aws-sdk-sagemaker 1.122.0 → 1.123.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +248 -244
- data/lib/aws-sdk-sagemaker/client_api.rb +8 -0
- data/lib/aws-sdk-sagemaker/types.rb +438 -398
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -192,7 +192,7 @@ module Aws::SageMaker
|
|
192
192
|
end
|
193
193
|
|
194
194
|
# @!attribute [rw] tags
|
195
|
-
# A list of tags associated with the
|
195
|
+
# A list of tags associated with the SageMaker resource.
|
196
196
|
# @return [Array<Types::Tag>]
|
197
197
|
#
|
198
198
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
|
@@ -328,9 +328,9 @@ module Aws::SageMaker
|
|
328
328
|
# Specifies the training algorithm to use in a CreateTrainingJob
|
329
329
|
# request.
|
330
330
|
#
|
331
|
-
# For more information about algorithms provided by
|
332
|
-
#
|
333
|
-
#
|
331
|
+
# For more information about algorithms provided by SageMaker, see
|
332
|
+
# [Algorithms][1]. For information about using your own algorithms, see
|
333
|
+
# [Using Your Own Algorithms with Amazon SageMaker][2].
|
334
334
|
#
|
335
335
|
#
|
336
336
|
#
|
@@ -357,10 +357,10 @@ module Aws::SageMaker
|
|
357
357
|
# The registry path of the Docker image that contains the training
|
358
358
|
# algorithm. For information about docker registry paths for built-in
|
359
359
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
360
|
-
# Parameters][1].
|
361
|
-
#
|
362
|
-
#
|
363
|
-
#
|
360
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
361
|
+
# and `registry/repository[@digest]` image path formats. For more
|
362
|
+
# information, see [Using Your Own Algorithms with Amazon
|
363
|
+
# SageMaker][2].
|
364
364
|
#
|
365
365
|
#
|
366
366
|
#
|
@@ -424,7 +424,7 @@ module Aws::SageMaker
|
|
424
424
|
# @!attribute [rw] metric_definitions
|
425
425
|
# A list of metric definition objects. Each object specifies the
|
426
426
|
# metric name and regular expressions used to parse algorithm logs.
|
427
|
-
#
|
427
|
+
# SageMaker publishes each metric to Amazon CloudWatch.
|
428
428
|
# @return [Array<Types::MetricDefinition>]
|
429
429
|
#
|
430
430
|
# @!attribute [rw] enable_sage_maker_metrics_time_series
|
@@ -432,9 +432,9 @@ module Aws::SageMaker
|
|
432
432
|
# `true`. The default is `false` and time-series metrics aren't
|
433
433
|
# generated except in the following cases:
|
434
434
|
#
|
435
|
-
# * You use one of the
|
435
|
+
# * You use one of the SageMaker built-in algorithms
|
436
436
|
#
|
437
|
-
# * You use one of the following [Prebuilt
|
437
|
+
# * You use one of the following [Prebuilt SageMaker Docker
|
438
438
|
# Images][1]\:
|
439
439
|
#
|
440
440
|
# * Tensorflow (version >= 1.15)
|
@@ -540,8 +540,8 @@ module Aws::SageMaker
|
|
540
540
|
include Aws::Structure
|
541
541
|
end
|
542
542
|
|
543
|
-
# Defines a training job and a batch transform job that
|
544
|
-
#
|
543
|
+
# Defines a training job and a batch transform job that SageMaker runs
|
544
|
+
# to validate your algorithm.
|
545
545
|
#
|
546
546
|
# The data provided in the validation profile is made available to your
|
547
547
|
# buyers on Amazon Web Services Marketplace.
|
@@ -636,12 +636,12 @@ module Aws::SageMaker
|
|
636
636
|
#
|
637
637
|
# @!attribute [rw] training_job_definition
|
638
638
|
# The `TrainingJobDefinition` object that describes the training job
|
639
|
-
# that
|
639
|
+
# that SageMaker runs to validate your algorithm.
|
640
640
|
# @return [Types::TrainingJobDefinition]
|
641
641
|
#
|
642
642
|
# @!attribute [rw] transform_job_definition
|
643
643
|
# The `TransformJobDefinition` object that describes the transform job
|
644
|
-
# that
|
644
|
+
# that SageMaker runs to validate your algorithm.
|
645
645
|
# @return [Types::TransformJobDefinition]
|
646
646
|
#
|
647
647
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
|
@@ -654,8 +654,8 @@ module Aws::SageMaker
|
|
654
654
|
include Aws::Structure
|
655
655
|
end
|
656
656
|
|
657
|
-
# Specifies configurations for one or more training jobs that
|
658
|
-
#
|
657
|
+
# Specifies configurations for one or more training jobs that SageMaker
|
658
|
+
# runs to test the algorithm.
|
659
659
|
#
|
660
660
|
# @note When making an API call, you may pass AlgorithmValidationSpecification
|
661
661
|
# data as a hash:
|
@@ -746,13 +746,13 @@ module Aws::SageMaker
|
|
746
746
|
# }
|
747
747
|
#
|
748
748
|
# @!attribute [rw] validation_role
|
749
|
-
# The IAM roles that
|
749
|
+
# The IAM roles that SageMaker uses to run the training jobs.
|
750
750
|
# @return [String]
|
751
751
|
#
|
752
752
|
# @!attribute [rw] validation_profiles
|
753
753
|
# An array of `AlgorithmValidationProfile` objects, each of which
|
754
|
-
# specifies a training job and batch transform job that
|
755
|
-
#
|
754
|
+
# specifies a training job and batch transform job that SageMaker runs
|
755
|
+
# to validate your algorithm.
|
756
756
|
# @return [Array<Types::AlgorithmValidationProfile>]
|
757
757
|
#
|
758
758
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
|
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
|
|
1742
1742
|
include Aws::Structure
|
1743
1743
|
end
|
1744
1744
|
|
1745
|
-
# Configures the behavior of the client used by
|
1746
|
-
#
|
1745
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1746
|
+
# with the model container during asynchronous inference.
|
1747
1747
|
#
|
1748
1748
|
# @note When making an API call, you may pass AsyncInferenceClientConfig
|
1749
1749
|
# data as a hash:
|
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
|
|
1754
1754
|
#
|
1755
1755
|
# @!attribute [rw] max_concurrent_invocations_per_instance
|
1756
1756
|
# The maximum number of concurrent requests sent by the SageMaker
|
1757
|
-
# client to the model container. If no value is provided,
|
1758
|
-
#
|
1757
|
+
# client to the model container. If no value is provided, SageMaker
|
1758
|
+
# chooses an optimal value.
|
1759
1759
|
# @return [Integer]
|
1760
1760
|
#
|
1761
1761
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
|
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
|
|
1787
1787
|
# }
|
1788
1788
|
#
|
1789
1789
|
# @!attribute [rw] client_config
|
1790
|
-
# Configures the behavior of the client used by
|
1791
|
-
#
|
1790
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1791
|
+
# with the model container during asynchronous inference.
|
1792
1792
|
# @return [Types::AsyncInferenceClientConfig]
|
1793
1793
|
#
|
1794
1794
|
# @!attribute [rw] output_config
|
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
|
|
1853
1853
|
#
|
1854
1854
|
# @!attribute [rw] kms_key_id
|
1855
1855
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
1856
|
-
# KMS) key that
|
1857
|
-
#
|
1856
|
+
# KMS) key that SageMaker uses to encrypt the asynchronous inference
|
1857
|
+
# output in Amazon S3.
|
1858
1858
|
# @return [String]
|
1859
1859
|
#
|
1860
1860
|
# @!attribute [rw] s3_output_path
|
@@ -2034,7 +2034,14 @@ module Aws::SageMaker
|
|
2034
2034
|
end
|
2035
2035
|
|
2036
2036
|
# A channel is a named input source that training algorithms can
|
2037
|
-
# consume.
|
2037
|
+
# consume. The validation dataset size is limited to less than 2 GB. The
|
2038
|
+
# training dataset size must be less than 100 GB. For more information,
|
2039
|
+
# see .
|
2040
|
+
#
|
2041
|
+
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
2042
|
+
# dataset.
|
2043
|
+
#
|
2044
|
+
# </note>
|
2038
2045
|
#
|
2039
2046
|
# @note When making an API call, you may pass AutoMLChannel
|
2040
2047
|
# data as a hash:
|
@@ -2049,6 +2056,7 @@ module Aws::SageMaker
|
|
2049
2056
|
# compression_type: "None", # accepts None, Gzip
|
2050
2057
|
# target_attribute_name: "TargetAttributeName", # required
|
2051
2058
|
# content_type: "ContentType",
|
2059
|
+
# channel_type: "training", # accepts training, validation
|
2052
2060
|
# }
|
2053
2061
|
#
|
2054
2062
|
# @!attribute [rw] data_source
|
@@ -2070,13 +2078,20 @@ module Aws::SageMaker
|
|
2070
2078
|
# default value is `text/csv;header=present`.
|
2071
2079
|
# @return [String]
|
2072
2080
|
#
|
2081
|
+
# @!attribute [rw] channel_type
|
2082
|
+
# The channel type (optional) is an enum string. The default value is
|
2083
|
+
# `training`. Channels for training and validation must share the same
|
2084
|
+
# `ContentType` and `TargetAttributeName`.
|
2085
|
+
# @return [String]
|
2086
|
+
#
|
2073
2087
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
|
2074
2088
|
#
|
2075
2089
|
class AutoMLChannel < Struct.new(
|
2076
2090
|
:data_source,
|
2077
2091
|
:compression_type,
|
2078
2092
|
:target_attribute_name,
|
2079
|
-
:content_type
|
2093
|
+
:content_type,
|
2094
|
+
:channel_type)
|
2080
2095
|
SENSITIVE = []
|
2081
2096
|
include Aws::Structure
|
2082
2097
|
end
|
@@ -2136,6 +2151,32 @@ module Aws::SageMaker
|
|
2136
2151
|
include Aws::Structure
|
2137
2152
|
end
|
2138
2153
|
|
2154
|
+
# This structure specifies how to split the data into train and test
|
2155
|
+
# datasets. The validation and training datasets must contain the same
|
2156
|
+
# headers. The validation dataset must be less than 2 GB in size.
|
2157
|
+
#
|
2158
|
+
# @note When making an API call, you may pass AutoMLDataSplitConfig
|
2159
|
+
# data as a hash:
|
2160
|
+
#
|
2161
|
+
# {
|
2162
|
+
# validation_fraction: 1.0,
|
2163
|
+
# }
|
2164
|
+
#
|
2165
|
+
# @!attribute [rw] validation_fraction
|
2166
|
+
# The validation fraction (optional) is a float that specifies the
|
2167
|
+
# portion of the training dataset to be used for validation. The
|
2168
|
+
# default value is 0.2, and values can range from 0 to 1. We recommend
|
2169
|
+
# setting this value to be less than 0.5.
|
2170
|
+
# @return [Float]
|
2171
|
+
#
|
2172
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
|
2173
|
+
#
|
2174
|
+
class AutoMLDataSplitConfig < Struct.new(
|
2175
|
+
:validation_fraction)
|
2176
|
+
SENSITIVE = []
|
2177
|
+
include Aws::Structure
|
2178
|
+
end
|
2179
|
+
|
2139
2180
|
# The artifacts that are generated during an AutoML job.
|
2140
2181
|
#
|
2141
2182
|
# @!attribute [rw] candidate_definition_notebook_location
|
@@ -2217,6 +2258,9 @@ module Aws::SageMaker
|
|
2217
2258
|
# subnets: ["SubnetId"], # required
|
2218
2259
|
# },
|
2219
2260
|
# },
|
2261
|
+
# data_split_config: {
|
2262
|
+
# validation_fraction: 1.0,
|
2263
|
+
# },
|
2220
2264
|
# }
|
2221
2265
|
#
|
2222
2266
|
# @!attribute [rw] completion_criteria
|
@@ -2229,11 +2273,18 @@ module Aws::SageMaker
|
|
2229
2273
|
# settings.
|
2230
2274
|
# @return [Types::AutoMLSecurityConfig]
|
2231
2275
|
#
|
2276
|
+
# @!attribute [rw] data_split_config
|
2277
|
+
# The configuration for splitting the input training dataset.
|
2278
|
+
#
|
2279
|
+
# Type: AutoMLDataSplitConfig
|
2280
|
+
# @return [Types::AutoMLDataSplitConfig]
|
2281
|
+
#
|
2232
2282
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
2233
2283
|
#
|
2234
2284
|
class AutoMLJobConfig < Struct.new(
|
2235
2285
|
:completion_criteria,
|
2236
|
-
:security_config
|
2286
|
+
:security_config,
|
2287
|
+
:data_split_config)
|
2237
2288
|
SENSITIVE = []
|
2238
2289
|
include Aws::Structure
|
2239
2290
|
end
|
@@ -3005,10 +3056,10 @@ module Aws::SageMaker
|
|
3005
3056
|
# @!attribute [rw] record_wrapper_type
|
3006
3057
|
# Specify RecordIO as the value when input data is in raw format but
|
3007
3058
|
# the training algorithm requires the RecordIO format. In this case,
|
3008
|
-
#
|
3009
|
-
#
|
3010
|
-
#
|
3011
|
-
#
|
3059
|
+
# SageMaker wraps each individual S3 object in a RecordIO record. If
|
3060
|
+
# the input data is already in RecordIO format, you don't need to set
|
3061
|
+
# this attribute. For more information, see [Create a Dataset Using
|
3062
|
+
# RecordIO][1].
|
3012
3063
|
#
|
3013
3064
|
# In File mode, leave this field unset or set it to None.
|
3014
3065
|
#
|
@@ -3019,15 +3070,15 @@ module Aws::SageMaker
|
|
3019
3070
|
#
|
3020
3071
|
# @!attribute [rw] input_mode
|
3021
3072
|
# (Optional) The input mode to use for the data channel in a training
|
3022
|
-
# job. If you don't set a value for `InputMode`,
|
3023
|
-
#
|
3024
|
-
#
|
3025
|
-
#
|
3026
|
-
#
|
3027
|
-
#
|
3028
|
-
#
|
3029
|
-
#
|
3030
|
-
#
|
3073
|
+
# job. If you don't set a value for `InputMode`, SageMaker uses the
|
3074
|
+
# value set for `TrainingInputMode`. Use this parameter to override
|
3075
|
+
# the `TrainingInputMode` setting in a AlgorithmSpecification request
|
3076
|
+
# when you have a channel that needs a different input mode from the
|
3077
|
+
# training job's general setting. To download the data from Amazon
|
3078
|
+
# Simple Storage Service (Amazon S3) to the provisioned ML storage
|
3079
|
+
# volume, and mount the directory to a Docker volume, use `File` input
|
3080
|
+
# mode. To stream data directly from Amazon S3 to the container,
|
3081
|
+
# choose `Pipe` input mode.
|
3031
3082
|
#
|
3032
3083
|
# To use a model for incremental training, choose `File` input model.
|
3033
3084
|
# @return [String]
|
@@ -3137,7 +3188,7 @@ module Aws::SageMaker
|
|
3137
3188
|
# }
|
3138
3189
|
#
|
3139
3190
|
# @!attribute [rw] s3_uri
|
3140
|
-
# Identifies the S3 path where you want
|
3191
|
+
# Identifies the S3 path where you want SageMaker to store
|
3141
3192
|
# checkpoints. For example, `s3://bucket-name/key-name-prefix`.
|
3142
3193
|
# @return [String]
|
3143
3194
|
#
|
@@ -3514,11 +3565,11 @@ module Aws::SageMaker
|
|
3514
3565
|
# Amazon EC2 Container Registry or in a Docker registry that is
|
3515
3566
|
# accessible from the same VPC that you configure for your endpoint.
|
3516
3567
|
# If you are using your own custom algorithm instead of an algorithm
|
3517
|
-
# provided by
|
3518
|
-
#
|
3519
|
-
#
|
3520
|
-
#
|
3521
|
-
#
|
3568
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
3569
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
3570
|
+
# and `registry/repository[@digest]` image path formats. For more
|
3571
|
+
# information, see [Using Your Own Algorithms with Amazon
|
3572
|
+
# SageMaker][1]
|
3522
3573
|
#
|
3523
3574
|
#
|
3524
3575
|
#
|
@@ -3545,7 +3596,7 @@ module Aws::SageMaker
|
|
3545
3596
|
# The S3 path where the model artifacts, which result from model
|
3546
3597
|
# training, are stored. This path must point to a single gzip
|
3547
3598
|
# compressed tar archive (.tar.gz suffix). The S3 path is required for
|
3548
|
-
#
|
3599
|
+
# SageMaker built-in algorithms, but not if you use your own
|
3549
3600
|
# algorithms. For more information on built-in algorithms, see [Common
|
3550
3601
|
# Parameters][1].
|
3551
3602
|
#
|
@@ -3554,17 +3605,17 @@ module Aws::SageMaker
|
|
3554
3605
|
#
|
3555
3606
|
# </note>
|
3556
3607
|
#
|
3557
|
-
# If you provide a value for this parameter,
|
3558
|
-
#
|
3559
|
-
#
|
3560
|
-
#
|
3561
|
-
#
|
3562
|
-
#
|
3563
|
-
#
|
3564
|
-
#
|
3565
|
-
#
|
3566
|
-
#
|
3567
|
-
# If you use a built-in algorithm to create a model,
|
3608
|
+
# If you provide a value for this parameter, SageMaker uses Amazon Web
|
3609
|
+
# Services Security Token Service to download model artifacts from the
|
3610
|
+
# S3 path you provide. Amazon Web Services STS is activated in your
|
3611
|
+
# IAM user account by default. If you previously deactivated Amazon
|
3612
|
+
# Web Services STS for a region, you need to reactivate Amazon Web
|
3613
|
+
# Services STS for that region. For more information, see [Activating
|
3614
|
+
# and Deactivating Amazon Web Services STS in an Amazon Web Services
|
3615
|
+
# Region][2] in the *Amazon Web Services Identity and Access
|
3616
|
+
# Management User Guide*.
|
3617
|
+
#
|
3618
|
+
# If you use a built-in algorithm to create a model, SageMaker
|
3568
3619
|
# requires that you provide a S3 path to the model artifacts in
|
3569
3620
|
# `ModelDataUrl`.
|
3570
3621
|
#
|
@@ -3717,8 +3768,8 @@ module Aws::SageMaker
|
|
3717
3768
|
#
|
3718
3769
|
# Auto
|
3719
3770
|
#
|
3720
|
-
# :
|
3721
|
-
#
|
3771
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
3772
|
+
# hyperparameter.
|
3722
3773
|
#
|
3723
3774
|
# Linear
|
3724
3775
|
#
|
@@ -4096,9 +4147,9 @@ module Aws::SageMaker
|
|
4096
4147
|
#
|
4097
4148
|
# @!attribute [rw] validation_specification
|
4098
4149
|
# Specifies configurations for one or more training jobs and that
|
4099
|
-
#
|
4100
|
-
# optionally, one or more batch transform jobs that
|
4101
|
-
#
|
4150
|
+
# SageMaker runs to test the algorithm's training code and,
|
4151
|
+
# optionally, one or more batch transform jobs that SageMaker runs to
|
4152
|
+
# test the algorithm's inference code.
|
4102
4153
|
# @return [Types::AlgorithmValidationSpecification]
|
4103
4154
|
#
|
4104
4155
|
# @!attribute [rw] certify_for_marketplace
|
@@ -4376,6 +4427,7 @@ module Aws::SageMaker
|
|
4376
4427
|
# compression_type: "None", # accepts None, Gzip
|
4377
4428
|
# target_attribute_name: "TargetAttributeName", # required
|
4378
4429
|
# content_type: "ContentType",
|
4430
|
+
# channel_type: "training", # accepts training, validation
|
4379
4431
|
# },
|
4380
4432
|
# ],
|
4381
4433
|
# output_data_config: { # required
|
@@ -4400,6 +4452,9 @@ module Aws::SageMaker
|
|
4400
4452
|
# subnets: ["SubnetId"], # required
|
4401
4453
|
# },
|
4402
4454
|
# },
|
4455
|
+
# data_split_config: {
|
4456
|
+
# validation_fraction: 1.0,
|
4457
|
+
# },
|
4403
4458
|
# },
|
4404
4459
|
# role_arn: "RoleArn", # required
|
4405
4460
|
# generate_candidate_definitions_only: false,
|
@@ -5361,9 +5416,9 @@ module Aws::SageMaker
|
|
5361
5416
|
#
|
5362
5417
|
# @!attribute [rw] kms_key_id
|
5363
5418
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
5364
|
-
# Management Service key that
|
5365
|
-
#
|
5366
|
-
#
|
5419
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
5420
|
+
# storage volume attached to the ML compute instance that hosts the
|
5421
|
+
# endpoint.
|
5367
5422
|
#
|
5368
5423
|
# The KmsKeyId can be any of the following formats:
|
5369
5424
|
#
|
@@ -6277,8 +6332,8 @@ module Aws::SageMaker
|
|
6277
6332
|
end
|
6278
6333
|
|
6279
6334
|
# @!attribute [rw] hyper_parameter_tuning_job_arn
|
6280
|
-
# The Amazon Resource Name (ARN) of the tuning job.
|
6281
|
-
#
|
6335
|
+
# The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
|
6336
|
+
# an ARN to a hyperparameter tuning job when you create it.
|
6282
6337
|
# @return [String]
|
6283
6338
|
#
|
6284
6339
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
|
@@ -6362,8 +6417,8 @@ module Aws::SageMaker
|
|
6362
6417
|
#
|
6363
6418
|
# @!attribute [rw] base_image
|
6364
6419
|
# The registry path of the container image to use as the starting
|
6365
|
-
# point for this version. The path is an Amazon Container
|
6366
|
-
# (ECR) URI in the following format:
|
6420
|
+
# point for this version. The path is an Amazon Elastic Container
|
6421
|
+
# Registry (ECR) URI in the following format:
|
6367
6422
|
#
|
6368
6423
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
6369
6424
|
# [@digest]>`
|
@@ -7216,14 +7271,14 @@ module Aws::SageMaker
|
|
7216
7271
|
# @return [Types::InferenceExecutionConfig]
|
7217
7272
|
#
|
7218
7273
|
# @!attribute [rw] execution_role_arn
|
7219
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
7220
|
-
#
|
7221
|
-
#
|
7274
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
7275
|
+
# assume to access model artifacts and docker image for deployment on
|
7276
|
+
# ML compute instances or for batch transform jobs. Deploying on ML
|
7222
7277
|
# compute instances is part of model hosting. For more information,
|
7223
|
-
# see [
|
7278
|
+
# see [SageMaker Roles][1].
|
7224
7279
|
#
|
7225
|
-
# <note markdown="1"> To be able to pass this role to
|
7226
|
-
#
|
7280
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
7281
|
+
# must have the `iam:PassRole` permission.
|
7227
7282
|
#
|
7228
7283
|
# </note>
|
7229
7284
|
#
|
@@ -7278,7 +7333,7 @@ module Aws::SageMaker
|
|
7278
7333
|
end
|
7279
7334
|
|
7280
7335
|
# @!attribute [rw] model_arn
|
7281
|
-
# The ARN of the model created in
|
7336
|
+
# The ARN of the model created in SageMaker.
|
7282
7337
|
# @return [String]
|
7283
7338
|
#
|
7284
7339
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
|
@@ -7611,7 +7666,7 @@ module Aws::SageMaker
|
|
7611
7666
|
# @return [Types::InferenceSpecification]
|
7612
7667
|
#
|
7613
7668
|
# @!attribute [rw] validation_specification
|
7614
|
-
# Specifies configurations for one or more transform jobs that
|
7669
|
+
# Specifies configurations for one or more transform jobs that
|
7615
7670
|
# SageMaker runs to test the model package.
|
7616
7671
|
# @return [Types::ModelPackageValidationSpecification]
|
7617
7672
|
#
|
@@ -8073,15 +8128,14 @@ module Aws::SageMaker
|
|
8073
8128
|
#
|
8074
8129
|
# @!attribute [rw] role_arn
|
8075
8130
|
# When you send any requests to Amazon Web Services resources from the
|
8076
|
-
# notebook instance,
|
8077
|
-
#
|
8078
|
-
#
|
8079
|
-
#
|
8080
|
-
#
|
8081
|
-
# SageMaker Roles][1].
|
8131
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
8132
|
+
# your behalf. You must grant this role necessary permissions so
|
8133
|
+
# SageMaker can perform these tasks. The policy must allow the
|
8134
|
+
# SageMaker service principal (sagemaker.amazonaws.com) permissions to
|
8135
|
+
# assume this role. For more information, see [SageMaker Roles][1].
|
8082
8136
|
#
|
8083
|
-
# <note markdown="1"> To be able to pass this role to
|
8084
|
-
#
|
8137
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
8138
|
+
# must have the `iam:PassRole` permission.
|
8085
8139
|
#
|
8086
8140
|
# </note>
|
8087
8141
|
#
|
@@ -8092,9 +8146,9 @@ module Aws::SageMaker
|
|
8092
8146
|
#
|
8093
8147
|
# @!attribute [rw] kms_key_id
|
8094
8148
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
8095
|
-
# Management Service key that
|
8096
|
-
#
|
8097
|
-
#
|
8149
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
8150
|
+
# storage volume attached to your notebook instance. The KMS key you
|
8151
|
+
# provide must be enabled. For information, see [Enabling and
|
8098
8152
|
# Disabling Keys][1] in the *Amazon Web Services Key Management
|
8099
8153
|
# Service Developer Guide*.
|
8100
8154
|
#
|
@@ -8125,11 +8179,11 @@ module Aws::SageMaker
|
|
8125
8179
|
# @return [String]
|
8126
8180
|
#
|
8127
8181
|
# @!attribute [rw] direct_internet_access
|
8128
|
-
# Sets whether
|
8129
|
-
#
|
8130
|
-
#
|
8131
|
-
#
|
8132
|
-
#
|
8182
|
+
# Sets whether SageMaker provides internet access to the notebook
|
8183
|
+
# instance. If you set this to `Disabled` this notebook instance is
|
8184
|
+
# able to access resources only in your VPC, and is not be able to
|
8185
|
+
# connect to SageMaker training and endpoint services unless you
|
8186
|
+
# configure a NAT Gateway in your VPC.
|
8133
8187
|
#
|
8134
8188
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
8135
8189
|
# by Default][1]. You can set the value of this parameter to
|
@@ -8163,8 +8217,7 @@ module Aws::SageMaker
|
|
8163
8217
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
8164
8218
|
# Git repository. When you open a notebook instance, it opens in the
|
8165
8219
|
# directory that contains this repository. For more information, see
|
8166
|
-
# [Associating Git Repositories with
|
8167
|
-
# Instances][2].
|
8220
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
8168
8221
|
#
|
8169
8222
|
#
|
8170
8223
|
#
|
@@ -8179,7 +8232,7 @@ module Aws::SageMaker
|
|
8179
8232
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
8180
8233
|
# repository. These repositories are cloned at the same level as the
|
8181
8234
|
# default repository of your notebook instance. For more information,
|
8182
|
-
# see [Associating Git Repositories with
|
8235
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
8183
8236
|
# Instances][2].
|
8184
8237
|
#
|
8185
8238
|
#
|
@@ -8974,7 +9027,7 @@ module Aws::SageMaker
|
|
8974
9027
|
# Algorithm-specific parameters that influence the quality of the
|
8975
9028
|
# model. You set hyperparameters before you start the learning
|
8976
9029
|
# process. For a list of hyperparameters for each training algorithm
|
8977
|
-
# provided by
|
9030
|
+
# provided by SageMaker, see [Algorithms][1].
|
8978
9031
|
#
|
8979
9032
|
# You can specify a maximum of 100 hyperparameters. Each
|
8980
9033
|
# hyperparameter is a key-value pair. Each key and value is limited to
|
@@ -8988,8 +9041,8 @@ module Aws::SageMaker
|
|
8988
9041
|
# @!attribute [rw] algorithm_specification
|
8989
9042
|
# The registry path of the Docker image that contains the training
|
8990
9043
|
# algorithm and algorithm-specific metadata, including the input mode.
|
8991
|
-
# For more information about algorithms provided by
|
8992
|
-
#
|
9044
|
+
# For more information about algorithms provided by SageMaker, see
|
9045
|
+
# [Algorithms][1]. For information about providing your own
|
8993
9046
|
# algorithms, see [Using Your Own Algorithms with Amazon
|
8994
9047
|
# SageMaker][2].
|
8995
9048
|
#
|
@@ -9000,18 +9053,18 @@ module Aws::SageMaker
|
|
9000
9053
|
# @return [Types::AlgorithmSpecification]
|
9001
9054
|
#
|
9002
9055
|
# @!attribute [rw] role_arn
|
9003
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
9004
|
-
#
|
9056
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
9057
|
+
# assume to perform tasks on your behalf.
|
9005
9058
|
#
|
9006
|
-
# During model training,
|
9007
|
-
#
|
9008
|
-
#
|
9009
|
-
#
|
9010
|
-
#
|
9011
|
-
#
|
9059
|
+
# During model training, SageMaker needs your permission to read input
|
9060
|
+
# data from an S3 bucket, download a Docker image that contains
|
9061
|
+
# training code, write model artifacts to an S3 bucket, write logs to
|
9062
|
+
# Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
|
9063
|
+
# You grant permissions for all of these tasks to an IAM role. For
|
9064
|
+
# more information, see [SageMaker Roles][1].
|
9012
9065
|
#
|
9013
|
-
# <note markdown="1"> To be able to pass this role to
|
9014
|
-
#
|
9066
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
9067
|
+
# must have the `iam:PassRole` permission.
|
9015
9068
|
#
|
9016
9069
|
# </note>
|
9017
9070
|
#
|
@@ -9032,17 +9085,17 @@ module Aws::SageMaker
|
|
9032
9085
|
# MIME type, compression method, and whether the data is wrapped in
|
9033
9086
|
# RecordIO format.
|
9034
9087
|
#
|
9035
|
-
# Depending on the input mode that the algorithm supports,
|
9036
|
-
#
|
9037
|
-
#
|
9038
|
-
#
|
9039
|
-
#
|
9040
|
-
#
|
9088
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
9089
|
+
# either copies input data files from an S3 bucket to a local
|
9090
|
+
# directory in the Docker container, or makes it available as input
|
9091
|
+
# streams. For example, if you specify an EFS location, input data
|
9092
|
+
# files are available as input streams. They do not need to be
|
9093
|
+
# downloaded.
|
9041
9094
|
# @return [Array<Types::Channel>]
|
9042
9095
|
#
|
9043
9096
|
# @!attribute [rw] output_data_config
|
9044
9097
|
# Specifies the path to the S3 location where you want to store model
|
9045
|
-
# artifacts.
|
9098
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
9046
9099
|
# @return [Types::OutputDataConfig]
|
9047
9100
|
#
|
9048
9101
|
# @!attribute [rw] resource_config
|
@@ -9051,9 +9104,9 @@ module Aws::SageMaker
|
|
9051
9104
|
#
|
9052
9105
|
# ML storage volumes store model artifacts and incremental states.
|
9053
9106
|
# Training algorithms might also use ML storage volumes for scratch
|
9054
|
-
# space. If you want
|
9055
|
-
#
|
9056
|
-
#
|
9107
|
+
# space. If you want SageMaker to use the ML storage volume to store
|
9108
|
+
# the training data, choose `File` as the `TrainingInputMode` in the
|
9109
|
+
# algorithm specification. For distributed training algorithms,
|
9057
9110
|
# specify an instance count greater than 1.
|
9058
9111
|
# @return [Types::ResourceConfig]
|
9059
9112
|
#
|
@@ -9071,13 +9124,13 @@ module Aws::SageMaker
|
|
9071
9124
|
# @!attribute [rw] stopping_condition
|
9072
9125
|
# Specifies a limit to how long a model training job can run. It also
|
9073
9126
|
# specifies how long a managed Spot training job has to complete. When
|
9074
|
-
# the job reaches the time limit,
|
9075
|
-
#
|
9127
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
9128
|
+
# this API to cap model training costs.
|
9076
9129
|
#
|
9077
|
-
# To stop a job,
|
9078
|
-
#
|
9079
|
-
#
|
9080
|
-
#
|
9130
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
9131
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
9132
|
+
# this 120-second window to save the model artifacts, so the results
|
9133
|
+
# of training are not lost.
|
9081
9134
|
# @return [Types::StoppingCondition]
|
9082
9135
|
#
|
9083
9136
|
# @!attribute [rw] tags
|
@@ -9095,7 +9148,7 @@ module Aws::SageMaker
|
|
9095
9148
|
# Isolates the training container. No inbound or outbound network
|
9096
9149
|
# calls can be made, except for calls between peers within a training
|
9097
9150
|
# cluster for distributed training. If you enable network isolation
|
9098
|
-
# for training jobs that are configured to use a VPC,
|
9151
|
+
# for training jobs that are configured to use a VPC, SageMaker
|
9099
9152
|
# downloads and uploads customer data and model artifacts through the
|
9100
9153
|
# specified VPC, but the training container does not have network
|
9101
9154
|
# access.
|
@@ -9325,6 +9378,11 @@ module Aws::SageMaker
|
|
9325
9378
|
# records fit within the maximum payload size, we recommend using a
|
9326
9379
|
# slightly larger value. The default value is `6` MB.
|
9327
9380
|
#
|
9381
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
9382
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
9383
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
9384
|
+
# MB.
|
9385
|
+
#
|
9328
9386
|
# For cases where the payload might be arbitrarily large and is
|
9329
9387
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
9330
9388
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -10140,8 +10198,8 @@ module Aws::SageMaker
|
|
10140
10198
|
# A [JSONPath][1] expression used to select a portion of the input
|
10141
10199
|
# data to pass to the algorithm. Use the `InputFilter` parameter to
|
10142
10200
|
# exclude fields, such as an ID column, from the input. If you want
|
10143
|
-
#
|
10144
|
-
#
|
10201
|
+
# SageMaker to pass the entire input dataset to the algorithm, accept
|
10202
|
+
# the default value `$`.
|
10145
10203
|
#
|
10146
10204
|
# Examples: `"$"`, `"$[1:]"`, `"$.features"`
|
10147
10205
|
#
|
@@ -10153,10 +10211,9 @@ module Aws::SageMaker
|
|
10153
10211
|
# @!attribute [rw] output_filter
|
10154
10212
|
# A [JSONPath][1] expression used to select a portion of the joined
|
10155
10213
|
# dataset to save in the output file for a batch transform job. If you
|
10156
|
-
# want
|
10157
|
-
#
|
10158
|
-
#
|
10159
|
-
# get an error.
|
10214
|
+
# want SageMaker to store the entire input dataset in the output file,
|
10215
|
+
# leave the default value, `$`. If you specify indexes that aren't
|
10216
|
+
# within the dimension size of the joined dataset, you get an error.
|
10160
10217
|
#
|
10161
10218
|
# Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
|
10162
10219
|
#
|
@@ -11285,7 +11342,7 @@ module Aws::SageMaker
|
|
11285
11342
|
# }
|
11286
11343
|
#
|
11287
11344
|
# @!attribute [rw] notebook_instance_name
|
11288
|
-
# The name of the
|
11345
|
+
# The name of the SageMaker notebook instance to delete.
|
11289
11346
|
# @return [String]
|
11290
11347
|
#
|
11291
11348
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
|
@@ -11826,7 +11883,7 @@ module Aws::SageMaker
|
|
11826
11883
|
#
|
11827
11884
|
# @!attribute [rw] validation_specification
|
11828
11885
|
# Details about configurations for one or more training jobs that
|
11829
|
-
#
|
11886
|
+
# SageMaker runs to test the algorithm.
|
11830
11887
|
# @return [Types::AlgorithmValidationSpecification]
|
11831
11888
|
#
|
11832
11889
|
# @!attribute [rw] algorithm_status
|
@@ -13037,7 +13094,7 @@ module Aws::SageMaker
|
|
13037
13094
|
end
|
13038
13095
|
|
13039
13096
|
# @!attribute [rw] endpoint_config_name
|
13040
|
-
# Name of the
|
13097
|
+
# Name of the SageMaker endpoint configuration.
|
13041
13098
|
# @return [String]
|
13042
13099
|
#
|
13043
13100
|
# @!attribute [rw] endpoint_config_arn
|
@@ -13979,8 +14036,8 @@ module Aws::SageMaker
|
|
13979
14036
|
# @return [Types::LabelingJobOutputConfig]
|
13980
14037
|
#
|
13981
14038
|
# @!attribute [rw] role_arn
|
13982
|
-
# The Amazon Resource Name (ARN) that
|
13983
|
-
#
|
14039
|
+
# The Amazon Resource Name (ARN) that SageMaker assumes to perform
|
14040
|
+
# tasks on your behalf during data labeling.
|
13984
14041
|
# @return [String]
|
13985
14042
|
#
|
13986
14043
|
# @!attribute [rw] label_category_config_s3_uri
|
@@ -14346,7 +14403,7 @@ module Aws::SageMaker
|
|
14346
14403
|
end
|
14347
14404
|
|
14348
14405
|
# @!attribute [rw] model_name
|
14349
|
-
# Name of the
|
14406
|
+
# Name of the SageMaker model.
|
14350
14407
|
# @return [String]
|
14351
14408
|
#
|
14352
14409
|
# @!attribute [rw] primary_container
|
@@ -14416,7 +14473,7 @@ module Aws::SageMaker
|
|
14416
14473
|
# }
|
14417
14474
|
#
|
14418
14475
|
# @!attribute [rw] model_package_group_name
|
14419
|
-
# The name of
|
14476
|
+
# The name of gthe model group to describe.
|
14420
14477
|
# @return [String]
|
14421
14478
|
#
|
14422
14479
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
|
@@ -14560,7 +14617,7 @@ module Aws::SageMaker
|
|
14560
14617
|
# @return [Types::ModelMetrics]
|
14561
14618
|
#
|
14562
14619
|
# @!attribute [rw] last_modified_time
|
14563
|
-
# The last time the model package was modified.
|
14620
|
+
# The last time that the model package was modified.
|
14564
14621
|
# @return [Time]
|
14565
14622
|
#
|
14566
14623
|
# @!attribute [rw] last_modified_by
|
@@ -14904,7 +14961,7 @@ module Aws::SageMaker
|
|
14904
14961
|
# @return [String]
|
14905
14962
|
#
|
14906
14963
|
# @!attribute [rw] notebook_instance_name
|
14907
|
-
# The name of the
|
14964
|
+
# The name of the SageMaker notebook instance.
|
14908
14965
|
# @return [String]
|
14909
14966
|
#
|
14910
14967
|
# @!attribute [rw] notebook_instance_status
|
@@ -14938,14 +14995,13 @@ module Aws::SageMaker
|
|
14938
14995
|
# @return [String]
|
14939
14996
|
#
|
14940
14997
|
# @!attribute [rw] kms_key_id
|
14941
|
-
# The Amazon Web Services KMS key ID
|
14942
|
-
#
|
14943
|
-
# instance.
|
14998
|
+
# The Amazon Web Services KMS key ID SageMaker uses to encrypt data
|
14999
|
+
# when storing it on the ML storage volume attached to the instance.
|
14944
15000
|
# @return [String]
|
14945
15001
|
#
|
14946
15002
|
# @!attribute [rw] network_interface_id
|
14947
|
-
# The network interface IDs that
|
14948
|
-
#
|
15003
|
+
# The network interface IDs that SageMaker created at the time of
|
15004
|
+
# creating the instance.
|
14949
15005
|
# @return [String]
|
14950
15006
|
#
|
14951
15007
|
# @!attribute [rw] last_modified_time
|
@@ -14970,10 +15026,10 @@ module Aws::SageMaker
|
|
14970
15026
|
# @return [String]
|
14971
15027
|
#
|
14972
15028
|
# @!attribute [rw] direct_internet_access
|
14973
|
-
# Describes whether
|
14974
|
-
#
|
14975
|
-
#
|
14976
|
-
#
|
15029
|
+
# Describes whether SageMaker provides internet access to the notebook
|
15030
|
+
# instance. If this value is set to *Disabled*, the notebook instance
|
15031
|
+
# does not have internet access, and cannot connect to SageMaker
|
15032
|
+
# training and endpoint services.
|
14977
15033
|
#
|
14978
15034
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
14979
15035
|
# by Default][1].
|
@@ -15006,8 +15062,7 @@ module Aws::SageMaker
|
|
15006
15062
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
15007
15063
|
# Git repository. When you open a notebook instance, it opens in the
|
15008
15064
|
# directory that contains this repository. For more information, see
|
15009
|
-
# [Associating Git Repositories with
|
15010
|
-
# Instances][2].
|
15065
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
15011
15066
|
#
|
15012
15067
|
#
|
15013
15068
|
#
|
@@ -15022,7 +15077,7 @@ module Aws::SageMaker
|
|
15022
15077
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
15023
15078
|
# repository. These repositories are cloned at the same level as the
|
15024
15079
|
# default repository of your notebook instance. For more information,
|
15025
|
-
# see [Associating Git Repositories with
|
15080
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
15026
15081
|
# Instances][2].
|
15027
15082
|
#
|
15028
15083
|
#
|
@@ -15644,7 +15699,7 @@ module Aws::SageMaker
|
|
15644
15699
|
# @return [String]
|
15645
15700
|
#
|
15646
15701
|
# @!attribute [rw] labeling_job_arn
|
15647
|
-
# The Amazon Resource Name (ARN) of the
|
15702
|
+
# The Amazon Resource Name (ARN) of the SageMaker Ground Truth
|
15648
15703
|
# labeling job that created the transform or training job.
|
15649
15704
|
# @return [String]
|
15650
15705
|
#
|
@@ -15660,7 +15715,7 @@ module Aws::SageMaker
|
|
15660
15715
|
# @!attribute [rw] training_job_status
|
15661
15716
|
# The status of the training job.
|
15662
15717
|
#
|
15663
|
-
#
|
15718
|
+
# SageMaker provides the following training job statuses:
|
15664
15719
|
#
|
15665
15720
|
# * `InProgress` - The training is in progress.
|
15666
15721
|
#
|
@@ -15682,8 +15737,8 @@ module Aws::SageMaker
|
|
15682
15737
|
# For detailed information on the secondary status of the training
|
15683
15738
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
15684
15739
|
#
|
15685
|
-
#
|
15686
|
-
#
|
15740
|
+
# SageMaker provides primary statuses and secondary statuses that
|
15741
|
+
# apply to each of them:
|
15687
15742
|
#
|
15688
15743
|
# InProgress
|
15689
15744
|
# : * `Starting` - Starting the training job.
|
@@ -15762,7 +15817,7 @@ module Aws::SageMaker
|
|
15762
15817
|
#
|
15763
15818
|
# @!attribute [rw] output_data_config
|
15764
15819
|
# The S3 path where model artifacts that you configured when creating
|
15765
|
-
# the job are stored.
|
15820
|
+
# the job are stored. SageMaker creates subfolders for model
|
15766
15821
|
# artifacts.
|
15767
15822
|
# @return [Types::OutputDataConfig]
|
15768
15823
|
#
|
@@ -15784,13 +15839,13 @@ module Aws::SageMaker
|
|
15784
15839
|
# @!attribute [rw] stopping_condition
|
15785
15840
|
# Specifies a limit to how long a model training job can run. It also
|
15786
15841
|
# specifies how long a managed Spot training job has to complete. When
|
15787
|
-
# the job reaches the time limit,
|
15788
|
-
#
|
15842
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
15843
|
+
# this API to cap model training costs.
|
15789
15844
|
#
|
15790
|
-
# To stop a job,
|
15791
|
-
#
|
15792
|
-
#
|
15793
|
-
#
|
15845
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
15846
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
15847
|
+
# this 120-second window to save the model artifacts, so the results
|
15848
|
+
# of training are not lost.
|
15794
15849
|
# @return [Types::StoppingCondition]
|
15795
15850
|
#
|
15796
15851
|
# @!attribute [rw] creation_time
|
@@ -15811,8 +15866,7 @@ module Aws::SageMaker
|
|
15811
15866
|
# You are billed for the time interval between the value of
|
15812
15867
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
15813
15868
|
# jobs, this is the time after model artifacts are uploaded. For
|
15814
|
-
# failed jobs, this is the time when
|
15815
|
-
# failure.
|
15869
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
15816
15870
|
# @return [Time]
|
15817
15871
|
#
|
15818
15872
|
# @!attribute [rw] last_modified_time
|
@@ -15835,10 +15889,9 @@ module Aws::SageMaker
|
|
15835
15889
|
# If you want to allow inbound or outbound network calls, except for
|
15836
15890
|
# calls between peers within a training cluster for distributed
|
15837
15891
|
# training, choose `True`. If you enable network isolation for
|
15838
|
-
# training jobs that are configured to use a VPC,
|
15839
|
-
#
|
15840
|
-
#
|
15841
|
-
# access.
|
15892
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
15893
|
+
# and uploads customer data and model artifacts through the specified
|
15894
|
+
# VPC, but the training container does not have network access.
|
15842
15895
|
# @return [Boolean]
|
15843
15896
|
#
|
15844
15897
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -15870,7 +15923,7 @@ module Aws::SageMaker
|
|
15870
15923
|
#
|
15871
15924
|
# Multiply `BillableTimeInSeconds` by the number of instances
|
15872
15925
|
# (`InstanceCount`) in your training cluster to get the total compute
|
15873
|
-
# time SageMaker
|
15926
|
+
# time SageMaker bills you if you run distributed training. The
|
15874
15927
|
# formula is as follows: `BillableTimeInSeconds * InstanceCount` .
|
15875
15928
|
#
|
15876
15929
|
# You can calculate the savings from using managed spot training using
|
@@ -20078,10 +20131,10 @@ module Aws::SageMaker
|
|
20078
20131
|
# The registry path of the Docker image that contains the training
|
20079
20132
|
# algorithm. For information about Docker registry paths for built-in
|
20080
20133
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
20081
|
-
# Parameters][1].
|
20082
|
-
#
|
20083
|
-
#
|
20084
|
-
#
|
20134
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
20135
|
+
# and `registry/repository[@digest]` image path formats. For more
|
20136
|
+
# information, see [Using Your Own Algorithms with Amazon
|
20137
|
+
# SageMaker][2].
|
20085
20138
|
#
|
20086
20139
|
#
|
20087
20140
|
#
|
@@ -20406,27 +20459,26 @@ module Aws::SageMaker
|
|
20406
20459
|
#
|
20407
20460
|
# Storage volumes store model artifacts and incremental states.
|
20408
20461
|
# Training algorithms might also use storage volumes for scratch
|
20409
|
-
# space. If you want
|
20410
|
-
#
|
20411
|
-
#
|
20462
|
+
# space. If you want SageMaker to use the storage volume to store the
|
20463
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
20464
|
+
# algorithm specification. For distributed training algorithms,
|
20412
20465
|
# specify an instance count greater than 1.
|
20413
20466
|
# @return [Types::ResourceConfig]
|
20414
20467
|
#
|
20415
20468
|
# @!attribute [rw] stopping_condition
|
20416
20469
|
# Specifies a limit to how long a model hyperparameter training job
|
20417
20470
|
# can run. It also specifies how long a managed spot training job has
|
20418
|
-
# to complete. When the job reaches the time limit,
|
20419
|
-
#
|
20471
|
+
# to complete. When the job reaches the time limit, SageMaker ends the
|
20472
|
+
# training job. Use this API to cap model training costs.
|
20420
20473
|
# @return [Types::StoppingCondition]
|
20421
20474
|
#
|
20422
20475
|
# @!attribute [rw] enable_network_isolation
|
20423
20476
|
# Isolates the training container. No inbound or outbound network
|
20424
20477
|
# calls can be made, except for calls between peers within a training
|
20425
20478
|
# cluster for distributed training. If network isolation is used for
|
20426
|
-
# training jobs that are configured to use a VPC,
|
20427
|
-
#
|
20428
|
-
#
|
20429
|
-
# access.
|
20479
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
20480
|
+
# and uploads customer data and model artifacts through the specified
|
20481
|
+
# VPC, but the training container does not have network access.
|
20430
20482
|
# @return [Boolean]
|
20431
20483
|
#
|
20432
20484
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -20476,7 +20528,7 @@ module Aws::SageMaker
|
|
20476
20528
|
include Aws::Structure
|
20477
20529
|
end
|
20478
20530
|
|
20479
|
-
#
|
20531
|
+
# The container for the summary information about a training job.
|
20480
20532
|
#
|
20481
20533
|
# @!attribute [rw] training_job_definition_name
|
20482
20534
|
# The training job definition name.
|
@@ -20507,8 +20559,7 @@ module Aws::SageMaker
|
|
20507
20559
|
# You are billed for the time interval between the value of
|
20508
20560
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
20509
20561
|
# jobs, this is the time after model artifacts are uploaded. For
|
20510
|
-
# failed jobs, this is the time when
|
20511
|
-
# failure.
|
20562
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
20512
20563
|
# @return [Time]
|
20513
20564
|
#
|
20514
20565
|
# @!attribute [rw] training_job_status
|
@@ -20657,9 +20708,9 @@ module Aws::SageMaker
|
|
20657
20708
|
#
|
20658
20709
|
# AUTO
|
20659
20710
|
#
|
20660
|
-
# :
|
20661
|
-
#
|
20662
|
-
#
|
20711
|
+
# : SageMaker stops training jobs launched by the hyperparameter
|
20712
|
+
# tuning job when they are unlikely to perform better than
|
20713
|
+
# previously completed training jobs. For more information, see
|
20663
20714
|
# [Stop Training Jobs Early][1].
|
20664
20715
|
#
|
20665
20716
|
#
|
@@ -21460,8 +21511,8 @@ module Aws::SageMaker
|
|
21460
21511
|
#
|
21461
21512
|
# Auto
|
21462
21513
|
#
|
21463
|
-
# :
|
21464
|
-
#
|
21514
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
21515
|
+
# hyperparameter.
|
21465
21516
|
#
|
21466
21517
|
# Linear
|
21467
21518
|
#
|
@@ -21536,12 +21587,20 @@ module Aws::SageMaker
|
|
21536
21587
|
#
|
21537
21588
|
# @!attribute [rw] default_resource_spec
|
21538
21589
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21539
|
-
# default SageMaker image used by the JupyterServer app.
|
21590
|
+
# default SageMaker image used by the JupyterServer app. If you use
|
21591
|
+
# the `LifecycleConfigArns` parameter, then this parameter is also
|
21592
|
+
# required.
|
21540
21593
|
# @return [Types::ResourceSpec]
|
21541
21594
|
#
|
21542
21595
|
# @!attribute [rw] lifecycle_config_arns
|
21543
21596
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21544
|
-
# attached to the JupyterServerApp.
|
21597
|
+
# attached to the JupyterServerApp. If you use this parameter, the
|
21598
|
+
# `DefaultResourceSpec` parameter is also required.
|
21599
|
+
#
|
21600
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21601
|
+
# an empty list.
|
21602
|
+
#
|
21603
|
+
# </note>
|
21545
21604
|
# @return [Array<String>]
|
21546
21605
|
#
|
21547
21606
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
|
@@ -21578,6 +21637,14 @@ module Aws::SageMaker
|
|
21578
21637
|
# @!attribute [rw] default_resource_spec
|
21579
21638
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21580
21639
|
# default SageMaker image used by the KernelGateway app.
|
21640
|
+
#
|
21641
|
+
# <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
|
21642
|
+
# type value set here. The default instance type set here is used when
|
21643
|
+
# Apps are created using the Amazon Web Services Command Line
|
21644
|
+
# Interface or Amazon Web Services CloudFormation and the instance
|
21645
|
+
# type parameter value is not passed.
|
21646
|
+
#
|
21647
|
+
# </note>
|
21581
21648
|
# @return [Types::ResourceSpec]
|
21582
21649
|
#
|
21583
21650
|
# @!attribute [rw] custom_images
|
@@ -21588,6 +21655,11 @@ module Aws::SageMaker
|
|
21588
21655
|
# @!attribute [rw] lifecycle_config_arns
|
21589
21656
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21590
21657
|
# attached to the the user profile or domain.
|
21658
|
+
#
|
21659
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21660
|
+
# an empty list.
|
21661
|
+
#
|
21662
|
+
# </note>
|
21591
21663
|
# @return [Array<String>]
|
21592
21664
|
#
|
21593
21665
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
|
@@ -21795,8 +21867,8 @@ module Aws::SageMaker
|
|
21795
21867
|
#
|
21796
21868
|
# @!attribute [rw] content_classifiers
|
21797
21869
|
# Declares that your content is free of personally identifiable
|
21798
|
-
# information or adult content.
|
21799
|
-
#
|
21870
|
+
# information or adult content. SageMaker may restrict the Amazon
|
21871
|
+
# Mechanical Turk workers that can view your task based on this
|
21800
21872
|
# information.
|
21801
21873
|
# @return [Array<String>]
|
21802
21874
|
#
|
@@ -21940,8 +22012,8 @@ module Aws::SageMaker
|
|
21940
22012
|
# @return [String]
|
21941
22013
|
#
|
21942
22014
|
# @!attribute [rw] final_active_learning_model_arn
|
21943
|
-
# The Amazon Resource Name (ARN) for the most recent
|
21944
|
-
#
|
22015
|
+
# The Amazon Resource Name (ARN) for the most recent SageMaker model
|
22016
|
+
# trained as part of automated data labeling.
|
21945
22017
|
# @return [String]
|
21946
22018
|
#
|
21947
22019
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
|
@@ -22451,8 +22523,8 @@ module Aws::SageMaker
|
|
22451
22523
|
# @return [Array<Types::AlgorithmSummary>]
|
22452
22524
|
#
|
22453
22525
|
# @!attribute [rw] next_token
|
22454
|
-
# If the response is truncated,
|
22455
|
-
#
|
22526
|
+
# If the response is truncated, SageMaker returns this token. To
|
22527
|
+
# retrieve the next set of algorithms, use it in the subsequent
|
22456
22528
|
# request.
|
22457
22529
|
# @return [String]
|
22458
22530
|
#
|
@@ -23726,8 +23798,8 @@ module Aws::SageMaker
|
|
23726
23798
|
# @return [Array<Types::EndpointConfigSummary>]
|
23727
23799
|
#
|
23728
23800
|
# @!attribute [rw] next_token
|
23729
|
-
# If the response is truncated,
|
23730
|
-
#
|
23801
|
+
# If the response is truncated, SageMaker returns this token. To
|
23802
|
+
# retrieve the next set of endpoint configurations, use it in the
|
23731
23803
|
# subsequent request
|
23732
23804
|
# @return [String]
|
23733
23805
|
#
|
@@ -23826,8 +23898,8 @@ module Aws::SageMaker
|
|
23826
23898
|
# @return [Array<Types::EndpointSummary>]
|
23827
23899
|
#
|
23828
23900
|
# @!attribute [rw] next_token
|
23829
|
-
# If the response is truncated,
|
23830
|
-
#
|
23901
|
+
# If the response is truncated, SageMaker returns this token. To
|
23902
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
23831
23903
|
# request.
|
23832
23904
|
# @return [String]
|
23833
23905
|
#
|
@@ -24592,8 +24664,8 @@ module Aws::SageMaker
|
|
24592
24664
|
# @return [Array<Types::LabelingJobForWorkteamSummary>]
|
24593
24665
|
#
|
24594
24666
|
# @!attribute [rw] next_token
|
24595
|
-
# If the response is truncated,
|
24596
|
-
#
|
24667
|
+
# If the response is truncated, SageMaker returns this token. To
|
24668
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24597
24669
|
# request.
|
24598
24670
|
# @return [String]
|
24599
24671
|
#
|
@@ -24693,8 +24765,8 @@ module Aws::SageMaker
|
|
24693
24765
|
# @return [Array<Types::LabelingJobSummary>]
|
24694
24766
|
#
|
24695
24767
|
# @!attribute [rw] next_token
|
24696
|
-
# If the response is truncated,
|
24697
|
-
#
|
24768
|
+
# If the response is truncated, SageMaker returns this token. To
|
24769
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24698
24770
|
# request.
|
24699
24771
|
# @return [String]
|
24700
24772
|
#
|
@@ -25191,8 +25263,8 @@ module Aws::SageMaker
|
|
25191
25263
|
# @return [Array<Types::ModelPackageSummary>]
|
25192
25264
|
#
|
25193
25265
|
# @!attribute [rw] next_token
|
25194
|
-
# If the response is truncated,
|
25195
|
-
#
|
25266
|
+
# If the response is truncated, SageMaker returns this token. To
|
25267
|
+
# retrieve the next set of model packages, use it in the subsequent
|
25196
25268
|
# request.
|
25197
25269
|
# @return [String]
|
25198
25270
|
#
|
@@ -25359,9 +25431,8 @@ module Aws::SageMaker
|
|
25359
25431
|
# @return [Array<Types::ModelSummary>]
|
25360
25432
|
#
|
25361
25433
|
# @!attribute [rw] next_token
|
25362
|
-
# If the response is truncated,
|
25363
|
-
#
|
25364
|
-
# request.
|
25434
|
+
# If the response is truncated, SageMaker returns this token. To
|
25435
|
+
# retrieve the next set of models, use it in the subsequent request.
|
25365
25436
|
# @return [String]
|
25366
25437
|
#
|
25367
25438
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
|
@@ -25700,8 +25771,8 @@ module Aws::SageMaker
|
|
25700
25771
|
end
|
25701
25772
|
|
25702
25773
|
# @!attribute [rw] next_token
|
25703
|
-
# If the response is truncated,
|
25704
|
-
#
|
25774
|
+
# If the response is truncated, SageMaker returns this token. To get
|
25775
|
+
# the next set of lifecycle configurations, use it in the next
|
25705
25776
|
# request.
|
25706
25777
|
# @return [String]
|
25707
25778
|
#
|
@@ -25834,8 +25905,8 @@ module Aws::SageMaker
|
|
25834
25905
|
|
25835
25906
|
# @!attribute [rw] next_token
|
25836
25907
|
# If the response to the previous `ListNotebookInstances` request was
|
25837
|
-
# truncated,
|
25838
|
-
#
|
25908
|
+
# truncated, SageMaker returns this token. To retrieve the next set of
|
25909
|
+
# notebook instances, use the token in the next request.
|
25839
25910
|
# @return [String]
|
25840
25911
|
#
|
25841
25912
|
# @!attribute [rw] notebook_instances
|
@@ -26483,8 +26554,8 @@ module Aws::SageMaker
|
|
26483
26554
|
#
|
26484
26555
|
# @!attribute [rw] next_token
|
26485
26556
|
# If the response to the previous `ListTags` request is truncated,
|
26486
|
-
#
|
26487
|
-
#
|
26557
|
+
# SageMaker returns this token. To retrieve the next set of tags, use
|
26558
|
+
# it in the subsequent request.
|
26488
26559
|
# @return [String]
|
26489
26560
|
#
|
26490
26561
|
# @!attribute [rw] max_results
|
@@ -26506,7 +26577,7 @@ module Aws::SageMaker
|
|
26506
26577
|
# @return [Array<Types::Tag>]
|
26507
26578
|
#
|
26508
26579
|
# @!attribute [rw] next_token
|
26509
|
-
# If response is truncated,
|
26580
|
+
# If response is truncated, SageMaker includes a token in the
|
26510
26581
|
# response. You can use this token in your subsequent request to fetch
|
26511
26582
|
# next set of tokens.
|
26512
26583
|
# @return [String]
|
@@ -26685,8 +26756,8 @@ module Aws::SageMaker
|
|
26685
26756
|
# @return [Array<Types::TrainingJobSummary>]
|
26686
26757
|
#
|
26687
26758
|
# @!attribute [rw] next_token
|
26688
|
-
# If the response is truncated,
|
26689
|
-
#
|
26759
|
+
# If the response is truncated, SageMaker returns this token. To
|
26760
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
26690
26761
|
# request.
|
26691
26762
|
# @return [String]
|
26692
26763
|
#
|
@@ -27303,9 +27374,9 @@ module Aws::SageMaker
|
|
27303
27374
|
end
|
27304
27375
|
|
27305
27376
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
27306
|
-
# `stdout`.
|
27307
|
-
#
|
27308
|
-
#
|
27377
|
+
# `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
|
27378
|
+
# You specify one metric that a hyperparameter tuning job uses as its
|
27379
|
+
# objective metric to choose the best training job.
|
27309
27380
|
#
|
27310
27381
|
# @note When making an API call, you may pass MetricDefinition
|
27311
27382
|
# data as a hash:
|
@@ -27509,11 +27580,13 @@ module Aws::SageMaker
|
|
27509
27580
|
# }
|
27510
27581
|
#
|
27511
27582
|
# @!attribute [rw] invocations_timeout_in_seconds
|
27512
|
-
# The timeout value in seconds for an invocation request.
|
27583
|
+
# The timeout value in seconds for an invocation request. The default
|
27584
|
+
# value is 600.
|
27513
27585
|
# @return [Integer]
|
27514
27586
|
#
|
27515
27587
|
# @!attribute [rw] invocations_max_retries
|
27516
27588
|
# The maximum number of retries when invocation requests are failing.
|
27589
|
+
# The default value is 3.
|
27517
27590
|
# @return [Integer]
|
27518
27591
|
#
|
27519
27592
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
|
@@ -28017,8 +28090,8 @@ module Aws::SageMaker
|
|
28017
28090
|
# @return [Types::SourceAlgorithmSpecification]
|
28018
28091
|
#
|
28019
28092
|
# @!attribute [rw] validation_specification
|
28020
|
-
# Specifies batch transform jobs that
|
28021
|
-
#
|
28093
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28094
|
+
# model package.
|
28022
28095
|
# @return [Types::ModelPackageValidationSpecification]
|
28023
28096
|
#
|
28024
28097
|
# @!attribute [rw] model_package_status
|
@@ -28197,11 +28270,11 @@ module Aws::SageMaker
|
|
28197
28270
|
# code is stored.
|
28198
28271
|
#
|
28199
28272
|
# If you are using your own custom algorithm instead of an algorithm
|
28200
|
-
# provided by
|
28201
|
-
#
|
28202
|
-
#
|
28203
|
-
#
|
28204
|
-
#
|
28273
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
28274
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
28275
|
+
# and `registry/repository[@digest]` image path formats. For more
|
28276
|
+
# information, see [Using Your Own Algorithms with Amazon
|
28277
|
+
# SageMaker][1].
|
28205
28278
|
#
|
28206
28279
|
#
|
28207
28280
|
#
|
@@ -28533,8 +28606,8 @@ module Aws::SageMaker
|
|
28533
28606
|
include Aws::Structure
|
28534
28607
|
end
|
28535
28608
|
|
28536
|
-
# Specifies batch transform jobs that
|
28537
|
-
#
|
28609
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28610
|
+
# model package.
|
28538
28611
|
#
|
28539
28612
|
# @note When making an API call, you may pass ModelPackageValidationSpecification
|
28540
28613
|
# data as a hash:
|
@@ -28584,8 +28657,8 @@ module Aws::SageMaker
|
|
28584
28657
|
#
|
28585
28658
|
# @!attribute [rw] validation_profiles
|
28586
28659
|
# An array of `ModelPackageValidationProfile` objects, each of which
|
28587
|
-
# specifies a batch transform job that
|
28588
|
-
#
|
28660
|
+
# specifies a batch transform job that SageMaker runs to validate your
|
28661
|
+
# model package.
|
28589
28662
|
# @return [Array<Types::ModelPackageValidationProfile>]
|
28590
28663
|
#
|
28591
28664
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
|
@@ -29958,8 +30031,7 @@ module Aws::SageMaker
|
|
29958
30031
|
include Aws::Structure
|
29959
30032
|
end
|
29960
30033
|
|
29961
|
-
# Provides summary information for an
|
29962
|
-
# instance.
|
30034
|
+
# Provides summary information for an SageMaker notebook instance.
|
29963
30035
|
#
|
29964
30036
|
# @!attribute [rw] notebook_instance_name
|
29965
30037
|
# The name of the notebook instance that you want a summary for.
|
@@ -29974,7 +30046,7 @@ module Aws::SageMaker
|
|
29974
30046
|
# @return [String]
|
29975
30047
|
#
|
29976
30048
|
# @!attribute [rw] url
|
29977
|
-
# The URL that you use to connect to the Jupyter
|
30049
|
+
# The URL that you use to connect to the Jupyter notebook running in
|
29978
30050
|
# your notebook instance.
|
29979
30051
|
# @return [String]
|
29980
30052
|
#
|
@@ -30010,8 +30082,7 @@ module Aws::SageMaker
|
|
30010
30082
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
30011
30083
|
# Git repository. When you open a notebook instance, it opens in the
|
30012
30084
|
# directory that contains this repository. For more information, see
|
30013
|
-
# [Associating Git Repositories with
|
30014
|
-
# Instances][2].
|
30085
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
30015
30086
|
#
|
30016
30087
|
#
|
30017
30088
|
#
|
@@ -30026,7 +30097,7 @@ module Aws::SageMaker
|
|
30026
30097
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
30027
30098
|
# repository. These repositories are cloned at the same level as the
|
30028
30099
|
# default repository of your notebook instance. For more information,
|
30029
|
-
# see [Associating Git Repositories with
|
30100
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
30030
30101
|
# Instances][2].
|
30031
30102
|
#
|
30032
30103
|
#
|
@@ -30652,9 +30723,9 @@ module Aws::SageMaker
|
|
30652
30723
|
#
|
30653
30724
|
# @!attribute [rw] kms_key_id
|
30654
30725
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
30655
|
-
# KMS) key that
|
30656
|
-
#
|
30657
|
-
#
|
30726
|
+
# KMS) key that SageMaker uses to encrypt the model artifacts at rest
|
30727
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
30728
|
+
# the following formats:
|
30658
30729
|
#
|
30659
30730
|
# * // KMS Key ID
|
30660
30731
|
#
|
@@ -30672,14 +30743,13 @@ module Aws::SageMaker
|
|
30672
30743
|
#
|
30673
30744
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
30674
30745
|
#
|
30675
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
30676
|
-
#
|
30677
|
-
#
|
30678
|
-
#
|
30679
|
-
#
|
30680
|
-
#
|
30681
|
-
#
|
30682
|
-
# encryption, set the condition key of
|
30746
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
30747
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
30748
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
30749
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
30750
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
30751
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
30752
|
+
# objects with server-side encryption, set the condition key of
|
30683
30753
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
30684
30754
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
30685
30755
|
# Simple Storage Service Developer Guide.*
|
@@ -30697,8 +30767,8 @@ module Aws::SageMaker
|
|
30697
30767
|
# @return [String]
|
30698
30768
|
#
|
30699
30769
|
# @!attribute [rw] s3_output_path
|
30700
|
-
# Identifies the S3 path where you want
|
30701
|
-
#
|
30770
|
+
# Identifies the S3 path where you want SageMaker to store the model
|
30771
|
+
# artifacts. For example, `s3://bucket-name/key-name-prefix`.
|
30702
30772
|
# @return [String]
|
30703
30773
|
#
|
30704
30774
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
|
@@ -31027,23 +31097,11 @@ module Aws::SageMaker
|
|
31027
31097
|
#
|
31028
31098
|
# @!attribute [rw] current_serverless_config
|
31029
31099
|
# The serverless configuration for the endpoint.
|
31030
|
-
#
|
31031
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31032
|
-
# is subject to change. We do not recommend using this feature in
|
31033
|
-
# production environments.
|
31034
|
-
#
|
31035
|
-
# </note>
|
31036
31100
|
# @return [Types::ProductionVariantServerlessConfig]
|
31037
31101
|
#
|
31038
31102
|
# @!attribute [rw] desired_serverless_config
|
31039
31103
|
# The serverless configuration requested for this deployment, as
|
31040
31104
|
# specified in the endpoint configuration for the endpoint.
|
31041
|
-
#
|
31042
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31043
|
-
# is subject to change. We do not recommend using this feature in
|
31044
|
-
# production environments.
|
31045
|
-
#
|
31046
|
-
# </note>
|
31047
31105
|
# @return [Types::ProductionVariantServerlessConfig]
|
31048
31106
|
#
|
31049
31107
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
|
@@ -32245,8 +32303,8 @@ module Aws::SageMaker
|
|
32245
32303
|
|
32246
32304
|
# Identifies a model that you want to host and the resources chosen to
|
32247
32305
|
# deploy for hosting it. If you are deploying multiple models, tell
|
32248
|
-
#
|
32249
|
-
#
|
32306
|
+
# SageMaker how to distribute traffic among the models by specifying
|
32307
|
+
# variant weights.
|
32250
32308
|
#
|
32251
32309
|
# @note When making an API call, you may pass ProductionVariant
|
32252
32310
|
# data as a hash:
|
@@ -32313,12 +32371,6 @@ module Aws::SageMaker
|
|
32313
32371
|
# The serverless configuration for an endpoint. Specifies a serverless
|
32314
32372
|
# endpoint configuration instead of an instance-based endpoint
|
32315
32373
|
# configuration.
|
32316
|
-
#
|
32317
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32318
|
-
# is subject to change. We do not recommend using this feature in
|
32319
|
-
# production environments.
|
32320
|
-
#
|
32321
|
-
# </note>
|
32322
32374
|
# @return [Types::ProductionVariantServerlessConfig]
|
32323
32375
|
#
|
32324
32376
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
|
@@ -32353,9 +32405,9 @@ module Aws::SageMaker
|
|
32353
32405
|
#
|
32354
32406
|
# @!attribute [rw] kms_key_id
|
32355
32407
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
32356
|
-
# KMS) key that
|
32357
|
-
#
|
32358
|
-
#
|
32408
|
+
# KMS) key that SageMaker uses to encrypt the core dump data at rest
|
32409
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
32410
|
+
# the following formats:
|
32359
32411
|
#
|
32360
32412
|
# * // KMS Key ID
|
32361
32413
|
#
|
@@ -32373,14 +32425,13 @@ module Aws::SageMaker
|
|
32373
32425
|
#
|
32374
32426
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
32375
32427
|
#
|
32376
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
32377
|
-
#
|
32378
|
-
#
|
32379
|
-
#
|
32380
|
-
#
|
32381
|
-
#
|
32382
|
-
#
|
32383
|
-
# encryption, set the condition key of
|
32428
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
32429
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
32430
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
32431
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
32432
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
32433
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
32434
|
+
# objects with server-side encryption, set the condition key of
|
32384
32435
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
32385
32436
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
32386
32437
|
# Simple Storage Service Developer Guide.*
|
@@ -32406,10 +32457,6 @@ module Aws::SageMaker
|
|
32406
32457
|
include Aws::Structure
|
32407
32458
|
end
|
32408
32459
|
|
32409
|
-
# Serverless Inference is in preview release for Amazon SageMaker and is
|
32410
|
-
# subject to change. We do not recommend using this feature in
|
32411
|
-
# production environments.
|
32412
|
-
#
|
32413
32460
|
# Specifies the serverless configuration for an endpoint variant.
|
32414
32461
|
#
|
32415
32462
|
# @note When making an API call, you may pass ProductionVariantServerlessConfig
|
@@ -32519,22 +32566,10 @@ module Aws::SageMaker
|
|
32519
32566
|
#
|
32520
32567
|
# @!attribute [rw] current_serverless_config
|
32521
32568
|
# The serverless configuration for the endpoint.
|
32522
|
-
#
|
32523
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32524
|
-
# is subject to change. We do not recommend using this feature in
|
32525
|
-
# production environments.
|
32526
|
-
#
|
32527
|
-
# </note>
|
32528
32569
|
# @return [Types::ProductionVariantServerlessConfig]
|
32529
32570
|
#
|
32530
32571
|
# @!attribute [rw] desired_serverless_config
|
32531
32572
|
# The serverless configuration requested for the endpoint update.
|
32532
|
-
#
|
32533
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32534
|
-
# is subject to change. We do not recommend using this feature in
|
32535
|
-
# production environments.
|
32536
|
-
#
|
32537
|
-
# </note>
|
32538
32573
|
# @return [Types::ProductionVariantServerlessConfig]
|
32539
32574
|
#
|
32540
32575
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
|
@@ -33351,8 +33386,8 @@ module Aws::SageMaker
|
|
33351
33386
|
# @!attribute [rw] properties
|
33352
33387
|
# Filter the lineage entities connected to the `StartArn`(s) by a set
|
33353
33388
|
# if property key value pairs. If multiple pairs are provided, an
|
33354
|
-
# entity
|
33355
|
-
#
|
33389
|
+
# entity is included in the results if it matches any of the provided
|
33390
|
+
# pairs.
|
33356
33391
|
# @return [Hash<String,String>]
|
33357
33392
|
#
|
33358
33393
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
|
@@ -33398,12 +33433,13 @@ module Aws::SageMaker
|
|
33398
33433
|
# @return [Array<String>]
|
33399
33434
|
#
|
33400
33435
|
# @!attribute [rw] direction
|
33401
|
-
# Associations between lineage entities
|
33402
|
-
# determines the direction from the StartArn(s) the
|
33436
|
+
# Associations between lineage entities have a direction. This
|
33437
|
+
# parameter determines the direction from the StartArn(s) that the
|
33438
|
+
# query traverses.
|
33403
33439
|
# @return [String]
|
33404
33440
|
#
|
33405
33441
|
# @!attribute [rw] include_edges
|
33406
|
-
# Setting this value to `True`
|
33442
|
+
# Setting this value to `True` retrieves not only the entities of
|
33407
33443
|
# interest but also the [Associations][1] and lineage entities on the
|
33408
33444
|
# path. Set to `False` to only return lineage entities that match your
|
33409
33445
|
# query.
|
@@ -33432,8 +33468,8 @@ module Aws::SageMaker
|
|
33432
33468
|
#
|
33433
33469
|
# @!attribute [rw] max_depth
|
33434
33470
|
# The maximum depth in lineage relationships from the `StartArns` that
|
33435
|
-
#
|
33436
|
-
#
|
33471
|
+
# are traversed. Depth is a measure of the number of `Associations`
|
33472
|
+
# from the `StartArn` entity to the matched results.
|
33437
33473
|
# @return [Integer]
|
33438
33474
|
#
|
33439
33475
|
# @!attribute [rw] max_results
|
@@ -34232,15 +34268,15 @@ module Aws::SageMaker
|
|
34232
34268
|
#
|
34233
34269
|
# You must specify sufficient ML storage for your scenario.
|
34234
34270
|
#
|
34235
|
-
# <note markdown="1">
|
34236
|
-
#
|
34271
|
+
# <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
|
34272
|
+
# volume type.
|
34237
34273
|
#
|
34238
34274
|
# </note>
|
34239
34275
|
#
|
34240
34276
|
# <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
|
34241
34277
|
# total size, dependent on the instance type. When using these
|
34242
|
-
# instances for training,
|
34243
|
-
#
|
34278
|
+
# instances for training, SageMaker mounts the local instance storage
|
34279
|
+
# instead of Amazon EBS gp2 storage. You can't request a
|
34244
34280
|
# `VolumeSizeInGB` greater than the total size of the local instance
|
34245
34281
|
# storage.
|
34246
34282
|
#
|
@@ -34256,9 +34292,9 @@ module Aws::SageMaker
|
|
34256
34292
|
# @return [Integer]
|
34257
34293
|
#
|
34258
34294
|
# @!attribute [rw] volume_kms_key_id
|
34259
|
-
# The Amazon Web Services KMS key that
|
34260
|
-
#
|
34261
|
-
#
|
34295
|
+
# The Amazon Web Services KMS key that SageMaker uses to encrypt data
|
34296
|
+
# on the storage volume attached to the ML compute instance(s) that
|
34297
|
+
# run the training job.
|
34262
34298
|
#
|
34263
34299
|
# <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
|
34264
34300
|
# the instance type. Local storage volumes are encrypted using a
|
@@ -34313,8 +34349,8 @@ module Aws::SageMaker
|
|
34313
34349
|
include Aws::Structure
|
34314
34350
|
end
|
34315
34351
|
|
34316
|
-
# You have exceeded an
|
34317
|
-
#
|
34352
|
+
# You have exceeded an SageMaker resource limit. For example, you might
|
34353
|
+
# have too many training jobs created.
|
34318
34354
|
#
|
34319
34355
|
# @!attribute [rw] message
|
34320
34356
|
# @return [String]
|
@@ -34393,6 +34429,12 @@ module Aws::SageMaker
|
|
34393
34429
|
#
|
34394
34430
|
# @!attribute [rw] instance_type
|
34395
34431
|
# The instance type that the image version runs on.
|
34432
|
+
#
|
34433
|
+
# <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
|
34434
|
+
# Apps do not support the `system` value, but support all other values
|
34435
|
+
# for available instance types.
|
34436
|
+
#
|
34437
|
+
# </note>
|
34396
34438
|
# @return [String]
|
34397
34439
|
#
|
34398
34440
|
# @!attribute [rw] lifecycle_config_arn
|
@@ -34527,11 +34569,11 @@ module Aws::SageMaker
|
|
34527
34569
|
#
|
34528
34570
|
# @!attribute [rw] s3_data_type
|
34529
34571
|
# If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
34530
|
-
#
|
34531
|
-
#
|
34572
|
+
# SageMaker uses all objects that match the specified key name prefix
|
34573
|
+
# for model training.
|
34532
34574
|
#
|
34533
34575
|
# If you choose `ManifestFile`, `S3Uri` identifies an object that is a
|
34534
|
-
# manifest file containing a list of object keys that you want
|
34576
|
+
# manifest file containing a list of object keys that you want
|
34535
34577
|
# SageMaker to use for model training.
|
34536
34578
|
#
|
34537
34579
|
# If you choose `AugmentedManifestFile`, S3Uri identifies an object
|
@@ -34585,17 +34627,17 @@ module Aws::SageMaker
|
|
34585
34627
|
#
|
34586
34628
|
# The complete set of `S3Uri` in this manifest is the input data for
|
34587
34629
|
# the channel for this data source. The object that each `S3Uri`
|
34588
|
-
# points to must be readable by the IAM role that
|
34589
|
-
#
|
34630
|
+
# points to must be readable by the IAM role that SageMaker uses to
|
34631
|
+
# perform tasks on your behalf.
|
34590
34632
|
# @return [String]
|
34591
34633
|
#
|
34592
34634
|
# @!attribute [rw] s3_data_distribution_type
|
34593
|
-
# If you want
|
34594
|
-
#
|
34635
|
+
# If you want SageMaker to replicate the entire dataset on each ML
|
34636
|
+
# compute instance that is launched for model training, specify
|
34595
34637
|
# `FullyReplicated`.
|
34596
34638
|
#
|
34597
|
-
# If you want
|
34598
|
-
#
|
34639
|
+
# If you want SageMaker to replicate a subset of data on each ML
|
34640
|
+
# compute instance that is launched for model training, specify
|
34599
34641
|
# `ShardedByS3Key`. If there are *n* ML compute instances launched for
|
34600
34642
|
# a training job, each instance gets approximately 1/*n* of the number
|
34601
34643
|
# of S3 objects. In this case, model training on each machine uses
|
@@ -35019,9 +35061,9 @@ module Aws::SageMaker
|
|
35019
35061
|
# transitioned through. A training job can be in one of several states,
|
35020
35062
|
# for example, starting, downloading, training, or uploading. Within
|
35021
35063
|
# each state, there are a number of intermediate states. For example,
|
35022
|
-
# within the starting state,
|
35023
|
-
#
|
35024
|
-
#
|
35064
|
+
# within the starting state, SageMaker could be starting the training
|
35065
|
+
# job or launching the ML instances. These transitional states are
|
35066
|
+
# referred to as the job's secondary status.
|
35025
35067
|
#
|
35026
35068
|
# @!attribute [rw] status
|
35027
35069
|
# Contains a secondary status information from a training job.
|
@@ -35086,8 +35128,8 @@ module Aws::SageMaker
|
|
35086
35128
|
# @!attribute [rw] status_message
|
35087
35129
|
# A detailed description of the progress within a secondary status.
|
35088
35130
|
#
|
35089
|
-
#
|
35090
|
-
#
|
35131
|
+
# SageMaker provides secondary statuses and status messages that apply
|
35132
|
+
# to each of them:
|
35091
35133
|
#
|
35092
35134
|
# Starting
|
35093
35135
|
# : * Starting the training job.
|
@@ -35452,9 +35494,9 @@ module Aws::SageMaker
|
|
35452
35494
|
end
|
35453
35495
|
|
35454
35496
|
# Specifies an algorithm that was used to create the model package. The
|
35455
|
-
# algorithm must be either an algorithm resource in your
|
35456
|
-
#
|
35457
|
-
#
|
35497
|
+
# algorithm must be either an algorithm resource in your SageMaker
|
35498
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35499
|
+
# are subscribed to.
|
35458
35500
|
#
|
35459
35501
|
# @note When making an API call, you may pass SourceAlgorithm
|
35460
35502
|
# data as a hash:
|
@@ -35477,9 +35519,9 @@ module Aws::SageMaker
|
|
35477
35519
|
#
|
35478
35520
|
# @!attribute [rw] algorithm_name
|
35479
35521
|
# The name of an algorithm that was used to create the model package.
|
35480
|
-
# The algorithm must be either an algorithm resource in your
|
35481
|
-
#
|
35482
|
-
#
|
35522
|
+
# The algorithm must be either an algorithm resource in your SageMaker
|
35523
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35524
|
+
# are subscribed to.
|
35483
35525
|
# @return [String]
|
35484
35526
|
#
|
35485
35527
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
|
@@ -35923,21 +35965,21 @@ module Aws::SageMaker
|
|
35923
35965
|
# Specifies a limit to how long a model training job or model
|
35924
35966
|
# compilation job can run. It also specifies how long a managed spot
|
35925
35967
|
# training job has to complete. When the job reaches the time limit,
|
35926
|
-
#
|
35927
|
-
#
|
35928
|
-
#
|
35929
|
-
# To stop a training job,
|
35930
|
-
#
|
35931
|
-
#
|
35932
|
-
#
|
35933
|
-
#
|
35934
|
-
# The training algorithms provided by
|
35935
|
-
#
|
35936
|
-
#
|
35937
|
-
#
|
35938
|
-
#
|
35939
|
-
#
|
35940
|
-
#
|
35968
|
+
# SageMaker ends the training or compilation job. Use this API to cap
|
35969
|
+
# model training costs.
|
35970
|
+
#
|
35971
|
+
# To stop a training job, SageMaker sends the algorithm the `SIGTERM`
|
35972
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
35973
|
+
# use this 120-second window to save the model artifacts, so the results
|
35974
|
+
# of training are not lost.
|
35975
|
+
#
|
35976
|
+
# The training algorithms provided by SageMaker automatically save the
|
35977
|
+
# intermediate results of a model training job when possible. This
|
35978
|
+
# attempt to save artifacts is only a best effort case as model might
|
35979
|
+
# not be in a state from which it can be saved. For example, if training
|
35980
|
+
# has just started, the model might not be ready to save. When saved,
|
35981
|
+
# this intermediate data is a valid model artifact. You can use it to
|
35982
|
+
# create a model with `CreateModel`.
|
35941
35983
|
#
|
35942
35984
|
# <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
|
35943
35985
|
# intermediate model artifacts. When training NTMs, make sure that the
|
@@ -35958,14 +36000,14 @@ module Aws::SageMaker
|
|
35958
36000
|
# compilation job can run.
|
35959
36001
|
#
|
35960
36002
|
# For compilation jobs, if the job does not complete during this time,
|
35961
|
-
#
|
35962
|
-
# seconds and
|
36003
|
+
# a `TimeOut` error is generated. We recommend starting with 900
|
36004
|
+
# seconds and increasing as necessary based on your model.
|
35963
36005
|
#
|
35964
36006
|
# For all other jobs, if the job does not complete during this time,
|
35965
|
-
#
|
35966
|
-
#
|
35967
|
-
#
|
35968
|
-
#
|
36007
|
+
# SageMaker ends the job. When `RetryStrategy` is specified in the job
|
36008
|
+
# request, `MaxRuntimeInSeconds` specifies the maximum time for all of
|
36009
|
+
# the attempts in total, not each individual attempt. The default
|
36010
|
+
# value is 1 day. The maximum value is 28 days.
|
35969
36011
|
# @return [Integer]
|
35970
36012
|
#
|
35971
36013
|
# @!attribute [rw] max_wait_time_in_seconds
|
@@ -35973,7 +36015,7 @@ module Aws::SageMaker
|
|
35973
36015
|
# job has to complete. It is the amount of time spent waiting for Spot
|
35974
36016
|
# capacity plus the amount of time the job can run. It must be equal
|
35975
36017
|
# to or greater than `MaxRuntimeInSeconds`. If the job does not
|
35976
|
-
# complete during this time,
|
36018
|
+
# complete during this time, SageMaker ends the job.
|
35977
36019
|
#
|
35978
36020
|
# When `RetryStrategy` is specified in the job request,
|
35979
36021
|
# `MaxWaitTimeInSeconds` specifies the maximum time for all of the
|
@@ -36393,8 +36435,8 @@ module Aws::SageMaker
|
|
36393
36435
|
# For detailed information about the secondary status of the training
|
36394
36436
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
36395
36437
|
#
|
36396
|
-
#
|
36397
|
-
#
|
36438
|
+
# SageMaker provides primary statuses and secondary statuses that
|
36439
|
+
# apply to each of them:
|
36398
36440
|
#
|
36399
36441
|
# InProgress
|
36400
36442
|
# : * `Starting` - Starting the training job.
|
@@ -36467,7 +36509,7 @@ module Aws::SageMaker
|
|
36467
36509
|
#
|
36468
36510
|
# @!attribute [rw] output_data_config
|
36469
36511
|
# The S3 path where model artifacts that you configured when creating
|
36470
|
-
# the job are stored.
|
36512
|
+
# the job are stored. SageMaker creates subfolders for model
|
36471
36513
|
# artifacts.
|
36472
36514
|
# @return [Types::OutputDataConfig]
|
36473
36515
|
#
|
@@ -36489,13 +36531,13 @@ module Aws::SageMaker
|
|
36489
36531
|
# @!attribute [rw] stopping_condition
|
36490
36532
|
# Specifies a limit to how long a model training job can run. It also
|
36491
36533
|
# specifies how long a managed Spot training job has to complete. When
|
36492
|
-
# the job reaches the time limit,
|
36493
|
-
#
|
36534
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36535
|
+
# this API to cap model training costs.
|
36494
36536
|
#
|
36495
|
-
# To stop a job,
|
36496
|
-
#
|
36497
|
-
#
|
36498
|
-
#
|
36537
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
36538
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36539
|
+
# this 120-second window to save the model artifacts, so the results
|
36540
|
+
# of training are not lost.
|
36499
36541
|
# @return [Types::StoppingCondition]
|
36500
36542
|
#
|
36501
36543
|
# @!attribute [rw] creation_time
|
@@ -36516,8 +36558,7 @@ module Aws::SageMaker
|
|
36516
36558
|
# You are billed for the time interval between the value of
|
36517
36559
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
36518
36560
|
# jobs, this is the time after model artifacts are uploaded. For
|
36519
|
-
# failed jobs, this is the time when
|
36520
|
-
# failure.
|
36561
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
36521
36562
|
# @return [Time]
|
36522
36563
|
#
|
36523
36564
|
# @!attribute [rw] last_modified_time
|
@@ -36784,7 +36825,7 @@ module Aws::SageMaker
|
|
36784
36825
|
#
|
36785
36826
|
# @!attribute [rw] output_data_config
|
36786
36827
|
# the path to the S3 bucket where you want to store model artifacts.
|
36787
|
-
#
|
36828
|
+
# SageMaker creates subfolders for the artifacts.
|
36788
36829
|
# @return [Types::OutputDataConfig]
|
36789
36830
|
#
|
36790
36831
|
# @!attribute [rw] resource_config
|
@@ -36795,12 +36836,12 @@ module Aws::SageMaker
|
|
36795
36836
|
# @!attribute [rw] stopping_condition
|
36796
36837
|
# Specifies a limit to how long a model training job can run. It also
|
36797
36838
|
# specifies how long a managed Spot training job has to complete. When
|
36798
|
-
# the job reaches the time limit,
|
36799
|
-
#
|
36839
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36840
|
+
# this API to cap model training costs.
|
36800
36841
|
#
|
36801
|
-
# To stop a job,
|
36802
|
-
#
|
36803
|
-
#
|
36842
|
+
# To stop a job, SageMaker sends the algorithm the SIGTERM signal,
|
36843
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36844
|
+
# this 120-second window to save the model artifacts.
|
36804
36845
|
# @return [Types::StoppingCondition]
|
36805
36846
|
#
|
36806
36847
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
|
@@ -39042,7 +39083,7 @@ module Aws::SageMaker
|
|
39042
39083
|
# }
|
39043
39084
|
#
|
39044
39085
|
# @!attribute [rw] endpoint_name
|
39045
|
-
# The name of an existing
|
39086
|
+
# The name of an existing SageMaker endpoint.
|
39046
39087
|
# @return [String]
|
39047
39088
|
#
|
39048
39089
|
# @!attribute [rw] desired_weights_and_capacities
|
@@ -39411,12 +39452,12 @@ module Aws::SageMaker
|
|
39411
39452
|
# @return [String]
|
39412
39453
|
#
|
39413
39454
|
# @!attribute [rw] role_arn
|
39414
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
39415
|
-
#
|
39416
|
-
#
|
39455
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
39456
|
+
# assume to access the notebook instance. For more information, see
|
39457
|
+
# [SageMaker Roles][1].
|
39417
39458
|
#
|
39418
|
-
# <note markdown="1"> To be able to pass this role to
|
39419
|
-
#
|
39459
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
39460
|
+
# must have the `iam:PassRole` permission.
|
39420
39461
|
#
|
39421
39462
|
# </note>
|
39422
39463
|
#
|
@@ -39446,12 +39487,12 @@ module Aws::SageMaker
|
|
39446
39487
|
# @!attribute [rw] volume_size_in_gb
|
39447
39488
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
39448
39489
|
# instance. The default value is 5 GB. ML storage volumes are
|
39449
|
-
# encrypted, so
|
39450
|
-
#
|
39451
|
-
#
|
39452
|
-
#
|
39453
|
-
#
|
39454
|
-
#
|
39490
|
+
# encrypted, so SageMaker can't determine the amount of available
|
39491
|
+
# free space on the volume. Because of this, you can increase the
|
39492
|
+
# volume size when you update a notebook instance, but you can't
|
39493
|
+
# decrease the volume size. If you want to decrease the size of the ML
|
39494
|
+
# storage volume in use, create a new notebook instance with the
|
39495
|
+
# desired size.
|
39455
39496
|
# @return [Integer]
|
39456
39497
|
#
|
39457
39498
|
# @!attribute [rw] default_code_repository
|
@@ -39461,8 +39502,7 @@ module Aws::SageMaker
|
|
39461
39502
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
39462
39503
|
# Git repository. When you open a notebook instance, it opens in the
|
39463
39504
|
# directory that contains this repository. For more information, see
|
39464
|
-
# [Associating Git Repositories with
|
39465
|
-
# Instances][2].
|
39505
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
39466
39506
|
#
|
39467
39507
|
#
|
39468
39508
|
#
|
@@ -39477,7 +39517,7 @@ module Aws::SageMaker
|
|
39477
39517
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
39478
39518
|
# repository. These repositories are cloned at the same level as the
|
39479
39519
|
# default repository of your notebook instance. For more information,
|
39480
|
-
# see [Associating Git Repositories with
|
39520
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
39481
39521
|
# Instances][2].
|
39482
39522
|
#
|
39483
39523
|
#
|