, ensure that duplicate metrics are
|
22492
|
+
# not printed in the logs across the individual nodes in a training
|
22493
|
+
# job. If multiple nodes are publishing duplicate or incorrect
|
22494
|
+
# metrics, training jobs may make an incorrect stopping decision and
|
22495
|
+
# stop the job prematurely.
|
22496
|
+
#
|
22497
|
+
#
|
22498
|
+
#
|
22499
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
|
22500
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
|
22501
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
22502
|
+
# @return [Integer]
|
22503
|
+
#
|
22504
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
|
22505
|
+
#
|
22506
|
+
class HyperbandStrategyConfig < Struct.new(
|
22507
|
+
:min_resource,
|
22508
|
+
:max_resource)
|
22509
|
+
SENSITIVE = []
|
22510
|
+
include Aws::Structure
|
22511
|
+
end
|
22512
|
+
|
22389
22513
|
# A SageMaker image. A SageMaker image represents a set of container
|
22390
22514
|
# images that are derived from a common base container image. Each of
|
22391
22515
|
# these container images is represented by a SageMaker `ImageVersion`.
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.140.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-09-
|
11
|
+
date: 2022-09-15 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|