aws-sdk-sagemaker 1.122.0 → 1.125.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +339 -255
- data/lib/aws-sdk-sagemaker/client_api.rb +17 -0
- data/lib/aws-sdk-sagemaker/types.rb +670 -413
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -192,7 +192,7 @@ module Aws::SageMaker
|
|
192
192
|
end
|
193
193
|
|
194
194
|
# @!attribute [rw] tags
|
195
|
-
# A list of tags associated with the
|
195
|
+
# A list of tags associated with the SageMaker resource.
|
196
196
|
# @return [Array<Types::Tag>]
|
197
197
|
#
|
198
198
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
|
@@ -328,9 +328,9 @@ module Aws::SageMaker
|
|
328
328
|
# Specifies the training algorithm to use in a CreateTrainingJob
|
329
329
|
# request.
|
330
330
|
#
|
331
|
-
# For more information about algorithms provided by
|
332
|
-
#
|
333
|
-
#
|
331
|
+
# For more information about algorithms provided by SageMaker, see
|
332
|
+
# [Algorithms][1]. For information about using your own algorithms, see
|
333
|
+
# [Using Your Own Algorithms with Amazon SageMaker][2].
|
334
334
|
#
|
335
335
|
#
|
336
336
|
#
|
@@ -357,10 +357,10 @@ module Aws::SageMaker
|
|
357
357
|
# The registry path of the Docker image that contains the training
|
358
358
|
# algorithm. For information about docker registry paths for built-in
|
359
359
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
360
|
-
# Parameters][1].
|
361
|
-
#
|
362
|
-
#
|
363
|
-
#
|
360
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
361
|
+
# and `registry/repository[@digest]` image path formats. For more
|
362
|
+
# information, see [Using Your Own Algorithms with Amazon
|
363
|
+
# SageMaker][2].
|
364
364
|
#
|
365
365
|
#
|
366
366
|
#
|
@@ -424,7 +424,7 @@ module Aws::SageMaker
|
|
424
424
|
# @!attribute [rw] metric_definitions
|
425
425
|
# A list of metric definition objects. Each object specifies the
|
426
426
|
# metric name and regular expressions used to parse algorithm logs.
|
427
|
-
#
|
427
|
+
# SageMaker publishes each metric to Amazon CloudWatch.
|
428
428
|
# @return [Array<Types::MetricDefinition>]
|
429
429
|
#
|
430
430
|
# @!attribute [rw] enable_sage_maker_metrics_time_series
|
@@ -432,9 +432,9 @@ module Aws::SageMaker
|
|
432
432
|
# `true`. The default is `false` and time-series metrics aren't
|
433
433
|
# generated except in the following cases:
|
434
434
|
#
|
435
|
-
# * You use one of the
|
435
|
+
# * You use one of the SageMaker built-in algorithms
|
436
436
|
#
|
437
|
-
# * You use one of the following [Prebuilt
|
437
|
+
# * You use one of the following [Prebuilt SageMaker Docker
|
438
438
|
# Images][1]\:
|
439
439
|
#
|
440
440
|
# * Tensorflow (version >= 1.15)
|
@@ -540,8 +540,8 @@ module Aws::SageMaker
|
|
540
540
|
include Aws::Structure
|
541
541
|
end
|
542
542
|
|
543
|
-
# Defines a training job and a batch transform job that
|
544
|
-
#
|
543
|
+
# Defines a training job and a batch transform job that SageMaker runs
|
544
|
+
# to validate your algorithm.
|
545
545
|
#
|
546
546
|
# The data provided in the validation profile is made available to your
|
547
547
|
# buyers on Amazon Web Services Marketplace.
|
@@ -636,12 +636,12 @@ module Aws::SageMaker
|
|
636
636
|
#
|
637
637
|
# @!attribute [rw] training_job_definition
|
638
638
|
# The `TrainingJobDefinition` object that describes the training job
|
639
|
-
# that
|
639
|
+
# that SageMaker runs to validate your algorithm.
|
640
640
|
# @return [Types::TrainingJobDefinition]
|
641
641
|
#
|
642
642
|
# @!attribute [rw] transform_job_definition
|
643
643
|
# The `TransformJobDefinition` object that describes the transform job
|
644
|
-
# that
|
644
|
+
# that SageMaker runs to validate your algorithm.
|
645
645
|
# @return [Types::TransformJobDefinition]
|
646
646
|
#
|
647
647
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
|
@@ -654,8 +654,8 @@ module Aws::SageMaker
|
|
654
654
|
include Aws::Structure
|
655
655
|
end
|
656
656
|
|
657
|
-
# Specifies configurations for one or more training jobs that
|
658
|
-
#
|
657
|
+
# Specifies configurations for one or more training jobs that SageMaker
|
658
|
+
# runs to test the algorithm.
|
659
659
|
#
|
660
660
|
# @note When making an API call, you may pass AlgorithmValidationSpecification
|
661
661
|
# data as a hash:
|
@@ -746,13 +746,13 @@ module Aws::SageMaker
|
|
746
746
|
# }
|
747
747
|
#
|
748
748
|
# @!attribute [rw] validation_role
|
749
|
-
# The IAM roles that
|
749
|
+
# The IAM roles that SageMaker uses to run the training jobs.
|
750
750
|
# @return [String]
|
751
751
|
#
|
752
752
|
# @!attribute [rw] validation_profiles
|
753
753
|
# An array of `AlgorithmValidationProfile` objects, each of which
|
754
|
-
# specifies a training job and batch transform job that
|
755
|
-
#
|
754
|
+
# specifies a training job and batch transform job that SageMaker runs
|
755
|
+
# to validate your algorithm.
|
756
756
|
# @return [Array<Types::AlgorithmValidationProfile>]
|
757
757
|
#
|
758
758
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
|
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
|
|
1742
1742
|
include Aws::Structure
|
1743
1743
|
end
|
1744
1744
|
|
1745
|
-
# Configures the behavior of the client used by
|
1746
|
-
#
|
1745
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1746
|
+
# with the model container during asynchronous inference.
|
1747
1747
|
#
|
1748
1748
|
# @note When making an API call, you may pass AsyncInferenceClientConfig
|
1749
1749
|
# data as a hash:
|
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
|
|
1754
1754
|
#
|
1755
1755
|
# @!attribute [rw] max_concurrent_invocations_per_instance
|
1756
1756
|
# The maximum number of concurrent requests sent by the SageMaker
|
1757
|
-
# client to the model container. If no value is provided,
|
1758
|
-
#
|
1757
|
+
# client to the model container. If no value is provided, SageMaker
|
1758
|
+
# chooses an optimal value.
|
1759
1759
|
# @return [Integer]
|
1760
1760
|
#
|
1761
1761
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
|
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
|
|
1787
1787
|
# }
|
1788
1788
|
#
|
1789
1789
|
# @!attribute [rw] client_config
|
1790
|
-
# Configures the behavior of the client used by
|
1791
|
-
#
|
1790
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1791
|
+
# with the model container during asynchronous inference.
|
1792
1792
|
# @return [Types::AsyncInferenceClientConfig]
|
1793
1793
|
#
|
1794
1794
|
# @!attribute [rw] output_config
|
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
|
|
1853
1853
|
#
|
1854
1854
|
# @!attribute [rw] kms_key_id
|
1855
1855
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
1856
|
-
# KMS) key that
|
1857
|
-
#
|
1856
|
+
# KMS) key that SageMaker uses to encrypt the asynchronous inference
|
1857
|
+
# output in Amazon S3.
|
1858
1858
|
# @return [String]
|
1859
1859
|
#
|
1860
1860
|
# @!attribute [rw] s3_output_path
|
@@ -2007,6 +2007,38 @@ module Aws::SageMaker
|
|
2007
2007
|
include Aws::Structure
|
2008
2008
|
end
|
2009
2009
|
|
2010
|
+
# Stores the config information for how a candidate is generated
|
2011
|
+
# (optional).
|
2012
|
+
#
|
2013
|
+
# @note When making an API call, you may pass AutoMLCandidateGenerationConfig
|
2014
|
+
# data as a hash:
|
2015
|
+
#
|
2016
|
+
# {
|
2017
|
+
# feature_specification_s3_uri: "S3Uri",
|
2018
|
+
# }
|
2019
|
+
#
|
2020
|
+
# @!attribute [rw] feature_specification_s3_uri
|
2021
|
+
# A URL to the Amazon S3 data source containing selected features from
|
2022
|
+
# the input data source to run an Autopilot job (optional). This file
|
2023
|
+
# should be in json format as shown below:
|
2024
|
+
#
|
2025
|
+
# `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
|
2026
|
+
#
|
2027
|
+
# The key name `FeatureAttributeNames` is fixed. The values listed in
|
2028
|
+
# `["col1", "col2", ...]` is case sensitive and should be a list of
|
2029
|
+
# strings containing unique values that are a subset of the column
|
2030
|
+
# names in the input data. The list of columns provided must not
|
2031
|
+
# include the target column.
|
2032
|
+
# @return [String]
|
2033
|
+
#
|
2034
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateGenerationConfig AWS API Documentation
|
2035
|
+
#
|
2036
|
+
class AutoMLCandidateGenerationConfig < Struct.new(
|
2037
|
+
:feature_specification_s3_uri)
|
2038
|
+
SENSITIVE = []
|
2039
|
+
include Aws::Structure
|
2040
|
+
end
|
2041
|
+
|
2010
2042
|
# Information about the steps for a candidate and what step it is
|
2011
2043
|
# working on.
|
2012
2044
|
#
|
@@ -2034,7 +2066,14 @@ module Aws::SageMaker
|
|
2034
2066
|
end
|
2035
2067
|
|
2036
2068
|
# A channel is a named input source that training algorithms can
|
2037
|
-
# consume.
|
2069
|
+
# consume. The validation dataset size is limited to less than 2 GB. The
|
2070
|
+
# training dataset size must be less than 100 GB. For more information,
|
2071
|
+
# see .
|
2072
|
+
#
|
2073
|
+
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
2074
|
+
# dataset.
|
2075
|
+
#
|
2076
|
+
# </note>
|
2038
2077
|
#
|
2039
2078
|
# @note When making an API call, you may pass AutoMLChannel
|
2040
2079
|
# data as a hash:
|
@@ -2049,6 +2088,7 @@ module Aws::SageMaker
|
|
2049
2088
|
# compression_type: "None", # accepts None, Gzip
|
2050
2089
|
# target_attribute_name: "TargetAttributeName", # required
|
2051
2090
|
# content_type: "ContentType",
|
2091
|
+
# channel_type: "training", # accepts training, validation
|
2052
2092
|
# }
|
2053
2093
|
#
|
2054
2094
|
# @!attribute [rw] data_source
|
@@ -2070,13 +2110,26 @@ module Aws::SageMaker
|
|
2070
2110
|
# default value is `text/csv;header=present`.
|
2071
2111
|
# @return [String]
|
2072
2112
|
#
|
2113
|
+
# @!attribute [rw] channel_type
|
2114
|
+
# The channel type (optional) is an `enum` string. The default value
|
2115
|
+
# is `training`. Channels for training and validation must share the
|
2116
|
+
# same `ContentType` and `TargetAttributeName`. For information on
|
2117
|
+
# specifying training and validation channel types, see [ `How to
|
2118
|
+
# specify training and validation datasets` ][1].
|
2119
|
+
#
|
2120
|
+
#
|
2121
|
+
#
|
2122
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation
|
2123
|
+
# @return [String]
|
2124
|
+
#
|
2073
2125
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
|
2074
2126
|
#
|
2075
2127
|
class AutoMLChannel < Struct.new(
|
2076
2128
|
:data_source,
|
2077
2129
|
:compression_type,
|
2078
2130
|
:target_attribute_name,
|
2079
|
-
:content_type
|
2131
|
+
:content_type,
|
2132
|
+
:channel_type)
|
2080
2133
|
SENSITIVE = []
|
2081
2134
|
include Aws::Structure
|
2082
2135
|
end
|
@@ -2136,6 +2189,32 @@ module Aws::SageMaker
|
|
2136
2189
|
include Aws::Structure
|
2137
2190
|
end
|
2138
2191
|
|
2192
|
+
# This structure specifies how to split the data into train and test
|
2193
|
+
# datasets. The validation and training datasets must contain the same
|
2194
|
+
# headers. The validation dataset must be less than 2 GB in size.
|
2195
|
+
#
|
2196
|
+
# @note When making an API call, you may pass AutoMLDataSplitConfig
|
2197
|
+
# data as a hash:
|
2198
|
+
#
|
2199
|
+
# {
|
2200
|
+
# validation_fraction: 1.0,
|
2201
|
+
# }
|
2202
|
+
#
|
2203
|
+
# @!attribute [rw] validation_fraction
|
2204
|
+
# The validation fraction (optional) is a float that specifies the
|
2205
|
+
# portion of the training dataset to be used for validation. The
|
2206
|
+
# default value is 0.2, and values must be greater than 0 and less
|
2207
|
+
# than 1. We recommend setting this value to be less than 0.5.
|
2208
|
+
# @return [Float]
|
2209
|
+
#
|
2210
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
|
2211
|
+
#
|
2212
|
+
class AutoMLDataSplitConfig < Struct.new(
|
2213
|
+
:validation_fraction)
|
2214
|
+
SENSITIVE = []
|
2215
|
+
include Aws::Structure
|
2216
|
+
end
|
2217
|
+
|
2139
2218
|
# The artifacts that are generated during an AutoML job.
|
2140
2219
|
#
|
2141
2220
|
# @!attribute [rw] candidate_definition_notebook_location
|
@@ -2217,6 +2296,12 @@ module Aws::SageMaker
|
|
2217
2296
|
# subnets: ["SubnetId"], # required
|
2218
2297
|
# },
|
2219
2298
|
# },
|
2299
|
+
# data_split_config: {
|
2300
|
+
# validation_fraction: 1.0,
|
2301
|
+
# },
|
2302
|
+
# candidate_generation_config: {
|
2303
|
+
# feature_specification_s3_uri: "S3Uri",
|
2304
|
+
# },
|
2220
2305
|
# }
|
2221
2306
|
#
|
2222
2307
|
# @!attribute [rw] completion_criteria
|
@@ -2229,11 +2314,24 @@ module Aws::SageMaker
|
|
2229
2314
|
# settings.
|
2230
2315
|
# @return [Types::AutoMLSecurityConfig]
|
2231
2316
|
#
|
2317
|
+
# @!attribute [rw] data_split_config
|
2318
|
+
# The configuration for splitting the input training dataset.
|
2319
|
+
#
|
2320
|
+
# Type: AutoMLDataSplitConfig
|
2321
|
+
# @return [Types::AutoMLDataSplitConfig]
|
2322
|
+
#
|
2323
|
+
# @!attribute [rw] candidate_generation_config
|
2324
|
+
# The configuration for generating a candidate for an AutoML job
|
2325
|
+
# (optional).
|
2326
|
+
# @return [Types::AutoMLCandidateGenerationConfig]
|
2327
|
+
#
|
2232
2328
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
2233
2329
|
#
|
2234
2330
|
class AutoMLJobConfig < Struct.new(
|
2235
2331
|
:completion_criteria,
|
2236
|
-
:security_config
|
2332
|
+
:security_config,
|
2333
|
+
:data_split_config,
|
2334
|
+
:candidate_generation_config)
|
2237
2335
|
SENSITIVE = []
|
2238
2336
|
include Aws::Structure
|
2239
2337
|
end
|
@@ -2837,6 +2935,10 @@ module Aws::SageMaker
|
|
2837
2935
|
include Aws::Structure
|
2838
2936
|
end
|
2839
2937
|
|
2938
|
+
# Configuration specifying how to treat different headers. If no headers
|
2939
|
+
# are specified SageMaker will by default base64 encode when capturing
|
2940
|
+
# the data.
|
2941
|
+
#
|
2840
2942
|
# @note When making an API call, you may pass CaptureContentTypeHeader
|
2841
2943
|
# data as a hash:
|
2842
2944
|
#
|
@@ -2846,9 +2948,13 @@ module Aws::SageMaker
|
|
2846
2948
|
# }
|
2847
2949
|
#
|
2848
2950
|
# @!attribute [rw] csv_content_types
|
2951
|
+
# The list of all content type headers that SageMaker will treat as
|
2952
|
+
# CSV and capture accordingly.
|
2849
2953
|
# @return [Array<String>]
|
2850
2954
|
#
|
2851
2955
|
# @!attribute [rw] json_content_types
|
2956
|
+
# The list of all content type headers that SageMaker will treat as
|
2957
|
+
# JSON and capture accordingly.
|
2852
2958
|
# @return [Array<String>]
|
2853
2959
|
#
|
2854
2960
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CaptureContentTypeHeader AWS API Documentation
|
@@ -2860,6 +2966,8 @@ module Aws::SageMaker
|
|
2860
2966
|
include Aws::Structure
|
2861
2967
|
end
|
2862
2968
|
|
2969
|
+
# Specifies data Model Monitor will capture.
|
2970
|
+
#
|
2863
2971
|
# @note When making an API call, you may pass CaptureOption
|
2864
2972
|
# data as a hash:
|
2865
2973
|
#
|
@@ -2868,6 +2976,7 @@ module Aws::SageMaker
|
|
2868
2976
|
# }
|
2869
2977
|
#
|
2870
2978
|
# @!attribute [rw] capture_mode
|
2979
|
+
# Specify the boundary of data to capture.
|
2871
2980
|
# @return [String]
|
2872
2981
|
#
|
2873
2982
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CaptureOption AWS API Documentation
|
@@ -3005,10 +3114,10 @@ module Aws::SageMaker
|
|
3005
3114
|
# @!attribute [rw] record_wrapper_type
|
3006
3115
|
# Specify RecordIO as the value when input data is in raw format but
|
3007
3116
|
# the training algorithm requires the RecordIO format. In this case,
|
3008
|
-
#
|
3009
|
-
#
|
3010
|
-
#
|
3011
|
-
#
|
3117
|
+
# SageMaker wraps each individual S3 object in a RecordIO record. If
|
3118
|
+
# the input data is already in RecordIO format, you don't need to set
|
3119
|
+
# this attribute. For more information, see [Create a Dataset Using
|
3120
|
+
# RecordIO][1].
|
3012
3121
|
#
|
3013
3122
|
# In File mode, leave this field unset or set it to None.
|
3014
3123
|
#
|
@@ -3019,15 +3128,15 @@ module Aws::SageMaker
|
|
3019
3128
|
#
|
3020
3129
|
# @!attribute [rw] input_mode
|
3021
3130
|
# (Optional) The input mode to use for the data channel in a training
|
3022
|
-
# job. If you don't set a value for `InputMode`,
|
3023
|
-
#
|
3024
|
-
#
|
3025
|
-
#
|
3026
|
-
#
|
3027
|
-
#
|
3028
|
-
#
|
3029
|
-
#
|
3030
|
-
#
|
3131
|
+
# job. If you don't set a value for `InputMode`, SageMaker uses the
|
3132
|
+
# value set for `TrainingInputMode`. Use this parameter to override
|
3133
|
+
# the `TrainingInputMode` setting in a AlgorithmSpecification request
|
3134
|
+
# when you have a channel that needs a different input mode from the
|
3135
|
+
# training job's general setting. To download the data from Amazon
|
3136
|
+
# Simple Storage Service (Amazon S3) to the provisioned ML storage
|
3137
|
+
# volume, and mount the directory to a Docker volume, use `File` input
|
3138
|
+
# mode. To stream data directly from Amazon S3 to the container,
|
3139
|
+
# choose `Pipe` input mode.
|
3031
3140
|
#
|
3032
3141
|
# To use a model for incremental training, choose `File` input model.
|
3033
3142
|
# @return [String]
|
@@ -3137,7 +3246,7 @@ module Aws::SageMaker
|
|
3137
3246
|
# }
|
3138
3247
|
#
|
3139
3248
|
# @!attribute [rw] s3_uri
|
3140
|
-
# Identifies the S3 path where you want
|
3249
|
+
# Identifies the S3 path where you want SageMaker to store
|
3141
3250
|
# checkpoints. For example, `s3://bucket-name/key-name-prefix`.
|
3142
3251
|
# @return [String]
|
3143
3252
|
#
|
@@ -3514,11 +3623,11 @@ module Aws::SageMaker
|
|
3514
3623
|
# Amazon EC2 Container Registry or in a Docker registry that is
|
3515
3624
|
# accessible from the same VPC that you configure for your endpoint.
|
3516
3625
|
# If you are using your own custom algorithm instead of an algorithm
|
3517
|
-
# provided by
|
3518
|
-
#
|
3519
|
-
#
|
3520
|
-
#
|
3521
|
-
#
|
3626
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
3627
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
3628
|
+
# and `registry/repository[@digest]` image path formats. For more
|
3629
|
+
# information, see [Using Your Own Algorithms with Amazon
|
3630
|
+
# SageMaker][1]
|
3522
3631
|
#
|
3523
3632
|
#
|
3524
3633
|
#
|
@@ -3545,7 +3654,7 @@ module Aws::SageMaker
|
|
3545
3654
|
# The S3 path where the model artifacts, which result from model
|
3546
3655
|
# training, are stored. This path must point to a single gzip
|
3547
3656
|
# compressed tar archive (.tar.gz suffix). The S3 path is required for
|
3548
|
-
#
|
3657
|
+
# SageMaker built-in algorithms, but not if you use your own
|
3549
3658
|
# algorithms. For more information on built-in algorithms, see [Common
|
3550
3659
|
# Parameters][1].
|
3551
3660
|
#
|
@@ -3554,17 +3663,17 @@ module Aws::SageMaker
|
|
3554
3663
|
#
|
3555
3664
|
# </note>
|
3556
3665
|
#
|
3557
|
-
# If you provide a value for this parameter,
|
3558
|
-
#
|
3559
|
-
#
|
3560
|
-
#
|
3561
|
-
#
|
3562
|
-
#
|
3563
|
-
#
|
3564
|
-
#
|
3565
|
-
#
|
3566
|
-
#
|
3567
|
-
# If you use a built-in algorithm to create a model,
|
3666
|
+
# If you provide a value for this parameter, SageMaker uses Amazon Web
|
3667
|
+
# Services Security Token Service to download model artifacts from the
|
3668
|
+
# S3 path you provide. Amazon Web Services STS is activated in your
|
3669
|
+
# IAM user account by default. If you previously deactivated Amazon
|
3670
|
+
# Web Services STS for a region, you need to reactivate Amazon Web
|
3671
|
+
# Services STS for that region. For more information, see [Activating
|
3672
|
+
# and Deactivating Amazon Web Services STS in an Amazon Web Services
|
3673
|
+
# Region][2] in the *Amazon Web Services Identity and Access
|
3674
|
+
# Management User Guide*.
|
3675
|
+
#
|
3676
|
+
# If you use a built-in algorithm to create a model, SageMaker
|
3568
3677
|
# requires that you provide a S3 path to the model artifacts in
|
3569
3678
|
# `ModelDataUrl`.
|
3570
3679
|
#
|
@@ -3717,8 +3826,8 @@ module Aws::SageMaker
|
|
3717
3826
|
#
|
3718
3827
|
# Auto
|
3719
3828
|
#
|
3720
|
-
# :
|
3721
|
-
#
|
3829
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
3830
|
+
# hyperparameter.
|
3722
3831
|
#
|
3723
3832
|
# Linear
|
3724
3833
|
#
|
@@ -4096,9 +4205,9 @@ module Aws::SageMaker
|
|
4096
4205
|
#
|
4097
4206
|
# @!attribute [rw] validation_specification
|
4098
4207
|
# Specifies configurations for one or more training jobs and that
|
4099
|
-
#
|
4100
|
-
# optionally, one or more batch transform jobs that
|
4101
|
-
#
|
4208
|
+
# SageMaker runs to test the algorithm's training code and,
|
4209
|
+
# optionally, one or more batch transform jobs that SageMaker runs to
|
4210
|
+
# test the algorithm's inference code.
|
4102
4211
|
# @return [Types::AlgorithmValidationSpecification]
|
4103
4212
|
#
|
4104
4213
|
# @!attribute [rw] certify_for_marketplace
|
@@ -4376,6 +4485,7 @@ module Aws::SageMaker
|
|
4376
4485
|
# compression_type: "None", # accepts None, Gzip
|
4377
4486
|
# target_attribute_name: "TargetAttributeName", # required
|
4378
4487
|
# content_type: "ContentType",
|
4488
|
+
# channel_type: "training", # accepts training, validation
|
4379
4489
|
# },
|
4380
4490
|
# ],
|
4381
4491
|
# output_data_config: { # required
|
@@ -4400,6 +4510,12 @@ module Aws::SageMaker
|
|
4400
4510
|
# subnets: ["SubnetId"], # required
|
4401
4511
|
# },
|
4402
4512
|
# },
|
4513
|
+
# data_split_config: {
|
4514
|
+
# validation_fraction: 1.0,
|
4515
|
+
# },
|
4516
|
+
# candidate_generation_config: {
|
4517
|
+
# feature_specification_s3_uri: "S3Uri",
|
4518
|
+
# },
|
4403
4519
|
# },
|
4404
4520
|
# role_arn: "RoleArn", # required
|
4405
4521
|
# generate_candidate_definitions_only: false,
|
@@ -4423,8 +4539,9 @@ module Aws::SageMaker
|
|
4423
4539
|
# @!attribute [rw] input_data_config
|
4424
4540
|
# An array of channel objects that describes the input data and its
|
4425
4541
|
# location. Each channel is a named input source. Similar to
|
4426
|
-
# `InputDataConfig` supported by . Format(s) supported: CSV.
|
4427
|
-
# of 500 rows.
|
4542
|
+
# `InputDataConfig` supported by . Format(s) supported: CSV, Parquet.
|
4543
|
+
# A minimum of 500 rows is required for the training dataset. There is
|
4544
|
+
# not a minimum number of rows required for the validation dataset.
|
4428
4545
|
# @return [Array<Types::AutoMLChannel>]
|
4429
4546
|
#
|
4430
4547
|
# @!attribute [rw] output_data_config
|
@@ -4435,10 +4552,8 @@ module Aws::SageMaker
|
|
4435
4552
|
#
|
4436
4553
|
# @!attribute [rw] problem_type
|
4437
4554
|
# Defines the type of supervised learning available for the
|
4438
|
-
# candidates.
|
4439
|
-
#
|
4440
|
-
# see [ Amazon SageMaker Autopilot problem types and algorithm
|
4441
|
-
# support][1].
|
4555
|
+
# candidates. For more information, see [ Amazon SageMaker Autopilot
|
4556
|
+
# problem types and algorithm support][1].
|
4442
4557
|
#
|
4443
4558
|
#
|
4444
4559
|
#
|
@@ -4452,8 +4567,7 @@ module Aws::SageMaker
|
|
4452
4567
|
# @return [Types::AutoMLJobObjective]
|
4453
4568
|
#
|
4454
4569
|
# @!attribute [rw] auto_ml_job_config
|
4455
|
-
#
|
4456
|
-
# AutoML job.
|
4570
|
+
# A collection of settings used to configure an AutoML job.
|
4457
4571
|
# @return [Types::AutoMLJobConfig]
|
4458
4572
|
#
|
4459
4573
|
# @!attribute [rw] role_arn
|
@@ -5064,6 +5178,19 @@ module Aws::SageMaker
|
|
5064
5178
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
5065
5179
|
# },
|
5066
5180
|
# r_session_app_settings: {
|
5181
|
+
# default_resource_spec: {
|
5182
|
+
# sage_maker_image_arn: "ImageArn",
|
5183
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
5184
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
5185
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
5186
|
+
# },
|
5187
|
+
# custom_images: [
|
5188
|
+
# {
|
5189
|
+
# image_name: "ImageName", # required
|
5190
|
+
# image_version_number: 1,
|
5191
|
+
# app_image_config_name: "AppImageConfigName", # required
|
5192
|
+
# },
|
5193
|
+
# ],
|
5067
5194
|
# },
|
5068
5195
|
# },
|
5069
5196
|
# subnet_ids: ["SubnetId"], # required
|
@@ -5346,6 +5473,7 @@ module Aws::SageMaker
|
|
5346
5473
|
# @return [Array<Types::ProductionVariant>]
|
5347
5474
|
#
|
5348
5475
|
# @!attribute [rw] data_capture_config
|
5476
|
+
# Configuration to control how SageMaker captures inference data.
|
5349
5477
|
# @return [Types::DataCaptureConfig]
|
5350
5478
|
#
|
5351
5479
|
# @!attribute [rw] tags
|
@@ -5361,9 +5489,9 @@ module Aws::SageMaker
|
|
5361
5489
|
#
|
5362
5490
|
# @!attribute [rw] kms_key_id
|
5363
5491
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
5364
|
-
# Management Service key that
|
5365
|
-
#
|
5366
|
-
#
|
5492
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
5493
|
+
# storage volume attached to the ML compute instance that hosts the
|
5494
|
+
# endpoint.
|
5367
5495
|
#
|
5368
5496
|
# The KmsKeyId can be any of the following formats:
|
5369
5497
|
#
|
@@ -6277,8 +6405,8 @@ module Aws::SageMaker
|
|
6277
6405
|
end
|
6278
6406
|
|
6279
6407
|
# @!attribute [rw] hyper_parameter_tuning_job_arn
|
6280
|
-
# The Amazon Resource Name (ARN) of the tuning job.
|
6281
|
-
#
|
6408
|
+
# The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
|
6409
|
+
# an ARN to a hyperparameter tuning job when you create it.
|
6282
6410
|
# @return [String]
|
6283
6411
|
#
|
6284
6412
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
|
@@ -6362,8 +6490,8 @@ module Aws::SageMaker
|
|
6362
6490
|
#
|
6363
6491
|
# @!attribute [rw] base_image
|
6364
6492
|
# The registry path of the container image to use as the starting
|
6365
|
-
# point for this version. The path is an Amazon Container
|
6366
|
-
# (ECR) URI in the following format:
|
6493
|
+
# point for this version. The path is an Amazon Elastic Container
|
6494
|
+
# Registry (ECR) URI in the following format:
|
6367
6495
|
#
|
6368
6496
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
6369
6497
|
# [@digest]>`
|
@@ -7216,14 +7344,14 @@ module Aws::SageMaker
|
|
7216
7344
|
# @return [Types::InferenceExecutionConfig]
|
7217
7345
|
#
|
7218
7346
|
# @!attribute [rw] execution_role_arn
|
7219
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
7220
|
-
#
|
7221
|
-
#
|
7347
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
7348
|
+
# assume to access model artifacts and docker image for deployment on
|
7349
|
+
# ML compute instances or for batch transform jobs. Deploying on ML
|
7222
7350
|
# compute instances is part of model hosting. For more information,
|
7223
|
-
# see [
|
7351
|
+
# see [SageMaker Roles][1].
|
7224
7352
|
#
|
7225
|
-
# <note markdown="1"> To be able to pass this role to
|
7226
|
-
#
|
7353
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
7354
|
+
# must have the `iam:PassRole` permission.
|
7227
7355
|
#
|
7228
7356
|
# </note>
|
7229
7357
|
#
|
@@ -7278,7 +7406,7 @@ module Aws::SageMaker
|
|
7278
7406
|
end
|
7279
7407
|
|
7280
7408
|
# @!attribute [rw] model_arn
|
7281
|
-
# The ARN of the model created in
|
7409
|
+
# The ARN of the model created in SageMaker.
|
7282
7410
|
# @return [String]
|
7283
7411
|
#
|
7284
7412
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
|
@@ -7611,7 +7739,7 @@ module Aws::SageMaker
|
|
7611
7739
|
# @return [Types::InferenceSpecification]
|
7612
7740
|
#
|
7613
7741
|
# @!attribute [rw] validation_specification
|
7614
|
-
# Specifies configurations for one or more transform jobs that
|
7742
|
+
# Specifies configurations for one or more transform jobs that
|
7615
7743
|
# SageMaker runs to test the model package.
|
7616
7744
|
# @return [Types::ModelPackageValidationSpecification]
|
7617
7745
|
#
|
@@ -7689,7 +7817,12 @@ module Aws::SageMaker
|
|
7689
7817
|
# @!attribute [rw] task
|
7690
7818
|
# The machine learning task your model package accomplishes. Common
|
7691
7819
|
# machine learning tasks include object detection and image
|
7692
|
-
# classification.
|
7820
|
+
# classification. The following tasks are supported by Inference
|
7821
|
+
# Recommender: `"IMAGE_CLASSIFICATION"` \| `"OBJECT_DETECTION"` \|
|
7822
|
+
# `"TEXT_GENERATION"` \|`"IMAGE_SEGMENTATION"` \| `"FILL_MASK"` \|
|
7823
|
+
# `"CLASSIFICATION"` \| `"REGRESSION"` \| `"OTHER"`.
|
7824
|
+
#
|
7825
|
+
# Specify "OTHER" if none of the tasks listed fit your use case.
|
7693
7826
|
# @return [String]
|
7694
7827
|
#
|
7695
7828
|
# @!attribute [rw] sample_payload_url
|
@@ -8073,15 +8206,14 @@ module Aws::SageMaker
|
|
8073
8206
|
#
|
8074
8207
|
# @!attribute [rw] role_arn
|
8075
8208
|
# When you send any requests to Amazon Web Services resources from the
|
8076
|
-
# notebook instance,
|
8077
|
-
#
|
8078
|
-
#
|
8079
|
-
#
|
8080
|
-
#
|
8081
|
-
# SageMaker Roles][1].
|
8209
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
8210
|
+
# your behalf. You must grant this role necessary permissions so
|
8211
|
+
# SageMaker can perform these tasks. The policy must allow the
|
8212
|
+
# SageMaker service principal (sagemaker.amazonaws.com) permissions to
|
8213
|
+
# assume this role. For more information, see [SageMaker Roles][1].
|
8082
8214
|
#
|
8083
|
-
# <note markdown="1"> To be able to pass this role to
|
8084
|
-
#
|
8215
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
8216
|
+
# must have the `iam:PassRole` permission.
|
8085
8217
|
#
|
8086
8218
|
# </note>
|
8087
8219
|
#
|
@@ -8092,9 +8224,9 @@ module Aws::SageMaker
|
|
8092
8224
|
#
|
8093
8225
|
# @!attribute [rw] kms_key_id
|
8094
8226
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
8095
|
-
# Management Service key that
|
8096
|
-
#
|
8097
|
-
#
|
8227
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
8228
|
+
# storage volume attached to your notebook instance. The KMS key you
|
8229
|
+
# provide must be enabled. For information, see [Enabling and
|
8098
8230
|
# Disabling Keys][1] in the *Amazon Web Services Key Management
|
8099
8231
|
# Service Developer Guide*.
|
8100
8232
|
#
|
@@ -8125,11 +8257,11 @@ module Aws::SageMaker
|
|
8125
8257
|
# @return [String]
|
8126
8258
|
#
|
8127
8259
|
# @!attribute [rw] direct_internet_access
|
8128
|
-
# Sets whether
|
8129
|
-
#
|
8130
|
-
#
|
8131
|
-
#
|
8132
|
-
#
|
8260
|
+
# Sets whether SageMaker provides internet access to the notebook
|
8261
|
+
# instance. If you set this to `Disabled` this notebook instance is
|
8262
|
+
# able to access resources only in your VPC, and is not be able to
|
8263
|
+
# connect to SageMaker training and endpoint services unless you
|
8264
|
+
# configure a NAT Gateway in your VPC.
|
8133
8265
|
#
|
8134
8266
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
8135
8267
|
# by Default][1]. You can set the value of this parameter to
|
@@ -8163,8 +8295,7 @@ module Aws::SageMaker
|
|
8163
8295
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
8164
8296
|
# Git repository. When you open a notebook instance, it opens in the
|
8165
8297
|
# directory that contains this repository. For more information, see
|
8166
|
-
# [Associating Git Repositories with
|
8167
|
-
# Instances][2].
|
8298
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
8168
8299
|
#
|
8169
8300
|
#
|
8170
8301
|
#
|
@@ -8179,7 +8310,7 @@ module Aws::SageMaker
|
|
8179
8310
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
8180
8311
|
# repository. These repositories are cloned at the same level as the
|
8181
8312
|
# default repository of your notebook instance. For more information,
|
8182
|
-
# see [Associating Git Repositories with
|
8313
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
8183
8314
|
# Instances][2].
|
8184
8315
|
#
|
8185
8316
|
#
|
@@ -8974,7 +9105,7 @@ module Aws::SageMaker
|
|
8974
9105
|
# Algorithm-specific parameters that influence the quality of the
|
8975
9106
|
# model. You set hyperparameters before you start the learning
|
8976
9107
|
# process. For a list of hyperparameters for each training algorithm
|
8977
|
-
# provided by
|
9108
|
+
# provided by SageMaker, see [Algorithms][1].
|
8978
9109
|
#
|
8979
9110
|
# You can specify a maximum of 100 hyperparameters. Each
|
8980
9111
|
# hyperparameter is a key-value pair. Each key and value is limited to
|
@@ -8988,8 +9119,8 @@ module Aws::SageMaker
|
|
8988
9119
|
# @!attribute [rw] algorithm_specification
|
8989
9120
|
# The registry path of the Docker image that contains the training
|
8990
9121
|
# algorithm and algorithm-specific metadata, including the input mode.
|
8991
|
-
# For more information about algorithms provided by
|
8992
|
-
#
|
9122
|
+
# For more information about algorithms provided by SageMaker, see
|
9123
|
+
# [Algorithms][1]. For information about providing your own
|
8993
9124
|
# algorithms, see [Using Your Own Algorithms with Amazon
|
8994
9125
|
# SageMaker][2].
|
8995
9126
|
#
|
@@ -9000,18 +9131,18 @@ module Aws::SageMaker
|
|
9000
9131
|
# @return [Types::AlgorithmSpecification]
|
9001
9132
|
#
|
9002
9133
|
# @!attribute [rw] role_arn
|
9003
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
9004
|
-
#
|
9134
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
9135
|
+
# assume to perform tasks on your behalf.
|
9005
9136
|
#
|
9006
|
-
# During model training,
|
9007
|
-
#
|
9008
|
-
#
|
9009
|
-
#
|
9010
|
-
#
|
9011
|
-
#
|
9137
|
+
# During model training, SageMaker needs your permission to read input
|
9138
|
+
# data from an S3 bucket, download a Docker image that contains
|
9139
|
+
# training code, write model artifacts to an S3 bucket, write logs to
|
9140
|
+
# Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
|
9141
|
+
# You grant permissions for all of these tasks to an IAM role. For
|
9142
|
+
# more information, see [SageMaker Roles][1].
|
9012
9143
|
#
|
9013
|
-
# <note markdown="1"> To be able to pass this role to
|
9014
|
-
#
|
9144
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
9145
|
+
# must have the `iam:PassRole` permission.
|
9015
9146
|
#
|
9016
9147
|
# </note>
|
9017
9148
|
#
|
@@ -9032,17 +9163,17 @@ module Aws::SageMaker
|
|
9032
9163
|
# MIME type, compression method, and whether the data is wrapped in
|
9033
9164
|
# RecordIO format.
|
9034
9165
|
#
|
9035
|
-
# Depending on the input mode that the algorithm supports,
|
9036
|
-
#
|
9037
|
-
#
|
9038
|
-
#
|
9039
|
-
#
|
9040
|
-
#
|
9166
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
9167
|
+
# either copies input data files from an S3 bucket to a local
|
9168
|
+
# directory in the Docker container, or makes it available as input
|
9169
|
+
# streams. For example, if you specify an EFS location, input data
|
9170
|
+
# files are available as input streams. They do not need to be
|
9171
|
+
# downloaded.
|
9041
9172
|
# @return [Array<Types::Channel>]
|
9042
9173
|
#
|
9043
9174
|
# @!attribute [rw] output_data_config
|
9044
9175
|
# Specifies the path to the S3 location where you want to store model
|
9045
|
-
# artifacts.
|
9176
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
9046
9177
|
# @return [Types::OutputDataConfig]
|
9047
9178
|
#
|
9048
9179
|
# @!attribute [rw] resource_config
|
@@ -9051,9 +9182,9 @@ module Aws::SageMaker
|
|
9051
9182
|
#
|
9052
9183
|
# ML storage volumes store model artifacts and incremental states.
|
9053
9184
|
# Training algorithms might also use ML storage volumes for scratch
|
9054
|
-
# space. If you want
|
9055
|
-
#
|
9056
|
-
#
|
9185
|
+
# space. If you want SageMaker to use the ML storage volume to store
|
9186
|
+
# the training data, choose `File` as the `TrainingInputMode` in the
|
9187
|
+
# algorithm specification. For distributed training algorithms,
|
9057
9188
|
# specify an instance count greater than 1.
|
9058
9189
|
# @return [Types::ResourceConfig]
|
9059
9190
|
#
|
@@ -9071,13 +9202,13 @@ module Aws::SageMaker
|
|
9071
9202
|
# @!attribute [rw] stopping_condition
|
9072
9203
|
# Specifies a limit to how long a model training job can run. It also
|
9073
9204
|
# specifies how long a managed Spot training job has to complete. When
|
9074
|
-
# the job reaches the time limit,
|
9075
|
-
#
|
9205
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
9206
|
+
# this API to cap model training costs.
|
9076
9207
|
#
|
9077
|
-
# To stop a job,
|
9078
|
-
#
|
9079
|
-
#
|
9080
|
-
#
|
9208
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
9209
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
9210
|
+
# this 120-second window to save the model artifacts, so the results
|
9211
|
+
# of training are not lost.
|
9081
9212
|
# @return [Types::StoppingCondition]
|
9082
9213
|
#
|
9083
9214
|
# @!attribute [rw] tags
|
@@ -9095,7 +9226,7 @@ module Aws::SageMaker
|
|
9095
9226
|
# Isolates the training container. No inbound or outbound network
|
9096
9227
|
# calls can be made, except for calls between peers within a training
|
9097
9228
|
# cluster for distributed training. If you enable network isolation
|
9098
|
-
# for training jobs that are configured to use a VPC,
|
9229
|
+
# for training jobs that are configured to use a VPC, SageMaker
|
9099
9230
|
# downloads and uploads customer data and model artifacts through the
|
9100
9231
|
# specified VPC, but the training container does not have network
|
9101
9232
|
# access.
|
@@ -9325,6 +9456,11 @@ module Aws::SageMaker
|
|
9325
9456
|
# records fit within the maximum payload size, we recommend using a
|
9326
9457
|
# slightly larger value. The default value is `6` MB.
|
9327
9458
|
#
|
9459
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
9460
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
9461
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
9462
|
+
# MB.
|
9463
|
+
#
|
9328
9464
|
# For cases where the payload might be arbitrarily large and is
|
9329
9465
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
9330
9466
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -9692,6 +9828,19 @@ module Aws::SageMaker
|
|
9692
9828
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
9693
9829
|
# },
|
9694
9830
|
# r_session_app_settings: {
|
9831
|
+
# default_resource_spec: {
|
9832
|
+
# sage_maker_image_arn: "ImageArn",
|
9833
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
9834
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
9835
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
9836
|
+
# },
|
9837
|
+
# custom_images: [
|
9838
|
+
# {
|
9839
|
+
# image_name: "ImageName", # required
|
9840
|
+
# image_version_number: 1,
|
9841
|
+
# app_image_config_name: "AppImageConfigName", # required
|
9842
|
+
# },
|
9843
|
+
# ],
|
9695
9844
|
# },
|
9696
9845
|
# },
|
9697
9846
|
# }
|
@@ -10003,6 +10152,8 @@ module Aws::SageMaker
|
|
10003
10152
|
include Aws::Structure
|
10004
10153
|
end
|
10005
10154
|
|
10155
|
+
# Configuration to control how SageMaker captures inference data.
|
10156
|
+
#
|
10006
10157
|
# @note When making an API call, you may pass DataCaptureConfig
|
10007
10158
|
# data as a hash:
|
10008
10159
|
#
|
@@ -10023,21 +10174,47 @@ module Aws::SageMaker
|
|
10023
10174
|
# }
|
10024
10175
|
#
|
10025
10176
|
# @!attribute [rw] enable_capture
|
10177
|
+
# Whether data capture should be enabled or disabled (defaults to
|
10178
|
+
# enabled).
|
10026
10179
|
# @return [Boolean]
|
10027
10180
|
#
|
10028
10181
|
# @!attribute [rw] initial_sampling_percentage
|
10182
|
+
# The percentage of requests SageMaker will capture. A lower value is
|
10183
|
+
# recommended for Endpoints with high traffic.
|
10029
10184
|
# @return [Integer]
|
10030
10185
|
#
|
10031
10186
|
# @!attribute [rw] destination_s3_uri
|
10187
|
+
# The Amazon S3 location used to capture the data.
|
10032
10188
|
# @return [String]
|
10033
10189
|
#
|
10034
10190
|
# @!attribute [rw] kms_key_id
|
10191
|
+
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
10192
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
10193
|
+
# storage volume attached to the ML compute instance that hosts the
|
10194
|
+
# endpoint.
|
10195
|
+
#
|
10196
|
+
# The KmsKeyId can be any of the following formats:
|
10197
|
+
#
|
10198
|
+
# * Key ID: `1234abcd-12ab-34cd-56ef-1234567890ab`
|
10199
|
+
#
|
10200
|
+
# * Key ARN:
|
10201
|
+
# `arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab`
|
10202
|
+
#
|
10203
|
+
# * Alias name: `alias/ExampleAlias`
|
10204
|
+
#
|
10205
|
+
# * Alias name ARN:
|
10206
|
+
# `arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias`
|
10035
10207
|
# @return [String]
|
10036
10208
|
#
|
10037
10209
|
# @!attribute [rw] capture_options
|
10210
|
+
# Specifies data Model Monitor will capture. You can configure whether
|
10211
|
+
# to collect only input, only output, or both
|
10038
10212
|
# @return [Array<Types::CaptureOption>]
|
10039
10213
|
#
|
10040
10214
|
# @!attribute [rw] capture_content_type_header
|
10215
|
+
# Configuration specifying how to treat different headers. If no
|
10216
|
+
# headers are specified SageMaker will by default base64 encode when
|
10217
|
+
# capturing the data.
|
10041
10218
|
# @return [Types::CaptureContentTypeHeader]
|
10042
10219
|
#
|
10043
10220
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataCaptureConfig AWS API Documentation
|
@@ -10053,19 +10230,26 @@ module Aws::SageMaker
|
|
10053
10230
|
include Aws::Structure
|
10054
10231
|
end
|
10055
10232
|
|
10233
|
+
# The currently active data capture configuration used by your Endpoint.
|
10234
|
+
#
|
10056
10235
|
# @!attribute [rw] enable_capture
|
10236
|
+
# Whether data capture is enabled or disabled.
|
10057
10237
|
# @return [Boolean]
|
10058
10238
|
#
|
10059
10239
|
# @!attribute [rw] capture_status
|
10240
|
+
# Whether data capture is currently functional.
|
10060
10241
|
# @return [String]
|
10061
10242
|
#
|
10062
10243
|
# @!attribute [rw] current_sampling_percentage
|
10244
|
+
# The percentage of requests being captured by your Endpoint.
|
10063
10245
|
# @return [Integer]
|
10064
10246
|
#
|
10065
10247
|
# @!attribute [rw] destination_s3_uri
|
10248
|
+
# The Amazon S3 location being used to capture the data.
|
10066
10249
|
# @return [String]
|
10067
10250
|
#
|
10068
10251
|
# @!attribute [rw] kms_key_id
|
10252
|
+
# The KMS key being used to encrypt the data in Amazon S3.
|
10069
10253
|
# @return [String]
|
10070
10254
|
#
|
10071
10255
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataCaptureConfigSummary AWS API Documentation
|
@@ -10140,8 +10324,8 @@ module Aws::SageMaker
|
|
10140
10324
|
# A [JSONPath][1] expression used to select a portion of the input
|
10141
10325
|
# data to pass to the algorithm. Use the `InputFilter` parameter to
|
10142
10326
|
# exclude fields, such as an ID column, from the input. If you want
|
10143
|
-
#
|
10144
|
-
#
|
10327
|
+
# SageMaker to pass the entire input dataset to the algorithm, accept
|
10328
|
+
# the default value `$`.
|
10145
10329
|
#
|
10146
10330
|
# Examples: `"$"`, `"$[1:]"`, `"$.features"`
|
10147
10331
|
#
|
@@ -10153,10 +10337,9 @@ module Aws::SageMaker
|
|
10153
10337
|
# @!attribute [rw] output_filter
|
10154
10338
|
# A [JSONPath][1] expression used to select a portion of the joined
|
10155
10339
|
# dataset to save in the output file for a batch transform job. If you
|
10156
|
-
# want
|
10157
|
-
#
|
10158
|
-
#
|
10159
|
-
# get an error.
|
10340
|
+
# want SageMaker to store the entire input dataset in the output file,
|
10341
|
+
# leave the default value, `$`. If you specify indexes that aren't
|
10342
|
+
# within the dimension size of the joined dataset, you get an error.
|
10160
10343
|
#
|
10161
10344
|
# Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
|
10162
10345
|
#
|
@@ -11285,7 +11468,7 @@ module Aws::SageMaker
|
|
11285
11468
|
# }
|
11286
11469
|
#
|
11287
11470
|
# @!attribute [rw] notebook_instance_name
|
11288
|
-
# The name of the
|
11471
|
+
# The name of the SageMaker notebook instance to delete.
|
11289
11472
|
# @return [String]
|
11290
11473
|
#
|
11291
11474
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
|
@@ -11826,7 +12009,7 @@ module Aws::SageMaker
|
|
11826
12009
|
#
|
11827
12010
|
# @!attribute [rw] validation_specification
|
11828
12011
|
# Details about configurations for one or more training jobs that
|
11829
|
-
#
|
12012
|
+
# SageMaker runs to test the algorithm.
|
11830
12013
|
# @return [Types::AlgorithmValidationSpecification]
|
11831
12014
|
#
|
11832
12015
|
# @!attribute [rw] algorithm_status
|
@@ -13037,7 +13220,7 @@ module Aws::SageMaker
|
|
13037
13220
|
end
|
13038
13221
|
|
13039
13222
|
# @!attribute [rw] endpoint_config_name
|
13040
|
-
# Name of the
|
13223
|
+
# Name of the SageMaker endpoint configuration.
|
13041
13224
|
# @return [String]
|
13042
13225
|
#
|
13043
13226
|
# @!attribute [rw] endpoint_config_arn
|
@@ -13050,6 +13233,7 @@ module Aws::SageMaker
|
|
13050
13233
|
# @return [Array<Types::ProductionVariant>]
|
13051
13234
|
#
|
13052
13235
|
# @!attribute [rw] data_capture_config
|
13236
|
+
# Configuration to control how SageMaker captures inference data.
|
13053
13237
|
# @return [Types::DataCaptureConfig]
|
13054
13238
|
#
|
13055
13239
|
# @!attribute [rw] kms_key_id
|
@@ -13122,6 +13306,8 @@ module Aws::SageMaker
|
|
13122
13306
|
# @return [Array<Types::ProductionVariantSummary>]
|
13123
13307
|
#
|
13124
13308
|
# @!attribute [rw] data_capture_config
|
13309
|
+
# The currently active data capture configuration used by your
|
13310
|
+
# Endpoint.
|
13125
13311
|
# @return [Types::DataCaptureConfigSummary]
|
13126
13312
|
#
|
13127
13313
|
# @!attribute [rw] endpoint_status
|
@@ -13979,8 +14165,8 @@ module Aws::SageMaker
|
|
13979
14165
|
# @return [Types::LabelingJobOutputConfig]
|
13980
14166
|
#
|
13981
14167
|
# @!attribute [rw] role_arn
|
13982
|
-
# The Amazon Resource Name (ARN) that
|
13983
|
-
#
|
14168
|
+
# The Amazon Resource Name (ARN) that SageMaker assumes to perform
|
14169
|
+
# tasks on your behalf during data labeling.
|
13984
14170
|
# @return [String]
|
13985
14171
|
#
|
13986
14172
|
# @!attribute [rw] label_category_config_s3_uri
|
@@ -14346,7 +14532,7 @@ module Aws::SageMaker
|
|
14346
14532
|
end
|
14347
14533
|
|
14348
14534
|
# @!attribute [rw] model_name
|
14349
|
-
# Name of the
|
14535
|
+
# Name of the SageMaker model.
|
14350
14536
|
# @return [String]
|
14351
14537
|
#
|
14352
14538
|
# @!attribute [rw] primary_container
|
@@ -14416,7 +14602,7 @@ module Aws::SageMaker
|
|
14416
14602
|
# }
|
14417
14603
|
#
|
14418
14604
|
# @!attribute [rw] model_package_group_name
|
14419
|
-
# The name of
|
14605
|
+
# The name of gthe model group to describe.
|
14420
14606
|
# @return [String]
|
14421
14607
|
#
|
14422
14608
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
|
@@ -14560,7 +14746,7 @@ module Aws::SageMaker
|
|
14560
14746
|
# @return [Types::ModelMetrics]
|
14561
14747
|
#
|
14562
14748
|
# @!attribute [rw] last_modified_time
|
14563
|
-
# The last time the model package was modified.
|
14749
|
+
# The last time that the model package was modified.
|
14564
14750
|
# @return [Time]
|
14565
14751
|
#
|
14566
14752
|
# @!attribute [rw] last_modified_by
|
@@ -14904,7 +15090,7 @@ module Aws::SageMaker
|
|
14904
15090
|
# @return [String]
|
14905
15091
|
#
|
14906
15092
|
# @!attribute [rw] notebook_instance_name
|
14907
|
-
# The name of the
|
15093
|
+
# The name of the SageMaker notebook instance.
|
14908
15094
|
# @return [String]
|
14909
15095
|
#
|
14910
15096
|
# @!attribute [rw] notebook_instance_status
|
@@ -14938,14 +15124,13 @@ module Aws::SageMaker
|
|
14938
15124
|
# @return [String]
|
14939
15125
|
#
|
14940
15126
|
# @!attribute [rw] kms_key_id
|
14941
|
-
# The Amazon Web Services KMS key ID
|
14942
|
-
#
|
14943
|
-
# instance.
|
15127
|
+
# The Amazon Web Services KMS key ID SageMaker uses to encrypt data
|
15128
|
+
# when storing it on the ML storage volume attached to the instance.
|
14944
15129
|
# @return [String]
|
14945
15130
|
#
|
14946
15131
|
# @!attribute [rw] network_interface_id
|
14947
|
-
# The network interface IDs that
|
14948
|
-
#
|
15132
|
+
# The network interface IDs that SageMaker created at the time of
|
15133
|
+
# creating the instance.
|
14949
15134
|
# @return [String]
|
14950
15135
|
#
|
14951
15136
|
# @!attribute [rw] last_modified_time
|
@@ -14970,10 +15155,10 @@ module Aws::SageMaker
|
|
14970
15155
|
# @return [String]
|
14971
15156
|
#
|
14972
15157
|
# @!attribute [rw] direct_internet_access
|
14973
|
-
# Describes whether
|
14974
|
-
#
|
14975
|
-
#
|
14976
|
-
#
|
15158
|
+
# Describes whether SageMaker provides internet access to the notebook
|
15159
|
+
# instance. If this value is set to *Disabled*, the notebook instance
|
15160
|
+
# does not have internet access, and cannot connect to SageMaker
|
15161
|
+
# training and endpoint services.
|
14977
15162
|
#
|
14978
15163
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
14979
15164
|
# by Default][1].
|
@@ -15006,8 +15191,7 @@ module Aws::SageMaker
|
|
15006
15191
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
15007
15192
|
# Git repository. When you open a notebook instance, it opens in the
|
15008
15193
|
# directory that contains this repository. For more information, see
|
15009
|
-
# [Associating Git Repositories with
|
15010
|
-
# Instances][2].
|
15194
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
15011
15195
|
#
|
15012
15196
|
#
|
15013
15197
|
#
|
@@ -15022,7 +15206,7 @@ module Aws::SageMaker
|
|
15022
15206
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
15023
15207
|
# repository. These repositories are cloned at the same level as the
|
15024
15208
|
# default repository of your notebook instance. For more information,
|
15025
|
-
# see [Associating Git Repositories with
|
15209
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
15026
15210
|
# Instances][2].
|
15027
15211
|
#
|
15028
15212
|
#
|
@@ -15644,7 +15828,7 @@ module Aws::SageMaker
|
|
15644
15828
|
# @return [String]
|
15645
15829
|
#
|
15646
15830
|
# @!attribute [rw] labeling_job_arn
|
15647
|
-
# The Amazon Resource Name (ARN) of the
|
15831
|
+
# The Amazon Resource Name (ARN) of the SageMaker Ground Truth
|
15648
15832
|
# labeling job that created the transform or training job.
|
15649
15833
|
# @return [String]
|
15650
15834
|
#
|
@@ -15660,7 +15844,7 @@ module Aws::SageMaker
|
|
15660
15844
|
# @!attribute [rw] training_job_status
|
15661
15845
|
# The status of the training job.
|
15662
15846
|
#
|
15663
|
-
#
|
15847
|
+
# SageMaker provides the following training job statuses:
|
15664
15848
|
#
|
15665
15849
|
# * `InProgress` - The training is in progress.
|
15666
15850
|
#
|
@@ -15682,8 +15866,8 @@ module Aws::SageMaker
|
|
15682
15866
|
# For detailed information on the secondary status of the training
|
15683
15867
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
15684
15868
|
#
|
15685
|
-
#
|
15686
|
-
#
|
15869
|
+
# SageMaker provides primary statuses and secondary statuses that
|
15870
|
+
# apply to each of them:
|
15687
15871
|
#
|
15688
15872
|
# InProgress
|
15689
15873
|
# : * `Starting` - Starting the training job.
|
@@ -15762,7 +15946,7 @@ module Aws::SageMaker
|
|
15762
15946
|
#
|
15763
15947
|
# @!attribute [rw] output_data_config
|
15764
15948
|
# The S3 path where model artifacts that you configured when creating
|
15765
|
-
# the job are stored.
|
15949
|
+
# the job are stored. SageMaker creates subfolders for model
|
15766
15950
|
# artifacts.
|
15767
15951
|
# @return [Types::OutputDataConfig]
|
15768
15952
|
#
|
@@ -15784,13 +15968,13 @@ module Aws::SageMaker
|
|
15784
15968
|
# @!attribute [rw] stopping_condition
|
15785
15969
|
# Specifies a limit to how long a model training job can run. It also
|
15786
15970
|
# specifies how long a managed Spot training job has to complete. When
|
15787
|
-
# the job reaches the time limit,
|
15788
|
-
#
|
15971
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
15972
|
+
# this API to cap model training costs.
|
15789
15973
|
#
|
15790
|
-
# To stop a job,
|
15791
|
-
#
|
15792
|
-
#
|
15793
|
-
#
|
15974
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
15975
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
15976
|
+
# this 120-second window to save the model artifacts, so the results
|
15977
|
+
# of training are not lost.
|
15794
15978
|
# @return [Types::StoppingCondition]
|
15795
15979
|
#
|
15796
15980
|
# @!attribute [rw] creation_time
|
@@ -15811,8 +15995,7 @@ module Aws::SageMaker
|
|
15811
15995
|
# You are billed for the time interval between the value of
|
15812
15996
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
15813
15997
|
# jobs, this is the time after model artifacts are uploaded. For
|
15814
|
-
# failed jobs, this is the time when
|
15815
|
-
# failure.
|
15998
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
15816
15999
|
# @return [Time]
|
15817
16000
|
#
|
15818
16001
|
# @!attribute [rw] last_modified_time
|
@@ -15835,10 +16018,9 @@ module Aws::SageMaker
|
|
15835
16018
|
# If you want to allow inbound or outbound network calls, except for
|
15836
16019
|
# calls between peers within a training cluster for distributed
|
15837
16020
|
# training, choose `True`. If you enable network isolation for
|
15838
|
-
# training jobs that are configured to use a VPC,
|
15839
|
-
#
|
15840
|
-
#
|
15841
|
-
# access.
|
16021
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
16022
|
+
# and uploads customer data and model artifacts through the specified
|
16023
|
+
# VPC, but the training container does not have network access.
|
15842
16024
|
# @return [Boolean]
|
15843
16025
|
#
|
15844
16026
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -15870,7 +16052,7 @@ module Aws::SageMaker
|
|
15870
16052
|
#
|
15871
16053
|
# Multiply `BillableTimeInSeconds` by the number of instances
|
15872
16054
|
# (`InstanceCount`) in your training cluster to get the total compute
|
15873
|
-
# time SageMaker
|
16055
|
+
# time SageMaker bills you if you run distributed training. The
|
15874
16056
|
# formula is as follows: `BillableTimeInSeconds * InstanceCount` .
|
15875
16057
|
#
|
15876
16058
|
# You can calculate the savings from using managed spot training using
|
@@ -17435,6 +17617,8 @@ module Aws::SageMaker
|
|
17435
17617
|
# @return [Array<Types::ProductionVariantSummary>]
|
17436
17618
|
#
|
17437
17619
|
# @!attribute [rw] data_capture_config
|
17620
|
+
# The currently active data capture configuration used by your
|
17621
|
+
# Endpoint.
|
17438
17622
|
# @return [Types::DataCaptureConfigSummary]
|
17439
17623
|
#
|
17440
17624
|
# @!attribute [rw] endpoint_status
|
@@ -20078,10 +20262,10 @@ module Aws::SageMaker
|
|
20078
20262
|
# The registry path of the Docker image that contains the training
|
20079
20263
|
# algorithm. For information about Docker registry paths for built-in
|
20080
20264
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
20081
|
-
# Parameters][1].
|
20082
|
-
#
|
20083
|
-
#
|
20084
|
-
#
|
20265
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
20266
|
+
# and `registry/repository[@digest]` image path formats. For more
|
20267
|
+
# information, see [Using Your Own Algorithms with Amazon
|
20268
|
+
# SageMaker][2].
|
20085
20269
|
#
|
20086
20270
|
#
|
20087
20271
|
#
|
@@ -20406,27 +20590,26 @@ module Aws::SageMaker
|
|
20406
20590
|
#
|
20407
20591
|
# Storage volumes store model artifacts and incremental states.
|
20408
20592
|
# Training algorithms might also use storage volumes for scratch
|
20409
|
-
# space. If you want
|
20410
|
-
#
|
20411
|
-
#
|
20593
|
+
# space. If you want SageMaker to use the storage volume to store the
|
20594
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
20595
|
+
# algorithm specification. For distributed training algorithms,
|
20412
20596
|
# specify an instance count greater than 1.
|
20413
20597
|
# @return [Types::ResourceConfig]
|
20414
20598
|
#
|
20415
20599
|
# @!attribute [rw] stopping_condition
|
20416
20600
|
# Specifies a limit to how long a model hyperparameter training job
|
20417
20601
|
# can run. It also specifies how long a managed spot training job has
|
20418
|
-
# to complete. When the job reaches the time limit,
|
20419
|
-
#
|
20602
|
+
# to complete. When the job reaches the time limit, SageMaker ends the
|
20603
|
+
# training job. Use this API to cap model training costs.
|
20420
20604
|
# @return [Types::StoppingCondition]
|
20421
20605
|
#
|
20422
20606
|
# @!attribute [rw] enable_network_isolation
|
20423
20607
|
# Isolates the training container. No inbound or outbound network
|
20424
20608
|
# calls can be made, except for calls between peers within a training
|
20425
20609
|
# cluster for distributed training. If network isolation is used for
|
20426
|
-
# training jobs that are configured to use a VPC,
|
20427
|
-
#
|
20428
|
-
#
|
20429
|
-
# access.
|
20610
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
20611
|
+
# and uploads customer data and model artifacts through the specified
|
20612
|
+
# VPC, but the training container does not have network access.
|
20430
20613
|
# @return [Boolean]
|
20431
20614
|
#
|
20432
20615
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -20476,7 +20659,7 @@ module Aws::SageMaker
|
|
20476
20659
|
include Aws::Structure
|
20477
20660
|
end
|
20478
20661
|
|
20479
|
-
#
|
20662
|
+
# The container for the summary information about a training job.
|
20480
20663
|
#
|
20481
20664
|
# @!attribute [rw] training_job_definition_name
|
20482
20665
|
# The training job definition name.
|
@@ -20507,8 +20690,7 @@ module Aws::SageMaker
|
|
20507
20690
|
# You are billed for the time interval between the value of
|
20508
20691
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
20509
20692
|
# jobs, this is the time after model artifacts are uploaded. For
|
20510
|
-
# failed jobs, this is the time when
|
20511
|
-
# failure.
|
20693
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
20512
20694
|
# @return [Time]
|
20513
20695
|
#
|
20514
20696
|
# @!attribute [rw] training_job_status
|
@@ -20657,9 +20839,9 @@ module Aws::SageMaker
|
|
20657
20839
|
#
|
20658
20840
|
# AUTO
|
20659
20841
|
#
|
20660
|
-
# :
|
20661
|
-
#
|
20662
|
-
#
|
20842
|
+
# : SageMaker stops training jobs launched by the hyperparameter
|
20843
|
+
# tuning job when they are unlikely to perform better than
|
20844
|
+
# previously completed training jobs. For more information, see
|
20663
20845
|
# [Stop Training Jobs Early][1].
|
20664
20846
|
#
|
20665
20847
|
#
|
@@ -21460,8 +21642,8 @@ module Aws::SageMaker
|
|
21460
21642
|
#
|
21461
21643
|
# Auto
|
21462
21644
|
#
|
21463
|
-
# :
|
21464
|
-
#
|
21645
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
21646
|
+
# hyperparameter.
|
21465
21647
|
#
|
21466
21648
|
# Linear
|
21467
21649
|
#
|
@@ -21536,12 +21718,20 @@ module Aws::SageMaker
|
|
21536
21718
|
#
|
21537
21719
|
# @!attribute [rw] default_resource_spec
|
21538
21720
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21539
|
-
# default SageMaker image used by the JupyterServer app.
|
21721
|
+
# default SageMaker image used by the JupyterServer app. If you use
|
21722
|
+
# the `LifecycleConfigArns` parameter, then this parameter is also
|
21723
|
+
# required.
|
21540
21724
|
# @return [Types::ResourceSpec]
|
21541
21725
|
#
|
21542
21726
|
# @!attribute [rw] lifecycle_config_arns
|
21543
21727
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21544
|
-
# attached to the JupyterServerApp.
|
21728
|
+
# attached to the JupyterServerApp. If you use this parameter, the
|
21729
|
+
# `DefaultResourceSpec` parameter is also required.
|
21730
|
+
#
|
21731
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21732
|
+
# an empty list.
|
21733
|
+
#
|
21734
|
+
# </note>
|
21545
21735
|
# @return [Array<String>]
|
21546
21736
|
#
|
21547
21737
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
|
@@ -21578,6 +21768,14 @@ module Aws::SageMaker
|
|
21578
21768
|
# @!attribute [rw] default_resource_spec
|
21579
21769
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21580
21770
|
# default SageMaker image used by the KernelGateway app.
|
21771
|
+
#
|
21772
|
+
# <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
|
21773
|
+
# type value set here. The default instance type set here is used when
|
21774
|
+
# Apps are created using the Amazon Web Services Command Line
|
21775
|
+
# Interface or Amazon Web Services CloudFormation and the instance
|
21776
|
+
# type parameter value is not passed.
|
21777
|
+
#
|
21778
|
+
# </note>
|
21581
21779
|
# @return [Types::ResourceSpec]
|
21582
21780
|
#
|
21583
21781
|
# @!attribute [rw] custom_images
|
@@ -21588,6 +21786,11 @@ module Aws::SageMaker
|
|
21588
21786
|
# @!attribute [rw] lifecycle_config_arns
|
21589
21787
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21590
21788
|
# attached to the the user profile or domain.
|
21789
|
+
#
|
21790
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21791
|
+
# an empty list.
|
21792
|
+
#
|
21793
|
+
# </note>
|
21591
21794
|
# @return [Array<String>]
|
21592
21795
|
#
|
21593
21796
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
|
@@ -21795,8 +21998,8 @@ module Aws::SageMaker
|
|
21795
21998
|
#
|
21796
21999
|
# @!attribute [rw] content_classifiers
|
21797
22000
|
# Declares that your content is free of personally identifiable
|
21798
|
-
# information or adult content.
|
21799
|
-
#
|
22001
|
+
# information or adult content. SageMaker may restrict the Amazon
|
22002
|
+
# Mechanical Turk workers that can view your task based on this
|
21800
22003
|
# information.
|
21801
22004
|
# @return [Array<String>]
|
21802
22005
|
#
|
@@ -21940,8 +22143,8 @@ module Aws::SageMaker
|
|
21940
22143
|
# @return [String]
|
21941
22144
|
#
|
21942
22145
|
# @!attribute [rw] final_active_learning_model_arn
|
21943
|
-
# The Amazon Resource Name (ARN) for the most recent
|
21944
|
-
#
|
22146
|
+
# The Amazon Resource Name (ARN) for the most recent SageMaker model
|
22147
|
+
# trained as part of automated data labeling.
|
21945
22148
|
# @return [String]
|
21946
22149
|
#
|
21947
22150
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
|
@@ -22451,8 +22654,8 @@ module Aws::SageMaker
|
|
22451
22654
|
# @return [Array<Types::AlgorithmSummary>]
|
22452
22655
|
#
|
22453
22656
|
# @!attribute [rw] next_token
|
22454
|
-
# If the response is truncated,
|
22455
|
-
#
|
22657
|
+
# If the response is truncated, SageMaker returns this token. To
|
22658
|
+
# retrieve the next set of algorithms, use it in the subsequent
|
22456
22659
|
# request.
|
22457
22660
|
# @return [String]
|
22458
22661
|
#
|
@@ -23726,8 +23929,8 @@ module Aws::SageMaker
|
|
23726
23929
|
# @return [Array<Types::EndpointConfigSummary>]
|
23727
23930
|
#
|
23728
23931
|
# @!attribute [rw] next_token
|
23729
|
-
# If the response is truncated,
|
23730
|
-
#
|
23932
|
+
# If the response is truncated, SageMaker returns this token. To
|
23933
|
+
# retrieve the next set of endpoint configurations, use it in the
|
23731
23934
|
# subsequent request
|
23732
23935
|
# @return [String]
|
23733
23936
|
#
|
@@ -23826,8 +24029,8 @@ module Aws::SageMaker
|
|
23826
24029
|
# @return [Array<Types::EndpointSummary>]
|
23827
24030
|
#
|
23828
24031
|
# @!attribute [rw] next_token
|
23829
|
-
# If the response is truncated,
|
23830
|
-
#
|
24032
|
+
# If the response is truncated, SageMaker returns this token. To
|
24033
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
23831
24034
|
# request.
|
23832
24035
|
# @return [String]
|
23833
24036
|
#
|
@@ -24592,8 +24795,8 @@ module Aws::SageMaker
|
|
24592
24795
|
# @return [Array<Types::LabelingJobForWorkteamSummary>]
|
24593
24796
|
#
|
24594
24797
|
# @!attribute [rw] next_token
|
24595
|
-
# If the response is truncated,
|
24596
|
-
#
|
24798
|
+
# If the response is truncated, SageMaker returns this token. To
|
24799
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24597
24800
|
# request.
|
24598
24801
|
# @return [String]
|
24599
24802
|
#
|
@@ -24693,8 +24896,8 @@ module Aws::SageMaker
|
|
24693
24896
|
# @return [Array<Types::LabelingJobSummary>]
|
24694
24897
|
#
|
24695
24898
|
# @!attribute [rw] next_token
|
24696
|
-
# If the response is truncated,
|
24697
|
-
#
|
24899
|
+
# If the response is truncated, SageMaker returns this token. To
|
24900
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24698
24901
|
# request.
|
24699
24902
|
# @return [String]
|
24700
24903
|
#
|
@@ -25191,8 +25394,8 @@ module Aws::SageMaker
|
|
25191
25394
|
# @return [Array<Types::ModelPackageSummary>]
|
25192
25395
|
#
|
25193
25396
|
# @!attribute [rw] next_token
|
25194
|
-
# If the response is truncated,
|
25195
|
-
#
|
25397
|
+
# If the response is truncated, SageMaker returns this token. To
|
25398
|
+
# retrieve the next set of model packages, use it in the subsequent
|
25196
25399
|
# request.
|
25197
25400
|
# @return [String]
|
25198
25401
|
#
|
@@ -25359,9 +25562,8 @@ module Aws::SageMaker
|
|
25359
25562
|
# @return [Array<Types::ModelSummary>]
|
25360
25563
|
#
|
25361
25564
|
# @!attribute [rw] next_token
|
25362
|
-
# If the response is truncated,
|
25363
|
-
#
|
25364
|
-
# request.
|
25565
|
+
# If the response is truncated, SageMaker returns this token. To
|
25566
|
+
# retrieve the next set of models, use it in the subsequent request.
|
25365
25567
|
# @return [String]
|
25366
25568
|
#
|
25367
25569
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
|
@@ -25700,8 +25902,8 @@ module Aws::SageMaker
|
|
25700
25902
|
end
|
25701
25903
|
|
25702
25904
|
# @!attribute [rw] next_token
|
25703
|
-
# If the response is truncated,
|
25704
|
-
#
|
25905
|
+
# If the response is truncated, SageMaker returns this token. To get
|
25906
|
+
# the next set of lifecycle configurations, use it in the next
|
25705
25907
|
# request.
|
25706
25908
|
# @return [String]
|
25707
25909
|
#
|
@@ -25834,8 +26036,8 @@ module Aws::SageMaker
|
|
25834
26036
|
|
25835
26037
|
# @!attribute [rw] next_token
|
25836
26038
|
# If the response to the previous `ListNotebookInstances` request was
|
25837
|
-
# truncated,
|
25838
|
-
#
|
26039
|
+
# truncated, SageMaker returns this token. To retrieve the next set of
|
26040
|
+
# notebook instances, use the token in the next request.
|
25839
26041
|
# @return [String]
|
25840
26042
|
#
|
25841
26043
|
# @!attribute [rw] notebook_instances
|
@@ -26483,8 +26685,8 @@ module Aws::SageMaker
|
|
26483
26685
|
#
|
26484
26686
|
# @!attribute [rw] next_token
|
26485
26687
|
# If the response to the previous `ListTags` request is truncated,
|
26486
|
-
#
|
26487
|
-
#
|
26688
|
+
# SageMaker returns this token. To retrieve the next set of tags, use
|
26689
|
+
# it in the subsequent request.
|
26488
26690
|
# @return [String]
|
26489
26691
|
#
|
26490
26692
|
# @!attribute [rw] max_results
|
@@ -26506,7 +26708,7 @@ module Aws::SageMaker
|
|
26506
26708
|
# @return [Array<Types::Tag>]
|
26507
26709
|
#
|
26508
26710
|
# @!attribute [rw] next_token
|
26509
|
-
# If response is truncated,
|
26711
|
+
# If response is truncated, SageMaker includes a token in the
|
26510
26712
|
# response. You can use this token in your subsequent request to fetch
|
26511
26713
|
# next set of tokens.
|
26512
26714
|
# @return [String]
|
@@ -26685,8 +26887,8 @@ module Aws::SageMaker
|
|
26685
26887
|
# @return [Array<Types::TrainingJobSummary>]
|
26686
26888
|
#
|
26687
26889
|
# @!attribute [rw] next_token
|
26688
|
-
# If the response is truncated,
|
26689
|
-
#
|
26890
|
+
# If the response is truncated, SageMaker returns this token. To
|
26891
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
26690
26892
|
# request.
|
26691
26893
|
# @return [String]
|
26692
26894
|
#
|
@@ -27292,20 +27494,34 @@ module Aws::SageMaker
|
|
27292
27494
|
# The dataset split from which the AutoML job produced the metric.
|
27293
27495
|
# @return [String]
|
27294
27496
|
#
|
27497
|
+
# @!attribute [rw] standard_metric_name
|
27498
|
+
# The name of the standard metric.
|
27499
|
+
#
|
27500
|
+
# <note markdown="1"> For definitions of the standard metrics, see [ `Autopilot candidate
|
27501
|
+
# metrics` ][1].
|
27502
|
+
#
|
27503
|
+
# </note>
|
27504
|
+
#
|
27505
|
+
#
|
27506
|
+
#
|
27507
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-metrics
|
27508
|
+
# @return [String]
|
27509
|
+
#
|
27295
27510
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDatum AWS API Documentation
|
27296
27511
|
#
|
27297
27512
|
class MetricDatum < Struct.new(
|
27298
27513
|
:metric_name,
|
27299
27514
|
:value,
|
27300
|
-
:set
|
27515
|
+
:set,
|
27516
|
+
:standard_metric_name)
|
27301
27517
|
SENSITIVE = []
|
27302
27518
|
include Aws::Structure
|
27303
27519
|
end
|
27304
27520
|
|
27305
27521
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
27306
|
-
# `stdout`.
|
27307
|
-
#
|
27308
|
-
#
|
27522
|
+
# `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
|
27523
|
+
# You specify one metric that a hyperparameter tuning job uses as its
|
27524
|
+
# objective metric to choose the best training job.
|
27309
27525
|
#
|
27310
27526
|
# @note When making an API call, you may pass MetricDefinition
|
27311
27527
|
# data as a hash:
|
@@ -27509,11 +27725,13 @@ module Aws::SageMaker
|
|
27509
27725
|
# }
|
27510
27726
|
#
|
27511
27727
|
# @!attribute [rw] invocations_timeout_in_seconds
|
27512
|
-
# The timeout value in seconds for an invocation request.
|
27728
|
+
# The timeout value in seconds for an invocation request. The default
|
27729
|
+
# value is 600.
|
27513
27730
|
# @return [Integer]
|
27514
27731
|
#
|
27515
27732
|
# @!attribute [rw] invocations_max_retries
|
27516
27733
|
# The maximum number of retries when invocation requests are failing.
|
27734
|
+
# The default value is 3.
|
27517
27735
|
# @return [Integer]
|
27518
27736
|
#
|
27519
27737
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
|
@@ -28017,8 +28235,8 @@ module Aws::SageMaker
|
|
28017
28235
|
# @return [Types::SourceAlgorithmSpecification]
|
28018
28236
|
#
|
28019
28237
|
# @!attribute [rw] validation_specification
|
28020
|
-
# Specifies batch transform jobs that
|
28021
|
-
#
|
28238
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28239
|
+
# model package.
|
28022
28240
|
# @return [Types::ModelPackageValidationSpecification]
|
28023
28241
|
#
|
28024
28242
|
# @!attribute [rw] model_package_status
|
@@ -28197,11 +28415,11 @@ module Aws::SageMaker
|
|
28197
28415
|
# code is stored.
|
28198
28416
|
#
|
28199
28417
|
# If you are using your own custom algorithm instead of an algorithm
|
28200
|
-
# provided by
|
28201
|
-
#
|
28202
|
-
#
|
28203
|
-
#
|
28204
|
-
#
|
28418
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
28419
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
28420
|
+
# and `registry/repository[@digest]` image path formats. For more
|
28421
|
+
# information, see [Using Your Own Algorithms with Amazon
|
28422
|
+
# SageMaker][1].
|
28205
28423
|
#
|
28206
28424
|
#
|
28207
28425
|
#
|
@@ -28533,8 +28751,8 @@ module Aws::SageMaker
|
|
28533
28751
|
include Aws::Structure
|
28534
28752
|
end
|
28535
28753
|
|
28536
|
-
# Specifies batch transform jobs that
|
28537
|
-
#
|
28754
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28755
|
+
# model package.
|
28538
28756
|
#
|
28539
28757
|
# @note When making an API call, you may pass ModelPackageValidationSpecification
|
28540
28758
|
# data as a hash:
|
@@ -28584,8 +28802,8 @@ module Aws::SageMaker
|
|
28584
28802
|
#
|
28585
28803
|
# @!attribute [rw] validation_profiles
|
28586
28804
|
# An array of `ModelPackageValidationProfile` objects, each of which
|
28587
|
-
# specifies a batch transform job that
|
28588
|
-
#
|
28805
|
+
# specifies a batch transform job that SageMaker runs to validate your
|
28806
|
+
# model package.
|
28589
28807
|
# @return [Array<Types::ModelPackageValidationProfile>]
|
28590
28808
|
#
|
28591
28809
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
|
@@ -29958,8 +30176,7 @@ module Aws::SageMaker
|
|
29958
30176
|
include Aws::Structure
|
29959
30177
|
end
|
29960
30178
|
|
29961
|
-
# Provides summary information for an
|
29962
|
-
# instance.
|
30179
|
+
# Provides summary information for an SageMaker notebook instance.
|
29963
30180
|
#
|
29964
30181
|
# @!attribute [rw] notebook_instance_name
|
29965
30182
|
# The name of the notebook instance that you want a summary for.
|
@@ -29974,7 +30191,7 @@ module Aws::SageMaker
|
|
29974
30191
|
# @return [String]
|
29975
30192
|
#
|
29976
30193
|
# @!attribute [rw] url
|
29977
|
-
# The URL that you use to connect to the Jupyter
|
30194
|
+
# The URL that you use to connect to the Jupyter notebook running in
|
29978
30195
|
# your notebook instance.
|
29979
30196
|
# @return [String]
|
29980
30197
|
#
|
@@ -30010,8 +30227,7 @@ module Aws::SageMaker
|
|
30010
30227
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
30011
30228
|
# Git repository. When you open a notebook instance, it opens in the
|
30012
30229
|
# directory that contains this repository. For more information, see
|
30013
|
-
# [Associating Git Repositories with
|
30014
|
-
# Instances][2].
|
30230
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
30015
30231
|
#
|
30016
30232
|
#
|
30017
30233
|
#
|
@@ -30026,7 +30242,7 @@ module Aws::SageMaker
|
|
30026
30242
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
30027
30243
|
# repository. These repositories are cloned at the same level as the
|
30028
30244
|
# default repository of your notebook instance. For more information,
|
30029
|
-
# see [Associating Git Repositories with
|
30245
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
30030
30246
|
# Instances][2].
|
30031
30247
|
#
|
30032
30248
|
#
|
@@ -30652,9 +30868,9 @@ module Aws::SageMaker
|
|
30652
30868
|
#
|
30653
30869
|
# @!attribute [rw] kms_key_id
|
30654
30870
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
30655
|
-
# KMS) key that
|
30656
|
-
#
|
30657
|
-
#
|
30871
|
+
# KMS) key that SageMaker uses to encrypt the model artifacts at rest
|
30872
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
30873
|
+
# the following formats:
|
30658
30874
|
#
|
30659
30875
|
# * // KMS Key ID
|
30660
30876
|
#
|
@@ -30672,14 +30888,13 @@ module Aws::SageMaker
|
|
30672
30888
|
#
|
30673
30889
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
30674
30890
|
#
|
30675
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
30676
|
-
#
|
30677
|
-
#
|
30678
|
-
#
|
30679
|
-
#
|
30680
|
-
#
|
30681
|
-
#
|
30682
|
-
# encryption, set the condition key of
|
30891
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
30892
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
30893
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
30894
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
30895
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
30896
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
30897
|
+
# objects with server-side encryption, set the condition key of
|
30683
30898
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
30684
30899
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
30685
30900
|
# Simple Storage Service Developer Guide.*
|
@@ -30697,8 +30912,8 @@ module Aws::SageMaker
|
|
30697
30912
|
# @return [String]
|
30698
30913
|
#
|
30699
30914
|
# @!attribute [rw] s3_output_path
|
30700
|
-
# Identifies the S3 path where you want
|
30701
|
-
#
|
30915
|
+
# Identifies the S3 path where you want SageMaker to store the model
|
30916
|
+
# artifacts. For example, `s3://bucket-name/key-name-prefix`.
|
30702
30917
|
# @return [String]
|
30703
30918
|
#
|
30704
30919
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
|
@@ -31027,23 +31242,11 @@ module Aws::SageMaker
|
|
31027
31242
|
#
|
31028
31243
|
# @!attribute [rw] current_serverless_config
|
31029
31244
|
# The serverless configuration for the endpoint.
|
31030
|
-
#
|
31031
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31032
|
-
# is subject to change. We do not recommend using this feature in
|
31033
|
-
# production environments.
|
31034
|
-
#
|
31035
|
-
# </note>
|
31036
31245
|
# @return [Types::ProductionVariantServerlessConfig]
|
31037
31246
|
#
|
31038
31247
|
# @!attribute [rw] desired_serverless_config
|
31039
31248
|
# The serverless configuration requested for this deployment, as
|
31040
31249
|
# specified in the endpoint configuration for the endpoint.
|
31041
|
-
#
|
31042
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31043
|
-
# is subject to change. We do not recommend using this feature in
|
31044
|
-
# production environments.
|
31045
|
-
#
|
31046
|
-
# </note>
|
31047
31250
|
# @return [Types::ProductionVariantServerlessConfig]
|
31048
31251
|
#
|
31049
31252
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
|
@@ -32245,8 +32448,8 @@ module Aws::SageMaker
|
|
32245
32448
|
|
32246
32449
|
# Identifies a model that you want to host and the resources chosen to
|
32247
32450
|
# deploy for hosting it. If you are deploying multiple models, tell
|
32248
|
-
#
|
32249
|
-
#
|
32451
|
+
# SageMaker how to distribute traffic among the models by specifying
|
32452
|
+
# variant weights.
|
32250
32453
|
#
|
32251
32454
|
# @note When making an API call, you may pass ProductionVariant
|
32252
32455
|
# data as a hash:
|
@@ -32313,12 +32516,6 @@ module Aws::SageMaker
|
|
32313
32516
|
# The serverless configuration for an endpoint. Specifies a serverless
|
32314
32517
|
# endpoint configuration instead of an instance-based endpoint
|
32315
32518
|
# configuration.
|
32316
|
-
#
|
32317
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32318
|
-
# is subject to change. We do not recommend using this feature in
|
32319
|
-
# production environments.
|
32320
|
-
#
|
32321
|
-
# </note>
|
32322
32519
|
# @return [Types::ProductionVariantServerlessConfig]
|
32323
32520
|
#
|
32324
32521
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
|
@@ -32353,9 +32550,9 @@ module Aws::SageMaker
|
|
32353
32550
|
#
|
32354
32551
|
# @!attribute [rw] kms_key_id
|
32355
32552
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
32356
|
-
# KMS) key that
|
32357
|
-
#
|
32358
|
-
#
|
32553
|
+
# KMS) key that SageMaker uses to encrypt the core dump data at rest
|
32554
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
32555
|
+
# the following formats:
|
32359
32556
|
#
|
32360
32557
|
# * // KMS Key ID
|
32361
32558
|
#
|
@@ -32373,14 +32570,13 @@ module Aws::SageMaker
|
|
32373
32570
|
#
|
32374
32571
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
32375
32572
|
#
|
32376
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
32377
|
-
#
|
32378
|
-
#
|
32379
|
-
#
|
32380
|
-
#
|
32381
|
-
#
|
32382
|
-
#
|
32383
|
-
# encryption, set the condition key of
|
32573
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
32574
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
32575
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
32576
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
32577
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
32578
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
32579
|
+
# objects with server-side encryption, set the condition key of
|
32384
32580
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
32385
32581
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
32386
32582
|
# Simple Storage Service Developer Guide.*
|
@@ -32406,10 +32602,6 @@ module Aws::SageMaker
|
|
32406
32602
|
include Aws::Structure
|
32407
32603
|
end
|
32408
32604
|
|
32409
|
-
# Serverless Inference is in preview release for Amazon SageMaker and is
|
32410
|
-
# subject to change. We do not recommend using this feature in
|
32411
|
-
# production environments.
|
32412
|
-
#
|
32413
32605
|
# Specifies the serverless configuration for an endpoint variant.
|
32414
32606
|
#
|
32415
32607
|
# @note When making an API call, you may pass ProductionVariantServerlessConfig
|
@@ -32519,22 +32711,10 @@ module Aws::SageMaker
|
|
32519
32711
|
#
|
32520
32712
|
# @!attribute [rw] current_serverless_config
|
32521
32713
|
# The serverless configuration for the endpoint.
|
32522
|
-
#
|
32523
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32524
|
-
# is subject to change. We do not recommend using this feature in
|
32525
|
-
# production environments.
|
32526
|
-
#
|
32527
|
-
# </note>
|
32528
32714
|
# @return [Types::ProductionVariantServerlessConfig]
|
32529
32715
|
#
|
32530
32716
|
# @!attribute [rw] desired_serverless_config
|
32531
32717
|
# The serverless configuration requested for the endpoint update.
|
32532
|
-
#
|
32533
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32534
|
-
# is subject to change. We do not recommend using this feature in
|
32535
|
-
# production environments.
|
32536
|
-
#
|
32537
|
-
# </note>
|
32538
32718
|
# @return [Types::ProductionVariantServerlessConfig]
|
32539
32719
|
#
|
32540
32720
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
|
@@ -33351,8 +33531,8 @@ module Aws::SageMaker
|
|
33351
33531
|
# @!attribute [rw] properties
|
33352
33532
|
# Filter the lineage entities connected to the `StartArn`(s) by a set
|
33353
33533
|
# if property key value pairs. If multiple pairs are provided, an
|
33354
|
-
# entity
|
33355
|
-
#
|
33534
|
+
# entity is included in the results if it matches any of the provided
|
33535
|
+
# pairs.
|
33356
33536
|
# @return [Hash<String,String>]
|
33357
33537
|
#
|
33358
33538
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
|
@@ -33398,12 +33578,13 @@ module Aws::SageMaker
|
|
33398
33578
|
# @return [Array<String>]
|
33399
33579
|
#
|
33400
33580
|
# @!attribute [rw] direction
|
33401
|
-
# Associations between lineage entities
|
33402
|
-
# determines the direction from the StartArn(s) the
|
33581
|
+
# Associations between lineage entities have a direction. This
|
33582
|
+
# parameter determines the direction from the StartArn(s) that the
|
33583
|
+
# query traverses.
|
33403
33584
|
# @return [String]
|
33404
33585
|
#
|
33405
33586
|
# @!attribute [rw] include_edges
|
33406
|
-
# Setting this value to `True`
|
33587
|
+
# Setting this value to `True` retrieves not only the entities of
|
33407
33588
|
# interest but also the [Associations][1] and lineage entities on the
|
33408
33589
|
# path. Set to `False` to only return lineage entities that match your
|
33409
33590
|
# query.
|
@@ -33432,8 +33613,8 @@ module Aws::SageMaker
|
|
33432
33613
|
#
|
33433
33614
|
# @!attribute [rw] max_depth
|
33434
33615
|
# The maximum depth in lineage relationships from the `StartArns` that
|
33435
|
-
#
|
33436
|
-
#
|
33616
|
+
# are traversed. Depth is a measure of the number of `Associations`
|
33617
|
+
# from the `StartArn` entity to the matched results.
|
33437
33618
|
# @return [Integer]
|
33438
33619
|
#
|
33439
33620
|
# @!attribute [rw] max_results
|
@@ -33486,11 +33667,43 @@ module Aws::SageMaker
|
|
33486
33667
|
|
33487
33668
|
# A collection of settings that apply to an `RSessionGateway` app.
|
33488
33669
|
#
|
33489
|
-
# @
|
33670
|
+
# @note When making an API call, you may pass RSessionAppSettings
|
33671
|
+
# data as a hash:
|
33672
|
+
#
|
33673
|
+
# {
|
33674
|
+
# default_resource_spec: {
|
33675
|
+
# sage_maker_image_arn: "ImageArn",
|
33676
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
33677
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
33678
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
33679
|
+
# },
|
33680
|
+
# custom_images: [
|
33681
|
+
# {
|
33682
|
+
# image_name: "ImageName", # required
|
33683
|
+
# image_version_number: 1,
|
33684
|
+
# app_image_config_name: "AppImageConfigName", # required
|
33685
|
+
# },
|
33686
|
+
# ],
|
33687
|
+
# }
|
33688
|
+
#
|
33689
|
+
# @!attribute [rw] default_resource_spec
|
33690
|
+
# Specifies the ARN's of a SageMaker image and SageMaker image
|
33691
|
+
# version, and the instance type that the version runs on.
|
33692
|
+
# @return [Types::ResourceSpec]
|
33693
|
+
#
|
33694
|
+
# @!attribute [rw] custom_images
|
33695
|
+
# A list of custom SageMaker images that are configured to run as a
|
33696
|
+
# RSession app.
|
33697
|
+
# @return [Array<Types::CustomImage>]
|
33490
33698
|
#
|
33491
33699
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RSessionAppSettings AWS API Documentation
|
33492
33700
|
#
|
33493
|
-
class RSessionAppSettings <
|
33701
|
+
class RSessionAppSettings < Struct.new(
|
33702
|
+
:default_resource_spec,
|
33703
|
+
:custom_images)
|
33704
|
+
SENSITIVE = []
|
33705
|
+
include Aws::Structure
|
33706
|
+
end
|
33494
33707
|
|
33495
33708
|
# A collection of settings that configure user interaction with the
|
33496
33709
|
# `RStudioServerPro` app. `RStudioServerProAppSettings` cannot be
|
@@ -34232,15 +34445,15 @@ module Aws::SageMaker
|
|
34232
34445
|
#
|
34233
34446
|
# You must specify sufficient ML storage for your scenario.
|
34234
34447
|
#
|
34235
|
-
# <note markdown="1">
|
34236
|
-
#
|
34448
|
+
# <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
|
34449
|
+
# volume type.
|
34237
34450
|
#
|
34238
34451
|
# </note>
|
34239
34452
|
#
|
34240
34453
|
# <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
|
34241
34454
|
# total size, dependent on the instance type. When using these
|
34242
|
-
# instances for training,
|
34243
|
-
#
|
34455
|
+
# instances for training, SageMaker mounts the local instance storage
|
34456
|
+
# instead of Amazon EBS gp2 storage. You can't request a
|
34244
34457
|
# `VolumeSizeInGB` greater than the total size of the local instance
|
34245
34458
|
# storage.
|
34246
34459
|
#
|
@@ -34256,9 +34469,9 @@ module Aws::SageMaker
|
|
34256
34469
|
# @return [Integer]
|
34257
34470
|
#
|
34258
34471
|
# @!attribute [rw] volume_kms_key_id
|
34259
|
-
# The Amazon Web Services KMS key that
|
34260
|
-
#
|
34261
|
-
#
|
34472
|
+
# The Amazon Web Services KMS key that SageMaker uses to encrypt data
|
34473
|
+
# on the storage volume attached to the ML compute instance(s) that
|
34474
|
+
# run the training job.
|
34262
34475
|
#
|
34263
34476
|
# <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
|
34264
34477
|
# the instance type. Local storage volumes are encrypted using a
|
@@ -34313,8 +34526,8 @@ module Aws::SageMaker
|
|
34313
34526
|
include Aws::Structure
|
34314
34527
|
end
|
34315
34528
|
|
34316
|
-
# You have exceeded an
|
34317
|
-
#
|
34529
|
+
# You have exceeded an SageMaker resource limit. For example, you might
|
34530
|
+
# have too many training jobs created.
|
34318
34531
|
#
|
34319
34532
|
# @!attribute [rw] message
|
34320
34533
|
# @return [String]
|
@@ -34393,6 +34606,12 @@ module Aws::SageMaker
|
|
34393
34606
|
#
|
34394
34607
|
# @!attribute [rw] instance_type
|
34395
34608
|
# The instance type that the image version runs on.
|
34609
|
+
#
|
34610
|
+
# <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
|
34611
|
+
# Apps do not support the `system` value, but support all other values
|
34612
|
+
# for available instance types.
|
34613
|
+
#
|
34614
|
+
# </note>
|
34396
34615
|
# @return [String]
|
34397
34616
|
#
|
34398
34617
|
# @!attribute [rw] lifecycle_config_arn
|
@@ -34527,11 +34746,11 @@ module Aws::SageMaker
|
|
34527
34746
|
#
|
34528
34747
|
# @!attribute [rw] s3_data_type
|
34529
34748
|
# If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
34530
|
-
#
|
34531
|
-
#
|
34749
|
+
# SageMaker uses all objects that match the specified key name prefix
|
34750
|
+
# for model training.
|
34532
34751
|
#
|
34533
34752
|
# If you choose `ManifestFile`, `S3Uri` identifies an object that is a
|
34534
|
-
# manifest file containing a list of object keys that you want
|
34753
|
+
# manifest file containing a list of object keys that you want
|
34535
34754
|
# SageMaker to use for model training.
|
34536
34755
|
#
|
34537
34756
|
# If you choose `AugmentedManifestFile`, S3Uri identifies an object
|
@@ -34585,17 +34804,17 @@ module Aws::SageMaker
|
|
34585
34804
|
#
|
34586
34805
|
# The complete set of `S3Uri` in this manifest is the input data for
|
34587
34806
|
# the channel for this data source. The object that each `S3Uri`
|
34588
|
-
# points to must be readable by the IAM role that
|
34589
|
-
#
|
34807
|
+
# points to must be readable by the IAM role that SageMaker uses to
|
34808
|
+
# perform tasks on your behalf.
|
34590
34809
|
# @return [String]
|
34591
34810
|
#
|
34592
34811
|
# @!attribute [rw] s3_data_distribution_type
|
34593
|
-
# If you want
|
34594
|
-
#
|
34812
|
+
# If you want SageMaker to replicate the entire dataset on each ML
|
34813
|
+
# compute instance that is launched for model training, specify
|
34595
34814
|
# `FullyReplicated`.
|
34596
34815
|
#
|
34597
|
-
# If you want
|
34598
|
-
#
|
34816
|
+
# If you want SageMaker to replicate a subset of data on each ML
|
34817
|
+
# compute instance that is launched for model training, specify
|
34599
34818
|
# `ShardedByS3Key`. If there are *n* ML compute instances launched for
|
34600
34819
|
# a training job, each instance gets approximately 1/*n* of the number
|
34601
34820
|
# of S3 objects. In this case, model training on each machine uses
|
@@ -35019,9 +35238,9 @@ module Aws::SageMaker
|
|
35019
35238
|
# transitioned through. A training job can be in one of several states,
|
35020
35239
|
# for example, starting, downloading, training, or uploading. Within
|
35021
35240
|
# each state, there are a number of intermediate states. For example,
|
35022
|
-
# within the starting state,
|
35023
|
-
#
|
35024
|
-
#
|
35241
|
+
# within the starting state, SageMaker could be starting the training
|
35242
|
+
# job or launching the ML instances. These transitional states are
|
35243
|
+
# referred to as the job's secondary status.
|
35025
35244
|
#
|
35026
35245
|
# @!attribute [rw] status
|
35027
35246
|
# Contains a secondary status information from a training job.
|
@@ -35086,8 +35305,8 @@ module Aws::SageMaker
|
|
35086
35305
|
# @!attribute [rw] status_message
|
35087
35306
|
# A detailed description of the progress within a secondary status.
|
35088
35307
|
#
|
35089
|
-
#
|
35090
|
-
#
|
35308
|
+
# SageMaker provides secondary statuses and status messages that apply
|
35309
|
+
# to each of them:
|
35091
35310
|
#
|
35092
35311
|
# Starting
|
35093
35312
|
# : * Starting the training job.
|
@@ -35452,9 +35671,9 @@ module Aws::SageMaker
|
|
35452
35671
|
end
|
35453
35672
|
|
35454
35673
|
# Specifies an algorithm that was used to create the model package. The
|
35455
|
-
# algorithm must be either an algorithm resource in your
|
35456
|
-
#
|
35457
|
-
#
|
35674
|
+
# algorithm must be either an algorithm resource in your SageMaker
|
35675
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35676
|
+
# are subscribed to.
|
35458
35677
|
#
|
35459
35678
|
# @note When making an API call, you may pass SourceAlgorithm
|
35460
35679
|
# data as a hash:
|
@@ -35477,9 +35696,9 @@ module Aws::SageMaker
|
|
35477
35696
|
#
|
35478
35697
|
# @!attribute [rw] algorithm_name
|
35479
35698
|
# The name of an algorithm that was used to create the model package.
|
35480
|
-
# The algorithm must be either an algorithm resource in your
|
35481
|
-
#
|
35482
|
-
#
|
35699
|
+
# The algorithm must be either an algorithm resource in your SageMaker
|
35700
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35701
|
+
# are subscribed to.
|
35483
35702
|
# @return [String]
|
35484
35703
|
#
|
35485
35704
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
|
@@ -35923,21 +36142,21 @@ module Aws::SageMaker
|
|
35923
36142
|
# Specifies a limit to how long a model training job or model
|
35924
36143
|
# compilation job can run. It also specifies how long a managed spot
|
35925
36144
|
# training job has to complete. When the job reaches the time limit,
|
35926
|
-
#
|
35927
|
-
#
|
35928
|
-
#
|
35929
|
-
# To stop a training job,
|
35930
|
-
#
|
35931
|
-
#
|
35932
|
-
#
|
35933
|
-
#
|
35934
|
-
# The training algorithms provided by
|
35935
|
-
#
|
35936
|
-
#
|
35937
|
-
#
|
35938
|
-
#
|
35939
|
-
#
|
35940
|
-
#
|
36145
|
+
# SageMaker ends the training or compilation job. Use this API to cap
|
36146
|
+
# model training costs.
|
36147
|
+
#
|
36148
|
+
# To stop a training job, SageMaker sends the algorithm the `SIGTERM`
|
36149
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
36150
|
+
# use this 120-second window to save the model artifacts, so the results
|
36151
|
+
# of training are not lost.
|
36152
|
+
#
|
36153
|
+
# The training algorithms provided by SageMaker automatically save the
|
36154
|
+
# intermediate results of a model training job when possible. This
|
36155
|
+
# attempt to save artifacts is only a best effort case as model might
|
36156
|
+
# not be in a state from which it can be saved. For example, if training
|
36157
|
+
# has just started, the model might not be ready to save. When saved,
|
36158
|
+
# this intermediate data is a valid model artifact. You can use it to
|
36159
|
+
# create a model with `CreateModel`.
|
35941
36160
|
#
|
35942
36161
|
# <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
|
35943
36162
|
# intermediate model artifacts. When training NTMs, make sure that the
|
@@ -35958,14 +36177,14 @@ module Aws::SageMaker
|
|
35958
36177
|
# compilation job can run.
|
35959
36178
|
#
|
35960
36179
|
# For compilation jobs, if the job does not complete during this time,
|
35961
|
-
#
|
35962
|
-
# seconds and
|
36180
|
+
# a `TimeOut` error is generated. We recommend starting with 900
|
36181
|
+
# seconds and increasing as necessary based on your model.
|
35963
36182
|
#
|
35964
36183
|
# For all other jobs, if the job does not complete during this time,
|
35965
|
-
#
|
35966
|
-
#
|
35967
|
-
#
|
35968
|
-
#
|
36184
|
+
# SageMaker ends the job. When `RetryStrategy` is specified in the job
|
36185
|
+
# request, `MaxRuntimeInSeconds` specifies the maximum time for all of
|
36186
|
+
# the attempts in total, not each individual attempt. The default
|
36187
|
+
# value is 1 day. The maximum value is 28 days.
|
35969
36188
|
# @return [Integer]
|
35970
36189
|
#
|
35971
36190
|
# @!attribute [rw] max_wait_time_in_seconds
|
@@ -35973,7 +36192,7 @@ module Aws::SageMaker
|
|
35973
36192
|
# job has to complete. It is the amount of time spent waiting for Spot
|
35974
36193
|
# capacity plus the amount of time the job can run. It must be equal
|
35975
36194
|
# to or greater than `MaxRuntimeInSeconds`. If the job does not
|
35976
|
-
# complete during this time,
|
36195
|
+
# complete during this time, SageMaker ends the job.
|
35977
36196
|
#
|
35978
36197
|
# When `RetryStrategy` is specified in the job request,
|
35979
36198
|
# `MaxWaitTimeInSeconds` specifies the maximum time for all of the
|
@@ -36393,8 +36612,8 @@ module Aws::SageMaker
|
|
36393
36612
|
# For detailed information about the secondary status of the training
|
36394
36613
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
36395
36614
|
#
|
36396
|
-
#
|
36397
|
-
#
|
36615
|
+
# SageMaker provides primary statuses and secondary statuses that
|
36616
|
+
# apply to each of them:
|
36398
36617
|
#
|
36399
36618
|
# InProgress
|
36400
36619
|
# : * `Starting` - Starting the training job.
|
@@ -36467,7 +36686,7 @@ module Aws::SageMaker
|
|
36467
36686
|
#
|
36468
36687
|
# @!attribute [rw] output_data_config
|
36469
36688
|
# The S3 path where model artifacts that you configured when creating
|
36470
|
-
# the job are stored.
|
36689
|
+
# the job are stored. SageMaker creates subfolders for model
|
36471
36690
|
# artifacts.
|
36472
36691
|
# @return [Types::OutputDataConfig]
|
36473
36692
|
#
|
@@ -36489,13 +36708,13 @@ module Aws::SageMaker
|
|
36489
36708
|
# @!attribute [rw] stopping_condition
|
36490
36709
|
# Specifies a limit to how long a model training job can run. It also
|
36491
36710
|
# specifies how long a managed Spot training job has to complete. When
|
36492
|
-
# the job reaches the time limit,
|
36493
|
-
#
|
36711
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36712
|
+
# this API to cap model training costs.
|
36494
36713
|
#
|
36495
|
-
# To stop a job,
|
36496
|
-
#
|
36497
|
-
#
|
36498
|
-
#
|
36714
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
36715
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36716
|
+
# this 120-second window to save the model artifacts, so the results
|
36717
|
+
# of training are not lost.
|
36499
36718
|
# @return [Types::StoppingCondition]
|
36500
36719
|
#
|
36501
36720
|
# @!attribute [rw] creation_time
|
@@ -36516,8 +36735,7 @@ module Aws::SageMaker
|
|
36516
36735
|
# You are billed for the time interval between the value of
|
36517
36736
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
36518
36737
|
# jobs, this is the time after model artifacts are uploaded. For
|
36519
|
-
# failed jobs, this is the time when
|
36520
|
-
# failure.
|
36738
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
36521
36739
|
# @return [Time]
|
36522
36740
|
#
|
36523
36741
|
# @!attribute [rw] last_modified_time
|
@@ -36784,7 +37002,7 @@ module Aws::SageMaker
|
|
36784
37002
|
#
|
36785
37003
|
# @!attribute [rw] output_data_config
|
36786
37004
|
# the path to the S3 bucket where you want to store model artifacts.
|
36787
|
-
#
|
37005
|
+
# SageMaker creates subfolders for the artifacts.
|
36788
37006
|
# @return [Types::OutputDataConfig]
|
36789
37007
|
#
|
36790
37008
|
# @!attribute [rw] resource_config
|
@@ -36795,12 +37013,12 @@ module Aws::SageMaker
|
|
36795
37013
|
# @!attribute [rw] stopping_condition
|
36796
37014
|
# Specifies a limit to how long a model training job can run. It also
|
36797
37015
|
# specifies how long a managed Spot training job has to complete. When
|
36798
|
-
# the job reaches the time limit,
|
36799
|
-
#
|
37016
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
37017
|
+
# this API to cap model training costs.
|
36800
37018
|
#
|
36801
|
-
# To stop a job,
|
36802
|
-
#
|
36803
|
-
#
|
37019
|
+
# To stop a job, SageMaker sends the algorithm the SIGTERM signal,
|
37020
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
37021
|
+
# this 120-second window to save the model artifacts.
|
36804
37022
|
# @return [Types::StoppingCondition]
|
36805
37023
|
#
|
36806
37024
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
|
@@ -37545,14 +37763,15 @@ module Aws::SageMaker
|
|
37545
37763
|
# Simple Storage Service Developer Guide.*
|
37546
37764
|
#
|
37547
37765
|
# The KMS key policy must grant permission to the IAM role that you
|
37548
|
-
# specify in your CreateModel request. For more information, see
|
37549
|
-
# [Using Key Policies in Amazon Web Services KMS][
|
37766
|
+
# specify in your [CreateModel][2] request. For more information, see
|
37767
|
+
# [Using Key Policies in Amazon Web Services KMS][3] in the *Amazon
|
37550
37768
|
# Web Services Key Management Service Developer Guide*.
|
37551
37769
|
#
|
37552
37770
|
#
|
37553
37771
|
#
|
37554
37772
|
# [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
|
37555
|
-
# [2]:
|
37773
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
|
37774
|
+
# [3]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
37556
37775
|
# @return [String]
|
37557
37776
|
#
|
37558
37777
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformOutput AWS API Documentation
|
@@ -38872,6 +39091,19 @@ module Aws::SageMaker
|
|
38872
39091
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
38873
39092
|
# },
|
38874
39093
|
# r_session_app_settings: {
|
39094
|
+
# default_resource_spec: {
|
39095
|
+
# sage_maker_image_arn: "ImageArn",
|
39096
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
39097
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
39098
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
39099
|
+
# },
|
39100
|
+
# custom_images: [
|
39101
|
+
# {
|
39102
|
+
# image_name: "ImageName", # required
|
39103
|
+
# image_version_number: 1,
|
39104
|
+
# app_image_config_name: "AppImageConfigName", # required
|
39105
|
+
# },
|
39106
|
+
# ],
|
38875
39107
|
# },
|
38876
39108
|
# },
|
38877
39109
|
# domain_settings_for_update: {
|
@@ -39042,7 +39274,7 @@ module Aws::SageMaker
|
|
39042
39274
|
# }
|
39043
39275
|
#
|
39044
39276
|
# @!attribute [rw] endpoint_name
|
39045
|
-
# The name of an existing
|
39277
|
+
# The name of an existing SageMaker endpoint.
|
39046
39278
|
# @return [String]
|
39047
39279
|
#
|
39048
39280
|
# @!attribute [rw] desired_weights_and_capacities
|
@@ -39411,12 +39643,12 @@ module Aws::SageMaker
|
|
39411
39643
|
# @return [String]
|
39412
39644
|
#
|
39413
39645
|
# @!attribute [rw] role_arn
|
39414
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
39415
|
-
#
|
39416
|
-
#
|
39646
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
39647
|
+
# assume to access the notebook instance. For more information, see
|
39648
|
+
# [SageMaker Roles][1].
|
39417
39649
|
#
|
39418
|
-
# <note markdown="1"> To be able to pass this role to
|
39419
|
-
#
|
39650
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
39651
|
+
# must have the `iam:PassRole` permission.
|
39420
39652
|
#
|
39421
39653
|
# </note>
|
39422
39654
|
#
|
@@ -39446,12 +39678,12 @@ module Aws::SageMaker
|
|
39446
39678
|
# @!attribute [rw] volume_size_in_gb
|
39447
39679
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
39448
39680
|
# instance. The default value is 5 GB. ML storage volumes are
|
39449
|
-
# encrypted, so
|
39450
|
-
#
|
39451
|
-
#
|
39452
|
-
#
|
39453
|
-
#
|
39454
|
-
#
|
39681
|
+
# encrypted, so SageMaker can't determine the amount of available
|
39682
|
+
# free space on the volume. Because of this, you can increase the
|
39683
|
+
# volume size when you update a notebook instance, but you can't
|
39684
|
+
# decrease the volume size. If you want to decrease the size of the ML
|
39685
|
+
# storage volume in use, create a new notebook instance with the
|
39686
|
+
# desired size.
|
39455
39687
|
# @return [Integer]
|
39456
39688
|
#
|
39457
39689
|
# @!attribute [rw] default_code_repository
|
@@ -39461,8 +39693,7 @@ module Aws::SageMaker
|
|
39461
39693
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
39462
39694
|
# Git repository. When you open a notebook instance, it opens in the
|
39463
39695
|
# directory that contains this repository. For more information, see
|
39464
|
-
# [Associating Git Repositories with
|
39465
|
-
# Instances][2].
|
39696
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
39466
39697
|
#
|
39467
39698
|
#
|
39468
39699
|
#
|
@@ -39477,7 +39708,7 @@ module Aws::SageMaker
|
|
39477
39708
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
39478
39709
|
# repository. These repositories are cloned at the same level as the
|
39479
39710
|
# default repository of your notebook instance. For more information,
|
39480
|
-
# see [Associating Git Repositories with
|
39711
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
39481
39712
|
# Instances][2].
|
39482
39713
|
#
|
39483
39714
|
#
|
@@ -40073,6 +40304,19 @@ module Aws::SageMaker
|
|
40073
40304
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
40074
40305
|
# },
|
40075
40306
|
# r_session_app_settings: {
|
40307
|
+
# default_resource_spec: {
|
40308
|
+
# sage_maker_image_arn: "ImageArn",
|
40309
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
40310
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
40311
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
40312
|
+
# },
|
40313
|
+
# custom_images: [
|
40314
|
+
# {
|
40315
|
+
# image_name: "ImageName", # required
|
40316
|
+
# image_version_number: 1,
|
40317
|
+
# app_image_config_name: "AppImageConfigName", # required
|
40318
|
+
# },
|
40319
|
+
# ],
|
40076
40320
|
# },
|
40077
40321
|
# },
|
40078
40322
|
# }
|
@@ -40391,6 +40635,19 @@ module Aws::SageMaker
|
|
40391
40635
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
40392
40636
|
# },
|
40393
40637
|
# r_session_app_settings: {
|
40638
|
+
# default_resource_spec: {
|
40639
|
+
# sage_maker_image_arn: "ImageArn",
|
40640
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
40641
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
40642
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
40643
|
+
# },
|
40644
|
+
# custom_images: [
|
40645
|
+
# {
|
40646
|
+
# image_name: "ImageName", # required
|
40647
|
+
# image_version_number: 1,
|
40648
|
+
# app_image_config_name: "AppImageConfigName", # required
|
40649
|
+
# },
|
40650
|
+
# ],
|
40394
40651
|
# },
|
40395
40652
|
# }
|
40396
40653
|
#
|