aws-sdk-sagemaker 1.122.0 → 1.125.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +339 -255
- data/lib/aws-sdk-sagemaker/client_api.rb +17 -0
- data/lib/aws-sdk-sagemaker/types.rb +670 -413
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -422,7 +422,7 @@ module Aws::SageMaker
|
|
422
422
|
req.send_request(options)
|
423
423
|
end
|
424
424
|
|
425
|
-
# Adds or overwrites one or more tags for the specified
|
425
|
+
# Adds or overwrites one or more tags for the specified SageMaker
|
426
426
|
# resource. You can add tags to notebook instances, training jobs,
|
427
427
|
# hyperparameter tuning jobs, batch transform jobs, models, labeling
|
428
428
|
# jobs, work teams, endpoint configurations, and endpoints.
|
@@ -678,8 +678,8 @@ module Aws::SageMaker
|
|
678
678
|
req.send_request(options)
|
679
679
|
end
|
680
680
|
|
681
|
-
# Create a machine learning algorithm that you can use in
|
682
|
-
#
|
681
|
+
# Create a machine learning algorithm that you can use in SageMaker and
|
682
|
+
# list in the Amazon Web Services Marketplace.
|
683
683
|
#
|
684
684
|
# @option params [required, String] :algorithm_name
|
685
685
|
# The name of the algorithm.
|
@@ -723,10 +723,10 @@ module Aws::SageMaker
|
|
723
723
|
# inference.
|
724
724
|
#
|
725
725
|
# @option params [Types::AlgorithmValidationSpecification] :validation_specification
|
726
|
-
# Specifies configurations for one or more training jobs and that
|
726
|
+
# Specifies configurations for one or more training jobs and that
|
727
727
|
# SageMaker runs to test the algorithm's training code and, optionally,
|
728
|
-
# one or more batch transform jobs that
|
729
|
-
#
|
728
|
+
# one or more batch transform jobs that SageMaker runs to test the
|
729
|
+
# algorithm's inference code.
|
730
730
|
#
|
731
731
|
# @option params [Boolean] :certify_for_marketplace
|
732
732
|
# Whether to certify the algorithm so that it can be listed in Amazon
|
@@ -1148,8 +1148,9 @@ module Aws::SageMaker
|
|
1148
1148
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1149
1149
|
# An array of channel objects that describes the input data and its
|
1150
1150
|
# location. Each channel is a named input source. Similar to
|
1151
|
-
# `InputDataConfig` supported by . Format(s) supported: CSV.
|
1152
|
-
# 500 rows.
|
1151
|
+
# `InputDataConfig` supported by . Format(s) supported: CSV, Parquet. A
|
1152
|
+
# minimum of 500 rows is required for the training dataset. There is not
|
1153
|
+
# a minimum number of rows required for the validation dataset.
|
1153
1154
|
#
|
1154
1155
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1155
1156
|
# Provides information about encryption and the Amazon S3 output path
|
@@ -1158,9 +1159,8 @@ module Aws::SageMaker
|
|
1158
1159
|
#
|
1159
1160
|
# @option params [String] :problem_type
|
1160
1161
|
# Defines the type of supervised learning available for the candidates.
|
1161
|
-
#
|
1162
|
-
# and
|
1163
|
-
# Autopilot problem types and algorithm support][1].
|
1162
|
+
# For more information, see [ Amazon SageMaker Autopilot problem types
|
1163
|
+
# and algorithm support][1].
|
1164
1164
|
#
|
1165
1165
|
#
|
1166
1166
|
#
|
@@ -1172,8 +1172,7 @@ module Aws::SageMaker
|
|
1172
1172
|
# Autopilot infers whether to minimize or maximize it.
|
1173
1173
|
#
|
1174
1174
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1175
|
-
#
|
1176
|
-
# AutoML job.
|
1175
|
+
# A collection of settings used to configure an AutoML job.
|
1177
1176
|
#
|
1178
1177
|
# @option params [required, String] :role_arn
|
1179
1178
|
# The ARN of the role that is used to access the data.
|
@@ -1210,6 +1209,7 @@ module Aws::SageMaker
|
|
1210
1209
|
# compression_type: "None", # accepts None, Gzip
|
1211
1210
|
# target_attribute_name: "TargetAttributeName", # required
|
1212
1211
|
# content_type: "ContentType",
|
1212
|
+
# channel_type: "training", # accepts training, validation
|
1213
1213
|
# },
|
1214
1214
|
# ],
|
1215
1215
|
# output_data_config: { # required
|
@@ -1234,6 +1234,12 @@ module Aws::SageMaker
|
|
1234
1234
|
# subnets: ["SubnetId"], # required
|
1235
1235
|
# },
|
1236
1236
|
# },
|
1237
|
+
# data_split_config: {
|
1238
|
+
# validation_fraction: 1.0,
|
1239
|
+
# },
|
1240
|
+
# candidate_generation_config: {
|
1241
|
+
# feature_specification_s3_uri: "S3Uri",
|
1242
|
+
# },
|
1237
1243
|
# },
|
1238
1244
|
# role_arn: "RoleArn", # required
|
1239
1245
|
# generate_candidate_definitions_only: false,
|
@@ -1262,13 +1268,13 @@ module Aws::SageMaker
|
|
1262
1268
|
req.send_request(options)
|
1263
1269
|
end
|
1264
1270
|
|
1265
|
-
# Creates a Git repository as a resource in your
|
1266
|
-
#
|
1267
|
-
#
|
1268
|
-
#
|
1269
|
-
#
|
1270
|
-
#
|
1271
|
-
#
|
1271
|
+
# Creates a Git repository as a resource in your SageMaker account. You
|
1272
|
+
# can associate the repository with notebook instances so that you can
|
1273
|
+
# use Git source control for the notebooks you create. The Git
|
1274
|
+
# repository is a resource in your SageMaker account, so it can be
|
1275
|
+
# associated with more than one notebook instance, and it persists
|
1276
|
+
# independently from the lifecycle of any notebook instances it is
|
1277
|
+
# associated with.
|
1272
1278
|
#
|
1273
1279
|
# The repository can be hosted either in [Amazon Web Services
|
1274
1280
|
# CodeCommit][1] or in any other Git repository.
|
@@ -1920,6 +1926,19 @@ module Aws::SageMaker
|
|
1920
1926
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
1921
1927
|
# },
|
1922
1928
|
# r_session_app_settings: {
|
1929
|
+
# default_resource_spec: {
|
1930
|
+
# sage_maker_image_arn: "ImageArn",
|
1931
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
1932
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
1933
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
1934
|
+
# },
|
1935
|
+
# custom_images: [
|
1936
|
+
# {
|
1937
|
+
# image_name: "ImageName", # required
|
1938
|
+
# image_version_number: 1,
|
1939
|
+
# app_image_config_name: "AppImageConfigName", # required
|
1940
|
+
# },
|
1941
|
+
# ],
|
1923
1942
|
# },
|
1924
1943
|
# },
|
1925
1944
|
# subnet_ids: ["SubnetId"], # required
|
@@ -2032,13 +2051,13 @@ module Aws::SageMaker
|
|
2032
2051
|
end
|
2033
2052
|
|
2034
2053
|
# Creates an endpoint using the endpoint configuration specified in the
|
2035
|
-
# request.
|
2036
|
-
#
|
2054
|
+
# request. SageMaker uses the endpoint to provision resources and deploy
|
2055
|
+
# models. You create the endpoint configuration with the
|
2037
2056
|
# CreateEndpointConfig API.
|
2038
2057
|
#
|
2039
|
-
# Use this API to deploy models using
|
2058
|
+
# Use this API to deploy models using SageMaker hosting services.
|
2040
2059
|
#
|
2041
|
-
# For an example that calls this method when deploying a model to
|
2060
|
+
# For an example that calls this method when deploying a model to
|
2042
2061
|
# SageMaker hosting services, see the [Create Endpoint example
|
2043
2062
|
# notebook.][1]
|
2044
2063
|
#
|
@@ -2052,9 +2071,9 @@ module Aws::SageMaker
|
|
2052
2071
|
# The endpoint name must be unique within an Amazon Web Services Region
|
2053
2072
|
# in your Amazon Web Services account.
|
2054
2073
|
#
|
2055
|
-
# When it receives the request,
|
2056
|
-
#
|
2057
|
-
#
|
2074
|
+
# When it receives the request, SageMaker creates the endpoint, launches
|
2075
|
+
# the resources (ML compute instances), and deploys the model(s) on
|
2076
|
+
# them.
|
2058
2077
|
#
|
2059
2078
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2060
2079
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2070,21 +2089,21 @@ module Aws::SageMaker
|
|
2070
2089
|
#
|
2071
2090
|
# </note>
|
2072
2091
|
#
|
2073
|
-
# When
|
2074
|
-
#
|
2075
|
-
#
|
2076
|
-
#
|
2092
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
2093
|
+
# `Creating`. After it creates the endpoint, it sets the status to
|
2094
|
+
# `InService`. SageMaker can then process incoming requests for
|
2095
|
+
# inferences. To check the status of an endpoint, use the
|
2077
2096
|
# DescribeEndpoint API.
|
2078
2097
|
#
|
2079
2098
|
# If any of the models hosted at this endpoint get model data from an
|
2080
|
-
# Amazon S3 location,
|
2081
|
-
#
|
2082
|
-
#
|
2083
|
-
#
|
2084
|
-
#
|
2085
|
-
#
|
2086
|
-
#
|
2087
|
-
#
|
2099
|
+
# Amazon S3 location, SageMaker uses Amazon Web Services Security Token
|
2100
|
+
# Service to download model artifacts from the S3 path you provided.
|
2101
|
+
# Amazon Web Services STS is activated in your IAM user account by
|
2102
|
+
# default. If you previously deactivated Amazon Web Services STS for a
|
2103
|
+
# region, you need to reactivate Amazon Web Services STS for that
|
2104
|
+
# region. For more information, see [Activating and Deactivating Amazon
|
2105
|
+
# Web Services STS in an Amazon Web Services Region][3] in the *Amazon
|
2106
|
+
# Web Services Identity and Access Management User Guide*.
|
2088
2107
|
#
|
2089
2108
|
# <note markdown="1"> To add the IAM role policies for using this API operation, go to the
|
2090
2109
|
# [IAM console][4], and choose Roles in the left navigation pane. Search
|
@@ -2202,28 +2221,28 @@ module Aws::SageMaker
|
|
2202
2221
|
req.send_request(options)
|
2203
2222
|
end
|
2204
2223
|
|
2205
|
-
# Creates an endpoint configuration that
|
2206
|
-
#
|
2207
|
-
#
|
2208
|
-
# resources that you want
|
2209
|
-
#
|
2224
|
+
# Creates an endpoint configuration that SageMaker hosting services uses
|
2225
|
+
# to deploy models. In the configuration, you identify one or more
|
2226
|
+
# models, created using the `CreateModel` API, to deploy and the
|
2227
|
+
# resources that you want SageMaker to provision. Then you call the
|
2228
|
+
# CreateEndpoint API.
|
2210
2229
|
#
|
2211
|
-
# <note markdown="1"> Use this API if you want to use
|
2212
|
-
#
|
2230
|
+
# <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
|
2231
|
+
# models into production.
|
2213
2232
|
#
|
2214
2233
|
# </note>
|
2215
2234
|
#
|
2216
2235
|
# In the request, you define a `ProductionVariant`, for each model that
|
2217
2236
|
# you want to deploy. Each `ProductionVariant` parameter also describes
|
2218
|
-
# the resources that you want
|
2219
|
-
#
|
2237
|
+
# the resources that you want SageMaker to provision. This includes the
|
2238
|
+
# number and type of ML compute instances to deploy.
|
2220
2239
|
#
|
2221
2240
|
# If you are hosting multiple models, you also assign a `VariantWeight`
|
2222
2241
|
# to specify how much traffic you want to allocate to each model. For
|
2223
2242
|
# example, suppose that you want to host two models, A and B, and you
|
2224
|
-
# assign traffic weight 2 for model A and 1 for model B.
|
2225
|
-
#
|
2226
|
-
#
|
2243
|
+
# assign traffic weight 2 for model A and 1 for model B. SageMaker
|
2244
|
+
# distributes two-thirds of the traffic to Model A, and one-third to
|
2245
|
+
# model B.
|
2227
2246
|
#
|
2228
2247
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2229
2248
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2252,6 +2271,7 @@ module Aws::SageMaker
|
|
2252
2271
|
# want to host at this endpoint.
|
2253
2272
|
#
|
2254
2273
|
# @option params [Types::DataCaptureConfig] :data_capture_config
|
2274
|
+
# Configuration to control how SageMaker captures inference data.
|
2255
2275
|
#
|
2256
2276
|
# @option params [Array<Types::Tag>] :tags
|
2257
2277
|
# An array of key-value pairs. You can use tags to categorize your
|
@@ -2265,8 +2285,8 @@ module Aws::SageMaker
|
|
2265
2285
|
#
|
2266
2286
|
# @option params [String] :kms_key_id
|
2267
2287
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
2268
|
-
# Service key that
|
2269
|
-
#
|
2288
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
2289
|
+
# attached to the ML compute instance that hosts the endpoint.
|
2270
2290
|
#
|
2271
2291
|
# The KmsKeyId can be any of the following formats:
|
2272
2292
|
#
|
@@ -3133,8 +3153,8 @@ module Aws::SageMaker
|
|
3133
3153
|
|
3134
3154
|
# Creates a custom SageMaker image. A SageMaker image is a set of image
|
3135
3155
|
# versions. Each image version represents a container image stored in
|
3136
|
-
# Amazon Container Registry (ECR). For more information, see
|
3137
|
-
# own SageMaker image][1].
|
3156
|
+
# Amazon Elastic Container Registry (ECR). For more information, see
|
3157
|
+
# [Bring your own SageMaker image][1].
|
3138
3158
|
#
|
3139
3159
|
#
|
3140
3160
|
#
|
@@ -3190,13 +3210,13 @@ module Aws::SageMaker
|
|
3190
3210
|
end
|
3191
3211
|
|
3192
3212
|
# Creates a version of the SageMaker image specified by `ImageName`. The
|
3193
|
-
# version represents the Amazon Container Registry (ECR)
|
3194
|
-
# specified by `BaseImage`.
|
3213
|
+
# version represents the Amazon Elastic Container Registry (ECR)
|
3214
|
+
# container image specified by `BaseImage`.
|
3195
3215
|
#
|
3196
3216
|
# @option params [required, String] :base_image
|
3197
3217
|
# The registry path of the container image to use as the starting point
|
3198
|
-
# for this version. The path is an Amazon Container Registry
|
3199
|
-
# in the following format:
|
3218
|
+
# for this version. The path is an Amazon Elastic Container Registry
|
3219
|
+
# (ECR) URI in the following format:
|
3200
3220
|
#
|
3201
3221
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
3202
3222
|
# [@digest]>`
|
@@ -3666,34 +3686,30 @@ module Aws::SageMaker
|
|
3666
3686
|
req.send_request(options)
|
3667
3687
|
end
|
3668
3688
|
|
3669
|
-
# Creates a model in
|
3670
|
-
#
|
3671
|
-
#
|
3672
|
-
#
|
3673
|
-
#
|
3689
|
+
# Creates a model in SageMaker. In the request, you name the model and
|
3690
|
+
# describe a primary container. For the primary container, you specify
|
3691
|
+
# the Docker image that contains inference code, artifacts (from prior
|
3692
|
+
# training), and a custom environment map that the inference code uses
|
3693
|
+
# when you deploy the model for predictions.
|
3674
3694
|
#
|
3675
|
-
# Use this API to create a model if you want to use
|
3676
|
-
#
|
3695
|
+
# Use this API to create a model if you want to use SageMaker hosting
|
3696
|
+
# services or run a batch transform job.
|
3677
3697
|
#
|
3678
3698
|
# To host your model, you create an endpoint configuration with the
|
3679
3699
|
# `CreateEndpointConfig` API, and then create an endpoint with the
|
3680
|
-
# `CreateEndpoint` API.
|
3681
|
-
#
|
3700
|
+
# `CreateEndpoint` API. SageMaker then deploys all of the containers
|
3701
|
+
# that you defined for the model in the hosting environment.
|
3682
3702
|
#
|
3683
|
-
# For an example that calls this method when deploying a model to
|
3703
|
+
# For an example that calls this method when deploying a model to
|
3684
3704
|
# SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
|
3685
3705
|
# Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
|
3686
3706
|
#
|
3687
3707
|
# To run a batch transform using your model, you start a job with the
|
3688
|
-
# `CreateTransformJob` API.
|
3689
|
-
#
|
3690
|
-
# location.
|
3708
|
+
# `CreateTransformJob` API. SageMaker uses your model and your dataset
|
3709
|
+
# to get inferences which are then saved to a specified S3 location.
|
3691
3710
|
#
|
3692
|
-
# In the
|
3693
|
-
#
|
3694
|
-
#
|
3695
|
-
# In the request, you also provide an IAM role that Amazon SageMaker can
|
3696
|
-
# assume to access model artifacts and docker image for deployment on ML
|
3711
|
+
# In the request, you also provide an IAM role that SageMaker can assume
|
3712
|
+
# to access model artifacts and docker image for deployment on ML
|
3697
3713
|
# compute hosting instances or for batch transform jobs. In addition,
|
3698
3714
|
# you also use the IAM role to manage permissions the inference code
|
3699
3715
|
# needs. For example, if the inference code access any other Amazon Web
|
@@ -3719,14 +3735,14 @@ module Aws::SageMaker
|
|
3719
3735
|
# called.
|
3720
3736
|
#
|
3721
3737
|
# @option params [required, String] :execution_role_arn
|
3722
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
3723
|
-
#
|
3724
|
-
#
|
3725
|
-
#
|
3726
|
-
# [
|
3738
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
3739
|
+
# assume to access model artifacts and docker image for deployment on ML
|
3740
|
+
# compute instances or for batch transform jobs. Deploying on ML compute
|
3741
|
+
# instances is part of model hosting. For more information, see
|
3742
|
+
# [SageMaker Roles][1].
|
3727
3743
|
#
|
3728
|
-
# <note markdown="1"> To be able to pass this role to
|
3729
|
-
#
|
3744
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
3745
|
+
# have the `iam:PassRole` permission.
|
3730
3746
|
#
|
3731
3747
|
# </note>
|
3732
3748
|
#
|
@@ -4105,11 +4121,10 @@ module Aws::SageMaker
|
|
4105
4121
|
req.send_request(options)
|
4106
4122
|
end
|
4107
4123
|
|
4108
|
-
# Creates a model package that you can use to create
|
4109
|
-
#
|
4110
|
-
#
|
4111
|
-
#
|
4112
|
-
# Amazon SageMaker.
|
4124
|
+
# Creates a model package that you can use to create SageMaker models or
|
4125
|
+
# list on Amazon Web Services Marketplace, or a versioned model that is
|
4126
|
+
# part of a model group. Buyers can subscribe to model packages listed
|
4127
|
+
# on Amazon Web Services Marketplace to create models in SageMaker.
|
4113
4128
|
#
|
4114
4129
|
# To create a model package by specifying a Docker container that
|
4115
4130
|
# contains your inference code and the Amazon S3 location of your model
|
@@ -4158,8 +4173,8 @@ module Aws::SageMaker
|
|
4158
4173
|
# for inference.
|
4159
4174
|
#
|
4160
4175
|
# @option params [Types::ModelPackageValidationSpecification] :validation_specification
|
4161
|
-
# Specifies configurations for one or more transform jobs that
|
4162
|
-
#
|
4176
|
+
# Specifies configurations for one or more transform jobs that SageMaker
|
4177
|
+
# runs to test the model package.
|
4163
4178
|
#
|
4164
4179
|
# @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
|
4165
4180
|
# Details about the algorithm that was used to create the model package.
|
@@ -4223,7 +4238,12 @@ module Aws::SageMaker
|
|
4223
4238
|
# @option params [String] :task
|
4224
4239
|
# The machine learning task your model package accomplishes. Common
|
4225
4240
|
# machine learning tasks include object detection and image
|
4226
|
-
# classification.
|
4241
|
+
# classification. The following tasks are supported by Inference
|
4242
|
+
# Recommender: `"IMAGE_CLASSIFICATION"` \| `"OBJECT_DETECTION"` \|
|
4243
|
+
# `"TEXT_GENERATION"` \|`"IMAGE_SEGMENTATION"` \| `"FILL_MASK"` \|
|
4244
|
+
# `"CLASSIFICATION"` \| `"REGRESSION"` \| `"OTHER"`.
|
4245
|
+
#
|
4246
|
+
# Specify "OTHER" if none of the tasks listed fit your use case.
|
4227
4247
|
#
|
4228
4248
|
# @option params [String] :sample_payload_url
|
4229
4249
|
# The Amazon Simple Storage Service (Amazon S3) path where the sample
|
@@ -4797,46 +4817,45 @@ module Aws::SageMaker
|
|
4797
4817
|
req.send_request(options)
|
4798
4818
|
end
|
4799
4819
|
|
4800
|
-
# Creates an
|
4801
|
-
#
|
4802
|
-
# notebook.
|
4820
|
+
# Creates an SageMaker notebook instance. A notebook instance is a
|
4821
|
+
# machine learning (ML) compute instance running on a Jupyter notebook.
|
4803
4822
|
#
|
4804
4823
|
# In a `CreateNotebookInstance` request, specify the type of ML compute
|
4805
|
-
# instance that you want to run.
|
4824
|
+
# instance that you want to run. SageMaker launches the instance,
|
4806
4825
|
# installs common libraries that you can use to explore datasets for
|
4807
4826
|
# model training, and attaches an ML storage volume to the notebook
|
4808
4827
|
# instance.
|
4809
4828
|
#
|
4810
|
-
#
|
4811
|
-
#
|
4812
|
-
#
|
4829
|
+
# SageMaker also provides a set of example notebooks. Each notebook
|
4830
|
+
# demonstrates how to use SageMaker with a specific algorithm or with a
|
4831
|
+
# machine learning framework.
|
4813
4832
|
#
|
4814
|
-
# After receiving the request,
|
4833
|
+
# After receiving the request, SageMaker does the following:
|
4815
4834
|
#
|
4816
|
-
# 1. Creates a network interface in the
|
4835
|
+
# 1. Creates a network interface in the SageMaker VPC.
|
4817
4836
|
#
|
4818
|
-
# 2. (Option) If you specified `SubnetId`,
|
4819
|
-
#
|
4820
|
-
#
|
4821
|
-
#
|
4822
|
-
#
|
4823
|
-
#
|
4837
|
+
# 2. (Option) If you specified `SubnetId`, SageMaker creates a network
|
4838
|
+
# interface in your own VPC, which is inferred from the subnet ID
|
4839
|
+
# that you provide in the input. When creating this network
|
4840
|
+
# interface, SageMaker attaches the security group that you
|
4841
|
+
# specified in the request to the network interface that it creates
|
4842
|
+
# in your VPC.
|
4824
4843
|
#
|
4825
4844
|
# 3. Launches an EC2 instance of the type specified in the request in
|
4826
|
-
# the
|
4827
|
-
#
|
4828
|
-
#
|
4829
|
-
#
|
4845
|
+
# the SageMaker VPC. If you specified `SubnetId` of your VPC,
|
4846
|
+
# SageMaker specifies both network interfaces when launching this
|
4847
|
+
# instance. This enables inbound traffic from your own VPC to the
|
4848
|
+
# notebook instance, assuming that the security groups allow it.
|
4830
4849
|
#
|
4831
|
-
# After creating the notebook instance,
|
4832
|
-
#
|
4833
|
-
#
|
4850
|
+
# After creating the notebook instance, SageMaker returns its Amazon
|
4851
|
+
# Resource Name (ARN). You can't change the name of a notebook instance
|
4852
|
+
# after you create it.
|
4834
4853
|
#
|
4835
|
-
# After
|
4836
|
-
#
|
4837
|
-
#
|
4838
|
-
#
|
4839
|
-
#
|
4854
|
+
# After SageMaker creates the notebook instance, you can connect to the
|
4855
|
+
# Jupyter server and work in Jupyter notebooks. For example, you can
|
4856
|
+
# write code to explore a dataset that you can use for model training,
|
4857
|
+
# train a model, host models by creating SageMaker endpoints, and
|
4858
|
+
# validate hosted models.
|
4840
4859
|
#
|
4841
4860
|
# For more information, see [How It Works][1].
|
4842
4861
|
#
|
@@ -4860,15 +4879,14 @@ module Aws::SageMaker
|
|
4860
4879
|
#
|
4861
4880
|
# @option params [required, String] :role_arn
|
4862
4881
|
# When you send any requests to Amazon Web Services resources from the
|
4863
|
-
# notebook instance,
|
4864
|
-
#
|
4865
|
-
#
|
4866
|
-
#
|
4867
|
-
#
|
4868
|
-
# SageMaker Roles][1].
|
4882
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
4883
|
+
# your behalf. You must grant this role necessary permissions so
|
4884
|
+
# SageMaker can perform these tasks. The policy must allow the SageMaker
|
4885
|
+
# service principal (sagemaker.amazonaws.com) permissions to assume this
|
4886
|
+
# role. For more information, see [SageMaker Roles][1].
|
4869
4887
|
#
|
4870
|
-
# <note markdown="1"> To be able to pass this role to
|
4871
|
-
#
|
4888
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
4889
|
+
# have the `iam:PassRole` permission.
|
4872
4890
|
#
|
4873
4891
|
# </note>
|
4874
4892
|
#
|
@@ -4878,10 +4896,10 @@ module Aws::SageMaker
|
|
4878
4896
|
#
|
4879
4897
|
# @option params [String] :kms_key_id
|
4880
4898
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
4881
|
-
# Service key that
|
4882
|
-
#
|
4883
|
-
#
|
4884
|
-
#
|
4899
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
4900
|
+
# attached to your notebook instance. The KMS key you provide must be
|
4901
|
+
# enabled. For information, see [Enabling and Disabling Keys][1] in the
|
4902
|
+
# *Amazon Web Services Key Management Service Developer Guide*.
|
4885
4903
|
#
|
4886
4904
|
#
|
4887
4905
|
#
|
@@ -4907,11 +4925,11 @@ module Aws::SageMaker
|
|
4907
4925
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
|
4908
4926
|
#
|
4909
4927
|
# @option params [String] :direct_internet_access
|
4910
|
-
# Sets whether
|
4928
|
+
# Sets whether SageMaker provides internet access to the notebook
|
4911
4929
|
# instance. If you set this to `Disabled` this notebook instance is able
|
4912
4930
|
# to access resources only in your VPC, and is not be able to connect to
|
4913
|
-
#
|
4914
|
-
#
|
4931
|
+
# SageMaker training and endpoint services unless you configure a NAT
|
4932
|
+
# Gateway in your VPC.
|
4915
4933
|
#
|
4916
4934
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4917
4935
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -4942,8 +4960,7 @@ module Aws::SageMaker
|
|
4942
4960
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
4943
4961
|
# repository. When you open a notebook instance, it opens in the
|
4944
4962
|
# directory that contains this repository. For more information, see
|
4945
|
-
# [Associating Git Repositories with
|
4946
|
-
# Instances][2].
|
4963
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4947
4964
|
#
|
4948
4965
|
#
|
4949
4966
|
#
|
@@ -4957,8 +4974,7 @@ module Aws::SageMaker
|
|
4957
4974
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
4958
4975
|
# These repositories are cloned at the same level as the default
|
4959
4976
|
# repository of your notebook instance. For more information, see
|
4960
|
-
# [Associating Git Repositories with
|
4961
|
-
# Instances][2].
|
4977
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4962
4978
|
#
|
4963
4979
|
#
|
4964
4980
|
#
|
@@ -5242,10 +5258,10 @@ module Aws::SageMaker
|
|
5242
5258
|
end
|
5243
5259
|
|
5244
5260
|
# Returns a URL that you can use to connect to the Jupyter server from a
|
5245
|
-
# notebook instance. In the
|
5246
|
-
#
|
5247
|
-
#
|
5248
|
-
#
|
5261
|
+
# notebook instance. In the SageMaker console, when you choose `Open`
|
5262
|
+
# next to a notebook instance, SageMaker opens a new tab showing the
|
5263
|
+
# Jupyter server home page from the notebook instance. The console uses
|
5264
|
+
# this API to get the URL and show the page.
|
5249
5265
|
#
|
5250
5266
|
# The IAM role or user used to call this API defines the permissions to
|
5251
5267
|
# access the notebook instance. Once the presigned URL is created, no
|
@@ -5601,15 +5617,14 @@ module Aws::SageMaker
|
|
5601
5617
|
req.send_request(options)
|
5602
5618
|
end
|
5603
5619
|
|
5604
|
-
# Starts a model training job. After training completes,
|
5605
|
-
#
|
5606
|
-
#
|
5620
|
+
# Starts a model training job. After training completes, SageMaker saves
|
5621
|
+
# the resulting model artifacts to an Amazon S3 location that you
|
5622
|
+
# specify.
|
5607
5623
|
#
|
5608
|
-
# If you choose to host your model using
|
5609
|
-
#
|
5610
|
-
#
|
5611
|
-
#
|
5612
|
-
# for inference.
|
5624
|
+
# If you choose to host your model using SageMaker hosting services, you
|
5625
|
+
# can use the resulting model artifacts as part of the model. You can
|
5626
|
+
# also use the artifacts in a machine learning service other than
|
5627
|
+
# SageMaker, provided that you know how to use them for inference.
|
5613
5628
|
#
|
5614
5629
|
# In the request body, you provide the following:
|
5615
5630
|
#
|
@@ -5619,13 +5634,13 @@ module Aws::SageMaker
|
|
5619
5634
|
# enable the estimation of model parameters during training.
|
5620
5635
|
# Hyperparameters can be tuned to optimize this learning process. For
|
5621
5636
|
# a list of hyperparameters for each training algorithm provided by
|
5622
|
-
#
|
5637
|
+
# SageMaker, see [Algorithms][1].
|
5623
5638
|
#
|
5624
5639
|
# * `InputDataConfig` - Describes the training dataset and the Amazon
|
5625
5640
|
# S3, EFS, or FSx location where it is stored.
|
5626
5641
|
#
|
5627
5642
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
5628
|
-
#
|
5643
|
+
# SageMaker to save the results of model training.
|
5629
5644
|
#
|
5630
5645
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
5631
5646
|
# and ML storage volumes to deploy for model training. In distributed
|
@@ -5635,10 +5650,10 @@ module Aws::SageMaker
|
|
5635
5650
|
# learning models by up to 80% by using Amazon EC2 Spot instances. For
|
5636
5651
|
# more information, see [Managed Spot Training][2].
|
5637
5652
|
#
|
5638
|
-
# * `RoleArn` - The Amazon Resource Name (ARN) that
|
5639
|
-
#
|
5640
|
-
#
|
5641
|
-
#
|
5653
|
+
# * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
|
5654
|
+
# perform tasks on your behalf during model training. You must grant
|
5655
|
+
# this role the necessary permissions so that SageMaker can
|
5656
|
+
# successfully complete model training.
|
5642
5657
|
#
|
5643
5658
|
# * `StoppingCondition` - To help cap training costs, use
|
5644
5659
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
@@ -5651,7 +5666,7 @@ module Aws::SageMaker
|
|
5651
5666
|
# * `RetryStrategy` - The number of times to retry the job when the job
|
5652
5667
|
# fails due to an `InternalServerError`.
|
5653
5668
|
#
|
5654
|
-
# For more information about
|
5669
|
+
# For more information about SageMaker, see [How It Works][3].
|
5655
5670
|
#
|
5656
5671
|
#
|
5657
5672
|
#
|
@@ -5666,7 +5681,7 @@ module Aws::SageMaker
|
|
5666
5681
|
# @option params [Hash<String,String>] :hyper_parameters
|
5667
5682
|
# Algorithm-specific parameters that influence the quality of the model.
|
5668
5683
|
# You set hyperparameters before you start the learning process. For a
|
5669
|
-
# list of hyperparameters for each training algorithm provided by
|
5684
|
+
# list of hyperparameters for each training algorithm provided by
|
5670
5685
|
# SageMaker, see [Algorithms][1].
|
5671
5686
|
#
|
5672
5687
|
# You can specify a maximum of 100 hyperparameters. Each hyperparameter
|
@@ -5680,9 +5695,9 @@ module Aws::SageMaker
|
|
5680
5695
|
# @option params [required, Types::AlgorithmSpecification] :algorithm_specification
|
5681
5696
|
# The registry path of the Docker image that contains the training
|
5682
5697
|
# algorithm and algorithm-specific metadata, including the input mode.
|
5683
|
-
# For more information about algorithms provided by
|
5684
|
-
#
|
5685
|
-
#
|
5698
|
+
# For more information about algorithms provided by SageMaker, see
|
5699
|
+
# [Algorithms][1]. For information about providing your own algorithms,
|
5700
|
+
# see [Using Your Own Algorithms with Amazon SageMaker][2].
|
5686
5701
|
#
|
5687
5702
|
#
|
5688
5703
|
#
|
@@ -5690,18 +5705,18 @@ module Aws::SageMaker
|
|
5690
5705
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
5691
5706
|
#
|
5692
5707
|
# @option params [required, String] :role_arn
|
5693
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
5694
|
-
#
|
5708
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
5709
|
+
# assume to perform tasks on your behalf.
|
5695
5710
|
#
|
5696
|
-
# During model training,
|
5697
|
-
#
|
5698
|
-
#
|
5699
|
-
#
|
5700
|
-
#
|
5701
|
-
# information, see [
|
5711
|
+
# During model training, SageMaker needs your permission to read input
|
5712
|
+
# data from an S3 bucket, download a Docker image that contains training
|
5713
|
+
# code, write model artifacts to an S3 bucket, write logs to Amazon
|
5714
|
+
# CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
|
5715
|
+
# permissions for all of these tasks to an IAM role. For more
|
5716
|
+
# information, see [SageMaker Roles][1].
|
5702
5717
|
#
|
5703
|
-
# <note markdown="1"> To be able to pass this role to
|
5704
|
-
#
|
5718
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
5719
|
+
# have the `iam:PassRole` permission.
|
5705
5720
|
#
|
5706
5721
|
# </note>
|
5707
5722
|
#
|
@@ -5721,16 +5736,15 @@ module Aws::SageMaker
|
|
5721
5736
|
# type, compression method, and whether the data is wrapped in RecordIO
|
5722
5737
|
# format.
|
5723
5738
|
#
|
5724
|
-
# Depending on the input mode that the algorithm supports,
|
5725
|
-
#
|
5726
|
-
#
|
5727
|
-
#
|
5728
|
-
#
|
5729
|
-
# downloaded.
|
5739
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
5740
|
+
# either copies input data files from an S3 bucket to a local directory
|
5741
|
+
# in the Docker container, or makes it available as input streams. For
|
5742
|
+
# example, if you specify an EFS location, input data files are
|
5743
|
+
# available as input streams. They do not need to be downloaded.
|
5730
5744
|
#
|
5731
5745
|
# @option params [required, Types::OutputDataConfig] :output_data_config
|
5732
5746
|
# Specifies the path to the S3 location where you want to store model
|
5733
|
-
# artifacts.
|
5747
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
5734
5748
|
#
|
5735
5749
|
# @option params [required, Types::ResourceConfig] :resource_config
|
5736
5750
|
# The resources, including the ML compute instances and ML storage
|
@@ -5738,10 +5752,10 @@ module Aws::SageMaker
|
|
5738
5752
|
#
|
5739
5753
|
# ML storage volumes store model artifacts and incremental states.
|
5740
5754
|
# Training algorithms might also use ML storage volumes for scratch
|
5741
|
-
# space. If you want
|
5742
|
-
#
|
5743
|
-
#
|
5744
|
-
#
|
5755
|
+
# space. If you want SageMaker to use the ML storage volume to store the
|
5756
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
5757
|
+
# algorithm specification. For distributed training algorithms, specify
|
5758
|
+
# an instance count greater than 1.
|
5745
5759
|
#
|
5746
5760
|
# @option params [Types::VpcConfig] :vpc_config
|
5747
5761
|
# A VpcConfig object that specifies the VPC that you want your training
|
@@ -5756,13 +5770,13 @@ module Aws::SageMaker
|
|
5756
5770
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5757
5771
|
# Specifies a limit to how long a model training job can run. It also
|
5758
5772
|
# specifies how long a managed Spot training job has to complete. When
|
5759
|
-
# the job reaches the time limit,
|
5760
|
-
#
|
5773
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
5774
|
+
# this API to cap model training costs.
|
5761
5775
|
#
|
5762
|
-
# To stop a job,
|
5763
|
-
#
|
5764
|
-
#
|
5765
|
-
#
|
5776
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
5777
|
+
# which delays job termination for 120 seconds. Algorithms can use this
|
5778
|
+
# 120-second window to save the model artifacts, so the results of
|
5779
|
+
# training are not lost.
|
5766
5780
|
#
|
5767
5781
|
# @option params [Array<Types::Tag>] :tags
|
5768
5782
|
# An array of key-value pairs. You can use tags to categorize your
|
@@ -5778,9 +5792,9 @@ module Aws::SageMaker
|
|
5778
5792
|
# Isolates the training container. No inbound or outbound network calls
|
5779
5793
|
# can be made, except for calls between peers within a training cluster
|
5780
5794
|
# for distributed training. If you enable network isolation for training
|
5781
|
-
# jobs that are configured to use a VPC,
|
5782
|
-
#
|
5783
|
-
#
|
5795
|
+
# jobs that are configured to use a VPC, SageMaker downloads and uploads
|
5796
|
+
# customer data and model artifacts through the specified VPC, but the
|
5797
|
+
# training container does not have network access.
|
5784
5798
|
#
|
5785
5799
|
# @option params [Boolean] :enable_inter_container_traffic_encryption
|
5786
5800
|
# To encrypt all communications between ML compute instances in
|
@@ -6032,7 +6046,7 @@ module Aws::SageMaker
|
|
6032
6046
|
# * `ModelName` - Identifies the model to use. `ModelName` must be the
|
6033
6047
|
# name of an existing Amazon SageMaker model in the same Amazon Web
|
6034
6048
|
# Services Region and Amazon Web Services account. For information on
|
6035
|
-
# creating a model, see CreateModel.
|
6049
|
+
# creating a model, see [CreateModel][1].
|
6036
6050
|
#
|
6037
6051
|
# * `TransformInput` - Describes the dataset to be transformed and the
|
6038
6052
|
# Amazon S3 location where it is stored.
|
@@ -6044,11 +6058,12 @@ module Aws::SageMaker
|
|
6044
6058
|
# transform job.
|
6045
6059
|
#
|
6046
6060
|
# For more information about how batch transformation works, see [Batch
|
6047
|
-
# Transform][
|
6061
|
+
# Transform][2].
|
6048
6062
|
#
|
6049
6063
|
#
|
6050
6064
|
#
|
6051
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/
|
6065
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html
|
6066
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
|
6052
6067
|
#
|
6053
6068
|
# @option params [required, String] :transform_job_name
|
6054
6069
|
# The name of the transform job. The name must be unique within an
|
@@ -6087,6 +6102,11 @@ module Aws::SageMaker
|
|
6087
6102
|
# fit within the maximum payload size, we recommend using a slightly
|
6088
6103
|
# larger value. The default value is `6` MB.
|
6089
6104
|
#
|
6105
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
6106
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
6107
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
6108
|
+
# MB.
|
6109
|
+
#
|
6090
6110
|
# For cases where the payload might be arbitrarily large and is
|
6091
6111
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
6092
6112
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -6517,6 +6537,19 @@ module Aws::SageMaker
|
|
6517
6537
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
6518
6538
|
# },
|
6519
6539
|
# r_session_app_settings: {
|
6540
|
+
# default_resource_spec: {
|
6541
|
+
# sage_maker_image_arn: "ImageArn",
|
6542
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
6543
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
6544
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
6545
|
+
# },
|
6546
|
+
# custom_images: [
|
6547
|
+
# {
|
6548
|
+
# image_name: "ImageName", # required
|
6549
|
+
# image_version_number: 1,
|
6550
|
+
# app_image_config_name: "AppImageConfigName", # required
|
6551
|
+
# },
|
6552
|
+
# ],
|
6520
6553
|
# },
|
6521
6554
|
# },
|
6522
6555
|
# })
|
@@ -7052,13 +7085,19 @@ module Aws::SageMaker
|
|
7052
7085
|
req.send_request(options)
|
7053
7086
|
end
|
7054
7087
|
|
7055
|
-
# Deletes an endpoint.
|
7056
|
-
#
|
7088
|
+
# Deletes an endpoint. SageMaker frees up all of the resources that were
|
7089
|
+
# deployed when the endpoint was created.
|
7057
7090
|
#
|
7058
|
-
#
|
7091
|
+
# SageMaker retires any custom KMS key grants associated with the
|
7059
7092
|
# endpoint, meaning you don't need to use the [RevokeGrant][1] API
|
7060
7093
|
# call.
|
7061
7094
|
#
|
7095
|
+
# When you delete your endpoint, SageMaker asynchronously deletes
|
7096
|
+
# associated endpoint resources such as KMS key grants. You might still
|
7097
|
+
# see these resources in your account for a few minutes after deleting
|
7098
|
+
# your endpoint. Do not delete or revoke the permissions for your `
|
7099
|
+
# ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
|
7100
|
+
#
|
7062
7101
|
#
|
7063
7102
|
#
|
7064
7103
|
# [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
|
@@ -7275,9 +7314,9 @@ module Aws::SageMaker
|
|
7275
7314
|
end
|
7276
7315
|
|
7277
7316
|
# Deletes a model. The `DeleteModel` API deletes only the model entry
|
7278
|
-
# that was created in
|
7279
|
-
#
|
7280
|
-
#
|
7317
|
+
# that was created in SageMaker when you called the `CreateModel` API.
|
7318
|
+
# It does not delete model artifacts, inference code, or the IAM role
|
7319
|
+
# that you specified when creating the model.
|
7281
7320
|
#
|
7282
7321
|
# @option params [required, String] :model_name
|
7283
7322
|
# The name of the model to delete.
|
@@ -7345,10 +7384,10 @@ module Aws::SageMaker
|
|
7345
7384
|
|
7346
7385
|
# Deletes a model package.
|
7347
7386
|
#
|
7348
|
-
# A model package is used to create
|
7349
|
-
#
|
7350
|
-
#
|
7351
|
-
#
|
7387
|
+
# A model package is used to create SageMaker models or list on Amazon
|
7388
|
+
# Web Services Marketplace. Buyers can subscribe to model packages
|
7389
|
+
# listed on Amazon Web Services Marketplace to create models in
|
7390
|
+
# SageMaker.
|
7352
7391
|
#
|
7353
7392
|
# @option params [required, String] :model_package_name
|
7354
7393
|
# The name or Amazon Resource Name (ARN) of the model package to delete.
|
@@ -7463,16 +7502,16 @@ module Aws::SageMaker
|
|
7463
7502
|
req.send_request(options)
|
7464
7503
|
end
|
7465
7504
|
|
7466
|
-
# Deletes an
|
7505
|
+
# Deletes an SageMaker notebook instance. Before you can delete a
|
7467
7506
|
# notebook instance, you must call the `StopNotebookInstance` API.
|
7468
7507
|
#
|
7469
|
-
# When you delete a notebook instance, you lose all of your data.
|
7508
|
+
# When you delete a notebook instance, you lose all of your data.
|
7470
7509
|
# SageMaker removes the ML compute instance, and deletes the ML storage
|
7471
7510
|
# volume and the network interface associated with the notebook
|
7472
7511
|
# instance.
|
7473
7512
|
#
|
7474
7513
|
# @option params [required, String] :notebook_instance_name
|
7475
|
-
# The name of the
|
7514
|
+
# The name of the SageMaker notebook instance to delete.
|
7476
7515
|
#
|
7477
7516
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
7478
7517
|
#
|
@@ -7600,7 +7639,7 @@ module Aws::SageMaker
|
|
7600
7639
|
req.send_request(options)
|
7601
7640
|
end
|
7602
7641
|
|
7603
|
-
# Deletes the specified tags from an
|
7642
|
+
# Deletes the specified tags from an SageMaker resource.
|
7604
7643
|
#
|
7605
7644
|
# To list a resource's tags, use the `ListTags` API.
|
7606
7645
|
#
|
@@ -8241,6 +8280,7 @@ module Aws::SageMaker
|
|
8241
8280
|
# resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
|
8242
8281
|
# resp.input_data_config[0].target_attribute_name #=> String
|
8243
8282
|
# resp.input_data_config[0].content_type #=> String
|
8283
|
+
# resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
|
8244
8284
|
# resp.output_data_config.kms_key_id #=> String
|
8245
8285
|
# resp.output_data_config.s3_output_path #=> String
|
8246
8286
|
# resp.role_arn #=> String
|
@@ -8255,6 +8295,8 @@ module Aws::SageMaker
|
|
8255
8295
|
# resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
|
8256
8296
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
|
8257
8297
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
|
8298
|
+
# resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
|
8299
|
+
# resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
|
8258
8300
|
# resp.creation_time #=> Time
|
8259
8301
|
# resp.end_time #=> Time
|
8260
8302
|
# resp.last_modified_time #=> Time
|
@@ -8286,6 +8328,7 @@ module Aws::SageMaker
|
|
8286
8328
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
8287
8329
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
8288
8330
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
8331
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss"
|
8289
8332
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
8290
8333
|
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError"
|
8291
8334
|
# resp.generate_candidate_definitions_only #=> Boolean
|
@@ -8737,6 +8780,14 @@ module Aws::SageMaker
|
|
8737
8780
|
# resp.default_user_settings.tensor_board_app_settings.default_resource_spec.lifecycle_config_arn #=> String
|
8738
8781
|
# resp.default_user_settings.r_studio_server_pro_app_settings.access_status #=> String, one of "ENABLED", "DISABLED"
|
8739
8782
|
# resp.default_user_settings.r_studio_server_pro_app_settings.user_group #=> String, one of "R_STUDIO_ADMIN", "R_STUDIO_USER"
|
8783
|
+
# resp.default_user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
8784
|
+
# resp.default_user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
8785
|
+
# resp.default_user_settings.r_session_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
|
8786
|
+
# resp.default_user_settings.r_session_app_settings.default_resource_spec.lifecycle_config_arn #=> String
|
8787
|
+
# resp.default_user_settings.r_session_app_settings.custom_images #=> Array
|
8788
|
+
# resp.default_user_settings.r_session_app_settings.custom_images[0].image_name #=> String
|
8789
|
+
# resp.default_user_settings.r_session_app_settings.custom_images[0].image_version_number #=> Integer
|
8790
|
+
# resp.default_user_settings.r_session_app_settings.custom_images[0].app_image_config_name #=> String
|
8740
8791
|
# resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
|
8741
8792
|
# resp.home_efs_file_system_kms_key_id #=> String
|
8742
8793
|
# resp.subnet_ids #=> Array
|
@@ -10219,7 +10270,7 @@ module Aws::SageMaker
|
|
10219
10270
|
# Gets a description for the specified model group.
|
10220
10271
|
#
|
10221
10272
|
# @option params [required, String] :model_package_group_name
|
10222
|
-
# The name of
|
10273
|
+
# The name of gthe model group to describe.
|
10223
10274
|
#
|
10224
10275
|
# @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10225
10276
|
#
|
@@ -11444,6 +11495,14 @@ module Aws::SageMaker
|
|
11444
11495
|
# resp.user_settings.tensor_board_app_settings.default_resource_spec.lifecycle_config_arn #=> String
|
11445
11496
|
# resp.user_settings.r_studio_server_pro_app_settings.access_status #=> String, one of "ENABLED", "DISABLED"
|
11446
11497
|
# resp.user_settings.r_studio_server_pro_app_settings.user_group #=> String, one of "R_STUDIO_ADMIN", "R_STUDIO_USER"
|
11498
|
+
# resp.user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
11499
|
+
# resp.user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
11500
|
+
# resp.user_settings.r_session_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
|
11501
|
+
# resp.user_settings.r_session_app_settings.default_resource_spec.lifecycle_config_arn #=> String
|
11502
|
+
# resp.user_settings.r_session_app_settings.custom_images #=> Array
|
11503
|
+
# resp.user_settings.r_session_app_settings.custom_images[0].image_name #=> String
|
11504
|
+
# resp.user_settings.r_session_app_settings.custom_images[0].image_version_number #=> Integer
|
11505
|
+
# resp.user_settings.r_session_app_settings.custom_images[0].app_image_config_name #=> String
|
11447
11506
|
#
|
11448
11507
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfile AWS API Documentation
|
11449
11508
|
#
|
@@ -12407,6 +12466,7 @@ module Aws::SageMaker
|
|
12407
12466
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
12408
12467
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
12409
12468
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
12469
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss"
|
12410
12470
|
# resp.next_token #=> String
|
12411
12471
|
#
|
12412
12472
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
|
@@ -14751,8 +14811,8 @@ module Aws::SageMaker
|
|
14751
14811
|
req.send_request(options)
|
14752
14812
|
end
|
14753
14813
|
|
14754
|
-
# Returns a list of the
|
14755
|
-
#
|
14814
|
+
# Returns a list of the SageMaker notebook instances in the requester's
|
14815
|
+
# account in an Amazon Web Services Region.
|
14756
14816
|
#
|
14757
14817
|
# @option params [String] :next_token
|
14758
14818
|
# If the previous call to the `ListNotebookInstances` is truncated, the
|
@@ -15423,7 +15483,7 @@ module Aws::SageMaker
|
|
15423
15483
|
req.send_request(options)
|
15424
15484
|
end
|
15425
15485
|
|
15426
|
-
# Returns the tags for the specified
|
15486
|
+
# Returns the tags for the specified SageMaker resource.
|
15427
15487
|
#
|
15428
15488
|
# @option params [required, String] :resource_arn
|
15429
15489
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
@@ -15431,8 +15491,8 @@ module Aws::SageMaker
|
|
15431
15491
|
#
|
15432
15492
|
# @option params [String] :next_token
|
15433
15493
|
# If the response to the previous `ListTags` request is truncated,
|
15434
|
-
#
|
15435
|
-
#
|
15494
|
+
# SageMaker returns this token. To retrieve the next set of tags, use it
|
15495
|
+
# in the subsequent request.
|
15436
15496
|
#
|
15437
15497
|
# @option params [Integer] :max_results
|
15438
15498
|
# Maximum number of tags to return.
|
@@ -16157,11 +16217,12 @@ module Aws::SageMaker
|
|
16157
16217
|
# starting point for your lineage query.
|
16158
16218
|
#
|
16159
16219
|
# @option params [String] :direction
|
16160
|
-
# Associations between lineage entities
|
16161
|
-
# determines the direction from the StartArn(s) the query
|
16220
|
+
# Associations between lineage entities have a direction. This parameter
|
16221
|
+
# determines the direction from the StartArn(s) that the query
|
16222
|
+
# traverses.
|
16162
16223
|
#
|
16163
16224
|
# @option params [Boolean] :include_edges
|
16164
|
-
# Setting this value to `True`
|
16225
|
+
# Setting this value to `True` retrieves not only the entities of
|
16165
16226
|
# interest but also the [Associations][1] and lineage entities on the
|
16166
16227
|
# path. Set to `False` to only return lineage entities that match your
|
16167
16228
|
# query.
|
@@ -16188,8 +16249,8 @@ module Aws::SageMaker
|
|
16188
16249
|
#
|
16189
16250
|
# @option params [Integer] :max_depth
|
16190
16251
|
# The maximum depth in lineage relationships from the `StartArns` that
|
16191
|
-
#
|
16192
|
-
#
|
16252
|
+
# are traversed. Depth is a measure of the number of `Associations` from
|
16253
|
+
# the `StartArn` entity to the matched results.
|
16193
16254
|
#
|
16194
16255
|
# @option params [Integer] :max_results
|
16195
16256
|
# Limits the number of vertices in the results. Use the `NextToken` in a
|
@@ -17365,9 +17426,9 @@ module Aws::SageMaker
|
|
17365
17426
|
|
17366
17427
|
# Launches an ML compute instance with the latest version of the
|
17367
17428
|
# libraries and attaches your ML storage volume. After configuring the
|
17368
|
-
# notebook instance,
|
17369
|
-
#
|
17370
|
-
#
|
17429
|
+
# notebook instance, SageMaker sets the notebook instance status to
|
17430
|
+
# `InService`. A notebook instance's status must be `InService` before
|
17431
|
+
# you can connect to your Jupyter notebook.
|
17371
17432
|
#
|
17372
17433
|
# @option params [required, String] :notebook_instance_name
|
17373
17434
|
# The name of the notebook instance to start.
|
@@ -17623,10 +17684,9 @@ module Aws::SageMaker
|
|
17623
17684
|
end
|
17624
17685
|
|
17625
17686
|
# Terminates the ML compute instance. Before terminating the instance,
|
17626
|
-
#
|
17627
|
-
#
|
17628
|
-
#
|
17629
|
-
# `StopNotebookInstance`.
|
17687
|
+
# SageMaker disconnects the ML storage volume from it. SageMaker
|
17688
|
+
# preserves the ML storage volume. SageMaker stops charging you for the
|
17689
|
+
# ML compute instance when you call `StopNotebookInstance`.
|
17630
17690
|
#
|
17631
17691
|
# To access data on the ML storage volume for a notebook instance that
|
17632
17692
|
# has been terminated, call the `StartNotebookInstance` API.
|
@@ -17740,14 +17800,14 @@ module Aws::SageMaker
|
|
17740
17800
|
req.send_request(options)
|
17741
17801
|
end
|
17742
17802
|
|
17743
|
-
# Stops a training job. To stop a job,
|
17744
|
-
#
|
17745
|
-
#
|
17803
|
+
# Stops a training job. To stop a job, SageMaker sends the algorithm the
|
17804
|
+
# `SIGTERM` signal, which delays job termination for 120 seconds.
|
17805
|
+
# Algorithms might use this 120-second window to save the model
|
17746
17806
|
# artifacts, so the results of the training is not lost.
|
17747
17807
|
#
|
17748
|
-
# When it receives a `StopTrainingJob` request,
|
17749
|
-
#
|
17750
|
-
#
|
17808
|
+
# When it receives a `StopTrainingJob` request, SageMaker changes the
|
17809
|
+
# status of the job to `Stopping`. After SageMaker stops the job, it
|
17810
|
+
# sets the status to `Stopped`.
|
17751
17811
|
#
|
17752
17812
|
# @option params [required, String] :training_job_name
|
17753
17813
|
# The name of the training job to stop.
|
@@ -18156,6 +18216,19 @@ module Aws::SageMaker
|
|
18156
18216
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
18157
18217
|
# },
|
18158
18218
|
# r_session_app_settings: {
|
18219
|
+
# default_resource_spec: {
|
18220
|
+
# sage_maker_image_arn: "ImageArn",
|
18221
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
18222
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
18223
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
18224
|
+
# },
|
18225
|
+
# custom_images: [
|
18226
|
+
# {
|
18227
|
+
# image_name: "ImageName", # required
|
18228
|
+
# image_version_number: 1,
|
18229
|
+
# app_image_config_name: "AppImageConfigName", # required
|
18230
|
+
# },
|
18231
|
+
# ],
|
18159
18232
|
# },
|
18160
18233
|
# },
|
18161
18234
|
# domain_settings_for_update: {
|
@@ -18189,9 +18262,9 @@ module Aws::SageMaker
|
|
18189
18262
|
# for the endpoint using the previous `EndpointConfig` (there is no
|
18190
18263
|
# availability loss).
|
18191
18264
|
#
|
18192
|
-
# When
|
18193
|
-
#
|
18194
|
-
#
|
18265
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
18266
|
+
# `Updating`. After updating the endpoint, it sets the status to
|
18267
|
+
# `InService`. To check the status of an endpoint, use the
|
18195
18268
|
# DescribeEndpoint API.
|
18196
18269
|
#
|
18197
18270
|
# <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
|
@@ -18299,13 +18372,13 @@ module Aws::SageMaker
|
|
18299
18372
|
|
18300
18373
|
# Updates variant weight of one or more variants associated with an
|
18301
18374
|
# existing endpoint, or capacity of one variant associated with an
|
18302
|
-
# existing endpoint. When it receives the request,
|
18303
|
-
#
|
18304
|
-
#
|
18305
|
-
#
|
18375
|
+
# existing endpoint. When it receives the request, SageMaker sets the
|
18376
|
+
# endpoint status to `Updating`. After updating the endpoint, it sets
|
18377
|
+
# the status to `InService`. To check the status of an endpoint, use the
|
18378
|
+
# DescribeEndpoint API.
|
18306
18379
|
#
|
18307
18380
|
# @option params [required, String] :endpoint_name
|
18308
|
-
# The name of an existing
|
18381
|
+
# The name of an existing SageMaker endpoint.
|
18309
18382
|
#
|
18310
18383
|
# @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
|
18311
18384
|
# An object that provides new capacity and weight values for a variant.
|
@@ -18630,12 +18703,12 @@ module Aws::SageMaker
|
|
18630
18703
|
# The Amazon ML compute instance type.
|
18631
18704
|
#
|
18632
18705
|
# @option params [String] :role_arn
|
18633
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
18634
|
-
#
|
18635
|
-
# [
|
18706
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
18707
|
+
# assume to access the notebook instance. For more information, see
|
18708
|
+
# [SageMaker Roles][1].
|
18636
18709
|
#
|
18637
|
-
# <note markdown="1"> To be able to pass this role to
|
18638
|
-
#
|
18710
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
18711
|
+
# have the `iam:PassRole` permission.
|
18639
18712
|
#
|
18640
18713
|
# </note>
|
18641
18714
|
#
|
@@ -18662,11 +18735,11 @@ module Aws::SageMaker
|
|
18662
18735
|
# @option params [Integer] :volume_size_in_gb
|
18663
18736
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
18664
18737
|
# instance. The default value is 5 GB. ML storage volumes are encrypted,
|
18665
|
-
# so
|
18666
|
-
#
|
18667
|
-
#
|
18668
|
-
#
|
18669
|
-
#
|
18738
|
+
# so SageMaker can't determine the amount of available free space on
|
18739
|
+
# the volume. Because of this, you can increase the volume size when you
|
18740
|
+
# update a notebook instance, but you can't decrease the volume size.
|
18741
|
+
# If you want to decrease the size of the ML storage volume in use,
|
18742
|
+
# create a new notebook instance with the desired size.
|
18670
18743
|
#
|
18671
18744
|
# @option params [String] :default_code_repository
|
18672
18745
|
# The Git repository to associate with the notebook instance as its
|
@@ -18675,8 +18748,7 @@ module Aws::SageMaker
|
|
18675
18748
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
18676
18749
|
# repository. When you open a notebook instance, it opens in the
|
18677
18750
|
# directory that contains this repository. For more information, see
|
18678
|
-
# [Associating Git Repositories with
|
18679
|
-
# Instances][2].
|
18751
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18680
18752
|
#
|
18681
18753
|
#
|
18682
18754
|
#
|
@@ -18690,8 +18762,7 @@ module Aws::SageMaker
|
|
18690
18762
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
18691
18763
|
# These repositories are cloned at the same level as the default
|
18692
18764
|
# repository of your notebook instance. For more information, see
|
18693
|
-
# [Associating Git Repositories with
|
18694
|
-
# Instances][2].
|
18765
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18695
18766
|
#
|
18696
18767
|
#
|
18697
18768
|
#
|
@@ -19237,6 +19308,19 @@ module Aws::SageMaker
|
|
19237
19308
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
19238
19309
|
# },
|
19239
19310
|
# r_session_app_settings: {
|
19311
|
+
# default_resource_spec: {
|
19312
|
+
# sage_maker_image_arn: "ImageArn",
|
19313
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
19314
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
19315
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
19316
|
+
# },
|
19317
|
+
# custom_images: [
|
19318
|
+
# {
|
19319
|
+
# image_name: "ImageName", # required
|
19320
|
+
# image_version_number: 1,
|
19321
|
+
# app_image_config_name: "AppImageConfigName", # required
|
19322
|
+
# },
|
19323
|
+
# ],
|
19240
19324
|
# },
|
19241
19325
|
# },
|
19242
19326
|
# })
|
@@ -19464,7 +19548,7 @@ module Aws::SageMaker
|
|
19464
19548
|
params: params,
|
19465
19549
|
config: config)
|
19466
19550
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
19467
|
-
context[:gem_version] = '1.
|
19551
|
+
context[:gem_version] = '1.125.0'
|
19468
19552
|
Seahorse::Client::Request.new(handlers, context)
|
19469
19553
|
end
|
19470
19554
|
|