aws-sdk-sagemaker 1.122.0 → 1.125.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -192,7 +192,7 @@ module Aws::SageMaker
192
192
  end
193
193
 
194
194
  # @!attribute [rw] tags
195
- # A list of tags associated with the Amazon SageMaker resource.
195
+ # A list of tags associated with the SageMaker resource.
196
196
  # @return [Array<Types::Tag>]
197
197
  #
198
198
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
@@ -328,9 +328,9 @@ module Aws::SageMaker
328
328
  # Specifies the training algorithm to use in a CreateTrainingJob
329
329
  # request.
330
330
  #
331
- # For more information about algorithms provided by Amazon SageMaker,
332
- # see [Algorithms][1]. For information about using your own algorithms,
333
- # see [Using Your Own Algorithms with Amazon SageMaker][2].
331
+ # For more information about algorithms provided by SageMaker, see
332
+ # [Algorithms][1]. For information about using your own algorithms, see
333
+ # [Using Your Own Algorithms with Amazon SageMaker][2].
334
334
  #
335
335
  #
336
336
  #
@@ -357,10 +357,10 @@ module Aws::SageMaker
357
357
  # The registry path of the Docker image that contains the training
358
358
  # algorithm. For information about docker registry paths for built-in
359
359
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
360
- # Parameters][1]. Amazon SageMaker supports both
361
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
362
- # path formats. For more information, see [Using Your Own Algorithms
363
- # with Amazon SageMaker][2].
360
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
361
+ # and `registry/repository[@digest]` image path formats. For more
362
+ # information, see [Using Your Own Algorithms with Amazon
363
+ # SageMaker][2].
364
364
  #
365
365
  #
366
366
  #
@@ -424,7 +424,7 @@ module Aws::SageMaker
424
424
  # @!attribute [rw] metric_definitions
425
425
  # A list of metric definition objects. Each object specifies the
426
426
  # metric name and regular expressions used to parse algorithm logs.
427
- # Amazon SageMaker publishes each metric to Amazon CloudWatch.
427
+ # SageMaker publishes each metric to Amazon CloudWatch.
428
428
  # @return [Array<Types::MetricDefinition>]
429
429
  #
430
430
  # @!attribute [rw] enable_sage_maker_metrics_time_series
@@ -432,9 +432,9 @@ module Aws::SageMaker
432
432
  # `true`. The default is `false` and time-series metrics aren't
433
433
  # generated except in the following cases:
434
434
  #
435
- # * You use one of the Amazon SageMaker built-in algorithms
435
+ # * You use one of the SageMaker built-in algorithms
436
436
  #
437
- # * You use one of the following [Prebuilt Amazon SageMaker Docker
437
+ # * You use one of the following [Prebuilt SageMaker Docker
438
438
  # Images][1]\:
439
439
  #
440
440
  # * Tensorflow (version &gt;= 1.15)
@@ -540,8 +540,8 @@ module Aws::SageMaker
540
540
  include Aws::Structure
541
541
  end
542
542
 
543
- # Defines a training job and a batch transform job that Amazon SageMaker
544
- # runs to validate your algorithm.
543
+ # Defines a training job and a batch transform job that SageMaker runs
544
+ # to validate your algorithm.
545
545
  #
546
546
  # The data provided in the validation profile is made available to your
547
547
  # buyers on Amazon Web Services Marketplace.
@@ -636,12 +636,12 @@ module Aws::SageMaker
636
636
  #
637
637
  # @!attribute [rw] training_job_definition
638
638
  # The `TrainingJobDefinition` object that describes the training job
639
- # that Amazon SageMaker runs to validate your algorithm.
639
+ # that SageMaker runs to validate your algorithm.
640
640
  # @return [Types::TrainingJobDefinition]
641
641
  #
642
642
  # @!attribute [rw] transform_job_definition
643
643
  # The `TransformJobDefinition` object that describes the transform job
644
- # that Amazon SageMaker runs to validate your algorithm.
644
+ # that SageMaker runs to validate your algorithm.
645
645
  # @return [Types::TransformJobDefinition]
646
646
  #
647
647
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
@@ -654,8 +654,8 @@ module Aws::SageMaker
654
654
  include Aws::Structure
655
655
  end
656
656
 
657
- # Specifies configurations for one or more training jobs that Amazon
658
- # SageMaker runs to test the algorithm.
657
+ # Specifies configurations for one or more training jobs that SageMaker
658
+ # runs to test the algorithm.
659
659
  #
660
660
  # @note When making an API call, you may pass AlgorithmValidationSpecification
661
661
  # data as a hash:
@@ -746,13 +746,13 @@ module Aws::SageMaker
746
746
  # }
747
747
  #
748
748
  # @!attribute [rw] validation_role
749
- # The IAM roles that Amazon SageMaker uses to run the training jobs.
749
+ # The IAM roles that SageMaker uses to run the training jobs.
750
750
  # @return [String]
751
751
  #
752
752
  # @!attribute [rw] validation_profiles
753
753
  # An array of `AlgorithmValidationProfile` objects, each of which
754
- # specifies a training job and batch transform job that Amazon
755
- # SageMaker runs to validate your algorithm.
754
+ # specifies a training job and batch transform job that SageMaker runs
755
+ # to validate your algorithm.
756
756
  # @return [Array<Types::AlgorithmValidationProfile>]
757
757
  #
758
758
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
1742
1742
  include Aws::Structure
1743
1743
  end
1744
1744
 
1745
- # Configures the behavior of the client used by Amazon SageMaker to
1746
- # interact with the model container during asynchronous inference.
1745
+ # Configures the behavior of the client used by SageMaker to interact
1746
+ # with the model container during asynchronous inference.
1747
1747
  #
1748
1748
  # @note When making an API call, you may pass AsyncInferenceClientConfig
1749
1749
  # data as a hash:
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
1754
1754
  #
1755
1755
  # @!attribute [rw] max_concurrent_invocations_per_instance
1756
1756
  # The maximum number of concurrent requests sent by the SageMaker
1757
- # client to the model container. If no value is provided, Amazon
1758
- # SageMaker will choose an optimal value for you.
1757
+ # client to the model container. If no value is provided, SageMaker
1758
+ # chooses an optimal value.
1759
1759
  # @return [Integer]
1760
1760
  #
1761
1761
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
1787
1787
  # }
1788
1788
  #
1789
1789
  # @!attribute [rw] client_config
1790
- # Configures the behavior of the client used by Amazon SageMaker to
1791
- # interact with the model container during asynchronous inference.
1790
+ # Configures the behavior of the client used by SageMaker to interact
1791
+ # with the model container during asynchronous inference.
1792
1792
  # @return [Types::AsyncInferenceClientConfig]
1793
1793
  #
1794
1794
  # @!attribute [rw] output_config
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
1853
1853
  #
1854
1854
  # @!attribute [rw] kms_key_id
1855
1855
  # The Amazon Web Services Key Management Service (Amazon Web Services
1856
- # KMS) key that Amazon SageMaker uses to encrypt the asynchronous
1857
- # inference output in Amazon S3.
1856
+ # KMS) key that SageMaker uses to encrypt the asynchronous inference
1857
+ # output in Amazon S3.
1858
1858
  # @return [String]
1859
1859
  #
1860
1860
  # @!attribute [rw] s3_output_path
@@ -2007,6 +2007,38 @@ module Aws::SageMaker
2007
2007
  include Aws::Structure
2008
2008
  end
2009
2009
 
2010
+ # Stores the config information for how a candidate is generated
2011
+ # (optional).
2012
+ #
2013
+ # @note When making an API call, you may pass AutoMLCandidateGenerationConfig
2014
+ # data as a hash:
2015
+ #
2016
+ # {
2017
+ # feature_specification_s3_uri: "S3Uri",
2018
+ # }
2019
+ #
2020
+ # @!attribute [rw] feature_specification_s3_uri
2021
+ # A URL to the Amazon S3 data source containing selected features from
2022
+ # the input data source to run an Autopilot job (optional). This file
2023
+ # should be in json format as shown below:
2024
+ #
2025
+ # `\{ "FeatureAttributeNames":["col1", "col2", ...] \}`.
2026
+ #
2027
+ # The key name `FeatureAttributeNames` is fixed. The values listed in
2028
+ # `["col1", "col2", ...]` is case sensitive and should be a list of
2029
+ # strings containing unique values that are a subset of the column
2030
+ # names in the input data. The list of columns provided must not
2031
+ # include the target column.
2032
+ # @return [String]
2033
+ #
2034
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateGenerationConfig AWS API Documentation
2035
+ #
2036
+ class AutoMLCandidateGenerationConfig < Struct.new(
2037
+ :feature_specification_s3_uri)
2038
+ SENSITIVE = []
2039
+ include Aws::Structure
2040
+ end
2041
+
2010
2042
  # Information about the steps for a candidate and what step it is
2011
2043
  # working on.
2012
2044
  #
@@ -2034,7 +2066,14 @@ module Aws::SageMaker
2034
2066
  end
2035
2067
 
2036
2068
  # A channel is a named input source that training algorithms can
2037
- # consume. For more information, see .
2069
+ # consume. The validation dataset size is limited to less than 2 GB. The
2070
+ # training dataset size must be less than 100 GB. For more information,
2071
+ # see .
2072
+ #
2073
+ # <note markdown="1"> A validation dataset must contain the same headers as the training
2074
+ # dataset.
2075
+ #
2076
+ # </note>
2038
2077
  #
2039
2078
  # @note When making an API call, you may pass AutoMLChannel
2040
2079
  # data as a hash:
@@ -2049,6 +2088,7 @@ module Aws::SageMaker
2049
2088
  # compression_type: "None", # accepts None, Gzip
2050
2089
  # target_attribute_name: "TargetAttributeName", # required
2051
2090
  # content_type: "ContentType",
2091
+ # channel_type: "training", # accepts training, validation
2052
2092
  # }
2053
2093
  #
2054
2094
  # @!attribute [rw] data_source
@@ -2070,13 +2110,26 @@ module Aws::SageMaker
2070
2110
  # default value is `text/csv;header=present`.
2071
2111
  # @return [String]
2072
2112
  #
2113
+ # @!attribute [rw] channel_type
2114
+ # The channel type (optional) is an `enum` string. The default value
2115
+ # is `training`. Channels for training and validation must share the
2116
+ # same `ContentType` and `TargetAttributeName`. For information on
2117
+ # specifying training and validation channel types, see [ `How to
2118
+ # specify training and validation datasets` ][1].
2119
+ #
2120
+ #
2121
+ #
2122
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation
2123
+ # @return [String]
2124
+ #
2073
2125
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
2074
2126
  #
2075
2127
  class AutoMLChannel < Struct.new(
2076
2128
  :data_source,
2077
2129
  :compression_type,
2078
2130
  :target_attribute_name,
2079
- :content_type)
2131
+ :content_type,
2132
+ :channel_type)
2080
2133
  SENSITIVE = []
2081
2134
  include Aws::Structure
2082
2135
  end
@@ -2136,6 +2189,32 @@ module Aws::SageMaker
2136
2189
  include Aws::Structure
2137
2190
  end
2138
2191
 
2192
+ # This structure specifies how to split the data into train and test
2193
+ # datasets. The validation and training datasets must contain the same
2194
+ # headers. The validation dataset must be less than 2 GB in size.
2195
+ #
2196
+ # @note When making an API call, you may pass AutoMLDataSplitConfig
2197
+ # data as a hash:
2198
+ #
2199
+ # {
2200
+ # validation_fraction: 1.0,
2201
+ # }
2202
+ #
2203
+ # @!attribute [rw] validation_fraction
2204
+ # The validation fraction (optional) is a float that specifies the
2205
+ # portion of the training dataset to be used for validation. The
2206
+ # default value is 0.2, and values must be greater than 0 and less
2207
+ # than 1. We recommend setting this value to be less than 0.5.
2208
+ # @return [Float]
2209
+ #
2210
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
2211
+ #
2212
+ class AutoMLDataSplitConfig < Struct.new(
2213
+ :validation_fraction)
2214
+ SENSITIVE = []
2215
+ include Aws::Structure
2216
+ end
2217
+
2139
2218
  # The artifacts that are generated during an AutoML job.
2140
2219
  #
2141
2220
  # @!attribute [rw] candidate_definition_notebook_location
@@ -2217,6 +2296,12 @@ module Aws::SageMaker
2217
2296
  # subnets: ["SubnetId"], # required
2218
2297
  # },
2219
2298
  # },
2299
+ # data_split_config: {
2300
+ # validation_fraction: 1.0,
2301
+ # },
2302
+ # candidate_generation_config: {
2303
+ # feature_specification_s3_uri: "S3Uri",
2304
+ # },
2220
2305
  # }
2221
2306
  #
2222
2307
  # @!attribute [rw] completion_criteria
@@ -2229,11 +2314,24 @@ module Aws::SageMaker
2229
2314
  # settings.
2230
2315
  # @return [Types::AutoMLSecurityConfig]
2231
2316
  #
2317
+ # @!attribute [rw] data_split_config
2318
+ # The configuration for splitting the input training dataset.
2319
+ #
2320
+ # Type: AutoMLDataSplitConfig
2321
+ # @return [Types::AutoMLDataSplitConfig]
2322
+ #
2323
+ # @!attribute [rw] candidate_generation_config
2324
+ # The configuration for generating a candidate for an AutoML job
2325
+ # (optional).
2326
+ # @return [Types::AutoMLCandidateGenerationConfig]
2327
+ #
2232
2328
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
2233
2329
  #
2234
2330
  class AutoMLJobConfig < Struct.new(
2235
2331
  :completion_criteria,
2236
- :security_config)
2332
+ :security_config,
2333
+ :data_split_config,
2334
+ :candidate_generation_config)
2237
2335
  SENSITIVE = []
2238
2336
  include Aws::Structure
2239
2337
  end
@@ -2837,6 +2935,10 @@ module Aws::SageMaker
2837
2935
  include Aws::Structure
2838
2936
  end
2839
2937
 
2938
+ # Configuration specifying how to treat different headers. If no headers
2939
+ # are specified SageMaker will by default base64 encode when capturing
2940
+ # the data.
2941
+ #
2840
2942
  # @note When making an API call, you may pass CaptureContentTypeHeader
2841
2943
  # data as a hash:
2842
2944
  #
@@ -2846,9 +2948,13 @@ module Aws::SageMaker
2846
2948
  # }
2847
2949
  #
2848
2950
  # @!attribute [rw] csv_content_types
2951
+ # The list of all content type headers that SageMaker will treat as
2952
+ # CSV and capture accordingly.
2849
2953
  # @return [Array<String>]
2850
2954
  #
2851
2955
  # @!attribute [rw] json_content_types
2956
+ # The list of all content type headers that SageMaker will treat as
2957
+ # JSON and capture accordingly.
2852
2958
  # @return [Array<String>]
2853
2959
  #
2854
2960
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CaptureContentTypeHeader AWS API Documentation
@@ -2860,6 +2966,8 @@ module Aws::SageMaker
2860
2966
  include Aws::Structure
2861
2967
  end
2862
2968
 
2969
+ # Specifies data Model Monitor will capture.
2970
+ #
2863
2971
  # @note When making an API call, you may pass CaptureOption
2864
2972
  # data as a hash:
2865
2973
  #
@@ -2868,6 +2976,7 @@ module Aws::SageMaker
2868
2976
  # }
2869
2977
  #
2870
2978
  # @!attribute [rw] capture_mode
2979
+ # Specify the boundary of data to capture.
2871
2980
  # @return [String]
2872
2981
  #
2873
2982
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CaptureOption AWS API Documentation
@@ -3005,10 +3114,10 @@ module Aws::SageMaker
3005
3114
  # @!attribute [rw] record_wrapper_type
3006
3115
  # Specify RecordIO as the value when input data is in raw format but
3007
3116
  # the training algorithm requires the RecordIO format. In this case,
3008
- # Amazon SageMaker wraps each individual S3 object in a RecordIO
3009
- # record. If the input data is already in RecordIO format, you don't
3010
- # need to set this attribute. For more information, see [Create a
3011
- # Dataset Using RecordIO][1].
3117
+ # SageMaker wraps each individual S3 object in a RecordIO record. If
3118
+ # the input data is already in RecordIO format, you don't need to set
3119
+ # this attribute. For more information, see [Create a Dataset Using
3120
+ # RecordIO][1].
3012
3121
  #
3013
3122
  # In File mode, leave this field unset or set it to None.
3014
3123
  #
@@ -3019,15 +3128,15 @@ module Aws::SageMaker
3019
3128
  #
3020
3129
  # @!attribute [rw] input_mode
3021
3130
  # (Optional) The input mode to use for the data channel in a training
3022
- # job. If you don't set a value for `InputMode`, Amazon SageMaker
3023
- # uses the value set for `TrainingInputMode`. Use this parameter to
3024
- # override the `TrainingInputMode` setting in a AlgorithmSpecification
3025
- # request when you have a channel that needs a different input mode
3026
- # from the training job's general setting. To download the data from
3027
- # Amazon Simple Storage Service (Amazon S3) to the provisioned ML
3028
- # storage volume, and mount the directory to a Docker volume, use
3029
- # `File` input mode. To stream data directly from Amazon S3 to the
3030
- # container, choose `Pipe` input mode.
3131
+ # job. If you don't set a value for `InputMode`, SageMaker uses the
3132
+ # value set for `TrainingInputMode`. Use this parameter to override
3133
+ # the `TrainingInputMode` setting in a AlgorithmSpecification request
3134
+ # when you have a channel that needs a different input mode from the
3135
+ # training job's general setting. To download the data from Amazon
3136
+ # Simple Storage Service (Amazon S3) to the provisioned ML storage
3137
+ # volume, and mount the directory to a Docker volume, use `File` input
3138
+ # mode. To stream data directly from Amazon S3 to the container,
3139
+ # choose `Pipe` input mode.
3031
3140
  #
3032
3141
  # To use a model for incremental training, choose `File` input model.
3033
3142
  # @return [String]
@@ -3137,7 +3246,7 @@ module Aws::SageMaker
3137
3246
  # }
3138
3247
  #
3139
3248
  # @!attribute [rw] s3_uri
3140
- # Identifies the S3 path where you want Amazon SageMaker to store
3249
+ # Identifies the S3 path where you want SageMaker to store
3141
3250
  # checkpoints. For example, `s3://bucket-name/key-name-prefix`.
3142
3251
  # @return [String]
3143
3252
  #
@@ -3514,11 +3623,11 @@ module Aws::SageMaker
3514
3623
  # Amazon EC2 Container Registry or in a Docker registry that is
3515
3624
  # accessible from the same VPC that you configure for your endpoint.
3516
3625
  # If you are using your own custom algorithm instead of an algorithm
3517
- # provided by Amazon SageMaker, the inference code must meet Amazon
3518
- # SageMaker requirements. Amazon SageMaker supports both
3519
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
3520
- # path formats. For more information, see [Using Your Own Algorithms
3521
- # with Amazon SageMaker][1]
3626
+ # provided by SageMaker, the inference code must meet SageMaker
3627
+ # requirements. SageMaker supports both `registry/repository[:tag]`
3628
+ # and `registry/repository[@digest]` image path formats. For more
3629
+ # information, see [Using Your Own Algorithms with Amazon
3630
+ # SageMaker][1]
3522
3631
  #
3523
3632
  #
3524
3633
  #
@@ -3545,7 +3654,7 @@ module Aws::SageMaker
3545
3654
  # The S3 path where the model artifacts, which result from model
3546
3655
  # training, are stored. This path must point to a single gzip
3547
3656
  # compressed tar archive (.tar.gz suffix). The S3 path is required for
3548
- # Amazon SageMaker built-in algorithms, but not if you use your own
3657
+ # SageMaker built-in algorithms, but not if you use your own
3549
3658
  # algorithms. For more information on built-in algorithms, see [Common
3550
3659
  # Parameters][1].
3551
3660
  #
@@ -3554,17 +3663,17 @@ module Aws::SageMaker
3554
3663
  #
3555
3664
  # </note>
3556
3665
  #
3557
- # If you provide a value for this parameter, Amazon SageMaker uses
3558
- # Amazon Web Services Security Token Service to download model
3559
- # artifacts from the S3 path you provide. Amazon Web Services STS is
3560
- # activated in your IAM user account by default. If you previously
3561
- # deactivated Amazon Web Services STS for a region, you need to
3562
- # reactivate Amazon Web Services STS for that region. For more
3563
- # information, see [Activating and Deactivating Amazon Web Services
3564
- # STS in an Amazon Web Services Region][2] in the *Amazon Web Services
3565
- # Identity and Access Management User Guide*.
3566
- #
3567
- # If you use a built-in algorithm to create a model, Amazon SageMaker
3666
+ # If you provide a value for this parameter, SageMaker uses Amazon Web
3667
+ # Services Security Token Service to download model artifacts from the
3668
+ # S3 path you provide. Amazon Web Services STS is activated in your
3669
+ # IAM user account by default. If you previously deactivated Amazon
3670
+ # Web Services STS for a region, you need to reactivate Amazon Web
3671
+ # Services STS for that region. For more information, see [Activating
3672
+ # and Deactivating Amazon Web Services STS in an Amazon Web Services
3673
+ # Region][2] in the *Amazon Web Services Identity and Access
3674
+ # Management User Guide*.
3675
+ #
3676
+ # If you use a built-in algorithm to create a model, SageMaker
3568
3677
  # requires that you provide a S3 path to the model artifacts in
3569
3678
  # `ModelDataUrl`.
3570
3679
  #
@@ -3717,8 +3826,8 @@ module Aws::SageMaker
3717
3826
  #
3718
3827
  # Auto
3719
3828
  #
3720
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
3721
- # the hyperparameter.
3829
+ # : SageMaker hyperparameter tuning chooses the best scale for the
3830
+ # hyperparameter.
3722
3831
  #
3723
3832
  # Linear
3724
3833
  #
@@ -4096,9 +4205,9 @@ module Aws::SageMaker
4096
4205
  #
4097
4206
  # @!attribute [rw] validation_specification
4098
4207
  # Specifies configurations for one or more training jobs and that
4099
- # Amazon SageMaker runs to test the algorithm's training code and,
4100
- # optionally, one or more batch transform jobs that Amazon SageMaker
4101
- # runs to test the algorithm's inference code.
4208
+ # SageMaker runs to test the algorithm's training code and,
4209
+ # optionally, one or more batch transform jobs that SageMaker runs to
4210
+ # test the algorithm's inference code.
4102
4211
  # @return [Types::AlgorithmValidationSpecification]
4103
4212
  #
4104
4213
  # @!attribute [rw] certify_for_marketplace
@@ -4376,6 +4485,7 @@ module Aws::SageMaker
4376
4485
  # compression_type: "None", # accepts None, Gzip
4377
4486
  # target_attribute_name: "TargetAttributeName", # required
4378
4487
  # content_type: "ContentType",
4488
+ # channel_type: "training", # accepts training, validation
4379
4489
  # },
4380
4490
  # ],
4381
4491
  # output_data_config: { # required
@@ -4400,6 +4510,12 @@ module Aws::SageMaker
4400
4510
  # subnets: ["SubnetId"], # required
4401
4511
  # },
4402
4512
  # },
4513
+ # data_split_config: {
4514
+ # validation_fraction: 1.0,
4515
+ # },
4516
+ # candidate_generation_config: {
4517
+ # feature_specification_s3_uri: "S3Uri",
4518
+ # },
4403
4519
  # },
4404
4520
  # role_arn: "RoleArn", # required
4405
4521
  # generate_candidate_definitions_only: false,
@@ -4423,8 +4539,9 @@ module Aws::SageMaker
4423
4539
  # @!attribute [rw] input_data_config
4424
4540
  # An array of channel objects that describes the input data and its
4425
4541
  # location. Each channel is a named input source. Similar to
4426
- # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum
4427
- # of 500 rows.
4542
+ # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet.
4543
+ # A minimum of 500 rows is required for the training dataset. There is
4544
+ # not a minimum number of rows required for the validation dataset.
4428
4545
  # @return [Array<Types::AutoMLChannel>]
4429
4546
  #
4430
4547
  # @!attribute [rw] output_data_config
@@ -4435,10 +4552,8 @@ module Aws::SageMaker
4435
4552
  #
4436
4553
  # @!attribute [rw] problem_type
4437
4554
  # Defines the type of supervised learning available for the
4438
- # candidates. Options include: `BinaryClassification`,
4439
- # `MulticlassClassification`, and `Regression`. For more information,
4440
- # see [ Amazon SageMaker Autopilot problem types and algorithm
4441
- # support][1].
4555
+ # candidates. For more information, see [ Amazon SageMaker Autopilot
4556
+ # problem types and algorithm support][1].
4442
4557
  #
4443
4558
  #
4444
4559
  #
@@ -4452,8 +4567,7 @@ module Aws::SageMaker
4452
4567
  # @return [Types::AutoMLJobObjective]
4453
4568
  #
4454
4569
  # @!attribute [rw] auto_ml_job_config
4455
- # Contains `CompletionCriteria` and `SecurityConfig` settings for the
4456
- # AutoML job.
4570
+ # A collection of settings used to configure an AutoML job.
4457
4571
  # @return [Types::AutoMLJobConfig]
4458
4572
  #
4459
4573
  # @!attribute [rw] role_arn
@@ -5064,6 +5178,19 @@ module Aws::SageMaker
5064
5178
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
5065
5179
  # },
5066
5180
  # r_session_app_settings: {
5181
+ # default_resource_spec: {
5182
+ # sage_maker_image_arn: "ImageArn",
5183
+ # sage_maker_image_version_arn: "ImageVersionArn",
5184
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
5185
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
5186
+ # },
5187
+ # custom_images: [
5188
+ # {
5189
+ # image_name: "ImageName", # required
5190
+ # image_version_number: 1,
5191
+ # app_image_config_name: "AppImageConfigName", # required
5192
+ # },
5193
+ # ],
5067
5194
  # },
5068
5195
  # },
5069
5196
  # subnet_ids: ["SubnetId"], # required
@@ -5346,6 +5473,7 @@ module Aws::SageMaker
5346
5473
  # @return [Array<Types::ProductionVariant>]
5347
5474
  #
5348
5475
  # @!attribute [rw] data_capture_config
5476
+ # Configuration to control how SageMaker captures inference data.
5349
5477
  # @return [Types::DataCaptureConfig]
5350
5478
  #
5351
5479
  # @!attribute [rw] tags
@@ -5361,9 +5489,9 @@ module Aws::SageMaker
5361
5489
  #
5362
5490
  # @!attribute [rw] kms_key_id
5363
5491
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
5364
- # Management Service key that Amazon SageMaker uses to encrypt data on
5365
- # the storage volume attached to the ML compute instance that hosts
5366
- # the endpoint.
5492
+ # Management Service key that SageMaker uses to encrypt data on the
5493
+ # storage volume attached to the ML compute instance that hosts the
5494
+ # endpoint.
5367
5495
  #
5368
5496
  # The KmsKeyId can be any of the following formats:
5369
5497
  #
@@ -6277,8 +6405,8 @@ module Aws::SageMaker
6277
6405
  end
6278
6406
 
6279
6407
  # @!attribute [rw] hyper_parameter_tuning_job_arn
6280
- # The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker
6281
- # assigns an ARN to a hyperparameter tuning job when you create it.
6408
+ # The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
6409
+ # an ARN to a hyperparameter tuning job when you create it.
6282
6410
  # @return [String]
6283
6411
  #
6284
6412
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
@@ -6362,8 +6490,8 @@ module Aws::SageMaker
6362
6490
  #
6363
6491
  # @!attribute [rw] base_image
6364
6492
  # The registry path of the container image to use as the starting
6365
- # point for this version. The path is an Amazon Container Registry
6366
- # (ECR) URI in the following format:
6493
+ # point for this version. The path is an Amazon Elastic Container
6494
+ # Registry (ECR) URI in the following format:
6367
6495
  #
6368
6496
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
6369
6497
  # [@digest]>`
@@ -7216,14 +7344,14 @@ module Aws::SageMaker
7216
7344
  # @return [Types::InferenceExecutionConfig]
7217
7345
  #
7218
7346
  # @!attribute [rw] execution_role_arn
7219
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
7220
- # can assume to access model artifacts and docker image for deployment
7221
- # on ML compute instances or for batch transform jobs. Deploying on ML
7347
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
7348
+ # assume to access model artifacts and docker image for deployment on
7349
+ # ML compute instances or for batch transform jobs. Deploying on ML
7222
7350
  # compute instances is part of model hosting. For more information,
7223
- # see [Amazon SageMaker Roles][1].
7351
+ # see [SageMaker Roles][1].
7224
7352
  #
7225
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
7226
- # API must have the `iam:PassRole` permission.
7353
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
7354
+ # must have the `iam:PassRole` permission.
7227
7355
  #
7228
7356
  # </note>
7229
7357
  #
@@ -7278,7 +7406,7 @@ module Aws::SageMaker
7278
7406
  end
7279
7407
 
7280
7408
  # @!attribute [rw] model_arn
7281
- # The ARN of the model created in Amazon SageMaker.
7409
+ # The ARN of the model created in SageMaker.
7282
7410
  # @return [String]
7283
7411
  #
7284
7412
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
@@ -7611,7 +7739,7 @@ module Aws::SageMaker
7611
7739
  # @return [Types::InferenceSpecification]
7612
7740
  #
7613
7741
  # @!attribute [rw] validation_specification
7614
- # Specifies configurations for one or more transform jobs that Amazon
7742
+ # Specifies configurations for one or more transform jobs that
7615
7743
  # SageMaker runs to test the model package.
7616
7744
  # @return [Types::ModelPackageValidationSpecification]
7617
7745
  #
@@ -7689,7 +7817,12 @@ module Aws::SageMaker
7689
7817
  # @!attribute [rw] task
7690
7818
  # The machine learning task your model package accomplishes. Common
7691
7819
  # machine learning tasks include object detection and image
7692
- # classification.
7820
+ # classification. The following tasks are supported by Inference
7821
+ # Recommender: `"IMAGE_CLASSIFICATION"` \| `"OBJECT_DETECTION"` \|
7822
+ # `"TEXT_GENERATION"` \|`"IMAGE_SEGMENTATION"` \| `"FILL_MASK"` \|
7823
+ # `"CLASSIFICATION"` \| `"REGRESSION"` \| `"OTHER"`.
7824
+ #
7825
+ # Specify "OTHER" if none of the tasks listed fit your use case.
7693
7826
  # @return [String]
7694
7827
  #
7695
7828
  # @!attribute [rw] sample_payload_url
@@ -8073,15 +8206,14 @@ module Aws::SageMaker
8073
8206
  #
8074
8207
  # @!attribute [rw] role_arn
8075
8208
  # When you send any requests to Amazon Web Services resources from the
8076
- # notebook instance, Amazon SageMaker assumes this role to perform
8077
- # tasks on your behalf. You must grant this role necessary permissions
8078
- # so Amazon SageMaker can perform these tasks. The policy must allow
8079
- # the Amazon SageMaker service principal (sagemaker.amazonaws.com)
8080
- # permissions to assume this role. For more information, see [Amazon
8081
- # SageMaker Roles][1].
8209
+ # notebook instance, SageMaker assumes this role to perform tasks on
8210
+ # your behalf. You must grant this role necessary permissions so
8211
+ # SageMaker can perform these tasks. The policy must allow the
8212
+ # SageMaker service principal (sagemaker.amazonaws.com) permissions to
8213
+ # assume this role. For more information, see [SageMaker Roles][1].
8082
8214
  #
8083
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
8084
- # API must have the `iam:PassRole` permission.
8215
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
8216
+ # must have the `iam:PassRole` permission.
8085
8217
  #
8086
8218
  # </note>
8087
8219
  #
@@ -8092,9 +8224,9 @@ module Aws::SageMaker
8092
8224
  #
8093
8225
  # @!attribute [rw] kms_key_id
8094
8226
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
8095
- # Management Service key that Amazon SageMaker uses to encrypt data on
8096
- # the storage volume attached to your notebook instance. The KMS key
8097
- # you provide must be enabled. For information, see [Enabling and
8227
+ # Management Service key that SageMaker uses to encrypt data on the
8228
+ # storage volume attached to your notebook instance. The KMS key you
8229
+ # provide must be enabled. For information, see [Enabling and
8098
8230
  # Disabling Keys][1] in the *Amazon Web Services Key Management
8099
8231
  # Service Developer Guide*.
8100
8232
  #
@@ -8125,11 +8257,11 @@ module Aws::SageMaker
8125
8257
  # @return [String]
8126
8258
  #
8127
8259
  # @!attribute [rw] direct_internet_access
8128
- # Sets whether Amazon SageMaker provides internet access to the
8129
- # notebook instance. If you set this to `Disabled` this notebook
8130
- # instance is able to access resources only in your VPC, and is not be
8131
- # able to connect to Amazon SageMaker training and endpoint services
8132
- # unless you configure a NAT Gateway in your VPC.
8260
+ # Sets whether SageMaker provides internet access to the notebook
8261
+ # instance. If you set this to `Disabled` this notebook instance is
8262
+ # able to access resources only in your VPC, and is not be able to
8263
+ # connect to SageMaker training and endpoint services unless you
8264
+ # configure a NAT Gateway in your VPC.
8133
8265
  #
8134
8266
  # For more information, see [Notebook Instances Are Internet-Enabled
8135
8267
  # by Default][1]. You can set the value of this parameter to
@@ -8163,8 +8295,7 @@ module Aws::SageMaker
8163
8295
  # repository in [Amazon Web Services CodeCommit][1] or in any other
8164
8296
  # Git repository. When you open a notebook instance, it opens in the
8165
8297
  # directory that contains this repository. For more information, see
8166
- # [Associating Git Repositories with Amazon SageMaker Notebook
8167
- # Instances][2].
8298
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
8168
8299
  #
8169
8300
  #
8170
8301
  #
@@ -8179,7 +8310,7 @@ module Aws::SageMaker
8179
8310
  # in [Amazon Web Services CodeCommit][1] or in any other Git
8180
8311
  # repository. These repositories are cloned at the same level as the
8181
8312
  # default repository of your notebook instance. For more information,
8182
- # see [Associating Git Repositories with Amazon SageMaker Notebook
8313
+ # see [Associating Git Repositories with SageMaker Notebook
8183
8314
  # Instances][2].
8184
8315
  #
8185
8316
  #
@@ -8974,7 +9105,7 @@ module Aws::SageMaker
8974
9105
  # Algorithm-specific parameters that influence the quality of the
8975
9106
  # model. You set hyperparameters before you start the learning
8976
9107
  # process. For a list of hyperparameters for each training algorithm
8977
- # provided by Amazon SageMaker, see [Algorithms][1].
9108
+ # provided by SageMaker, see [Algorithms][1].
8978
9109
  #
8979
9110
  # You can specify a maximum of 100 hyperparameters. Each
8980
9111
  # hyperparameter is a key-value pair. Each key and value is limited to
@@ -8988,8 +9119,8 @@ module Aws::SageMaker
8988
9119
  # @!attribute [rw] algorithm_specification
8989
9120
  # The registry path of the Docker image that contains the training
8990
9121
  # algorithm and algorithm-specific metadata, including the input mode.
8991
- # For more information about algorithms provided by Amazon SageMaker,
8992
- # see [Algorithms][1]. For information about providing your own
9122
+ # For more information about algorithms provided by SageMaker, see
9123
+ # [Algorithms][1]. For information about providing your own
8993
9124
  # algorithms, see [Using Your Own Algorithms with Amazon
8994
9125
  # SageMaker][2].
8995
9126
  #
@@ -9000,18 +9131,18 @@ module Aws::SageMaker
9000
9131
  # @return [Types::AlgorithmSpecification]
9001
9132
  #
9002
9133
  # @!attribute [rw] role_arn
9003
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
9004
- # can assume to perform tasks on your behalf.
9134
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
9135
+ # assume to perform tasks on your behalf.
9005
9136
  #
9006
- # During model training, Amazon SageMaker needs your permission to
9007
- # read input data from an S3 bucket, download a Docker image that
9008
- # contains training code, write model artifacts to an S3 bucket, write
9009
- # logs to Amazon CloudWatch Logs, and publish metrics to Amazon
9010
- # CloudWatch. You grant permissions for all of these tasks to an IAM
9011
- # role. For more information, see [Amazon SageMaker Roles][1].
9137
+ # During model training, SageMaker needs your permission to read input
9138
+ # data from an S3 bucket, download a Docker image that contains
9139
+ # training code, write model artifacts to an S3 bucket, write logs to
9140
+ # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
9141
+ # You grant permissions for all of these tasks to an IAM role. For
9142
+ # more information, see [SageMaker Roles][1].
9012
9143
  #
9013
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
9014
- # API must have the `iam:PassRole` permission.
9144
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
9145
+ # must have the `iam:PassRole` permission.
9015
9146
  #
9016
9147
  # </note>
9017
9148
  #
@@ -9032,17 +9163,17 @@ module Aws::SageMaker
9032
9163
  # MIME type, compression method, and whether the data is wrapped in
9033
9164
  # RecordIO format.
9034
9165
  #
9035
- # Depending on the input mode that the algorithm supports, Amazon
9036
- # SageMaker either copies input data files from an S3 bucket to a
9037
- # local directory in the Docker container, or makes it available as
9038
- # input streams. For example, if you specify an EFS location, input
9039
- # data files will be made available as input streams. They do not need
9040
- # to be downloaded.
9166
+ # Depending on the input mode that the algorithm supports, SageMaker
9167
+ # either copies input data files from an S3 bucket to a local
9168
+ # directory in the Docker container, or makes it available as input
9169
+ # streams. For example, if you specify an EFS location, input data
9170
+ # files are available as input streams. They do not need to be
9171
+ # downloaded.
9041
9172
  # @return [Array<Types::Channel>]
9042
9173
  #
9043
9174
  # @!attribute [rw] output_data_config
9044
9175
  # Specifies the path to the S3 location where you want to store model
9045
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
9176
+ # artifacts. SageMaker creates subfolders for the artifacts.
9046
9177
  # @return [Types::OutputDataConfig]
9047
9178
  #
9048
9179
  # @!attribute [rw] resource_config
@@ -9051,9 +9182,9 @@ module Aws::SageMaker
9051
9182
  #
9052
9183
  # ML storage volumes store model artifacts and incremental states.
9053
9184
  # Training algorithms might also use ML storage volumes for scratch
9054
- # space. If you want Amazon SageMaker to use the ML storage volume to
9055
- # store the training data, choose `File` as the `TrainingInputMode` in
9056
- # the algorithm specification. For distributed training algorithms,
9185
+ # space. If you want SageMaker to use the ML storage volume to store
9186
+ # the training data, choose `File` as the `TrainingInputMode` in the
9187
+ # algorithm specification. For distributed training algorithms,
9057
9188
  # specify an instance count greater than 1.
9058
9189
  # @return [Types::ResourceConfig]
9059
9190
  #
@@ -9071,13 +9202,13 @@ module Aws::SageMaker
9071
9202
  # @!attribute [rw] stopping_condition
9072
9203
  # Specifies a limit to how long a model training job can run. It also
9073
9204
  # specifies how long a managed Spot training job has to complete. When
9074
- # the job reaches the time limit, Amazon SageMaker ends the training
9075
- # job. Use this API to cap model training costs.
9205
+ # the job reaches the time limit, SageMaker ends the training job. Use
9206
+ # this API to cap model training costs.
9076
9207
  #
9077
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
9078
- # signal, which delays job termination for 120 seconds. Algorithms can
9079
- # use this 120-second window to save the model artifacts, so the
9080
- # results of training are not lost.
9208
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
9209
+ # which delays job termination for 120 seconds. Algorithms can use
9210
+ # this 120-second window to save the model artifacts, so the results
9211
+ # of training are not lost.
9081
9212
  # @return [Types::StoppingCondition]
9082
9213
  #
9083
9214
  # @!attribute [rw] tags
@@ -9095,7 +9226,7 @@ module Aws::SageMaker
9095
9226
  # Isolates the training container. No inbound or outbound network
9096
9227
  # calls can be made, except for calls between peers within a training
9097
9228
  # cluster for distributed training. If you enable network isolation
9098
- # for training jobs that are configured to use a VPC, Amazon SageMaker
9229
+ # for training jobs that are configured to use a VPC, SageMaker
9099
9230
  # downloads and uploads customer data and model artifacts through the
9100
9231
  # specified VPC, but the training container does not have network
9101
9232
  # access.
@@ -9325,6 +9456,11 @@ module Aws::SageMaker
9325
9456
  # records fit within the maximum payload size, we recommend using a
9326
9457
  # slightly larger value. The default value is `6` MB.
9327
9458
  #
9459
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
9460
+ # specify the `MaxConcurrentTransforms` parameter, the value of
9461
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
9462
+ # MB.
9463
+ #
9328
9464
  # For cases where the payload might be arbitrarily large and is
9329
9465
  # transmitted using HTTP chunked encoding, set the value to `0`. This
9330
9466
  # feature works only in supported algorithms. Currently, Amazon
@@ -9692,6 +9828,19 @@ module Aws::SageMaker
9692
9828
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
9693
9829
  # },
9694
9830
  # r_session_app_settings: {
9831
+ # default_resource_spec: {
9832
+ # sage_maker_image_arn: "ImageArn",
9833
+ # sage_maker_image_version_arn: "ImageVersionArn",
9834
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
9835
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
9836
+ # },
9837
+ # custom_images: [
9838
+ # {
9839
+ # image_name: "ImageName", # required
9840
+ # image_version_number: 1,
9841
+ # app_image_config_name: "AppImageConfigName", # required
9842
+ # },
9843
+ # ],
9695
9844
  # },
9696
9845
  # },
9697
9846
  # }
@@ -10003,6 +10152,8 @@ module Aws::SageMaker
10003
10152
  include Aws::Structure
10004
10153
  end
10005
10154
 
10155
+ # Configuration to control how SageMaker captures inference data.
10156
+ #
10006
10157
  # @note When making an API call, you may pass DataCaptureConfig
10007
10158
  # data as a hash:
10008
10159
  #
@@ -10023,21 +10174,47 @@ module Aws::SageMaker
10023
10174
  # }
10024
10175
  #
10025
10176
  # @!attribute [rw] enable_capture
10177
+ # Whether data capture should be enabled or disabled (defaults to
10178
+ # enabled).
10026
10179
  # @return [Boolean]
10027
10180
  #
10028
10181
  # @!attribute [rw] initial_sampling_percentage
10182
+ # The percentage of requests SageMaker will capture. A lower value is
10183
+ # recommended for Endpoints with high traffic.
10029
10184
  # @return [Integer]
10030
10185
  #
10031
10186
  # @!attribute [rw] destination_s3_uri
10187
+ # The Amazon S3 location used to capture the data.
10032
10188
  # @return [String]
10033
10189
  #
10034
10190
  # @!attribute [rw] kms_key_id
10191
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key
10192
+ # Management Service key that SageMaker uses to encrypt data on the
10193
+ # storage volume attached to the ML compute instance that hosts the
10194
+ # endpoint.
10195
+ #
10196
+ # The KmsKeyId can be any of the following formats:
10197
+ #
10198
+ # * Key ID: `1234abcd-12ab-34cd-56ef-1234567890ab`
10199
+ #
10200
+ # * Key ARN:
10201
+ # `arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab`
10202
+ #
10203
+ # * Alias name: `alias/ExampleAlias`
10204
+ #
10205
+ # * Alias name ARN:
10206
+ # `arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias`
10035
10207
  # @return [String]
10036
10208
  #
10037
10209
  # @!attribute [rw] capture_options
10210
+ # Specifies data Model Monitor will capture. You can configure whether
10211
+ # to collect only input, only output, or both
10038
10212
  # @return [Array<Types::CaptureOption>]
10039
10213
  #
10040
10214
  # @!attribute [rw] capture_content_type_header
10215
+ # Configuration specifying how to treat different headers. If no
10216
+ # headers are specified SageMaker will by default base64 encode when
10217
+ # capturing the data.
10041
10218
  # @return [Types::CaptureContentTypeHeader]
10042
10219
  #
10043
10220
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataCaptureConfig AWS API Documentation
@@ -10053,19 +10230,26 @@ module Aws::SageMaker
10053
10230
  include Aws::Structure
10054
10231
  end
10055
10232
 
10233
+ # The currently active data capture configuration used by your Endpoint.
10234
+ #
10056
10235
  # @!attribute [rw] enable_capture
10236
+ # Whether data capture is enabled or disabled.
10057
10237
  # @return [Boolean]
10058
10238
  #
10059
10239
  # @!attribute [rw] capture_status
10240
+ # Whether data capture is currently functional.
10060
10241
  # @return [String]
10061
10242
  #
10062
10243
  # @!attribute [rw] current_sampling_percentage
10244
+ # The percentage of requests being captured by your Endpoint.
10063
10245
  # @return [Integer]
10064
10246
  #
10065
10247
  # @!attribute [rw] destination_s3_uri
10248
+ # The Amazon S3 location being used to capture the data.
10066
10249
  # @return [String]
10067
10250
  #
10068
10251
  # @!attribute [rw] kms_key_id
10252
+ # The KMS key being used to encrypt the data in Amazon S3.
10069
10253
  # @return [String]
10070
10254
  #
10071
10255
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataCaptureConfigSummary AWS API Documentation
@@ -10140,8 +10324,8 @@ module Aws::SageMaker
10140
10324
  # A [JSONPath][1] expression used to select a portion of the input
10141
10325
  # data to pass to the algorithm. Use the `InputFilter` parameter to
10142
10326
  # exclude fields, such as an ID column, from the input. If you want
10143
- # Amazon SageMaker to pass the entire input dataset to the algorithm,
10144
- # accept the default value `$`.
10327
+ # SageMaker to pass the entire input dataset to the algorithm, accept
10328
+ # the default value `$`.
10145
10329
  #
10146
10330
  # Examples: `"$"`, `"$[1:]"`, `"$.features"`
10147
10331
  #
@@ -10153,10 +10337,9 @@ module Aws::SageMaker
10153
10337
  # @!attribute [rw] output_filter
10154
10338
  # A [JSONPath][1] expression used to select a portion of the joined
10155
10339
  # dataset to save in the output file for a batch transform job. If you
10156
- # want Amazon SageMaker to store the entire input dataset in the
10157
- # output file, leave the default value, `$`. If you specify indexes
10158
- # that aren't within the dimension size of the joined dataset, you
10159
- # get an error.
10340
+ # want SageMaker to store the entire input dataset in the output file,
10341
+ # leave the default value, `$`. If you specify indexes that aren't
10342
+ # within the dimension size of the joined dataset, you get an error.
10160
10343
  #
10161
10344
  # Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
10162
10345
  #
@@ -11285,7 +11468,7 @@ module Aws::SageMaker
11285
11468
  # }
11286
11469
  #
11287
11470
  # @!attribute [rw] notebook_instance_name
11288
- # The name of the Amazon SageMaker notebook instance to delete.
11471
+ # The name of the SageMaker notebook instance to delete.
11289
11472
  # @return [String]
11290
11473
  #
11291
11474
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
@@ -11826,7 +12009,7 @@ module Aws::SageMaker
11826
12009
  #
11827
12010
  # @!attribute [rw] validation_specification
11828
12011
  # Details about configurations for one or more training jobs that
11829
- # Amazon SageMaker runs to test the algorithm.
12012
+ # SageMaker runs to test the algorithm.
11830
12013
  # @return [Types::AlgorithmValidationSpecification]
11831
12014
  #
11832
12015
  # @!attribute [rw] algorithm_status
@@ -13037,7 +13220,7 @@ module Aws::SageMaker
13037
13220
  end
13038
13221
 
13039
13222
  # @!attribute [rw] endpoint_config_name
13040
- # Name of the Amazon SageMaker endpoint configuration.
13223
+ # Name of the SageMaker endpoint configuration.
13041
13224
  # @return [String]
13042
13225
  #
13043
13226
  # @!attribute [rw] endpoint_config_arn
@@ -13050,6 +13233,7 @@ module Aws::SageMaker
13050
13233
  # @return [Array<Types::ProductionVariant>]
13051
13234
  #
13052
13235
  # @!attribute [rw] data_capture_config
13236
+ # Configuration to control how SageMaker captures inference data.
13053
13237
  # @return [Types::DataCaptureConfig]
13054
13238
  #
13055
13239
  # @!attribute [rw] kms_key_id
@@ -13122,6 +13306,8 @@ module Aws::SageMaker
13122
13306
  # @return [Array<Types::ProductionVariantSummary>]
13123
13307
  #
13124
13308
  # @!attribute [rw] data_capture_config
13309
+ # The currently active data capture configuration used by your
13310
+ # Endpoint.
13125
13311
  # @return [Types::DataCaptureConfigSummary]
13126
13312
  #
13127
13313
  # @!attribute [rw] endpoint_status
@@ -13979,8 +14165,8 @@ module Aws::SageMaker
13979
14165
  # @return [Types::LabelingJobOutputConfig]
13980
14166
  #
13981
14167
  # @!attribute [rw] role_arn
13982
- # The Amazon Resource Name (ARN) that Amazon SageMaker assumes to
13983
- # perform tasks on your behalf during data labeling.
14168
+ # The Amazon Resource Name (ARN) that SageMaker assumes to perform
14169
+ # tasks on your behalf during data labeling.
13984
14170
  # @return [String]
13985
14171
  #
13986
14172
  # @!attribute [rw] label_category_config_s3_uri
@@ -14346,7 +14532,7 @@ module Aws::SageMaker
14346
14532
  end
14347
14533
 
14348
14534
  # @!attribute [rw] model_name
14349
- # Name of the Amazon SageMaker model.
14535
+ # Name of the SageMaker model.
14350
14536
  # @return [String]
14351
14537
  #
14352
14538
  # @!attribute [rw] primary_container
@@ -14416,7 +14602,7 @@ module Aws::SageMaker
14416
14602
  # }
14417
14603
  #
14418
14604
  # @!attribute [rw] model_package_group_name
14419
- # The name of the model group to describe.
14605
+ # The name of gthe model group to describe.
14420
14606
  # @return [String]
14421
14607
  #
14422
14608
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
@@ -14560,7 +14746,7 @@ module Aws::SageMaker
14560
14746
  # @return [Types::ModelMetrics]
14561
14747
  #
14562
14748
  # @!attribute [rw] last_modified_time
14563
- # The last time the model package was modified.
14749
+ # The last time that the model package was modified.
14564
14750
  # @return [Time]
14565
14751
  #
14566
14752
  # @!attribute [rw] last_modified_by
@@ -14904,7 +15090,7 @@ module Aws::SageMaker
14904
15090
  # @return [String]
14905
15091
  #
14906
15092
  # @!attribute [rw] notebook_instance_name
14907
- # The name of the Amazon SageMaker notebook instance.
15093
+ # The name of the SageMaker notebook instance.
14908
15094
  # @return [String]
14909
15095
  #
14910
15096
  # @!attribute [rw] notebook_instance_status
@@ -14938,14 +15124,13 @@ module Aws::SageMaker
14938
15124
  # @return [String]
14939
15125
  #
14940
15126
  # @!attribute [rw] kms_key_id
14941
- # The Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt
14942
- # data when storing it on the ML storage volume attached to the
14943
- # instance.
15127
+ # The Amazon Web Services KMS key ID SageMaker uses to encrypt data
15128
+ # when storing it on the ML storage volume attached to the instance.
14944
15129
  # @return [String]
14945
15130
  #
14946
15131
  # @!attribute [rw] network_interface_id
14947
- # The network interface IDs that Amazon SageMaker created at the time
14948
- # of creating the instance.
15132
+ # The network interface IDs that SageMaker created at the time of
15133
+ # creating the instance.
14949
15134
  # @return [String]
14950
15135
  #
14951
15136
  # @!attribute [rw] last_modified_time
@@ -14970,10 +15155,10 @@ module Aws::SageMaker
14970
15155
  # @return [String]
14971
15156
  #
14972
15157
  # @!attribute [rw] direct_internet_access
14973
- # Describes whether Amazon SageMaker provides internet access to the
14974
- # notebook instance. If this value is set to *Disabled*, the notebook
14975
- # instance does not have internet access, and cannot connect to Amazon
14976
- # SageMaker training and endpoint services.
15158
+ # Describes whether SageMaker provides internet access to the notebook
15159
+ # instance. If this value is set to *Disabled*, the notebook instance
15160
+ # does not have internet access, and cannot connect to SageMaker
15161
+ # training and endpoint services.
14977
15162
  #
14978
15163
  # For more information, see [Notebook Instances Are Internet-Enabled
14979
15164
  # by Default][1].
@@ -15006,8 +15191,7 @@ module Aws::SageMaker
15006
15191
  # repository in [Amazon Web Services CodeCommit][1] or in any other
15007
15192
  # Git repository. When you open a notebook instance, it opens in the
15008
15193
  # directory that contains this repository. For more information, see
15009
- # [Associating Git Repositories with Amazon SageMaker Notebook
15010
- # Instances][2].
15194
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
15011
15195
  #
15012
15196
  #
15013
15197
  #
@@ -15022,7 +15206,7 @@ module Aws::SageMaker
15022
15206
  # in [Amazon Web Services CodeCommit][1] or in any other Git
15023
15207
  # repository. These repositories are cloned at the same level as the
15024
15208
  # default repository of your notebook instance. For more information,
15025
- # see [Associating Git Repositories with Amazon SageMaker Notebook
15209
+ # see [Associating Git Repositories with SageMaker Notebook
15026
15210
  # Instances][2].
15027
15211
  #
15028
15212
  #
@@ -15644,7 +15828,7 @@ module Aws::SageMaker
15644
15828
  # @return [String]
15645
15829
  #
15646
15830
  # @!attribute [rw] labeling_job_arn
15647
- # The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth
15831
+ # The Amazon Resource Name (ARN) of the SageMaker Ground Truth
15648
15832
  # labeling job that created the transform or training job.
15649
15833
  # @return [String]
15650
15834
  #
@@ -15660,7 +15844,7 @@ module Aws::SageMaker
15660
15844
  # @!attribute [rw] training_job_status
15661
15845
  # The status of the training job.
15662
15846
  #
15663
- # Amazon SageMaker provides the following training job statuses:
15847
+ # SageMaker provides the following training job statuses:
15664
15848
  #
15665
15849
  # * `InProgress` - The training is in progress.
15666
15850
  #
@@ -15682,8 +15866,8 @@ module Aws::SageMaker
15682
15866
  # For detailed information on the secondary status of the training
15683
15867
  # job, see `StatusMessage` under SecondaryStatusTransition.
15684
15868
  #
15685
- # Amazon SageMaker provides primary statuses and secondary statuses
15686
- # that apply to each of them:
15869
+ # SageMaker provides primary statuses and secondary statuses that
15870
+ # apply to each of them:
15687
15871
  #
15688
15872
  # InProgress
15689
15873
  # : * `Starting` - Starting the training job.
@@ -15762,7 +15946,7 @@ module Aws::SageMaker
15762
15946
  #
15763
15947
  # @!attribute [rw] output_data_config
15764
15948
  # The S3 path where model artifacts that you configured when creating
15765
- # the job are stored. Amazon SageMaker creates subfolders for model
15949
+ # the job are stored. SageMaker creates subfolders for model
15766
15950
  # artifacts.
15767
15951
  # @return [Types::OutputDataConfig]
15768
15952
  #
@@ -15784,13 +15968,13 @@ module Aws::SageMaker
15784
15968
  # @!attribute [rw] stopping_condition
15785
15969
  # Specifies a limit to how long a model training job can run. It also
15786
15970
  # specifies how long a managed Spot training job has to complete. When
15787
- # the job reaches the time limit, Amazon SageMaker ends the training
15788
- # job. Use this API to cap model training costs.
15971
+ # the job reaches the time limit, SageMaker ends the training job. Use
15972
+ # this API to cap model training costs.
15789
15973
  #
15790
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
15791
- # signal, which delays job termination for 120 seconds. Algorithms can
15792
- # use this 120-second window to save the model artifacts, so the
15793
- # results of training are not lost.
15974
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
15975
+ # which delays job termination for 120 seconds. Algorithms can use
15976
+ # this 120-second window to save the model artifacts, so the results
15977
+ # of training are not lost.
15794
15978
  # @return [Types::StoppingCondition]
15795
15979
  #
15796
15980
  # @!attribute [rw] creation_time
@@ -15811,8 +15995,7 @@ module Aws::SageMaker
15811
15995
  # You are billed for the time interval between the value of
15812
15996
  # `TrainingStartTime` and this time. For successful jobs and stopped
15813
15997
  # jobs, this is the time after model artifacts are uploaded. For
15814
- # failed jobs, this is the time when Amazon SageMaker detects a job
15815
- # failure.
15998
+ # failed jobs, this is the time when SageMaker detects a job failure.
15816
15999
  # @return [Time]
15817
16000
  #
15818
16001
  # @!attribute [rw] last_modified_time
@@ -15835,10 +16018,9 @@ module Aws::SageMaker
15835
16018
  # If you want to allow inbound or outbound network calls, except for
15836
16019
  # calls between peers within a training cluster for distributed
15837
16020
  # training, choose `True`. If you enable network isolation for
15838
- # training jobs that are configured to use a VPC, Amazon SageMaker
15839
- # downloads and uploads customer data and model artifacts through the
15840
- # specified VPC, but the training container does not have network
15841
- # access.
16021
+ # training jobs that are configured to use a VPC, SageMaker downloads
16022
+ # and uploads customer data and model artifacts through the specified
16023
+ # VPC, but the training container does not have network access.
15842
16024
  # @return [Boolean]
15843
16025
  #
15844
16026
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -15870,7 +16052,7 @@ module Aws::SageMaker
15870
16052
  #
15871
16053
  # Multiply `BillableTimeInSeconds` by the number of instances
15872
16054
  # (`InstanceCount`) in your training cluster to get the total compute
15873
- # time SageMaker will bill you if you run distributed training. The
16055
+ # time SageMaker bills you if you run distributed training. The
15874
16056
  # formula is as follows: `BillableTimeInSeconds * InstanceCount` .
15875
16057
  #
15876
16058
  # You can calculate the savings from using managed spot training using
@@ -17435,6 +17617,8 @@ module Aws::SageMaker
17435
17617
  # @return [Array<Types::ProductionVariantSummary>]
17436
17618
  #
17437
17619
  # @!attribute [rw] data_capture_config
17620
+ # The currently active data capture configuration used by your
17621
+ # Endpoint.
17438
17622
  # @return [Types::DataCaptureConfigSummary]
17439
17623
  #
17440
17624
  # @!attribute [rw] endpoint_status
@@ -20078,10 +20262,10 @@ module Aws::SageMaker
20078
20262
  # The registry path of the Docker image that contains the training
20079
20263
  # algorithm. For information about Docker registry paths for built-in
20080
20264
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
20081
- # Parameters][1]. Amazon SageMaker supports both
20082
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
20083
- # path formats. For more information, see [Using Your Own Algorithms
20084
- # with Amazon SageMaker][2].
20265
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
20266
+ # and `registry/repository[@digest]` image path formats. For more
20267
+ # information, see [Using Your Own Algorithms with Amazon
20268
+ # SageMaker][2].
20085
20269
  #
20086
20270
  #
20087
20271
  #
@@ -20406,27 +20590,26 @@ module Aws::SageMaker
20406
20590
  #
20407
20591
  # Storage volumes store model artifacts and incremental states.
20408
20592
  # Training algorithms might also use storage volumes for scratch
20409
- # space. If you want Amazon SageMaker to use the storage volume to
20410
- # store the training data, choose `File` as the `TrainingInputMode` in
20411
- # the algorithm specification. For distributed training algorithms,
20593
+ # space. If you want SageMaker to use the storage volume to store the
20594
+ # training data, choose `File` as the `TrainingInputMode` in the
20595
+ # algorithm specification. For distributed training algorithms,
20412
20596
  # specify an instance count greater than 1.
20413
20597
  # @return [Types::ResourceConfig]
20414
20598
  #
20415
20599
  # @!attribute [rw] stopping_condition
20416
20600
  # Specifies a limit to how long a model hyperparameter training job
20417
20601
  # can run. It also specifies how long a managed spot training job has
20418
- # to complete. When the job reaches the time limit, Amazon SageMaker
20419
- # ends the training job. Use this API to cap model training costs.
20602
+ # to complete. When the job reaches the time limit, SageMaker ends the
20603
+ # training job. Use this API to cap model training costs.
20420
20604
  # @return [Types::StoppingCondition]
20421
20605
  #
20422
20606
  # @!attribute [rw] enable_network_isolation
20423
20607
  # Isolates the training container. No inbound or outbound network
20424
20608
  # calls can be made, except for calls between peers within a training
20425
20609
  # cluster for distributed training. If network isolation is used for
20426
- # training jobs that are configured to use a VPC, Amazon SageMaker
20427
- # downloads and uploads customer data and model artifacts through the
20428
- # specified VPC, but the training container does not have network
20429
- # access.
20610
+ # training jobs that are configured to use a VPC, SageMaker downloads
20611
+ # and uploads customer data and model artifacts through the specified
20612
+ # VPC, but the training container does not have network access.
20430
20613
  # @return [Boolean]
20431
20614
  #
20432
20615
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -20476,7 +20659,7 @@ module Aws::SageMaker
20476
20659
  include Aws::Structure
20477
20660
  end
20478
20661
 
20479
- # Specifies summary information about a training job.
20662
+ # The container for the summary information about a training job.
20480
20663
  #
20481
20664
  # @!attribute [rw] training_job_definition_name
20482
20665
  # The training job definition name.
@@ -20507,8 +20690,7 @@ module Aws::SageMaker
20507
20690
  # You are billed for the time interval between the value of
20508
20691
  # `TrainingStartTime` and this time. For successful jobs and stopped
20509
20692
  # jobs, this is the time after model artifacts are uploaded. For
20510
- # failed jobs, this is the time when Amazon SageMaker detects a job
20511
- # failure.
20693
+ # failed jobs, this is the time when SageMaker detects a job failure.
20512
20694
  # @return [Time]
20513
20695
  #
20514
20696
  # @!attribute [rw] training_job_status
@@ -20657,9 +20839,9 @@ module Aws::SageMaker
20657
20839
  #
20658
20840
  # AUTO
20659
20841
  #
20660
- # : Amazon SageMaker stops training jobs launched by the
20661
- # hyperparameter tuning job when they are unlikely to perform better
20662
- # than previously completed training jobs. For more information, see
20842
+ # : SageMaker stops training jobs launched by the hyperparameter
20843
+ # tuning job when they are unlikely to perform better than
20844
+ # previously completed training jobs. For more information, see
20663
20845
  # [Stop Training Jobs Early][1].
20664
20846
  #
20665
20847
  #
@@ -21460,8 +21642,8 @@ module Aws::SageMaker
21460
21642
  #
21461
21643
  # Auto
21462
21644
  #
21463
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
21464
- # the hyperparameter.
21645
+ # : SageMaker hyperparameter tuning chooses the best scale for the
21646
+ # hyperparameter.
21465
21647
  #
21466
21648
  # Linear
21467
21649
  #
@@ -21536,12 +21718,20 @@ module Aws::SageMaker
21536
21718
  #
21537
21719
  # @!attribute [rw] default_resource_spec
21538
21720
  # The default instance type and the Amazon Resource Name (ARN) of the
21539
- # default SageMaker image used by the JupyterServer app.
21721
+ # default SageMaker image used by the JupyterServer app. If you use
21722
+ # the `LifecycleConfigArns` parameter, then this parameter is also
21723
+ # required.
21540
21724
  # @return [Types::ResourceSpec]
21541
21725
  #
21542
21726
  # @!attribute [rw] lifecycle_config_arns
21543
21727
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21544
- # attached to the JupyterServerApp.
21728
+ # attached to the JupyterServerApp. If you use this parameter, the
21729
+ # `DefaultResourceSpec` parameter is also required.
21730
+ #
21731
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21732
+ # an empty list.
21733
+ #
21734
+ # </note>
21545
21735
  # @return [Array<String>]
21546
21736
  #
21547
21737
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
@@ -21578,6 +21768,14 @@ module Aws::SageMaker
21578
21768
  # @!attribute [rw] default_resource_spec
21579
21769
  # The default instance type and the Amazon Resource Name (ARN) of the
21580
21770
  # default SageMaker image used by the KernelGateway app.
21771
+ #
21772
+ # <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
21773
+ # type value set here. The default instance type set here is used when
21774
+ # Apps are created using the Amazon Web Services Command Line
21775
+ # Interface or Amazon Web Services CloudFormation and the instance
21776
+ # type parameter value is not passed.
21777
+ #
21778
+ # </note>
21581
21779
  # @return [Types::ResourceSpec]
21582
21780
  #
21583
21781
  # @!attribute [rw] custom_images
@@ -21588,6 +21786,11 @@ module Aws::SageMaker
21588
21786
  # @!attribute [rw] lifecycle_config_arns
21589
21787
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21590
21788
  # attached to the the user profile or domain.
21789
+ #
21790
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21791
+ # an empty list.
21792
+ #
21793
+ # </note>
21591
21794
  # @return [Array<String>]
21592
21795
  #
21593
21796
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
@@ -21795,8 +21998,8 @@ module Aws::SageMaker
21795
21998
  #
21796
21999
  # @!attribute [rw] content_classifiers
21797
22000
  # Declares that your content is free of personally identifiable
21798
- # information or adult content. Amazon SageMaker may restrict the
21799
- # Amazon Mechanical Turk workers that can view your task based on this
22001
+ # information or adult content. SageMaker may restrict the Amazon
22002
+ # Mechanical Turk workers that can view your task based on this
21800
22003
  # information.
21801
22004
  # @return [Array<String>]
21802
22005
  #
@@ -21940,8 +22143,8 @@ module Aws::SageMaker
21940
22143
  # @return [String]
21941
22144
  #
21942
22145
  # @!attribute [rw] final_active_learning_model_arn
21943
- # The Amazon Resource Name (ARN) for the most recent Amazon SageMaker
21944
- # model trained as part of automated data labeling.
22146
+ # The Amazon Resource Name (ARN) for the most recent SageMaker model
22147
+ # trained as part of automated data labeling.
21945
22148
  # @return [String]
21946
22149
  #
21947
22150
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
@@ -22451,8 +22654,8 @@ module Aws::SageMaker
22451
22654
  # @return [Array<Types::AlgorithmSummary>]
22452
22655
  #
22453
22656
  # @!attribute [rw] next_token
22454
- # If the response is truncated, Amazon SageMaker returns this token.
22455
- # To retrieve the next set of algorithms, use it in the subsequent
22657
+ # If the response is truncated, SageMaker returns this token. To
22658
+ # retrieve the next set of algorithms, use it in the subsequent
22456
22659
  # request.
22457
22660
  # @return [String]
22458
22661
  #
@@ -23726,8 +23929,8 @@ module Aws::SageMaker
23726
23929
  # @return [Array<Types::EndpointConfigSummary>]
23727
23930
  #
23728
23931
  # @!attribute [rw] next_token
23729
- # If the response is truncated, Amazon SageMaker returns this token.
23730
- # To retrieve the next set of endpoint configurations, use it in the
23932
+ # If the response is truncated, SageMaker returns this token. To
23933
+ # retrieve the next set of endpoint configurations, use it in the
23731
23934
  # subsequent request
23732
23935
  # @return [String]
23733
23936
  #
@@ -23826,8 +24029,8 @@ module Aws::SageMaker
23826
24029
  # @return [Array<Types::EndpointSummary>]
23827
24030
  #
23828
24031
  # @!attribute [rw] next_token
23829
- # If the response is truncated, Amazon SageMaker returns this token.
23830
- # To retrieve the next set of training jobs, use it in the subsequent
24032
+ # If the response is truncated, SageMaker returns this token. To
24033
+ # retrieve the next set of training jobs, use it in the subsequent
23831
24034
  # request.
23832
24035
  # @return [String]
23833
24036
  #
@@ -24592,8 +24795,8 @@ module Aws::SageMaker
24592
24795
  # @return [Array<Types::LabelingJobForWorkteamSummary>]
24593
24796
  #
24594
24797
  # @!attribute [rw] next_token
24595
- # If the response is truncated, Amazon SageMaker returns this token.
24596
- # To retrieve the next set of labeling jobs, use it in the subsequent
24798
+ # If the response is truncated, SageMaker returns this token. To
24799
+ # retrieve the next set of labeling jobs, use it in the subsequent
24597
24800
  # request.
24598
24801
  # @return [String]
24599
24802
  #
@@ -24693,8 +24896,8 @@ module Aws::SageMaker
24693
24896
  # @return [Array<Types::LabelingJobSummary>]
24694
24897
  #
24695
24898
  # @!attribute [rw] next_token
24696
- # If the response is truncated, Amazon SageMaker returns this token.
24697
- # To retrieve the next set of labeling jobs, use it in the subsequent
24899
+ # If the response is truncated, SageMaker returns this token. To
24900
+ # retrieve the next set of labeling jobs, use it in the subsequent
24698
24901
  # request.
24699
24902
  # @return [String]
24700
24903
  #
@@ -25191,8 +25394,8 @@ module Aws::SageMaker
25191
25394
  # @return [Array<Types::ModelPackageSummary>]
25192
25395
  #
25193
25396
  # @!attribute [rw] next_token
25194
- # If the response is truncated, Amazon SageMaker returns this token.
25195
- # To retrieve the next set of model packages, use it in the subsequent
25397
+ # If the response is truncated, SageMaker returns this token. To
25398
+ # retrieve the next set of model packages, use it in the subsequent
25196
25399
  # request.
25197
25400
  # @return [String]
25198
25401
  #
@@ -25359,9 +25562,8 @@ module Aws::SageMaker
25359
25562
  # @return [Array<Types::ModelSummary>]
25360
25563
  #
25361
25564
  # @!attribute [rw] next_token
25362
- # If the response is truncated, Amazon SageMaker returns this token.
25363
- # To retrieve the next set of models, use it in the subsequent
25364
- # request.
25565
+ # If the response is truncated, SageMaker returns this token. To
25566
+ # retrieve the next set of models, use it in the subsequent request.
25365
25567
  # @return [String]
25366
25568
  #
25367
25569
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
@@ -25700,8 +25902,8 @@ module Aws::SageMaker
25700
25902
  end
25701
25903
 
25702
25904
  # @!attribute [rw] next_token
25703
- # If the response is truncated, Amazon SageMaker returns this token.
25704
- # To get the next set of lifecycle configurations, use it in the next
25905
+ # If the response is truncated, SageMaker returns this token. To get
25906
+ # the next set of lifecycle configurations, use it in the next
25705
25907
  # request.
25706
25908
  # @return [String]
25707
25909
  #
@@ -25834,8 +26036,8 @@ module Aws::SageMaker
25834
26036
 
25835
26037
  # @!attribute [rw] next_token
25836
26038
  # If the response to the previous `ListNotebookInstances` request was
25837
- # truncated, Amazon SageMaker returns this token. To retrieve the next
25838
- # set of notebook instances, use the token in the next request.
26039
+ # truncated, SageMaker returns this token. To retrieve the next set of
26040
+ # notebook instances, use the token in the next request.
25839
26041
  # @return [String]
25840
26042
  #
25841
26043
  # @!attribute [rw] notebook_instances
@@ -26483,8 +26685,8 @@ module Aws::SageMaker
26483
26685
  #
26484
26686
  # @!attribute [rw] next_token
26485
26687
  # If the response to the previous `ListTags` request is truncated,
26486
- # Amazon SageMaker returns this token. To retrieve the next set of
26487
- # tags, use it in the subsequent request.
26688
+ # SageMaker returns this token. To retrieve the next set of tags, use
26689
+ # it in the subsequent request.
26488
26690
  # @return [String]
26489
26691
  #
26490
26692
  # @!attribute [rw] max_results
@@ -26506,7 +26708,7 @@ module Aws::SageMaker
26506
26708
  # @return [Array<Types::Tag>]
26507
26709
  #
26508
26710
  # @!attribute [rw] next_token
26509
- # If response is truncated, Amazon SageMaker includes a token in the
26711
+ # If response is truncated, SageMaker includes a token in the
26510
26712
  # response. You can use this token in your subsequent request to fetch
26511
26713
  # next set of tokens.
26512
26714
  # @return [String]
@@ -26685,8 +26887,8 @@ module Aws::SageMaker
26685
26887
  # @return [Array<Types::TrainingJobSummary>]
26686
26888
  #
26687
26889
  # @!attribute [rw] next_token
26688
- # If the response is truncated, Amazon SageMaker returns this token.
26689
- # To retrieve the next set of training jobs, use it in the subsequent
26890
+ # If the response is truncated, SageMaker returns this token. To
26891
+ # retrieve the next set of training jobs, use it in the subsequent
26690
26892
  # request.
26691
26893
  # @return [String]
26692
26894
  #
@@ -27292,20 +27494,34 @@ module Aws::SageMaker
27292
27494
  # The dataset split from which the AutoML job produced the metric.
27293
27495
  # @return [String]
27294
27496
  #
27497
+ # @!attribute [rw] standard_metric_name
27498
+ # The name of the standard metric.
27499
+ #
27500
+ # <note markdown="1"> For definitions of the standard metrics, see [ `Autopilot candidate
27501
+ # metrics` ][1].
27502
+ #
27503
+ # </note>
27504
+ #
27505
+ #
27506
+ #
27507
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-metrics
27508
+ # @return [String]
27509
+ #
27295
27510
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDatum AWS API Documentation
27296
27511
  #
27297
27512
  class MetricDatum < Struct.new(
27298
27513
  :metric_name,
27299
27514
  :value,
27300
- :set)
27515
+ :set,
27516
+ :standard_metric_name)
27301
27517
  SENSITIVE = []
27302
27518
  include Aws::Structure
27303
27519
  end
27304
27520
 
27305
27521
  # Specifies a metric that the training algorithm writes to `stderr` or
27306
- # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
27307
- # metrics. You specify one metric that a hyperparameter tuning job uses
27308
- # as its objective metric to choose the best training job.
27522
+ # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
27523
+ # You specify one metric that a hyperparameter tuning job uses as its
27524
+ # objective metric to choose the best training job.
27309
27525
  #
27310
27526
  # @note When making an API call, you may pass MetricDefinition
27311
27527
  # data as a hash:
@@ -27509,11 +27725,13 @@ module Aws::SageMaker
27509
27725
  # }
27510
27726
  #
27511
27727
  # @!attribute [rw] invocations_timeout_in_seconds
27512
- # The timeout value in seconds for an invocation request.
27728
+ # The timeout value in seconds for an invocation request. The default
27729
+ # value is 600.
27513
27730
  # @return [Integer]
27514
27731
  #
27515
27732
  # @!attribute [rw] invocations_max_retries
27516
27733
  # The maximum number of retries when invocation requests are failing.
27734
+ # The default value is 3.
27517
27735
  # @return [Integer]
27518
27736
  #
27519
27737
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
@@ -28017,8 +28235,8 @@ module Aws::SageMaker
28017
28235
  # @return [Types::SourceAlgorithmSpecification]
28018
28236
  #
28019
28237
  # @!attribute [rw] validation_specification
28020
- # Specifies batch transform jobs that Amazon SageMaker runs to
28021
- # validate your model package.
28238
+ # Specifies batch transform jobs that SageMaker runs to validate your
28239
+ # model package.
28022
28240
  # @return [Types::ModelPackageValidationSpecification]
28023
28241
  #
28024
28242
  # @!attribute [rw] model_package_status
@@ -28197,11 +28415,11 @@ module Aws::SageMaker
28197
28415
  # code is stored.
28198
28416
  #
28199
28417
  # If you are using your own custom algorithm instead of an algorithm
28200
- # provided by Amazon SageMaker, the inference code must meet Amazon
28201
- # SageMaker requirements. Amazon SageMaker supports both
28202
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
28203
- # path formats. For more information, see [Using Your Own Algorithms
28204
- # with Amazon SageMaker][1].
28418
+ # provided by SageMaker, the inference code must meet SageMaker
28419
+ # requirements. SageMaker supports both `registry/repository[:tag]`
28420
+ # and `registry/repository[@digest]` image path formats. For more
28421
+ # information, see [Using Your Own Algorithms with Amazon
28422
+ # SageMaker][1].
28205
28423
  #
28206
28424
  #
28207
28425
  #
@@ -28533,8 +28751,8 @@ module Aws::SageMaker
28533
28751
  include Aws::Structure
28534
28752
  end
28535
28753
 
28536
- # Specifies batch transform jobs that Amazon SageMaker runs to validate
28537
- # your model package.
28754
+ # Specifies batch transform jobs that SageMaker runs to validate your
28755
+ # model package.
28538
28756
  #
28539
28757
  # @note When making an API call, you may pass ModelPackageValidationSpecification
28540
28758
  # data as a hash:
@@ -28584,8 +28802,8 @@ module Aws::SageMaker
28584
28802
  #
28585
28803
  # @!attribute [rw] validation_profiles
28586
28804
  # An array of `ModelPackageValidationProfile` objects, each of which
28587
- # specifies a batch transform job that Amazon SageMaker runs to
28588
- # validate your model package.
28805
+ # specifies a batch transform job that SageMaker runs to validate your
28806
+ # model package.
28589
28807
  # @return [Array<Types::ModelPackageValidationProfile>]
28590
28808
  #
28591
28809
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
@@ -29958,8 +30176,7 @@ module Aws::SageMaker
29958
30176
  include Aws::Structure
29959
30177
  end
29960
30178
 
29961
- # Provides summary information for an Amazon SageMaker notebook
29962
- # instance.
30179
+ # Provides summary information for an SageMaker notebook instance.
29963
30180
  #
29964
30181
  # @!attribute [rw] notebook_instance_name
29965
30182
  # The name of the notebook instance that you want a summary for.
@@ -29974,7 +30191,7 @@ module Aws::SageMaker
29974
30191
  # @return [String]
29975
30192
  #
29976
30193
  # @!attribute [rw] url
29977
- # The URL that you use to connect to the Jupyter instance running in
30194
+ # The URL that you use to connect to the Jupyter notebook running in
29978
30195
  # your notebook instance.
29979
30196
  # @return [String]
29980
30197
  #
@@ -30010,8 +30227,7 @@ module Aws::SageMaker
30010
30227
  # repository in [Amazon Web Services CodeCommit][1] or in any other
30011
30228
  # Git repository. When you open a notebook instance, it opens in the
30012
30229
  # directory that contains this repository. For more information, see
30013
- # [Associating Git Repositories with Amazon SageMaker Notebook
30014
- # Instances][2].
30230
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
30015
30231
  #
30016
30232
  #
30017
30233
  #
@@ -30026,7 +30242,7 @@ module Aws::SageMaker
30026
30242
  # in [Amazon Web Services CodeCommit][1] or in any other Git
30027
30243
  # repository. These repositories are cloned at the same level as the
30028
30244
  # default repository of your notebook instance. For more information,
30029
- # see [Associating Git Repositories with Amazon SageMaker Notebook
30245
+ # see [Associating Git Repositories with SageMaker Notebook
30030
30246
  # Instances][2].
30031
30247
  #
30032
30248
  #
@@ -30652,9 +30868,9 @@ module Aws::SageMaker
30652
30868
  #
30653
30869
  # @!attribute [rw] kms_key_id
30654
30870
  # The Amazon Web Services Key Management Service (Amazon Web Services
30655
- # KMS) key that Amazon SageMaker uses to encrypt the model artifacts
30656
- # at rest using Amazon S3 server-side encryption. The `KmsKeyId` can
30657
- # be any of the following formats:
30871
+ # KMS) key that SageMaker uses to encrypt the model artifacts at rest
30872
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
30873
+ # the following formats:
30658
30874
  #
30659
30875
  # * // KMS Key ID
30660
30876
  #
@@ -30672,14 +30888,13 @@ module Aws::SageMaker
30672
30888
  #
30673
30889
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
30674
30890
  #
30675
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
30676
- # SageMaker execution role must include permissions to call
30677
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
30678
- # uses the default KMS key for Amazon S3 for your role's account.
30679
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
30680
- # for `OutputDataConfig`. If you use a bucket policy with an
30681
- # `s3:PutObject` permission that only allows objects with server-side
30682
- # encryption, set the condition key of
30891
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
30892
+ # execution role must include permissions to call `kms:Encrypt`. If
30893
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
30894
+ # for Amazon S3 for your role's account. SageMaker uses server-side
30895
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
30896
+ # a bucket policy with an `s3:PutObject` permission that only allows
30897
+ # objects with server-side encryption, set the condition key of
30683
30898
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
30684
30899
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
30685
30900
  # Simple Storage Service Developer Guide.*
@@ -30697,8 +30912,8 @@ module Aws::SageMaker
30697
30912
  # @return [String]
30698
30913
  #
30699
30914
  # @!attribute [rw] s3_output_path
30700
- # Identifies the S3 path where you want Amazon SageMaker to store the
30701
- # model artifacts. For example, `s3://bucket-name/key-name-prefix`.
30915
+ # Identifies the S3 path where you want SageMaker to store the model
30916
+ # artifacts. For example, `s3://bucket-name/key-name-prefix`.
30702
30917
  # @return [String]
30703
30918
  #
30704
30919
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
@@ -31027,23 +31242,11 @@ module Aws::SageMaker
31027
31242
  #
31028
31243
  # @!attribute [rw] current_serverless_config
31029
31244
  # The serverless configuration for the endpoint.
31030
- #
31031
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31032
- # is subject to change. We do not recommend using this feature in
31033
- # production environments.
31034
- #
31035
- # </note>
31036
31245
  # @return [Types::ProductionVariantServerlessConfig]
31037
31246
  #
31038
31247
  # @!attribute [rw] desired_serverless_config
31039
31248
  # The serverless configuration requested for this deployment, as
31040
31249
  # specified in the endpoint configuration for the endpoint.
31041
- #
31042
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31043
- # is subject to change. We do not recommend using this feature in
31044
- # production environments.
31045
- #
31046
- # </note>
31047
31250
  # @return [Types::ProductionVariantServerlessConfig]
31048
31251
  #
31049
31252
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
@@ -32245,8 +32448,8 @@ module Aws::SageMaker
32245
32448
 
32246
32449
  # Identifies a model that you want to host and the resources chosen to
32247
32450
  # deploy for hosting it. If you are deploying multiple models, tell
32248
- # Amazon SageMaker how to distribute traffic among the models by
32249
- # specifying variant weights.
32451
+ # SageMaker how to distribute traffic among the models by specifying
32452
+ # variant weights.
32250
32453
  #
32251
32454
  # @note When making an API call, you may pass ProductionVariant
32252
32455
  # data as a hash:
@@ -32313,12 +32516,6 @@ module Aws::SageMaker
32313
32516
  # The serverless configuration for an endpoint. Specifies a serverless
32314
32517
  # endpoint configuration instead of an instance-based endpoint
32315
32518
  # configuration.
32316
- #
32317
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32318
- # is subject to change. We do not recommend using this feature in
32319
- # production environments.
32320
- #
32321
- # </note>
32322
32519
  # @return [Types::ProductionVariantServerlessConfig]
32323
32520
  #
32324
32521
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -32353,9 +32550,9 @@ module Aws::SageMaker
32353
32550
  #
32354
32551
  # @!attribute [rw] kms_key_id
32355
32552
  # The Amazon Web Services Key Management Service (Amazon Web Services
32356
- # KMS) key that Amazon SageMaker uses to encrypt the core dump data at
32357
- # rest using Amazon S3 server-side encryption. The `KmsKeyId` can be
32358
- # any of the following formats:
32553
+ # KMS) key that SageMaker uses to encrypt the core dump data at rest
32554
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
32555
+ # the following formats:
32359
32556
  #
32360
32557
  # * // KMS Key ID
32361
32558
  #
@@ -32373,14 +32570,13 @@ module Aws::SageMaker
32373
32570
  #
32374
32571
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
32375
32572
  #
32376
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
32377
- # SageMaker execution role must include permissions to call
32378
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
32379
- # uses the default KMS key for Amazon S3 for your role's account.
32380
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
32381
- # for `OutputDataConfig`. If you use a bucket policy with an
32382
- # `s3:PutObject` permission that only allows objects with server-side
32383
- # encryption, set the condition key of
32573
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
32574
+ # execution role must include permissions to call `kms:Encrypt`. If
32575
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
32576
+ # for Amazon S3 for your role's account. SageMaker uses server-side
32577
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
32578
+ # a bucket policy with an `s3:PutObject` permission that only allows
32579
+ # objects with server-side encryption, set the condition key of
32384
32580
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
32385
32581
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
32386
32582
  # Simple Storage Service Developer Guide.*
@@ -32406,10 +32602,6 @@ module Aws::SageMaker
32406
32602
  include Aws::Structure
32407
32603
  end
32408
32604
 
32409
- # Serverless Inference is in preview release for Amazon SageMaker and is
32410
- # subject to change. We do not recommend using this feature in
32411
- # production environments.
32412
- #
32413
32605
  # Specifies the serverless configuration for an endpoint variant.
32414
32606
  #
32415
32607
  # @note When making an API call, you may pass ProductionVariantServerlessConfig
@@ -32519,22 +32711,10 @@ module Aws::SageMaker
32519
32711
  #
32520
32712
  # @!attribute [rw] current_serverless_config
32521
32713
  # The serverless configuration for the endpoint.
32522
- #
32523
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32524
- # is subject to change. We do not recommend using this feature in
32525
- # production environments.
32526
- #
32527
- # </note>
32528
32714
  # @return [Types::ProductionVariantServerlessConfig]
32529
32715
  #
32530
32716
  # @!attribute [rw] desired_serverless_config
32531
32717
  # The serverless configuration requested for the endpoint update.
32532
- #
32533
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32534
- # is subject to change. We do not recommend using this feature in
32535
- # production environments.
32536
- #
32537
- # </note>
32538
32718
  # @return [Types::ProductionVariantServerlessConfig]
32539
32719
  #
32540
32720
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
@@ -33351,8 +33531,8 @@ module Aws::SageMaker
33351
33531
  # @!attribute [rw] properties
33352
33532
  # Filter the lineage entities connected to the `StartArn`(s) by a set
33353
33533
  # if property key value pairs. If multiple pairs are provided, an
33354
- # entity will be included in the results if it matches any of the
33355
- # provided pairs.
33534
+ # entity is included in the results if it matches any of the provided
33535
+ # pairs.
33356
33536
  # @return [Hash<String,String>]
33357
33537
  #
33358
33538
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
@@ -33398,12 +33578,13 @@ module Aws::SageMaker
33398
33578
  # @return [Array<String>]
33399
33579
  #
33400
33580
  # @!attribute [rw] direction
33401
- # Associations between lineage entities are directed. This parameter
33402
- # determines the direction from the StartArn(s) the query will look.
33581
+ # Associations between lineage entities have a direction. This
33582
+ # parameter determines the direction from the StartArn(s) that the
33583
+ # query traverses.
33403
33584
  # @return [String]
33404
33585
  #
33405
33586
  # @!attribute [rw] include_edges
33406
- # Setting this value to `True` will retrieve not only the entities of
33587
+ # Setting this value to `True` retrieves not only the entities of
33407
33588
  # interest but also the [Associations][1] and lineage entities on the
33408
33589
  # path. Set to `False` to only return lineage entities that match your
33409
33590
  # query.
@@ -33432,8 +33613,8 @@ module Aws::SageMaker
33432
33613
  #
33433
33614
  # @!attribute [rw] max_depth
33434
33615
  # The maximum depth in lineage relationships from the `StartArns` that
33435
- # will be traversed. Depth is a measure of the number of
33436
- # `Associations` from the `StartArn` entity to the matched results.
33616
+ # are traversed. Depth is a measure of the number of `Associations`
33617
+ # from the `StartArn` entity to the matched results.
33437
33618
  # @return [Integer]
33438
33619
  #
33439
33620
  # @!attribute [rw] max_results
@@ -33486,11 +33667,43 @@ module Aws::SageMaker
33486
33667
 
33487
33668
  # A collection of settings that apply to an `RSessionGateway` app.
33488
33669
  #
33489
- # @api private
33670
+ # @note When making an API call, you may pass RSessionAppSettings
33671
+ # data as a hash:
33672
+ #
33673
+ # {
33674
+ # default_resource_spec: {
33675
+ # sage_maker_image_arn: "ImageArn",
33676
+ # sage_maker_image_version_arn: "ImageVersionArn",
33677
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
33678
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
33679
+ # },
33680
+ # custom_images: [
33681
+ # {
33682
+ # image_name: "ImageName", # required
33683
+ # image_version_number: 1,
33684
+ # app_image_config_name: "AppImageConfigName", # required
33685
+ # },
33686
+ # ],
33687
+ # }
33688
+ #
33689
+ # @!attribute [rw] default_resource_spec
33690
+ # Specifies the ARN's of a SageMaker image and SageMaker image
33691
+ # version, and the instance type that the version runs on.
33692
+ # @return [Types::ResourceSpec]
33693
+ #
33694
+ # @!attribute [rw] custom_images
33695
+ # A list of custom SageMaker images that are configured to run as a
33696
+ # RSession app.
33697
+ # @return [Array<Types::CustomImage>]
33490
33698
  #
33491
33699
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RSessionAppSettings AWS API Documentation
33492
33700
  #
33493
- class RSessionAppSettings < Aws::EmptyStructure; end
33701
+ class RSessionAppSettings < Struct.new(
33702
+ :default_resource_spec,
33703
+ :custom_images)
33704
+ SENSITIVE = []
33705
+ include Aws::Structure
33706
+ end
33494
33707
 
33495
33708
  # A collection of settings that configure user interaction with the
33496
33709
  # `RStudioServerPro` app. `RStudioServerProAppSettings` cannot be
@@ -34232,15 +34445,15 @@ module Aws::SageMaker
34232
34445
  #
34233
34446
  # You must specify sufficient ML storage for your scenario.
34234
34447
  #
34235
- # <note markdown="1"> Amazon SageMaker supports only the General Purpose SSD (gp2) ML
34236
- # storage volume type.
34448
+ # <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
34449
+ # volume type.
34237
34450
  #
34238
34451
  # </note>
34239
34452
  #
34240
34453
  # <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
34241
34454
  # total size, dependent on the instance type. When using these
34242
- # instances for training, Amazon SageMaker mounts the local instance
34243
- # storage instead of Amazon EBS gp2 storage. You can't request a
34455
+ # instances for training, SageMaker mounts the local instance storage
34456
+ # instead of Amazon EBS gp2 storage. You can't request a
34244
34457
  # `VolumeSizeInGB` greater than the total size of the local instance
34245
34458
  # storage.
34246
34459
  #
@@ -34256,9 +34469,9 @@ module Aws::SageMaker
34256
34469
  # @return [Integer]
34257
34470
  #
34258
34471
  # @!attribute [rw] volume_kms_key_id
34259
- # The Amazon Web Services KMS key that Amazon SageMaker uses to
34260
- # encrypt data on the storage volume attached to the ML compute
34261
- # instance(s) that run the training job.
34472
+ # The Amazon Web Services KMS key that SageMaker uses to encrypt data
34473
+ # on the storage volume attached to the ML compute instance(s) that
34474
+ # run the training job.
34262
34475
  #
34263
34476
  # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
34264
34477
  # the instance type. Local storage volumes are encrypted using a
@@ -34313,8 +34526,8 @@ module Aws::SageMaker
34313
34526
  include Aws::Structure
34314
34527
  end
34315
34528
 
34316
- # You have exceeded an Amazon SageMaker resource limit. For example, you
34317
- # might have too many training jobs created.
34529
+ # You have exceeded an SageMaker resource limit. For example, you might
34530
+ # have too many training jobs created.
34318
34531
  #
34319
34532
  # @!attribute [rw] message
34320
34533
  # @return [String]
@@ -34393,6 +34606,12 @@ module Aws::SageMaker
34393
34606
  #
34394
34607
  # @!attribute [rw] instance_type
34395
34608
  # The instance type that the image version runs on.
34609
+ #
34610
+ # <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
34611
+ # Apps do not support the `system` value, but support all other values
34612
+ # for available instance types.
34613
+ #
34614
+ # </note>
34396
34615
  # @return [String]
34397
34616
  #
34398
34617
  # @!attribute [rw] lifecycle_config_arn
@@ -34527,11 +34746,11 @@ module Aws::SageMaker
34527
34746
  #
34528
34747
  # @!attribute [rw] s3_data_type
34529
34748
  # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
34530
- # Amazon SageMaker uses all objects that match the specified key name
34531
- # prefix for model training.
34749
+ # SageMaker uses all objects that match the specified key name prefix
34750
+ # for model training.
34532
34751
  #
34533
34752
  # If you choose `ManifestFile`, `S3Uri` identifies an object that is a
34534
- # manifest file containing a list of object keys that you want Amazon
34753
+ # manifest file containing a list of object keys that you want
34535
34754
  # SageMaker to use for model training.
34536
34755
  #
34537
34756
  # If you choose `AugmentedManifestFile`, S3Uri identifies an object
@@ -34585,17 +34804,17 @@ module Aws::SageMaker
34585
34804
  #
34586
34805
  # The complete set of `S3Uri` in this manifest is the input data for
34587
34806
  # the channel for this data source. The object that each `S3Uri`
34588
- # points to must be readable by the IAM role that Amazon SageMaker
34589
- # uses to perform tasks on your behalf.
34807
+ # points to must be readable by the IAM role that SageMaker uses to
34808
+ # perform tasks on your behalf.
34590
34809
  # @return [String]
34591
34810
  #
34592
34811
  # @!attribute [rw] s3_data_distribution_type
34593
- # If you want Amazon SageMaker to replicate the entire dataset on each
34594
- # ML compute instance that is launched for model training, specify
34812
+ # If you want SageMaker to replicate the entire dataset on each ML
34813
+ # compute instance that is launched for model training, specify
34595
34814
  # `FullyReplicated`.
34596
34815
  #
34597
- # If you want Amazon SageMaker to replicate a subset of data on each
34598
- # ML compute instance that is launched for model training, specify
34816
+ # If you want SageMaker to replicate a subset of data on each ML
34817
+ # compute instance that is launched for model training, specify
34599
34818
  # `ShardedByS3Key`. If there are *n* ML compute instances launched for
34600
34819
  # a training job, each instance gets approximately 1/*n* of the number
34601
34820
  # of S3 objects. In this case, model training on each machine uses
@@ -35019,9 +35238,9 @@ module Aws::SageMaker
35019
35238
  # transitioned through. A training job can be in one of several states,
35020
35239
  # for example, starting, downloading, training, or uploading. Within
35021
35240
  # each state, there are a number of intermediate states. For example,
35022
- # within the starting state, Amazon SageMaker could be starting the
35023
- # training job or launching the ML instances. These transitional states
35024
- # are referred to as the job's secondary status.
35241
+ # within the starting state, SageMaker could be starting the training
35242
+ # job or launching the ML instances. These transitional states are
35243
+ # referred to as the job's secondary status.
35025
35244
  #
35026
35245
  # @!attribute [rw] status
35027
35246
  # Contains a secondary status information from a training job.
@@ -35086,8 +35305,8 @@ module Aws::SageMaker
35086
35305
  # @!attribute [rw] status_message
35087
35306
  # A detailed description of the progress within a secondary status.
35088
35307
  #
35089
- # Amazon SageMaker provides secondary statuses and status messages
35090
- # that apply to each of them:
35308
+ # SageMaker provides secondary statuses and status messages that apply
35309
+ # to each of them:
35091
35310
  #
35092
35311
  # Starting
35093
35312
  # : * Starting the training job.
@@ -35452,9 +35671,9 @@ module Aws::SageMaker
35452
35671
  end
35453
35672
 
35454
35673
  # Specifies an algorithm that was used to create the model package. The
35455
- # algorithm must be either an algorithm resource in your Amazon
35456
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35457
- # that you are subscribed to.
35674
+ # algorithm must be either an algorithm resource in your SageMaker
35675
+ # account or an algorithm in Amazon Web Services Marketplace that you
35676
+ # are subscribed to.
35458
35677
  #
35459
35678
  # @note When making an API call, you may pass SourceAlgorithm
35460
35679
  # data as a hash:
@@ -35477,9 +35696,9 @@ module Aws::SageMaker
35477
35696
  #
35478
35697
  # @!attribute [rw] algorithm_name
35479
35698
  # The name of an algorithm that was used to create the model package.
35480
- # The algorithm must be either an algorithm resource in your Amazon
35481
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35482
- # that you are subscribed to.
35699
+ # The algorithm must be either an algorithm resource in your SageMaker
35700
+ # account or an algorithm in Amazon Web Services Marketplace that you
35701
+ # are subscribed to.
35483
35702
  # @return [String]
35484
35703
  #
35485
35704
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
@@ -35923,21 +36142,21 @@ module Aws::SageMaker
35923
36142
  # Specifies a limit to how long a model training job or model
35924
36143
  # compilation job can run. It also specifies how long a managed spot
35925
36144
  # training job has to complete. When the job reaches the time limit,
35926
- # Amazon SageMaker ends the training or compilation job. Use this API to
35927
- # cap model training costs.
35928
- #
35929
- # To stop a training job, Amazon SageMaker sends the algorithm the
35930
- # `SIGTERM` signal, which delays job termination for 120 seconds.
35931
- # Algorithms can use this 120-second window to save the model artifacts,
35932
- # so the results of training are not lost.
35933
- #
35934
- # The training algorithms provided by Amazon SageMaker automatically
35935
- # save the intermediate results of a model training job when possible.
35936
- # This attempt to save artifacts is only a best effort case as model
35937
- # might not be in a state from which it can be saved. For example, if
35938
- # training has just started, the model might not be ready to save. When
35939
- # saved, this intermediate data is a valid model artifact. You can use
35940
- # it to create a model with `CreateModel`.
36145
+ # SageMaker ends the training or compilation job. Use this API to cap
36146
+ # model training costs.
36147
+ #
36148
+ # To stop a training job, SageMaker sends the algorithm the `SIGTERM`
36149
+ # signal, which delays job termination for 120 seconds. Algorithms can
36150
+ # use this 120-second window to save the model artifacts, so the results
36151
+ # of training are not lost.
36152
+ #
36153
+ # The training algorithms provided by SageMaker automatically save the
36154
+ # intermediate results of a model training job when possible. This
36155
+ # attempt to save artifacts is only a best effort case as model might
36156
+ # not be in a state from which it can be saved. For example, if training
36157
+ # has just started, the model might not be ready to save. When saved,
36158
+ # this intermediate data is a valid model artifact. You can use it to
36159
+ # create a model with `CreateModel`.
35941
36160
  #
35942
36161
  # <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
35943
36162
  # intermediate model artifacts. When training NTMs, make sure that the
@@ -35958,14 +36177,14 @@ module Aws::SageMaker
35958
36177
  # compilation job can run.
35959
36178
  #
35960
36179
  # For compilation jobs, if the job does not complete during this time,
35961
- # you will receive a `TimeOut` error. We recommend starting with 900
35962
- # seconds and increase as necessary based on your model.
36180
+ # a `TimeOut` error is generated. We recommend starting with 900
36181
+ # seconds and increasing as necessary based on your model.
35963
36182
  #
35964
36183
  # For all other jobs, if the job does not complete during this time,
35965
- # Amazon SageMaker ends the job. When `RetryStrategy` is specified in
35966
- # the job request, `MaxRuntimeInSeconds` specifies the maximum time
35967
- # for all of the attempts in total, not each individual attempt. The
35968
- # default value is 1 day. The maximum value is 28 days.
36184
+ # SageMaker ends the job. When `RetryStrategy` is specified in the job
36185
+ # request, `MaxRuntimeInSeconds` specifies the maximum time for all of
36186
+ # the attempts in total, not each individual attempt. The default
36187
+ # value is 1 day. The maximum value is 28 days.
35969
36188
  # @return [Integer]
35970
36189
  #
35971
36190
  # @!attribute [rw] max_wait_time_in_seconds
@@ -35973,7 +36192,7 @@ module Aws::SageMaker
35973
36192
  # job has to complete. It is the amount of time spent waiting for Spot
35974
36193
  # capacity plus the amount of time the job can run. It must be equal
35975
36194
  # to or greater than `MaxRuntimeInSeconds`. If the job does not
35976
- # complete during this time, Amazon SageMaker ends the job.
36195
+ # complete during this time, SageMaker ends the job.
35977
36196
  #
35978
36197
  # When `RetryStrategy` is specified in the job request,
35979
36198
  # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
@@ -36393,8 +36612,8 @@ module Aws::SageMaker
36393
36612
  # For detailed information about the secondary status of the training
36394
36613
  # job, see `StatusMessage` under SecondaryStatusTransition.
36395
36614
  #
36396
- # Amazon SageMaker provides primary statuses and secondary statuses
36397
- # that apply to each of them:
36615
+ # SageMaker provides primary statuses and secondary statuses that
36616
+ # apply to each of them:
36398
36617
  #
36399
36618
  # InProgress
36400
36619
  # : * `Starting` - Starting the training job.
@@ -36467,7 +36686,7 @@ module Aws::SageMaker
36467
36686
  #
36468
36687
  # @!attribute [rw] output_data_config
36469
36688
  # The S3 path where model artifacts that you configured when creating
36470
- # the job are stored. Amazon SageMaker creates subfolders for model
36689
+ # the job are stored. SageMaker creates subfolders for model
36471
36690
  # artifacts.
36472
36691
  # @return [Types::OutputDataConfig]
36473
36692
  #
@@ -36489,13 +36708,13 @@ module Aws::SageMaker
36489
36708
  # @!attribute [rw] stopping_condition
36490
36709
  # Specifies a limit to how long a model training job can run. It also
36491
36710
  # specifies how long a managed Spot training job has to complete. When
36492
- # the job reaches the time limit, Amazon SageMaker ends the training
36493
- # job. Use this API to cap model training costs.
36711
+ # the job reaches the time limit, SageMaker ends the training job. Use
36712
+ # this API to cap model training costs.
36494
36713
  #
36495
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
36496
- # signal, which delays job termination for 120 seconds. Algorithms can
36497
- # use this 120-second window to save the model artifacts, so the
36498
- # results of training are not lost.
36714
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
36715
+ # which delays job termination for 120 seconds. Algorithms can use
36716
+ # this 120-second window to save the model artifacts, so the results
36717
+ # of training are not lost.
36499
36718
  # @return [Types::StoppingCondition]
36500
36719
  #
36501
36720
  # @!attribute [rw] creation_time
@@ -36516,8 +36735,7 @@ module Aws::SageMaker
36516
36735
  # You are billed for the time interval between the value of
36517
36736
  # `TrainingStartTime` and this time. For successful jobs and stopped
36518
36737
  # jobs, this is the time after model artifacts are uploaded. For
36519
- # failed jobs, this is the time when Amazon SageMaker detects a job
36520
- # failure.
36738
+ # failed jobs, this is the time when SageMaker detects a job failure.
36521
36739
  # @return [Time]
36522
36740
  #
36523
36741
  # @!attribute [rw] last_modified_time
@@ -36784,7 +37002,7 @@ module Aws::SageMaker
36784
37002
  #
36785
37003
  # @!attribute [rw] output_data_config
36786
37004
  # the path to the S3 bucket where you want to store model artifacts.
36787
- # Amazon SageMaker creates subfolders for the artifacts.
37005
+ # SageMaker creates subfolders for the artifacts.
36788
37006
  # @return [Types::OutputDataConfig]
36789
37007
  #
36790
37008
  # @!attribute [rw] resource_config
@@ -36795,12 +37013,12 @@ module Aws::SageMaker
36795
37013
  # @!attribute [rw] stopping_condition
36796
37014
  # Specifies a limit to how long a model training job can run. It also
36797
37015
  # specifies how long a managed Spot training job has to complete. When
36798
- # the job reaches the time limit, Amazon SageMaker ends the training
36799
- # job. Use this API to cap model training costs.
37016
+ # the job reaches the time limit, SageMaker ends the training job. Use
37017
+ # this API to cap model training costs.
36800
37018
  #
36801
- # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
36802
- # signal, which delays job termination for 120 seconds. Algorithms can
36803
- # use this 120-second window to save the model artifacts.
37019
+ # To stop a job, SageMaker sends the algorithm the SIGTERM signal,
37020
+ # which delays job termination for 120 seconds. Algorithms can use
37021
+ # this 120-second window to save the model artifacts.
36804
37022
  # @return [Types::StoppingCondition]
36805
37023
  #
36806
37024
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
@@ -37545,14 +37763,15 @@ module Aws::SageMaker
37545
37763
  # Simple Storage Service Developer Guide.*
37546
37764
  #
37547
37765
  # The KMS key policy must grant permission to the IAM role that you
37548
- # specify in your CreateModel request. For more information, see
37549
- # [Using Key Policies in Amazon Web Services KMS][2] in the *Amazon
37766
+ # specify in your [CreateModel][2] request. For more information, see
37767
+ # [Using Key Policies in Amazon Web Services KMS][3] in the *Amazon
37550
37768
  # Web Services Key Management Service Developer Guide*.
37551
37769
  #
37552
37770
  #
37553
37771
  #
37554
37772
  # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
37555
- # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
37773
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
37774
+ # [3]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
37556
37775
  # @return [String]
37557
37776
  #
37558
37777
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformOutput AWS API Documentation
@@ -38872,6 +39091,19 @@ module Aws::SageMaker
38872
39091
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
38873
39092
  # },
38874
39093
  # r_session_app_settings: {
39094
+ # default_resource_spec: {
39095
+ # sage_maker_image_arn: "ImageArn",
39096
+ # sage_maker_image_version_arn: "ImageVersionArn",
39097
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
39098
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
39099
+ # },
39100
+ # custom_images: [
39101
+ # {
39102
+ # image_name: "ImageName", # required
39103
+ # image_version_number: 1,
39104
+ # app_image_config_name: "AppImageConfigName", # required
39105
+ # },
39106
+ # ],
38875
39107
  # },
38876
39108
  # },
38877
39109
  # domain_settings_for_update: {
@@ -39042,7 +39274,7 @@ module Aws::SageMaker
39042
39274
  # }
39043
39275
  #
39044
39276
  # @!attribute [rw] endpoint_name
39045
- # The name of an existing Amazon SageMaker endpoint.
39277
+ # The name of an existing SageMaker endpoint.
39046
39278
  # @return [String]
39047
39279
  #
39048
39280
  # @!attribute [rw] desired_weights_and_capacities
@@ -39411,12 +39643,12 @@ module Aws::SageMaker
39411
39643
  # @return [String]
39412
39644
  #
39413
39645
  # @!attribute [rw] role_arn
39414
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
39415
- # can assume to access the notebook instance. For more information,
39416
- # see [Amazon SageMaker Roles][1].
39646
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
39647
+ # assume to access the notebook instance. For more information, see
39648
+ # [SageMaker Roles][1].
39417
39649
  #
39418
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
39419
- # API must have the `iam:PassRole` permission.
39650
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
39651
+ # must have the `iam:PassRole` permission.
39420
39652
  #
39421
39653
  # </note>
39422
39654
  #
@@ -39446,12 +39678,12 @@ module Aws::SageMaker
39446
39678
  # @!attribute [rw] volume_size_in_gb
39447
39679
  # The size, in GB, of the ML storage volume to attach to the notebook
39448
39680
  # instance. The default value is 5 GB. ML storage volumes are
39449
- # encrypted, so Amazon SageMaker can't determine the amount of
39450
- # available free space on the volume. Because of this, you can
39451
- # increase the volume size when you update a notebook instance, but
39452
- # you can't decrease the volume size. If you want to decrease the
39453
- # size of the ML storage volume in use, create a new notebook instance
39454
- # with the desired size.
39681
+ # encrypted, so SageMaker can't determine the amount of available
39682
+ # free space on the volume. Because of this, you can increase the
39683
+ # volume size when you update a notebook instance, but you can't
39684
+ # decrease the volume size. If you want to decrease the size of the ML
39685
+ # storage volume in use, create a new notebook instance with the
39686
+ # desired size.
39455
39687
  # @return [Integer]
39456
39688
  #
39457
39689
  # @!attribute [rw] default_code_repository
@@ -39461,8 +39693,7 @@ module Aws::SageMaker
39461
39693
  # repository in [Amazon Web Services CodeCommit][1] or in any other
39462
39694
  # Git repository. When you open a notebook instance, it opens in the
39463
39695
  # directory that contains this repository. For more information, see
39464
- # [Associating Git Repositories with Amazon SageMaker Notebook
39465
- # Instances][2].
39696
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
39466
39697
  #
39467
39698
  #
39468
39699
  #
@@ -39477,7 +39708,7 @@ module Aws::SageMaker
39477
39708
  # in [Amazon Web Services CodeCommit][1] or in any other Git
39478
39709
  # repository. These repositories are cloned at the same level as the
39479
39710
  # default repository of your notebook instance. For more information,
39480
- # see [Associating Git Repositories with Amazon SageMaker Notebook
39711
+ # see [Associating Git Repositories with SageMaker Notebook
39481
39712
  # Instances][2].
39482
39713
  #
39483
39714
  #
@@ -40073,6 +40304,19 @@ module Aws::SageMaker
40073
40304
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
40074
40305
  # },
40075
40306
  # r_session_app_settings: {
40307
+ # default_resource_spec: {
40308
+ # sage_maker_image_arn: "ImageArn",
40309
+ # sage_maker_image_version_arn: "ImageVersionArn",
40310
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
40311
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
40312
+ # },
40313
+ # custom_images: [
40314
+ # {
40315
+ # image_name: "ImageName", # required
40316
+ # image_version_number: 1,
40317
+ # app_image_config_name: "AppImageConfigName", # required
40318
+ # },
40319
+ # ],
40076
40320
  # },
40077
40321
  # },
40078
40322
  # }
@@ -40391,6 +40635,19 @@ module Aws::SageMaker
40391
40635
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
40392
40636
  # },
40393
40637
  # r_session_app_settings: {
40638
+ # default_resource_spec: {
40639
+ # sage_maker_image_arn: "ImageArn",
40640
+ # sage_maker_image_version_arn: "ImageVersionArn",
40641
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
40642
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
40643
+ # },
40644
+ # custom_images: [
40645
+ # {
40646
+ # image_name: "ImageName", # required
40647
+ # image_version_number: 1,
40648
+ # app_image_config_name: "AppImageConfigName", # required
40649
+ # },
40650
+ # ],
40394
40651
  # },
40395
40652
  # }
40396
40653
  #