aws-sdk-sagemaker 1.138.0 → 1.140.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +31 -9
- data/lib/aws-sdk-sagemaker/client_api.rb +14 -0
- data/lib/aws-sdk-sagemaker/types.rb +187 -25
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 183a3d0710845a318335195f1df77b55daec4ac09cce10e3f8d78aa502900df8
|
4
|
+
data.tar.gz: c52b1b8802e3bb268c7461a679e8a40621c2a987889458371e59595708deadbc
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 272cc69827d58efd70a692bd40bfbae65b89fd7e21db5e817ad9fa26785b2001d616a9797c720a7ab88ae5e32b07bd9237edd5dfc8800227d6d4d8385f98ef73
|
7
|
+
data.tar.gz: 87c6ec30a6c56ae2f46ad9ae99f26aded31705b658d707917940ba61a5b90c9423ebf890cf7bf3084fc1e48e763145c911b7094de28cbf259fb8b994a1781063
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.140.0 (2022-09-15)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon SageMaker Automatic Model Tuning now supports specifying Hyperband strategy for tuning jobs, which uses a multi-fidelity based tuning strategy to stop underperforming hyperparameter configurations early.
|
8
|
+
|
9
|
+
1.139.0 (2022-09-08)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - This release adds Mode to AutoMLJobConfig.
|
13
|
+
|
4
14
|
1.138.0 (2022-09-07)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.140.0
|
@@ -940,8 +940,7 @@ module Aws::SageMaker
|
|
940
940
|
req.send_request(options)
|
941
941
|
end
|
942
942
|
|
943
|
-
# Creates a running app for the specified UserProfile.
|
944
|
-
# are `JupyterServer` and `KernelGateway`. This operation is
|
943
|
+
# Creates a running app for the specified UserProfile. This operation is
|
945
944
|
# automatically invoked by Amazon SageMaker Studio upon access to the
|
946
945
|
# associated Domain, and when new kernel configurations are selected by
|
947
946
|
# the user. A user may have multiple Apps active simultaneously.
|
@@ -953,8 +952,7 @@ module Aws::SageMaker
|
|
953
952
|
# The user profile name.
|
954
953
|
#
|
955
954
|
# @option params [required, String] :app_type
|
956
|
-
# The type of app.
|
957
|
-
# `KernelGateway`. `TensorBoard` is not supported.
|
955
|
+
# The type of app.
|
958
956
|
#
|
959
957
|
# @option params [required, String] :app_name
|
960
958
|
# The name of the app.
|
@@ -1260,6 +1258,7 @@ module Aws::SageMaker
|
|
1260
1258
|
# candidate_generation_config: {
|
1261
1259
|
# feature_specification_s3_uri: "S3Uri",
|
1262
1260
|
# },
|
1261
|
+
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
1263
1262
|
# },
|
1264
1263
|
# role_arn: "RoleArn", # required
|
1265
1264
|
# generate_candidate_definitions_only: false,
|
@@ -3014,7 +3013,13 @@ module Aws::SageMaker
|
|
3014
3013
|
# resp = client.create_hyper_parameter_tuning_job({
|
3015
3014
|
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
|
3016
3015
|
# hyper_parameter_tuning_job_config: { # required
|
3017
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
3016
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
3017
|
+
# strategy_config: {
|
3018
|
+
# hyperband_strategy_config: {
|
3019
|
+
# min_resource: 1,
|
3020
|
+
# max_resource: 1,
|
3021
|
+
# },
|
3022
|
+
# },
|
3018
3023
|
# hyper_parameter_tuning_job_objective: {
|
3019
3024
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
3020
3025
|
# metric_name: "MetricName", # required
|
@@ -5834,6 +5839,12 @@ module Aws::SageMaker
|
|
5834
5839
|
# a list of hyperparameters for each training algorithm provided by
|
5835
5840
|
# SageMaker, see [Algorithms][1].
|
5836
5841
|
#
|
5842
|
+
# You must not include any security-sensitive information, such as
|
5843
|
+
# account access IDs, secrets, and tokens, in the dictionary for
|
5844
|
+
# configuring hyperparameters. SageMaker rejects the training job
|
5845
|
+
# request and returns an exception error for detected credentials, if
|
5846
|
+
# such user input is found.
|
5847
|
+
#
|
5837
5848
|
# * `InputDataConfig` - Describes the training dataset and the Amazon
|
5838
5849
|
# S3, EFS, or FSx location where it is stored.
|
5839
5850
|
#
|
@@ -5886,6 +5897,12 @@ module Aws::SageMaker
|
|
5886
5897
|
# is a key-value pair. Each key and value is limited to 256 characters,
|
5887
5898
|
# as specified by the `Length Constraint`.
|
5888
5899
|
#
|
5900
|
+
# You must not include any security-sensitive information, such as
|
5901
|
+
# account access IDs, secrets, and tokens, in the dictionary for
|
5902
|
+
# configuring hyperparameters. SageMaker rejects the training job
|
5903
|
+
# request and returns an exception error for detected credentials, if
|
5904
|
+
# such user input is found.
|
5905
|
+
#
|
5889
5906
|
#
|
5890
5907
|
#
|
5891
5908
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
|
@@ -8571,6 +8588,7 @@ module Aws::SageMaker
|
|
8571
8588
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
|
8572
8589
|
# resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
|
8573
8590
|
# resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
|
8591
|
+
# resp.auto_ml_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
|
8574
8592
|
# resp.creation_time #=> Time
|
8575
8593
|
# resp.end_time #=> Time
|
8576
8594
|
# resp.last_modified_time #=> Time
|
@@ -9708,7 +9726,9 @@ module Aws::SageMaker
|
|
9708
9726
|
#
|
9709
9727
|
# resp.hyper_parameter_tuning_job_name #=> String
|
9710
9728
|
# resp.hyper_parameter_tuning_job_arn #=> String
|
9711
|
-
# resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
|
9729
|
+
# resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
9730
|
+
# resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
|
9731
|
+
# resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
|
9712
9732
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
|
9713
9733
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
|
9714
9734
|
# resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
|
@@ -14064,7 +14084,7 @@ module Aws::SageMaker
|
|
14064
14084
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
|
14065
14085
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
|
14066
14086
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
14067
|
-
# resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
|
14087
|
+
# resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
14068
14088
|
# resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
|
14069
14089
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
|
14070
14090
|
# resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
|
@@ -17933,7 +17953,9 @@ module Aws::SageMaker
|
|
17933
17953
|
# resp.results[0].feature_metadata.parameters[0].value #=> String
|
17934
17954
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
|
17935
17955
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
|
17936
|
-
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
|
17956
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
17957
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
|
17958
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
|
17937
17959
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
|
17938
17960
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
|
17939
17961
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
|
@@ -20582,7 +20604,7 @@ module Aws::SageMaker
|
|
20582
20604
|
params: params,
|
20583
20605
|
config: config)
|
20584
20606
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
20585
|
-
context[:gem_version] = '1.
|
20607
|
+
context[:gem_version] = '1.140.0'
|
20586
20608
|
Seahorse::Client::Request.new(handlers, context)
|
20587
20609
|
end
|
20588
20610
|
|
@@ -121,6 +121,7 @@ module Aws::SageMaker
|
|
121
121
|
AutoMLMaxResults = Shapes::IntegerShape.new(name: 'AutoMLMaxResults')
|
122
122
|
AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
|
123
123
|
AutoMLMetricExtendedEnum = Shapes::StringShape.new(name: 'AutoMLMetricExtendedEnum')
|
124
|
+
AutoMLMode = Shapes::StringShape.new(name: 'AutoMLMode')
|
124
125
|
AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
|
125
126
|
AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
|
126
127
|
AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
|
@@ -753,6 +754,7 @@ module Aws::SageMaker
|
|
753
754
|
HyperParameterTuningJobSearchEntity = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSearchEntity')
|
754
755
|
HyperParameterTuningJobSortByOptions = Shapes::StringShape.new(name: 'HyperParameterTuningJobSortByOptions')
|
755
756
|
HyperParameterTuningJobStatus = Shapes::StringShape.new(name: 'HyperParameterTuningJobStatus')
|
757
|
+
HyperParameterTuningJobStrategyConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobStrategyConfig')
|
756
758
|
HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
|
757
759
|
HyperParameterTuningJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTuningJobSummaries')
|
758
760
|
HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
|
@@ -761,6 +763,9 @@ module Aws::SageMaker
|
|
761
763
|
HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
|
762
764
|
HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
|
763
765
|
HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
|
766
|
+
HyperbandStrategyConfig = Shapes::StructureShape.new(name: 'HyperbandStrategyConfig')
|
767
|
+
HyperbandStrategyMaxResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMaxResource')
|
768
|
+
HyperbandStrategyMinResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMinResource')
|
764
769
|
IdempotencyToken = Shapes::StringShape.new(name: 'IdempotencyToken')
|
765
770
|
Image = Shapes::StructureShape.new(name: 'Image')
|
766
771
|
ImageArn = Shapes::StringShape.new(name: 'ImageArn')
|
@@ -1952,6 +1957,7 @@ module Aws::SageMaker
|
|
1952
1957
|
AutoMLJobConfig.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
|
1953
1958
|
AutoMLJobConfig.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
1954
1959
|
AutoMLJobConfig.add_member(:candidate_generation_config, Shapes::ShapeRef.new(shape: AutoMLCandidateGenerationConfig, location_name: "CandidateGenerationConfig"))
|
1960
|
+
AutoMLJobConfig.add_member(:mode, Shapes::ShapeRef.new(shape: AutoMLMode, location_name: "Mode"))
|
1955
1961
|
AutoMLJobConfig.struct_class = Types::AutoMLJobConfig
|
1956
1962
|
|
1957
1963
|
AutoMLJobObjective.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, required: true, location_name: "MetricName"))
|
@@ -4519,6 +4525,7 @@ module Aws::SageMaker
|
|
4519
4525
|
HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
|
4520
4526
|
|
4521
4527
|
HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
|
4528
|
+
HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
|
4522
4529
|
HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
|
4523
4530
|
HyperParameterTuningJobConfig.add_member(:resource_limits, Shapes::ShapeRef.new(shape: ResourceLimits, required: true, location_name: "ResourceLimits"))
|
4524
4531
|
HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
|
@@ -4550,6 +4557,9 @@ module Aws::SageMaker
|
|
4550
4557
|
HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
4551
4558
|
HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
|
4552
4559
|
|
4560
|
+
HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
|
4561
|
+
HyperParameterTuningJobStrategyConfig.struct_class = Types::HyperParameterTuningJobStrategyConfig
|
4562
|
+
|
4553
4563
|
HyperParameterTuningJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobSummary)
|
4554
4564
|
|
4555
4565
|
HyperParameterTuningJobSummary.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
|
@@ -4579,6 +4589,10 @@ module Aws::SageMaker
|
|
4579
4589
|
HyperParameters.key = Shapes::ShapeRef.new(shape: HyperParameterKey)
|
4580
4590
|
HyperParameters.value = Shapes::ShapeRef.new(shape: HyperParameterValue)
|
4581
4591
|
|
4592
|
+
HyperbandStrategyConfig.add_member(:min_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMinResource, location_name: "MinResource"))
|
4593
|
+
HyperbandStrategyConfig.add_member(:max_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMaxResource, location_name: "MaxResource"))
|
4594
|
+
HyperbandStrategyConfig.struct_class = Types::HyperbandStrategyConfig
|
4595
|
+
|
4582
4596
|
Image.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
|
4583
4597
|
Image.add_member(:description, Shapes::ShapeRef.new(shape: ImageDescription, location_name: "Description"))
|
4584
4598
|
Image.add_member(:display_name, Shapes::ShapeRef.new(shape: ImageDisplayName, location_name: "DisplayName"))
|
@@ -2338,6 +2338,7 @@ module Aws::SageMaker
|
|
2338
2338
|
# candidate_generation_config: {
|
2339
2339
|
# feature_specification_s3_uri: "S3Uri",
|
2340
2340
|
# },
|
2341
|
+
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
2341
2342
|
# }
|
2342
2343
|
#
|
2343
2344
|
# @!attribute [rw] completion_criteria
|
@@ -2361,13 +2362,43 @@ module Aws::SageMaker
|
|
2361
2362
|
# (optional).
|
2362
2363
|
# @return [Types::AutoMLCandidateGenerationConfig]
|
2363
2364
|
#
|
2365
|
+
# @!attribute [rw] mode
|
2366
|
+
# The method that Autopilot uses to train the data. You can either
|
2367
|
+
# specify the mode manually or let Autopilot choose for you based on
|
2368
|
+
# the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
|
2369
|
+
# chooses `ENSEMBLING` for datasets smaller than 100 MB, and
|
2370
|
+
# `HYPERPARAMETER_TUNING` for larger ones.
|
2371
|
+
#
|
2372
|
+
# The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
|
2373
|
+
# classification and regression tasks directly from your dataset. This
|
2374
|
+
# machine learning mode combines several base models to produce an
|
2375
|
+
# optimal predictive model. It then uses a stacking ensemble method to
|
2376
|
+
# combine predictions from contributing members. A multi-stack
|
2377
|
+
# ensemble model can provide better performance over a single model by
|
2378
|
+
# combining the predictive capabilities of multiple models. See
|
2379
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
2380
|
+
# by `ENSEMBLING` mode.
|
2381
|
+
#
|
2382
|
+
# The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
|
2383
|
+
# to train the best version of a model. HPO will automatically select
|
2384
|
+
# an algorithm for the type of problem you want to solve. Then HPO
|
2385
|
+
# finds the best hyperparameters according to your objective metric.
|
2386
|
+
# See [Autopilot algorithm support][1] for a list of algorithms
|
2387
|
+
# supported by `HYPERPARAMETER_TUNING` mode.
|
2388
|
+
#
|
2389
|
+
#
|
2390
|
+
#
|
2391
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt
|
2392
|
+
# @return [String]
|
2393
|
+
#
|
2364
2394
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
2365
2395
|
#
|
2366
2396
|
class AutoMLJobConfig < Struct.new(
|
2367
2397
|
:completion_criteria,
|
2368
2398
|
:security_config,
|
2369
2399
|
:data_split_config,
|
2370
|
-
:candidate_generation_config
|
2400
|
+
:candidate_generation_config,
|
2401
|
+
:mode)
|
2371
2402
|
SENSITIVE = []
|
2372
2403
|
include Aws::Structure
|
2373
2404
|
end
|
@@ -4409,8 +4440,7 @@ module Aws::SageMaker
|
|
4409
4440
|
# @return [String]
|
4410
4441
|
#
|
4411
4442
|
# @!attribute [rw] app_type
|
4412
|
-
# The type of app.
|
4413
|
-
# `KernelGateway`. `TensorBoard` is not supported.
|
4443
|
+
# The type of app.
|
4414
4444
|
# @return [String]
|
4415
4445
|
#
|
4416
4446
|
# @!attribute [rw] app_name
|
@@ -4591,6 +4621,7 @@ module Aws::SageMaker
|
|
4591
4621
|
# candidate_generation_config: {
|
4592
4622
|
# feature_specification_s3_uri: "S3Uri",
|
4593
4623
|
# },
|
4624
|
+
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
4594
4625
|
# },
|
4595
4626
|
# role_arn: "RoleArn", # required
|
4596
4627
|
# generate_candidate_definitions_only: false,
|
@@ -6261,7 +6292,13 @@ module Aws::SageMaker
|
|
6261
6292
|
# {
|
6262
6293
|
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
|
6263
6294
|
# hyper_parameter_tuning_job_config: { # required
|
6264
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
6295
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
6296
|
+
# strategy_config: {
|
6297
|
+
# hyperband_strategy_config: {
|
6298
|
+
# min_resource: 1,
|
6299
|
+
# max_resource: 1,
|
6300
|
+
# },
|
6301
|
+
# },
|
6265
6302
|
# hyper_parameter_tuning_job_objective: {
|
6266
6303
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
6267
6304
|
# metric_name: "MetricName", # required
|
@@ -9383,6 +9420,12 @@ module Aws::SageMaker
|
|
9383
9420
|
# hyperparameter is a key-value pair. Each key and value is limited to
|
9384
9421
|
# 256 characters, as specified by the `Length Constraint`.
|
9385
9422
|
#
|
9423
|
+
# You must not include any security-sensitive information, such as
|
9424
|
+
# account access IDs, secrets, and tokens, in the dictionary for
|
9425
|
+
# configuring hyperparameters. SageMaker rejects the training job
|
9426
|
+
# request and returns an exception error for detected credentials, if
|
9427
|
+
# such user input is found.
|
9428
|
+
#
|
9386
9429
|
#
|
9387
9430
|
#
|
9388
9431
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
|
@@ -17694,7 +17737,7 @@ module Aws::SageMaker
|
|
17694
17737
|
#
|
17695
17738
|
# @!attribute [rw] execution_role_identity_config
|
17696
17739
|
# The configuration for attaching a SageMaker user profile name to the
|
17697
|
-
# execution role as a [
|
17740
|
+
# execution role as a [sts:SourceIdentity key][1].
|
17698
17741
|
#
|
17699
17742
|
#
|
17700
17743
|
#
|
@@ -17736,9 +17779,9 @@ module Aws::SageMaker
|
|
17736
17779
|
#
|
17737
17780
|
# @!attribute [rw] execution_role_identity_config
|
17738
17781
|
# The configuration for attaching a SageMaker user profile name to the
|
17739
|
-
# execution role as a [
|
17740
|
-
#
|
17741
|
-
# `
|
17782
|
+
# execution role as a [sts:SourceIdentity key][1]. This configuration
|
17783
|
+
# can only be modified if there are no apps in the `InService` or
|
17784
|
+
# `Pending` state.
|
17742
17785
|
#
|
17743
17786
|
#
|
17744
17787
|
#
|
@@ -21141,7 +21184,8 @@ module Aws::SageMaker
|
|
21141
21184
|
# Defines the maximum number of data objects that can be labeled by
|
21142
21185
|
# human workers at the same time. Also referred to as batch size. Each
|
21143
21186
|
# object may have more than one worker at one time. The default value
|
21144
|
-
# is 1000 objects.
|
21187
|
+
# is 1000 objects. To increase the maximum value to 5000 objects,
|
21188
|
+
# contact Amazon Web Services Support.
|
21145
21189
|
# @return [Integer]
|
21146
21190
|
#
|
21147
21191
|
# @!attribute [rw] annotation_consolidation_config
|
@@ -21810,7 +21854,13 @@ module Aws::SageMaker
|
|
21810
21854
|
# data as a hash:
|
21811
21855
|
#
|
21812
21856
|
# {
|
21813
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
21857
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
21858
|
+
# strategy_config: {
|
21859
|
+
# hyperband_strategy_config: {
|
21860
|
+
# min_resource: 1,
|
21861
|
+
# max_resource: 1,
|
21862
|
+
# },
|
21863
|
+
# },
|
21814
21864
|
# hyper_parameter_tuning_job_objective: {
|
21815
21865
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
21816
21866
|
# metric_name: "MetricName", # required
|
@@ -21851,16 +21901,21 @@ module Aws::SageMaker
|
|
21851
21901
|
#
|
21852
21902
|
# @!attribute [rw] strategy
|
21853
21903
|
# Specifies how hyperparameter tuning chooses the combinations of
|
21854
|
-
# hyperparameter values to use for the training job it launches.
|
21855
|
-
#
|
21856
|
-
#
|
21857
|
-
# strategies, see [How Hyperparameter Tuning Works][1].
|
21904
|
+
# hyperparameter values to use for the training job it launches. For
|
21905
|
+
# information about search strategies, see [How Hyperparameter Tuning
|
21906
|
+
# Works][1].
|
21858
21907
|
#
|
21859
21908
|
#
|
21860
21909
|
#
|
21861
21910
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
|
21862
21911
|
# @return [String]
|
21863
21912
|
#
|
21913
|
+
# @!attribute [rw] strategy_config
|
21914
|
+
# The configuration for the `Hyperband` optimization strategy. This
|
21915
|
+
# parameter should be provided only if `Hyperband` is selected as the
|
21916
|
+
# strategy for `HyperParameterTuningJobConfig`.
|
21917
|
+
# @return [Types::HyperParameterTuningJobStrategyConfig]
|
21918
|
+
#
|
21864
21919
|
# @!attribute [rw] hyper_parameter_tuning_job_objective
|
21865
21920
|
# The HyperParameterTuningJobObjective object that specifies the
|
21866
21921
|
# objective metric for this tuning job.
|
@@ -21878,8 +21933,11 @@ module Aws::SageMaker
|
|
21878
21933
|
#
|
21879
21934
|
# @!attribute [rw] training_job_early_stopping_type
|
21880
21935
|
# Specifies whether to use early stopping for training jobs launched
|
21881
|
-
# by the hyperparameter tuning job.
|
21882
|
-
#
|
21936
|
+
# by the hyperparameter tuning job. Because the `Hyperband` strategy
|
21937
|
+
# has its own advanced internal early stopping mechanism,
|
21938
|
+
# `TrainingJobEarlyStoppingType` must be `OFF` to use `Hyperband`.
|
21939
|
+
# This parameter can take on one of the following values (the default
|
21940
|
+
# value is `OFF`):
|
21883
21941
|
#
|
21884
21942
|
# OFF
|
21885
21943
|
#
|
@@ -21906,6 +21964,7 @@ module Aws::SageMaker
|
|
21906
21964
|
#
|
21907
21965
|
class HyperParameterTuningJobConfig < Struct.new(
|
21908
21966
|
:strategy,
|
21967
|
+
:strategy_config,
|
21909
21968
|
:hyper_parameter_tuning_job_objective,
|
21910
21969
|
:resource_limits,
|
21911
21970
|
:parameter_ranges,
|
@@ -22063,6 +22122,42 @@ module Aws::SageMaker
|
|
22063
22122
|
include Aws::Structure
|
22064
22123
|
end
|
22065
22124
|
|
22125
|
+
# The configuration for a training job launched by a hyperparameter
|
22126
|
+
# tuning job. Choose `Bayesian` for Bayesian optimization, and `Random`
|
22127
|
+
# for random search optimization. For more advanced use cases, use
|
22128
|
+
# `Hyperband`, which evaluates objective metrics for training jobs after
|
22129
|
+
# every epoch. For more information about strategies, see [How
|
22130
|
+
# Hyperparameter Tuning Works][1].
|
22131
|
+
#
|
22132
|
+
#
|
22133
|
+
#
|
22134
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
|
22135
|
+
#
|
22136
|
+
# @note When making an API call, you may pass HyperParameterTuningJobStrategyConfig
|
22137
|
+
# data as a hash:
|
22138
|
+
#
|
22139
|
+
# {
|
22140
|
+
# hyperband_strategy_config: {
|
22141
|
+
# min_resource: 1,
|
22142
|
+
# max_resource: 1,
|
22143
|
+
# },
|
22144
|
+
# }
|
22145
|
+
#
|
22146
|
+
# @!attribute [rw] hyperband_strategy_config
|
22147
|
+
# The configuration for the object that specifies the `Hyperband`
|
22148
|
+
# strategy. This parameter is only supported for the `Hyperband`
|
22149
|
+
# selection for `Strategy` within the `HyperParameterTuningJobConfig`
|
22150
|
+
# API.
|
22151
|
+
# @return [Types::HyperbandStrategyConfig]
|
22152
|
+
#
|
22153
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobStrategyConfig AWS API Documentation
|
22154
|
+
#
|
22155
|
+
class HyperParameterTuningJobStrategyConfig < Struct.new(
|
22156
|
+
:hyperband_strategy_config)
|
22157
|
+
SENSITIVE = []
|
22158
|
+
include Aws::Structure
|
22159
|
+
end
|
22160
|
+
|
22066
22161
|
# Provides summary information about a hyperparameter tuning job.
|
22067
22162
|
#
|
22068
22163
|
# @!attribute [rw] hyper_parameter_tuning_job_name
|
@@ -22079,8 +22174,7 @@ module Aws::SageMaker
|
|
22079
22174
|
#
|
22080
22175
|
# @!attribute [rw] strategy
|
22081
22176
|
# Specifies the search strategy hyperparameter tuning uses to choose
|
22082
|
-
# which hyperparameters to
|
22083
|
-
# valid value is Bayesian.
|
22177
|
+
# which hyperparameters to evaluate at each iteration.
|
22084
22178
|
# @return [String]
|
22085
22179
|
#
|
22086
22180
|
# @!attribute [rw] creation_time
|
@@ -22348,6 +22442,74 @@ module Aws::SageMaker
|
|
22348
22442
|
include Aws::Structure
|
22349
22443
|
end
|
22350
22444
|
|
22445
|
+
# The configuration for `Hyperband`, a multi-fidelity based
|
22446
|
+
# hyperparameter tuning strategy. `Hyperband` uses the final and
|
22447
|
+
# intermediate results of a training job to dynamically allocate
|
22448
|
+
# resources to utilized hyperparameter configurations while
|
22449
|
+
# automatically stopping under-performing configurations. This parameter
|
22450
|
+
# should be provided only if `Hyperband` is selected as the
|
22451
|
+
# `StrategyConfig` under the `HyperParameterTuningJobConfig` API.
|
22452
|
+
#
|
22453
|
+
# @note When making an API call, you may pass HyperbandStrategyConfig
|
22454
|
+
# data as a hash:
|
22455
|
+
#
|
22456
|
+
# {
|
22457
|
+
# min_resource: 1,
|
22458
|
+
# max_resource: 1,
|
22459
|
+
# }
|
22460
|
+
#
|
22461
|
+
# @!attribute [rw] min_resource
|
22462
|
+
# The minimum number of resources (such as epochs) that can be used by
|
22463
|
+
# a training job launched by a hyperparameter tuning job. If the value
|
22464
|
+
# for `MinResource` has not been reached, the training job will not be
|
22465
|
+
# stopped by `Hyperband`.
|
22466
|
+
# @return [Integer]
|
22467
|
+
#
|
22468
|
+
# @!attribute [rw] max_resource
|
22469
|
+
# The maximum number of resources (such as epochs) that can be used by
|
22470
|
+
# a training job launched by a hyperparameter tuning job. Once a job
|
22471
|
+
# reaches the `MaxResource` value, it is stopped. If a value for
|
22472
|
+
# `MaxResource` is not provided, and `Hyperband` is selected as the
|
22473
|
+
# hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
|
22474
|
+
# infer `MaxResource` from the following keys (if present) in
|
22475
|
+
# [StaticsHyperParameters][1]\:
|
22476
|
+
#
|
22477
|
+
# * `epochs`
|
22478
|
+
#
|
22479
|
+
# * `numepochs`
|
22480
|
+
#
|
22481
|
+
# * `n-epochs`
|
22482
|
+
#
|
22483
|
+
# * `n_epochs`
|
22484
|
+
#
|
22485
|
+
# * `num_epochs`
|
22486
|
+
#
|
22487
|
+
# If `HyperbandStrategyConfig` is unable to infer a value for
|
22488
|
+
# `MaxResource`, it generates a validation error. The maximum value is
|
22489
|
+
# 20,000 epochs. All metrics that correspond to an objective metric
|
22490
|
+
# are used to derive [early stopping decisions][2]. For
|
22491
|
+
# [distributive][3] training jobs, ensure that duplicate metrics are
|
22492
|
+
# not printed in the logs across the individual nodes in a training
|
22493
|
+
# job. If multiple nodes are publishing duplicate or incorrect
|
22494
|
+
# metrics, training jobs may make an incorrect stopping decision and
|
22495
|
+
# stop the job prematurely.
|
22496
|
+
#
|
22497
|
+
#
|
22498
|
+
#
|
22499
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
|
22500
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
|
22501
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
22502
|
+
# @return [Integer]
|
22503
|
+
#
|
22504
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
|
22505
|
+
#
|
22506
|
+
class HyperbandStrategyConfig < Struct.new(
|
22507
|
+
:min_resource,
|
22508
|
+
:max_resource)
|
22509
|
+
SENSITIVE = []
|
22510
|
+
include Aws::Structure
|
22511
|
+
end
|
22512
|
+
|
22351
22513
|
# A SageMaker image. A SageMaker image represents a set of container
|
22352
22514
|
# images that are derived from a common base container image. Each of
|
22353
22515
|
# these container images is represented by a SageMaker `ImageVersion`.
|
@@ -34097,16 +34259,16 @@ module Aws::SageMaker
|
|
34097
34259
|
# @return [Integer]
|
34098
34260
|
#
|
34099
34261
|
# @!attribute [rw] model_data_download_timeout_in_seconds
|
34100
|
-
# The timeout value, in seconds, to download and extract
|
34101
|
-
#
|
34102
|
-
# associated with this production variant.
|
34262
|
+
# The timeout value, in seconds, to download and extract the model
|
34263
|
+
# that you want to host from Amazon S3 to the individual inference
|
34264
|
+
# instance associated with this production variant.
|
34103
34265
|
# @return [Integer]
|
34104
34266
|
#
|
34105
34267
|
# @!attribute [rw] container_startup_health_check_timeout_in_seconds
|
34106
|
-
# The timeout value, in seconds, for
|
34107
|
-
#
|
34108
|
-
#
|
34109
|
-
#
|
34268
|
+
# The timeout value, in seconds, for your inference container to pass
|
34269
|
+
# health check by SageMaker Hosting. For more information about health
|
34270
|
+
# check, see [How Your Container Should Respond to Health Check (Ping)
|
34271
|
+
# Requests][1].
|
34110
34272
|
#
|
34111
34273
|
#
|
34112
34274
|
#
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.140.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-09-
|
11
|
+
date: 2022-09-15 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|