aws-sdk-sagemaker 1.122.0 → 1.125.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -422,7 +422,7 @@ module Aws::SageMaker
422
422
  req.send_request(options)
423
423
  end
424
424
 
425
- # Adds or overwrites one or more tags for the specified Amazon SageMaker
425
+ # Adds or overwrites one or more tags for the specified SageMaker
426
426
  # resource. You can add tags to notebook instances, training jobs,
427
427
  # hyperparameter tuning jobs, batch transform jobs, models, labeling
428
428
  # jobs, work teams, endpoint configurations, and endpoints.
@@ -678,8 +678,8 @@ module Aws::SageMaker
678
678
  req.send_request(options)
679
679
  end
680
680
 
681
- # Create a machine learning algorithm that you can use in Amazon
682
- # SageMaker and list in the Amazon Web Services Marketplace.
681
+ # Create a machine learning algorithm that you can use in SageMaker and
682
+ # list in the Amazon Web Services Marketplace.
683
683
  #
684
684
  # @option params [required, String] :algorithm_name
685
685
  # The name of the algorithm.
@@ -723,10 +723,10 @@ module Aws::SageMaker
723
723
  # inference.
724
724
  #
725
725
  # @option params [Types::AlgorithmValidationSpecification] :validation_specification
726
- # Specifies configurations for one or more training jobs and that Amazon
726
+ # Specifies configurations for one or more training jobs and that
727
727
  # SageMaker runs to test the algorithm's training code and, optionally,
728
- # one or more batch transform jobs that Amazon SageMaker runs to test
729
- # the algorithm's inference code.
728
+ # one or more batch transform jobs that SageMaker runs to test the
729
+ # algorithm's inference code.
730
730
  #
731
731
  # @option params [Boolean] :certify_for_marketplace
732
732
  # Whether to certify the algorithm so that it can be listed in Amazon
@@ -1148,8 +1148,9 @@ module Aws::SageMaker
1148
1148
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1149
1149
  # An array of channel objects that describes the input data and its
1150
1150
  # location. Each channel is a named input source. Similar to
1151
- # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
1152
- # 500 rows.
1151
+ # `InputDataConfig` supported by . Format(s) supported: CSV, Parquet. A
1152
+ # minimum of 500 rows is required for the training dataset. There is not
1153
+ # a minimum number of rows required for the validation dataset.
1153
1154
  #
1154
1155
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1155
1156
  # Provides information about encryption and the Amazon S3 output path
@@ -1158,9 +1159,8 @@ module Aws::SageMaker
1158
1159
  #
1159
1160
  # @option params [String] :problem_type
1160
1161
  # Defines the type of supervised learning available for the candidates.
1161
- # Options include: `BinaryClassification`, `MulticlassClassification`,
1162
- # and `Regression`. For more information, see [ Amazon SageMaker
1163
- # Autopilot problem types and algorithm support][1].
1162
+ # For more information, see [ Amazon SageMaker Autopilot problem types
1163
+ # and algorithm support][1].
1164
1164
  #
1165
1165
  #
1166
1166
  #
@@ -1172,8 +1172,7 @@ module Aws::SageMaker
1172
1172
  # Autopilot infers whether to minimize or maximize it.
1173
1173
  #
1174
1174
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1175
- # Contains `CompletionCriteria` and `SecurityConfig` settings for the
1176
- # AutoML job.
1175
+ # A collection of settings used to configure an AutoML job.
1177
1176
  #
1178
1177
  # @option params [required, String] :role_arn
1179
1178
  # The ARN of the role that is used to access the data.
@@ -1210,6 +1209,7 @@ module Aws::SageMaker
1210
1209
  # compression_type: "None", # accepts None, Gzip
1211
1210
  # target_attribute_name: "TargetAttributeName", # required
1212
1211
  # content_type: "ContentType",
1212
+ # channel_type: "training", # accepts training, validation
1213
1213
  # },
1214
1214
  # ],
1215
1215
  # output_data_config: { # required
@@ -1234,6 +1234,12 @@ module Aws::SageMaker
1234
1234
  # subnets: ["SubnetId"], # required
1235
1235
  # },
1236
1236
  # },
1237
+ # data_split_config: {
1238
+ # validation_fraction: 1.0,
1239
+ # },
1240
+ # candidate_generation_config: {
1241
+ # feature_specification_s3_uri: "S3Uri",
1242
+ # },
1237
1243
  # },
1238
1244
  # role_arn: "RoleArn", # required
1239
1245
  # generate_candidate_definitions_only: false,
@@ -1262,13 +1268,13 @@ module Aws::SageMaker
1262
1268
  req.send_request(options)
1263
1269
  end
1264
1270
 
1265
- # Creates a Git repository as a resource in your Amazon SageMaker
1266
- # account. You can associate the repository with notebook instances so
1267
- # that you can use Git source control for the notebooks you create. The
1268
- # Git repository is a resource in your Amazon SageMaker account, so it
1269
- # can be associated with more than one notebook instance, and it
1270
- # persists independently from the lifecycle of any notebook instances it
1271
- # is associated with.
1271
+ # Creates a Git repository as a resource in your SageMaker account. You
1272
+ # can associate the repository with notebook instances so that you can
1273
+ # use Git source control for the notebooks you create. The Git
1274
+ # repository is a resource in your SageMaker account, so it can be
1275
+ # associated with more than one notebook instance, and it persists
1276
+ # independently from the lifecycle of any notebook instances it is
1277
+ # associated with.
1272
1278
  #
1273
1279
  # The repository can be hosted either in [Amazon Web Services
1274
1280
  # CodeCommit][1] or in any other Git repository.
@@ -1920,6 +1926,19 @@ module Aws::SageMaker
1920
1926
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
1921
1927
  # },
1922
1928
  # r_session_app_settings: {
1929
+ # default_resource_spec: {
1930
+ # sage_maker_image_arn: "ImageArn",
1931
+ # sage_maker_image_version_arn: "ImageVersionArn",
1932
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
1933
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
1934
+ # },
1935
+ # custom_images: [
1936
+ # {
1937
+ # image_name: "ImageName", # required
1938
+ # image_version_number: 1,
1939
+ # app_image_config_name: "AppImageConfigName", # required
1940
+ # },
1941
+ # ],
1923
1942
  # },
1924
1943
  # },
1925
1944
  # subnet_ids: ["SubnetId"], # required
@@ -2032,13 +2051,13 @@ module Aws::SageMaker
2032
2051
  end
2033
2052
 
2034
2053
  # Creates an endpoint using the endpoint configuration specified in the
2035
- # request. Amazon SageMaker uses the endpoint to provision resources and
2036
- # deploy models. You create the endpoint configuration with the
2054
+ # request. SageMaker uses the endpoint to provision resources and deploy
2055
+ # models. You create the endpoint configuration with the
2037
2056
  # CreateEndpointConfig API.
2038
2057
  #
2039
- # Use this API to deploy models using Amazon SageMaker hosting services.
2058
+ # Use this API to deploy models using SageMaker hosting services.
2040
2059
  #
2041
- # For an example that calls this method when deploying a model to Amazon
2060
+ # For an example that calls this method when deploying a model to
2042
2061
  # SageMaker hosting services, see the [Create Endpoint example
2043
2062
  # notebook.][1]
2044
2063
  #
@@ -2052,9 +2071,9 @@ module Aws::SageMaker
2052
2071
  # The endpoint name must be unique within an Amazon Web Services Region
2053
2072
  # in your Amazon Web Services account.
2054
2073
  #
2055
- # When it receives the request, Amazon SageMaker creates the endpoint,
2056
- # launches the resources (ML compute instances), and deploys the
2057
- # model(s) on them.
2074
+ # When it receives the request, SageMaker creates the endpoint, launches
2075
+ # the resources (ML compute instances), and deploys the model(s) on
2076
+ # them.
2058
2077
  #
2059
2078
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2060
2079
  # verify that your endpoint configuration exists. When you read data
@@ -2070,21 +2089,21 @@ module Aws::SageMaker
2070
2089
  #
2071
2090
  # </note>
2072
2091
  #
2073
- # When Amazon SageMaker receives the request, it sets the endpoint
2074
- # status to `Creating`. After it creates the endpoint, it sets the
2075
- # status to `InService`. Amazon SageMaker can then process incoming
2076
- # requests for inferences. To check the status of an endpoint, use the
2092
+ # When SageMaker receives the request, it sets the endpoint status to
2093
+ # `Creating`. After it creates the endpoint, it sets the status to
2094
+ # `InService`. SageMaker can then process incoming requests for
2095
+ # inferences. To check the status of an endpoint, use the
2077
2096
  # DescribeEndpoint API.
2078
2097
  #
2079
2098
  # If any of the models hosted at this endpoint get model data from an
2080
- # Amazon S3 location, Amazon SageMaker uses Amazon Web Services Security
2081
- # Token Service to download model artifacts from the S3 path you
2082
- # provided. Amazon Web Services STS is activated in your IAM user
2083
- # account by default. If you previously deactivated Amazon Web Services
2084
- # STS for a region, you need to reactivate Amazon Web Services STS for
2085
- # that region. For more information, see [Activating and Deactivating
2086
- # Amazon Web Services STS in an Amazon Web Services Region][3] in the
2087
- # *Amazon Web Services Identity and Access Management User Guide*.
2099
+ # Amazon S3 location, SageMaker uses Amazon Web Services Security Token
2100
+ # Service to download model artifacts from the S3 path you provided.
2101
+ # Amazon Web Services STS is activated in your IAM user account by
2102
+ # default. If you previously deactivated Amazon Web Services STS for a
2103
+ # region, you need to reactivate Amazon Web Services STS for that
2104
+ # region. For more information, see [Activating and Deactivating Amazon
2105
+ # Web Services STS in an Amazon Web Services Region][3] in the *Amazon
2106
+ # Web Services Identity and Access Management User Guide*.
2088
2107
  #
2089
2108
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
2090
2109
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -2202,28 +2221,28 @@ module Aws::SageMaker
2202
2221
  req.send_request(options)
2203
2222
  end
2204
2223
 
2205
- # Creates an endpoint configuration that Amazon SageMaker hosting
2206
- # services uses to deploy models. In the configuration, you identify one
2207
- # or more models, created using the `CreateModel` API, to deploy and the
2208
- # resources that you want Amazon SageMaker to provision. Then you call
2209
- # the CreateEndpoint API.
2224
+ # Creates an endpoint configuration that SageMaker hosting services uses
2225
+ # to deploy models. In the configuration, you identify one or more
2226
+ # models, created using the `CreateModel` API, to deploy and the
2227
+ # resources that you want SageMaker to provision. Then you call the
2228
+ # CreateEndpoint API.
2210
2229
  #
2211
- # <note markdown="1"> Use this API if you want to use Amazon SageMaker hosting services to
2212
- # deploy models into production.
2230
+ # <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
2231
+ # models into production.
2213
2232
  #
2214
2233
  # </note>
2215
2234
  #
2216
2235
  # In the request, you define a `ProductionVariant`, for each model that
2217
2236
  # you want to deploy. Each `ProductionVariant` parameter also describes
2218
- # the resources that you want Amazon SageMaker to provision. This
2219
- # includes the number and type of ML compute instances to deploy.
2237
+ # the resources that you want SageMaker to provision. This includes the
2238
+ # number and type of ML compute instances to deploy.
2220
2239
  #
2221
2240
  # If you are hosting multiple models, you also assign a `VariantWeight`
2222
2241
  # to specify how much traffic you want to allocate to each model. For
2223
2242
  # example, suppose that you want to host two models, A and B, and you
2224
- # assign traffic weight 2 for model A and 1 for model B. Amazon
2225
- # SageMaker distributes two-thirds of the traffic to Model A, and
2226
- # one-third to model B.
2243
+ # assign traffic weight 2 for model A and 1 for model B. SageMaker
2244
+ # distributes two-thirds of the traffic to Model A, and one-third to
2245
+ # model B.
2227
2246
  #
2228
2247
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2229
2248
  # verify that your endpoint configuration exists. When you read data
@@ -2252,6 +2271,7 @@ module Aws::SageMaker
2252
2271
  # want to host at this endpoint.
2253
2272
  #
2254
2273
  # @option params [Types::DataCaptureConfig] :data_capture_config
2274
+ # Configuration to control how SageMaker captures inference data.
2255
2275
  #
2256
2276
  # @option params [Array<Types::Tag>] :tags
2257
2277
  # An array of key-value pairs. You can use tags to categorize your
@@ -2265,8 +2285,8 @@ module Aws::SageMaker
2265
2285
  #
2266
2286
  # @option params [String] :kms_key_id
2267
2287
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
2268
- # Service key that Amazon SageMaker uses to encrypt data on the storage
2269
- # volume attached to the ML compute instance that hosts the endpoint.
2288
+ # Service key that SageMaker uses to encrypt data on the storage volume
2289
+ # attached to the ML compute instance that hosts the endpoint.
2270
2290
  #
2271
2291
  # The KmsKeyId can be any of the following formats:
2272
2292
  #
@@ -3133,8 +3153,8 @@ module Aws::SageMaker
3133
3153
 
3134
3154
  # Creates a custom SageMaker image. A SageMaker image is a set of image
3135
3155
  # versions. Each image version represents a container image stored in
3136
- # Amazon Container Registry (ECR). For more information, see [Bring your
3137
- # own SageMaker image][1].
3156
+ # Amazon Elastic Container Registry (ECR). For more information, see
3157
+ # [Bring your own SageMaker image][1].
3138
3158
  #
3139
3159
  #
3140
3160
  #
@@ -3190,13 +3210,13 @@ module Aws::SageMaker
3190
3210
  end
3191
3211
 
3192
3212
  # Creates a version of the SageMaker image specified by `ImageName`. The
3193
- # version represents the Amazon Container Registry (ECR) container image
3194
- # specified by `BaseImage`.
3213
+ # version represents the Amazon Elastic Container Registry (ECR)
3214
+ # container image specified by `BaseImage`.
3195
3215
  #
3196
3216
  # @option params [required, String] :base_image
3197
3217
  # The registry path of the container image to use as the starting point
3198
- # for this version. The path is an Amazon Container Registry (ECR) URI
3199
- # in the following format:
3218
+ # for this version. The path is an Amazon Elastic Container Registry
3219
+ # (ECR) URI in the following format:
3200
3220
  #
3201
3221
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
3202
3222
  # [@digest]>`
@@ -3666,34 +3686,30 @@ module Aws::SageMaker
3666
3686
  req.send_request(options)
3667
3687
  end
3668
3688
 
3669
- # Creates a model in Amazon SageMaker. In the request, you name the
3670
- # model and describe a primary container. For the primary container, you
3671
- # specify the Docker image that contains inference code, artifacts (from
3672
- # prior training), and a custom environment map that the inference code
3673
- # uses when you deploy the model for predictions.
3689
+ # Creates a model in SageMaker. In the request, you name the model and
3690
+ # describe a primary container. For the primary container, you specify
3691
+ # the Docker image that contains inference code, artifacts (from prior
3692
+ # training), and a custom environment map that the inference code uses
3693
+ # when you deploy the model for predictions.
3674
3694
  #
3675
- # Use this API to create a model if you want to use Amazon SageMaker
3676
- # hosting services or run a batch transform job.
3695
+ # Use this API to create a model if you want to use SageMaker hosting
3696
+ # services or run a batch transform job.
3677
3697
  #
3678
3698
  # To host your model, you create an endpoint configuration with the
3679
3699
  # `CreateEndpointConfig` API, and then create an endpoint with the
3680
- # `CreateEndpoint` API. Amazon SageMaker then deploys all of the
3681
- # containers that you defined for the model in the hosting environment.
3700
+ # `CreateEndpoint` API. SageMaker then deploys all of the containers
3701
+ # that you defined for the model in the hosting environment.
3682
3702
  #
3683
- # For an example that calls this method when deploying a model to Amazon
3703
+ # For an example that calls this method when deploying a model to
3684
3704
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
3685
3705
  # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
3686
3706
  #
3687
3707
  # To run a batch transform using your model, you start a job with the
3688
- # `CreateTransformJob` API. Amazon SageMaker uses your model and your
3689
- # dataset to get inferences which are then saved to a specified S3
3690
- # location.
3708
+ # `CreateTransformJob` API. SageMaker uses your model and your dataset
3709
+ # to get inferences which are then saved to a specified S3 location.
3691
3710
  #
3692
- # In the `CreateModel` request, you must define a container with the
3693
- # `PrimaryContainer` parameter.
3694
- #
3695
- # In the request, you also provide an IAM role that Amazon SageMaker can
3696
- # assume to access model artifacts and docker image for deployment on ML
3711
+ # In the request, you also provide an IAM role that SageMaker can assume
3712
+ # to access model artifacts and docker image for deployment on ML
3697
3713
  # compute hosting instances or for batch transform jobs. In addition,
3698
3714
  # you also use the IAM role to manage permissions the inference code
3699
3715
  # needs. For example, if the inference code access any other Amazon Web
@@ -3719,14 +3735,14 @@ module Aws::SageMaker
3719
3735
  # called.
3720
3736
  #
3721
3737
  # @option params [required, String] :execution_role_arn
3722
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
3723
- # can assume to access model artifacts and docker image for deployment
3724
- # on ML compute instances or for batch transform jobs. Deploying on ML
3725
- # compute instances is part of model hosting. For more information, see
3726
- # [Amazon SageMaker Roles][1].
3738
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
3739
+ # assume to access model artifacts and docker image for deployment on ML
3740
+ # compute instances or for batch transform jobs. Deploying on ML compute
3741
+ # instances is part of model hosting. For more information, see
3742
+ # [SageMaker Roles][1].
3727
3743
  #
3728
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
3729
- # API must have the `iam:PassRole` permission.
3744
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
3745
+ # have the `iam:PassRole` permission.
3730
3746
  #
3731
3747
  # </note>
3732
3748
  #
@@ -4105,11 +4121,10 @@ module Aws::SageMaker
4105
4121
  req.send_request(options)
4106
4122
  end
4107
4123
 
4108
- # Creates a model package that you can use to create Amazon SageMaker
4109
- # models or list on Amazon Web Services Marketplace, or a versioned
4110
- # model that is part of a model group. Buyers can subscribe to model
4111
- # packages listed on Amazon Web Services Marketplace to create models in
4112
- # Amazon SageMaker.
4124
+ # Creates a model package that you can use to create SageMaker models or
4125
+ # list on Amazon Web Services Marketplace, or a versioned model that is
4126
+ # part of a model group. Buyers can subscribe to model packages listed
4127
+ # on Amazon Web Services Marketplace to create models in SageMaker.
4113
4128
  #
4114
4129
  # To create a model package by specifying a Docker container that
4115
4130
  # contains your inference code and the Amazon S3 location of your model
@@ -4158,8 +4173,8 @@ module Aws::SageMaker
4158
4173
  # for inference.
4159
4174
  #
4160
4175
  # @option params [Types::ModelPackageValidationSpecification] :validation_specification
4161
- # Specifies configurations for one or more transform jobs that Amazon
4162
- # SageMaker runs to test the model package.
4176
+ # Specifies configurations for one or more transform jobs that SageMaker
4177
+ # runs to test the model package.
4163
4178
  #
4164
4179
  # @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
4165
4180
  # Details about the algorithm that was used to create the model package.
@@ -4223,7 +4238,12 @@ module Aws::SageMaker
4223
4238
  # @option params [String] :task
4224
4239
  # The machine learning task your model package accomplishes. Common
4225
4240
  # machine learning tasks include object detection and image
4226
- # classification.
4241
+ # classification. The following tasks are supported by Inference
4242
+ # Recommender: `"IMAGE_CLASSIFICATION"` \| `"OBJECT_DETECTION"` \|
4243
+ # `"TEXT_GENERATION"` \|`"IMAGE_SEGMENTATION"` \| `"FILL_MASK"` \|
4244
+ # `"CLASSIFICATION"` \| `"REGRESSION"` \| `"OTHER"`.
4245
+ #
4246
+ # Specify "OTHER" if none of the tasks listed fit your use case.
4227
4247
  #
4228
4248
  # @option params [String] :sample_payload_url
4229
4249
  # The Amazon Simple Storage Service (Amazon S3) path where the sample
@@ -4797,46 +4817,45 @@ module Aws::SageMaker
4797
4817
  req.send_request(options)
4798
4818
  end
4799
4819
 
4800
- # Creates an Amazon SageMaker notebook instance. A notebook instance is
4801
- # a machine learning (ML) compute instance running on a Jupyter
4802
- # notebook.
4820
+ # Creates an SageMaker notebook instance. A notebook instance is a
4821
+ # machine learning (ML) compute instance running on a Jupyter notebook.
4803
4822
  #
4804
4823
  # In a `CreateNotebookInstance` request, specify the type of ML compute
4805
- # instance that you want to run. Amazon SageMaker launches the instance,
4824
+ # instance that you want to run. SageMaker launches the instance,
4806
4825
  # installs common libraries that you can use to explore datasets for
4807
4826
  # model training, and attaches an ML storage volume to the notebook
4808
4827
  # instance.
4809
4828
  #
4810
- # Amazon SageMaker also provides a set of example notebooks. Each
4811
- # notebook demonstrates how to use Amazon SageMaker with a specific
4812
- # algorithm or with a machine learning framework.
4829
+ # SageMaker also provides a set of example notebooks. Each notebook
4830
+ # demonstrates how to use SageMaker with a specific algorithm or with a
4831
+ # machine learning framework.
4813
4832
  #
4814
- # After receiving the request, Amazon SageMaker does the following:
4833
+ # After receiving the request, SageMaker does the following:
4815
4834
  #
4816
- # 1. Creates a network interface in the Amazon SageMaker VPC.
4835
+ # 1. Creates a network interface in the SageMaker VPC.
4817
4836
  #
4818
- # 2. (Option) If you specified `SubnetId`, Amazon SageMaker creates a
4819
- # network interface in your own VPC, which is inferred from the
4820
- # subnet ID that you provide in the input. When creating this
4821
- # network interface, Amazon SageMaker attaches the security group
4822
- # that you specified in the request to the network interface that it
4823
- # creates in your VPC.
4837
+ # 2. (Option) If you specified `SubnetId`, SageMaker creates a network
4838
+ # interface in your own VPC, which is inferred from the subnet ID
4839
+ # that you provide in the input. When creating this network
4840
+ # interface, SageMaker attaches the security group that you
4841
+ # specified in the request to the network interface that it creates
4842
+ # in your VPC.
4824
4843
  #
4825
4844
  # 3. Launches an EC2 instance of the type specified in the request in
4826
- # the Amazon SageMaker VPC. If you specified `SubnetId` of your VPC,
4827
- # Amazon SageMaker specifies both network interfaces when launching
4828
- # this instance. This enables inbound traffic from your own VPC to
4829
- # the notebook instance, assuming that the security groups allow it.
4845
+ # the SageMaker VPC. If you specified `SubnetId` of your VPC,
4846
+ # SageMaker specifies both network interfaces when launching this
4847
+ # instance. This enables inbound traffic from your own VPC to the
4848
+ # notebook instance, assuming that the security groups allow it.
4830
4849
  #
4831
- # After creating the notebook instance, Amazon SageMaker returns its
4832
- # Amazon Resource Name (ARN). You can't change the name of a notebook
4833
- # instance after you create it.
4850
+ # After creating the notebook instance, SageMaker returns its Amazon
4851
+ # Resource Name (ARN). You can't change the name of a notebook instance
4852
+ # after you create it.
4834
4853
  #
4835
- # After Amazon SageMaker creates the notebook instance, you can connect
4836
- # to the Jupyter server and work in Jupyter notebooks. For example, you
4837
- # can write code to explore a dataset that you can use for model
4838
- # training, train a model, host models by creating Amazon SageMaker
4839
- # endpoints, and validate hosted models.
4854
+ # After SageMaker creates the notebook instance, you can connect to the
4855
+ # Jupyter server and work in Jupyter notebooks. For example, you can
4856
+ # write code to explore a dataset that you can use for model training,
4857
+ # train a model, host models by creating SageMaker endpoints, and
4858
+ # validate hosted models.
4840
4859
  #
4841
4860
  # For more information, see [How It Works][1].
4842
4861
  #
@@ -4860,15 +4879,14 @@ module Aws::SageMaker
4860
4879
  #
4861
4880
  # @option params [required, String] :role_arn
4862
4881
  # When you send any requests to Amazon Web Services resources from the
4863
- # notebook instance, Amazon SageMaker assumes this role to perform tasks
4864
- # on your behalf. You must grant this role necessary permissions so
4865
- # Amazon SageMaker can perform these tasks. The policy must allow the
4866
- # Amazon SageMaker service principal (sagemaker.amazonaws.com)
4867
- # permissions to assume this role. For more information, see [Amazon
4868
- # SageMaker Roles][1].
4882
+ # notebook instance, SageMaker assumes this role to perform tasks on
4883
+ # your behalf. You must grant this role necessary permissions so
4884
+ # SageMaker can perform these tasks. The policy must allow the SageMaker
4885
+ # service principal (sagemaker.amazonaws.com) permissions to assume this
4886
+ # role. For more information, see [SageMaker Roles][1].
4869
4887
  #
4870
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
4871
- # API must have the `iam:PassRole` permission.
4888
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
4889
+ # have the `iam:PassRole` permission.
4872
4890
  #
4873
4891
  # </note>
4874
4892
  #
@@ -4878,10 +4896,10 @@ module Aws::SageMaker
4878
4896
  #
4879
4897
  # @option params [String] :kms_key_id
4880
4898
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
4881
- # Service key that Amazon SageMaker uses to encrypt data on the storage
4882
- # volume attached to your notebook instance. The KMS key you provide
4883
- # must be enabled. For information, see [Enabling and Disabling Keys][1]
4884
- # in the *Amazon Web Services Key Management Service Developer Guide*.
4899
+ # Service key that SageMaker uses to encrypt data on the storage volume
4900
+ # attached to your notebook instance. The KMS key you provide must be
4901
+ # enabled. For information, see [Enabling and Disabling Keys][1] in the
4902
+ # *Amazon Web Services Key Management Service Developer Guide*.
4885
4903
  #
4886
4904
  #
4887
4905
  #
@@ -4907,11 +4925,11 @@ module Aws::SageMaker
4907
4925
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
4908
4926
  #
4909
4927
  # @option params [String] :direct_internet_access
4910
- # Sets whether Amazon SageMaker provides internet access to the notebook
4928
+ # Sets whether SageMaker provides internet access to the notebook
4911
4929
  # instance. If you set this to `Disabled` this notebook instance is able
4912
4930
  # to access resources only in your VPC, and is not be able to connect to
4913
- # Amazon SageMaker training and endpoint services unless you configure a
4914
- # NAT Gateway in your VPC.
4931
+ # SageMaker training and endpoint services unless you configure a NAT
4932
+ # Gateway in your VPC.
4915
4933
  #
4916
4934
  # For more information, see [Notebook Instances Are Internet-Enabled by
4917
4935
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -4942,8 +4960,7 @@ module Aws::SageMaker
4942
4960
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
4943
4961
  # repository. When you open a notebook instance, it opens in the
4944
4962
  # directory that contains this repository. For more information, see
4945
- # [Associating Git Repositories with Amazon SageMaker Notebook
4946
- # Instances][2].
4963
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4947
4964
  #
4948
4965
  #
4949
4966
  #
@@ -4957,8 +4974,7 @@ module Aws::SageMaker
4957
4974
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
4958
4975
  # These repositories are cloned at the same level as the default
4959
4976
  # repository of your notebook instance. For more information, see
4960
- # [Associating Git Repositories with Amazon SageMaker Notebook
4961
- # Instances][2].
4977
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4962
4978
  #
4963
4979
  #
4964
4980
  #
@@ -5242,10 +5258,10 @@ module Aws::SageMaker
5242
5258
  end
5243
5259
 
5244
5260
  # Returns a URL that you can use to connect to the Jupyter server from a
5245
- # notebook instance. In the Amazon SageMaker console, when you choose
5246
- # `Open` next to a notebook instance, Amazon SageMaker opens a new tab
5247
- # showing the Jupyter server home page from the notebook instance. The
5248
- # console uses this API to get the URL and show the page.
5261
+ # notebook instance. In the SageMaker console, when you choose `Open`
5262
+ # next to a notebook instance, SageMaker opens a new tab showing the
5263
+ # Jupyter server home page from the notebook instance. The console uses
5264
+ # this API to get the URL and show the page.
5249
5265
  #
5250
5266
  # The IAM role or user used to call this API defines the permissions to
5251
5267
  # access the notebook instance. Once the presigned URL is created, no
@@ -5601,15 +5617,14 @@ module Aws::SageMaker
5601
5617
  req.send_request(options)
5602
5618
  end
5603
5619
 
5604
- # Starts a model training job. After training completes, Amazon
5605
- # SageMaker saves the resulting model artifacts to an Amazon S3 location
5606
- # that you specify.
5620
+ # Starts a model training job. After training completes, SageMaker saves
5621
+ # the resulting model artifacts to an Amazon S3 location that you
5622
+ # specify.
5607
5623
  #
5608
- # If you choose to host your model using Amazon SageMaker hosting
5609
- # services, you can use the resulting model artifacts as part of the
5610
- # model. You can also use the artifacts in a machine learning service
5611
- # other than Amazon SageMaker, provided that you know how to use them
5612
- # for inference.
5624
+ # If you choose to host your model using SageMaker hosting services, you
5625
+ # can use the resulting model artifacts as part of the model. You can
5626
+ # also use the artifacts in a machine learning service other than
5627
+ # SageMaker, provided that you know how to use them for inference.
5613
5628
  #
5614
5629
  # In the request body, you provide the following:
5615
5630
  #
@@ -5619,13 +5634,13 @@ module Aws::SageMaker
5619
5634
  # enable the estimation of model parameters during training.
5620
5635
  # Hyperparameters can be tuned to optimize this learning process. For
5621
5636
  # a list of hyperparameters for each training algorithm provided by
5622
- # Amazon SageMaker, see [Algorithms][1].
5637
+ # SageMaker, see [Algorithms][1].
5623
5638
  #
5624
5639
  # * `InputDataConfig` - Describes the training dataset and the Amazon
5625
5640
  # S3, EFS, or FSx location where it is stored.
5626
5641
  #
5627
5642
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
5628
- # Amazon SageMaker to save the results of model training.
5643
+ # SageMaker to save the results of model training.
5629
5644
  #
5630
5645
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
5631
5646
  # and ML storage volumes to deploy for model training. In distributed
@@ -5635,10 +5650,10 @@ module Aws::SageMaker
5635
5650
  # learning models by up to 80% by using Amazon EC2 Spot instances. For
5636
5651
  # more information, see [Managed Spot Training][2].
5637
5652
  #
5638
- # * `RoleArn` - The Amazon Resource Name (ARN) that Amazon SageMaker
5639
- # assumes to perform tasks on your behalf during model training. You
5640
- # must grant this role the necessary permissions so that Amazon
5641
- # SageMaker can successfully complete model training.
5653
+ # * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
5654
+ # perform tasks on your behalf during model training. You must grant
5655
+ # this role the necessary permissions so that SageMaker can
5656
+ # successfully complete model training.
5642
5657
  #
5643
5658
  # * `StoppingCondition` - To help cap training costs, use
5644
5659
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
@@ -5651,7 +5666,7 @@ module Aws::SageMaker
5651
5666
  # * `RetryStrategy` - The number of times to retry the job when the job
5652
5667
  # fails due to an `InternalServerError`.
5653
5668
  #
5654
- # For more information about Amazon SageMaker, see [How It Works][3].
5669
+ # For more information about SageMaker, see [How It Works][3].
5655
5670
  #
5656
5671
  #
5657
5672
  #
@@ -5666,7 +5681,7 @@ module Aws::SageMaker
5666
5681
  # @option params [Hash<String,String>] :hyper_parameters
5667
5682
  # Algorithm-specific parameters that influence the quality of the model.
5668
5683
  # You set hyperparameters before you start the learning process. For a
5669
- # list of hyperparameters for each training algorithm provided by Amazon
5684
+ # list of hyperparameters for each training algorithm provided by
5670
5685
  # SageMaker, see [Algorithms][1].
5671
5686
  #
5672
5687
  # You can specify a maximum of 100 hyperparameters. Each hyperparameter
@@ -5680,9 +5695,9 @@ module Aws::SageMaker
5680
5695
  # @option params [required, Types::AlgorithmSpecification] :algorithm_specification
5681
5696
  # The registry path of the Docker image that contains the training
5682
5697
  # algorithm and algorithm-specific metadata, including the input mode.
5683
- # For more information about algorithms provided by Amazon SageMaker,
5684
- # see [Algorithms][1]. For information about providing your own
5685
- # algorithms, see [Using Your Own Algorithms with Amazon SageMaker][2].
5698
+ # For more information about algorithms provided by SageMaker, see
5699
+ # [Algorithms][1]. For information about providing your own algorithms,
5700
+ # see [Using Your Own Algorithms with Amazon SageMaker][2].
5686
5701
  #
5687
5702
  #
5688
5703
  #
@@ -5690,18 +5705,18 @@ module Aws::SageMaker
5690
5705
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
5691
5706
  #
5692
5707
  # @option params [required, String] :role_arn
5693
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
5694
- # can assume to perform tasks on your behalf.
5708
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
5709
+ # assume to perform tasks on your behalf.
5695
5710
  #
5696
- # During model training, Amazon SageMaker needs your permission to read
5697
- # input data from an S3 bucket, download a Docker image that contains
5698
- # training code, write model artifacts to an S3 bucket, write logs to
5699
- # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You
5700
- # grant permissions for all of these tasks to an IAM role. For more
5701
- # information, see [Amazon SageMaker Roles][1].
5711
+ # During model training, SageMaker needs your permission to read input
5712
+ # data from an S3 bucket, download a Docker image that contains training
5713
+ # code, write model artifacts to an S3 bucket, write logs to Amazon
5714
+ # CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
5715
+ # permissions for all of these tasks to an IAM role. For more
5716
+ # information, see [SageMaker Roles][1].
5702
5717
  #
5703
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
5704
- # API must have the `iam:PassRole` permission.
5718
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
5719
+ # have the `iam:PassRole` permission.
5705
5720
  #
5706
5721
  # </note>
5707
5722
  #
@@ -5721,16 +5736,15 @@ module Aws::SageMaker
5721
5736
  # type, compression method, and whether the data is wrapped in RecordIO
5722
5737
  # format.
5723
5738
  #
5724
- # Depending on the input mode that the algorithm supports, Amazon
5725
- # SageMaker either copies input data files from an S3 bucket to a local
5726
- # directory in the Docker container, or makes it available as input
5727
- # streams. For example, if you specify an EFS location, input data files
5728
- # will be made available as input streams. They do not need to be
5729
- # downloaded.
5739
+ # Depending on the input mode that the algorithm supports, SageMaker
5740
+ # either copies input data files from an S3 bucket to a local directory
5741
+ # in the Docker container, or makes it available as input streams. For
5742
+ # example, if you specify an EFS location, input data files are
5743
+ # available as input streams. They do not need to be downloaded.
5730
5744
  #
5731
5745
  # @option params [required, Types::OutputDataConfig] :output_data_config
5732
5746
  # Specifies the path to the S3 location where you want to store model
5733
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
5747
+ # artifacts. SageMaker creates subfolders for the artifacts.
5734
5748
  #
5735
5749
  # @option params [required, Types::ResourceConfig] :resource_config
5736
5750
  # The resources, including the ML compute instances and ML storage
@@ -5738,10 +5752,10 @@ module Aws::SageMaker
5738
5752
  #
5739
5753
  # ML storage volumes store model artifacts and incremental states.
5740
5754
  # Training algorithms might also use ML storage volumes for scratch
5741
- # space. If you want Amazon SageMaker to use the ML storage volume to
5742
- # store the training data, choose `File` as the `TrainingInputMode` in
5743
- # the algorithm specification. For distributed training algorithms,
5744
- # specify an instance count greater than 1.
5755
+ # space. If you want SageMaker to use the ML storage volume to store the
5756
+ # training data, choose `File` as the `TrainingInputMode` in the
5757
+ # algorithm specification. For distributed training algorithms, specify
5758
+ # an instance count greater than 1.
5745
5759
  #
5746
5760
  # @option params [Types::VpcConfig] :vpc_config
5747
5761
  # A VpcConfig object that specifies the VPC that you want your training
@@ -5756,13 +5770,13 @@ module Aws::SageMaker
5756
5770
  # @option params [required, Types::StoppingCondition] :stopping_condition
5757
5771
  # Specifies a limit to how long a model training job can run. It also
5758
5772
  # specifies how long a managed Spot training job has to complete. When
5759
- # the job reaches the time limit, Amazon SageMaker ends the training
5760
- # job. Use this API to cap model training costs.
5773
+ # the job reaches the time limit, SageMaker ends the training job. Use
5774
+ # this API to cap model training costs.
5761
5775
  #
5762
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5763
- # signal, which delays job termination for 120 seconds. Algorithms can
5764
- # use this 120-second window to save the model artifacts, so the results
5765
- # of training are not lost.
5776
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
5777
+ # which delays job termination for 120 seconds. Algorithms can use this
5778
+ # 120-second window to save the model artifacts, so the results of
5779
+ # training are not lost.
5766
5780
  #
5767
5781
  # @option params [Array<Types::Tag>] :tags
5768
5782
  # An array of key-value pairs. You can use tags to categorize your
@@ -5778,9 +5792,9 @@ module Aws::SageMaker
5778
5792
  # Isolates the training container. No inbound or outbound network calls
5779
5793
  # can be made, except for calls between peers within a training cluster
5780
5794
  # for distributed training. If you enable network isolation for training
5781
- # jobs that are configured to use a VPC, Amazon SageMaker downloads and
5782
- # uploads customer data and model artifacts through the specified VPC,
5783
- # but the training container does not have network access.
5795
+ # jobs that are configured to use a VPC, SageMaker downloads and uploads
5796
+ # customer data and model artifacts through the specified VPC, but the
5797
+ # training container does not have network access.
5784
5798
  #
5785
5799
  # @option params [Boolean] :enable_inter_container_traffic_encryption
5786
5800
  # To encrypt all communications between ML compute instances in
@@ -6032,7 +6046,7 @@ module Aws::SageMaker
6032
6046
  # * `ModelName` - Identifies the model to use. `ModelName` must be the
6033
6047
  # name of an existing Amazon SageMaker model in the same Amazon Web
6034
6048
  # Services Region and Amazon Web Services account. For information on
6035
- # creating a model, see CreateModel.
6049
+ # creating a model, see [CreateModel][1].
6036
6050
  #
6037
6051
  # * `TransformInput` - Describes the dataset to be transformed and the
6038
6052
  # Amazon S3 location where it is stored.
@@ -6044,11 +6058,12 @@ module Aws::SageMaker
6044
6058
  # transform job.
6045
6059
  #
6046
6060
  # For more information about how batch transformation works, see [Batch
6047
- # Transform][1].
6061
+ # Transform][2].
6048
6062
  #
6049
6063
  #
6050
6064
  #
6051
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
6065
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
6066
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
6052
6067
  #
6053
6068
  # @option params [required, String] :transform_job_name
6054
6069
  # The name of the transform job. The name must be unique within an
@@ -6087,6 +6102,11 @@ module Aws::SageMaker
6087
6102
  # fit within the maximum payload size, we recommend using a slightly
6088
6103
  # larger value. The default value is `6` MB.
6089
6104
  #
6105
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
6106
+ # specify the `MaxConcurrentTransforms` parameter, the value of
6107
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
6108
+ # MB.
6109
+ #
6090
6110
  # For cases where the payload might be arbitrarily large and is
6091
6111
  # transmitted using HTTP chunked encoding, set the value to `0`. This
6092
6112
  # feature works only in supported algorithms. Currently, Amazon
@@ -6517,6 +6537,19 @@ module Aws::SageMaker
6517
6537
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
6518
6538
  # },
6519
6539
  # r_session_app_settings: {
6540
+ # default_resource_spec: {
6541
+ # sage_maker_image_arn: "ImageArn",
6542
+ # sage_maker_image_version_arn: "ImageVersionArn",
6543
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
6544
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
6545
+ # },
6546
+ # custom_images: [
6547
+ # {
6548
+ # image_name: "ImageName", # required
6549
+ # image_version_number: 1,
6550
+ # app_image_config_name: "AppImageConfigName", # required
6551
+ # },
6552
+ # ],
6520
6553
  # },
6521
6554
  # },
6522
6555
  # })
@@ -7052,13 +7085,19 @@ module Aws::SageMaker
7052
7085
  req.send_request(options)
7053
7086
  end
7054
7087
 
7055
- # Deletes an endpoint. Amazon SageMaker frees up all of the resources
7056
- # that were deployed when the endpoint was created.
7088
+ # Deletes an endpoint. SageMaker frees up all of the resources that were
7089
+ # deployed when the endpoint was created.
7057
7090
  #
7058
- # Amazon SageMaker retires any custom KMS key grants associated with the
7091
+ # SageMaker retires any custom KMS key grants associated with the
7059
7092
  # endpoint, meaning you don't need to use the [RevokeGrant][1] API
7060
7093
  # call.
7061
7094
  #
7095
+ # When you delete your endpoint, SageMaker asynchronously deletes
7096
+ # associated endpoint resources such as KMS key grants. You might still
7097
+ # see these resources in your account for a few minutes after deleting
7098
+ # your endpoint. Do not delete or revoke the permissions for your `
7099
+ # ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
7100
+ #
7062
7101
  #
7063
7102
  #
7064
7103
  # [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
@@ -7275,9 +7314,9 @@ module Aws::SageMaker
7275
7314
  end
7276
7315
 
7277
7316
  # Deletes a model. The `DeleteModel` API deletes only the model entry
7278
- # that was created in Amazon SageMaker when you called the `CreateModel`
7279
- # API. It does not delete model artifacts, inference code, or the IAM
7280
- # role that you specified when creating the model.
7317
+ # that was created in SageMaker when you called the `CreateModel` API.
7318
+ # It does not delete model artifacts, inference code, or the IAM role
7319
+ # that you specified when creating the model.
7281
7320
  #
7282
7321
  # @option params [required, String] :model_name
7283
7322
  # The name of the model to delete.
@@ -7345,10 +7384,10 @@ module Aws::SageMaker
7345
7384
 
7346
7385
  # Deletes a model package.
7347
7386
  #
7348
- # A model package is used to create Amazon SageMaker models or list on
7349
- # Amazon Web Services Marketplace. Buyers can subscribe to model
7350
- # packages listed on Amazon Web Services Marketplace to create models in
7351
- # Amazon SageMaker.
7387
+ # A model package is used to create SageMaker models or list on Amazon
7388
+ # Web Services Marketplace. Buyers can subscribe to model packages
7389
+ # listed on Amazon Web Services Marketplace to create models in
7390
+ # SageMaker.
7352
7391
  #
7353
7392
  # @option params [required, String] :model_package_name
7354
7393
  # The name or Amazon Resource Name (ARN) of the model package to delete.
@@ -7463,16 +7502,16 @@ module Aws::SageMaker
7463
7502
  req.send_request(options)
7464
7503
  end
7465
7504
 
7466
- # Deletes an Amazon SageMaker notebook instance. Before you can delete a
7505
+ # Deletes an SageMaker notebook instance. Before you can delete a
7467
7506
  # notebook instance, you must call the `StopNotebookInstance` API.
7468
7507
  #
7469
- # When you delete a notebook instance, you lose all of your data. Amazon
7508
+ # When you delete a notebook instance, you lose all of your data.
7470
7509
  # SageMaker removes the ML compute instance, and deletes the ML storage
7471
7510
  # volume and the network interface associated with the notebook
7472
7511
  # instance.
7473
7512
  #
7474
7513
  # @option params [required, String] :notebook_instance_name
7475
- # The name of the Amazon SageMaker notebook instance to delete.
7514
+ # The name of the SageMaker notebook instance to delete.
7476
7515
  #
7477
7516
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
7478
7517
  #
@@ -7600,7 +7639,7 @@ module Aws::SageMaker
7600
7639
  req.send_request(options)
7601
7640
  end
7602
7641
 
7603
- # Deletes the specified tags from an Amazon SageMaker resource.
7642
+ # Deletes the specified tags from an SageMaker resource.
7604
7643
  #
7605
7644
  # To list a resource's tags, use the `ListTags` API.
7606
7645
  #
@@ -8241,6 +8280,7 @@ module Aws::SageMaker
8241
8280
  # resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
8242
8281
  # resp.input_data_config[0].target_attribute_name #=> String
8243
8282
  # resp.input_data_config[0].content_type #=> String
8283
+ # resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
8244
8284
  # resp.output_data_config.kms_key_id #=> String
8245
8285
  # resp.output_data_config.s3_output_path #=> String
8246
8286
  # resp.role_arn #=> String
@@ -8255,6 +8295,8 @@ module Aws::SageMaker
8255
8295
  # resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
8256
8296
  # resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
8257
8297
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
8298
+ # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
8299
+ # resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
8258
8300
  # resp.creation_time #=> Time
8259
8301
  # resp.end_time #=> Time
8260
8302
  # resp.last_modified_time #=> Time
@@ -8286,6 +8328,7 @@ module Aws::SageMaker
8286
8328
  # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
8287
8329
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
8288
8330
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
8331
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss"
8289
8332
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
8290
8333
  # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError"
8291
8334
  # resp.generate_candidate_definitions_only #=> Boolean
@@ -8737,6 +8780,14 @@ module Aws::SageMaker
8737
8780
  # resp.default_user_settings.tensor_board_app_settings.default_resource_spec.lifecycle_config_arn #=> String
8738
8781
  # resp.default_user_settings.r_studio_server_pro_app_settings.access_status #=> String, one of "ENABLED", "DISABLED"
8739
8782
  # resp.default_user_settings.r_studio_server_pro_app_settings.user_group #=> String, one of "R_STUDIO_ADMIN", "R_STUDIO_USER"
8783
+ # resp.default_user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_arn #=> String
8784
+ # resp.default_user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
8785
+ # resp.default_user_settings.r_session_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
8786
+ # resp.default_user_settings.r_session_app_settings.default_resource_spec.lifecycle_config_arn #=> String
8787
+ # resp.default_user_settings.r_session_app_settings.custom_images #=> Array
8788
+ # resp.default_user_settings.r_session_app_settings.custom_images[0].image_name #=> String
8789
+ # resp.default_user_settings.r_session_app_settings.custom_images[0].image_version_number #=> Integer
8790
+ # resp.default_user_settings.r_session_app_settings.custom_images[0].app_image_config_name #=> String
8740
8791
  # resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
8741
8792
  # resp.home_efs_file_system_kms_key_id #=> String
8742
8793
  # resp.subnet_ids #=> Array
@@ -10219,7 +10270,7 @@ module Aws::SageMaker
10219
10270
  # Gets a description for the specified model group.
10220
10271
  #
10221
10272
  # @option params [required, String] :model_package_group_name
10222
- # The name of the model group to describe.
10273
+ # The name of gthe model group to describe.
10223
10274
  #
10224
10275
  # @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10225
10276
  #
@@ -11444,6 +11495,14 @@ module Aws::SageMaker
11444
11495
  # resp.user_settings.tensor_board_app_settings.default_resource_spec.lifecycle_config_arn #=> String
11445
11496
  # resp.user_settings.r_studio_server_pro_app_settings.access_status #=> String, one of "ENABLED", "DISABLED"
11446
11497
  # resp.user_settings.r_studio_server_pro_app_settings.user_group #=> String, one of "R_STUDIO_ADMIN", "R_STUDIO_USER"
11498
+ # resp.user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_arn #=> String
11499
+ # resp.user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
11500
+ # resp.user_settings.r_session_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
11501
+ # resp.user_settings.r_session_app_settings.default_resource_spec.lifecycle_config_arn #=> String
11502
+ # resp.user_settings.r_session_app_settings.custom_images #=> Array
11503
+ # resp.user_settings.r_session_app_settings.custom_images[0].image_name #=> String
11504
+ # resp.user_settings.r_session_app_settings.custom_images[0].image_version_number #=> Integer
11505
+ # resp.user_settings.r_session_app_settings.custom_images[0].app_image_config_name #=> String
11447
11506
  #
11448
11507
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfile AWS API Documentation
11449
11508
  #
@@ -12407,6 +12466,7 @@ module Aws::SageMaker
12407
12466
  # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
12408
12467
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
12409
12468
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
12469
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss"
12410
12470
  # resp.next_token #=> String
12411
12471
  #
12412
12472
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
@@ -14751,8 +14811,8 @@ module Aws::SageMaker
14751
14811
  req.send_request(options)
14752
14812
  end
14753
14813
 
14754
- # Returns a list of the Amazon SageMaker notebook instances in the
14755
- # requester's account in an Amazon Web Services Region.
14814
+ # Returns a list of the SageMaker notebook instances in the requester's
14815
+ # account in an Amazon Web Services Region.
14756
14816
  #
14757
14817
  # @option params [String] :next_token
14758
14818
  # If the previous call to the `ListNotebookInstances` is truncated, the
@@ -15423,7 +15483,7 @@ module Aws::SageMaker
15423
15483
  req.send_request(options)
15424
15484
  end
15425
15485
 
15426
- # Returns the tags for the specified Amazon SageMaker resource.
15486
+ # Returns the tags for the specified SageMaker resource.
15427
15487
  #
15428
15488
  # @option params [required, String] :resource_arn
15429
15489
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
@@ -15431,8 +15491,8 @@ module Aws::SageMaker
15431
15491
  #
15432
15492
  # @option params [String] :next_token
15433
15493
  # If the response to the previous `ListTags` request is truncated,
15434
- # Amazon SageMaker returns this token. To retrieve the next set of tags,
15435
- # use it in the subsequent request.
15494
+ # SageMaker returns this token. To retrieve the next set of tags, use it
15495
+ # in the subsequent request.
15436
15496
  #
15437
15497
  # @option params [Integer] :max_results
15438
15498
  # Maximum number of tags to return.
@@ -16157,11 +16217,12 @@ module Aws::SageMaker
16157
16217
  # starting point for your lineage query.
16158
16218
  #
16159
16219
  # @option params [String] :direction
16160
- # Associations between lineage entities are directed. This parameter
16161
- # determines the direction from the StartArn(s) the query will look.
16220
+ # Associations between lineage entities have a direction. This parameter
16221
+ # determines the direction from the StartArn(s) that the query
16222
+ # traverses.
16162
16223
  #
16163
16224
  # @option params [Boolean] :include_edges
16164
- # Setting this value to `True` will retrieve not only the entities of
16225
+ # Setting this value to `True` retrieves not only the entities of
16165
16226
  # interest but also the [Associations][1] and lineage entities on the
16166
16227
  # path. Set to `False` to only return lineage entities that match your
16167
16228
  # query.
@@ -16188,8 +16249,8 @@ module Aws::SageMaker
16188
16249
  #
16189
16250
  # @option params [Integer] :max_depth
16190
16251
  # The maximum depth in lineage relationships from the `StartArns` that
16191
- # will be traversed. Depth is a measure of the number of `Associations`
16192
- # from the `StartArn` entity to the matched results.
16252
+ # are traversed. Depth is a measure of the number of `Associations` from
16253
+ # the `StartArn` entity to the matched results.
16193
16254
  #
16194
16255
  # @option params [Integer] :max_results
16195
16256
  # Limits the number of vertices in the results. Use the `NextToken` in a
@@ -17365,9 +17426,9 @@ module Aws::SageMaker
17365
17426
 
17366
17427
  # Launches an ML compute instance with the latest version of the
17367
17428
  # libraries and attaches your ML storage volume. After configuring the
17368
- # notebook instance, Amazon SageMaker sets the notebook instance status
17369
- # to `InService`. A notebook instance's status must be `InService`
17370
- # before you can connect to your Jupyter notebook.
17429
+ # notebook instance, SageMaker sets the notebook instance status to
17430
+ # `InService`. A notebook instance's status must be `InService` before
17431
+ # you can connect to your Jupyter notebook.
17371
17432
  #
17372
17433
  # @option params [required, String] :notebook_instance_name
17373
17434
  # The name of the notebook instance to start.
@@ -17623,10 +17684,9 @@ module Aws::SageMaker
17623
17684
  end
17624
17685
 
17625
17686
  # Terminates the ML compute instance. Before terminating the instance,
17626
- # Amazon SageMaker disconnects the ML storage volume from it. Amazon
17627
- # SageMaker preserves the ML storage volume. Amazon SageMaker stops
17628
- # charging you for the ML compute instance when you call
17629
- # `StopNotebookInstance`.
17687
+ # SageMaker disconnects the ML storage volume from it. SageMaker
17688
+ # preserves the ML storage volume. SageMaker stops charging you for the
17689
+ # ML compute instance when you call `StopNotebookInstance`.
17630
17690
  #
17631
17691
  # To access data on the ML storage volume for a notebook instance that
17632
17692
  # has been terminated, call the `StartNotebookInstance` API.
@@ -17740,14 +17800,14 @@ module Aws::SageMaker
17740
17800
  req.send_request(options)
17741
17801
  end
17742
17802
 
17743
- # Stops a training job. To stop a job, Amazon SageMaker sends the
17744
- # algorithm the `SIGTERM` signal, which delays job termination for 120
17745
- # seconds. Algorithms might use this 120-second window to save the model
17803
+ # Stops a training job. To stop a job, SageMaker sends the algorithm the
17804
+ # `SIGTERM` signal, which delays job termination for 120 seconds.
17805
+ # Algorithms might use this 120-second window to save the model
17746
17806
  # artifacts, so the results of the training is not lost.
17747
17807
  #
17748
- # When it receives a `StopTrainingJob` request, Amazon SageMaker changes
17749
- # the status of the job to `Stopping`. After Amazon SageMaker stops the
17750
- # job, it sets the status to `Stopped`.
17808
+ # When it receives a `StopTrainingJob` request, SageMaker changes the
17809
+ # status of the job to `Stopping`. After SageMaker stops the job, it
17810
+ # sets the status to `Stopped`.
17751
17811
  #
17752
17812
  # @option params [required, String] :training_job_name
17753
17813
  # The name of the training job to stop.
@@ -18156,6 +18216,19 @@ module Aws::SageMaker
18156
18216
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
18157
18217
  # },
18158
18218
  # r_session_app_settings: {
18219
+ # default_resource_spec: {
18220
+ # sage_maker_image_arn: "ImageArn",
18221
+ # sage_maker_image_version_arn: "ImageVersionArn",
18222
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
18223
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
18224
+ # },
18225
+ # custom_images: [
18226
+ # {
18227
+ # image_name: "ImageName", # required
18228
+ # image_version_number: 1,
18229
+ # app_image_config_name: "AppImageConfigName", # required
18230
+ # },
18231
+ # ],
18159
18232
  # },
18160
18233
  # },
18161
18234
  # domain_settings_for_update: {
@@ -18189,9 +18262,9 @@ module Aws::SageMaker
18189
18262
  # for the endpoint using the previous `EndpointConfig` (there is no
18190
18263
  # availability loss).
18191
18264
  #
18192
- # When Amazon SageMaker receives the request, it sets the endpoint
18193
- # status to `Updating`. After updating the endpoint, it sets the status
18194
- # to `InService`. To check the status of an endpoint, use the
18265
+ # When SageMaker receives the request, it sets the endpoint status to
18266
+ # `Updating`. After updating the endpoint, it sets the status to
18267
+ # `InService`. To check the status of an endpoint, use the
18195
18268
  # DescribeEndpoint API.
18196
18269
  #
18197
18270
  # <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
@@ -18299,13 +18372,13 @@ module Aws::SageMaker
18299
18372
 
18300
18373
  # Updates variant weight of one or more variants associated with an
18301
18374
  # existing endpoint, or capacity of one variant associated with an
18302
- # existing endpoint. When it receives the request, Amazon SageMaker sets
18303
- # the endpoint status to `Updating`. After updating the endpoint, it
18304
- # sets the status to `InService`. To check the status of an endpoint,
18305
- # use the DescribeEndpoint API.
18375
+ # existing endpoint. When it receives the request, SageMaker sets the
18376
+ # endpoint status to `Updating`. After updating the endpoint, it sets
18377
+ # the status to `InService`. To check the status of an endpoint, use the
18378
+ # DescribeEndpoint API.
18306
18379
  #
18307
18380
  # @option params [required, String] :endpoint_name
18308
- # The name of an existing Amazon SageMaker endpoint.
18381
+ # The name of an existing SageMaker endpoint.
18309
18382
  #
18310
18383
  # @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
18311
18384
  # An object that provides new capacity and weight values for a variant.
@@ -18630,12 +18703,12 @@ module Aws::SageMaker
18630
18703
  # The Amazon ML compute instance type.
18631
18704
  #
18632
18705
  # @option params [String] :role_arn
18633
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
18634
- # can assume to access the notebook instance. For more information, see
18635
- # [Amazon SageMaker Roles][1].
18706
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
18707
+ # assume to access the notebook instance. For more information, see
18708
+ # [SageMaker Roles][1].
18636
18709
  #
18637
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
18638
- # API must have the `iam:PassRole` permission.
18710
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
18711
+ # have the `iam:PassRole` permission.
18639
18712
  #
18640
18713
  # </note>
18641
18714
  #
@@ -18662,11 +18735,11 @@ module Aws::SageMaker
18662
18735
  # @option params [Integer] :volume_size_in_gb
18663
18736
  # The size, in GB, of the ML storage volume to attach to the notebook
18664
18737
  # instance. The default value is 5 GB. ML storage volumes are encrypted,
18665
- # so Amazon SageMaker can't determine the amount of available free
18666
- # space on the volume. Because of this, you can increase the volume size
18667
- # when you update a notebook instance, but you can't decrease the
18668
- # volume size. If you want to decrease the size of the ML storage volume
18669
- # in use, create a new notebook instance with the desired size.
18738
+ # so SageMaker can't determine the amount of available free space on
18739
+ # the volume. Because of this, you can increase the volume size when you
18740
+ # update a notebook instance, but you can't decrease the volume size.
18741
+ # If you want to decrease the size of the ML storage volume in use,
18742
+ # create a new notebook instance with the desired size.
18670
18743
  #
18671
18744
  # @option params [String] :default_code_repository
18672
18745
  # The Git repository to associate with the notebook instance as its
@@ -18675,8 +18748,7 @@ module Aws::SageMaker
18675
18748
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
18676
18749
  # repository. When you open a notebook instance, it opens in the
18677
18750
  # directory that contains this repository. For more information, see
18678
- # [Associating Git Repositories with Amazon SageMaker Notebook
18679
- # Instances][2].
18751
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18680
18752
  #
18681
18753
  #
18682
18754
  #
@@ -18690,8 +18762,7 @@ module Aws::SageMaker
18690
18762
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
18691
18763
  # These repositories are cloned at the same level as the default
18692
18764
  # repository of your notebook instance. For more information, see
18693
- # [Associating Git Repositories with Amazon SageMaker Notebook
18694
- # Instances][2].
18765
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18695
18766
  #
18696
18767
  #
18697
18768
  #
@@ -19237,6 +19308,19 @@ module Aws::SageMaker
19237
19308
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
19238
19309
  # },
19239
19310
  # r_session_app_settings: {
19311
+ # default_resource_spec: {
19312
+ # sage_maker_image_arn: "ImageArn",
19313
+ # sage_maker_image_version_arn: "ImageVersionArn",
19314
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
19315
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
19316
+ # },
19317
+ # custom_images: [
19318
+ # {
19319
+ # image_name: "ImageName", # required
19320
+ # image_version_number: 1,
19321
+ # app_image_config_name: "AppImageConfigName", # required
19322
+ # },
19323
+ # ],
19240
19324
  # },
19241
19325
  # },
19242
19326
  # })
@@ -19464,7 +19548,7 @@ module Aws::SageMaker
19464
19548
  params: params,
19465
19549
  config: config)
19466
19550
  context[:gem_name] = 'aws-sdk-sagemaker'
19467
- context[:gem_version] = '1.122.0'
19551
+ context[:gem_version] = '1.125.0'
19468
19552
  Seahorse::Client::Request.new(handlers, context)
19469
19553
  end
19470
19554