aws-sdk-sagemaker 1.139.0 → 1.140.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 7deb3524a9430ff017818162aedf6e3bd8043f7ba2b728f8c64efaac5a527c0c
4
- data.tar.gz: fb76d74dc54301fb330152d44fd95643b9360ea1e0f0cfd42c08a8b16e4547e2
3
+ metadata.gz: 183a3d0710845a318335195f1df77b55daec4ac09cce10e3f8d78aa502900df8
4
+ data.tar.gz: c52b1b8802e3bb268c7461a679e8a40621c2a987889458371e59595708deadbc
5
5
  SHA512:
6
- metadata.gz: 4ae359d7efd1f2ee6e89f8f7b0c915b6de05162569c528111ccf3266381ad26003c9577df84a892f695ed05172fa566c8afc22e5650a5caead70aa73185bd68e
7
- data.tar.gz: 29f83537ae4e0c80aeee9aa286ec7de6af46bdf6c9472832ea96fd2223c2c1e737057dcd9aa3e95801be0e84b0f0d09aad1a9c1711ebd5ff6e2781f98bdeb689
6
+ metadata.gz: 272cc69827d58efd70a692bd40bfbae65b89fd7e21db5e817ad9fa26785b2001d616a9797c720a7ab88ae5e32b07bd9237edd5dfc8800227d6d4d8385f98ef73
7
+ data.tar.gz: 87c6ec30a6c56ae2f46ad9ae99f26aded31705b658d707917940ba61a5b90c9423ebf890cf7bf3084fc1e48e763145c911b7094de28cbf259fb8b994a1781063
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.140.0 (2022-09-15)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Automatic Model Tuning now supports specifying Hyperband strategy for tuning jobs, which uses a multi-fidelity based tuning strategy to stop underperforming hyperparameter configurations early.
8
+
4
9
  1.139.0 (2022-09-08)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.139.0
1
+ 1.140.0
@@ -940,8 +940,7 @@ module Aws::SageMaker
940
940
  req.send_request(options)
941
941
  end
942
942
 
943
- # Creates a running app for the specified UserProfile. Supported apps
944
- # are `JupyterServer` and `KernelGateway`. This operation is
943
+ # Creates a running app for the specified UserProfile. This operation is
945
944
  # automatically invoked by Amazon SageMaker Studio upon access to the
946
945
  # associated Domain, and when new kernel configurations are selected by
947
946
  # the user. A user may have multiple Apps active simultaneously.
@@ -953,8 +952,7 @@ module Aws::SageMaker
953
952
  # The user profile name.
954
953
  #
955
954
  # @option params [required, String] :app_type
956
- # The type of app. Supported apps are `JupyterServer` and
957
- # `KernelGateway`. `TensorBoard` is not supported.
955
+ # The type of app.
958
956
  #
959
957
  # @option params [required, String] :app_name
960
958
  # The name of the app.
@@ -3015,7 +3013,13 @@ module Aws::SageMaker
3015
3013
  # resp = client.create_hyper_parameter_tuning_job({
3016
3014
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
3017
3015
  # hyper_parameter_tuning_job_config: { # required
3018
- # strategy: "Bayesian", # required, accepts Bayesian, Random
3016
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
3017
+ # strategy_config: {
3018
+ # hyperband_strategy_config: {
3019
+ # min_resource: 1,
3020
+ # max_resource: 1,
3021
+ # },
3022
+ # },
3019
3023
  # hyper_parameter_tuning_job_objective: {
3020
3024
  # type: "Maximize", # required, accepts Maximize, Minimize
3021
3025
  # metric_name: "MetricName", # required
@@ -9722,7 +9726,9 @@ module Aws::SageMaker
9722
9726
  #
9723
9727
  # resp.hyper_parameter_tuning_job_name #=> String
9724
9728
  # resp.hyper_parameter_tuning_job_arn #=> String
9725
- # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
9729
+ # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
9730
+ # resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
9731
+ # resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
9726
9732
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
9727
9733
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
9728
9734
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
@@ -14078,7 +14084,7 @@ module Aws::SageMaker
14078
14084
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
14079
14085
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
14080
14086
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
14081
- # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
14087
+ # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random", "Hyperband"
14082
14088
  # resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
14083
14089
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
14084
14090
  # resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
@@ -17947,7 +17953,9 @@ module Aws::SageMaker
17947
17953
  # resp.results[0].feature_metadata.parameters[0].value #=> String
17948
17954
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
17949
17955
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
17950
- # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
17956
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
17957
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
17958
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
17951
17959
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
17952
17960
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
17953
17961
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
@@ -20596,7 +20604,7 @@ module Aws::SageMaker
20596
20604
  params: params,
20597
20605
  config: config)
20598
20606
  context[:gem_name] = 'aws-sdk-sagemaker'
20599
- context[:gem_version] = '1.139.0'
20607
+ context[:gem_version] = '1.140.0'
20600
20608
  Seahorse::Client::Request.new(handlers, context)
20601
20609
  end
20602
20610
 
@@ -754,6 +754,7 @@ module Aws::SageMaker
754
754
  HyperParameterTuningJobSearchEntity = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSearchEntity')
755
755
  HyperParameterTuningJobSortByOptions = Shapes::StringShape.new(name: 'HyperParameterTuningJobSortByOptions')
756
756
  HyperParameterTuningJobStatus = Shapes::StringShape.new(name: 'HyperParameterTuningJobStatus')
757
+ HyperParameterTuningJobStrategyConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobStrategyConfig')
757
758
  HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
758
759
  HyperParameterTuningJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTuningJobSummaries')
759
760
  HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
@@ -762,6 +763,9 @@ module Aws::SageMaker
762
763
  HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
763
764
  HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
764
765
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
766
+ HyperbandStrategyConfig = Shapes::StructureShape.new(name: 'HyperbandStrategyConfig')
767
+ HyperbandStrategyMaxResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMaxResource')
768
+ HyperbandStrategyMinResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMinResource')
765
769
  IdempotencyToken = Shapes::StringShape.new(name: 'IdempotencyToken')
766
770
  Image = Shapes::StructureShape.new(name: 'Image')
767
771
  ImageArn = Shapes::StringShape.new(name: 'ImageArn')
@@ -4521,6 +4525,7 @@ module Aws::SageMaker
4521
4525
  HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
4522
4526
 
4523
4527
  HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
4528
+ HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
4524
4529
  HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
4525
4530
  HyperParameterTuningJobConfig.add_member(:resource_limits, Shapes::ShapeRef.new(shape: ResourceLimits, required: true, location_name: "ResourceLimits"))
4526
4531
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -4552,6 +4557,9 @@ module Aws::SageMaker
4552
4557
  HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
4553
4558
  HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
4554
4559
 
4560
+ HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
4561
+ HyperParameterTuningJobStrategyConfig.struct_class = Types::HyperParameterTuningJobStrategyConfig
4562
+
4555
4563
  HyperParameterTuningJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobSummary)
4556
4564
 
4557
4565
  HyperParameterTuningJobSummary.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
@@ -4581,6 +4589,10 @@ module Aws::SageMaker
4581
4589
  HyperParameters.key = Shapes::ShapeRef.new(shape: HyperParameterKey)
4582
4590
  HyperParameters.value = Shapes::ShapeRef.new(shape: HyperParameterValue)
4583
4591
 
4592
+ HyperbandStrategyConfig.add_member(:min_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMinResource, location_name: "MinResource"))
4593
+ HyperbandStrategyConfig.add_member(:max_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMaxResource, location_name: "MaxResource"))
4594
+ HyperbandStrategyConfig.struct_class = Types::HyperbandStrategyConfig
4595
+
4584
4596
  Image.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
4585
4597
  Image.add_member(:description, Shapes::ShapeRef.new(shape: ImageDescription, location_name: "Description"))
4586
4598
  Image.add_member(:display_name, Shapes::ShapeRef.new(shape: ImageDisplayName, location_name: "DisplayName"))
@@ -4440,8 +4440,7 @@ module Aws::SageMaker
4440
4440
  # @return [String]
4441
4441
  #
4442
4442
  # @!attribute [rw] app_type
4443
- # The type of app. Supported apps are `JupyterServer` and
4444
- # `KernelGateway`. `TensorBoard` is not supported.
4443
+ # The type of app.
4445
4444
  # @return [String]
4446
4445
  #
4447
4446
  # @!attribute [rw] app_name
@@ -6293,7 +6292,13 @@ module Aws::SageMaker
6293
6292
  # {
6294
6293
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
6295
6294
  # hyper_parameter_tuning_job_config: { # required
6296
- # strategy: "Bayesian", # required, accepts Bayesian, Random
6295
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
6296
+ # strategy_config: {
6297
+ # hyperband_strategy_config: {
6298
+ # min_resource: 1,
6299
+ # max_resource: 1,
6300
+ # },
6301
+ # },
6297
6302
  # hyper_parameter_tuning_job_objective: {
6298
6303
  # type: "Maximize", # required, accepts Maximize, Minimize
6299
6304
  # metric_name: "MetricName", # required
@@ -17732,7 +17737,7 @@ module Aws::SageMaker
17732
17737
  #
17733
17738
  # @!attribute [rw] execution_role_identity_config
17734
17739
  # The configuration for attaching a SageMaker user profile name to the
17735
- # execution role as a [ `sts:SourceIdentity` key][1].
17740
+ # execution role as a [sts:SourceIdentity key][1].
17736
17741
  #
17737
17742
  #
17738
17743
  #
@@ -17774,9 +17779,9 @@ module Aws::SageMaker
17774
17779
  #
17775
17780
  # @!attribute [rw] execution_role_identity_config
17776
17781
  # The configuration for attaching a SageMaker user profile name to the
17777
- # execution role as a [ `sts:SourceIdentity` key][1]. This
17778
- # configuration can only be modified if there are no apps in the
17779
- # `InService` or `Pending` state.
17782
+ # execution role as a [sts:SourceIdentity key][1]. This configuration
17783
+ # can only be modified if there are no apps in the `InService` or
17784
+ # `Pending` state.
17780
17785
  #
17781
17786
  #
17782
17787
  #
@@ -21179,7 +21184,8 @@ module Aws::SageMaker
21179
21184
  # Defines the maximum number of data objects that can be labeled by
21180
21185
  # human workers at the same time. Also referred to as batch size. Each
21181
21186
  # object may have more than one worker at one time. The default value
21182
- # is 1000 objects.
21187
+ # is 1000 objects. To increase the maximum value to 5000 objects,
21188
+ # contact Amazon Web Services Support.
21183
21189
  # @return [Integer]
21184
21190
  #
21185
21191
  # @!attribute [rw] annotation_consolidation_config
@@ -21848,7 +21854,13 @@ module Aws::SageMaker
21848
21854
  # data as a hash:
21849
21855
  #
21850
21856
  # {
21851
- # strategy: "Bayesian", # required, accepts Bayesian, Random
21857
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
21858
+ # strategy_config: {
21859
+ # hyperband_strategy_config: {
21860
+ # min_resource: 1,
21861
+ # max_resource: 1,
21862
+ # },
21863
+ # },
21852
21864
  # hyper_parameter_tuning_job_objective: {
21853
21865
  # type: "Maximize", # required, accepts Maximize, Minimize
21854
21866
  # metric_name: "MetricName", # required
@@ -21889,16 +21901,21 @@ module Aws::SageMaker
21889
21901
  #
21890
21902
  # @!attribute [rw] strategy
21891
21903
  # Specifies how hyperparameter tuning chooses the combinations of
21892
- # hyperparameter values to use for the training job it launches. To
21893
- # use the Bayesian search strategy, set this to `Bayesian`. To
21894
- # randomly search, set it to `Random`. For information about search
21895
- # strategies, see [How Hyperparameter Tuning Works][1].
21904
+ # hyperparameter values to use for the training job it launches. For
21905
+ # information about search strategies, see [How Hyperparameter Tuning
21906
+ # Works][1].
21896
21907
  #
21897
21908
  #
21898
21909
  #
21899
21910
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
21900
21911
  # @return [String]
21901
21912
  #
21913
+ # @!attribute [rw] strategy_config
21914
+ # The configuration for the `Hyperband` optimization strategy. This
21915
+ # parameter should be provided only if `Hyperband` is selected as the
21916
+ # strategy for `HyperParameterTuningJobConfig`.
21917
+ # @return [Types::HyperParameterTuningJobStrategyConfig]
21918
+ #
21902
21919
  # @!attribute [rw] hyper_parameter_tuning_job_objective
21903
21920
  # The HyperParameterTuningJobObjective object that specifies the
21904
21921
  # objective metric for this tuning job.
@@ -21916,8 +21933,11 @@ module Aws::SageMaker
21916
21933
  #
21917
21934
  # @!attribute [rw] training_job_early_stopping_type
21918
21935
  # Specifies whether to use early stopping for training jobs launched
21919
- # by the hyperparameter tuning job. This can be one of the following
21920
- # values (the default value is `OFF`):
21936
+ # by the hyperparameter tuning job. Because the `Hyperband` strategy
21937
+ # has its own advanced internal early stopping mechanism,
21938
+ # `TrainingJobEarlyStoppingType` must be `OFF` to use `Hyperband`.
21939
+ # This parameter can take on one of the following values (the default
21940
+ # value is `OFF`):
21921
21941
  #
21922
21942
  # OFF
21923
21943
  #
@@ -21944,6 +21964,7 @@ module Aws::SageMaker
21944
21964
  #
21945
21965
  class HyperParameterTuningJobConfig < Struct.new(
21946
21966
  :strategy,
21967
+ :strategy_config,
21947
21968
  :hyper_parameter_tuning_job_objective,
21948
21969
  :resource_limits,
21949
21970
  :parameter_ranges,
@@ -22101,6 +22122,42 @@ module Aws::SageMaker
22101
22122
  include Aws::Structure
22102
22123
  end
22103
22124
 
22125
+ # The configuration for a training job launched by a hyperparameter
22126
+ # tuning job. Choose `Bayesian` for Bayesian optimization, and `Random`
22127
+ # for random search optimization. For more advanced use cases, use
22128
+ # `Hyperband`, which evaluates objective metrics for training jobs after
22129
+ # every epoch. For more information about strategies, see [How
22130
+ # Hyperparameter Tuning Works][1].
22131
+ #
22132
+ #
22133
+ #
22134
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
22135
+ #
22136
+ # @note When making an API call, you may pass HyperParameterTuningJobStrategyConfig
22137
+ # data as a hash:
22138
+ #
22139
+ # {
22140
+ # hyperband_strategy_config: {
22141
+ # min_resource: 1,
22142
+ # max_resource: 1,
22143
+ # },
22144
+ # }
22145
+ #
22146
+ # @!attribute [rw] hyperband_strategy_config
22147
+ # The configuration for the object that specifies the `Hyperband`
22148
+ # strategy. This parameter is only supported for the `Hyperband`
22149
+ # selection for `Strategy` within the `HyperParameterTuningJobConfig`
22150
+ # API.
22151
+ # @return [Types::HyperbandStrategyConfig]
22152
+ #
22153
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobStrategyConfig AWS API Documentation
22154
+ #
22155
+ class HyperParameterTuningJobStrategyConfig < Struct.new(
22156
+ :hyperband_strategy_config)
22157
+ SENSITIVE = []
22158
+ include Aws::Structure
22159
+ end
22160
+
22104
22161
  # Provides summary information about a hyperparameter tuning job.
22105
22162
  #
22106
22163
  # @!attribute [rw] hyper_parameter_tuning_job_name
@@ -22117,8 +22174,7 @@ module Aws::SageMaker
22117
22174
  #
22118
22175
  # @!attribute [rw] strategy
22119
22176
  # Specifies the search strategy hyperparameter tuning uses to choose
22120
- # which hyperparameters to use for each iteration. Currently, the only
22121
- # valid value is Bayesian.
22177
+ # which hyperparameters to evaluate at each iteration.
22122
22178
  # @return [String]
22123
22179
  #
22124
22180
  # @!attribute [rw] creation_time
@@ -22386,6 +22442,74 @@ module Aws::SageMaker
22386
22442
  include Aws::Structure
22387
22443
  end
22388
22444
 
22445
+ # The configuration for `Hyperband`, a multi-fidelity based
22446
+ # hyperparameter tuning strategy. `Hyperband` uses the final and
22447
+ # intermediate results of a training job to dynamically allocate
22448
+ # resources to utilized hyperparameter configurations while
22449
+ # automatically stopping under-performing configurations. This parameter
22450
+ # should be provided only if `Hyperband` is selected as the
22451
+ # `StrategyConfig` under the `HyperParameterTuningJobConfig` API.
22452
+ #
22453
+ # @note When making an API call, you may pass HyperbandStrategyConfig
22454
+ # data as a hash:
22455
+ #
22456
+ # {
22457
+ # min_resource: 1,
22458
+ # max_resource: 1,
22459
+ # }
22460
+ #
22461
+ # @!attribute [rw] min_resource
22462
+ # The minimum number of resources (such as epochs) that can be used by
22463
+ # a training job launched by a hyperparameter tuning job. If the value
22464
+ # for `MinResource` has not been reached, the training job will not be
22465
+ # stopped by `Hyperband`.
22466
+ # @return [Integer]
22467
+ #
22468
+ # @!attribute [rw] max_resource
22469
+ # The maximum number of resources (such as epochs) that can be used by
22470
+ # a training job launched by a hyperparameter tuning job. Once a job
22471
+ # reaches the `MaxResource` value, it is stopped. If a value for
22472
+ # `MaxResource` is not provided, and `Hyperband` is selected as the
22473
+ # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
22474
+ # infer `MaxResource` from the following keys (if present) in
22475
+ # [StaticsHyperParameters][1]\:
22476
+ #
22477
+ # * `epochs`
22478
+ #
22479
+ # * `numepochs`
22480
+ #
22481
+ # * `n-epochs`
22482
+ #
22483
+ # * `n_epochs`
22484
+ #
22485
+ # * `num_epochs`
22486
+ #
22487
+ # If `HyperbandStrategyConfig` is unable to infer a value for
22488
+ # `MaxResource`, it generates a validation error. The maximum value is
22489
+ # 20,000 epochs. All metrics that correspond to an objective metric
22490
+ # are used to derive [early stopping decisions][2]. For
22491
+ # [distributive][3] training jobs, ensure that duplicate metrics are
22492
+ # not printed in the logs across the individual nodes in a training
22493
+ # job. If multiple nodes are publishing duplicate or incorrect
22494
+ # metrics, training jobs may make an incorrect stopping decision and
22495
+ # stop the job prematurely.
22496
+ #
22497
+ #
22498
+ #
22499
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
22500
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
22501
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
22502
+ # @return [Integer]
22503
+ #
22504
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
22505
+ #
22506
+ class HyperbandStrategyConfig < Struct.new(
22507
+ :min_resource,
22508
+ :max_resource)
22509
+ SENSITIVE = []
22510
+ include Aws::Structure
22511
+ end
22512
+
22389
22513
  # A SageMaker image. A SageMaker image represents a set of container
22390
22514
  # images that are derived from a common base container image. Each of
22391
22515
  # these container images is represented by a SageMaker `ImageVersion`.
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.139.0'
52
+ GEM_VERSION = '1.140.0'
53
53
 
54
54
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.139.0
4
+ version: 1.140.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-09-08 00:00:00.000000000 Z
11
+ date: 2022-09-15 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core