aws-sdk-sagemaker 1.138.0 → 1.140.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +31 -9
- data/lib/aws-sdk-sagemaker/client_api.rb +14 -0
- data/lib/aws-sdk-sagemaker/types.rb +187 -25
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 183a3d0710845a318335195f1df77b55daec4ac09cce10e3f8d78aa502900df8
|
4
|
+
data.tar.gz: c52b1b8802e3bb268c7461a679e8a40621c2a987889458371e59595708deadbc
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 272cc69827d58efd70a692bd40bfbae65b89fd7e21db5e817ad9fa26785b2001d616a9797c720a7ab88ae5e32b07bd9237edd5dfc8800227d6d4d8385f98ef73
|
7
|
+
data.tar.gz: 87c6ec30a6c56ae2f46ad9ae99f26aded31705b658d707917940ba61a5b90c9423ebf890cf7bf3084fc1e48e763145c911b7094de28cbf259fb8b994a1781063
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,16 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.140.0 (2022-09-15)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon SageMaker Automatic Model Tuning now supports specifying Hyperband strategy for tuning jobs, which uses a multi-fidelity based tuning strategy to stop underperforming hyperparameter configurations early.
|
8
|
+
|
9
|
+
1.139.0 (2022-09-08)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - This release adds Mode to AutoMLJobConfig.
|
13
|
+
|
4
14
|
1.138.0 (2022-09-07)
|
5
15
|
------------------
|
6
16
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.140.0
|
@@ -940,8 +940,7 @@ module Aws::SageMaker
|
|
940
940
|
req.send_request(options)
|
941
941
|
end
|
942
942
|
|
943
|
-
# Creates a running app for the specified UserProfile.
|
944
|
-
# are `JupyterServer` and `KernelGateway`. This operation is
|
943
|
+
# Creates a running app for the specified UserProfile. This operation is
|
945
944
|
# automatically invoked by Amazon SageMaker Studio upon access to the
|
946
945
|
# associated Domain, and when new kernel configurations are selected by
|
947
946
|
# the user. A user may have multiple Apps active simultaneously.
|
@@ -953,8 +952,7 @@ module Aws::SageMaker
|
|
953
952
|
# The user profile name.
|
954
953
|
#
|
955
954
|
# @option params [required, String] :app_type
|
956
|
-
# The type of app.
|
957
|
-
# `KernelGateway`. `TensorBoard` is not supported.
|
955
|
+
# The type of app.
|
958
956
|
#
|
959
957
|
# @option params [required, String] :app_name
|
960
958
|
# The name of the app.
|
@@ -1260,6 +1258,7 @@ module Aws::SageMaker
|
|
1260
1258
|
# candidate_generation_config: {
|
1261
1259
|
# feature_specification_s3_uri: "S3Uri",
|
1262
1260
|
# },
|
1261
|
+
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
1263
1262
|
# },
|
1264
1263
|
# role_arn: "RoleArn", # required
|
1265
1264
|
# generate_candidate_definitions_only: false,
|
@@ -3014,7 +3013,13 @@ module Aws::SageMaker
|
|
3014
3013
|
# resp = client.create_hyper_parameter_tuning_job({
|
3015
3014
|
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
|
3016
3015
|
# hyper_parameter_tuning_job_config: { # required
|
3017
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
3016
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
3017
|
+
# strategy_config: {
|
3018
|
+
# hyperband_strategy_config: {
|
3019
|
+
# min_resource: 1,
|
3020
|
+
# max_resource: 1,
|
3021
|
+
# },
|
3022
|
+
# },
|
3018
3023
|
# hyper_parameter_tuning_job_objective: {
|
3019
3024
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
3020
3025
|
# metric_name: "MetricName", # required
|
@@ -5834,6 +5839,12 @@ module Aws::SageMaker
|
|
5834
5839
|
# a list of hyperparameters for each training algorithm provided by
|
5835
5840
|
# SageMaker, see [Algorithms][1].
|
5836
5841
|
#
|
5842
|
+
# You must not include any security-sensitive information, such as
|
5843
|
+
# account access IDs, secrets, and tokens, in the dictionary for
|
5844
|
+
# configuring hyperparameters. SageMaker rejects the training job
|
5845
|
+
# request and returns an exception error for detected credentials, if
|
5846
|
+
# such user input is found.
|
5847
|
+
#
|
5837
5848
|
# * `InputDataConfig` - Describes the training dataset and the Amazon
|
5838
5849
|
# S3, EFS, or FSx location where it is stored.
|
5839
5850
|
#
|
@@ -5886,6 +5897,12 @@ module Aws::SageMaker
|
|
5886
5897
|
# is a key-value pair. Each key and value is limited to 256 characters,
|
5887
5898
|
# as specified by the `Length Constraint`.
|
5888
5899
|
#
|
5900
|
+
# You must not include any security-sensitive information, such as
|
5901
|
+
# account access IDs, secrets, and tokens, in the dictionary for
|
5902
|
+
# configuring hyperparameters. SageMaker rejects the training job
|
5903
|
+
# request and returns an exception error for detected credentials, if
|
5904
|
+
# such user input is found.
|
5905
|
+
#
|
5889
5906
|
#
|
5890
5907
|
#
|
5891
5908
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
|
@@ -8571,6 +8588,7 @@ module Aws::SageMaker
|
|
8571
8588
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
|
8572
8589
|
# resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
|
8573
8590
|
# resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
|
8591
|
+
# resp.auto_ml_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
|
8574
8592
|
# resp.creation_time #=> Time
|
8575
8593
|
# resp.end_time #=> Time
|
8576
8594
|
# resp.last_modified_time #=> Time
|
@@ -9708,7 +9726,9 @@ module Aws::SageMaker
|
|
9708
9726
|
#
|
9709
9727
|
# resp.hyper_parameter_tuning_job_name #=> String
|
9710
9728
|
# resp.hyper_parameter_tuning_job_arn #=> String
|
9711
|
-
# resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
|
9729
|
+
# resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
9730
|
+
# resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
|
9731
|
+
# resp.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
|
9712
9732
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
|
9713
9733
|
# resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
|
9714
9734
|
# resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
|
@@ -14064,7 +14084,7 @@ module Aws::SageMaker
|
|
14064
14084
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
|
14065
14085
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
|
14066
14086
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
14067
|
-
# resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random"
|
14087
|
+
# resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
14068
14088
|
# resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
|
14069
14089
|
# resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
|
14070
14090
|
# resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
|
@@ -17933,7 +17953,9 @@ module Aws::SageMaker
|
|
17933
17953
|
# resp.results[0].feature_metadata.parameters[0].value #=> String
|
17934
17954
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_name #=> String
|
17935
17955
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_arn #=> String
|
17936
|
-
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random"
|
17956
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian", "Random", "Hyperband"
|
17957
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.min_resource #=> Integer
|
17958
|
+
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.strategy_config.hyperband_strategy_config.max_resource #=> Integer
|
17937
17959
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
|
17938
17960
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
|
17939
17961
|
# resp.results[0].hyper_parameter_tuning_job.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
|
@@ -20582,7 +20604,7 @@ module Aws::SageMaker
|
|
20582
20604
|
params: params,
|
20583
20605
|
config: config)
|
20584
20606
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
20585
|
-
context[:gem_version] = '1.
|
20607
|
+
context[:gem_version] = '1.140.0'
|
20586
20608
|
Seahorse::Client::Request.new(handlers, context)
|
20587
20609
|
end
|
20588
20610
|
|
@@ -121,6 +121,7 @@ module Aws::SageMaker
|
|
121
121
|
AutoMLMaxResults = Shapes::IntegerShape.new(name: 'AutoMLMaxResults')
|
122
122
|
AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
|
123
123
|
AutoMLMetricExtendedEnum = Shapes::StringShape.new(name: 'AutoMLMetricExtendedEnum')
|
124
|
+
AutoMLMode = Shapes::StringShape.new(name: 'AutoMLMode')
|
124
125
|
AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
|
125
126
|
AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
|
126
127
|
AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
|
@@ -753,6 +754,7 @@ module Aws::SageMaker
|
|
753
754
|
HyperParameterTuningJobSearchEntity = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSearchEntity')
|
754
755
|
HyperParameterTuningJobSortByOptions = Shapes::StringShape.new(name: 'HyperParameterTuningJobSortByOptions')
|
755
756
|
HyperParameterTuningJobStatus = Shapes::StringShape.new(name: 'HyperParameterTuningJobStatus')
|
757
|
+
HyperParameterTuningJobStrategyConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningJobStrategyConfig')
|
756
758
|
HyperParameterTuningJobStrategyType = Shapes::StringShape.new(name: 'HyperParameterTuningJobStrategyType')
|
757
759
|
HyperParameterTuningJobSummaries = Shapes::ListShape.new(name: 'HyperParameterTuningJobSummaries')
|
758
760
|
HyperParameterTuningJobSummary = Shapes::StructureShape.new(name: 'HyperParameterTuningJobSummary')
|
@@ -761,6 +763,9 @@ module Aws::SageMaker
|
|
761
763
|
HyperParameterTuningResourceConfig = Shapes::StructureShape.new(name: 'HyperParameterTuningResourceConfig')
|
762
764
|
HyperParameterValue = Shapes::StringShape.new(name: 'HyperParameterValue')
|
763
765
|
HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
|
766
|
+
HyperbandStrategyConfig = Shapes::StructureShape.new(name: 'HyperbandStrategyConfig')
|
767
|
+
HyperbandStrategyMaxResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMaxResource')
|
768
|
+
HyperbandStrategyMinResource = Shapes::IntegerShape.new(name: 'HyperbandStrategyMinResource')
|
764
769
|
IdempotencyToken = Shapes::StringShape.new(name: 'IdempotencyToken')
|
765
770
|
Image = Shapes::StructureShape.new(name: 'Image')
|
766
771
|
ImageArn = Shapes::StringShape.new(name: 'ImageArn')
|
@@ -1952,6 +1957,7 @@ module Aws::SageMaker
|
|
1952
1957
|
AutoMLJobConfig.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
|
1953
1958
|
AutoMLJobConfig.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
|
1954
1959
|
AutoMLJobConfig.add_member(:candidate_generation_config, Shapes::ShapeRef.new(shape: AutoMLCandidateGenerationConfig, location_name: "CandidateGenerationConfig"))
|
1960
|
+
AutoMLJobConfig.add_member(:mode, Shapes::ShapeRef.new(shape: AutoMLMode, location_name: "Mode"))
|
1955
1961
|
AutoMLJobConfig.struct_class = Types::AutoMLJobConfig
|
1956
1962
|
|
1957
1963
|
AutoMLJobObjective.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, required: true, location_name: "MetricName"))
|
@@ -4519,6 +4525,7 @@ module Aws::SageMaker
|
|
4519
4525
|
HyperParameterTuningInstanceConfigs.member = Shapes::ShapeRef.new(shape: HyperParameterTuningInstanceConfig)
|
4520
4526
|
|
4521
4527
|
HyperParameterTuningJobConfig.add_member(:strategy, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyType, required: true, location_name: "Strategy"))
|
4528
|
+
HyperParameterTuningJobConfig.add_member(:strategy_config, Shapes::ShapeRef.new(shape: HyperParameterTuningJobStrategyConfig, location_name: "StrategyConfig"))
|
4522
4529
|
HyperParameterTuningJobConfig.add_member(:hyper_parameter_tuning_job_objective, Shapes::ShapeRef.new(shape: HyperParameterTuningJobObjective, location_name: "HyperParameterTuningJobObjective"))
|
4523
4530
|
HyperParameterTuningJobConfig.add_member(:resource_limits, Shapes::ShapeRef.new(shape: ResourceLimits, required: true, location_name: "ResourceLimits"))
|
4524
4531
|
HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
|
@@ -4550,6 +4557,9 @@ module Aws::SageMaker
|
|
4550
4557
|
HyperParameterTuningJobSearchEntity.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
4551
4558
|
HyperParameterTuningJobSearchEntity.struct_class = Types::HyperParameterTuningJobSearchEntity
|
4552
4559
|
|
4560
|
+
HyperParameterTuningJobStrategyConfig.add_member(:hyperband_strategy_config, Shapes::ShapeRef.new(shape: HyperbandStrategyConfig, location_name: "HyperbandStrategyConfig"))
|
4561
|
+
HyperParameterTuningJobStrategyConfig.struct_class = Types::HyperParameterTuningJobStrategyConfig
|
4562
|
+
|
4553
4563
|
HyperParameterTuningJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTuningJobSummary)
|
4554
4564
|
|
4555
4565
|
HyperParameterTuningJobSummary.add_member(:hyper_parameter_tuning_job_name, Shapes::ShapeRef.new(shape: HyperParameterTuningJobName, required: true, location_name: "HyperParameterTuningJobName"))
|
@@ -4579,6 +4589,10 @@ module Aws::SageMaker
|
|
4579
4589
|
HyperParameters.key = Shapes::ShapeRef.new(shape: HyperParameterKey)
|
4580
4590
|
HyperParameters.value = Shapes::ShapeRef.new(shape: HyperParameterValue)
|
4581
4591
|
|
4592
|
+
HyperbandStrategyConfig.add_member(:min_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMinResource, location_name: "MinResource"))
|
4593
|
+
HyperbandStrategyConfig.add_member(:max_resource, Shapes::ShapeRef.new(shape: HyperbandStrategyMaxResource, location_name: "MaxResource"))
|
4594
|
+
HyperbandStrategyConfig.struct_class = Types::HyperbandStrategyConfig
|
4595
|
+
|
4582
4596
|
Image.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "CreationTime"))
|
4583
4597
|
Image.add_member(:description, Shapes::ShapeRef.new(shape: ImageDescription, location_name: "Description"))
|
4584
4598
|
Image.add_member(:display_name, Shapes::ShapeRef.new(shape: ImageDisplayName, location_name: "DisplayName"))
|
@@ -2338,6 +2338,7 @@ module Aws::SageMaker
|
|
2338
2338
|
# candidate_generation_config: {
|
2339
2339
|
# feature_specification_s3_uri: "S3Uri",
|
2340
2340
|
# },
|
2341
|
+
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
2341
2342
|
# }
|
2342
2343
|
#
|
2343
2344
|
# @!attribute [rw] completion_criteria
|
@@ -2361,13 +2362,43 @@ module Aws::SageMaker
|
|
2361
2362
|
# (optional).
|
2362
2363
|
# @return [Types::AutoMLCandidateGenerationConfig]
|
2363
2364
|
#
|
2365
|
+
# @!attribute [rw] mode
|
2366
|
+
# The method that Autopilot uses to train the data. You can either
|
2367
|
+
# specify the mode manually or let Autopilot choose for you based on
|
2368
|
+
# the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
|
2369
|
+
# chooses `ENSEMBLING` for datasets smaller than 100 MB, and
|
2370
|
+
# `HYPERPARAMETER_TUNING` for larger ones.
|
2371
|
+
#
|
2372
|
+
# The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
|
2373
|
+
# classification and regression tasks directly from your dataset. This
|
2374
|
+
# machine learning mode combines several base models to produce an
|
2375
|
+
# optimal predictive model. It then uses a stacking ensemble method to
|
2376
|
+
# combine predictions from contributing members. A multi-stack
|
2377
|
+
# ensemble model can provide better performance over a single model by
|
2378
|
+
# combining the predictive capabilities of multiple models. See
|
2379
|
+
# [Autopilot algorithm support][1] for a list of algorithms supported
|
2380
|
+
# by `ENSEMBLING` mode.
|
2381
|
+
#
|
2382
|
+
# The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
|
2383
|
+
# to train the best version of a model. HPO will automatically select
|
2384
|
+
# an algorithm for the type of problem you want to solve. Then HPO
|
2385
|
+
# finds the best hyperparameters according to your objective metric.
|
2386
|
+
# See [Autopilot algorithm support][1] for a list of algorithms
|
2387
|
+
# supported by `HYPERPARAMETER_TUNING` mode.
|
2388
|
+
#
|
2389
|
+
#
|
2390
|
+
#
|
2391
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt
|
2392
|
+
# @return [String]
|
2393
|
+
#
|
2364
2394
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
2365
2395
|
#
|
2366
2396
|
class AutoMLJobConfig < Struct.new(
|
2367
2397
|
:completion_criteria,
|
2368
2398
|
:security_config,
|
2369
2399
|
:data_split_config,
|
2370
|
-
:candidate_generation_config
|
2400
|
+
:candidate_generation_config,
|
2401
|
+
:mode)
|
2371
2402
|
SENSITIVE = []
|
2372
2403
|
include Aws::Structure
|
2373
2404
|
end
|
@@ -4409,8 +4440,7 @@ module Aws::SageMaker
|
|
4409
4440
|
# @return [String]
|
4410
4441
|
#
|
4411
4442
|
# @!attribute [rw] app_type
|
4412
|
-
# The type of app.
|
4413
|
-
# `KernelGateway`. `TensorBoard` is not supported.
|
4443
|
+
# The type of app.
|
4414
4444
|
# @return [String]
|
4415
4445
|
#
|
4416
4446
|
# @!attribute [rw] app_name
|
@@ -4591,6 +4621,7 @@ module Aws::SageMaker
|
|
4591
4621
|
# candidate_generation_config: {
|
4592
4622
|
# feature_specification_s3_uri: "S3Uri",
|
4593
4623
|
# },
|
4624
|
+
# mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
|
4594
4625
|
# },
|
4595
4626
|
# role_arn: "RoleArn", # required
|
4596
4627
|
# generate_candidate_definitions_only: false,
|
@@ -6261,7 +6292,13 @@ module Aws::SageMaker
|
|
6261
6292
|
# {
|
6262
6293
|
# hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
|
6263
6294
|
# hyper_parameter_tuning_job_config: { # required
|
6264
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
6295
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
6296
|
+
# strategy_config: {
|
6297
|
+
# hyperband_strategy_config: {
|
6298
|
+
# min_resource: 1,
|
6299
|
+
# max_resource: 1,
|
6300
|
+
# },
|
6301
|
+
# },
|
6265
6302
|
# hyper_parameter_tuning_job_objective: {
|
6266
6303
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
6267
6304
|
# metric_name: "MetricName", # required
|
@@ -9383,6 +9420,12 @@ module Aws::SageMaker
|
|
9383
9420
|
# hyperparameter is a key-value pair. Each key and value is limited to
|
9384
9421
|
# 256 characters, as specified by the `Length Constraint`.
|
9385
9422
|
#
|
9423
|
+
# You must not include any security-sensitive information, such as
|
9424
|
+
# account access IDs, secrets, and tokens, in the dictionary for
|
9425
|
+
# configuring hyperparameters. SageMaker rejects the training job
|
9426
|
+
# request and returns an exception error for detected credentials, if
|
9427
|
+
# such user input is found.
|
9428
|
+
#
|
9386
9429
|
#
|
9387
9430
|
#
|
9388
9431
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
|
@@ -17694,7 +17737,7 @@ module Aws::SageMaker
|
|
17694
17737
|
#
|
17695
17738
|
# @!attribute [rw] execution_role_identity_config
|
17696
17739
|
# The configuration for attaching a SageMaker user profile name to the
|
17697
|
-
# execution role as a [
|
17740
|
+
# execution role as a [sts:SourceIdentity key][1].
|
17698
17741
|
#
|
17699
17742
|
#
|
17700
17743
|
#
|
@@ -17736,9 +17779,9 @@ module Aws::SageMaker
|
|
17736
17779
|
#
|
17737
17780
|
# @!attribute [rw] execution_role_identity_config
|
17738
17781
|
# The configuration for attaching a SageMaker user profile name to the
|
17739
|
-
# execution role as a [
|
17740
|
-
#
|
17741
|
-
# `
|
17782
|
+
# execution role as a [sts:SourceIdentity key][1]. This configuration
|
17783
|
+
# can only be modified if there are no apps in the `InService` or
|
17784
|
+
# `Pending` state.
|
17742
17785
|
#
|
17743
17786
|
#
|
17744
17787
|
#
|
@@ -21141,7 +21184,8 @@ module Aws::SageMaker
|
|
21141
21184
|
# Defines the maximum number of data objects that can be labeled by
|
21142
21185
|
# human workers at the same time. Also referred to as batch size. Each
|
21143
21186
|
# object may have more than one worker at one time. The default value
|
21144
|
-
# is 1000 objects.
|
21187
|
+
# is 1000 objects. To increase the maximum value to 5000 objects,
|
21188
|
+
# contact Amazon Web Services Support.
|
21145
21189
|
# @return [Integer]
|
21146
21190
|
#
|
21147
21191
|
# @!attribute [rw] annotation_consolidation_config
|
@@ -21810,7 +21854,13 @@ module Aws::SageMaker
|
|
21810
21854
|
# data as a hash:
|
21811
21855
|
#
|
21812
21856
|
# {
|
21813
|
-
# strategy: "Bayesian", # required, accepts Bayesian, Random
|
21857
|
+
# strategy: "Bayesian", # required, accepts Bayesian, Random, Hyperband
|
21858
|
+
# strategy_config: {
|
21859
|
+
# hyperband_strategy_config: {
|
21860
|
+
# min_resource: 1,
|
21861
|
+
# max_resource: 1,
|
21862
|
+
# },
|
21863
|
+
# },
|
21814
21864
|
# hyper_parameter_tuning_job_objective: {
|
21815
21865
|
# type: "Maximize", # required, accepts Maximize, Minimize
|
21816
21866
|
# metric_name: "MetricName", # required
|
@@ -21851,16 +21901,21 @@ module Aws::SageMaker
|
|
21851
21901
|
#
|
21852
21902
|
# @!attribute [rw] strategy
|
21853
21903
|
# Specifies how hyperparameter tuning chooses the combinations of
|
21854
|
-
# hyperparameter values to use for the training job it launches.
|
21855
|
-
#
|
21856
|
-
#
|
21857
|
-
# strategies, see [How Hyperparameter Tuning Works][1].
|
21904
|
+
# hyperparameter values to use for the training job it launches. For
|
21905
|
+
# information about search strategies, see [How Hyperparameter Tuning
|
21906
|
+
# Works][1].
|
21858
21907
|
#
|
21859
21908
|
#
|
21860
21909
|
#
|
21861
21910
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
|
21862
21911
|
# @return [String]
|
21863
21912
|
#
|
21913
|
+
# @!attribute [rw] strategy_config
|
21914
|
+
# The configuration for the `Hyperband` optimization strategy. This
|
21915
|
+
# parameter should be provided only if `Hyperband` is selected as the
|
21916
|
+
# strategy for `HyperParameterTuningJobConfig`.
|
21917
|
+
# @return [Types::HyperParameterTuningJobStrategyConfig]
|
21918
|
+
#
|
21864
21919
|
# @!attribute [rw] hyper_parameter_tuning_job_objective
|
21865
21920
|
# The HyperParameterTuningJobObjective object that specifies the
|
21866
21921
|
# objective metric for this tuning job.
|
@@ -21878,8 +21933,11 @@ module Aws::SageMaker
|
|
21878
21933
|
#
|
21879
21934
|
# @!attribute [rw] training_job_early_stopping_type
|
21880
21935
|
# Specifies whether to use early stopping for training jobs launched
|
21881
|
-
# by the hyperparameter tuning job.
|
21882
|
-
#
|
21936
|
+
# by the hyperparameter tuning job. Because the `Hyperband` strategy
|
21937
|
+
# has its own advanced internal early stopping mechanism,
|
21938
|
+
# `TrainingJobEarlyStoppingType` must be `OFF` to use `Hyperband`.
|
21939
|
+
# This parameter can take on one of the following values (the default
|
21940
|
+
# value is `OFF`):
|
21883
21941
|
#
|
21884
21942
|
# OFF
|
21885
21943
|
#
|
@@ -21906,6 +21964,7 @@ module Aws::SageMaker
|
|
21906
21964
|
#
|
21907
21965
|
class HyperParameterTuningJobConfig < Struct.new(
|
21908
21966
|
:strategy,
|
21967
|
+
:strategy_config,
|
21909
21968
|
:hyper_parameter_tuning_job_objective,
|
21910
21969
|
:resource_limits,
|
21911
21970
|
:parameter_ranges,
|
@@ -22063,6 +22122,42 @@ module Aws::SageMaker
|
|
22063
22122
|
include Aws::Structure
|
22064
22123
|
end
|
22065
22124
|
|
22125
|
+
# The configuration for a training job launched by a hyperparameter
|
22126
|
+
# tuning job. Choose `Bayesian` for Bayesian optimization, and `Random`
|
22127
|
+
# for random search optimization. For more advanced use cases, use
|
22128
|
+
# `Hyperband`, which evaluates objective metrics for training jobs after
|
22129
|
+
# every epoch. For more information about strategies, see [How
|
22130
|
+
# Hyperparameter Tuning Works][1].
|
22131
|
+
#
|
22132
|
+
#
|
22133
|
+
#
|
22134
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
|
22135
|
+
#
|
22136
|
+
# @note When making an API call, you may pass HyperParameterTuningJobStrategyConfig
|
22137
|
+
# data as a hash:
|
22138
|
+
#
|
22139
|
+
# {
|
22140
|
+
# hyperband_strategy_config: {
|
22141
|
+
# min_resource: 1,
|
22142
|
+
# max_resource: 1,
|
22143
|
+
# },
|
22144
|
+
# }
|
22145
|
+
#
|
22146
|
+
# @!attribute [rw] hyperband_strategy_config
|
22147
|
+
# The configuration for the object that specifies the `Hyperband`
|
22148
|
+
# strategy. This parameter is only supported for the `Hyperband`
|
22149
|
+
# selection for `Strategy` within the `HyperParameterTuningJobConfig`
|
22150
|
+
# API.
|
22151
|
+
# @return [Types::HyperbandStrategyConfig]
|
22152
|
+
#
|
22153
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTuningJobStrategyConfig AWS API Documentation
|
22154
|
+
#
|
22155
|
+
class HyperParameterTuningJobStrategyConfig < Struct.new(
|
22156
|
+
:hyperband_strategy_config)
|
22157
|
+
SENSITIVE = []
|
22158
|
+
include Aws::Structure
|
22159
|
+
end
|
22160
|
+
|
22066
22161
|
# Provides summary information about a hyperparameter tuning job.
|
22067
22162
|
#
|
22068
22163
|
# @!attribute [rw] hyper_parameter_tuning_job_name
|
@@ -22079,8 +22174,7 @@ module Aws::SageMaker
|
|
22079
22174
|
#
|
22080
22175
|
# @!attribute [rw] strategy
|
22081
22176
|
# Specifies the search strategy hyperparameter tuning uses to choose
|
22082
|
-
# which hyperparameters to
|
22083
|
-
# valid value is Bayesian.
|
22177
|
+
# which hyperparameters to evaluate at each iteration.
|
22084
22178
|
# @return [String]
|
22085
22179
|
#
|
22086
22180
|
# @!attribute [rw] creation_time
|
@@ -22348,6 +22442,74 @@ module Aws::SageMaker
|
|
22348
22442
|
include Aws::Structure
|
22349
22443
|
end
|
22350
22444
|
|
22445
|
+
# The configuration for `Hyperband`, a multi-fidelity based
|
22446
|
+
# hyperparameter tuning strategy. `Hyperband` uses the final and
|
22447
|
+
# intermediate results of a training job to dynamically allocate
|
22448
|
+
# resources to utilized hyperparameter configurations while
|
22449
|
+
# automatically stopping under-performing configurations. This parameter
|
22450
|
+
# should be provided only if `Hyperband` is selected as the
|
22451
|
+
# `StrategyConfig` under the `HyperParameterTuningJobConfig` API.
|
22452
|
+
#
|
22453
|
+
# @note When making an API call, you may pass HyperbandStrategyConfig
|
22454
|
+
# data as a hash:
|
22455
|
+
#
|
22456
|
+
# {
|
22457
|
+
# min_resource: 1,
|
22458
|
+
# max_resource: 1,
|
22459
|
+
# }
|
22460
|
+
#
|
22461
|
+
# @!attribute [rw] min_resource
|
22462
|
+
# The minimum number of resources (such as epochs) that can be used by
|
22463
|
+
# a training job launched by a hyperparameter tuning job. If the value
|
22464
|
+
# for `MinResource` has not been reached, the training job will not be
|
22465
|
+
# stopped by `Hyperband`.
|
22466
|
+
# @return [Integer]
|
22467
|
+
#
|
22468
|
+
# @!attribute [rw] max_resource
|
22469
|
+
# The maximum number of resources (such as epochs) that can be used by
|
22470
|
+
# a training job launched by a hyperparameter tuning job. Once a job
|
22471
|
+
# reaches the `MaxResource` value, it is stopped. If a value for
|
22472
|
+
# `MaxResource` is not provided, and `Hyperband` is selected as the
|
22473
|
+
# hyperparameter tuning strategy, `HyperbandTrainingJ` attempts to
|
22474
|
+
# infer `MaxResource` from the following keys (if present) in
|
22475
|
+
# [StaticsHyperParameters][1]\:
|
22476
|
+
#
|
22477
|
+
# * `epochs`
|
22478
|
+
#
|
22479
|
+
# * `numepochs`
|
22480
|
+
#
|
22481
|
+
# * `n-epochs`
|
22482
|
+
#
|
22483
|
+
# * `n_epochs`
|
22484
|
+
#
|
22485
|
+
# * `num_epochs`
|
22486
|
+
#
|
22487
|
+
# If `HyperbandStrategyConfig` is unable to infer a value for
|
22488
|
+
# `MaxResource`, it generates a validation error. The maximum value is
|
22489
|
+
# 20,000 epochs. All metrics that correspond to an objective metric
|
22490
|
+
# are used to derive [early stopping decisions][2]. For
|
22491
|
+
# [distributive][3] training jobs, ensure that duplicate metrics are
|
22492
|
+
# not printed in the logs across the individual nodes in a training
|
22493
|
+
# job. If multiple nodes are publishing duplicate or incorrect
|
22494
|
+
# metrics, training jobs may make an incorrect stopping decision and
|
22495
|
+
# stop the job prematurely.
|
22496
|
+
#
|
22497
|
+
#
|
22498
|
+
#
|
22499
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters
|
22500
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
|
22501
|
+
# [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
|
22502
|
+
# @return [Integer]
|
22503
|
+
#
|
22504
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperbandStrategyConfig AWS API Documentation
|
22505
|
+
#
|
22506
|
+
class HyperbandStrategyConfig < Struct.new(
|
22507
|
+
:min_resource,
|
22508
|
+
:max_resource)
|
22509
|
+
SENSITIVE = []
|
22510
|
+
include Aws::Structure
|
22511
|
+
end
|
22512
|
+
|
22351
22513
|
# A SageMaker image. A SageMaker image represents a set of container
|
22352
22514
|
# images that are derived from a common base container image. Each of
|
22353
22515
|
# these container images is represented by a SageMaker `ImageVersion`.
|
@@ -34097,16 +34259,16 @@ module Aws::SageMaker
|
|
34097
34259
|
# @return [Integer]
|
34098
34260
|
#
|
34099
34261
|
# @!attribute [rw] model_data_download_timeout_in_seconds
|
34100
|
-
# The timeout value, in seconds, to download and extract
|
34101
|
-
#
|
34102
|
-
# associated with this production variant.
|
34262
|
+
# The timeout value, in seconds, to download and extract the model
|
34263
|
+
# that you want to host from Amazon S3 to the individual inference
|
34264
|
+
# instance associated with this production variant.
|
34103
34265
|
# @return [Integer]
|
34104
34266
|
#
|
34105
34267
|
# @!attribute [rw] container_startup_health_check_timeout_in_seconds
|
34106
|
-
# The timeout value, in seconds, for
|
34107
|
-
#
|
34108
|
-
#
|
34109
|
-
#
|
34268
|
+
# The timeout value, in seconds, for your inference container to pass
|
34269
|
+
# health check by SageMaker Hosting. For more information about health
|
34270
|
+
# check, see [How Your Container Should Respond to Health Check (Ping)
|
34271
|
+
# Requests][1].
|
34110
34272
|
#
|
34111
34273
|
#
|
34112
34274
|
#
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.140.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-09-
|
11
|
+
date: 2022-09-15 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|