aws-sdk-sagemaker 1.139.0 → 1.140.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 7deb3524a9430ff017818162aedf6e3bd8043f7ba2b728f8c64efaac5a527c0c
4
- data.tar.gz: fb76d74dc54301fb330152d44fd95643b9360ea1e0f0cfd42c08a8b16e4547e2
3
+ metadata.gz: 183a3d0710845a318335195f1df77b55daec4ac09cce10e3f8d78aa502900df8
4
+ data.tar.gz: c52b1b8802e3bb268c7461a679e8a40621c2a987889458371e59595708deadbc
5
5
  SHA512:
6
- metadata.gz: 4ae359d7efd1f2ee6e89f8f7b0c915b6de05162569c528111ccf3266381ad26003c9577df84a892f695ed05172fa566c8afc22e5650a5caead70aa73185bd68e
7
- data.tar.gz: 29f83537ae4e0c80aeee9aa286ec7de6af46bdf6c9472832ea96fd2223c2c1e737057dcd9aa3e95801be0e84b0f0d09aad1a9c1711ebd5ff6e2781f98bdeb689
6
+ metadata.gz: 272cc69827d58efd70a692bd40bfbae65b89fd7e21db5e817ad9fa26785b2001d616a9797c720a7ab88ae5e32b07bd9237edd5dfc8800227d6d4d8385f98ef73
7
+ data.tar.gz: 87c6ec30a6c56ae2f46ad9ae99f26aded31705b658d707917940ba61a5b90c9423ebf890cf7bf3084fc1e48e763145c911b7094de28cbf259fb8b994a1781063
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.140.0 (2022-09-15)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Automatic Model Tuning now supports specifying Hyperband strategy for tuning jobs, which uses a multi-fidelity based tuning strategy to stop underperforming hyperparameter configurations early.
8
+
4
9
  1.139.0 (2022-09-08)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.139.0
1
+ 1.140.0
@@ -940,8 +940,7 @@ module Aws::SageMaker
940
940
  req.send_request(options)
941
941
  end
942
942
 
943
- # Creates a running app for the specified UserProfile. Supported apps
944
- # are `JupyterServer` and `KernelGateway`. This operation is
943
+ # Creates a running app for the specified UserProfile. This operation is
945
944
  # automatically invoked by Amazon SageMaker Studio upon access to the
946
945
  # associated Domain, and when new kernel configurations are selected by
947
946
  # the user. A user may have multiple Apps active simultaneously.
@@ -953,8 +952,7 @@ module Aws::SageMaker
953
952
  # The user profile name.
954
953
  #
955
954
  # @option params [required, String] :app_type
956
- # The type of app. Supported apps are `JupyterServer` and
957
- # `KernelGateway`. `TensorBoard` is not supported.
955
+ # The type of app.
958
956
  #
959
957
  # @option params [required, String] :app_name
960
958
  # The name of the app.
@@ -3015,7 +3013,13 @@ module Aws::SageMaker
3015
3013
  # resp = client.create_hyper_parameter_tuning_job({
3016
3014
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
3017
3015
  # hyper_parameter_tuning_job_config: { # required
3018
- # strategy: "Bayesian", # required, accepts Bayesian, Random
3016
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
3017
+ # strategy_config: {
3018
+ # hyperband_strategy_config: {
3019
+ # min_resource: 1,
3020
+ # max_resource: 1,
3021
+ # },
3022
+ # },
3019
3023
  # hyper_parameter_tuning_job_objective: {
3020
3024
  # type: "Maximize", # required, accepts Maximize, Minimize
3021
3025
  # metric_name: "MetricName", # required
@@ -9722,7 +9726,9 @@ module Aws::SageMaker
9722
9726
  #
9723
9727
  # resp.hyper_parameter_tuning_job_name #=> String
9724
9728
  # resp.hyper_parameter_tuning_job_arn #=> String
9725
- # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
9729
+ # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
9730
+ # resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
9731
+ # resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
9726
9732
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
9727
9733
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
9728
9734
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
@@ -14078,7 +14084,7 @@ module Aws::SageMaker
14078
14084
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
14079
14085
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
14080
14086
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
14081
- # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
14087
+ # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random", "Hyperband"
14082
14088
  # resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
14083
14089
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
14084
14090
  # resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
@@ -17947,7 +17953,9 @@ module Aws::SageMaker
17947
17953
  # resp.results[0].feature_metadata.parameters[0].value #=> String
17948
17954
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
17949
17955
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
17950
- # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
17956
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
17957
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
17958
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
17951
17959
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
17952
17960
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
17953
17961
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
@@ -20596,7 +20604,7 @@ module Aws::SageMaker
20596
20604
  params: params,
20597
20605
  config: config)
20598
20606
  context[:gem_name] = 'aws-sdk-sagemaker'
20599
- context[:gem_version] = '1.139.0'
20607
+ context[:gem_version] = '1.140.0'
20600
20608
  Seahorse::Client::Request.new(handlers, context)
20601
20609
  end
20602
20610
 
@@ -754,6 +754,7 @@ module Aws::SageMaker
754
754
  HyperParameterTuningJobSearchEntity = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSearchEntity')
755
755
  HyperParameterTuningJobSortByOptions = Shapes::StringShape.new(name: 'HyperParameterTuningJobSortByOptions')
756
756
  HyperParameterTuningJobStatus = Shapes::StringShape.new(name: 'HyperParameterTuningJobStatus')
757
+ HyperParameterTuningJobStrategyConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobStrategyConfig')
757
758
  HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
758
759
  HyperParameterTuningJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTuningJobSummaries')
759
760
  HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
@@ -762,6 +763,9 @@ module Aws::SageMaker
762
763
  HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
763
764
  HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
764
765
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
766
+ HyperbandStrategyConfig = Shapes::StructureShape.new(name: 'HyperbandStrategyConfig')
767
+ HyperbandStrategyMaxResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMaxResource')
768
+ HyperbandStrategyMinResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMinResource')
765
769
  IdempotencyToken = Shapes::StringShape.new(name: 'IdempotencyToken')
766
770
  Image = Shapes::StructureShape.new(name: 'Image')
767
771
  ImageArn = Shapes::StringShape.new(name: 'ImageArn')
@@ -4521,6 +4525,7 @@ module Aws::SageMaker
4521
4525
  HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
4522
4526
 
4523
4527
  HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
4528
+ HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
4524
4529
  HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
4525
4530
  HyperParameterTuningJobConfig.add_member(:resource_limits, Shapes::ShapeRef.new(shape: ResourceLimits, required: true, location_name: "ResourceLimits"))
4526
4531
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -4552,6 +4557,9 @@ module Aws::SageMaker
4552
4557
  HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
4553
4558
  HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
4554
4559
 
4560
+ HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
4561
+ HyperParameterTuningJobStrategyConfig.struct_class = Types::HyperParameterTuningJobStrategyConfig
4562
+
4555
4563
  HyperParameterTuningJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobSummary)
4556
4564
 
4557
4565
  HyperParameterTuningJobSummary.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
@@ -4581,6 +4589,10 @@ module Aws::SageMaker
4581
4589
  HyperParameters.key = Shapes::ShapeRef.new(shape: HyperParameterKey)
4582
4590
  HyperParameters.value = Shapes::ShapeRef.new(shape: HyperParameterValue)
4583
4591
 
4592
+ HyperbandStrategyConfig.add_member(:min_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMinResource, location_name: "MinResource"))
4593
+ HyperbandStrategyConfig.add_member(:max_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMaxResource, location_name: "MaxResource"))
4594
+ HyperbandStrategyConfig.struct_class = Types::HyperbandStrategyConfig
4595
+
4584
4596
  Image.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
4585
4597
  Image.add_member(:description, Shapes::ShapeRef.new(shape: ImageDescription, location_name: "Description"))
4586
4598
  Image.add_member(:display_name, Shapes::ShapeRef.new(shape: ImageDisplayName, location_name: "DisplayName"))
@@ -4440,8 +4440,7 @@ module Aws::SageMaker
4440
4440
  # @return [String]
4441
4441
  #
4442
4442
  # @!attribute [rw] app_type
4443
- # The type of app. Supported apps are `JupyterServer` and
4444
- # `KernelGateway`. `TensorBoard` is not supported.
4443
+ # The type of app.
4445
4444
  # @return [String]
4446
4445
  #
4447
4446
  # @!attribute [rw] app_name
@@ -6293,7 +6292,13 @@ module Aws::SageMaker
6293
6292
  # {
6294
6293
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
6295
6294
  # hyper_parameter_tuning_job_config: { # required
6296
- # strategy: "Bayesian", # required, accepts Bayesian, Random
6295
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
6296
+ # strategy_config: {
6297
+ # hyperband_strategy_config: {
6298
+ # min_resource: 1,
6299
+ # max_resource: 1,
6300
+ # },
6301
+ # },
6297
6302
  # hyper_parameter_tuning_job_objective: {
6298
6303
  # type: "Maximize", # required, accepts Maximize, Minimize
6299
6304
  # metric_name: "MetricName", # required
@@ -17732,7 +17737,7 @@ module Aws::SageMaker
17732
17737
  #
17733
17738
  # @!attribute [rw] execution_role_identity_config
17734
17739
  # The configuration for attaching a SageMaker user profile name to the
17735
- # execution role as a [ `sts:SourceIdentity` key][1].
17740
+ # execution role as a [sts:SourceIdentity key][1].
17736
17741
  #
17737
17742
  #
17738
17743
  #
@@ -17774,9 +17779,9 @@ module Aws::SageMaker
17774
17779
  #
17775
17780
  # @!attribute [rw] execution_role_identity_config
17776
17781
  # The configuration for attaching a SageMaker user profile name to the
17777
- # execution role as a [ `sts:SourceIdentity` key][1]. This
17778
- # configuration can only be modified if there are no apps in the
17779
- # `InService` or `Pending` state.
17782
+ # execution role as a [sts:SourceIdentity key][1]. This configuration
17783
+ # can only be modified if there are no apps in the `InService` or
17784
+ # `Pending` state.
17780
17785
  #
17781
17786
  #
17782
17787
  #
@@ -21179,7 +21184,8 @@ module Aws::SageMaker
21179
21184
  # Defines the maximum number of data objects that can be labeled by
21180
21185
  # human workers at the same time. Also referred to as batch size. Each
21181
21186
  # object may have more than one worker at one time. The default value
21182
- # is 1000 objects.
21187
+ # is 1000 objects. To increase the maximum value to 5000 objects,
21188
+ # contact Amazon Web Services Support.
21183
21189
  # @return [Integer]
21184
21190
  #
21185
21191
  # @!attribute [rw] annotation_consolidation_config
@@ -21848,7 +21854,13 @@ module Aws::SageMaker
21848
21854
  # data as a hash:
21849
21855
  #
21850
21856
  # {
21851
- # strategy: "Bayesian", # required, accepts Bayesian, Random
21857
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
21858
+ # strategy_config: {
21859
+ # hyperband_strategy_config: {
21860
+ # min_resource: 1,
21861
+ # max_resource: 1,
21862
+ # },
21863
+ # },
21852
21864
  # hyper_parameter_tuning_job_objective: {
21853
21865
  # type: "Maximize", # required, accepts Maximize, Minimize
21854
21866
  # metric_name: "MetricName", # required
@@ -21889,16 +21901,21 @@ module Aws::SageMaker
21889
21901
  #
21890
21902
  # @!attribute [rw] strategy
21891
21903
  # Specifies how hyperparameter tuning chooses the combinations of
21892
- # hyperparameter values to use for the training job it launches. To
21893
- # use the Bayesian search strategy, set this to `Bayesian`. To
21894
- # randomly search, set it to `Random`. For information about search
21895
- # strategies, see [How Hyperparameter Tuning Works][1].
21904
+ # hyperparameter values to use for the training job it launches. For
21905
+ # information about search strategies, see [How Hyperparameter Tuning
21906
+ # Works][1].
21896
21907
  #
21897
21908
  #
21898
21909
  #
21899
21910
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
21900
21911
  # @return [String]
21901
21912
  #
21913
+ # @!attribute [rw] strategy_config
21914
+ # The configuration for the `Hyperband` optimization strategy. This
21915
+ # parameter should be provided only if `Hyperband` is selected as the
21916
+ # strategy for `HyperParameterTuningJobConfig`.
21917
+ # @return [Types::HyperParameterTuningJobStrategyConfig]
21918
+ #
21902
21919
  # @!attribute [rw] hyper_parameter_tuning_job_objective
21903
21920
  # The HyperParameterTuningJobObjective object that specifies the
21904
21921
  # objective metric for this tuning job.
@@ -21916,8 +21933,11 @@ module Aws::SageMaker
21916
21933
  #
21917
21934
  # @!attribute [rw] training_job_early_stopping_type
21918
21935
  # Specifies whether to use early stopping for training jobs launched
21919
- # by the hyperparameter tuning job. This can be one of the following
21920
- # values (the default value is `OFF`):
21936
+ # by the hyperparameter tuning job. Because the `Hyperband` strategy
21937
+ # has its own advanced internal early stopping mechanism,
21938
+ # `TrainingJobEarlyStoppingType` must be `OFF` to use `Hyperband`.
21939
+ # This parameter can take on one of the following values (the default
21940
+ # value is `OFF`):
21921
21941
  #
21922
21942
  # OFF
21923
21943
  #
@@ -21944,6 +21964,7 @@ module Aws::SageMaker
21944
21964
  #
21945
21965
  class HyperParameterTuningJobConfig < Struct.new(
21946
21966
  :strategy,
21967
+ :strategy_config,
21947
21968
  :hyper_parameter_tuning_job_objective,
21948
21969
  :resource_limits,
21949
21970
  :parameter_ranges,
@@ -22101,6 +22122,42 @@ module Aws::SageMaker
22101
22122
  include Aws::Structure
22102
22123
  end
22103
22124
 
22125
+ # The configuration for a training job launched by a hyperparameter
22126
+ # tuning job. Choose `Bayesian` for Bayesian optimization, and `Random`
22127
+ # for random search optimization. For more advanced use cases, use
22128
+ # `Hyperband`, which evaluates objective metrics for training jobs after
22129
+ # every epoch. For more information about strategies, see [How
22130
+ # Hyperparameter Tuning Works][1].
22131
+ #
22132
+ #
22133
+ #
22134
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
22135
+ #
22136
+ # @note When making an API call, you may pass HyperParameterTuningJobStrategyConfig
22137
+ # data as a hash:
22138
+ #
22139
+ # {
22140
+ # hyperband_strategy_config: {
22141
+ # min_resource: 1,
22142
+ # max_resource: 1,
22143
+ # },
22144
+ # }
22145
+ #
22146
+ # @!attribute [rw] hyperband_strategy_config
22147
+ # The configuration for the object that specifies the `Hyperband`
22148
+ # strategy. This parameter is only supported for the `Hyperband`
22149
+ # selection for `Strategy` within the `HyperParameterTuningJobConfig`
22150
+ # API.
22151
+ # @return [Types::HyperbandStrategyConfig]
22152
+ #
22153
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobStrategyConfig AWS API Documentation
22154
+ #
22155
+ class HyperParameterTuningJobStrategyConfig < Struct.new(
22156
+ :hyperband_strategy_config)
22157
+ SENSITIVE = []
22158
+ include Aws::Structure
22159
+ end
22160
+
22104
22161
  # Provides summary information about a hyperparameter tuning job.
22105
22162
  #
22106
22163
  # @!attribute [rw] hyper_parameter_tuning_job_name
@@ -22117,8 +22174,7 @@ module Aws::SageMaker
22117
22174
  #
22118
22175
  # @!attribute [rw] strategy
22119
22176
  # Specifies the search strategy hyperparameter tuning uses to choose
22120
- # which hyperparameters to use for each iteration. Currently, the only
22121
- # valid value is Bayesian.
22177
+ # which hyperparameters to evaluate at each iteration.
22122
22178
  # @return [String]
22123
22179
  #
22124
22180
  # @!attribute [rw] creation_time
@@ -22386,6 +22442,74 @@ module Aws::SageMaker
22386
22442
  include Aws::Structure
22387
22443
  end
22388
22444
 
22445
+ # The configuration for `Hyperband`, a multi-fidelity based
22446
+ # hyperparameter tuning strategy. `Hyperband` uses the final and
22447
+ # intermediate results of a training job to dynamically allocate
22448
+ # resources to utilized hyperparameter configurations while
22449
+ # automatically stopping under-performing configurations. This parameter
22450
+ # should be provided only if `Hyperband` is selected as the
22451
+ # `StrategyConfig` under the `HyperParameterTuningJobConfig` API.
22452
+ #
22453
+ # @note When making an API call, you may pass HyperbandStrategyConfig
22454
+ # data as a hash:
22455
+ #
22456
+ # {
22457
+ # min_resource: 1,
22458
+ # max_resource: 1,
22459
+ # }
22460
+ #
22461
+ # @!attribute [rw] min_resource
22462
+ # The minimum number of resources (such as epochs) that can be used by
22463
+ # a training job launched by a hyperparameter tuning job. If the value
22464
+ # for `MinResource` has not been reached, the training job will not be
22465
+ # stopped by `Hyperband`.
22466
+ # @return [Integer]
22467
+ #
22468
+ # @!attribute [rw] max_resource
22469
+ # The maximum number of resources (such as epochs) that can be used by
22470
+ # a training job launched by a hyperparameter tuning job. Once a job
22471
+ # reaches the `MaxResource` value, it is stopped. If a value for
22472
+ # `MaxResource` is not provided, and `Hyperband` is selected as the
22473
+ # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
22474
+ # infer `MaxResource` from the following keys (if present) in
22475
+ # [StaticsHyperParameters][1]\:
22476
+ #
22477
+ # * `epochs`
22478
+ #
22479
+ # * `numepochs`
22480
+ #
22481
+ # * `n-epochs`
22482
+ #
22483
+ # * `n_epochs`
22484
+ #
22485
+ # * `num_epochs`
22486
+ #
22487
+ # If `HyperbandStrategyConfig` is unable to infer a value for
22488
+ # `MaxResource`, it generates a validation error. The maximum value is
22489
+ # 20,000 epochs. All metrics that correspond to an objective metric
22490
+ # are used to derive [early stopping decisions][2]. For
22491
+ # [distributive][3] training jobs, ensure that duplicate metrics are
22492
+ # not printed in the logs across the individual nodes in a training
22493
+ # job. If multiple nodes are publishing duplicate or incorrect
22494
+ # metrics, training jobs may make an incorrect stopping decision and
22495
+ # stop the job prematurely.
22496
+ #
22497
+ #
22498
+ #
22499
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
22500
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
22501
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
22502
+ # @return [Integer]
22503
+ #
22504
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
22505
+ #
22506
+ class HyperbandStrategyConfig < Struct.new(
22507
+ :min_resource,
22508
+ :max_resource)
22509
+ SENSITIVE = []
22510
+ include Aws::Structure
22511
+ end
22512
+
22389
22513
  # A SageMaker image. A SageMaker image represents a set of container
22390
22514
  # images that are derived from a common base container image. Each of
22391
22515
  # these container images is represented by a SageMaker `ImageVersion`.
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.139.0'
52
+ GEM_VERSION = '1.140.0'
53
53
 
54
54
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.139.0
4
+ version: 1.140.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-09-08 00:00:00.000000000 Z
11
+ date: 2022-09-15 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core