aws-sdk-sagemaker 1.138.0 → 1.140.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 289e07fa18ad373afbd8939e3fc8b3bf59bcb129e3f605a18604607e4389672a
4
- data.tar.gz: 12d3c4374927f455fe31c21e33ccb43e52645fc54fa911cad629dd20bc1d4c4d
3
+ metadata.gz: 183a3d0710845a318335195f1df77b55daec4ac09cce10e3f8d78aa502900df8
4
+ data.tar.gz: c52b1b8802e3bb268c7461a679e8a40621c2a987889458371e59595708deadbc
5
5
  SHA512:
6
- metadata.gz: 29108cd59a45026cf8c99f5917bf1ae9546dc8777275fc2273fcab251aad1652b055fe259d708f82ef60fd89f7d2c859496541ae279dfa6c6d23efaddf3f663a
7
- data.tar.gz: 6ee2ec14772d5fd21e1b4a0551a16c6b92d13bf4d715677fb7d6e0804750e695828082d6fd83ad83f46c42c11eee2a346a85b660b9d5080639f291ffe88fbb85
6
+ metadata.gz: 272cc69827d58efd70a692bd40bfbae65b89fd7e21db5e817ad9fa26785b2001d616a9797c720a7ab88ae5e32b07bd9237edd5dfc8800227d6d4d8385f98ef73
7
+ data.tar.gz: 87c6ec30a6c56ae2f46ad9ae99f26aded31705b658d707917940ba61a5b90c9423ebf890cf7bf3084fc1e48e763145c911b7094de28cbf259fb8b994a1781063
data/CHANGELOG.md CHANGED
@@ -1,6 +1,16 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.140.0 (2022-09-15)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Automatic Model Tuning now supports specifying Hyperband strategy for tuning jobs, which uses a multi-fidelity based tuning strategy to stop underperforming hyperparameter configurations early.
8
+
9
+ 1.139.0 (2022-09-08)
10
+ ------------------
11
+
12
+ * Feature - This release adds Mode to AutoMLJobConfig.
13
+
4
14
  1.138.0 (2022-09-07)
5
15
  ------------------
6
16
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.138.0
1
+ 1.140.0
@@ -940,8 +940,7 @@ module Aws::SageMaker
940
940
  req.send_request(options)
941
941
  end
942
942
 
943
- # Creates a running app for the specified UserProfile. Supported apps
944
- # are `JupyterServer` and `KernelGateway`. This operation is
943
+ # Creates a running app for the specified UserProfile. This operation is
945
944
  # automatically invoked by Amazon SageMaker Studio upon access to the
946
945
  # associated Domain, and when new kernel configurations are selected by
947
946
  # the user. A user may have multiple Apps active simultaneously.
@@ -953,8 +952,7 @@ module Aws::SageMaker
953
952
  # The user profile name.
954
953
  #
955
954
  # @option params [required, String] :app_type
956
- # The type of app. Supported apps are `JupyterServer` and
957
- # `KernelGateway`. `TensorBoard` is not supported.
955
+ # The type of app.
958
956
  #
959
957
  # @option params [required, String] :app_name
960
958
  # The name of the app.
@@ -1260,6 +1258,7 @@ module Aws::SageMaker
1260
1258
  # candidate_generation_config: {
1261
1259
  # feature_specification_s3_uri: "S3Uri",
1262
1260
  # },
1261
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
1263
1262
  # },
1264
1263
  # role_arn: "RoleArn", # required
1265
1264
  # generate_candidate_definitions_only: false,
@@ -3014,7 +3013,13 @@ module Aws::SageMaker
3014
3013
  # resp = client.create_hyper_parameter_tuning_job({
3015
3014
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
3016
3015
  # hyper_parameter_tuning_job_config: { # required
3017
- # strategy: "Bayesian", # required, accepts Bayesian, Random
3016
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
3017
+ # strategy_config: {
3018
+ # hyperband_strategy_config: {
3019
+ # min_resource: 1,
3020
+ # max_resource: 1,
3021
+ # },
3022
+ # },
3018
3023
  # hyper_parameter_tuning_job_objective: {
3019
3024
  # type: "Maximize", # required, accepts Maximize, Minimize
3020
3025
  # metric_name: "MetricName", # required
@@ -5834,6 +5839,12 @@ module Aws::SageMaker
5834
5839
  # a list of hyperparameters for each training algorithm provided by
5835
5840
  # SageMaker, see [Algorithms][1].
5836
5841
  #
5842
+ # You must not include any security-sensitive information, such as
5843
+ # account access IDs, secrets, and tokens, in the dictionary for
5844
+ # configuring hyperparameters. SageMaker rejects the training job
5845
+ # request and returns an exception error for detected credentials, if
5846
+ # such user input is found.
5847
+ #
5837
5848
  # * `InputDataConfig` - Describes the training dataset and the Amazon
5838
5849
  # S3, EFS, or FSx location where it is stored.
5839
5850
  #
@@ -5886,6 +5897,12 @@ module Aws::SageMaker
5886
5897
  # is a key-value pair. Each key and value is limited to 256 characters,
5887
5898
  # as specified by the `Length Constraint`.
5888
5899
  #
5900
+ # You must not include any security-sensitive information, such as
5901
+ # account access IDs, secrets, and tokens, in the dictionary for
5902
+ # configuring hyperparameters. SageMaker rejects the training job
5903
+ # request and returns an exception error for detected credentials, if
5904
+ # such user input is found.
5905
+ #
5889
5906
  #
5890
5907
  #
5891
5908
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
@@ -8571,6 +8588,7 @@ module Aws::SageMaker
8571
8588
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
8572
8589
  # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
8573
8590
  # resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
8591
+ # resp.auto_ml_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
8574
8592
  # resp.creation_time #=> Time
8575
8593
  # resp.end_time #=> Time
8576
8594
  # resp.last_modified_time #=> Time
@@ -9708,7 +9726,9 @@ module Aws::SageMaker
9708
9726
  #
9709
9727
  # resp.hyper_parameter_tuning_job_name #=> String
9710
9728
  # resp.hyper_parameter_tuning_job_arn #=> String
9711
- # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
9729
+ # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
9730
+ # resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
9731
+ # resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
9712
9732
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
9713
9733
  # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
9714
9734
  # resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
@@ -14064,7 +14084,7 @@ module Aws::SageMaker
14064
14084
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
14065
14085
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
14066
14086
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
14067
- # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
14087
+ # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random", "Hyperband"
14068
14088
  # resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
14069
14089
  # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
14070
14090
  # resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
@@ -17933,7 +17953,9 @@ module Aws::SageMaker
17933
17953
  # resp.results[0].feature_metadata.parameters[0].value #=> String
17934
17954
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
17935
17955
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
17936
- # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
17956
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
17957
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
17958
+ # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
17937
17959
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
17938
17960
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
17939
17961
  # resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
@@ -20582,7 +20604,7 @@ module Aws::SageMaker
20582
20604
  params: params,
20583
20605
  config: config)
20584
20606
  context[:gem_name] = 'aws-sdk-sagemaker'
20585
- context[:gem_version] = '1.138.0'
20607
+ context[:gem_version] = '1.140.0'
20586
20608
  Seahorse::Client::Request.new(handlers, context)
20587
20609
  end
20588
20610
 
@@ -121,6 +121,7 @@ module Aws::SageMaker
121
121
  AutoMLMaxResults = Shapes::IntegerShape.new(name: 'AutoMLMaxResults')
122
122
  AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
123
123
  AutoMLMetricExtendedEnum = Shapes::StringShape.new(name: 'AutoMLMetricExtendedEnum')
124
+ AutoMLMode = Shapes::StringShape.new(name: 'AutoMLMode')
124
125
  AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
125
126
  AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
126
127
  AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
@@ -753,6 +754,7 @@ module Aws::SageMaker
753
754
  HyperParameterTuningJobSearchEntity = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSearchEntity')
754
755
  HyperParameterTuningJobSortByOptions = Shapes::StringShape.new(name: 'HyperParameterTuningJobSortByOptions')
755
756
  HyperParameterTuningJobStatus = Shapes::StringShape.new(name: 'HyperParameterTuningJobStatus')
757
+ HyperParameterTuningJobStrategyConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobStrategyConfig')
756
758
  HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
757
759
  HyperParameterTuningJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTuningJobSummaries')
758
760
  HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
@@ -761,6 +763,9 @@ module Aws::SageMaker
761
763
  HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
762
764
  HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
763
765
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
766
+ HyperbandStrategyConfig = Shapes::StructureShape.new(name: 'HyperbandStrategyConfig')
767
+ HyperbandStrategyMaxResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMaxResource')
768
+ HyperbandStrategyMinResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMinResource')
764
769
  IdempotencyToken = Shapes::StringShape.new(name: 'IdempotencyToken')
765
770
  Image = Shapes::StructureShape.new(name: 'Image')
766
771
  ImageArn = Shapes::StringShape.new(name: 'ImageArn')
@@ -1952,6 +1957,7 @@ module Aws::SageMaker
1952
1957
  AutoMLJobConfig.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
1953
1958
  AutoMLJobConfig.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
1954
1959
  AutoMLJobConfig.add_member(:candidate_generation_config, Shapes::ShapeRef.new(shape: AutoMLCandidateGenerationConfig, location_name: "CandidateGenerationConfig"))
1960
+ AutoMLJobConfig.add_member(:mode, Shapes::ShapeRef.new(shape: AutoMLMode, location_name: "Mode"))
1955
1961
  AutoMLJobConfig.struct_class = Types::AutoMLJobConfig
1956
1962
 
1957
1963
  AutoMLJobObjective.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, required: true, location_name: "MetricName"))
@@ -4519,6 +4525,7 @@ module Aws::SageMaker
4519
4525
  HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
4520
4526
 
4521
4527
  HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
4528
+ HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
4522
4529
  HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
4523
4530
  HyperParameterTuningJobConfig.add_member(:resource_limits, Shapes::ShapeRef.new(shape: ResourceLimits, required: true, location_name: "ResourceLimits"))
4524
4531
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -4550,6 +4557,9 @@ module Aws::SageMaker
4550
4557
  HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
4551
4558
  HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
4552
4559
 
4560
+ HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
4561
+ HyperParameterTuningJobStrategyConfig.struct_class = Types::HyperParameterTuningJobStrategyConfig
4562
+
4553
4563
  HyperParameterTuningJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobSummary)
4554
4564
 
4555
4565
  HyperParameterTuningJobSummary.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
@@ -4579,6 +4589,10 @@ module Aws::SageMaker
4579
4589
  HyperParameters.key = Shapes::ShapeRef.new(shape: HyperParameterKey)
4580
4590
  HyperParameters.value = Shapes::ShapeRef.new(shape: HyperParameterValue)
4581
4591
 
4592
+ HyperbandStrategyConfig.add_member(:min_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMinResource, location_name: "MinResource"))
4593
+ HyperbandStrategyConfig.add_member(:max_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMaxResource, location_name: "MaxResource"))
4594
+ HyperbandStrategyConfig.struct_class = Types::HyperbandStrategyConfig
4595
+
4582
4596
  Image.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
4583
4597
  Image.add_member(:description, Shapes::ShapeRef.new(shape: ImageDescription, location_name: "Description"))
4584
4598
  Image.add_member(:display_name, Shapes::ShapeRef.new(shape: ImageDisplayName, location_name: "DisplayName"))
@@ -2338,6 +2338,7 @@ module Aws::SageMaker
2338
2338
  # candidate_generation_config: {
2339
2339
  # feature_specification_s3_uri: "S3Uri",
2340
2340
  # },
2341
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
2341
2342
  # }
2342
2343
  #
2343
2344
  # @!attribute [rw] completion_criteria
@@ -2361,13 +2362,43 @@ module Aws::SageMaker
2361
2362
  # (optional).
2362
2363
  # @return [Types::AutoMLCandidateGenerationConfig]
2363
2364
  #
2365
+ # @!attribute [rw] mode
2366
+ # The method that Autopilot uses to train the data. You can either
2367
+ # specify the mode manually or let Autopilot choose for you based on
2368
+ # the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
2369
+ # chooses `ENSEMBLING` for datasets smaller than 100 MB, and
2370
+ # `HYPERPARAMETER_TUNING` for larger ones.
2371
+ #
2372
+ # The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
2373
+ # classification and regression tasks directly from your dataset. This
2374
+ # machine learning mode combines several base models to produce an
2375
+ # optimal predictive model. It then uses a stacking ensemble method to
2376
+ # combine predictions from contributing members. A multi-stack
2377
+ # ensemble model can provide better performance over a single model by
2378
+ # combining the predictive capabilities of multiple models. See
2379
+ # [Autopilot algorithm support][1] for a list of algorithms supported
2380
+ # by `ENSEMBLING` mode.
2381
+ #
2382
+ # The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
2383
+ # to train the best version of a model. HPO will automatically select
2384
+ # an algorithm for the type of problem you want to solve. Then HPO
2385
+ # finds the best hyperparameters according to your objective metric.
2386
+ # See [Autopilot algorithm support][1] for a list of algorithms
2387
+ # supported by `HYPERPARAMETER_TUNING` mode.
2388
+ #
2389
+ #
2390
+ #
2391
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt
2392
+ # @return [String]
2393
+ #
2364
2394
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
2365
2395
  #
2366
2396
  class AutoMLJobConfig < Struct.new(
2367
2397
  :completion_criteria,
2368
2398
  :security_config,
2369
2399
  :data_split_config,
2370
- :candidate_generation_config)
2400
+ :candidate_generation_config,
2401
+ :mode)
2371
2402
  SENSITIVE = []
2372
2403
  include Aws::Structure
2373
2404
  end
@@ -4409,8 +4440,7 @@ module Aws::SageMaker
4409
4440
  # @return [String]
4410
4441
  #
4411
4442
  # @!attribute [rw] app_type
4412
- # The type of app. Supported apps are `JupyterServer` and
4413
- # `KernelGateway`. `TensorBoard` is not supported.
4443
+ # The type of app.
4414
4444
  # @return [String]
4415
4445
  #
4416
4446
  # @!attribute [rw] app_name
@@ -4591,6 +4621,7 @@ module Aws::SageMaker
4591
4621
  # candidate_generation_config: {
4592
4622
  # feature_specification_s3_uri: "S3Uri",
4593
4623
  # },
4624
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
4594
4625
  # },
4595
4626
  # role_arn: "RoleArn", # required
4596
4627
  # generate_candidate_definitions_only: false,
@@ -6261,7 +6292,13 @@ module Aws::SageMaker
6261
6292
  # {
6262
6293
  # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
6263
6294
  # hyper_parameter_tuning_job_config: { # required
6264
- # strategy: "Bayesian", # required, accepts Bayesian, Random
6295
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
6296
+ # strategy_config: {
6297
+ # hyperband_strategy_config: {
6298
+ # min_resource: 1,
6299
+ # max_resource: 1,
6300
+ # },
6301
+ # },
6265
6302
  # hyper_parameter_tuning_job_objective: {
6266
6303
  # type: "Maximize", # required, accepts Maximize, Minimize
6267
6304
  # metric_name: "MetricName", # required
@@ -9383,6 +9420,12 @@ module Aws::SageMaker
9383
9420
  # hyperparameter is a key-value pair. Each key and value is limited to
9384
9421
  # 256 characters, as specified by the `Length Constraint`.
9385
9422
  #
9423
+ # You must not include any security-sensitive information, such as
9424
+ # account access IDs, secrets, and tokens, in the dictionary for
9425
+ # configuring hyperparameters. SageMaker rejects the training job
9426
+ # request and returns an exception error for detected credentials, if
9427
+ # such user input is found.
9428
+ #
9386
9429
  #
9387
9430
  #
9388
9431
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
@@ -17694,7 +17737,7 @@ module Aws::SageMaker
17694
17737
  #
17695
17738
  # @!attribute [rw] execution_role_identity_config
17696
17739
  # The configuration for attaching a SageMaker user profile name to the
17697
- # execution role as a [ `sts:SourceIdentity` key][1].
17740
+ # execution role as a [sts:SourceIdentity key][1].
17698
17741
  #
17699
17742
  #
17700
17743
  #
@@ -17736,9 +17779,9 @@ module Aws::SageMaker
17736
17779
  #
17737
17780
  # @!attribute [rw] execution_role_identity_config
17738
17781
  # The configuration for attaching a SageMaker user profile name to the
17739
- # execution role as a [ `sts:SourceIdentity` key][1]. This
17740
- # configuration can only be modified if there are no apps in the
17741
- # `InService` or `Pending` state.
17782
+ # execution role as a [sts:SourceIdentity key][1]. This configuration
17783
+ # can only be modified if there are no apps in the `InService` or
17784
+ # `Pending` state.
17742
17785
  #
17743
17786
  #
17744
17787
  #
@@ -21141,7 +21184,8 @@ module Aws::SageMaker
21141
21184
  # Defines the maximum number of data objects that can be labeled by
21142
21185
  # human workers at the same time. Also referred to as batch size. Each
21143
21186
  # object may have more than one worker at one time. The default value
21144
- # is 1000 objects.
21187
+ # is 1000 objects. To increase the maximum value to 5000 objects,
21188
+ # contact Amazon Web Services Support.
21145
21189
  # @return [Integer]
21146
21190
  #
21147
21191
  # @!attribute [rw] annotation_consolidation_config
@@ -21810,7 +21854,13 @@ module Aws::SageMaker
21810
21854
  # data as a hash:
21811
21855
  #
21812
21856
  # {
21813
- # strategy: "Bayesian", # required, accepts Bayesian, Random
21857
+ # strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
21858
+ # strategy_config: {
21859
+ # hyperband_strategy_config: {
21860
+ # min_resource: 1,
21861
+ # max_resource: 1,
21862
+ # },
21863
+ # },
21814
21864
  # hyper_parameter_tuning_job_objective: {
21815
21865
  # type: "Maximize", # required, accepts Maximize, Minimize
21816
21866
  # metric_name: "MetricName", # required
@@ -21851,16 +21901,21 @@ module Aws::SageMaker
21851
21901
  #
21852
21902
  # @!attribute [rw] strategy
21853
21903
  # Specifies how hyperparameter tuning chooses the combinations of
21854
- # hyperparameter values to use for the training job it launches. To
21855
- # use the Bayesian search strategy, set this to `Bayesian`. To
21856
- # randomly search, set it to `Random`. For information about search
21857
- # strategies, see [How Hyperparameter Tuning Works][1].
21904
+ # hyperparameter values to use for the training job it launches. For
21905
+ # information about search strategies, see [How Hyperparameter Tuning
21906
+ # Works][1].
21858
21907
  #
21859
21908
  #
21860
21909
  #
21861
21910
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
21862
21911
  # @return [String]
21863
21912
  #
21913
+ # @!attribute [rw] strategy_config
21914
+ # The configuration for the `Hyperband` optimization strategy. This
21915
+ # parameter should be provided only if `Hyperband` is selected as the
21916
+ # strategy for `HyperParameterTuningJobConfig`.
21917
+ # @return [Types::HyperParameterTuningJobStrategyConfig]
21918
+ #
21864
21919
  # @!attribute [rw] hyper_parameter_tuning_job_objective
21865
21920
  # The HyperParameterTuningJobObjective object that specifies the
21866
21921
  # objective metric for this tuning job.
@@ -21878,8 +21933,11 @@ module Aws::SageMaker
21878
21933
  #
21879
21934
  # @!attribute [rw] training_job_early_stopping_type
21880
21935
  # Specifies whether to use early stopping for training jobs launched
21881
- # by the hyperparameter tuning job. This can be one of the following
21882
- # values (the default value is `OFF`):
21936
+ # by the hyperparameter tuning job. Because the `Hyperband` strategy
21937
+ # has its own advanced internal early stopping mechanism,
21938
+ # `TrainingJobEarlyStoppingType` must be `OFF` to use `Hyperband`.
21939
+ # This parameter can take on one of the following values (the default
21940
+ # value is `OFF`):
21883
21941
  #
21884
21942
  # OFF
21885
21943
  #
@@ -21906,6 +21964,7 @@ module Aws::SageMaker
21906
21964
  #
21907
21965
  class HyperParameterTuningJobConfig < Struct.new(
21908
21966
  :strategy,
21967
+ :strategy_config,
21909
21968
  :hyper_parameter_tuning_job_objective,
21910
21969
  :resource_limits,
21911
21970
  :parameter_ranges,
@@ -22063,6 +22122,42 @@ module Aws::SageMaker
22063
22122
  include Aws::Structure
22064
22123
  end
22065
22124
 
22125
+ # The configuration for a training job launched by a hyperparameter
22126
+ # tuning job. Choose `Bayesian` for Bayesian optimization, and `Random`
22127
+ # for random search optimization. For more advanced use cases, use
22128
+ # `Hyperband`, which evaluates objective metrics for training jobs after
22129
+ # every epoch. For more information about strategies, see [How
22130
+ # Hyperparameter Tuning Works][1].
22131
+ #
22132
+ #
22133
+ #
22134
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
22135
+ #
22136
+ # @note When making an API call, you may pass HyperParameterTuningJobStrategyConfig
22137
+ # data as a hash:
22138
+ #
22139
+ # {
22140
+ # hyperband_strategy_config: {
22141
+ # min_resource: 1,
22142
+ # max_resource: 1,
22143
+ # },
22144
+ # }
22145
+ #
22146
+ # @!attribute [rw] hyperband_strategy_config
22147
+ # The configuration for the object that specifies the `Hyperband`
22148
+ # strategy. This parameter is only supported for the `Hyperband`
22149
+ # selection for `Strategy` within the `HyperParameterTuningJobConfig`
22150
+ # API.
22151
+ # @return [Types::HyperbandStrategyConfig]
22152
+ #
22153
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobStrategyConfig AWS API Documentation
22154
+ #
22155
+ class HyperParameterTuningJobStrategyConfig < Struct.new(
22156
+ :hyperband_strategy_config)
22157
+ SENSITIVE = []
22158
+ include Aws::Structure
22159
+ end
22160
+
22066
22161
  # Provides summary information about a hyperparameter tuning job.
22067
22162
  #
22068
22163
  # @!attribute [rw] hyper_parameter_tuning_job_name
@@ -22079,8 +22174,7 @@ module Aws::SageMaker
22079
22174
  #
22080
22175
  # @!attribute [rw] strategy
22081
22176
  # Specifies the search strategy hyperparameter tuning uses to choose
22082
- # which hyperparameters to use for each iteration. Currently, the only
22083
- # valid value is Bayesian.
22177
+ # which hyperparameters to evaluate at each iteration.
22084
22178
  # @return [String]
22085
22179
  #
22086
22180
  # @!attribute [rw] creation_time
@@ -22348,6 +22442,74 @@ module Aws::SageMaker
22348
22442
  include Aws::Structure
22349
22443
  end
22350
22444
 
22445
+ # The configuration for `Hyperband`, a multi-fidelity based
22446
+ # hyperparameter tuning strategy. `Hyperband` uses the final and
22447
+ # intermediate results of a training job to dynamically allocate
22448
+ # resources to utilized hyperparameter configurations while
22449
+ # automatically stopping under-performing configurations. This parameter
22450
+ # should be provided only if `Hyperband` is selected as the
22451
+ # `StrategyConfig` under the `HyperParameterTuningJobConfig` API.
22452
+ #
22453
+ # @note When making an API call, you may pass HyperbandStrategyConfig
22454
+ # data as a hash:
22455
+ #
22456
+ # {
22457
+ # min_resource: 1,
22458
+ # max_resource: 1,
22459
+ # }
22460
+ #
22461
+ # @!attribute [rw] min_resource
22462
+ # The minimum number of resources (such as epochs) that can be used by
22463
+ # a training job launched by a hyperparameter tuning job. If the value
22464
+ # for `MinResource` has not been reached, the training job will not be
22465
+ # stopped by `Hyperband`.
22466
+ # @return [Integer]
22467
+ #
22468
+ # @!attribute [rw] max_resource
22469
+ # The maximum number of resources (such as epochs) that can be used by
22470
+ # a training job launched by a hyperparameter tuning job. Once a job
22471
+ # reaches the `MaxResource` value, it is stopped. If a value for
22472
+ # `MaxResource` is not provided, and `Hyperband` is selected as the
22473
+ # hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
22474
+ # infer `MaxResource` from the following keys (if present) in
22475
+ # [StaticsHyperParameters][1]\:
22476
+ #
22477
+ # * `epochs`
22478
+ #
22479
+ # * `numepochs`
22480
+ #
22481
+ # * `n-epochs`
22482
+ #
22483
+ # * `n_epochs`
22484
+ #
22485
+ # * `num_epochs`
22486
+ #
22487
+ # If `HyperbandStrategyConfig` is unable to infer a value for
22488
+ # `MaxResource`, it generates a validation error. The maximum value is
22489
+ # 20,000 epochs. All metrics that correspond to an objective metric
22490
+ # are used to derive [early stopping decisions][2]. For
22491
+ # [distributive][3] training jobs, ensure that duplicate metrics are
22492
+ # not printed in the logs across the individual nodes in a training
22493
+ # job. If multiple nodes are publishing duplicate or incorrect
22494
+ # metrics, training jobs may make an incorrect stopping decision and
22495
+ # stop the job prematurely.
22496
+ #
22497
+ #
22498
+ #
22499
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
22500
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
22501
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
22502
+ # @return [Integer]
22503
+ #
22504
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
22505
+ #
22506
+ class HyperbandStrategyConfig < Struct.new(
22507
+ :min_resource,
22508
+ :max_resource)
22509
+ SENSITIVE = []
22510
+ include Aws::Structure
22511
+ end
22512
+
22351
22513
  # A SageMaker image. A SageMaker image represents a set of container
22352
22514
  # images that are derived from a common base container image. Each of
22353
22515
  # these container images is represented by a SageMaker `ImageVersion`.
@@ -34097,16 +34259,16 @@ module Aws::SageMaker
34097
34259
  # @return [Integer]
34098
34260
  #
34099
34261
  # @!attribute [rw] model_data_download_timeout_in_seconds
34100
- # The timeout value, in seconds, to download and extract customer
34101
- # model artifact from Amazon S3 to individual inference instance
34102
- # associated with this production variant.
34262
+ # The timeout value, in seconds, to download and extract the model
34263
+ # that you want to host from Amazon S3 to the individual inference
34264
+ # instance associated with this production variant.
34103
34265
  # @return [Integer]
34104
34266
  #
34105
34267
  # @!attribute [rw] container_startup_health_check_timeout_in_seconds
34106
- # The timeout value, in seconds, for the customer inference container
34107
- # to pass health check by SageMaker Hosting. For more information on
34108
- # health check, see [How Your Container Should Respond to Health Check
34109
- # (Ping) Requests][1].
34268
+ # The timeout value, in seconds, for your inference container to pass
34269
+ # health check by SageMaker Hosting. For more information about health
34270
+ # check, see [How Your Container Should Respond to Health Check (Ping)
34271
+ # Requests][1].
34110
34272
  #
34111
34273
  #
34112
34274
  #
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.138.0'
52
+ GEM_VERSION = '1.140.0'
53
53
 
54
54
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.138.0
4
+ version: 1.140.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-09-07 00:00:00.000000000 Z
11
+ date: 2022-09-15 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core