aws-sdk-sagemaker 1.122.0 → 1.123.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -192,7 +192,7 @@ module Aws::SageMaker
192
192
  end
193
193
 
194
194
  # @!attribute [rw] tags
195
- # A list of tags associated with the Amazon SageMaker resource.
195
+ # A list of tags associated with the SageMaker resource.
196
196
  # @return [Array<Types::Tag>]
197
197
  #
198
198
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
@@ -328,9 +328,9 @@ module Aws::SageMaker
328
328
  # Specifies the training algorithm to use in a CreateTrainingJob
329
329
  # request.
330
330
  #
331
- # For more information about algorithms provided by Amazon SageMaker,
332
- # see [Algorithms][1]. For information about using your own algorithms,
333
- # see [Using Your Own Algorithms with Amazon SageMaker][2].
331
+ # For more information about algorithms provided by SageMaker, see
332
+ # [Algorithms][1]. For information about using your own algorithms, see
333
+ # [Using Your Own Algorithms with Amazon SageMaker][2].
334
334
  #
335
335
  #
336
336
  #
@@ -357,10 +357,10 @@ module Aws::SageMaker
357
357
  # The registry path of the Docker image that contains the training
358
358
  # algorithm. For information about docker registry paths for built-in
359
359
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
360
- # Parameters][1]. Amazon SageMaker supports both
361
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
362
- # path formats. For more information, see [Using Your Own Algorithms
363
- # with Amazon SageMaker][2].
360
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
361
+ # and `registry/repository[@digest]` image path formats. For more
362
+ # information, see [Using Your Own Algorithms with Amazon
363
+ # SageMaker][2].
364
364
  #
365
365
  #
366
366
  #
@@ -424,7 +424,7 @@ module Aws::SageMaker
424
424
  # @!attribute [rw] metric_definitions
425
425
  # A list of metric definition objects. Each object specifies the
426
426
  # metric name and regular expressions used to parse algorithm logs.
427
- # Amazon SageMaker publishes each metric to Amazon CloudWatch.
427
+ # SageMaker publishes each metric to Amazon CloudWatch.
428
428
  # @return [Array<Types::MetricDefinition>]
429
429
  #
430
430
  # @!attribute [rw] enable_sage_maker_metrics_time_series
@@ -432,9 +432,9 @@ module Aws::SageMaker
432
432
  # `true`. The default is `false` and time-series metrics aren't
433
433
  # generated except in the following cases:
434
434
  #
435
- # * You use one of the Amazon SageMaker built-in algorithms
435
+ # * You use one of the SageMaker built-in algorithms
436
436
  #
437
- # * You use one of the following [Prebuilt Amazon SageMaker Docker
437
+ # * You use one of the following [Prebuilt SageMaker Docker
438
438
  # Images][1]\:
439
439
  #
440
440
  # * Tensorflow (version &gt;= 1.15)
@@ -540,8 +540,8 @@ module Aws::SageMaker
540
540
  include Aws::Structure
541
541
  end
542
542
 
543
- # Defines a training job and a batch transform job that Amazon SageMaker
544
- # runs to validate your algorithm.
543
+ # Defines a training job and a batch transform job that SageMaker runs
544
+ # to validate your algorithm.
545
545
  #
546
546
  # The data provided in the validation profile is made available to your
547
547
  # buyers on Amazon Web Services Marketplace.
@@ -636,12 +636,12 @@ module Aws::SageMaker
636
636
  #
637
637
  # @!attribute [rw] training_job_definition
638
638
  # The `TrainingJobDefinition` object that describes the training job
639
- # that Amazon SageMaker runs to validate your algorithm.
639
+ # that SageMaker runs to validate your algorithm.
640
640
  # @return [Types::TrainingJobDefinition]
641
641
  #
642
642
  # @!attribute [rw] transform_job_definition
643
643
  # The `TransformJobDefinition` object that describes the transform job
644
- # that Amazon SageMaker runs to validate your algorithm.
644
+ # that SageMaker runs to validate your algorithm.
645
645
  # @return [Types::TransformJobDefinition]
646
646
  #
647
647
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
@@ -654,8 +654,8 @@ module Aws::SageMaker
654
654
  include Aws::Structure
655
655
  end
656
656
 
657
- # Specifies configurations for one or more training jobs that Amazon
658
- # SageMaker runs to test the algorithm.
657
+ # Specifies configurations for one or more training jobs that SageMaker
658
+ # runs to test the algorithm.
659
659
  #
660
660
  # @note When making an API call, you may pass AlgorithmValidationSpecification
661
661
  # data as a hash:
@@ -746,13 +746,13 @@ module Aws::SageMaker
746
746
  # }
747
747
  #
748
748
  # @!attribute [rw] validation_role
749
- # The IAM roles that Amazon SageMaker uses to run the training jobs.
749
+ # The IAM roles that SageMaker uses to run the training jobs.
750
750
  # @return [String]
751
751
  #
752
752
  # @!attribute [rw] validation_profiles
753
753
  # An array of `AlgorithmValidationProfile` objects, each of which
754
- # specifies a training job and batch transform job that Amazon
755
- # SageMaker runs to validate your algorithm.
754
+ # specifies a training job and batch transform job that SageMaker runs
755
+ # to validate your algorithm.
756
756
  # @return [Array<Types::AlgorithmValidationProfile>]
757
757
  #
758
758
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
1742
1742
  include Aws::Structure
1743
1743
  end
1744
1744
 
1745
- # Configures the behavior of the client used by Amazon SageMaker to
1746
- # interact with the model container during asynchronous inference.
1745
+ # Configures the behavior of the client used by SageMaker to interact
1746
+ # with the model container during asynchronous inference.
1747
1747
  #
1748
1748
  # @note When making an API call, you may pass AsyncInferenceClientConfig
1749
1749
  # data as a hash:
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
1754
1754
  #
1755
1755
  # @!attribute [rw] max_concurrent_invocations_per_instance
1756
1756
  # The maximum number of concurrent requests sent by the SageMaker
1757
- # client to the model container. If no value is provided, Amazon
1758
- # SageMaker will choose an optimal value for you.
1757
+ # client to the model container. If no value is provided, SageMaker
1758
+ # chooses an optimal value.
1759
1759
  # @return [Integer]
1760
1760
  #
1761
1761
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
1787
1787
  # }
1788
1788
  #
1789
1789
  # @!attribute [rw] client_config
1790
- # Configures the behavior of the client used by Amazon SageMaker to
1791
- # interact with the model container during asynchronous inference.
1790
+ # Configures the behavior of the client used by SageMaker to interact
1791
+ # with the model container during asynchronous inference.
1792
1792
  # @return [Types::AsyncInferenceClientConfig]
1793
1793
  #
1794
1794
  # @!attribute [rw] output_config
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
1853
1853
  #
1854
1854
  # @!attribute [rw] kms_key_id
1855
1855
  # The Amazon Web Services Key Management Service (Amazon Web Services
1856
- # KMS) key that Amazon SageMaker uses to encrypt the asynchronous
1857
- # inference output in Amazon S3.
1856
+ # KMS) key that SageMaker uses to encrypt the asynchronous inference
1857
+ # output in Amazon S3.
1858
1858
  # @return [String]
1859
1859
  #
1860
1860
  # @!attribute [rw] s3_output_path
@@ -2034,7 +2034,14 @@ module Aws::SageMaker
2034
2034
  end
2035
2035
 
2036
2036
  # A channel is a named input source that training algorithms can
2037
- # consume. For more information, see .
2037
+ # consume. The validation dataset size is limited to less than 2 GB. The
2038
+ # training dataset size must be less than 100 GB. For more information,
2039
+ # see .
2040
+ #
2041
+ # <note markdown="1"> A validation dataset must contain the same headers as the training
2042
+ # dataset.
2043
+ #
2044
+ # </note>
2038
2045
  #
2039
2046
  # @note When making an API call, you may pass AutoMLChannel
2040
2047
  # data as a hash:
@@ -2049,6 +2056,7 @@ module Aws::SageMaker
2049
2056
  # compression_type: "None", # accepts None, Gzip
2050
2057
  # target_attribute_name: "TargetAttributeName", # required
2051
2058
  # content_type: "ContentType",
2059
+ # channel_type: "training", # accepts training, validation
2052
2060
  # }
2053
2061
  #
2054
2062
  # @!attribute [rw] data_source
@@ -2070,13 +2078,20 @@ module Aws::SageMaker
2070
2078
  # default value is `text/csv;header=present`.
2071
2079
  # @return [String]
2072
2080
  #
2081
+ # @!attribute [rw] channel_type
2082
+ # The channel type (optional) is an enum string. The default value is
2083
+ # `training`. Channels for training and validation must share the same
2084
+ # `ContentType` and `TargetAttributeName`.
2085
+ # @return [String]
2086
+ #
2073
2087
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
2074
2088
  #
2075
2089
  class AutoMLChannel < Struct.new(
2076
2090
  :data_source,
2077
2091
  :compression_type,
2078
2092
  :target_attribute_name,
2079
- :content_type)
2093
+ :content_type,
2094
+ :channel_type)
2080
2095
  SENSITIVE = []
2081
2096
  include Aws::Structure
2082
2097
  end
@@ -2136,6 +2151,32 @@ module Aws::SageMaker
2136
2151
  include Aws::Structure
2137
2152
  end
2138
2153
 
2154
+ # This structure specifies how to split the data into train and test
2155
+ # datasets. The validation and training datasets must contain the same
2156
+ # headers. The validation dataset must be less than 2 GB in size.
2157
+ #
2158
+ # @note When making an API call, you may pass AutoMLDataSplitConfig
2159
+ # data as a hash:
2160
+ #
2161
+ # {
2162
+ # validation_fraction: 1.0,
2163
+ # }
2164
+ #
2165
+ # @!attribute [rw] validation_fraction
2166
+ # The validation fraction (optional) is a float that specifies the
2167
+ # portion of the training dataset to be used for validation. The
2168
+ # default value is 0.2, and values can range from 0 to 1. We recommend
2169
+ # setting this value to be less than 0.5.
2170
+ # @return [Float]
2171
+ #
2172
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
2173
+ #
2174
+ class AutoMLDataSplitConfig < Struct.new(
2175
+ :validation_fraction)
2176
+ SENSITIVE = []
2177
+ include Aws::Structure
2178
+ end
2179
+
2139
2180
  # The artifacts that are generated during an AutoML job.
2140
2181
  #
2141
2182
  # @!attribute [rw] candidate_definition_notebook_location
@@ -2217,6 +2258,9 @@ module Aws::SageMaker
2217
2258
  # subnets: ["SubnetId"], # required
2218
2259
  # },
2219
2260
  # },
2261
+ # data_split_config: {
2262
+ # validation_fraction: 1.0,
2263
+ # },
2220
2264
  # }
2221
2265
  #
2222
2266
  # @!attribute [rw] completion_criteria
@@ -2229,11 +2273,18 @@ module Aws::SageMaker
2229
2273
  # settings.
2230
2274
  # @return [Types::AutoMLSecurityConfig]
2231
2275
  #
2276
+ # @!attribute [rw] data_split_config
2277
+ # The configuration for splitting the input training dataset.
2278
+ #
2279
+ # Type: AutoMLDataSplitConfig
2280
+ # @return [Types::AutoMLDataSplitConfig]
2281
+ #
2232
2282
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
2233
2283
  #
2234
2284
  class AutoMLJobConfig < Struct.new(
2235
2285
  :completion_criteria,
2236
- :security_config)
2286
+ :security_config,
2287
+ :data_split_config)
2237
2288
  SENSITIVE = []
2238
2289
  include Aws::Structure
2239
2290
  end
@@ -3005,10 +3056,10 @@ module Aws::SageMaker
3005
3056
  # @!attribute [rw] record_wrapper_type
3006
3057
  # Specify RecordIO as the value when input data is in raw format but
3007
3058
  # the training algorithm requires the RecordIO format. In this case,
3008
- # Amazon SageMaker wraps each individual S3 object in a RecordIO
3009
- # record. If the input data is already in RecordIO format, you don't
3010
- # need to set this attribute. For more information, see [Create a
3011
- # Dataset Using RecordIO][1].
3059
+ # SageMaker wraps each individual S3 object in a RecordIO record. If
3060
+ # the input data is already in RecordIO format, you don't need to set
3061
+ # this attribute. For more information, see [Create a Dataset Using
3062
+ # RecordIO][1].
3012
3063
  #
3013
3064
  # In File mode, leave this field unset or set it to None.
3014
3065
  #
@@ -3019,15 +3070,15 @@ module Aws::SageMaker
3019
3070
  #
3020
3071
  # @!attribute [rw] input_mode
3021
3072
  # (Optional) The input mode to use for the data channel in a training
3022
- # job. If you don't set a value for `InputMode`, Amazon SageMaker
3023
- # uses the value set for `TrainingInputMode`. Use this parameter to
3024
- # override the `TrainingInputMode` setting in a AlgorithmSpecification
3025
- # request when you have a channel that needs a different input mode
3026
- # from the training job's general setting. To download the data from
3027
- # Amazon Simple Storage Service (Amazon S3) to the provisioned ML
3028
- # storage volume, and mount the directory to a Docker volume, use
3029
- # `File` input mode. To stream data directly from Amazon S3 to the
3030
- # container, choose `Pipe` input mode.
3073
+ # job. If you don't set a value for `InputMode`, SageMaker uses the
3074
+ # value set for `TrainingInputMode`. Use this parameter to override
3075
+ # the `TrainingInputMode` setting in a AlgorithmSpecification request
3076
+ # when you have a channel that needs a different input mode from the
3077
+ # training job's general setting. To download the data from Amazon
3078
+ # Simple Storage Service (Amazon S3) to the provisioned ML storage
3079
+ # volume, and mount the directory to a Docker volume, use `File` input
3080
+ # mode. To stream data directly from Amazon S3 to the container,
3081
+ # choose `Pipe` input mode.
3031
3082
  #
3032
3083
  # To use a model for incremental training, choose `File` input model.
3033
3084
  # @return [String]
@@ -3137,7 +3188,7 @@ module Aws::SageMaker
3137
3188
  # }
3138
3189
  #
3139
3190
  # @!attribute [rw] s3_uri
3140
- # Identifies the S3 path where you want Amazon SageMaker to store
3191
+ # Identifies the S3 path where you want SageMaker to store
3141
3192
  # checkpoints. For example, `s3://bucket-name/key-name-prefix`.
3142
3193
  # @return [String]
3143
3194
  #
@@ -3514,11 +3565,11 @@ module Aws::SageMaker
3514
3565
  # Amazon EC2 Container Registry or in a Docker registry that is
3515
3566
  # accessible from the same VPC that you configure for your endpoint.
3516
3567
  # If you are using your own custom algorithm instead of an algorithm
3517
- # provided by Amazon SageMaker, the inference code must meet Amazon
3518
- # SageMaker requirements. Amazon SageMaker supports both
3519
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
3520
- # path formats. For more information, see [Using Your Own Algorithms
3521
- # with Amazon SageMaker][1]
3568
+ # provided by SageMaker, the inference code must meet SageMaker
3569
+ # requirements. SageMaker supports both `registry/repository[:tag]`
3570
+ # and `registry/repository[@digest]` image path formats. For more
3571
+ # information, see [Using Your Own Algorithms with Amazon
3572
+ # SageMaker][1]
3522
3573
  #
3523
3574
  #
3524
3575
  #
@@ -3545,7 +3596,7 @@ module Aws::SageMaker
3545
3596
  # The S3 path where the model artifacts, which result from model
3546
3597
  # training, are stored. This path must point to a single gzip
3547
3598
  # compressed tar archive (.tar.gz suffix). The S3 path is required for
3548
- # Amazon SageMaker built-in algorithms, but not if you use your own
3599
+ # SageMaker built-in algorithms, but not if you use your own
3549
3600
  # algorithms. For more information on built-in algorithms, see [Common
3550
3601
  # Parameters][1].
3551
3602
  #
@@ -3554,17 +3605,17 @@ module Aws::SageMaker
3554
3605
  #
3555
3606
  # </note>
3556
3607
  #
3557
- # If you provide a value for this parameter, Amazon SageMaker uses
3558
- # Amazon Web Services Security Token Service to download model
3559
- # artifacts from the S3 path you provide. Amazon Web Services STS is
3560
- # activated in your IAM user account by default. If you previously
3561
- # deactivated Amazon Web Services STS for a region, you need to
3562
- # reactivate Amazon Web Services STS for that region. For more
3563
- # information, see [Activating and Deactivating Amazon Web Services
3564
- # STS in an Amazon Web Services Region][2] in the *Amazon Web Services
3565
- # Identity and Access Management User Guide*.
3566
- #
3567
- # If you use a built-in algorithm to create a model, Amazon SageMaker
3608
+ # If you provide a value for this parameter, SageMaker uses Amazon Web
3609
+ # Services Security Token Service to download model artifacts from the
3610
+ # S3 path you provide. Amazon Web Services STS is activated in your
3611
+ # IAM user account by default. If you previously deactivated Amazon
3612
+ # Web Services STS for a region, you need to reactivate Amazon Web
3613
+ # Services STS for that region. For more information, see [Activating
3614
+ # and Deactivating Amazon Web Services STS in an Amazon Web Services
3615
+ # Region][2] in the *Amazon Web Services Identity and Access
3616
+ # Management User Guide*.
3617
+ #
3618
+ # If you use a built-in algorithm to create a model, SageMaker
3568
3619
  # requires that you provide a S3 path to the model artifacts in
3569
3620
  # `ModelDataUrl`.
3570
3621
  #
@@ -3717,8 +3768,8 @@ module Aws::SageMaker
3717
3768
  #
3718
3769
  # Auto
3719
3770
  #
3720
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
3721
- # the hyperparameter.
3771
+ # : SageMaker hyperparameter tuning chooses the best scale for the
3772
+ # hyperparameter.
3722
3773
  #
3723
3774
  # Linear
3724
3775
  #
@@ -4096,9 +4147,9 @@ module Aws::SageMaker
4096
4147
  #
4097
4148
  # @!attribute [rw] validation_specification
4098
4149
  # Specifies configurations for one or more training jobs and that
4099
- # Amazon SageMaker runs to test the algorithm's training code and,
4100
- # optionally, one or more batch transform jobs that Amazon SageMaker
4101
- # runs to test the algorithm's inference code.
4150
+ # SageMaker runs to test the algorithm's training code and,
4151
+ # optionally, one or more batch transform jobs that SageMaker runs to
4152
+ # test the algorithm's inference code.
4102
4153
  # @return [Types::AlgorithmValidationSpecification]
4103
4154
  #
4104
4155
  # @!attribute [rw] certify_for_marketplace
@@ -4376,6 +4427,7 @@ module Aws::SageMaker
4376
4427
  # compression_type: "None", # accepts None, Gzip
4377
4428
  # target_attribute_name: "TargetAttributeName", # required
4378
4429
  # content_type: "ContentType",
4430
+ # channel_type: "training", # accepts training, validation
4379
4431
  # },
4380
4432
  # ],
4381
4433
  # output_data_config: { # required
@@ -4400,6 +4452,9 @@ module Aws::SageMaker
4400
4452
  # subnets: ["SubnetId"], # required
4401
4453
  # },
4402
4454
  # },
4455
+ # data_split_config: {
4456
+ # validation_fraction: 1.0,
4457
+ # },
4403
4458
  # },
4404
4459
  # role_arn: "RoleArn", # required
4405
4460
  # generate_candidate_definitions_only: false,
@@ -5361,9 +5416,9 @@ module Aws::SageMaker
5361
5416
  #
5362
5417
  # @!attribute [rw] kms_key_id
5363
5418
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
5364
- # Management Service key that Amazon SageMaker uses to encrypt data on
5365
- # the storage volume attached to the ML compute instance that hosts
5366
- # the endpoint.
5419
+ # Management Service key that SageMaker uses to encrypt data on the
5420
+ # storage volume attached to the ML compute instance that hosts the
5421
+ # endpoint.
5367
5422
  #
5368
5423
  # The KmsKeyId can be any of the following formats:
5369
5424
  #
@@ -6277,8 +6332,8 @@ module Aws::SageMaker
6277
6332
  end
6278
6333
 
6279
6334
  # @!attribute [rw] hyper_parameter_tuning_job_arn
6280
- # The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker
6281
- # assigns an ARN to a hyperparameter tuning job when you create it.
6335
+ # The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
6336
+ # an ARN to a hyperparameter tuning job when you create it.
6282
6337
  # @return [String]
6283
6338
  #
6284
6339
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
@@ -6362,8 +6417,8 @@ module Aws::SageMaker
6362
6417
  #
6363
6418
  # @!attribute [rw] base_image
6364
6419
  # The registry path of the container image to use as the starting
6365
- # point for this version. The path is an Amazon Container Registry
6366
- # (ECR) URI in the following format:
6420
+ # point for this version. The path is an Amazon Elastic Container
6421
+ # Registry (ECR) URI in the following format:
6367
6422
  #
6368
6423
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
6369
6424
  # [@digest]>`
@@ -7216,14 +7271,14 @@ module Aws::SageMaker
7216
7271
  # @return [Types::InferenceExecutionConfig]
7217
7272
  #
7218
7273
  # @!attribute [rw] execution_role_arn
7219
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
7220
- # can assume to access model artifacts and docker image for deployment
7221
- # on ML compute instances or for batch transform jobs. Deploying on ML
7274
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
7275
+ # assume to access model artifacts and docker image for deployment on
7276
+ # ML compute instances or for batch transform jobs. Deploying on ML
7222
7277
  # compute instances is part of model hosting. For more information,
7223
- # see [Amazon SageMaker Roles][1].
7278
+ # see [SageMaker Roles][1].
7224
7279
  #
7225
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
7226
- # API must have the `iam:PassRole` permission.
7280
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
7281
+ # must have the `iam:PassRole` permission.
7227
7282
  #
7228
7283
  # </note>
7229
7284
  #
@@ -7278,7 +7333,7 @@ module Aws::SageMaker
7278
7333
  end
7279
7334
 
7280
7335
  # @!attribute [rw] model_arn
7281
- # The ARN of the model created in Amazon SageMaker.
7336
+ # The ARN of the model created in SageMaker.
7282
7337
  # @return [String]
7283
7338
  #
7284
7339
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
@@ -7611,7 +7666,7 @@ module Aws::SageMaker
7611
7666
  # @return [Types::InferenceSpecification]
7612
7667
  #
7613
7668
  # @!attribute [rw] validation_specification
7614
- # Specifies configurations for one or more transform jobs that Amazon
7669
+ # Specifies configurations for one or more transform jobs that
7615
7670
  # SageMaker runs to test the model package.
7616
7671
  # @return [Types::ModelPackageValidationSpecification]
7617
7672
  #
@@ -8073,15 +8128,14 @@ module Aws::SageMaker
8073
8128
  #
8074
8129
  # @!attribute [rw] role_arn
8075
8130
  # When you send any requests to Amazon Web Services resources from the
8076
- # notebook instance, Amazon SageMaker assumes this role to perform
8077
- # tasks on your behalf. You must grant this role necessary permissions
8078
- # so Amazon SageMaker can perform these tasks. The policy must allow
8079
- # the Amazon SageMaker service principal (sagemaker.amazonaws.com)
8080
- # permissions to assume this role. For more information, see [Amazon
8081
- # SageMaker Roles][1].
8131
+ # notebook instance, SageMaker assumes this role to perform tasks on
8132
+ # your behalf. You must grant this role necessary permissions so
8133
+ # SageMaker can perform these tasks. The policy must allow the
8134
+ # SageMaker service principal (sagemaker.amazonaws.com) permissions to
8135
+ # assume this role. For more information, see [SageMaker Roles][1].
8082
8136
  #
8083
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
8084
- # API must have the `iam:PassRole` permission.
8137
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
8138
+ # must have the `iam:PassRole` permission.
8085
8139
  #
8086
8140
  # </note>
8087
8141
  #
@@ -8092,9 +8146,9 @@ module Aws::SageMaker
8092
8146
  #
8093
8147
  # @!attribute [rw] kms_key_id
8094
8148
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
8095
- # Management Service key that Amazon SageMaker uses to encrypt data on
8096
- # the storage volume attached to your notebook instance. The KMS key
8097
- # you provide must be enabled. For information, see [Enabling and
8149
+ # Management Service key that SageMaker uses to encrypt data on the
8150
+ # storage volume attached to your notebook instance. The KMS key you
8151
+ # provide must be enabled. For information, see [Enabling and
8098
8152
  # Disabling Keys][1] in the *Amazon Web Services Key Management
8099
8153
  # Service Developer Guide*.
8100
8154
  #
@@ -8125,11 +8179,11 @@ module Aws::SageMaker
8125
8179
  # @return [String]
8126
8180
  #
8127
8181
  # @!attribute [rw] direct_internet_access
8128
- # Sets whether Amazon SageMaker provides internet access to the
8129
- # notebook instance. If you set this to `Disabled` this notebook
8130
- # instance is able to access resources only in your VPC, and is not be
8131
- # able to connect to Amazon SageMaker training and endpoint services
8132
- # unless you configure a NAT Gateway in your VPC.
8182
+ # Sets whether SageMaker provides internet access to the notebook
8183
+ # instance. If you set this to `Disabled` this notebook instance is
8184
+ # able to access resources only in your VPC, and is not be able to
8185
+ # connect to SageMaker training and endpoint services unless you
8186
+ # configure a NAT Gateway in your VPC.
8133
8187
  #
8134
8188
  # For more information, see [Notebook Instances Are Internet-Enabled
8135
8189
  # by Default][1]. You can set the value of this parameter to
@@ -8163,8 +8217,7 @@ module Aws::SageMaker
8163
8217
  # repository in [Amazon Web Services CodeCommit][1] or in any other
8164
8218
  # Git repository. When you open a notebook instance, it opens in the
8165
8219
  # directory that contains this repository. For more information, see
8166
- # [Associating Git Repositories with Amazon SageMaker Notebook
8167
- # Instances][2].
8220
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
8168
8221
  #
8169
8222
  #
8170
8223
  #
@@ -8179,7 +8232,7 @@ module Aws::SageMaker
8179
8232
  # in [Amazon Web Services CodeCommit][1] or in any other Git
8180
8233
  # repository. These repositories are cloned at the same level as the
8181
8234
  # default repository of your notebook instance. For more information,
8182
- # see [Associating Git Repositories with Amazon SageMaker Notebook
8235
+ # see [Associating Git Repositories with SageMaker Notebook
8183
8236
  # Instances][2].
8184
8237
  #
8185
8238
  #
@@ -8974,7 +9027,7 @@ module Aws::SageMaker
8974
9027
  # Algorithm-specific parameters that influence the quality of the
8975
9028
  # model. You set hyperparameters before you start the learning
8976
9029
  # process. For a list of hyperparameters for each training algorithm
8977
- # provided by Amazon SageMaker, see [Algorithms][1].
9030
+ # provided by SageMaker, see [Algorithms][1].
8978
9031
  #
8979
9032
  # You can specify a maximum of 100 hyperparameters. Each
8980
9033
  # hyperparameter is a key-value pair. Each key and value is limited to
@@ -8988,8 +9041,8 @@ module Aws::SageMaker
8988
9041
  # @!attribute [rw] algorithm_specification
8989
9042
  # The registry path of the Docker image that contains the training
8990
9043
  # algorithm and algorithm-specific metadata, including the input mode.
8991
- # For more information about algorithms provided by Amazon SageMaker,
8992
- # see [Algorithms][1]. For information about providing your own
9044
+ # For more information about algorithms provided by SageMaker, see
9045
+ # [Algorithms][1]. For information about providing your own
8993
9046
  # algorithms, see [Using Your Own Algorithms with Amazon
8994
9047
  # SageMaker][2].
8995
9048
  #
@@ -9000,18 +9053,18 @@ module Aws::SageMaker
9000
9053
  # @return [Types::AlgorithmSpecification]
9001
9054
  #
9002
9055
  # @!attribute [rw] role_arn
9003
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
9004
- # can assume to perform tasks on your behalf.
9056
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
9057
+ # assume to perform tasks on your behalf.
9005
9058
  #
9006
- # During model training, Amazon SageMaker needs your permission to
9007
- # read input data from an S3 bucket, download a Docker image that
9008
- # contains training code, write model artifacts to an S3 bucket, write
9009
- # logs to Amazon CloudWatch Logs, and publish metrics to Amazon
9010
- # CloudWatch. You grant permissions for all of these tasks to an IAM
9011
- # role. For more information, see [Amazon SageMaker Roles][1].
9059
+ # During model training, SageMaker needs your permission to read input
9060
+ # data from an S3 bucket, download a Docker image that contains
9061
+ # training code, write model artifacts to an S3 bucket, write logs to
9062
+ # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
9063
+ # You grant permissions for all of these tasks to an IAM role. For
9064
+ # more information, see [SageMaker Roles][1].
9012
9065
  #
9013
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
9014
- # API must have the `iam:PassRole` permission.
9066
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
9067
+ # must have the `iam:PassRole` permission.
9015
9068
  #
9016
9069
  # </note>
9017
9070
  #
@@ -9032,17 +9085,17 @@ module Aws::SageMaker
9032
9085
  # MIME type, compression method, and whether the data is wrapped in
9033
9086
  # RecordIO format.
9034
9087
  #
9035
- # Depending on the input mode that the algorithm supports, Amazon
9036
- # SageMaker either copies input data files from an S3 bucket to a
9037
- # local directory in the Docker container, or makes it available as
9038
- # input streams. For example, if you specify an EFS location, input
9039
- # data files will be made available as input streams. They do not need
9040
- # to be downloaded.
9088
+ # Depending on the input mode that the algorithm supports, SageMaker
9089
+ # either copies input data files from an S3 bucket to a local
9090
+ # directory in the Docker container, or makes it available as input
9091
+ # streams. For example, if you specify an EFS location, input data
9092
+ # files are available as input streams. They do not need to be
9093
+ # downloaded.
9041
9094
  # @return [Array<Types::Channel>]
9042
9095
  #
9043
9096
  # @!attribute [rw] output_data_config
9044
9097
  # Specifies the path to the S3 location where you want to store model
9045
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
9098
+ # artifacts. SageMaker creates subfolders for the artifacts.
9046
9099
  # @return [Types::OutputDataConfig]
9047
9100
  #
9048
9101
  # @!attribute [rw] resource_config
@@ -9051,9 +9104,9 @@ module Aws::SageMaker
9051
9104
  #
9052
9105
  # ML storage volumes store model artifacts and incremental states.
9053
9106
  # Training algorithms might also use ML storage volumes for scratch
9054
- # space. If you want Amazon SageMaker to use the ML storage volume to
9055
- # store the training data, choose `File` as the `TrainingInputMode` in
9056
- # the algorithm specification. For distributed training algorithms,
9107
+ # space. If you want SageMaker to use the ML storage volume to store
9108
+ # the training data, choose `File` as the `TrainingInputMode` in the
9109
+ # algorithm specification. For distributed training algorithms,
9057
9110
  # specify an instance count greater than 1.
9058
9111
  # @return [Types::ResourceConfig]
9059
9112
  #
@@ -9071,13 +9124,13 @@ module Aws::SageMaker
9071
9124
  # @!attribute [rw] stopping_condition
9072
9125
  # Specifies a limit to how long a model training job can run. It also
9073
9126
  # specifies how long a managed Spot training job has to complete. When
9074
- # the job reaches the time limit, Amazon SageMaker ends the training
9075
- # job. Use this API to cap model training costs.
9127
+ # the job reaches the time limit, SageMaker ends the training job. Use
9128
+ # this API to cap model training costs.
9076
9129
  #
9077
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
9078
- # signal, which delays job termination for 120 seconds. Algorithms can
9079
- # use this 120-second window to save the model artifacts, so the
9080
- # results of training are not lost.
9130
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
9131
+ # which delays job termination for 120 seconds. Algorithms can use
9132
+ # this 120-second window to save the model artifacts, so the results
9133
+ # of training are not lost.
9081
9134
  # @return [Types::StoppingCondition]
9082
9135
  #
9083
9136
  # @!attribute [rw] tags
@@ -9095,7 +9148,7 @@ module Aws::SageMaker
9095
9148
  # Isolates the training container. No inbound or outbound network
9096
9149
  # calls can be made, except for calls between peers within a training
9097
9150
  # cluster for distributed training. If you enable network isolation
9098
- # for training jobs that are configured to use a VPC, Amazon SageMaker
9151
+ # for training jobs that are configured to use a VPC, SageMaker
9099
9152
  # downloads and uploads customer data and model artifacts through the
9100
9153
  # specified VPC, but the training container does not have network
9101
9154
  # access.
@@ -9325,6 +9378,11 @@ module Aws::SageMaker
9325
9378
  # records fit within the maximum payload size, we recommend using a
9326
9379
  # slightly larger value. The default value is `6` MB.
9327
9380
  #
9381
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
9382
+ # specify the `MaxConcurrentTransforms` parameter, the value of
9383
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
9384
+ # MB.
9385
+ #
9328
9386
  # For cases where the payload might be arbitrarily large and is
9329
9387
  # transmitted using HTTP chunked encoding, set the value to `0`. This
9330
9388
  # feature works only in supported algorithms. Currently, Amazon
@@ -10140,8 +10198,8 @@ module Aws::SageMaker
10140
10198
  # A [JSONPath][1] expression used to select a portion of the input
10141
10199
  # data to pass to the algorithm. Use the `InputFilter` parameter to
10142
10200
  # exclude fields, such as an ID column, from the input. If you want
10143
- # Amazon SageMaker to pass the entire input dataset to the algorithm,
10144
- # accept the default value `$`.
10201
+ # SageMaker to pass the entire input dataset to the algorithm, accept
10202
+ # the default value `$`.
10145
10203
  #
10146
10204
  # Examples: `"$"`, `"$[1:]"`, `"$.features"`
10147
10205
  #
@@ -10153,10 +10211,9 @@ module Aws::SageMaker
10153
10211
  # @!attribute [rw] output_filter
10154
10212
  # A [JSONPath][1] expression used to select a portion of the joined
10155
10213
  # dataset to save in the output file for a batch transform job. If you
10156
- # want Amazon SageMaker to store the entire input dataset in the
10157
- # output file, leave the default value, `$`. If you specify indexes
10158
- # that aren't within the dimension size of the joined dataset, you
10159
- # get an error.
10214
+ # want SageMaker to store the entire input dataset in the output file,
10215
+ # leave the default value, `$`. If you specify indexes that aren't
10216
+ # within the dimension size of the joined dataset, you get an error.
10160
10217
  #
10161
10218
  # Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
10162
10219
  #
@@ -11285,7 +11342,7 @@ module Aws::SageMaker
11285
11342
  # }
11286
11343
  #
11287
11344
  # @!attribute [rw] notebook_instance_name
11288
- # The name of the Amazon SageMaker notebook instance to delete.
11345
+ # The name of the SageMaker notebook instance to delete.
11289
11346
  # @return [String]
11290
11347
  #
11291
11348
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
@@ -11826,7 +11883,7 @@ module Aws::SageMaker
11826
11883
  #
11827
11884
  # @!attribute [rw] validation_specification
11828
11885
  # Details about configurations for one or more training jobs that
11829
- # Amazon SageMaker runs to test the algorithm.
11886
+ # SageMaker runs to test the algorithm.
11830
11887
  # @return [Types::AlgorithmValidationSpecification]
11831
11888
  #
11832
11889
  # @!attribute [rw] algorithm_status
@@ -13037,7 +13094,7 @@ module Aws::SageMaker
13037
13094
  end
13038
13095
 
13039
13096
  # @!attribute [rw] endpoint_config_name
13040
- # Name of the Amazon SageMaker endpoint configuration.
13097
+ # Name of the SageMaker endpoint configuration.
13041
13098
  # @return [String]
13042
13099
  #
13043
13100
  # @!attribute [rw] endpoint_config_arn
@@ -13979,8 +14036,8 @@ module Aws::SageMaker
13979
14036
  # @return [Types::LabelingJobOutputConfig]
13980
14037
  #
13981
14038
  # @!attribute [rw] role_arn
13982
- # The Amazon Resource Name (ARN) that Amazon SageMaker assumes to
13983
- # perform tasks on your behalf during data labeling.
14039
+ # The Amazon Resource Name (ARN) that SageMaker assumes to perform
14040
+ # tasks on your behalf during data labeling.
13984
14041
  # @return [String]
13985
14042
  #
13986
14043
  # @!attribute [rw] label_category_config_s3_uri
@@ -14346,7 +14403,7 @@ module Aws::SageMaker
14346
14403
  end
14347
14404
 
14348
14405
  # @!attribute [rw] model_name
14349
- # Name of the Amazon SageMaker model.
14406
+ # Name of the SageMaker model.
14350
14407
  # @return [String]
14351
14408
  #
14352
14409
  # @!attribute [rw] primary_container
@@ -14416,7 +14473,7 @@ module Aws::SageMaker
14416
14473
  # }
14417
14474
  #
14418
14475
  # @!attribute [rw] model_package_group_name
14419
- # The name of the model group to describe.
14476
+ # The name of gthe model group to describe.
14420
14477
  # @return [String]
14421
14478
  #
14422
14479
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
@@ -14560,7 +14617,7 @@ module Aws::SageMaker
14560
14617
  # @return [Types::ModelMetrics]
14561
14618
  #
14562
14619
  # @!attribute [rw] last_modified_time
14563
- # The last time the model package was modified.
14620
+ # The last time that the model package was modified.
14564
14621
  # @return [Time]
14565
14622
  #
14566
14623
  # @!attribute [rw] last_modified_by
@@ -14904,7 +14961,7 @@ module Aws::SageMaker
14904
14961
  # @return [String]
14905
14962
  #
14906
14963
  # @!attribute [rw] notebook_instance_name
14907
- # The name of the Amazon SageMaker notebook instance.
14964
+ # The name of the SageMaker notebook instance.
14908
14965
  # @return [String]
14909
14966
  #
14910
14967
  # @!attribute [rw] notebook_instance_status
@@ -14938,14 +14995,13 @@ module Aws::SageMaker
14938
14995
  # @return [String]
14939
14996
  #
14940
14997
  # @!attribute [rw] kms_key_id
14941
- # The Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt
14942
- # data when storing it on the ML storage volume attached to the
14943
- # instance.
14998
+ # The Amazon Web Services KMS key ID SageMaker uses to encrypt data
14999
+ # when storing it on the ML storage volume attached to the instance.
14944
15000
  # @return [String]
14945
15001
  #
14946
15002
  # @!attribute [rw] network_interface_id
14947
- # The network interface IDs that Amazon SageMaker created at the time
14948
- # of creating the instance.
15003
+ # The network interface IDs that SageMaker created at the time of
15004
+ # creating the instance.
14949
15005
  # @return [String]
14950
15006
  #
14951
15007
  # @!attribute [rw] last_modified_time
@@ -14970,10 +15026,10 @@ module Aws::SageMaker
14970
15026
  # @return [String]
14971
15027
  #
14972
15028
  # @!attribute [rw] direct_internet_access
14973
- # Describes whether Amazon SageMaker provides internet access to the
14974
- # notebook instance. If this value is set to *Disabled*, the notebook
14975
- # instance does not have internet access, and cannot connect to Amazon
14976
- # SageMaker training and endpoint services.
15029
+ # Describes whether SageMaker provides internet access to the notebook
15030
+ # instance. If this value is set to *Disabled*, the notebook instance
15031
+ # does not have internet access, and cannot connect to SageMaker
15032
+ # training and endpoint services.
14977
15033
  #
14978
15034
  # For more information, see [Notebook Instances Are Internet-Enabled
14979
15035
  # by Default][1].
@@ -15006,8 +15062,7 @@ module Aws::SageMaker
15006
15062
  # repository in [Amazon Web Services CodeCommit][1] or in any other
15007
15063
  # Git repository. When you open a notebook instance, it opens in the
15008
15064
  # directory that contains this repository. For more information, see
15009
- # [Associating Git Repositories with Amazon SageMaker Notebook
15010
- # Instances][2].
15065
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
15011
15066
  #
15012
15067
  #
15013
15068
  #
@@ -15022,7 +15077,7 @@ module Aws::SageMaker
15022
15077
  # in [Amazon Web Services CodeCommit][1] or in any other Git
15023
15078
  # repository. These repositories are cloned at the same level as the
15024
15079
  # default repository of your notebook instance. For more information,
15025
- # see [Associating Git Repositories with Amazon SageMaker Notebook
15080
+ # see [Associating Git Repositories with SageMaker Notebook
15026
15081
  # Instances][2].
15027
15082
  #
15028
15083
  #
@@ -15644,7 +15699,7 @@ module Aws::SageMaker
15644
15699
  # @return [String]
15645
15700
  #
15646
15701
  # @!attribute [rw] labeling_job_arn
15647
- # The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth
15702
+ # The Amazon Resource Name (ARN) of the SageMaker Ground Truth
15648
15703
  # labeling job that created the transform or training job.
15649
15704
  # @return [String]
15650
15705
  #
@@ -15660,7 +15715,7 @@ module Aws::SageMaker
15660
15715
  # @!attribute [rw] training_job_status
15661
15716
  # The status of the training job.
15662
15717
  #
15663
- # Amazon SageMaker provides the following training job statuses:
15718
+ # SageMaker provides the following training job statuses:
15664
15719
  #
15665
15720
  # * `InProgress` - The training is in progress.
15666
15721
  #
@@ -15682,8 +15737,8 @@ module Aws::SageMaker
15682
15737
  # For detailed information on the secondary status of the training
15683
15738
  # job, see `StatusMessage` under SecondaryStatusTransition.
15684
15739
  #
15685
- # Amazon SageMaker provides primary statuses and secondary statuses
15686
- # that apply to each of them:
15740
+ # SageMaker provides primary statuses and secondary statuses that
15741
+ # apply to each of them:
15687
15742
  #
15688
15743
  # InProgress
15689
15744
  # : * `Starting` - Starting the training job.
@@ -15762,7 +15817,7 @@ module Aws::SageMaker
15762
15817
  #
15763
15818
  # @!attribute [rw] output_data_config
15764
15819
  # The S3 path where model artifacts that you configured when creating
15765
- # the job are stored. Amazon SageMaker creates subfolders for model
15820
+ # the job are stored. SageMaker creates subfolders for model
15766
15821
  # artifacts.
15767
15822
  # @return [Types::OutputDataConfig]
15768
15823
  #
@@ -15784,13 +15839,13 @@ module Aws::SageMaker
15784
15839
  # @!attribute [rw] stopping_condition
15785
15840
  # Specifies a limit to how long a model training job can run. It also
15786
15841
  # specifies how long a managed Spot training job has to complete. When
15787
- # the job reaches the time limit, Amazon SageMaker ends the training
15788
- # job. Use this API to cap model training costs.
15842
+ # the job reaches the time limit, SageMaker ends the training job. Use
15843
+ # this API to cap model training costs.
15789
15844
  #
15790
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
15791
- # signal, which delays job termination for 120 seconds. Algorithms can
15792
- # use this 120-second window to save the model artifacts, so the
15793
- # results of training are not lost.
15845
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
15846
+ # which delays job termination for 120 seconds. Algorithms can use
15847
+ # this 120-second window to save the model artifacts, so the results
15848
+ # of training are not lost.
15794
15849
  # @return [Types::StoppingCondition]
15795
15850
  #
15796
15851
  # @!attribute [rw] creation_time
@@ -15811,8 +15866,7 @@ module Aws::SageMaker
15811
15866
  # You are billed for the time interval between the value of
15812
15867
  # `TrainingStartTime` and this time. For successful jobs and stopped
15813
15868
  # jobs, this is the time after model artifacts are uploaded. For
15814
- # failed jobs, this is the time when Amazon SageMaker detects a job
15815
- # failure.
15869
+ # failed jobs, this is the time when SageMaker detects a job failure.
15816
15870
  # @return [Time]
15817
15871
  #
15818
15872
  # @!attribute [rw] last_modified_time
@@ -15835,10 +15889,9 @@ module Aws::SageMaker
15835
15889
  # If you want to allow inbound or outbound network calls, except for
15836
15890
  # calls between peers within a training cluster for distributed
15837
15891
  # training, choose `True`. If you enable network isolation for
15838
- # training jobs that are configured to use a VPC, Amazon SageMaker
15839
- # downloads and uploads customer data and model artifacts through the
15840
- # specified VPC, but the training container does not have network
15841
- # access.
15892
+ # training jobs that are configured to use a VPC, SageMaker downloads
15893
+ # and uploads customer data and model artifacts through the specified
15894
+ # VPC, but the training container does not have network access.
15842
15895
  # @return [Boolean]
15843
15896
  #
15844
15897
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -15870,7 +15923,7 @@ module Aws::SageMaker
15870
15923
  #
15871
15924
  # Multiply `BillableTimeInSeconds` by the number of instances
15872
15925
  # (`InstanceCount`) in your training cluster to get the total compute
15873
- # time SageMaker will bill you if you run distributed training. The
15926
+ # time SageMaker bills you if you run distributed training. The
15874
15927
  # formula is as follows: `BillableTimeInSeconds * InstanceCount` .
15875
15928
  #
15876
15929
  # You can calculate the savings from using managed spot training using
@@ -20078,10 +20131,10 @@ module Aws::SageMaker
20078
20131
  # The registry path of the Docker image that contains the training
20079
20132
  # algorithm. For information about Docker registry paths for built-in
20080
20133
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
20081
- # Parameters][1]. Amazon SageMaker supports both
20082
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
20083
- # path formats. For more information, see [Using Your Own Algorithms
20084
- # with Amazon SageMaker][2].
20134
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
20135
+ # and `registry/repository[@digest]` image path formats. For more
20136
+ # information, see [Using Your Own Algorithms with Amazon
20137
+ # SageMaker][2].
20085
20138
  #
20086
20139
  #
20087
20140
  #
@@ -20406,27 +20459,26 @@ module Aws::SageMaker
20406
20459
  #
20407
20460
  # Storage volumes store model artifacts and incremental states.
20408
20461
  # Training algorithms might also use storage volumes for scratch
20409
- # space. If you want Amazon SageMaker to use the storage volume to
20410
- # store the training data, choose `File` as the `TrainingInputMode` in
20411
- # the algorithm specification. For distributed training algorithms,
20462
+ # space. If you want SageMaker to use the storage volume to store the
20463
+ # training data, choose `File` as the `TrainingInputMode` in the
20464
+ # algorithm specification. For distributed training algorithms,
20412
20465
  # specify an instance count greater than 1.
20413
20466
  # @return [Types::ResourceConfig]
20414
20467
  #
20415
20468
  # @!attribute [rw] stopping_condition
20416
20469
  # Specifies a limit to how long a model hyperparameter training job
20417
20470
  # can run. It also specifies how long a managed spot training job has
20418
- # to complete. When the job reaches the time limit, Amazon SageMaker
20419
- # ends the training job. Use this API to cap model training costs.
20471
+ # to complete. When the job reaches the time limit, SageMaker ends the
20472
+ # training job. Use this API to cap model training costs.
20420
20473
  # @return [Types::StoppingCondition]
20421
20474
  #
20422
20475
  # @!attribute [rw] enable_network_isolation
20423
20476
  # Isolates the training container. No inbound or outbound network
20424
20477
  # calls can be made, except for calls between peers within a training
20425
20478
  # cluster for distributed training. If network isolation is used for
20426
- # training jobs that are configured to use a VPC, Amazon SageMaker
20427
- # downloads and uploads customer data and model artifacts through the
20428
- # specified VPC, but the training container does not have network
20429
- # access.
20479
+ # training jobs that are configured to use a VPC, SageMaker downloads
20480
+ # and uploads customer data and model artifacts through the specified
20481
+ # VPC, but the training container does not have network access.
20430
20482
  # @return [Boolean]
20431
20483
  #
20432
20484
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -20476,7 +20528,7 @@ module Aws::SageMaker
20476
20528
  include Aws::Structure
20477
20529
  end
20478
20530
 
20479
- # Specifies summary information about a training job.
20531
+ # The container for the summary information about a training job.
20480
20532
  #
20481
20533
  # @!attribute [rw] training_job_definition_name
20482
20534
  # The training job definition name.
@@ -20507,8 +20559,7 @@ module Aws::SageMaker
20507
20559
  # You are billed for the time interval between the value of
20508
20560
  # `TrainingStartTime` and this time. For successful jobs and stopped
20509
20561
  # jobs, this is the time after model artifacts are uploaded. For
20510
- # failed jobs, this is the time when Amazon SageMaker detects a job
20511
- # failure.
20562
+ # failed jobs, this is the time when SageMaker detects a job failure.
20512
20563
  # @return [Time]
20513
20564
  #
20514
20565
  # @!attribute [rw] training_job_status
@@ -20657,9 +20708,9 @@ module Aws::SageMaker
20657
20708
  #
20658
20709
  # AUTO
20659
20710
  #
20660
- # : Amazon SageMaker stops training jobs launched by the
20661
- # hyperparameter tuning job when they are unlikely to perform better
20662
- # than previously completed training jobs. For more information, see
20711
+ # : SageMaker stops training jobs launched by the hyperparameter
20712
+ # tuning job when they are unlikely to perform better than
20713
+ # previously completed training jobs. For more information, see
20663
20714
  # [Stop Training Jobs Early][1].
20664
20715
  #
20665
20716
  #
@@ -21460,8 +21511,8 @@ module Aws::SageMaker
21460
21511
  #
21461
21512
  # Auto
21462
21513
  #
21463
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
21464
- # the hyperparameter.
21514
+ # : SageMaker hyperparameter tuning chooses the best scale for the
21515
+ # hyperparameter.
21465
21516
  #
21466
21517
  # Linear
21467
21518
  #
@@ -21536,12 +21587,20 @@ module Aws::SageMaker
21536
21587
  #
21537
21588
  # @!attribute [rw] default_resource_spec
21538
21589
  # The default instance type and the Amazon Resource Name (ARN) of the
21539
- # default SageMaker image used by the JupyterServer app.
21590
+ # default SageMaker image used by the JupyterServer app. If you use
21591
+ # the `LifecycleConfigArns` parameter, then this parameter is also
21592
+ # required.
21540
21593
  # @return [Types::ResourceSpec]
21541
21594
  #
21542
21595
  # @!attribute [rw] lifecycle_config_arns
21543
21596
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21544
- # attached to the JupyterServerApp.
21597
+ # attached to the JupyterServerApp. If you use this parameter, the
21598
+ # `DefaultResourceSpec` parameter is also required.
21599
+ #
21600
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21601
+ # an empty list.
21602
+ #
21603
+ # </note>
21545
21604
  # @return [Array<String>]
21546
21605
  #
21547
21606
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
@@ -21578,6 +21637,14 @@ module Aws::SageMaker
21578
21637
  # @!attribute [rw] default_resource_spec
21579
21638
  # The default instance type and the Amazon Resource Name (ARN) of the
21580
21639
  # default SageMaker image used by the KernelGateway app.
21640
+ #
21641
+ # <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
21642
+ # type value set here. The default instance type set here is used when
21643
+ # Apps are created using the Amazon Web Services Command Line
21644
+ # Interface or Amazon Web Services CloudFormation and the instance
21645
+ # type parameter value is not passed.
21646
+ #
21647
+ # </note>
21581
21648
  # @return [Types::ResourceSpec]
21582
21649
  #
21583
21650
  # @!attribute [rw] custom_images
@@ -21588,6 +21655,11 @@ module Aws::SageMaker
21588
21655
  # @!attribute [rw] lifecycle_config_arns
21589
21656
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21590
21657
  # attached to the the user profile or domain.
21658
+ #
21659
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21660
+ # an empty list.
21661
+ #
21662
+ # </note>
21591
21663
  # @return [Array<String>]
21592
21664
  #
21593
21665
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
@@ -21795,8 +21867,8 @@ module Aws::SageMaker
21795
21867
  #
21796
21868
  # @!attribute [rw] content_classifiers
21797
21869
  # Declares that your content is free of personally identifiable
21798
- # information or adult content. Amazon SageMaker may restrict the
21799
- # Amazon Mechanical Turk workers that can view your task based on this
21870
+ # information or adult content. SageMaker may restrict the Amazon
21871
+ # Mechanical Turk workers that can view your task based on this
21800
21872
  # information.
21801
21873
  # @return [Array<String>]
21802
21874
  #
@@ -21940,8 +22012,8 @@ module Aws::SageMaker
21940
22012
  # @return [String]
21941
22013
  #
21942
22014
  # @!attribute [rw] final_active_learning_model_arn
21943
- # The Amazon Resource Name (ARN) for the most recent Amazon SageMaker
21944
- # model trained as part of automated data labeling.
22015
+ # The Amazon Resource Name (ARN) for the most recent SageMaker model
22016
+ # trained as part of automated data labeling.
21945
22017
  # @return [String]
21946
22018
  #
21947
22019
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
@@ -22451,8 +22523,8 @@ module Aws::SageMaker
22451
22523
  # @return [Array<Types::AlgorithmSummary>]
22452
22524
  #
22453
22525
  # @!attribute [rw] next_token
22454
- # If the response is truncated, Amazon SageMaker returns this token.
22455
- # To retrieve the next set of algorithms, use it in the subsequent
22526
+ # If the response is truncated, SageMaker returns this token. To
22527
+ # retrieve the next set of algorithms, use it in the subsequent
22456
22528
  # request.
22457
22529
  # @return [String]
22458
22530
  #
@@ -23726,8 +23798,8 @@ module Aws::SageMaker
23726
23798
  # @return [Array<Types::EndpointConfigSummary>]
23727
23799
  #
23728
23800
  # @!attribute [rw] next_token
23729
- # If the response is truncated, Amazon SageMaker returns this token.
23730
- # To retrieve the next set of endpoint configurations, use it in the
23801
+ # If the response is truncated, SageMaker returns this token. To
23802
+ # retrieve the next set of endpoint configurations, use it in the
23731
23803
  # subsequent request
23732
23804
  # @return [String]
23733
23805
  #
@@ -23826,8 +23898,8 @@ module Aws::SageMaker
23826
23898
  # @return [Array<Types::EndpointSummary>]
23827
23899
  #
23828
23900
  # @!attribute [rw] next_token
23829
- # If the response is truncated, Amazon SageMaker returns this token.
23830
- # To retrieve the next set of training jobs, use it in the subsequent
23901
+ # If the response is truncated, SageMaker returns this token. To
23902
+ # retrieve the next set of training jobs, use it in the subsequent
23831
23903
  # request.
23832
23904
  # @return [String]
23833
23905
  #
@@ -24592,8 +24664,8 @@ module Aws::SageMaker
24592
24664
  # @return [Array<Types::LabelingJobForWorkteamSummary>]
24593
24665
  #
24594
24666
  # @!attribute [rw] next_token
24595
- # If the response is truncated, Amazon SageMaker returns this token.
24596
- # To retrieve the next set of labeling jobs, use it in the subsequent
24667
+ # If the response is truncated, SageMaker returns this token. To
24668
+ # retrieve the next set of labeling jobs, use it in the subsequent
24597
24669
  # request.
24598
24670
  # @return [String]
24599
24671
  #
@@ -24693,8 +24765,8 @@ module Aws::SageMaker
24693
24765
  # @return [Array<Types::LabelingJobSummary>]
24694
24766
  #
24695
24767
  # @!attribute [rw] next_token
24696
- # If the response is truncated, Amazon SageMaker returns this token.
24697
- # To retrieve the next set of labeling jobs, use it in the subsequent
24768
+ # If the response is truncated, SageMaker returns this token. To
24769
+ # retrieve the next set of labeling jobs, use it in the subsequent
24698
24770
  # request.
24699
24771
  # @return [String]
24700
24772
  #
@@ -25191,8 +25263,8 @@ module Aws::SageMaker
25191
25263
  # @return [Array<Types::ModelPackageSummary>]
25192
25264
  #
25193
25265
  # @!attribute [rw] next_token
25194
- # If the response is truncated, Amazon SageMaker returns this token.
25195
- # To retrieve the next set of model packages, use it in the subsequent
25266
+ # If the response is truncated, SageMaker returns this token. To
25267
+ # retrieve the next set of model packages, use it in the subsequent
25196
25268
  # request.
25197
25269
  # @return [String]
25198
25270
  #
@@ -25359,9 +25431,8 @@ module Aws::SageMaker
25359
25431
  # @return [Array<Types::ModelSummary>]
25360
25432
  #
25361
25433
  # @!attribute [rw] next_token
25362
- # If the response is truncated, Amazon SageMaker returns this token.
25363
- # To retrieve the next set of models, use it in the subsequent
25364
- # request.
25434
+ # If the response is truncated, SageMaker returns this token. To
25435
+ # retrieve the next set of models, use it in the subsequent request.
25365
25436
  # @return [String]
25366
25437
  #
25367
25438
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
@@ -25700,8 +25771,8 @@ module Aws::SageMaker
25700
25771
  end
25701
25772
 
25702
25773
  # @!attribute [rw] next_token
25703
- # If the response is truncated, Amazon SageMaker returns this token.
25704
- # To get the next set of lifecycle configurations, use it in the next
25774
+ # If the response is truncated, SageMaker returns this token. To get
25775
+ # the next set of lifecycle configurations, use it in the next
25705
25776
  # request.
25706
25777
  # @return [String]
25707
25778
  #
@@ -25834,8 +25905,8 @@ module Aws::SageMaker
25834
25905
 
25835
25906
  # @!attribute [rw] next_token
25836
25907
  # If the response to the previous `ListNotebookInstances` request was
25837
- # truncated, Amazon SageMaker returns this token. To retrieve the next
25838
- # set of notebook instances, use the token in the next request.
25908
+ # truncated, SageMaker returns this token. To retrieve the next set of
25909
+ # notebook instances, use the token in the next request.
25839
25910
  # @return [String]
25840
25911
  #
25841
25912
  # @!attribute [rw] notebook_instances
@@ -26483,8 +26554,8 @@ module Aws::SageMaker
26483
26554
  #
26484
26555
  # @!attribute [rw] next_token
26485
26556
  # If the response to the previous `ListTags` request is truncated,
26486
- # Amazon SageMaker returns this token. To retrieve the next set of
26487
- # tags, use it in the subsequent request.
26557
+ # SageMaker returns this token. To retrieve the next set of tags, use
26558
+ # it in the subsequent request.
26488
26559
  # @return [String]
26489
26560
  #
26490
26561
  # @!attribute [rw] max_results
@@ -26506,7 +26577,7 @@ module Aws::SageMaker
26506
26577
  # @return [Array<Types::Tag>]
26507
26578
  #
26508
26579
  # @!attribute [rw] next_token
26509
- # If response is truncated, Amazon SageMaker includes a token in the
26580
+ # If response is truncated, SageMaker includes a token in the
26510
26581
  # response. You can use this token in your subsequent request to fetch
26511
26582
  # next set of tokens.
26512
26583
  # @return [String]
@@ -26685,8 +26756,8 @@ module Aws::SageMaker
26685
26756
  # @return [Array<Types::TrainingJobSummary>]
26686
26757
  #
26687
26758
  # @!attribute [rw] next_token
26688
- # If the response is truncated, Amazon SageMaker returns this token.
26689
- # To retrieve the next set of training jobs, use it in the subsequent
26759
+ # If the response is truncated, SageMaker returns this token. To
26760
+ # retrieve the next set of training jobs, use it in the subsequent
26690
26761
  # request.
26691
26762
  # @return [String]
26692
26763
  #
@@ -27303,9 +27374,9 @@ module Aws::SageMaker
27303
27374
  end
27304
27375
 
27305
27376
  # Specifies a metric that the training algorithm writes to `stderr` or
27306
- # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
27307
- # metrics. You specify one metric that a hyperparameter tuning job uses
27308
- # as its objective metric to choose the best training job.
27377
+ # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
27378
+ # You specify one metric that a hyperparameter tuning job uses as its
27379
+ # objective metric to choose the best training job.
27309
27380
  #
27310
27381
  # @note When making an API call, you may pass MetricDefinition
27311
27382
  # data as a hash:
@@ -27509,11 +27580,13 @@ module Aws::SageMaker
27509
27580
  # }
27510
27581
  #
27511
27582
  # @!attribute [rw] invocations_timeout_in_seconds
27512
- # The timeout value in seconds for an invocation request.
27583
+ # The timeout value in seconds for an invocation request. The default
27584
+ # value is 600.
27513
27585
  # @return [Integer]
27514
27586
  #
27515
27587
  # @!attribute [rw] invocations_max_retries
27516
27588
  # The maximum number of retries when invocation requests are failing.
27589
+ # The default value is 3.
27517
27590
  # @return [Integer]
27518
27591
  #
27519
27592
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
@@ -28017,8 +28090,8 @@ module Aws::SageMaker
28017
28090
  # @return [Types::SourceAlgorithmSpecification]
28018
28091
  #
28019
28092
  # @!attribute [rw] validation_specification
28020
- # Specifies batch transform jobs that Amazon SageMaker runs to
28021
- # validate your model package.
28093
+ # Specifies batch transform jobs that SageMaker runs to validate your
28094
+ # model package.
28022
28095
  # @return [Types::ModelPackageValidationSpecification]
28023
28096
  #
28024
28097
  # @!attribute [rw] model_package_status
@@ -28197,11 +28270,11 @@ module Aws::SageMaker
28197
28270
  # code is stored.
28198
28271
  #
28199
28272
  # If you are using your own custom algorithm instead of an algorithm
28200
- # provided by Amazon SageMaker, the inference code must meet Amazon
28201
- # SageMaker requirements. Amazon SageMaker supports both
28202
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
28203
- # path formats. For more information, see [Using Your Own Algorithms
28204
- # with Amazon SageMaker][1].
28273
+ # provided by SageMaker, the inference code must meet SageMaker
28274
+ # requirements. SageMaker supports both `registry/repository[:tag]`
28275
+ # and `registry/repository[@digest]` image path formats. For more
28276
+ # information, see [Using Your Own Algorithms with Amazon
28277
+ # SageMaker][1].
28205
28278
  #
28206
28279
  #
28207
28280
  #
@@ -28533,8 +28606,8 @@ module Aws::SageMaker
28533
28606
  include Aws::Structure
28534
28607
  end
28535
28608
 
28536
- # Specifies batch transform jobs that Amazon SageMaker runs to validate
28537
- # your model package.
28609
+ # Specifies batch transform jobs that SageMaker runs to validate your
28610
+ # model package.
28538
28611
  #
28539
28612
  # @note When making an API call, you may pass ModelPackageValidationSpecification
28540
28613
  # data as a hash:
@@ -28584,8 +28657,8 @@ module Aws::SageMaker
28584
28657
  #
28585
28658
  # @!attribute [rw] validation_profiles
28586
28659
  # An array of `ModelPackageValidationProfile` objects, each of which
28587
- # specifies a batch transform job that Amazon SageMaker runs to
28588
- # validate your model package.
28660
+ # specifies a batch transform job that SageMaker runs to validate your
28661
+ # model package.
28589
28662
  # @return [Array<Types::ModelPackageValidationProfile>]
28590
28663
  #
28591
28664
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
@@ -29958,8 +30031,7 @@ module Aws::SageMaker
29958
30031
  include Aws::Structure
29959
30032
  end
29960
30033
 
29961
- # Provides summary information for an Amazon SageMaker notebook
29962
- # instance.
30034
+ # Provides summary information for an SageMaker notebook instance.
29963
30035
  #
29964
30036
  # @!attribute [rw] notebook_instance_name
29965
30037
  # The name of the notebook instance that you want a summary for.
@@ -29974,7 +30046,7 @@ module Aws::SageMaker
29974
30046
  # @return [String]
29975
30047
  #
29976
30048
  # @!attribute [rw] url
29977
- # The URL that you use to connect to the Jupyter instance running in
30049
+ # The URL that you use to connect to the Jupyter notebook running in
29978
30050
  # your notebook instance.
29979
30051
  # @return [String]
29980
30052
  #
@@ -30010,8 +30082,7 @@ module Aws::SageMaker
30010
30082
  # repository in [Amazon Web Services CodeCommit][1] or in any other
30011
30083
  # Git repository. When you open a notebook instance, it opens in the
30012
30084
  # directory that contains this repository. For more information, see
30013
- # [Associating Git Repositories with Amazon SageMaker Notebook
30014
- # Instances][2].
30085
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
30015
30086
  #
30016
30087
  #
30017
30088
  #
@@ -30026,7 +30097,7 @@ module Aws::SageMaker
30026
30097
  # in [Amazon Web Services CodeCommit][1] or in any other Git
30027
30098
  # repository. These repositories are cloned at the same level as the
30028
30099
  # default repository of your notebook instance. For more information,
30029
- # see [Associating Git Repositories with Amazon SageMaker Notebook
30100
+ # see [Associating Git Repositories with SageMaker Notebook
30030
30101
  # Instances][2].
30031
30102
  #
30032
30103
  #
@@ -30652,9 +30723,9 @@ module Aws::SageMaker
30652
30723
  #
30653
30724
  # @!attribute [rw] kms_key_id
30654
30725
  # The Amazon Web Services Key Management Service (Amazon Web Services
30655
- # KMS) key that Amazon SageMaker uses to encrypt the model artifacts
30656
- # at rest using Amazon S3 server-side encryption. The `KmsKeyId` can
30657
- # be any of the following formats:
30726
+ # KMS) key that SageMaker uses to encrypt the model artifacts at rest
30727
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
30728
+ # the following formats:
30658
30729
  #
30659
30730
  # * // KMS Key ID
30660
30731
  #
@@ -30672,14 +30743,13 @@ module Aws::SageMaker
30672
30743
  #
30673
30744
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
30674
30745
  #
30675
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
30676
- # SageMaker execution role must include permissions to call
30677
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
30678
- # uses the default KMS key for Amazon S3 for your role's account.
30679
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
30680
- # for `OutputDataConfig`. If you use a bucket policy with an
30681
- # `s3:PutObject` permission that only allows objects with server-side
30682
- # encryption, set the condition key of
30746
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
30747
+ # execution role must include permissions to call `kms:Encrypt`. If
30748
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
30749
+ # for Amazon S3 for your role's account. SageMaker uses server-side
30750
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
30751
+ # a bucket policy with an `s3:PutObject` permission that only allows
30752
+ # objects with server-side encryption, set the condition key of
30683
30753
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
30684
30754
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
30685
30755
  # Simple Storage Service Developer Guide.*
@@ -30697,8 +30767,8 @@ module Aws::SageMaker
30697
30767
  # @return [String]
30698
30768
  #
30699
30769
  # @!attribute [rw] s3_output_path
30700
- # Identifies the S3 path where you want Amazon SageMaker to store the
30701
- # model artifacts. For example, `s3://bucket-name/key-name-prefix`.
30770
+ # Identifies the S3 path where you want SageMaker to store the model
30771
+ # artifacts. For example, `s3://bucket-name/key-name-prefix`.
30702
30772
  # @return [String]
30703
30773
  #
30704
30774
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
@@ -31027,23 +31097,11 @@ module Aws::SageMaker
31027
31097
  #
31028
31098
  # @!attribute [rw] current_serverless_config
31029
31099
  # The serverless configuration for the endpoint.
31030
- #
31031
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31032
- # is subject to change. We do not recommend using this feature in
31033
- # production environments.
31034
- #
31035
- # </note>
31036
31100
  # @return [Types::ProductionVariantServerlessConfig]
31037
31101
  #
31038
31102
  # @!attribute [rw] desired_serverless_config
31039
31103
  # The serverless configuration requested for this deployment, as
31040
31104
  # specified in the endpoint configuration for the endpoint.
31041
- #
31042
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31043
- # is subject to change. We do not recommend using this feature in
31044
- # production environments.
31045
- #
31046
- # </note>
31047
31105
  # @return [Types::ProductionVariantServerlessConfig]
31048
31106
  #
31049
31107
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
@@ -32245,8 +32303,8 @@ module Aws::SageMaker
32245
32303
 
32246
32304
  # Identifies a model that you want to host and the resources chosen to
32247
32305
  # deploy for hosting it. If you are deploying multiple models, tell
32248
- # Amazon SageMaker how to distribute traffic among the models by
32249
- # specifying variant weights.
32306
+ # SageMaker how to distribute traffic among the models by specifying
32307
+ # variant weights.
32250
32308
  #
32251
32309
  # @note When making an API call, you may pass ProductionVariant
32252
32310
  # data as a hash:
@@ -32313,12 +32371,6 @@ module Aws::SageMaker
32313
32371
  # The serverless configuration for an endpoint. Specifies a serverless
32314
32372
  # endpoint configuration instead of an instance-based endpoint
32315
32373
  # configuration.
32316
- #
32317
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32318
- # is subject to change. We do not recommend using this feature in
32319
- # production environments.
32320
- #
32321
- # </note>
32322
32374
  # @return [Types::ProductionVariantServerlessConfig]
32323
32375
  #
32324
32376
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -32353,9 +32405,9 @@ module Aws::SageMaker
32353
32405
  #
32354
32406
  # @!attribute [rw] kms_key_id
32355
32407
  # The Amazon Web Services Key Management Service (Amazon Web Services
32356
- # KMS) key that Amazon SageMaker uses to encrypt the core dump data at
32357
- # rest using Amazon S3 server-side encryption. The `KmsKeyId` can be
32358
- # any of the following formats:
32408
+ # KMS) key that SageMaker uses to encrypt the core dump data at rest
32409
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
32410
+ # the following formats:
32359
32411
  #
32360
32412
  # * // KMS Key ID
32361
32413
  #
@@ -32373,14 +32425,13 @@ module Aws::SageMaker
32373
32425
  #
32374
32426
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
32375
32427
  #
32376
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
32377
- # SageMaker execution role must include permissions to call
32378
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
32379
- # uses the default KMS key for Amazon S3 for your role's account.
32380
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
32381
- # for `OutputDataConfig`. If you use a bucket policy with an
32382
- # `s3:PutObject` permission that only allows objects with server-side
32383
- # encryption, set the condition key of
32428
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
32429
+ # execution role must include permissions to call `kms:Encrypt`. If
32430
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
32431
+ # for Amazon S3 for your role's account. SageMaker uses server-side
32432
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
32433
+ # a bucket policy with an `s3:PutObject` permission that only allows
32434
+ # objects with server-side encryption, set the condition key of
32384
32435
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
32385
32436
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
32386
32437
  # Simple Storage Service Developer Guide.*
@@ -32406,10 +32457,6 @@ module Aws::SageMaker
32406
32457
  include Aws::Structure
32407
32458
  end
32408
32459
 
32409
- # Serverless Inference is in preview release for Amazon SageMaker and is
32410
- # subject to change. We do not recommend using this feature in
32411
- # production environments.
32412
- #
32413
32460
  # Specifies the serverless configuration for an endpoint variant.
32414
32461
  #
32415
32462
  # @note When making an API call, you may pass ProductionVariantServerlessConfig
@@ -32519,22 +32566,10 @@ module Aws::SageMaker
32519
32566
  #
32520
32567
  # @!attribute [rw] current_serverless_config
32521
32568
  # The serverless configuration for the endpoint.
32522
- #
32523
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32524
- # is subject to change. We do not recommend using this feature in
32525
- # production environments.
32526
- #
32527
- # </note>
32528
32569
  # @return [Types::ProductionVariantServerlessConfig]
32529
32570
  #
32530
32571
  # @!attribute [rw] desired_serverless_config
32531
32572
  # The serverless configuration requested for the endpoint update.
32532
- #
32533
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32534
- # is subject to change. We do not recommend using this feature in
32535
- # production environments.
32536
- #
32537
- # </note>
32538
32573
  # @return [Types::ProductionVariantServerlessConfig]
32539
32574
  #
32540
32575
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
@@ -33351,8 +33386,8 @@ module Aws::SageMaker
33351
33386
  # @!attribute [rw] properties
33352
33387
  # Filter the lineage entities connected to the `StartArn`(s) by a set
33353
33388
  # if property key value pairs. If multiple pairs are provided, an
33354
- # entity will be included in the results if it matches any of the
33355
- # provided pairs.
33389
+ # entity is included in the results if it matches any of the provided
33390
+ # pairs.
33356
33391
  # @return [Hash<String,String>]
33357
33392
  #
33358
33393
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
@@ -33398,12 +33433,13 @@ module Aws::SageMaker
33398
33433
  # @return [Array<String>]
33399
33434
  #
33400
33435
  # @!attribute [rw] direction
33401
- # Associations between lineage entities are directed. This parameter
33402
- # determines the direction from the StartArn(s) the query will look.
33436
+ # Associations between lineage entities have a direction. This
33437
+ # parameter determines the direction from the StartArn(s) that the
33438
+ # query traverses.
33403
33439
  # @return [String]
33404
33440
  #
33405
33441
  # @!attribute [rw] include_edges
33406
- # Setting this value to `True` will retrieve not only the entities of
33442
+ # Setting this value to `True` retrieves not only the entities of
33407
33443
  # interest but also the [Associations][1] and lineage entities on the
33408
33444
  # path. Set to `False` to only return lineage entities that match your
33409
33445
  # query.
@@ -33432,8 +33468,8 @@ module Aws::SageMaker
33432
33468
  #
33433
33469
  # @!attribute [rw] max_depth
33434
33470
  # The maximum depth in lineage relationships from the `StartArns` that
33435
- # will be traversed. Depth is a measure of the number of
33436
- # `Associations` from the `StartArn` entity to the matched results.
33471
+ # are traversed. Depth is a measure of the number of `Associations`
33472
+ # from the `StartArn` entity to the matched results.
33437
33473
  # @return [Integer]
33438
33474
  #
33439
33475
  # @!attribute [rw] max_results
@@ -34232,15 +34268,15 @@ module Aws::SageMaker
34232
34268
  #
34233
34269
  # You must specify sufficient ML storage for your scenario.
34234
34270
  #
34235
- # <note markdown="1"> Amazon SageMaker supports only the General Purpose SSD (gp2) ML
34236
- # storage volume type.
34271
+ # <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
34272
+ # volume type.
34237
34273
  #
34238
34274
  # </note>
34239
34275
  #
34240
34276
  # <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
34241
34277
  # total size, dependent on the instance type. When using these
34242
- # instances for training, Amazon SageMaker mounts the local instance
34243
- # storage instead of Amazon EBS gp2 storage. You can't request a
34278
+ # instances for training, SageMaker mounts the local instance storage
34279
+ # instead of Amazon EBS gp2 storage. You can't request a
34244
34280
  # `VolumeSizeInGB` greater than the total size of the local instance
34245
34281
  # storage.
34246
34282
  #
@@ -34256,9 +34292,9 @@ module Aws::SageMaker
34256
34292
  # @return [Integer]
34257
34293
  #
34258
34294
  # @!attribute [rw] volume_kms_key_id
34259
- # The Amazon Web Services KMS key that Amazon SageMaker uses to
34260
- # encrypt data on the storage volume attached to the ML compute
34261
- # instance(s) that run the training job.
34295
+ # The Amazon Web Services KMS key that SageMaker uses to encrypt data
34296
+ # on the storage volume attached to the ML compute instance(s) that
34297
+ # run the training job.
34262
34298
  #
34263
34299
  # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
34264
34300
  # the instance type. Local storage volumes are encrypted using a
@@ -34313,8 +34349,8 @@ module Aws::SageMaker
34313
34349
  include Aws::Structure
34314
34350
  end
34315
34351
 
34316
- # You have exceeded an Amazon SageMaker resource limit. For example, you
34317
- # might have too many training jobs created.
34352
+ # You have exceeded an SageMaker resource limit. For example, you might
34353
+ # have too many training jobs created.
34318
34354
  #
34319
34355
  # @!attribute [rw] message
34320
34356
  # @return [String]
@@ -34393,6 +34429,12 @@ module Aws::SageMaker
34393
34429
  #
34394
34430
  # @!attribute [rw] instance_type
34395
34431
  # The instance type that the image version runs on.
34432
+ #
34433
+ # <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
34434
+ # Apps do not support the `system` value, but support all other values
34435
+ # for available instance types.
34436
+ #
34437
+ # </note>
34396
34438
  # @return [String]
34397
34439
  #
34398
34440
  # @!attribute [rw] lifecycle_config_arn
@@ -34527,11 +34569,11 @@ module Aws::SageMaker
34527
34569
  #
34528
34570
  # @!attribute [rw] s3_data_type
34529
34571
  # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
34530
- # Amazon SageMaker uses all objects that match the specified key name
34531
- # prefix for model training.
34572
+ # SageMaker uses all objects that match the specified key name prefix
34573
+ # for model training.
34532
34574
  #
34533
34575
  # If you choose `ManifestFile`, `S3Uri` identifies an object that is a
34534
- # manifest file containing a list of object keys that you want Amazon
34576
+ # manifest file containing a list of object keys that you want
34535
34577
  # SageMaker to use for model training.
34536
34578
  #
34537
34579
  # If you choose `AugmentedManifestFile`, S3Uri identifies an object
@@ -34585,17 +34627,17 @@ module Aws::SageMaker
34585
34627
  #
34586
34628
  # The complete set of `S3Uri` in this manifest is the input data for
34587
34629
  # the channel for this data source. The object that each `S3Uri`
34588
- # points to must be readable by the IAM role that Amazon SageMaker
34589
- # uses to perform tasks on your behalf.
34630
+ # points to must be readable by the IAM role that SageMaker uses to
34631
+ # perform tasks on your behalf.
34590
34632
  # @return [String]
34591
34633
  #
34592
34634
  # @!attribute [rw] s3_data_distribution_type
34593
- # If you want Amazon SageMaker to replicate the entire dataset on each
34594
- # ML compute instance that is launched for model training, specify
34635
+ # If you want SageMaker to replicate the entire dataset on each ML
34636
+ # compute instance that is launched for model training, specify
34595
34637
  # `FullyReplicated`.
34596
34638
  #
34597
- # If you want Amazon SageMaker to replicate a subset of data on each
34598
- # ML compute instance that is launched for model training, specify
34639
+ # If you want SageMaker to replicate a subset of data on each ML
34640
+ # compute instance that is launched for model training, specify
34599
34641
  # `ShardedByS3Key`. If there are *n* ML compute instances launched for
34600
34642
  # a training job, each instance gets approximately 1/*n* of the number
34601
34643
  # of S3 objects. In this case, model training on each machine uses
@@ -35019,9 +35061,9 @@ module Aws::SageMaker
35019
35061
  # transitioned through. A training job can be in one of several states,
35020
35062
  # for example, starting, downloading, training, or uploading. Within
35021
35063
  # each state, there are a number of intermediate states. For example,
35022
- # within the starting state, Amazon SageMaker could be starting the
35023
- # training job or launching the ML instances. These transitional states
35024
- # are referred to as the job's secondary status.
35064
+ # within the starting state, SageMaker could be starting the training
35065
+ # job or launching the ML instances. These transitional states are
35066
+ # referred to as the job's secondary status.
35025
35067
  #
35026
35068
  # @!attribute [rw] status
35027
35069
  # Contains a secondary status information from a training job.
@@ -35086,8 +35128,8 @@ module Aws::SageMaker
35086
35128
  # @!attribute [rw] status_message
35087
35129
  # A detailed description of the progress within a secondary status.
35088
35130
  #
35089
- # Amazon SageMaker provides secondary statuses and status messages
35090
- # that apply to each of them:
35131
+ # SageMaker provides secondary statuses and status messages that apply
35132
+ # to each of them:
35091
35133
  #
35092
35134
  # Starting
35093
35135
  # : * Starting the training job.
@@ -35452,9 +35494,9 @@ module Aws::SageMaker
35452
35494
  end
35453
35495
 
35454
35496
  # Specifies an algorithm that was used to create the model package. The
35455
- # algorithm must be either an algorithm resource in your Amazon
35456
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35457
- # that you are subscribed to.
35497
+ # algorithm must be either an algorithm resource in your SageMaker
35498
+ # account or an algorithm in Amazon Web Services Marketplace that you
35499
+ # are subscribed to.
35458
35500
  #
35459
35501
  # @note When making an API call, you may pass SourceAlgorithm
35460
35502
  # data as a hash:
@@ -35477,9 +35519,9 @@ module Aws::SageMaker
35477
35519
  #
35478
35520
  # @!attribute [rw] algorithm_name
35479
35521
  # The name of an algorithm that was used to create the model package.
35480
- # The algorithm must be either an algorithm resource in your Amazon
35481
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35482
- # that you are subscribed to.
35522
+ # The algorithm must be either an algorithm resource in your SageMaker
35523
+ # account or an algorithm in Amazon Web Services Marketplace that you
35524
+ # are subscribed to.
35483
35525
  # @return [String]
35484
35526
  #
35485
35527
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
@@ -35923,21 +35965,21 @@ module Aws::SageMaker
35923
35965
  # Specifies a limit to how long a model training job or model
35924
35966
  # compilation job can run. It also specifies how long a managed spot
35925
35967
  # training job has to complete. When the job reaches the time limit,
35926
- # Amazon SageMaker ends the training or compilation job. Use this API to
35927
- # cap model training costs.
35928
- #
35929
- # To stop a training job, Amazon SageMaker sends the algorithm the
35930
- # `SIGTERM` signal, which delays job termination for 120 seconds.
35931
- # Algorithms can use this 120-second window to save the model artifacts,
35932
- # so the results of training are not lost.
35933
- #
35934
- # The training algorithms provided by Amazon SageMaker automatically
35935
- # save the intermediate results of a model training job when possible.
35936
- # This attempt to save artifacts is only a best effort case as model
35937
- # might not be in a state from which it can be saved. For example, if
35938
- # training has just started, the model might not be ready to save. When
35939
- # saved, this intermediate data is a valid model artifact. You can use
35940
- # it to create a model with `CreateModel`.
35968
+ # SageMaker ends the training or compilation job. Use this API to cap
35969
+ # model training costs.
35970
+ #
35971
+ # To stop a training job, SageMaker sends the algorithm the `SIGTERM`
35972
+ # signal, which delays job termination for 120 seconds. Algorithms can
35973
+ # use this 120-second window to save the model artifacts, so the results
35974
+ # of training are not lost.
35975
+ #
35976
+ # The training algorithms provided by SageMaker automatically save the
35977
+ # intermediate results of a model training job when possible. This
35978
+ # attempt to save artifacts is only a best effort case as model might
35979
+ # not be in a state from which it can be saved. For example, if training
35980
+ # has just started, the model might not be ready to save. When saved,
35981
+ # this intermediate data is a valid model artifact. You can use it to
35982
+ # create a model with `CreateModel`.
35941
35983
  #
35942
35984
  # <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
35943
35985
  # intermediate model artifacts. When training NTMs, make sure that the
@@ -35958,14 +36000,14 @@ module Aws::SageMaker
35958
36000
  # compilation job can run.
35959
36001
  #
35960
36002
  # For compilation jobs, if the job does not complete during this time,
35961
- # you will receive a `TimeOut` error. We recommend starting with 900
35962
- # seconds and increase as necessary based on your model.
36003
+ # a `TimeOut` error is generated. We recommend starting with 900
36004
+ # seconds and increasing as necessary based on your model.
35963
36005
  #
35964
36006
  # For all other jobs, if the job does not complete during this time,
35965
- # Amazon SageMaker ends the job. When `RetryStrategy` is specified in
35966
- # the job request, `MaxRuntimeInSeconds` specifies the maximum time
35967
- # for all of the attempts in total, not each individual attempt. The
35968
- # default value is 1 day. The maximum value is 28 days.
36007
+ # SageMaker ends the job. When `RetryStrategy` is specified in the job
36008
+ # request, `MaxRuntimeInSeconds` specifies the maximum time for all of
36009
+ # the attempts in total, not each individual attempt. The default
36010
+ # value is 1 day. The maximum value is 28 days.
35969
36011
  # @return [Integer]
35970
36012
  #
35971
36013
  # @!attribute [rw] max_wait_time_in_seconds
@@ -35973,7 +36015,7 @@ module Aws::SageMaker
35973
36015
  # job has to complete. It is the amount of time spent waiting for Spot
35974
36016
  # capacity plus the amount of time the job can run. It must be equal
35975
36017
  # to or greater than `MaxRuntimeInSeconds`. If the job does not
35976
- # complete during this time, Amazon SageMaker ends the job.
36018
+ # complete during this time, SageMaker ends the job.
35977
36019
  #
35978
36020
  # When `RetryStrategy` is specified in the job request,
35979
36021
  # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
@@ -36393,8 +36435,8 @@ module Aws::SageMaker
36393
36435
  # For detailed information about the secondary status of the training
36394
36436
  # job, see `StatusMessage` under SecondaryStatusTransition.
36395
36437
  #
36396
- # Amazon SageMaker provides primary statuses and secondary statuses
36397
- # that apply to each of them:
36438
+ # SageMaker provides primary statuses and secondary statuses that
36439
+ # apply to each of them:
36398
36440
  #
36399
36441
  # InProgress
36400
36442
  # : * `Starting` - Starting the training job.
@@ -36467,7 +36509,7 @@ module Aws::SageMaker
36467
36509
  #
36468
36510
  # @!attribute [rw] output_data_config
36469
36511
  # The S3 path where model artifacts that you configured when creating
36470
- # the job are stored. Amazon SageMaker creates subfolders for model
36512
+ # the job are stored. SageMaker creates subfolders for model
36471
36513
  # artifacts.
36472
36514
  # @return [Types::OutputDataConfig]
36473
36515
  #
@@ -36489,13 +36531,13 @@ module Aws::SageMaker
36489
36531
  # @!attribute [rw] stopping_condition
36490
36532
  # Specifies a limit to how long a model training job can run. It also
36491
36533
  # specifies how long a managed Spot training job has to complete. When
36492
- # the job reaches the time limit, Amazon SageMaker ends the training
36493
- # job. Use this API to cap model training costs.
36534
+ # the job reaches the time limit, SageMaker ends the training job. Use
36535
+ # this API to cap model training costs.
36494
36536
  #
36495
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
36496
- # signal, which delays job termination for 120 seconds. Algorithms can
36497
- # use this 120-second window to save the model artifacts, so the
36498
- # results of training are not lost.
36537
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
36538
+ # which delays job termination for 120 seconds. Algorithms can use
36539
+ # this 120-second window to save the model artifacts, so the results
36540
+ # of training are not lost.
36499
36541
  # @return [Types::StoppingCondition]
36500
36542
  #
36501
36543
  # @!attribute [rw] creation_time
@@ -36516,8 +36558,7 @@ module Aws::SageMaker
36516
36558
  # You are billed for the time interval between the value of
36517
36559
  # `TrainingStartTime` and this time. For successful jobs and stopped
36518
36560
  # jobs, this is the time after model artifacts are uploaded. For
36519
- # failed jobs, this is the time when Amazon SageMaker detects a job
36520
- # failure.
36561
+ # failed jobs, this is the time when SageMaker detects a job failure.
36521
36562
  # @return [Time]
36522
36563
  #
36523
36564
  # @!attribute [rw] last_modified_time
@@ -36784,7 +36825,7 @@ module Aws::SageMaker
36784
36825
  #
36785
36826
  # @!attribute [rw] output_data_config
36786
36827
  # the path to the S3 bucket where you want to store model artifacts.
36787
- # Amazon SageMaker creates subfolders for the artifacts.
36828
+ # SageMaker creates subfolders for the artifacts.
36788
36829
  # @return [Types::OutputDataConfig]
36789
36830
  #
36790
36831
  # @!attribute [rw] resource_config
@@ -36795,12 +36836,12 @@ module Aws::SageMaker
36795
36836
  # @!attribute [rw] stopping_condition
36796
36837
  # Specifies a limit to how long a model training job can run. It also
36797
36838
  # specifies how long a managed Spot training job has to complete. When
36798
- # the job reaches the time limit, Amazon SageMaker ends the training
36799
- # job. Use this API to cap model training costs.
36839
+ # the job reaches the time limit, SageMaker ends the training job. Use
36840
+ # this API to cap model training costs.
36800
36841
  #
36801
- # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
36802
- # signal, which delays job termination for 120 seconds. Algorithms can
36803
- # use this 120-second window to save the model artifacts.
36842
+ # To stop a job, SageMaker sends the algorithm the SIGTERM signal,
36843
+ # which delays job termination for 120 seconds. Algorithms can use
36844
+ # this 120-second window to save the model artifacts.
36804
36845
  # @return [Types::StoppingCondition]
36805
36846
  #
36806
36847
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
@@ -39042,7 +39083,7 @@ module Aws::SageMaker
39042
39083
  # }
39043
39084
  #
39044
39085
  # @!attribute [rw] endpoint_name
39045
- # The name of an existing Amazon SageMaker endpoint.
39086
+ # The name of an existing SageMaker endpoint.
39046
39087
  # @return [String]
39047
39088
  #
39048
39089
  # @!attribute [rw] desired_weights_and_capacities
@@ -39411,12 +39452,12 @@ module Aws::SageMaker
39411
39452
  # @return [String]
39412
39453
  #
39413
39454
  # @!attribute [rw] role_arn
39414
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
39415
- # can assume to access the notebook instance. For more information,
39416
- # see [Amazon SageMaker Roles][1].
39455
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
39456
+ # assume to access the notebook instance. For more information, see
39457
+ # [SageMaker Roles][1].
39417
39458
  #
39418
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
39419
- # API must have the `iam:PassRole` permission.
39459
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
39460
+ # must have the `iam:PassRole` permission.
39420
39461
  #
39421
39462
  # </note>
39422
39463
  #
@@ -39446,12 +39487,12 @@ module Aws::SageMaker
39446
39487
  # @!attribute [rw] volume_size_in_gb
39447
39488
  # The size, in GB, of the ML storage volume to attach to the notebook
39448
39489
  # instance. The default value is 5 GB. ML storage volumes are
39449
- # encrypted, so Amazon SageMaker can't determine the amount of
39450
- # available free space on the volume. Because of this, you can
39451
- # increase the volume size when you update a notebook instance, but
39452
- # you can't decrease the volume size. If you want to decrease the
39453
- # size of the ML storage volume in use, create a new notebook instance
39454
- # with the desired size.
39490
+ # encrypted, so SageMaker can't determine the amount of available
39491
+ # free space on the volume. Because of this, you can increase the
39492
+ # volume size when you update a notebook instance, but you can't
39493
+ # decrease the volume size. If you want to decrease the size of the ML
39494
+ # storage volume in use, create a new notebook instance with the
39495
+ # desired size.
39455
39496
  # @return [Integer]
39456
39497
  #
39457
39498
  # @!attribute [rw] default_code_repository
@@ -39461,8 +39502,7 @@ module Aws::SageMaker
39461
39502
  # repository in [Amazon Web Services CodeCommit][1] or in any other
39462
39503
  # Git repository. When you open a notebook instance, it opens in the
39463
39504
  # directory that contains this repository. For more information, see
39464
- # [Associating Git Repositories with Amazon SageMaker Notebook
39465
- # Instances][2].
39505
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
39466
39506
  #
39467
39507
  #
39468
39508
  #
@@ -39477,7 +39517,7 @@ module Aws::SageMaker
39477
39517
  # in [Amazon Web Services CodeCommit][1] or in any other Git
39478
39518
  # repository. These repositories are cloned at the same level as the
39479
39519
  # default repository of your notebook instance. For more information,
39480
- # see [Associating Git Repositories with Amazon SageMaker Notebook
39520
+ # see [Associating Git Repositories with SageMaker Notebook
39481
39521
  # Instances][2].
39482
39522
  #
39483
39523
  #