aws-sdk-sagemaker 1.122.0 → 1.123.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -192,7 +192,7 @@ module Aws::SageMaker
192
192
  end
193
193
 
194
194
  # @!attribute [rw] tags
195
- # A list of tags associated with the Amazon SageMaker resource.
195
+ # A list of tags associated with the SageMaker resource.
196
196
  # @return [Array<Types::Tag>]
197
197
  #
198
198
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
@@ -328,9 +328,9 @@ module Aws::SageMaker
328
328
  # Specifies the training algorithm to use in a CreateTrainingJob
329
329
  # request.
330
330
  #
331
- # For more information about algorithms provided by Amazon SageMaker,
332
- # see [Algorithms][1]. For information about using your own algorithms,
333
- # see [Using Your Own Algorithms with Amazon SageMaker][2].
331
+ # For more information about algorithms provided by SageMaker, see
332
+ # [Algorithms][1]. For information about using your own algorithms, see
333
+ # [Using Your Own Algorithms with Amazon SageMaker][2].
334
334
  #
335
335
  #
336
336
  #
@@ -357,10 +357,10 @@ module Aws::SageMaker
357
357
  # The registry path of the Docker image that contains the training
358
358
  # algorithm. For information about docker registry paths for built-in
359
359
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
360
- # Parameters][1]. Amazon SageMaker supports both
361
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
362
- # path formats. For more information, see [Using Your Own Algorithms
363
- # with Amazon SageMaker][2].
360
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
361
+ # and `registry/repository[@digest]` image path formats. For more
362
+ # information, see [Using Your Own Algorithms with Amazon
363
+ # SageMaker][2].
364
364
  #
365
365
  #
366
366
  #
@@ -424,7 +424,7 @@ module Aws::SageMaker
424
424
  # @!attribute [rw] metric_definitions
425
425
  # A list of metric definition objects. Each object specifies the
426
426
  # metric name and regular expressions used to parse algorithm logs.
427
- # Amazon SageMaker publishes each metric to Amazon CloudWatch.
427
+ # SageMaker publishes each metric to Amazon CloudWatch.
428
428
  # @return [Array<Types::MetricDefinition>]
429
429
  #
430
430
  # @!attribute [rw] enable_sage_maker_metrics_time_series
@@ -432,9 +432,9 @@ module Aws::SageMaker
432
432
  # `true`. The default is `false` and time-series metrics aren't
433
433
  # generated except in the following cases:
434
434
  #
435
- # * You use one of the Amazon SageMaker built-in algorithms
435
+ # * You use one of the SageMaker built-in algorithms
436
436
  #
437
- # * You use one of the following [Prebuilt Amazon SageMaker Docker
437
+ # * You use one of the following [Prebuilt SageMaker Docker
438
438
  # Images][1]\:
439
439
  #
440
440
  # * Tensorflow (version &gt;= 1.15)
@@ -540,8 +540,8 @@ module Aws::SageMaker
540
540
  include Aws::Structure
541
541
  end
542
542
 
543
- # Defines a training job and a batch transform job that Amazon SageMaker
544
- # runs to validate your algorithm.
543
+ # Defines a training job and a batch transform job that SageMaker runs
544
+ # to validate your algorithm.
545
545
  #
546
546
  # The data provided in the validation profile is made available to your
547
547
  # buyers on Amazon Web Services Marketplace.
@@ -636,12 +636,12 @@ module Aws::SageMaker
636
636
  #
637
637
  # @!attribute [rw] training_job_definition
638
638
  # The `TrainingJobDefinition` object that describes the training job
639
- # that Amazon SageMaker runs to validate your algorithm.
639
+ # that SageMaker runs to validate your algorithm.
640
640
  # @return [Types::TrainingJobDefinition]
641
641
  #
642
642
  # @!attribute [rw] transform_job_definition
643
643
  # The `TransformJobDefinition` object that describes the transform job
644
- # that Amazon SageMaker runs to validate your algorithm.
644
+ # that SageMaker runs to validate your algorithm.
645
645
  # @return [Types::TransformJobDefinition]
646
646
  #
647
647
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
@@ -654,8 +654,8 @@ module Aws::SageMaker
654
654
  include Aws::Structure
655
655
  end
656
656
 
657
- # Specifies configurations for one or more training jobs that Amazon
658
- # SageMaker runs to test the algorithm.
657
+ # Specifies configurations for one or more training jobs that SageMaker
658
+ # runs to test the algorithm.
659
659
  #
660
660
  # @note When making an API call, you may pass AlgorithmValidationSpecification
661
661
  # data as a hash:
@@ -746,13 +746,13 @@ module Aws::SageMaker
746
746
  # }
747
747
  #
748
748
  # @!attribute [rw] validation_role
749
- # The IAM roles that Amazon SageMaker uses to run the training jobs.
749
+ # The IAM roles that SageMaker uses to run the training jobs.
750
750
  # @return [String]
751
751
  #
752
752
  # @!attribute [rw] validation_profiles
753
753
  # An array of `AlgorithmValidationProfile` objects, each of which
754
- # specifies a training job and batch transform job that Amazon
755
- # SageMaker runs to validate your algorithm.
754
+ # specifies a training job and batch transform job that SageMaker runs
755
+ # to validate your algorithm.
756
756
  # @return [Array<Types::AlgorithmValidationProfile>]
757
757
  #
758
758
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
1742
1742
  include Aws::Structure
1743
1743
  end
1744
1744
 
1745
- # Configures the behavior of the client used by Amazon SageMaker to
1746
- # interact with the model container during asynchronous inference.
1745
+ # Configures the behavior of the client used by SageMaker to interact
1746
+ # with the model container during asynchronous inference.
1747
1747
  #
1748
1748
  # @note When making an API call, you may pass AsyncInferenceClientConfig
1749
1749
  # data as a hash:
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
1754
1754
  #
1755
1755
  # @!attribute [rw] max_concurrent_invocations_per_instance
1756
1756
  # The maximum number of concurrent requests sent by the SageMaker
1757
- # client to the model container. If no value is provided, Amazon
1758
- # SageMaker will choose an optimal value for you.
1757
+ # client to the model container. If no value is provided, SageMaker
1758
+ # chooses an optimal value.
1759
1759
  # @return [Integer]
1760
1760
  #
1761
1761
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
1787
1787
  # }
1788
1788
  #
1789
1789
  # @!attribute [rw] client_config
1790
- # Configures the behavior of the client used by Amazon SageMaker to
1791
- # interact with the model container during asynchronous inference.
1790
+ # Configures the behavior of the client used by SageMaker to interact
1791
+ # with the model container during asynchronous inference.
1792
1792
  # @return [Types::AsyncInferenceClientConfig]
1793
1793
  #
1794
1794
  # @!attribute [rw] output_config
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
1853
1853
  #
1854
1854
  # @!attribute [rw] kms_key_id
1855
1855
  # The Amazon Web Services Key Management Service (Amazon Web Services
1856
- # KMS) key that Amazon SageMaker uses to encrypt the asynchronous
1857
- # inference output in Amazon S3.
1856
+ # KMS) key that SageMaker uses to encrypt the asynchronous inference
1857
+ # output in Amazon S3.
1858
1858
  # @return [String]
1859
1859
  #
1860
1860
  # @!attribute [rw] s3_output_path
@@ -2034,7 +2034,14 @@ module Aws::SageMaker
2034
2034
  end
2035
2035
 
2036
2036
  # A channel is a named input source that training algorithms can
2037
- # consume. For more information, see .
2037
+ # consume. The validation dataset size is limited to less than 2 GB. The
2038
+ # training dataset size must be less than 100 GB. For more information,
2039
+ # see .
2040
+ #
2041
+ # <note markdown="1"> A validation dataset must contain the same headers as the training
2042
+ # dataset.
2043
+ #
2044
+ # </note>
2038
2045
  #
2039
2046
  # @note When making an API call, you may pass AutoMLChannel
2040
2047
  # data as a hash:
@@ -2049,6 +2056,7 @@ module Aws::SageMaker
2049
2056
  # compression_type: "None", # accepts None, Gzip
2050
2057
  # target_attribute_name: "TargetAttributeName", # required
2051
2058
  # content_type: "ContentType",
2059
+ # channel_type: "training", # accepts training, validation
2052
2060
  # }
2053
2061
  #
2054
2062
  # @!attribute [rw] data_source
@@ -2070,13 +2078,20 @@ module Aws::SageMaker
2070
2078
  # default value is `text/csv;header=present`.
2071
2079
  # @return [String]
2072
2080
  #
2081
+ # @!attribute [rw] channel_type
2082
+ # The channel type (optional) is an enum string. The default value is
2083
+ # `training`. Channels for training and validation must share the same
2084
+ # `ContentType` and `TargetAttributeName`.
2085
+ # @return [String]
2086
+ #
2073
2087
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
2074
2088
  #
2075
2089
  class AutoMLChannel < Struct.new(
2076
2090
  :data_source,
2077
2091
  :compression_type,
2078
2092
  :target_attribute_name,
2079
- :content_type)
2093
+ :content_type,
2094
+ :channel_type)
2080
2095
  SENSITIVE = []
2081
2096
  include Aws::Structure
2082
2097
  end
@@ -2136,6 +2151,32 @@ module Aws::SageMaker
2136
2151
  include Aws::Structure
2137
2152
  end
2138
2153
 
2154
+ # This structure specifies how to split the data into train and test
2155
+ # datasets. The validation and training datasets must contain the same
2156
+ # headers. The validation dataset must be less than 2 GB in size.
2157
+ #
2158
+ # @note When making an API call, you may pass AutoMLDataSplitConfig
2159
+ # data as a hash:
2160
+ #
2161
+ # {
2162
+ # validation_fraction: 1.0,
2163
+ # }
2164
+ #
2165
+ # @!attribute [rw] validation_fraction
2166
+ # The validation fraction (optional) is a float that specifies the
2167
+ # portion of the training dataset to be used for validation. The
2168
+ # default value is 0.2, and values can range from 0 to 1. We recommend
2169
+ # setting this value to be less than 0.5.
2170
+ # @return [Float]
2171
+ #
2172
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
2173
+ #
2174
+ class AutoMLDataSplitConfig < Struct.new(
2175
+ :validation_fraction)
2176
+ SENSITIVE = []
2177
+ include Aws::Structure
2178
+ end
2179
+
2139
2180
  # The artifacts that are generated during an AutoML job.
2140
2181
  #
2141
2182
  # @!attribute [rw] candidate_definition_notebook_location
@@ -2217,6 +2258,9 @@ module Aws::SageMaker
2217
2258
  # subnets: ["SubnetId"], # required
2218
2259
  # },
2219
2260
  # },
2261
+ # data_split_config: {
2262
+ # validation_fraction: 1.0,
2263
+ # },
2220
2264
  # }
2221
2265
  #
2222
2266
  # @!attribute [rw] completion_criteria
@@ -2229,11 +2273,18 @@ module Aws::SageMaker
2229
2273
  # settings.
2230
2274
  # @return [Types::AutoMLSecurityConfig]
2231
2275
  #
2276
+ # @!attribute [rw] data_split_config
2277
+ # The configuration for splitting the input training dataset.
2278
+ #
2279
+ # Type: AutoMLDataSplitConfig
2280
+ # @return [Types::AutoMLDataSplitConfig]
2281
+ #
2232
2282
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
2233
2283
  #
2234
2284
  class AutoMLJobConfig < Struct.new(
2235
2285
  :completion_criteria,
2236
- :security_config)
2286
+ :security_config,
2287
+ :data_split_config)
2237
2288
  SENSITIVE = []
2238
2289
  include Aws::Structure
2239
2290
  end
@@ -3005,10 +3056,10 @@ module Aws::SageMaker
3005
3056
  # @!attribute [rw] record_wrapper_type
3006
3057
  # Specify RecordIO as the value when input data is in raw format but
3007
3058
  # the training algorithm requires the RecordIO format. In this case,
3008
- # Amazon SageMaker wraps each individual S3 object in a RecordIO
3009
- # record. If the input data is already in RecordIO format, you don't
3010
- # need to set this attribute. For more information, see [Create a
3011
- # Dataset Using RecordIO][1].
3059
+ # SageMaker wraps each individual S3 object in a RecordIO record. If
3060
+ # the input data is already in RecordIO format, you don't need to set
3061
+ # this attribute. For more information, see [Create a Dataset Using
3062
+ # RecordIO][1].
3012
3063
  #
3013
3064
  # In File mode, leave this field unset or set it to None.
3014
3065
  #
@@ -3019,15 +3070,15 @@ module Aws::SageMaker
3019
3070
  #
3020
3071
  # @!attribute [rw] input_mode
3021
3072
  # (Optional) The input mode to use for the data channel in a training
3022
- # job. If you don't set a value for `InputMode`, Amazon SageMaker
3023
- # uses the value set for `TrainingInputMode`. Use this parameter to
3024
- # override the `TrainingInputMode` setting in a AlgorithmSpecification
3025
- # request when you have a channel that needs a different input mode
3026
- # from the training job's general setting. To download the data from
3027
- # Amazon Simple Storage Service (Amazon S3) to the provisioned ML
3028
- # storage volume, and mount the directory to a Docker volume, use
3029
- # `File` input mode. To stream data directly from Amazon S3 to the
3030
- # container, choose `Pipe` input mode.
3073
+ # job. If you don't set a value for `InputMode`, SageMaker uses the
3074
+ # value set for `TrainingInputMode`. Use this parameter to override
3075
+ # the `TrainingInputMode` setting in a AlgorithmSpecification request
3076
+ # when you have a channel that needs a different input mode from the
3077
+ # training job's general setting. To download the data from Amazon
3078
+ # Simple Storage Service (Amazon S3) to the provisioned ML storage
3079
+ # volume, and mount the directory to a Docker volume, use `File` input
3080
+ # mode. To stream data directly from Amazon S3 to the container,
3081
+ # choose `Pipe` input mode.
3031
3082
  #
3032
3083
  # To use a model for incremental training, choose `File` input model.
3033
3084
  # @return [String]
@@ -3137,7 +3188,7 @@ module Aws::SageMaker
3137
3188
  # }
3138
3189
  #
3139
3190
  # @!attribute [rw] s3_uri
3140
- # Identifies the S3 path where you want Amazon SageMaker to store
3191
+ # Identifies the S3 path where you want SageMaker to store
3141
3192
  # checkpoints. For example, `s3://bucket-name/key-name-prefix`.
3142
3193
  # @return [String]
3143
3194
  #
@@ -3514,11 +3565,11 @@ module Aws::SageMaker
3514
3565
  # Amazon EC2 Container Registry or in a Docker registry that is
3515
3566
  # accessible from the same VPC that you configure for your endpoint.
3516
3567
  # If you are using your own custom algorithm instead of an algorithm
3517
- # provided by Amazon SageMaker, the inference code must meet Amazon
3518
- # SageMaker requirements. Amazon SageMaker supports both
3519
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
3520
- # path formats. For more information, see [Using Your Own Algorithms
3521
- # with Amazon SageMaker][1]
3568
+ # provided by SageMaker, the inference code must meet SageMaker
3569
+ # requirements. SageMaker supports both `registry/repository[:tag]`
3570
+ # and `registry/repository[@digest]` image path formats. For more
3571
+ # information, see [Using Your Own Algorithms with Amazon
3572
+ # SageMaker][1]
3522
3573
  #
3523
3574
  #
3524
3575
  #
@@ -3545,7 +3596,7 @@ module Aws::SageMaker
3545
3596
  # The S3 path where the model artifacts, which result from model
3546
3597
  # training, are stored. This path must point to a single gzip
3547
3598
  # compressed tar archive (.tar.gz suffix). The S3 path is required for
3548
- # Amazon SageMaker built-in algorithms, but not if you use your own
3599
+ # SageMaker built-in algorithms, but not if you use your own
3549
3600
  # algorithms. For more information on built-in algorithms, see [Common
3550
3601
  # Parameters][1].
3551
3602
  #
@@ -3554,17 +3605,17 @@ module Aws::SageMaker
3554
3605
  #
3555
3606
  # </note>
3556
3607
  #
3557
- # If you provide a value for this parameter, Amazon SageMaker uses
3558
- # Amazon Web Services Security Token Service to download model
3559
- # artifacts from the S3 path you provide. Amazon Web Services STS is
3560
- # activated in your IAM user account by default. If you previously
3561
- # deactivated Amazon Web Services STS for a region, you need to
3562
- # reactivate Amazon Web Services STS for that region. For more
3563
- # information, see [Activating and Deactivating Amazon Web Services
3564
- # STS in an Amazon Web Services Region][2] in the *Amazon Web Services
3565
- # Identity and Access Management User Guide*.
3566
- #
3567
- # If you use a built-in algorithm to create a model, Amazon SageMaker
3608
+ # If you provide a value for this parameter, SageMaker uses Amazon Web
3609
+ # Services Security Token Service to download model artifacts from the
3610
+ # S3 path you provide. Amazon Web Services STS is activated in your
3611
+ # IAM user account by default. If you previously deactivated Amazon
3612
+ # Web Services STS for a region, you need to reactivate Amazon Web
3613
+ # Services STS for that region. For more information, see [Activating
3614
+ # and Deactivating Amazon Web Services STS in an Amazon Web Services
3615
+ # Region][2] in the *Amazon Web Services Identity and Access
3616
+ # Management User Guide*.
3617
+ #
3618
+ # If you use a built-in algorithm to create a model, SageMaker
3568
3619
  # requires that you provide a S3 path to the model artifacts in
3569
3620
  # `ModelDataUrl`.
3570
3621
  #
@@ -3717,8 +3768,8 @@ module Aws::SageMaker
3717
3768
  #
3718
3769
  # Auto
3719
3770
  #
3720
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
3721
- # the hyperparameter.
3771
+ # : SageMaker hyperparameter tuning chooses the best scale for the
3772
+ # hyperparameter.
3722
3773
  #
3723
3774
  # Linear
3724
3775
  #
@@ -4096,9 +4147,9 @@ module Aws::SageMaker
4096
4147
  #
4097
4148
  # @!attribute [rw] validation_specification
4098
4149
  # Specifies configurations for one or more training jobs and that
4099
- # Amazon SageMaker runs to test the algorithm's training code and,
4100
- # optionally, one or more batch transform jobs that Amazon SageMaker
4101
- # runs to test the algorithm's inference code.
4150
+ # SageMaker runs to test the algorithm's training code and,
4151
+ # optionally, one or more batch transform jobs that SageMaker runs to
4152
+ # test the algorithm's inference code.
4102
4153
  # @return [Types::AlgorithmValidationSpecification]
4103
4154
  #
4104
4155
  # @!attribute [rw] certify_for_marketplace
@@ -4376,6 +4427,7 @@ module Aws::SageMaker
4376
4427
  # compression_type: "None", # accepts None, Gzip
4377
4428
  # target_attribute_name: "TargetAttributeName", # required
4378
4429
  # content_type: "ContentType",
4430
+ # channel_type: "training", # accepts training, validation
4379
4431
  # },
4380
4432
  # ],
4381
4433
  # output_data_config: { # required
@@ -4400,6 +4452,9 @@ module Aws::SageMaker
4400
4452
  # subnets: ["SubnetId"], # required
4401
4453
  # },
4402
4454
  # },
4455
+ # data_split_config: {
4456
+ # validation_fraction: 1.0,
4457
+ # },
4403
4458
  # },
4404
4459
  # role_arn: "RoleArn", # required
4405
4460
  # generate_candidate_definitions_only: false,
@@ -5361,9 +5416,9 @@ module Aws::SageMaker
5361
5416
  #
5362
5417
  # @!attribute [rw] kms_key_id
5363
5418
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
5364
- # Management Service key that Amazon SageMaker uses to encrypt data on
5365
- # the storage volume attached to the ML compute instance that hosts
5366
- # the endpoint.
5419
+ # Management Service key that SageMaker uses to encrypt data on the
5420
+ # storage volume attached to the ML compute instance that hosts the
5421
+ # endpoint.
5367
5422
  #
5368
5423
  # The KmsKeyId can be any of the following formats:
5369
5424
  #
@@ -6277,8 +6332,8 @@ module Aws::SageMaker
6277
6332
  end
6278
6333
 
6279
6334
  # @!attribute [rw] hyper_parameter_tuning_job_arn
6280
- # The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker
6281
- # assigns an ARN to a hyperparameter tuning job when you create it.
6335
+ # The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
6336
+ # an ARN to a hyperparameter tuning job when you create it.
6282
6337
  # @return [String]
6283
6338
  #
6284
6339
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
@@ -6362,8 +6417,8 @@ module Aws::SageMaker
6362
6417
  #
6363
6418
  # @!attribute [rw] base_image
6364
6419
  # The registry path of the container image to use as the starting
6365
- # point for this version. The path is an Amazon Container Registry
6366
- # (ECR) URI in the following format:
6420
+ # point for this version. The path is an Amazon Elastic Container
6421
+ # Registry (ECR) URI in the following format:
6367
6422
  #
6368
6423
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
6369
6424
  # [@digest]>`
@@ -7216,14 +7271,14 @@ module Aws::SageMaker
7216
7271
  # @return [Types::InferenceExecutionConfig]
7217
7272
  #
7218
7273
  # @!attribute [rw] execution_role_arn
7219
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
7220
- # can assume to access model artifacts and docker image for deployment
7221
- # on ML compute instances or for batch transform jobs. Deploying on ML
7274
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
7275
+ # assume to access model artifacts and docker image for deployment on
7276
+ # ML compute instances or for batch transform jobs. Deploying on ML
7222
7277
  # compute instances is part of model hosting. For more information,
7223
- # see [Amazon SageMaker Roles][1].
7278
+ # see [SageMaker Roles][1].
7224
7279
  #
7225
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
7226
- # API must have the `iam:PassRole` permission.
7280
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
7281
+ # must have the `iam:PassRole` permission.
7227
7282
  #
7228
7283
  # </note>
7229
7284
  #
@@ -7278,7 +7333,7 @@ module Aws::SageMaker
7278
7333
  end
7279
7334
 
7280
7335
  # @!attribute [rw] model_arn
7281
- # The ARN of the model created in Amazon SageMaker.
7336
+ # The ARN of the model created in SageMaker.
7282
7337
  # @return [String]
7283
7338
  #
7284
7339
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
@@ -7611,7 +7666,7 @@ module Aws::SageMaker
7611
7666
  # @return [Types::InferenceSpecification]
7612
7667
  #
7613
7668
  # @!attribute [rw] validation_specification
7614
- # Specifies configurations for one or more transform jobs that Amazon
7669
+ # Specifies configurations for one or more transform jobs that
7615
7670
  # SageMaker runs to test the model package.
7616
7671
  # @return [Types::ModelPackageValidationSpecification]
7617
7672
  #
@@ -8073,15 +8128,14 @@ module Aws::SageMaker
8073
8128
  #
8074
8129
  # @!attribute [rw] role_arn
8075
8130
  # When you send any requests to Amazon Web Services resources from the
8076
- # notebook instance, Amazon SageMaker assumes this role to perform
8077
- # tasks on your behalf. You must grant this role necessary permissions
8078
- # so Amazon SageMaker can perform these tasks. The policy must allow
8079
- # the Amazon SageMaker service principal (sagemaker.amazonaws.com)
8080
- # permissions to assume this role. For more information, see [Amazon
8081
- # SageMaker Roles][1].
8131
+ # notebook instance, SageMaker assumes this role to perform tasks on
8132
+ # your behalf. You must grant this role necessary permissions so
8133
+ # SageMaker can perform these tasks. The policy must allow the
8134
+ # SageMaker service principal (sagemaker.amazonaws.com) permissions to
8135
+ # assume this role. For more information, see [SageMaker Roles][1].
8082
8136
  #
8083
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
8084
- # API must have the `iam:PassRole` permission.
8137
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
8138
+ # must have the `iam:PassRole` permission.
8085
8139
  #
8086
8140
  # </note>
8087
8141
  #
@@ -8092,9 +8146,9 @@ module Aws::SageMaker
8092
8146
  #
8093
8147
  # @!attribute [rw] kms_key_id
8094
8148
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
8095
- # Management Service key that Amazon SageMaker uses to encrypt data on
8096
- # the storage volume attached to your notebook instance. The KMS key
8097
- # you provide must be enabled. For information, see [Enabling and
8149
+ # Management Service key that SageMaker uses to encrypt data on the
8150
+ # storage volume attached to your notebook instance. The KMS key you
8151
+ # provide must be enabled. For information, see [Enabling and
8098
8152
  # Disabling Keys][1] in the *Amazon Web Services Key Management
8099
8153
  # Service Developer Guide*.
8100
8154
  #
@@ -8125,11 +8179,11 @@ module Aws::SageMaker
8125
8179
  # @return [String]
8126
8180
  #
8127
8181
  # @!attribute [rw] direct_internet_access
8128
- # Sets whether Amazon SageMaker provides internet access to the
8129
- # notebook instance. If you set this to `Disabled` this notebook
8130
- # instance is able to access resources only in your VPC, and is not be
8131
- # able to connect to Amazon SageMaker training and endpoint services
8132
- # unless you configure a NAT Gateway in your VPC.
8182
+ # Sets whether SageMaker provides internet access to the notebook
8183
+ # instance. If you set this to `Disabled` this notebook instance is
8184
+ # able to access resources only in your VPC, and is not be able to
8185
+ # connect to SageMaker training and endpoint services unless you
8186
+ # configure a NAT Gateway in your VPC.
8133
8187
  #
8134
8188
  # For more information, see [Notebook Instances Are Internet-Enabled
8135
8189
  # by Default][1]. You can set the value of this parameter to
@@ -8163,8 +8217,7 @@ module Aws::SageMaker
8163
8217
  # repository in [Amazon Web Services CodeCommit][1] or in any other
8164
8218
  # Git repository. When you open a notebook instance, it opens in the
8165
8219
  # directory that contains this repository. For more information, see
8166
- # [Associating Git Repositories with Amazon SageMaker Notebook
8167
- # Instances][2].
8220
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
8168
8221
  #
8169
8222
  #
8170
8223
  #
@@ -8179,7 +8232,7 @@ module Aws::SageMaker
8179
8232
  # in [Amazon Web Services CodeCommit][1] or in any other Git
8180
8233
  # repository. These repositories are cloned at the same level as the
8181
8234
  # default repository of your notebook instance. For more information,
8182
- # see [Associating Git Repositories with Amazon SageMaker Notebook
8235
+ # see [Associating Git Repositories with SageMaker Notebook
8183
8236
  # Instances][2].
8184
8237
  #
8185
8238
  #
@@ -8974,7 +9027,7 @@ module Aws::SageMaker
8974
9027
  # Algorithm-specific parameters that influence the quality of the
8975
9028
  # model. You set hyperparameters before you start the learning
8976
9029
  # process. For a list of hyperparameters for each training algorithm
8977
- # provided by Amazon SageMaker, see [Algorithms][1].
9030
+ # provided by SageMaker, see [Algorithms][1].
8978
9031
  #
8979
9032
  # You can specify a maximum of 100 hyperparameters. Each
8980
9033
  # hyperparameter is a key-value pair. Each key and value is limited to
@@ -8988,8 +9041,8 @@ module Aws::SageMaker
8988
9041
  # @!attribute [rw] algorithm_specification
8989
9042
  # The registry path of the Docker image that contains the training
8990
9043
  # algorithm and algorithm-specific metadata, including the input mode.
8991
- # For more information about algorithms provided by Amazon SageMaker,
8992
- # see [Algorithms][1]. For information about providing your own
9044
+ # For more information about algorithms provided by SageMaker, see
9045
+ # [Algorithms][1]. For information about providing your own
8993
9046
  # algorithms, see [Using Your Own Algorithms with Amazon
8994
9047
  # SageMaker][2].
8995
9048
  #
@@ -9000,18 +9053,18 @@ module Aws::SageMaker
9000
9053
  # @return [Types::AlgorithmSpecification]
9001
9054
  #
9002
9055
  # @!attribute [rw] role_arn
9003
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
9004
- # can assume to perform tasks on your behalf.
9056
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
9057
+ # assume to perform tasks on your behalf.
9005
9058
  #
9006
- # During model training, Amazon SageMaker needs your permission to
9007
- # read input data from an S3 bucket, download a Docker image that
9008
- # contains training code, write model artifacts to an S3 bucket, write
9009
- # logs to Amazon CloudWatch Logs, and publish metrics to Amazon
9010
- # CloudWatch. You grant permissions for all of these tasks to an IAM
9011
- # role. For more information, see [Amazon SageMaker Roles][1].
9059
+ # During model training, SageMaker needs your permission to read input
9060
+ # data from an S3 bucket, download a Docker image that contains
9061
+ # training code, write model artifacts to an S3 bucket, write logs to
9062
+ # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
9063
+ # You grant permissions for all of these tasks to an IAM role. For
9064
+ # more information, see [SageMaker Roles][1].
9012
9065
  #
9013
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
9014
- # API must have the `iam:PassRole` permission.
9066
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
9067
+ # must have the `iam:PassRole` permission.
9015
9068
  #
9016
9069
  # </note>
9017
9070
  #
@@ -9032,17 +9085,17 @@ module Aws::SageMaker
9032
9085
  # MIME type, compression method, and whether the data is wrapped in
9033
9086
  # RecordIO format.
9034
9087
  #
9035
- # Depending on the input mode that the algorithm supports, Amazon
9036
- # SageMaker either copies input data files from an S3 bucket to a
9037
- # local directory in the Docker container, or makes it available as
9038
- # input streams. For example, if you specify an EFS location, input
9039
- # data files will be made available as input streams. They do not need
9040
- # to be downloaded.
9088
+ # Depending on the input mode that the algorithm supports, SageMaker
9089
+ # either copies input data files from an S3 bucket to a local
9090
+ # directory in the Docker container, or makes it available as input
9091
+ # streams. For example, if you specify an EFS location, input data
9092
+ # files are available as input streams. They do not need to be
9093
+ # downloaded.
9041
9094
  # @return [Array<Types::Channel>]
9042
9095
  #
9043
9096
  # @!attribute [rw] output_data_config
9044
9097
  # Specifies the path to the S3 location where you want to store model
9045
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
9098
+ # artifacts. SageMaker creates subfolders for the artifacts.
9046
9099
  # @return [Types::OutputDataConfig]
9047
9100
  #
9048
9101
  # @!attribute [rw] resource_config
@@ -9051,9 +9104,9 @@ module Aws::SageMaker
9051
9104
  #
9052
9105
  # ML storage volumes store model artifacts and incremental states.
9053
9106
  # Training algorithms might also use ML storage volumes for scratch
9054
- # space. If you want Amazon SageMaker to use the ML storage volume to
9055
- # store the training data, choose `File` as the `TrainingInputMode` in
9056
- # the algorithm specification. For distributed training algorithms,
9107
+ # space. If you want SageMaker to use the ML storage volume to store
9108
+ # the training data, choose `File` as the `TrainingInputMode` in the
9109
+ # algorithm specification. For distributed training algorithms,
9057
9110
  # specify an instance count greater than 1.
9058
9111
  # @return [Types::ResourceConfig]
9059
9112
  #
@@ -9071,13 +9124,13 @@ module Aws::SageMaker
9071
9124
  # @!attribute [rw] stopping_condition
9072
9125
  # Specifies a limit to how long a model training job can run. It also
9073
9126
  # specifies how long a managed Spot training job has to complete. When
9074
- # the job reaches the time limit, Amazon SageMaker ends the training
9075
- # job. Use this API to cap model training costs.
9127
+ # the job reaches the time limit, SageMaker ends the training job. Use
9128
+ # this API to cap model training costs.
9076
9129
  #
9077
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
9078
- # signal, which delays job termination for 120 seconds. Algorithms can
9079
- # use this 120-second window to save the model artifacts, so the
9080
- # results of training are not lost.
9130
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
9131
+ # which delays job termination for 120 seconds. Algorithms can use
9132
+ # this 120-second window to save the model artifacts, so the results
9133
+ # of training are not lost.
9081
9134
  # @return [Types::StoppingCondition]
9082
9135
  #
9083
9136
  # @!attribute [rw] tags
@@ -9095,7 +9148,7 @@ module Aws::SageMaker
9095
9148
  # Isolates the training container. No inbound or outbound network
9096
9149
  # calls can be made, except for calls between peers within a training
9097
9150
  # cluster for distributed training. If you enable network isolation
9098
- # for training jobs that are configured to use a VPC, Amazon SageMaker
9151
+ # for training jobs that are configured to use a VPC, SageMaker
9099
9152
  # downloads and uploads customer data and model artifacts through the
9100
9153
  # specified VPC, but the training container does not have network
9101
9154
  # access.
@@ -9325,6 +9378,11 @@ module Aws::SageMaker
9325
9378
  # records fit within the maximum payload size, we recommend using a
9326
9379
  # slightly larger value. The default value is `6` MB.
9327
9380
  #
9381
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
9382
+ # specify the `MaxConcurrentTransforms` parameter, the value of
9383
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
9384
+ # MB.
9385
+ #
9328
9386
  # For cases where the payload might be arbitrarily large and is
9329
9387
  # transmitted using HTTP chunked encoding, set the value to `0`. This
9330
9388
  # feature works only in supported algorithms. Currently, Amazon
@@ -10140,8 +10198,8 @@ module Aws::SageMaker
10140
10198
  # A [JSONPath][1] expression used to select a portion of the input
10141
10199
  # data to pass to the algorithm. Use the `InputFilter` parameter to
10142
10200
  # exclude fields, such as an ID column, from the input. If you want
10143
- # Amazon SageMaker to pass the entire input dataset to the algorithm,
10144
- # accept the default value `$`.
10201
+ # SageMaker to pass the entire input dataset to the algorithm, accept
10202
+ # the default value `$`.
10145
10203
  #
10146
10204
  # Examples: `"$"`, `"$[1:]"`, `"$.features"`
10147
10205
  #
@@ -10153,10 +10211,9 @@ module Aws::SageMaker
10153
10211
  # @!attribute [rw] output_filter
10154
10212
  # A [JSONPath][1] expression used to select a portion of the joined
10155
10213
  # dataset to save in the output file for a batch transform job. If you
10156
- # want Amazon SageMaker to store the entire input dataset in the
10157
- # output file, leave the default value, `$`. If you specify indexes
10158
- # that aren't within the dimension size of the joined dataset, you
10159
- # get an error.
10214
+ # want SageMaker to store the entire input dataset in the output file,
10215
+ # leave the default value, `$`. If you specify indexes that aren't
10216
+ # within the dimension size of the joined dataset, you get an error.
10160
10217
  #
10161
10218
  # Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
10162
10219
  #
@@ -11285,7 +11342,7 @@ module Aws::SageMaker
11285
11342
  # }
11286
11343
  #
11287
11344
  # @!attribute [rw] notebook_instance_name
11288
- # The name of the Amazon SageMaker notebook instance to delete.
11345
+ # The name of the SageMaker notebook instance to delete.
11289
11346
  # @return [String]
11290
11347
  #
11291
11348
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
@@ -11826,7 +11883,7 @@ module Aws::SageMaker
11826
11883
  #
11827
11884
  # @!attribute [rw] validation_specification
11828
11885
  # Details about configurations for one or more training jobs that
11829
- # Amazon SageMaker runs to test the algorithm.
11886
+ # SageMaker runs to test the algorithm.
11830
11887
  # @return [Types::AlgorithmValidationSpecification]
11831
11888
  #
11832
11889
  # @!attribute [rw] algorithm_status
@@ -13037,7 +13094,7 @@ module Aws::SageMaker
13037
13094
  end
13038
13095
 
13039
13096
  # @!attribute [rw] endpoint_config_name
13040
- # Name of the Amazon SageMaker endpoint configuration.
13097
+ # Name of the SageMaker endpoint configuration.
13041
13098
  # @return [String]
13042
13099
  #
13043
13100
  # @!attribute [rw] endpoint_config_arn
@@ -13979,8 +14036,8 @@ module Aws::SageMaker
13979
14036
  # @return [Types::LabelingJobOutputConfig]
13980
14037
  #
13981
14038
  # @!attribute [rw] role_arn
13982
- # The Amazon Resource Name (ARN) that Amazon SageMaker assumes to
13983
- # perform tasks on your behalf during data labeling.
14039
+ # The Amazon Resource Name (ARN) that SageMaker assumes to perform
14040
+ # tasks on your behalf during data labeling.
13984
14041
  # @return [String]
13985
14042
  #
13986
14043
  # @!attribute [rw] label_category_config_s3_uri
@@ -14346,7 +14403,7 @@ module Aws::SageMaker
14346
14403
  end
14347
14404
 
14348
14405
  # @!attribute [rw] model_name
14349
- # Name of the Amazon SageMaker model.
14406
+ # Name of the SageMaker model.
14350
14407
  # @return [String]
14351
14408
  #
14352
14409
  # @!attribute [rw] primary_container
@@ -14416,7 +14473,7 @@ module Aws::SageMaker
14416
14473
  # }
14417
14474
  #
14418
14475
  # @!attribute [rw] model_package_group_name
14419
- # The name of the model group to describe.
14476
+ # The name of gthe model group to describe.
14420
14477
  # @return [String]
14421
14478
  #
14422
14479
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
@@ -14560,7 +14617,7 @@ module Aws::SageMaker
14560
14617
  # @return [Types::ModelMetrics]
14561
14618
  #
14562
14619
  # @!attribute [rw] last_modified_time
14563
- # The last time the model package was modified.
14620
+ # The last time that the model package was modified.
14564
14621
  # @return [Time]
14565
14622
  #
14566
14623
  # @!attribute [rw] last_modified_by
@@ -14904,7 +14961,7 @@ module Aws::SageMaker
14904
14961
  # @return [String]
14905
14962
  #
14906
14963
  # @!attribute [rw] notebook_instance_name
14907
- # The name of the Amazon SageMaker notebook instance.
14964
+ # The name of the SageMaker notebook instance.
14908
14965
  # @return [String]
14909
14966
  #
14910
14967
  # @!attribute [rw] notebook_instance_status
@@ -14938,14 +14995,13 @@ module Aws::SageMaker
14938
14995
  # @return [String]
14939
14996
  #
14940
14997
  # @!attribute [rw] kms_key_id
14941
- # The Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt
14942
- # data when storing it on the ML storage volume attached to the
14943
- # instance.
14998
+ # The Amazon Web Services KMS key ID SageMaker uses to encrypt data
14999
+ # when storing it on the ML storage volume attached to the instance.
14944
15000
  # @return [String]
14945
15001
  #
14946
15002
  # @!attribute [rw] network_interface_id
14947
- # The network interface IDs that Amazon SageMaker created at the time
14948
- # of creating the instance.
15003
+ # The network interface IDs that SageMaker created at the time of
15004
+ # creating the instance.
14949
15005
  # @return [String]
14950
15006
  #
14951
15007
  # @!attribute [rw] last_modified_time
@@ -14970,10 +15026,10 @@ module Aws::SageMaker
14970
15026
  # @return [String]
14971
15027
  #
14972
15028
  # @!attribute [rw] direct_internet_access
14973
- # Describes whether Amazon SageMaker provides internet access to the
14974
- # notebook instance. If this value is set to *Disabled*, the notebook
14975
- # instance does not have internet access, and cannot connect to Amazon
14976
- # SageMaker training and endpoint services.
15029
+ # Describes whether SageMaker provides internet access to the notebook
15030
+ # instance. If this value is set to *Disabled*, the notebook instance
15031
+ # does not have internet access, and cannot connect to SageMaker
15032
+ # training and endpoint services.
14977
15033
  #
14978
15034
  # For more information, see [Notebook Instances Are Internet-Enabled
14979
15035
  # by Default][1].
@@ -15006,8 +15062,7 @@ module Aws::SageMaker
15006
15062
  # repository in [Amazon Web Services CodeCommit][1] or in any other
15007
15063
  # Git repository. When you open a notebook instance, it opens in the
15008
15064
  # directory that contains this repository. For more information, see
15009
- # [Associating Git Repositories with Amazon SageMaker Notebook
15010
- # Instances][2].
15065
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
15011
15066
  #
15012
15067
  #
15013
15068
  #
@@ -15022,7 +15077,7 @@ module Aws::SageMaker
15022
15077
  # in [Amazon Web Services CodeCommit][1] or in any other Git
15023
15078
  # repository. These repositories are cloned at the same level as the
15024
15079
  # default repository of your notebook instance. For more information,
15025
- # see [Associating Git Repositories with Amazon SageMaker Notebook
15080
+ # see [Associating Git Repositories with SageMaker Notebook
15026
15081
  # Instances][2].
15027
15082
  #
15028
15083
  #
@@ -15644,7 +15699,7 @@ module Aws::SageMaker
15644
15699
  # @return [String]
15645
15700
  #
15646
15701
  # @!attribute [rw] labeling_job_arn
15647
- # The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth
15702
+ # The Amazon Resource Name (ARN) of the SageMaker Ground Truth
15648
15703
  # labeling job that created the transform or training job.
15649
15704
  # @return [String]
15650
15705
  #
@@ -15660,7 +15715,7 @@ module Aws::SageMaker
15660
15715
  # @!attribute [rw] training_job_status
15661
15716
  # The status of the training job.
15662
15717
  #
15663
- # Amazon SageMaker provides the following training job statuses:
15718
+ # SageMaker provides the following training job statuses:
15664
15719
  #
15665
15720
  # * `InProgress` - The training is in progress.
15666
15721
  #
@@ -15682,8 +15737,8 @@ module Aws::SageMaker
15682
15737
  # For detailed information on the secondary status of the training
15683
15738
  # job, see `StatusMessage` under SecondaryStatusTransition.
15684
15739
  #
15685
- # Amazon SageMaker provides primary statuses and secondary statuses
15686
- # that apply to each of them:
15740
+ # SageMaker provides primary statuses and secondary statuses that
15741
+ # apply to each of them:
15687
15742
  #
15688
15743
  # InProgress
15689
15744
  # : * `Starting` - Starting the training job.
@@ -15762,7 +15817,7 @@ module Aws::SageMaker
15762
15817
  #
15763
15818
  # @!attribute [rw] output_data_config
15764
15819
  # The S3 path where model artifacts that you configured when creating
15765
- # the job are stored. Amazon SageMaker creates subfolders for model
15820
+ # the job are stored. SageMaker creates subfolders for model
15766
15821
  # artifacts.
15767
15822
  # @return [Types::OutputDataConfig]
15768
15823
  #
@@ -15784,13 +15839,13 @@ module Aws::SageMaker
15784
15839
  # @!attribute [rw] stopping_condition
15785
15840
  # Specifies a limit to how long a model training job can run. It also
15786
15841
  # specifies how long a managed Spot training job has to complete. When
15787
- # the job reaches the time limit, Amazon SageMaker ends the training
15788
- # job. Use this API to cap model training costs.
15842
+ # the job reaches the time limit, SageMaker ends the training job. Use
15843
+ # this API to cap model training costs.
15789
15844
  #
15790
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
15791
- # signal, which delays job termination for 120 seconds. Algorithms can
15792
- # use this 120-second window to save the model artifacts, so the
15793
- # results of training are not lost.
15845
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
15846
+ # which delays job termination for 120 seconds. Algorithms can use
15847
+ # this 120-second window to save the model artifacts, so the results
15848
+ # of training are not lost.
15794
15849
  # @return [Types::StoppingCondition]
15795
15850
  #
15796
15851
  # @!attribute [rw] creation_time
@@ -15811,8 +15866,7 @@ module Aws::SageMaker
15811
15866
  # You are billed for the time interval between the value of
15812
15867
  # `TrainingStartTime` and this time. For successful jobs and stopped
15813
15868
  # jobs, this is the time after model artifacts are uploaded. For
15814
- # failed jobs, this is the time when Amazon SageMaker detects a job
15815
- # failure.
15869
+ # failed jobs, this is the time when SageMaker detects a job failure.
15816
15870
  # @return [Time]
15817
15871
  #
15818
15872
  # @!attribute [rw] last_modified_time
@@ -15835,10 +15889,9 @@ module Aws::SageMaker
15835
15889
  # If you want to allow inbound or outbound network calls, except for
15836
15890
  # calls between peers within a training cluster for distributed
15837
15891
  # training, choose `True`. If you enable network isolation for
15838
- # training jobs that are configured to use a VPC, Amazon SageMaker
15839
- # downloads and uploads customer data and model artifacts through the
15840
- # specified VPC, but the training container does not have network
15841
- # access.
15892
+ # training jobs that are configured to use a VPC, SageMaker downloads
15893
+ # and uploads customer data and model artifacts through the specified
15894
+ # VPC, but the training container does not have network access.
15842
15895
  # @return [Boolean]
15843
15896
  #
15844
15897
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -15870,7 +15923,7 @@ module Aws::SageMaker
15870
15923
  #
15871
15924
  # Multiply `BillableTimeInSeconds` by the number of instances
15872
15925
  # (`InstanceCount`) in your training cluster to get the total compute
15873
- # time SageMaker will bill you if you run distributed training. The
15926
+ # time SageMaker bills you if you run distributed training. The
15874
15927
  # formula is as follows: `BillableTimeInSeconds * InstanceCount` .
15875
15928
  #
15876
15929
  # You can calculate the savings from using managed spot training using
@@ -20078,10 +20131,10 @@ module Aws::SageMaker
20078
20131
  # The registry path of the Docker image that contains the training
20079
20132
  # algorithm. For information about Docker registry paths for built-in
20080
20133
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
20081
- # Parameters][1]. Amazon SageMaker supports both
20082
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
20083
- # path formats. For more information, see [Using Your Own Algorithms
20084
- # with Amazon SageMaker][2].
20134
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
20135
+ # and `registry/repository[@digest]` image path formats. For more
20136
+ # information, see [Using Your Own Algorithms with Amazon
20137
+ # SageMaker][2].
20085
20138
  #
20086
20139
  #
20087
20140
  #
@@ -20406,27 +20459,26 @@ module Aws::SageMaker
20406
20459
  #
20407
20460
  # Storage volumes store model artifacts and incremental states.
20408
20461
  # Training algorithms might also use storage volumes for scratch
20409
- # space. If you want Amazon SageMaker to use the storage volume to
20410
- # store the training data, choose `File` as the `TrainingInputMode` in
20411
- # the algorithm specification. For distributed training algorithms,
20462
+ # space. If you want SageMaker to use the storage volume to store the
20463
+ # training data, choose `File` as the `TrainingInputMode` in the
20464
+ # algorithm specification. For distributed training algorithms,
20412
20465
  # specify an instance count greater than 1.
20413
20466
  # @return [Types::ResourceConfig]
20414
20467
  #
20415
20468
  # @!attribute [rw] stopping_condition
20416
20469
  # Specifies a limit to how long a model hyperparameter training job
20417
20470
  # can run. It also specifies how long a managed spot training job has
20418
- # to complete. When the job reaches the time limit, Amazon SageMaker
20419
- # ends the training job. Use this API to cap model training costs.
20471
+ # to complete. When the job reaches the time limit, SageMaker ends the
20472
+ # training job. Use this API to cap model training costs.
20420
20473
  # @return [Types::StoppingCondition]
20421
20474
  #
20422
20475
  # @!attribute [rw] enable_network_isolation
20423
20476
  # Isolates the training container. No inbound or outbound network
20424
20477
  # calls can be made, except for calls between peers within a training
20425
20478
  # cluster for distributed training. If network isolation is used for
20426
- # training jobs that are configured to use a VPC, Amazon SageMaker
20427
- # downloads and uploads customer data and model artifacts through the
20428
- # specified VPC, but the training container does not have network
20429
- # access.
20479
+ # training jobs that are configured to use a VPC, SageMaker downloads
20480
+ # and uploads customer data and model artifacts through the specified
20481
+ # VPC, but the training container does not have network access.
20430
20482
  # @return [Boolean]
20431
20483
  #
20432
20484
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -20476,7 +20528,7 @@ module Aws::SageMaker
20476
20528
  include Aws::Structure
20477
20529
  end
20478
20530
 
20479
- # Specifies summary information about a training job.
20531
+ # The container for the summary information about a training job.
20480
20532
  #
20481
20533
  # @!attribute [rw] training_job_definition_name
20482
20534
  # The training job definition name.
@@ -20507,8 +20559,7 @@ module Aws::SageMaker
20507
20559
  # You are billed for the time interval between the value of
20508
20560
  # `TrainingStartTime` and this time. For successful jobs and stopped
20509
20561
  # jobs, this is the time after model artifacts are uploaded. For
20510
- # failed jobs, this is the time when Amazon SageMaker detects a job
20511
- # failure.
20562
+ # failed jobs, this is the time when SageMaker detects a job failure.
20512
20563
  # @return [Time]
20513
20564
  #
20514
20565
  # @!attribute [rw] training_job_status
@@ -20657,9 +20708,9 @@ module Aws::SageMaker
20657
20708
  #
20658
20709
  # AUTO
20659
20710
  #
20660
- # : Amazon SageMaker stops training jobs launched by the
20661
- # hyperparameter tuning job when they are unlikely to perform better
20662
- # than previously completed training jobs. For more information, see
20711
+ # : SageMaker stops training jobs launched by the hyperparameter
20712
+ # tuning job when they are unlikely to perform better than
20713
+ # previously completed training jobs. For more information, see
20663
20714
  # [Stop Training Jobs Early][1].
20664
20715
  #
20665
20716
  #
@@ -21460,8 +21511,8 @@ module Aws::SageMaker
21460
21511
  #
21461
21512
  # Auto
21462
21513
  #
21463
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
21464
- # the hyperparameter.
21514
+ # : SageMaker hyperparameter tuning chooses the best scale for the
21515
+ # hyperparameter.
21465
21516
  #
21466
21517
  # Linear
21467
21518
  #
@@ -21536,12 +21587,20 @@ module Aws::SageMaker
21536
21587
  #
21537
21588
  # @!attribute [rw] default_resource_spec
21538
21589
  # The default instance type and the Amazon Resource Name (ARN) of the
21539
- # default SageMaker image used by the JupyterServer app.
21590
+ # default SageMaker image used by the JupyterServer app. If you use
21591
+ # the `LifecycleConfigArns` parameter, then this parameter is also
21592
+ # required.
21540
21593
  # @return [Types::ResourceSpec]
21541
21594
  #
21542
21595
  # @!attribute [rw] lifecycle_config_arns
21543
21596
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21544
- # attached to the JupyterServerApp.
21597
+ # attached to the JupyterServerApp. If you use this parameter, the
21598
+ # `DefaultResourceSpec` parameter is also required.
21599
+ #
21600
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21601
+ # an empty list.
21602
+ #
21603
+ # </note>
21545
21604
  # @return [Array<String>]
21546
21605
  #
21547
21606
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
@@ -21578,6 +21637,14 @@ module Aws::SageMaker
21578
21637
  # @!attribute [rw] default_resource_spec
21579
21638
  # The default instance type and the Amazon Resource Name (ARN) of the
21580
21639
  # default SageMaker image used by the KernelGateway app.
21640
+ #
21641
+ # <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
21642
+ # type value set here. The default instance type set here is used when
21643
+ # Apps are created using the Amazon Web Services Command Line
21644
+ # Interface or Amazon Web Services CloudFormation and the instance
21645
+ # type parameter value is not passed.
21646
+ #
21647
+ # </note>
21581
21648
  # @return [Types::ResourceSpec]
21582
21649
  #
21583
21650
  # @!attribute [rw] custom_images
@@ -21588,6 +21655,11 @@ module Aws::SageMaker
21588
21655
  # @!attribute [rw] lifecycle_config_arns
21589
21656
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21590
21657
  # attached to the the user profile or domain.
21658
+ #
21659
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21660
+ # an empty list.
21661
+ #
21662
+ # </note>
21591
21663
  # @return [Array<String>]
21592
21664
  #
21593
21665
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
@@ -21795,8 +21867,8 @@ module Aws::SageMaker
21795
21867
  #
21796
21868
  # @!attribute [rw] content_classifiers
21797
21869
  # Declares that your content is free of personally identifiable
21798
- # information or adult content. Amazon SageMaker may restrict the
21799
- # Amazon Mechanical Turk workers that can view your task based on this
21870
+ # information or adult content. SageMaker may restrict the Amazon
21871
+ # Mechanical Turk workers that can view your task based on this
21800
21872
  # information.
21801
21873
  # @return [Array<String>]
21802
21874
  #
@@ -21940,8 +22012,8 @@ module Aws::SageMaker
21940
22012
  # @return [String]
21941
22013
  #
21942
22014
  # @!attribute [rw] final_active_learning_model_arn
21943
- # The Amazon Resource Name (ARN) for the most recent Amazon SageMaker
21944
- # model trained as part of automated data labeling.
22015
+ # The Amazon Resource Name (ARN) for the most recent SageMaker model
22016
+ # trained as part of automated data labeling.
21945
22017
  # @return [String]
21946
22018
  #
21947
22019
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
@@ -22451,8 +22523,8 @@ module Aws::SageMaker
22451
22523
  # @return [Array<Types::AlgorithmSummary>]
22452
22524
  #
22453
22525
  # @!attribute [rw] next_token
22454
- # If the response is truncated, Amazon SageMaker returns this token.
22455
- # To retrieve the next set of algorithms, use it in the subsequent
22526
+ # If the response is truncated, SageMaker returns this token. To
22527
+ # retrieve the next set of algorithms, use it in the subsequent
22456
22528
  # request.
22457
22529
  # @return [String]
22458
22530
  #
@@ -23726,8 +23798,8 @@ module Aws::SageMaker
23726
23798
  # @return [Array<Types::EndpointConfigSummary>]
23727
23799
  #
23728
23800
  # @!attribute [rw] next_token
23729
- # If the response is truncated, Amazon SageMaker returns this token.
23730
- # To retrieve the next set of endpoint configurations, use it in the
23801
+ # If the response is truncated, SageMaker returns this token. To
23802
+ # retrieve the next set of endpoint configurations, use it in the
23731
23803
  # subsequent request
23732
23804
  # @return [String]
23733
23805
  #
@@ -23826,8 +23898,8 @@ module Aws::SageMaker
23826
23898
  # @return [Array<Types::EndpointSummary>]
23827
23899
  #
23828
23900
  # @!attribute [rw] next_token
23829
- # If the response is truncated, Amazon SageMaker returns this token.
23830
- # To retrieve the next set of training jobs, use it in the subsequent
23901
+ # If the response is truncated, SageMaker returns this token. To
23902
+ # retrieve the next set of training jobs, use it in the subsequent
23831
23903
  # request.
23832
23904
  # @return [String]
23833
23905
  #
@@ -24592,8 +24664,8 @@ module Aws::SageMaker
24592
24664
  # @return [Array<Types::LabelingJobForWorkteamSummary>]
24593
24665
  #
24594
24666
  # @!attribute [rw] next_token
24595
- # If the response is truncated, Amazon SageMaker returns this token.
24596
- # To retrieve the next set of labeling jobs, use it in the subsequent
24667
+ # If the response is truncated, SageMaker returns this token. To
24668
+ # retrieve the next set of labeling jobs, use it in the subsequent
24597
24669
  # request.
24598
24670
  # @return [String]
24599
24671
  #
@@ -24693,8 +24765,8 @@ module Aws::SageMaker
24693
24765
  # @return [Array<Types::LabelingJobSummary>]
24694
24766
  #
24695
24767
  # @!attribute [rw] next_token
24696
- # If the response is truncated, Amazon SageMaker returns this token.
24697
- # To retrieve the next set of labeling jobs, use it in the subsequent
24768
+ # If the response is truncated, SageMaker returns this token. To
24769
+ # retrieve the next set of labeling jobs, use it in the subsequent
24698
24770
  # request.
24699
24771
  # @return [String]
24700
24772
  #
@@ -25191,8 +25263,8 @@ module Aws::SageMaker
25191
25263
  # @return [Array<Types::ModelPackageSummary>]
25192
25264
  #
25193
25265
  # @!attribute [rw] next_token
25194
- # If the response is truncated, Amazon SageMaker returns this token.
25195
- # To retrieve the next set of model packages, use it in the subsequent
25266
+ # If the response is truncated, SageMaker returns this token. To
25267
+ # retrieve the next set of model packages, use it in the subsequent
25196
25268
  # request.
25197
25269
  # @return [String]
25198
25270
  #
@@ -25359,9 +25431,8 @@ module Aws::SageMaker
25359
25431
  # @return [Array<Types::ModelSummary>]
25360
25432
  #
25361
25433
  # @!attribute [rw] next_token
25362
- # If the response is truncated, Amazon SageMaker returns this token.
25363
- # To retrieve the next set of models, use it in the subsequent
25364
- # request.
25434
+ # If the response is truncated, SageMaker returns this token. To
25435
+ # retrieve the next set of models, use it in the subsequent request.
25365
25436
  # @return [String]
25366
25437
  #
25367
25438
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
@@ -25700,8 +25771,8 @@ module Aws::SageMaker
25700
25771
  end
25701
25772
 
25702
25773
  # @!attribute [rw] next_token
25703
- # If the response is truncated, Amazon SageMaker returns this token.
25704
- # To get the next set of lifecycle configurations, use it in the next
25774
+ # If the response is truncated, SageMaker returns this token. To get
25775
+ # the next set of lifecycle configurations, use it in the next
25705
25776
  # request.
25706
25777
  # @return [String]
25707
25778
  #
@@ -25834,8 +25905,8 @@ module Aws::SageMaker
25834
25905
 
25835
25906
  # @!attribute [rw] next_token
25836
25907
  # If the response to the previous `ListNotebookInstances` request was
25837
- # truncated, Amazon SageMaker returns this token. To retrieve the next
25838
- # set of notebook instances, use the token in the next request.
25908
+ # truncated, SageMaker returns this token. To retrieve the next set of
25909
+ # notebook instances, use the token in the next request.
25839
25910
  # @return [String]
25840
25911
  #
25841
25912
  # @!attribute [rw] notebook_instances
@@ -26483,8 +26554,8 @@ module Aws::SageMaker
26483
26554
  #
26484
26555
  # @!attribute [rw] next_token
26485
26556
  # If the response to the previous `ListTags` request is truncated,
26486
- # Amazon SageMaker returns this token. To retrieve the next set of
26487
- # tags, use it in the subsequent request.
26557
+ # SageMaker returns this token. To retrieve the next set of tags, use
26558
+ # it in the subsequent request.
26488
26559
  # @return [String]
26489
26560
  #
26490
26561
  # @!attribute [rw] max_results
@@ -26506,7 +26577,7 @@ module Aws::SageMaker
26506
26577
  # @return [Array<Types::Tag>]
26507
26578
  #
26508
26579
  # @!attribute [rw] next_token
26509
- # If response is truncated, Amazon SageMaker includes a token in the
26580
+ # If response is truncated, SageMaker includes a token in the
26510
26581
  # response. You can use this token in your subsequent request to fetch
26511
26582
  # next set of tokens.
26512
26583
  # @return [String]
@@ -26685,8 +26756,8 @@ module Aws::SageMaker
26685
26756
  # @return [Array<Types::TrainingJobSummary>]
26686
26757
  #
26687
26758
  # @!attribute [rw] next_token
26688
- # If the response is truncated, Amazon SageMaker returns this token.
26689
- # To retrieve the next set of training jobs, use it in the subsequent
26759
+ # If the response is truncated, SageMaker returns this token. To
26760
+ # retrieve the next set of training jobs, use it in the subsequent
26690
26761
  # request.
26691
26762
  # @return [String]
26692
26763
  #
@@ -27303,9 +27374,9 @@ module Aws::SageMaker
27303
27374
  end
27304
27375
 
27305
27376
  # Specifies a metric that the training algorithm writes to `stderr` or
27306
- # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
27307
- # metrics. You specify one metric that a hyperparameter tuning job uses
27308
- # as its objective metric to choose the best training job.
27377
+ # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
27378
+ # You specify one metric that a hyperparameter tuning job uses as its
27379
+ # objective metric to choose the best training job.
27309
27380
  #
27310
27381
  # @note When making an API call, you may pass MetricDefinition
27311
27382
  # data as a hash:
@@ -27509,11 +27580,13 @@ module Aws::SageMaker
27509
27580
  # }
27510
27581
  #
27511
27582
  # @!attribute [rw] invocations_timeout_in_seconds
27512
- # The timeout value in seconds for an invocation request.
27583
+ # The timeout value in seconds for an invocation request. The default
27584
+ # value is 600.
27513
27585
  # @return [Integer]
27514
27586
  #
27515
27587
  # @!attribute [rw] invocations_max_retries
27516
27588
  # The maximum number of retries when invocation requests are failing.
27589
+ # The default value is 3.
27517
27590
  # @return [Integer]
27518
27591
  #
27519
27592
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
@@ -28017,8 +28090,8 @@ module Aws::SageMaker
28017
28090
  # @return [Types::SourceAlgorithmSpecification]
28018
28091
  #
28019
28092
  # @!attribute [rw] validation_specification
28020
- # Specifies batch transform jobs that Amazon SageMaker runs to
28021
- # validate your model package.
28093
+ # Specifies batch transform jobs that SageMaker runs to validate your
28094
+ # model package.
28022
28095
  # @return [Types::ModelPackageValidationSpecification]
28023
28096
  #
28024
28097
  # @!attribute [rw] model_package_status
@@ -28197,11 +28270,11 @@ module Aws::SageMaker
28197
28270
  # code is stored.
28198
28271
  #
28199
28272
  # If you are using your own custom algorithm instead of an algorithm
28200
- # provided by Amazon SageMaker, the inference code must meet Amazon
28201
- # SageMaker requirements. Amazon SageMaker supports both
28202
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
28203
- # path formats. For more information, see [Using Your Own Algorithms
28204
- # with Amazon SageMaker][1].
28273
+ # provided by SageMaker, the inference code must meet SageMaker
28274
+ # requirements. SageMaker supports both `registry/repository[:tag]`
28275
+ # and `registry/repository[@digest]` image path formats. For more
28276
+ # information, see [Using Your Own Algorithms with Amazon
28277
+ # SageMaker][1].
28205
28278
  #
28206
28279
  #
28207
28280
  #
@@ -28533,8 +28606,8 @@ module Aws::SageMaker
28533
28606
  include Aws::Structure
28534
28607
  end
28535
28608
 
28536
- # Specifies batch transform jobs that Amazon SageMaker runs to validate
28537
- # your model package.
28609
+ # Specifies batch transform jobs that SageMaker runs to validate your
28610
+ # model package.
28538
28611
  #
28539
28612
  # @note When making an API call, you may pass ModelPackageValidationSpecification
28540
28613
  # data as a hash:
@@ -28584,8 +28657,8 @@ module Aws::SageMaker
28584
28657
  #
28585
28658
  # @!attribute [rw] validation_profiles
28586
28659
  # An array of `ModelPackageValidationProfile` objects, each of which
28587
- # specifies a batch transform job that Amazon SageMaker runs to
28588
- # validate your model package.
28660
+ # specifies a batch transform job that SageMaker runs to validate your
28661
+ # model package.
28589
28662
  # @return [Array<Types::ModelPackageValidationProfile>]
28590
28663
  #
28591
28664
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
@@ -29958,8 +30031,7 @@ module Aws::SageMaker
29958
30031
  include Aws::Structure
29959
30032
  end
29960
30033
 
29961
- # Provides summary information for an Amazon SageMaker notebook
29962
- # instance.
30034
+ # Provides summary information for an SageMaker notebook instance.
29963
30035
  #
29964
30036
  # @!attribute [rw] notebook_instance_name
29965
30037
  # The name of the notebook instance that you want a summary for.
@@ -29974,7 +30046,7 @@ module Aws::SageMaker
29974
30046
  # @return [String]
29975
30047
  #
29976
30048
  # @!attribute [rw] url
29977
- # The URL that you use to connect to the Jupyter instance running in
30049
+ # The URL that you use to connect to the Jupyter notebook running in
29978
30050
  # your notebook instance.
29979
30051
  # @return [String]
29980
30052
  #
@@ -30010,8 +30082,7 @@ module Aws::SageMaker
30010
30082
  # repository in [Amazon Web Services CodeCommit][1] or in any other
30011
30083
  # Git repository. When you open a notebook instance, it opens in the
30012
30084
  # directory that contains this repository. For more information, see
30013
- # [Associating Git Repositories with Amazon SageMaker Notebook
30014
- # Instances][2].
30085
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
30015
30086
  #
30016
30087
  #
30017
30088
  #
@@ -30026,7 +30097,7 @@ module Aws::SageMaker
30026
30097
  # in [Amazon Web Services CodeCommit][1] or in any other Git
30027
30098
  # repository. These repositories are cloned at the same level as the
30028
30099
  # default repository of your notebook instance. For more information,
30029
- # see [Associating Git Repositories with Amazon SageMaker Notebook
30100
+ # see [Associating Git Repositories with SageMaker Notebook
30030
30101
  # Instances][2].
30031
30102
  #
30032
30103
  #
@@ -30652,9 +30723,9 @@ module Aws::SageMaker
30652
30723
  #
30653
30724
  # @!attribute [rw] kms_key_id
30654
30725
  # The Amazon Web Services Key Management Service (Amazon Web Services
30655
- # KMS) key that Amazon SageMaker uses to encrypt the model artifacts
30656
- # at rest using Amazon S3 server-side encryption. The `KmsKeyId` can
30657
- # be any of the following formats:
30726
+ # KMS) key that SageMaker uses to encrypt the model artifacts at rest
30727
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
30728
+ # the following formats:
30658
30729
  #
30659
30730
  # * // KMS Key ID
30660
30731
  #
@@ -30672,14 +30743,13 @@ module Aws::SageMaker
30672
30743
  #
30673
30744
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
30674
30745
  #
30675
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
30676
- # SageMaker execution role must include permissions to call
30677
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
30678
- # uses the default KMS key for Amazon S3 for your role's account.
30679
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
30680
- # for `OutputDataConfig`. If you use a bucket policy with an
30681
- # `s3:PutObject` permission that only allows objects with server-side
30682
- # encryption, set the condition key of
30746
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
30747
+ # execution role must include permissions to call `kms:Encrypt`. If
30748
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
30749
+ # for Amazon S3 for your role's account. SageMaker uses server-side
30750
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
30751
+ # a bucket policy with an `s3:PutObject` permission that only allows
30752
+ # objects with server-side encryption, set the condition key of
30683
30753
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
30684
30754
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
30685
30755
  # Simple Storage Service Developer Guide.*
@@ -30697,8 +30767,8 @@ module Aws::SageMaker
30697
30767
  # @return [String]
30698
30768
  #
30699
30769
  # @!attribute [rw] s3_output_path
30700
- # Identifies the S3 path where you want Amazon SageMaker to store the
30701
- # model artifacts. For example, `s3://bucket-name/key-name-prefix`.
30770
+ # Identifies the S3 path where you want SageMaker to store the model
30771
+ # artifacts. For example, `s3://bucket-name/key-name-prefix`.
30702
30772
  # @return [String]
30703
30773
  #
30704
30774
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
@@ -31027,23 +31097,11 @@ module Aws::SageMaker
31027
31097
  #
31028
31098
  # @!attribute [rw] current_serverless_config
31029
31099
  # The serverless configuration for the endpoint.
31030
- #
31031
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31032
- # is subject to change. We do not recommend using this feature in
31033
- # production environments.
31034
- #
31035
- # </note>
31036
31100
  # @return [Types::ProductionVariantServerlessConfig]
31037
31101
  #
31038
31102
  # @!attribute [rw] desired_serverless_config
31039
31103
  # The serverless configuration requested for this deployment, as
31040
31104
  # specified in the endpoint configuration for the endpoint.
31041
- #
31042
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31043
- # is subject to change. We do not recommend using this feature in
31044
- # production environments.
31045
- #
31046
- # </note>
31047
31105
  # @return [Types::ProductionVariantServerlessConfig]
31048
31106
  #
31049
31107
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
@@ -32245,8 +32303,8 @@ module Aws::SageMaker
32245
32303
 
32246
32304
  # Identifies a model that you want to host and the resources chosen to
32247
32305
  # deploy for hosting it. If you are deploying multiple models, tell
32248
- # Amazon SageMaker how to distribute traffic among the models by
32249
- # specifying variant weights.
32306
+ # SageMaker how to distribute traffic among the models by specifying
32307
+ # variant weights.
32250
32308
  #
32251
32309
  # @note When making an API call, you may pass ProductionVariant
32252
32310
  # data as a hash:
@@ -32313,12 +32371,6 @@ module Aws::SageMaker
32313
32371
  # The serverless configuration for an endpoint. Specifies a serverless
32314
32372
  # endpoint configuration instead of an instance-based endpoint
32315
32373
  # configuration.
32316
- #
32317
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32318
- # is subject to change. We do not recommend using this feature in
32319
- # production environments.
32320
- #
32321
- # </note>
32322
32374
  # @return [Types::ProductionVariantServerlessConfig]
32323
32375
  #
32324
32376
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -32353,9 +32405,9 @@ module Aws::SageMaker
32353
32405
  #
32354
32406
  # @!attribute [rw] kms_key_id
32355
32407
  # The Amazon Web Services Key Management Service (Amazon Web Services
32356
- # KMS) key that Amazon SageMaker uses to encrypt the core dump data at
32357
- # rest using Amazon S3 server-side encryption. The `KmsKeyId` can be
32358
- # any of the following formats:
32408
+ # KMS) key that SageMaker uses to encrypt the core dump data at rest
32409
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
32410
+ # the following formats:
32359
32411
  #
32360
32412
  # * // KMS Key ID
32361
32413
  #
@@ -32373,14 +32425,13 @@ module Aws::SageMaker
32373
32425
  #
32374
32426
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
32375
32427
  #
32376
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
32377
- # SageMaker execution role must include permissions to call
32378
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
32379
- # uses the default KMS key for Amazon S3 for your role's account.
32380
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
32381
- # for `OutputDataConfig`. If you use a bucket policy with an
32382
- # `s3:PutObject` permission that only allows objects with server-side
32383
- # encryption, set the condition key of
32428
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
32429
+ # execution role must include permissions to call `kms:Encrypt`. If
32430
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
32431
+ # for Amazon S3 for your role's account. SageMaker uses server-side
32432
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
32433
+ # a bucket policy with an `s3:PutObject` permission that only allows
32434
+ # objects with server-side encryption, set the condition key of
32384
32435
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
32385
32436
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
32386
32437
  # Simple Storage Service Developer Guide.*
@@ -32406,10 +32457,6 @@ module Aws::SageMaker
32406
32457
  include Aws::Structure
32407
32458
  end
32408
32459
 
32409
- # Serverless Inference is in preview release for Amazon SageMaker and is
32410
- # subject to change. We do not recommend using this feature in
32411
- # production environments.
32412
- #
32413
32460
  # Specifies the serverless configuration for an endpoint variant.
32414
32461
  #
32415
32462
  # @note When making an API call, you may pass ProductionVariantServerlessConfig
@@ -32519,22 +32566,10 @@ module Aws::SageMaker
32519
32566
  #
32520
32567
  # @!attribute [rw] current_serverless_config
32521
32568
  # The serverless configuration for the endpoint.
32522
- #
32523
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32524
- # is subject to change. We do not recommend using this feature in
32525
- # production environments.
32526
- #
32527
- # </note>
32528
32569
  # @return [Types::ProductionVariantServerlessConfig]
32529
32570
  #
32530
32571
  # @!attribute [rw] desired_serverless_config
32531
32572
  # The serverless configuration requested for the endpoint update.
32532
- #
32533
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32534
- # is subject to change. We do not recommend using this feature in
32535
- # production environments.
32536
- #
32537
- # </note>
32538
32573
  # @return [Types::ProductionVariantServerlessConfig]
32539
32574
  #
32540
32575
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
@@ -33351,8 +33386,8 @@ module Aws::SageMaker
33351
33386
  # @!attribute [rw] properties
33352
33387
  # Filter the lineage entities connected to the `StartArn`(s) by a set
33353
33388
  # if property key value pairs. If multiple pairs are provided, an
33354
- # entity will be included in the results if it matches any of the
33355
- # provided pairs.
33389
+ # entity is included in the results if it matches any of the provided
33390
+ # pairs.
33356
33391
  # @return [Hash<String,String>]
33357
33392
  #
33358
33393
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
@@ -33398,12 +33433,13 @@ module Aws::SageMaker
33398
33433
  # @return [Array<String>]
33399
33434
  #
33400
33435
  # @!attribute [rw] direction
33401
- # Associations between lineage entities are directed. This parameter
33402
- # determines the direction from the StartArn(s) the query will look.
33436
+ # Associations between lineage entities have a direction. This
33437
+ # parameter determines the direction from the StartArn(s) that the
33438
+ # query traverses.
33403
33439
  # @return [String]
33404
33440
  #
33405
33441
  # @!attribute [rw] include_edges
33406
- # Setting this value to `True` will retrieve not only the entities of
33442
+ # Setting this value to `True` retrieves not only the entities of
33407
33443
  # interest but also the [Associations][1] and lineage entities on the
33408
33444
  # path. Set to `False` to only return lineage entities that match your
33409
33445
  # query.
@@ -33432,8 +33468,8 @@ module Aws::SageMaker
33432
33468
  #
33433
33469
  # @!attribute [rw] max_depth
33434
33470
  # The maximum depth in lineage relationships from the `StartArns` that
33435
- # will be traversed. Depth is a measure of the number of
33436
- # `Associations` from the `StartArn` entity to the matched results.
33471
+ # are traversed. Depth is a measure of the number of `Associations`
33472
+ # from the `StartArn` entity to the matched results.
33437
33473
  # @return [Integer]
33438
33474
  #
33439
33475
  # @!attribute [rw] max_results
@@ -34232,15 +34268,15 @@ module Aws::SageMaker
34232
34268
  #
34233
34269
  # You must specify sufficient ML storage for your scenario.
34234
34270
  #
34235
- # <note markdown="1"> Amazon SageMaker supports only the General Purpose SSD (gp2) ML
34236
- # storage volume type.
34271
+ # <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
34272
+ # volume type.
34237
34273
  #
34238
34274
  # </note>
34239
34275
  #
34240
34276
  # <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
34241
34277
  # total size, dependent on the instance type. When using these
34242
- # instances for training, Amazon SageMaker mounts the local instance
34243
- # storage instead of Amazon EBS gp2 storage. You can't request a
34278
+ # instances for training, SageMaker mounts the local instance storage
34279
+ # instead of Amazon EBS gp2 storage. You can't request a
34244
34280
  # `VolumeSizeInGB` greater than the total size of the local instance
34245
34281
  # storage.
34246
34282
  #
@@ -34256,9 +34292,9 @@ module Aws::SageMaker
34256
34292
  # @return [Integer]
34257
34293
  #
34258
34294
  # @!attribute [rw] volume_kms_key_id
34259
- # The Amazon Web Services KMS key that Amazon SageMaker uses to
34260
- # encrypt data on the storage volume attached to the ML compute
34261
- # instance(s) that run the training job.
34295
+ # The Amazon Web Services KMS key that SageMaker uses to encrypt data
34296
+ # on the storage volume attached to the ML compute instance(s) that
34297
+ # run the training job.
34262
34298
  #
34263
34299
  # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
34264
34300
  # the instance type. Local storage volumes are encrypted using a
@@ -34313,8 +34349,8 @@ module Aws::SageMaker
34313
34349
  include Aws::Structure
34314
34350
  end
34315
34351
 
34316
- # You have exceeded an Amazon SageMaker resource limit. For example, you
34317
- # might have too many training jobs created.
34352
+ # You have exceeded an SageMaker resource limit. For example, you might
34353
+ # have too many training jobs created.
34318
34354
  #
34319
34355
  # @!attribute [rw] message
34320
34356
  # @return [String]
@@ -34393,6 +34429,12 @@ module Aws::SageMaker
34393
34429
  #
34394
34430
  # @!attribute [rw] instance_type
34395
34431
  # The instance type that the image version runs on.
34432
+ #
34433
+ # <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
34434
+ # Apps do not support the `system` value, but support all other values
34435
+ # for available instance types.
34436
+ #
34437
+ # </note>
34396
34438
  # @return [String]
34397
34439
  #
34398
34440
  # @!attribute [rw] lifecycle_config_arn
@@ -34527,11 +34569,11 @@ module Aws::SageMaker
34527
34569
  #
34528
34570
  # @!attribute [rw] s3_data_type
34529
34571
  # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
34530
- # Amazon SageMaker uses all objects that match the specified key name
34531
- # prefix for model training.
34572
+ # SageMaker uses all objects that match the specified key name prefix
34573
+ # for model training.
34532
34574
  #
34533
34575
  # If you choose `ManifestFile`, `S3Uri` identifies an object that is a
34534
- # manifest file containing a list of object keys that you want Amazon
34576
+ # manifest file containing a list of object keys that you want
34535
34577
  # SageMaker to use for model training.
34536
34578
  #
34537
34579
  # If you choose `AugmentedManifestFile`, S3Uri identifies an object
@@ -34585,17 +34627,17 @@ module Aws::SageMaker
34585
34627
  #
34586
34628
  # The complete set of `S3Uri` in this manifest is the input data for
34587
34629
  # the channel for this data source. The object that each `S3Uri`
34588
- # points to must be readable by the IAM role that Amazon SageMaker
34589
- # uses to perform tasks on your behalf.
34630
+ # points to must be readable by the IAM role that SageMaker uses to
34631
+ # perform tasks on your behalf.
34590
34632
  # @return [String]
34591
34633
  #
34592
34634
  # @!attribute [rw] s3_data_distribution_type
34593
- # If you want Amazon SageMaker to replicate the entire dataset on each
34594
- # ML compute instance that is launched for model training, specify
34635
+ # If you want SageMaker to replicate the entire dataset on each ML
34636
+ # compute instance that is launched for model training, specify
34595
34637
  # `FullyReplicated`.
34596
34638
  #
34597
- # If you want Amazon SageMaker to replicate a subset of data on each
34598
- # ML compute instance that is launched for model training, specify
34639
+ # If you want SageMaker to replicate a subset of data on each ML
34640
+ # compute instance that is launched for model training, specify
34599
34641
  # `ShardedByS3Key`. If there are *n* ML compute instances launched for
34600
34642
  # a training job, each instance gets approximately 1/*n* of the number
34601
34643
  # of S3 objects. In this case, model training on each machine uses
@@ -35019,9 +35061,9 @@ module Aws::SageMaker
35019
35061
  # transitioned through. A training job can be in one of several states,
35020
35062
  # for example, starting, downloading, training, or uploading. Within
35021
35063
  # each state, there are a number of intermediate states. For example,
35022
- # within the starting state, Amazon SageMaker could be starting the
35023
- # training job or launching the ML instances. These transitional states
35024
- # are referred to as the job's secondary status.
35064
+ # within the starting state, SageMaker could be starting the training
35065
+ # job or launching the ML instances. These transitional states are
35066
+ # referred to as the job's secondary status.
35025
35067
  #
35026
35068
  # @!attribute [rw] status
35027
35069
  # Contains a secondary status information from a training job.
@@ -35086,8 +35128,8 @@ module Aws::SageMaker
35086
35128
  # @!attribute [rw] status_message
35087
35129
  # A detailed description of the progress within a secondary status.
35088
35130
  #
35089
- # Amazon SageMaker provides secondary statuses and status messages
35090
- # that apply to each of them:
35131
+ # SageMaker provides secondary statuses and status messages that apply
35132
+ # to each of them:
35091
35133
  #
35092
35134
  # Starting
35093
35135
  # : * Starting the training job.
@@ -35452,9 +35494,9 @@ module Aws::SageMaker
35452
35494
  end
35453
35495
 
35454
35496
  # Specifies an algorithm that was used to create the model package. The
35455
- # algorithm must be either an algorithm resource in your Amazon
35456
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35457
- # that you are subscribed to.
35497
+ # algorithm must be either an algorithm resource in your SageMaker
35498
+ # account or an algorithm in Amazon Web Services Marketplace that you
35499
+ # are subscribed to.
35458
35500
  #
35459
35501
  # @note When making an API call, you may pass SourceAlgorithm
35460
35502
  # data as a hash:
@@ -35477,9 +35519,9 @@ module Aws::SageMaker
35477
35519
  #
35478
35520
  # @!attribute [rw] algorithm_name
35479
35521
  # The name of an algorithm that was used to create the model package.
35480
- # The algorithm must be either an algorithm resource in your Amazon
35481
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35482
- # that you are subscribed to.
35522
+ # The algorithm must be either an algorithm resource in your SageMaker
35523
+ # account or an algorithm in Amazon Web Services Marketplace that you
35524
+ # are subscribed to.
35483
35525
  # @return [String]
35484
35526
  #
35485
35527
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
@@ -35923,21 +35965,21 @@ module Aws::SageMaker
35923
35965
  # Specifies a limit to how long a model training job or model
35924
35966
  # compilation job can run. It also specifies how long a managed spot
35925
35967
  # training job has to complete. When the job reaches the time limit,
35926
- # Amazon SageMaker ends the training or compilation job. Use this API to
35927
- # cap model training costs.
35928
- #
35929
- # To stop a training job, Amazon SageMaker sends the algorithm the
35930
- # `SIGTERM` signal, which delays job termination for 120 seconds.
35931
- # Algorithms can use this 120-second window to save the model artifacts,
35932
- # so the results of training are not lost.
35933
- #
35934
- # The training algorithms provided by Amazon SageMaker automatically
35935
- # save the intermediate results of a model training job when possible.
35936
- # This attempt to save artifacts is only a best effort case as model
35937
- # might not be in a state from which it can be saved. For example, if
35938
- # training has just started, the model might not be ready to save. When
35939
- # saved, this intermediate data is a valid model artifact. You can use
35940
- # it to create a model with `CreateModel`.
35968
+ # SageMaker ends the training or compilation job. Use this API to cap
35969
+ # model training costs.
35970
+ #
35971
+ # To stop a training job, SageMaker sends the algorithm the `SIGTERM`
35972
+ # signal, which delays job termination for 120 seconds. Algorithms can
35973
+ # use this 120-second window to save the model artifacts, so the results
35974
+ # of training are not lost.
35975
+ #
35976
+ # The training algorithms provided by SageMaker automatically save the
35977
+ # intermediate results of a model training job when possible. This
35978
+ # attempt to save artifacts is only a best effort case as model might
35979
+ # not be in a state from which it can be saved. For example, if training
35980
+ # has just started, the model might not be ready to save. When saved,
35981
+ # this intermediate data is a valid model artifact. You can use it to
35982
+ # create a model with `CreateModel`.
35941
35983
  #
35942
35984
  # <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
35943
35985
  # intermediate model artifacts. When training NTMs, make sure that the
@@ -35958,14 +36000,14 @@ module Aws::SageMaker
35958
36000
  # compilation job can run.
35959
36001
  #
35960
36002
  # For compilation jobs, if the job does not complete during this time,
35961
- # you will receive a `TimeOut` error. We recommend starting with 900
35962
- # seconds and increase as necessary based on your model.
36003
+ # a `TimeOut` error is generated. We recommend starting with 900
36004
+ # seconds and increasing as necessary based on your model.
35963
36005
  #
35964
36006
  # For all other jobs, if the job does not complete during this time,
35965
- # Amazon SageMaker ends the job. When `RetryStrategy` is specified in
35966
- # the job request, `MaxRuntimeInSeconds` specifies the maximum time
35967
- # for all of the attempts in total, not each individual attempt. The
35968
- # default value is 1 day. The maximum value is 28 days.
36007
+ # SageMaker ends the job. When `RetryStrategy` is specified in the job
36008
+ # request, `MaxRuntimeInSeconds` specifies the maximum time for all of
36009
+ # the attempts in total, not each individual attempt. The default
36010
+ # value is 1 day. The maximum value is 28 days.
35969
36011
  # @return [Integer]
35970
36012
  #
35971
36013
  # @!attribute [rw] max_wait_time_in_seconds
@@ -35973,7 +36015,7 @@ module Aws::SageMaker
35973
36015
  # job has to complete. It is the amount of time spent waiting for Spot
35974
36016
  # capacity plus the amount of time the job can run. It must be equal
35975
36017
  # to or greater than `MaxRuntimeInSeconds`. If the job does not
35976
- # complete during this time, Amazon SageMaker ends the job.
36018
+ # complete during this time, SageMaker ends the job.
35977
36019
  #
35978
36020
  # When `RetryStrategy` is specified in the job request,
35979
36021
  # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
@@ -36393,8 +36435,8 @@ module Aws::SageMaker
36393
36435
  # For detailed information about the secondary status of the training
36394
36436
  # job, see `StatusMessage` under SecondaryStatusTransition.
36395
36437
  #
36396
- # Amazon SageMaker provides primary statuses and secondary statuses
36397
- # that apply to each of them:
36438
+ # SageMaker provides primary statuses and secondary statuses that
36439
+ # apply to each of them:
36398
36440
  #
36399
36441
  # InProgress
36400
36442
  # : * `Starting` - Starting the training job.
@@ -36467,7 +36509,7 @@ module Aws::SageMaker
36467
36509
  #
36468
36510
  # @!attribute [rw] output_data_config
36469
36511
  # The S3 path where model artifacts that you configured when creating
36470
- # the job are stored. Amazon SageMaker creates subfolders for model
36512
+ # the job are stored. SageMaker creates subfolders for model
36471
36513
  # artifacts.
36472
36514
  # @return [Types::OutputDataConfig]
36473
36515
  #
@@ -36489,13 +36531,13 @@ module Aws::SageMaker
36489
36531
  # @!attribute [rw] stopping_condition
36490
36532
  # Specifies a limit to how long a model training job can run. It also
36491
36533
  # specifies how long a managed Spot training job has to complete. When
36492
- # the job reaches the time limit, Amazon SageMaker ends the training
36493
- # job. Use this API to cap model training costs.
36534
+ # the job reaches the time limit, SageMaker ends the training job. Use
36535
+ # this API to cap model training costs.
36494
36536
  #
36495
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
36496
- # signal, which delays job termination for 120 seconds. Algorithms can
36497
- # use this 120-second window to save the model artifacts, so the
36498
- # results of training are not lost.
36537
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
36538
+ # which delays job termination for 120 seconds. Algorithms can use
36539
+ # this 120-second window to save the model artifacts, so the results
36540
+ # of training are not lost.
36499
36541
  # @return [Types::StoppingCondition]
36500
36542
  #
36501
36543
  # @!attribute [rw] creation_time
@@ -36516,8 +36558,7 @@ module Aws::SageMaker
36516
36558
  # You are billed for the time interval between the value of
36517
36559
  # `TrainingStartTime` and this time. For successful jobs and stopped
36518
36560
  # jobs, this is the time after model artifacts are uploaded. For
36519
- # failed jobs, this is the time when Amazon SageMaker detects a job
36520
- # failure.
36561
+ # failed jobs, this is the time when SageMaker detects a job failure.
36521
36562
  # @return [Time]
36522
36563
  #
36523
36564
  # @!attribute [rw] last_modified_time
@@ -36784,7 +36825,7 @@ module Aws::SageMaker
36784
36825
  #
36785
36826
  # @!attribute [rw] output_data_config
36786
36827
  # the path to the S3 bucket where you want to store model artifacts.
36787
- # Amazon SageMaker creates subfolders for the artifacts.
36828
+ # SageMaker creates subfolders for the artifacts.
36788
36829
  # @return [Types::OutputDataConfig]
36789
36830
  #
36790
36831
  # @!attribute [rw] resource_config
@@ -36795,12 +36836,12 @@ module Aws::SageMaker
36795
36836
  # @!attribute [rw] stopping_condition
36796
36837
  # Specifies a limit to how long a model training job can run. It also
36797
36838
  # specifies how long a managed Spot training job has to complete. When
36798
- # the job reaches the time limit, Amazon SageMaker ends the training
36799
- # job. Use this API to cap model training costs.
36839
+ # the job reaches the time limit, SageMaker ends the training job. Use
36840
+ # this API to cap model training costs.
36800
36841
  #
36801
- # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
36802
- # signal, which delays job termination for 120 seconds. Algorithms can
36803
- # use this 120-second window to save the model artifacts.
36842
+ # To stop a job, SageMaker sends the algorithm the SIGTERM signal,
36843
+ # which delays job termination for 120 seconds. Algorithms can use
36844
+ # this 120-second window to save the model artifacts.
36804
36845
  # @return [Types::StoppingCondition]
36805
36846
  #
36806
36847
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
@@ -39042,7 +39083,7 @@ module Aws::SageMaker
39042
39083
  # }
39043
39084
  #
39044
39085
  # @!attribute [rw] endpoint_name
39045
- # The name of an existing Amazon SageMaker endpoint.
39086
+ # The name of an existing SageMaker endpoint.
39046
39087
  # @return [String]
39047
39088
  #
39048
39089
  # @!attribute [rw] desired_weights_and_capacities
@@ -39411,12 +39452,12 @@ module Aws::SageMaker
39411
39452
  # @return [String]
39412
39453
  #
39413
39454
  # @!attribute [rw] role_arn
39414
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
39415
- # can assume to access the notebook instance. For more information,
39416
- # see [Amazon SageMaker Roles][1].
39455
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
39456
+ # assume to access the notebook instance. For more information, see
39457
+ # [SageMaker Roles][1].
39417
39458
  #
39418
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
39419
- # API must have the `iam:PassRole` permission.
39459
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
39460
+ # must have the `iam:PassRole` permission.
39420
39461
  #
39421
39462
  # </note>
39422
39463
  #
@@ -39446,12 +39487,12 @@ module Aws::SageMaker
39446
39487
  # @!attribute [rw] volume_size_in_gb
39447
39488
  # The size, in GB, of the ML storage volume to attach to the notebook
39448
39489
  # instance. The default value is 5 GB. ML storage volumes are
39449
- # encrypted, so Amazon SageMaker can't determine the amount of
39450
- # available free space on the volume. Because of this, you can
39451
- # increase the volume size when you update a notebook instance, but
39452
- # you can't decrease the volume size. If you want to decrease the
39453
- # size of the ML storage volume in use, create a new notebook instance
39454
- # with the desired size.
39490
+ # encrypted, so SageMaker can't determine the amount of available
39491
+ # free space on the volume. Because of this, you can increase the
39492
+ # volume size when you update a notebook instance, but you can't
39493
+ # decrease the volume size. If you want to decrease the size of the ML
39494
+ # storage volume in use, create a new notebook instance with the
39495
+ # desired size.
39455
39496
  # @return [Integer]
39456
39497
  #
39457
39498
  # @!attribute [rw] default_code_repository
@@ -39461,8 +39502,7 @@ module Aws::SageMaker
39461
39502
  # repository in [Amazon Web Services CodeCommit][1] or in any other
39462
39503
  # Git repository. When you open a notebook instance, it opens in the
39463
39504
  # directory that contains this repository. For more information, see
39464
- # [Associating Git Repositories with Amazon SageMaker Notebook
39465
- # Instances][2].
39505
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
39466
39506
  #
39467
39507
  #
39468
39508
  #
@@ -39477,7 +39517,7 @@ module Aws::SageMaker
39477
39517
  # in [Amazon Web Services CodeCommit][1] or in any other Git
39478
39518
  # repository. These repositories are cloned at the same level as the
39479
39519
  # default repository of your notebook instance. For more information,
39480
- # see [Associating Git Repositories with Amazon SageMaker Notebook
39520
+ # see [Associating Git Repositories with SageMaker Notebook
39481
39521
  # Instances][2].
39482
39522
  #
39483
39523
  #