aws-sdk-sagemaker 1.122.0 → 1.123.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +248 -244
- data/lib/aws-sdk-sagemaker/client_api.rb +8 -0
- data/lib/aws-sdk-sagemaker/types.rb +438 -398
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -192,7 +192,7 @@ module Aws::SageMaker
|
|
192
192
|
end
|
193
193
|
|
194
194
|
# @!attribute [rw] tags
|
195
|
-
# A list of tags associated with the
|
195
|
+
# A list of tags associated with the SageMaker resource.
|
196
196
|
# @return [Array<Types::Tag>]
|
197
197
|
#
|
198
198
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
|
@@ -328,9 +328,9 @@ module Aws::SageMaker
|
|
328
328
|
# Specifies the training algorithm to use in a CreateTrainingJob
|
329
329
|
# request.
|
330
330
|
#
|
331
|
-
# For more information about algorithms provided by
|
332
|
-
#
|
333
|
-
#
|
331
|
+
# For more information about algorithms provided by SageMaker, see
|
332
|
+
# [Algorithms][1]. For information about using your own algorithms, see
|
333
|
+
# [Using Your Own Algorithms with Amazon SageMaker][2].
|
334
334
|
#
|
335
335
|
#
|
336
336
|
#
|
@@ -357,10 +357,10 @@ module Aws::SageMaker
|
|
357
357
|
# The registry path of the Docker image that contains the training
|
358
358
|
# algorithm. For information about docker registry paths for built-in
|
359
359
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
360
|
-
# Parameters][1].
|
361
|
-
#
|
362
|
-
#
|
363
|
-
#
|
360
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
361
|
+
# and `registry/repository[@digest]` image path formats. For more
|
362
|
+
# information, see [Using Your Own Algorithms with Amazon
|
363
|
+
# SageMaker][2].
|
364
364
|
#
|
365
365
|
#
|
366
366
|
#
|
@@ -424,7 +424,7 @@ module Aws::SageMaker
|
|
424
424
|
# @!attribute [rw] metric_definitions
|
425
425
|
# A list of metric definition objects. Each object specifies the
|
426
426
|
# metric name and regular expressions used to parse algorithm logs.
|
427
|
-
#
|
427
|
+
# SageMaker publishes each metric to Amazon CloudWatch.
|
428
428
|
# @return [Array<Types::MetricDefinition>]
|
429
429
|
#
|
430
430
|
# @!attribute [rw] enable_sage_maker_metrics_time_series
|
@@ -432,9 +432,9 @@ module Aws::SageMaker
|
|
432
432
|
# `true`. The default is `false` and time-series metrics aren't
|
433
433
|
# generated except in the following cases:
|
434
434
|
#
|
435
|
-
# * You use one of the
|
435
|
+
# * You use one of the SageMaker built-in algorithms
|
436
436
|
#
|
437
|
-
# * You use one of the following [Prebuilt
|
437
|
+
# * You use one of the following [Prebuilt SageMaker Docker
|
438
438
|
# Images][1]\:
|
439
439
|
#
|
440
440
|
# * Tensorflow (version >= 1.15)
|
@@ -540,8 +540,8 @@ module Aws::SageMaker
|
|
540
540
|
include Aws::Structure
|
541
541
|
end
|
542
542
|
|
543
|
-
# Defines a training job and a batch transform job that
|
544
|
-
#
|
543
|
+
# Defines a training job and a batch transform job that SageMaker runs
|
544
|
+
# to validate your algorithm.
|
545
545
|
#
|
546
546
|
# The data provided in the validation profile is made available to your
|
547
547
|
# buyers on Amazon Web Services Marketplace.
|
@@ -636,12 +636,12 @@ module Aws::SageMaker
|
|
636
636
|
#
|
637
637
|
# @!attribute [rw] training_job_definition
|
638
638
|
# The `TrainingJobDefinition` object that describes the training job
|
639
|
-
# that
|
639
|
+
# that SageMaker runs to validate your algorithm.
|
640
640
|
# @return [Types::TrainingJobDefinition]
|
641
641
|
#
|
642
642
|
# @!attribute [rw] transform_job_definition
|
643
643
|
# The `TransformJobDefinition` object that describes the transform job
|
644
|
-
# that
|
644
|
+
# that SageMaker runs to validate your algorithm.
|
645
645
|
# @return [Types::TransformJobDefinition]
|
646
646
|
#
|
647
647
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
|
@@ -654,8 +654,8 @@ module Aws::SageMaker
|
|
654
654
|
include Aws::Structure
|
655
655
|
end
|
656
656
|
|
657
|
-
# Specifies configurations for one or more training jobs that
|
658
|
-
#
|
657
|
+
# Specifies configurations for one or more training jobs that SageMaker
|
658
|
+
# runs to test the algorithm.
|
659
659
|
#
|
660
660
|
# @note When making an API call, you may pass AlgorithmValidationSpecification
|
661
661
|
# data as a hash:
|
@@ -746,13 +746,13 @@ module Aws::SageMaker
|
|
746
746
|
# }
|
747
747
|
#
|
748
748
|
# @!attribute [rw] validation_role
|
749
|
-
# The IAM roles that
|
749
|
+
# The IAM roles that SageMaker uses to run the training jobs.
|
750
750
|
# @return [String]
|
751
751
|
#
|
752
752
|
# @!attribute [rw] validation_profiles
|
753
753
|
# An array of `AlgorithmValidationProfile` objects, each of which
|
754
|
-
# specifies a training job and batch transform job that
|
755
|
-
#
|
754
|
+
# specifies a training job and batch transform job that SageMaker runs
|
755
|
+
# to validate your algorithm.
|
756
756
|
# @return [Array<Types::AlgorithmValidationProfile>]
|
757
757
|
#
|
758
758
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
|
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
|
|
1742
1742
|
include Aws::Structure
|
1743
1743
|
end
|
1744
1744
|
|
1745
|
-
# Configures the behavior of the client used by
|
1746
|
-
#
|
1745
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1746
|
+
# with the model container during asynchronous inference.
|
1747
1747
|
#
|
1748
1748
|
# @note When making an API call, you may pass AsyncInferenceClientConfig
|
1749
1749
|
# data as a hash:
|
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
|
|
1754
1754
|
#
|
1755
1755
|
# @!attribute [rw] max_concurrent_invocations_per_instance
|
1756
1756
|
# The maximum number of concurrent requests sent by the SageMaker
|
1757
|
-
# client to the model container. If no value is provided,
|
1758
|
-
#
|
1757
|
+
# client to the model container. If no value is provided, SageMaker
|
1758
|
+
# chooses an optimal value.
|
1759
1759
|
# @return [Integer]
|
1760
1760
|
#
|
1761
1761
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
|
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
|
|
1787
1787
|
# }
|
1788
1788
|
#
|
1789
1789
|
# @!attribute [rw] client_config
|
1790
|
-
# Configures the behavior of the client used by
|
1791
|
-
#
|
1790
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1791
|
+
# with the model container during asynchronous inference.
|
1792
1792
|
# @return [Types::AsyncInferenceClientConfig]
|
1793
1793
|
#
|
1794
1794
|
# @!attribute [rw] output_config
|
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
|
|
1853
1853
|
#
|
1854
1854
|
# @!attribute [rw] kms_key_id
|
1855
1855
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
1856
|
-
# KMS) key that
|
1857
|
-
#
|
1856
|
+
# KMS) key that SageMaker uses to encrypt the asynchronous inference
|
1857
|
+
# output in Amazon S3.
|
1858
1858
|
# @return [String]
|
1859
1859
|
#
|
1860
1860
|
# @!attribute [rw] s3_output_path
|
@@ -2034,7 +2034,14 @@ module Aws::SageMaker
|
|
2034
2034
|
end
|
2035
2035
|
|
2036
2036
|
# A channel is a named input source that training algorithms can
|
2037
|
-
# consume.
|
2037
|
+
# consume. The validation dataset size is limited to less than 2 GB. The
|
2038
|
+
# training dataset size must be less than 100 GB. For more information,
|
2039
|
+
# see .
|
2040
|
+
#
|
2041
|
+
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
2042
|
+
# dataset.
|
2043
|
+
#
|
2044
|
+
# </note>
|
2038
2045
|
#
|
2039
2046
|
# @note When making an API call, you may pass AutoMLChannel
|
2040
2047
|
# data as a hash:
|
@@ -2049,6 +2056,7 @@ module Aws::SageMaker
|
|
2049
2056
|
# compression_type: "None", # accepts None, Gzip
|
2050
2057
|
# target_attribute_name: "TargetAttributeName", # required
|
2051
2058
|
# content_type: "ContentType",
|
2059
|
+
# channel_type: "training", # accepts training, validation
|
2052
2060
|
# }
|
2053
2061
|
#
|
2054
2062
|
# @!attribute [rw] data_source
|
@@ -2070,13 +2078,20 @@ module Aws::SageMaker
|
|
2070
2078
|
# default value is `text/csv;header=present`.
|
2071
2079
|
# @return [String]
|
2072
2080
|
#
|
2081
|
+
# @!attribute [rw] channel_type
|
2082
|
+
# The channel type (optional) is an enum string. The default value is
|
2083
|
+
# `training`. Channels for training and validation must share the same
|
2084
|
+
# `ContentType` and `TargetAttributeName`.
|
2085
|
+
# @return [String]
|
2086
|
+
#
|
2073
2087
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
|
2074
2088
|
#
|
2075
2089
|
class AutoMLChannel < Struct.new(
|
2076
2090
|
:data_source,
|
2077
2091
|
:compression_type,
|
2078
2092
|
:target_attribute_name,
|
2079
|
-
:content_type
|
2093
|
+
:content_type,
|
2094
|
+
:channel_type)
|
2080
2095
|
SENSITIVE = []
|
2081
2096
|
include Aws::Structure
|
2082
2097
|
end
|
@@ -2136,6 +2151,32 @@ module Aws::SageMaker
|
|
2136
2151
|
include Aws::Structure
|
2137
2152
|
end
|
2138
2153
|
|
2154
|
+
# This structure specifies how to split the data into train and test
|
2155
|
+
# datasets. The validation and training datasets must contain the same
|
2156
|
+
# headers. The validation dataset must be less than 2 GB in size.
|
2157
|
+
#
|
2158
|
+
# @note When making an API call, you may pass AutoMLDataSplitConfig
|
2159
|
+
# data as a hash:
|
2160
|
+
#
|
2161
|
+
# {
|
2162
|
+
# validation_fraction: 1.0,
|
2163
|
+
# }
|
2164
|
+
#
|
2165
|
+
# @!attribute [rw] validation_fraction
|
2166
|
+
# The validation fraction (optional) is a float that specifies the
|
2167
|
+
# portion of the training dataset to be used for validation. The
|
2168
|
+
# default value is 0.2, and values can range from 0 to 1. We recommend
|
2169
|
+
# setting this value to be less than 0.5.
|
2170
|
+
# @return [Float]
|
2171
|
+
#
|
2172
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
|
2173
|
+
#
|
2174
|
+
class AutoMLDataSplitConfig < Struct.new(
|
2175
|
+
:validation_fraction)
|
2176
|
+
SENSITIVE = []
|
2177
|
+
include Aws::Structure
|
2178
|
+
end
|
2179
|
+
|
2139
2180
|
# The artifacts that are generated during an AutoML job.
|
2140
2181
|
#
|
2141
2182
|
# @!attribute [rw] candidate_definition_notebook_location
|
@@ -2217,6 +2258,9 @@ module Aws::SageMaker
|
|
2217
2258
|
# subnets: ["SubnetId"], # required
|
2218
2259
|
# },
|
2219
2260
|
# },
|
2261
|
+
# data_split_config: {
|
2262
|
+
# validation_fraction: 1.0,
|
2263
|
+
# },
|
2220
2264
|
# }
|
2221
2265
|
#
|
2222
2266
|
# @!attribute [rw] completion_criteria
|
@@ -2229,11 +2273,18 @@ module Aws::SageMaker
|
|
2229
2273
|
# settings.
|
2230
2274
|
# @return [Types::AutoMLSecurityConfig]
|
2231
2275
|
#
|
2276
|
+
# @!attribute [rw] data_split_config
|
2277
|
+
# The configuration for splitting the input training dataset.
|
2278
|
+
#
|
2279
|
+
# Type: AutoMLDataSplitConfig
|
2280
|
+
# @return [Types::AutoMLDataSplitConfig]
|
2281
|
+
#
|
2232
2282
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
2233
2283
|
#
|
2234
2284
|
class AutoMLJobConfig < Struct.new(
|
2235
2285
|
:completion_criteria,
|
2236
|
-
:security_config
|
2286
|
+
:security_config,
|
2287
|
+
:data_split_config)
|
2237
2288
|
SENSITIVE = []
|
2238
2289
|
include Aws::Structure
|
2239
2290
|
end
|
@@ -3005,10 +3056,10 @@ module Aws::SageMaker
|
|
3005
3056
|
# @!attribute [rw] record_wrapper_type
|
3006
3057
|
# Specify RecordIO as the value when input data is in raw format but
|
3007
3058
|
# the training algorithm requires the RecordIO format. In this case,
|
3008
|
-
#
|
3009
|
-
#
|
3010
|
-
#
|
3011
|
-
#
|
3059
|
+
# SageMaker wraps each individual S3 object in a RecordIO record. If
|
3060
|
+
# the input data is already in RecordIO format, you don't need to set
|
3061
|
+
# this attribute. For more information, see [Create a Dataset Using
|
3062
|
+
# RecordIO][1].
|
3012
3063
|
#
|
3013
3064
|
# In File mode, leave this field unset or set it to None.
|
3014
3065
|
#
|
@@ -3019,15 +3070,15 @@ module Aws::SageMaker
|
|
3019
3070
|
#
|
3020
3071
|
# @!attribute [rw] input_mode
|
3021
3072
|
# (Optional) The input mode to use for the data channel in a training
|
3022
|
-
# job. If you don't set a value for `InputMode`,
|
3023
|
-
#
|
3024
|
-
#
|
3025
|
-
#
|
3026
|
-
#
|
3027
|
-
#
|
3028
|
-
#
|
3029
|
-
#
|
3030
|
-
#
|
3073
|
+
# job. If you don't set a value for `InputMode`, SageMaker uses the
|
3074
|
+
# value set for `TrainingInputMode`. Use this parameter to override
|
3075
|
+
# the `TrainingInputMode` setting in a AlgorithmSpecification request
|
3076
|
+
# when you have a channel that needs a different input mode from the
|
3077
|
+
# training job's general setting. To download the data from Amazon
|
3078
|
+
# Simple Storage Service (Amazon S3) to the provisioned ML storage
|
3079
|
+
# volume, and mount the directory to a Docker volume, use `File` input
|
3080
|
+
# mode. To stream data directly from Amazon S3 to the container,
|
3081
|
+
# choose `Pipe` input mode.
|
3031
3082
|
#
|
3032
3083
|
# To use a model for incremental training, choose `File` input model.
|
3033
3084
|
# @return [String]
|
@@ -3137,7 +3188,7 @@ module Aws::SageMaker
|
|
3137
3188
|
# }
|
3138
3189
|
#
|
3139
3190
|
# @!attribute [rw] s3_uri
|
3140
|
-
# Identifies the S3 path where you want
|
3191
|
+
# Identifies the S3 path where you want SageMaker to store
|
3141
3192
|
# checkpoints. For example, `s3://bucket-name/key-name-prefix`.
|
3142
3193
|
# @return [String]
|
3143
3194
|
#
|
@@ -3514,11 +3565,11 @@ module Aws::SageMaker
|
|
3514
3565
|
# Amazon EC2 Container Registry or in a Docker registry that is
|
3515
3566
|
# accessible from the same VPC that you configure for your endpoint.
|
3516
3567
|
# If you are using your own custom algorithm instead of an algorithm
|
3517
|
-
# provided by
|
3518
|
-
#
|
3519
|
-
#
|
3520
|
-
#
|
3521
|
-
#
|
3568
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
3569
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
3570
|
+
# and `registry/repository[@digest]` image path formats. For more
|
3571
|
+
# information, see [Using Your Own Algorithms with Amazon
|
3572
|
+
# SageMaker][1]
|
3522
3573
|
#
|
3523
3574
|
#
|
3524
3575
|
#
|
@@ -3545,7 +3596,7 @@ module Aws::SageMaker
|
|
3545
3596
|
# The S3 path where the model artifacts, which result from model
|
3546
3597
|
# training, are stored. This path must point to a single gzip
|
3547
3598
|
# compressed tar archive (.tar.gz suffix). The S3 path is required for
|
3548
|
-
#
|
3599
|
+
# SageMaker built-in algorithms, but not if you use your own
|
3549
3600
|
# algorithms. For more information on built-in algorithms, see [Common
|
3550
3601
|
# Parameters][1].
|
3551
3602
|
#
|
@@ -3554,17 +3605,17 @@ module Aws::SageMaker
|
|
3554
3605
|
#
|
3555
3606
|
# </note>
|
3556
3607
|
#
|
3557
|
-
# If you provide a value for this parameter,
|
3558
|
-
#
|
3559
|
-
#
|
3560
|
-
#
|
3561
|
-
#
|
3562
|
-
#
|
3563
|
-
#
|
3564
|
-
#
|
3565
|
-
#
|
3566
|
-
#
|
3567
|
-
# If you use a built-in algorithm to create a model,
|
3608
|
+
# If you provide a value for this parameter, SageMaker uses Amazon Web
|
3609
|
+
# Services Security Token Service to download model artifacts from the
|
3610
|
+
# S3 path you provide. Amazon Web Services STS is activated in your
|
3611
|
+
# IAM user account by default. If you previously deactivated Amazon
|
3612
|
+
# Web Services STS for a region, you need to reactivate Amazon Web
|
3613
|
+
# Services STS for that region. For more information, see [Activating
|
3614
|
+
# and Deactivating Amazon Web Services STS in an Amazon Web Services
|
3615
|
+
# Region][2] in the *Amazon Web Services Identity and Access
|
3616
|
+
# Management User Guide*.
|
3617
|
+
#
|
3618
|
+
# If you use a built-in algorithm to create a model, SageMaker
|
3568
3619
|
# requires that you provide a S3 path to the model artifacts in
|
3569
3620
|
# `ModelDataUrl`.
|
3570
3621
|
#
|
@@ -3717,8 +3768,8 @@ module Aws::SageMaker
|
|
3717
3768
|
#
|
3718
3769
|
# Auto
|
3719
3770
|
#
|
3720
|
-
# :
|
3721
|
-
#
|
3771
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
3772
|
+
# hyperparameter.
|
3722
3773
|
#
|
3723
3774
|
# Linear
|
3724
3775
|
#
|
@@ -4096,9 +4147,9 @@ module Aws::SageMaker
|
|
4096
4147
|
#
|
4097
4148
|
# @!attribute [rw] validation_specification
|
4098
4149
|
# Specifies configurations for one or more training jobs and that
|
4099
|
-
#
|
4100
|
-
# optionally, one or more batch transform jobs that
|
4101
|
-
#
|
4150
|
+
# SageMaker runs to test the algorithm's training code and,
|
4151
|
+
# optionally, one or more batch transform jobs that SageMaker runs to
|
4152
|
+
# test the algorithm's inference code.
|
4102
4153
|
# @return [Types::AlgorithmValidationSpecification]
|
4103
4154
|
#
|
4104
4155
|
# @!attribute [rw] certify_for_marketplace
|
@@ -4376,6 +4427,7 @@ module Aws::SageMaker
|
|
4376
4427
|
# compression_type: "None", # accepts None, Gzip
|
4377
4428
|
# target_attribute_name: "TargetAttributeName", # required
|
4378
4429
|
# content_type: "ContentType",
|
4430
|
+
# channel_type: "training", # accepts training, validation
|
4379
4431
|
# },
|
4380
4432
|
# ],
|
4381
4433
|
# output_data_config: { # required
|
@@ -4400,6 +4452,9 @@ module Aws::SageMaker
|
|
4400
4452
|
# subnets: ["SubnetId"], # required
|
4401
4453
|
# },
|
4402
4454
|
# },
|
4455
|
+
# data_split_config: {
|
4456
|
+
# validation_fraction: 1.0,
|
4457
|
+
# },
|
4403
4458
|
# },
|
4404
4459
|
# role_arn: "RoleArn", # required
|
4405
4460
|
# generate_candidate_definitions_only: false,
|
@@ -5361,9 +5416,9 @@ module Aws::SageMaker
|
|
5361
5416
|
#
|
5362
5417
|
# @!attribute [rw] kms_key_id
|
5363
5418
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
5364
|
-
# Management Service key that
|
5365
|
-
#
|
5366
|
-
#
|
5419
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
5420
|
+
# storage volume attached to the ML compute instance that hosts the
|
5421
|
+
# endpoint.
|
5367
5422
|
#
|
5368
5423
|
# The KmsKeyId can be any of the following formats:
|
5369
5424
|
#
|
@@ -6277,8 +6332,8 @@ module Aws::SageMaker
|
|
6277
6332
|
end
|
6278
6333
|
|
6279
6334
|
# @!attribute [rw] hyper_parameter_tuning_job_arn
|
6280
|
-
# The Amazon Resource Name (ARN) of the tuning job.
|
6281
|
-
#
|
6335
|
+
# The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
|
6336
|
+
# an ARN to a hyperparameter tuning job when you create it.
|
6282
6337
|
# @return [String]
|
6283
6338
|
#
|
6284
6339
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
|
@@ -6362,8 +6417,8 @@ module Aws::SageMaker
|
|
6362
6417
|
#
|
6363
6418
|
# @!attribute [rw] base_image
|
6364
6419
|
# The registry path of the container image to use as the starting
|
6365
|
-
# point for this version. The path is an Amazon Container
|
6366
|
-
# (ECR) URI in the following format:
|
6420
|
+
# point for this version. The path is an Amazon Elastic Container
|
6421
|
+
# Registry (ECR) URI in the following format:
|
6367
6422
|
#
|
6368
6423
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
6369
6424
|
# [@digest]>`
|
@@ -7216,14 +7271,14 @@ module Aws::SageMaker
|
|
7216
7271
|
# @return [Types::InferenceExecutionConfig]
|
7217
7272
|
#
|
7218
7273
|
# @!attribute [rw] execution_role_arn
|
7219
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
7220
|
-
#
|
7221
|
-
#
|
7274
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
7275
|
+
# assume to access model artifacts and docker image for deployment on
|
7276
|
+
# ML compute instances or for batch transform jobs. Deploying on ML
|
7222
7277
|
# compute instances is part of model hosting. For more information,
|
7223
|
-
# see [
|
7278
|
+
# see [SageMaker Roles][1].
|
7224
7279
|
#
|
7225
|
-
# <note markdown="1"> To be able to pass this role to
|
7226
|
-
#
|
7280
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
7281
|
+
# must have the `iam:PassRole` permission.
|
7227
7282
|
#
|
7228
7283
|
# </note>
|
7229
7284
|
#
|
@@ -7278,7 +7333,7 @@ module Aws::SageMaker
|
|
7278
7333
|
end
|
7279
7334
|
|
7280
7335
|
# @!attribute [rw] model_arn
|
7281
|
-
# The ARN of the model created in
|
7336
|
+
# The ARN of the model created in SageMaker.
|
7282
7337
|
# @return [String]
|
7283
7338
|
#
|
7284
7339
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
|
@@ -7611,7 +7666,7 @@ module Aws::SageMaker
|
|
7611
7666
|
# @return [Types::InferenceSpecification]
|
7612
7667
|
#
|
7613
7668
|
# @!attribute [rw] validation_specification
|
7614
|
-
# Specifies configurations for one or more transform jobs that
|
7669
|
+
# Specifies configurations for one or more transform jobs that
|
7615
7670
|
# SageMaker runs to test the model package.
|
7616
7671
|
# @return [Types::ModelPackageValidationSpecification]
|
7617
7672
|
#
|
@@ -8073,15 +8128,14 @@ module Aws::SageMaker
|
|
8073
8128
|
#
|
8074
8129
|
# @!attribute [rw] role_arn
|
8075
8130
|
# When you send any requests to Amazon Web Services resources from the
|
8076
|
-
# notebook instance,
|
8077
|
-
#
|
8078
|
-
#
|
8079
|
-
#
|
8080
|
-
#
|
8081
|
-
# SageMaker Roles][1].
|
8131
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
8132
|
+
# your behalf. You must grant this role necessary permissions so
|
8133
|
+
# SageMaker can perform these tasks. The policy must allow the
|
8134
|
+
# SageMaker service principal (sagemaker.amazonaws.com) permissions to
|
8135
|
+
# assume this role. For more information, see [SageMaker Roles][1].
|
8082
8136
|
#
|
8083
|
-
# <note markdown="1"> To be able to pass this role to
|
8084
|
-
#
|
8137
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
8138
|
+
# must have the `iam:PassRole` permission.
|
8085
8139
|
#
|
8086
8140
|
# </note>
|
8087
8141
|
#
|
@@ -8092,9 +8146,9 @@ module Aws::SageMaker
|
|
8092
8146
|
#
|
8093
8147
|
# @!attribute [rw] kms_key_id
|
8094
8148
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
8095
|
-
# Management Service key that
|
8096
|
-
#
|
8097
|
-
#
|
8149
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
8150
|
+
# storage volume attached to your notebook instance. The KMS key you
|
8151
|
+
# provide must be enabled. For information, see [Enabling and
|
8098
8152
|
# Disabling Keys][1] in the *Amazon Web Services Key Management
|
8099
8153
|
# Service Developer Guide*.
|
8100
8154
|
#
|
@@ -8125,11 +8179,11 @@ module Aws::SageMaker
|
|
8125
8179
|
# @return [String]
|
8126
8180
|
#
|
8127
8181
|
# @!attribute [rw] direct_internet_access
|
8128
|
-
# Sets whether
|
8129
|
-
#
|
8130
|
-
#
|
8131
|
-
#
|
8132
|
-
#
|
8182
|
+
# Sets whether SageMaker provides internet access to the notebook
|
8183
|
+
# instance. If you set this to `Disabled` this notebook instance is
|
8184
|
+
# able to access resources only in your VPC, and is not be able to
|
8185
|
+
# connect to SageMaker training and endpoint services unless you
|
8186
|
+
# configure a NAT Gateway in your VPC.
|
8133
8187
|
#
|
8134
8188
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
8135
8189
|
# by Default][1]. You can set the value of this parameter to
|
@@ -8163,8 +8217,7 @@ module Aws::SageMaker
|
|
8163
8217
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
8164
8218
|
# Git repository. When you open a notebook instance, it opens in the
|
8165
8219
|
# directory that contains this repository. For more information, see
|
8166
|
-
# [Associating Git Repositories with
|
8167
|
-
# Instances][2].
|
8220
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
8168
8221
|
#
|
8169
8222
|
#
|
8170
8223
|
#
|
@@ -8179,7 +8232,7 @@ module Aws::SageMaker
|
|
8179
8232
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
8180
8233
|
# repository. These repositories are cloned at the same level as the
|
8181
8234
|
# default repository of your notebook instance. For more information,
|
8182
|
-
# see [Associating Git Repositories with
|
8235
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
8183
8236
|
# Instances][2].
|
8184
8237
|
#
|
8185
8238
|
#
|
@@ -8974,7 +9027,7 @@ module Aws::SageMaker
|
|
8974
9027
|
# Algorithm-specific parameters that influence the quality of the
|
8975
9028
|
# model. You set hyperparameters before you start the learning
|
8976
9029
|
# process. For a list of hyperparameters for each training algorithm
|
8977
|
-
# provided by
|
9030
|
+
# provided by SageMaker, see [Algorithms][1].
|
8978
9031
|
#
|
8979
9032
|
# You can specify a maximum of 100 hyperparameters. Each
|
8980
9033
|
# hyperparameter is a key-value pair. Each key and value is limited to
|
@@ -8988,8 +9041,8 @@ module Aws::SageMaker
|
|
8988
9041
|
# @!attribute [rw] algorithm_specification
|
8989
9042
|
# The registry path of the Docker image that contains the training
|
8990
9043
|
# algorithm and algorithm-specific metadata, including the input mode.
|
8991
|
-
# For more information about algorithms provided by
|
8992
|
-
#
|
9044
|
+
# For more information about algorithms provided by SageMaker, see
|
9045
|
+
# [Algorithms][1]. For information about providing your own
|
8993
9046
|
# algorithms, see [Using Your Own Algorithms with Amazon
|
8994
9047
|
# SageMaker][2].
|
8995
9048
|
#
|
@@ -9000,18 +9053,18 @@ module Aws::SageMaker
|
|
9000
9053
|
# @return [Types::AlgorithmSpecification]
|
9001
9054
|
#
|
9002
9055
|
# @!attribute [rw] role_arn
|
9003
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
9004
|
-
#
|
9056
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
9057
|
+
# assume to perform tasks on your behalf.
|
9005
9058
|
#
|
9006
|
-
# During model training,
|
9007
|
-
#
|
9008
|
-
#
|
9009
|
-
#
|
9010
|
-
#
|
9011
|
-
#
|
9059
|
+
# During model training, SageMaker needs your permission to read input
|
9060
|
+
# data from an S3 bucket, download a Docker image that contains
|
9061
|
+
# training code, write model artifacts to an S3 bucket, write logs to
|
9062
|
+
# Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
|
9063
|
+
# You grant permissions for all of these tasks to an IAM role. For
|
9064
|
+
# more information, see [SageMaker Roles][1].
|
9012
9065
|
#
|
9013
|
-
# <note markdown="1"> To be able to pass this role to
|
9014
|
-
#
|
9066
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
9067
|
+
# must have the `iam:PassRole` permission.
|
9015
9068
|
#
|
9016
9069
|
# </note>
|
9017
9070
|
#
|
@@ -9032,17 +9085,17 @@ module Aws::SageMaker
|
|
9032
9085
|
# MIME type, compression method, and whether the data is wrapped in
|
9033
9086
|
# RecordIO format.
|
9034
9087
|
#
|
9035
|
-
# Depending on the input mode that the algorithm supports,
|
9036
|
-
#
|
9037
|
-
#
|
9038
|
-
#
|
9039
|
-
#
|
9040
|
-
#
|
9088
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
9089
|
+
# either copies input data files from an S3 bucket to a local
|
9090
|
+
# directory in the Docker container, or makes it available as input
|
9091
|
+
# streams. For example, if you specify an EFS location, input data
|
9092
|
+
# files are available as input streams. They do not need to be
|
9093
|
+
# downloaded.
|
9041
9094
|
# @return [Array<Types::Channel>]
|
9042
9095
|
#
|
9043
9096
|
# @!attribute [rw] output_data_config
|
9044
9097
|
# Specifies the path to the S3 location where you want to store model
|
9045
|
-
# artifacts.
|
9098
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
9046
9099
|
# @return [Types::OutputDataConfig]
|
9047
9100
|
#
|
9048
9101
|
# @!attribute [rw] resource_config
|
@@ -9051,9 +9104,9 @@ module Aws::SageMaker
|
|
9051
9104
|
#
|
9052
9105
|
# ML storage volumes store model artifacts and incremental states.
|
9053
9106
|
# Training algorithms might also use ML storage volumes for scratch
|
9054
|
-
# space. If you want
|
9055
|
-
#
|
9056
|
-
#
|
9107
|
+
# space. If you want SageMaker to use the ML storage volume to store
|
9108
|
+
# the training data, choose `File` as the `TrainingInputMode` in the
|
9109
|
+
# algorithm specification. For distributed training algorithms,
|
9057
9110
|
# specify an instance count greater than 1.
|
9058
9111
|
# @return [Types::ResourceConfig]
|
9059
9112
|
#
|
@@ -9071,13 +9124,13 @@ module Aws::SageMaker
|
|
9071
9124
|
# @!attribute [rw] stopping_condition
|
9072
9125
|
# Specifies a limit to how long a model training job can run. It also
|
9073
9126
|
# specifies how long a managed Spot training job has to complete. When
|
9074
|
-
# the job reaches the time limit,
|
9075
|
-
#
|
9127
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
9128
|
+
# this API to cap model training costs.
|
9076
9129
|
#
|
9077
|
-
# To stop a job,
|
9078
|
-
#
|
9079
|
-
#
|
9080
|
-
#
|
9130
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
9131
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
9132
|
+
# this 120-second window to save the model artifacts, so the results
|
9133
|
+
# of training are not lost.
|
9081
9134
|
# @return [Types::StoppingCondition]
|
9082
9135
|
#
|
9083
9136
|
# @!attribute [rw] tags
|
@@ -9095,7 +9148,7 @@ module Aws::SageMaker
|
|
9095
9148
|
# Isolates the training container. No inbound or outbound network
|
9096
9149
|
# calls can be made, except for calls between peers within a training
|
9097
9150
|
# cluster for distributed training. If you enable network isolation
|
9098
|
-
# for training jobs that are configured to use a VPC,
|
9151
|
+
# for training jobs that are configured to use a VPC, SageMaker
|
9099
9152
|
# downloads and uploads customer data and model artifacts through the
|
9100
9153
|
# specified VPC, but the training container does not have network
|
9101
9154
|
# access.
|
@@ -9325,6 +9378,11 @@ module Aws::SageMaker
|
|
9325
9378
|
# records fit within the maximum payload size, we recommend using a
|
9326
9379
|
# slightly larger value. The default value is `6` MB.
|
9327
9380
|
#
|
9381
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
9382
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
9383
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
9384
|
+
# MB.
|
9385
|
+
#
|
9328
9386
|
# For cases where the payload might be arbitrarily large and is
|
9329
9387
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
9330
9388
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -10140,8 +10198,8 @@ module Aws::SageMaker
|
|
10140
10198
|
# A [JSONPath][1] expression used to select a portion of the input
|
10141
10199
|
# data to pass to the algorithm. Use the `InputFilter` parameter to
|
10142
10200
|
# exclude fields, such as an ID column, from the input. If you want
|
10143
|
-
#
|
10144
|
-
#
|
10201
|
+
# SageMaker to pass the entire input dataset to the algorithm, accept
|
10202
|
+
# the default value `$`.
|
10145
10203
|
#
|
10146
10204
|
# Examples: `"$"`, `"$[1:]"`, `"$.features"`
|
10147
10205
|
#
|
@@ -10153,10 +10211,9 @@ module Aws::SageMaker
|
|
10153
10211
|
# @!attribute [rw] output_filter
|
10154
10212
|
# A [JSONPath][1] expression used to select a portion of the joined
|
10155
10213
|
# dataset to save in the output file for a batch transform job. If you
|
10156
|
-
# want
|
10157
|
-
#
|
10158
|
-
#
|
10159
|
-
# get an error.
|
10214
|
+
# want SageMaker to store the entire input dataset in the output file,
|
10215
|
+
# leave the default value, `$`. If you specify indexes that aren't
|
10216
|
+
# within the dimension size of the joined dataset, you get an error.
|
10160
10217
|
#
|
10161
10218
|
# Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
|
10162
10219
|
#
|
@@ -11285,7 +11342,7 @@ module Aws::SageMaker
|
|
11285
11342
|
# }
|
11286
11343
|
#
|
11287
11344
|
# @!attribute [rw] notebook_instance_name
|
11288
|
-
# The name of the
|
11345
|
+
# The name of the SageMaker notebook instance to delete.
|
11289
11346
|
# @return [String]
|
11290
11347
|
#
|
11291
11348
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
|
@@ -11826,7 +11883,7 @@ module Aws::SageMaker
|
|
11826
11883
|
#
|
11827
11884
|
# @!attribute [rw] validation_specification
|
11828
11885
|
# Details about configurations for one or more training jobs that
|
11829
|
-
#
|
11886
|
+
# SageMaker runs to test the algorithm.
|
11830
11887
|
# @return [Types::AlgorithmValidationSpecification]
|
11831
11888
|
#
|
11832
11889
|
# @!attribute [rw] algorithm_status
|
@@ -13037,7 +13094,7 @@ module Aws::SageMaker
|
|
13037
13094
|
end
|
13038
13095
|
|
13039
13096
|
# @!attribute [rw] endpoint_config_name
|
13040
|
-
# Name of the
|
13097
|
+
# Name of the SageMaker endpoint configuration.
|
13041
13098
|
# @return [String]
|
13042
13099
|
#
|
13043
13100
|
# @!attribute [rw] endpoint_config_arn
|
@@ -13979,8 +14036,8 @@ module Aws::SageMaker
|
|
13979
14036
|
# @return [Types::LabelingJobOutputConfig]
|
13980
14037
|
#
|
13981
14038
|
# @!attribute [rw] role_arn
|
13982
|
-
# The Amazon Resource Name (ARN) that
|
13983
|
-
#
|
14039
|
+
# The Amazon Resource Name (ARN) that SageMaker assumes to perform
|
14040
|
+
# tasks on your behalf during data labeling.
|
13984
14041
|
# @return [String]
|
13985
14042
|
#
|
13986
14043
|
# @!attribute [rw] label_category_config_s3_uri
|
@@ -14346,7 +14403,7 @@ module Aws::SageMaker
|
|
14346
14403
|
end
|
14347
14404
|
|
14348
14405
|
# @!attribute [rw] model_name
|
14349
|
-
# Name of the
|
14406
|
+
# Name of the SageMaker model.
|
14350
14407
|
# @return [String]
|
14351
14408
|
#
|
14352
14409
|
# @!attribute [rw] primary_container
|
@@ -14416,7 +14473,7 @@ module Aws::SageMaker
|
|
14416
14473
|
# }
|
14417
14474
|
#
|
14418
14475
|
# @!attribute [rw] model_package_group_name
|
14419
|
-
# The name of
|
14476
|
+
# The name of gthe model group to describe.
|
14420
14477
|
# @return [String]
|
14421
14478
|
#
|
14422
14479
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
|
@@ -14560,7 +14617,7 @@ module Aws::SageMaker
|
|
14560
14617
|
# @return [Types::ModelMetrics]
|
14561
14618
|
#
|
14562
14619
|
# @!attribute [rw] last_modified_time
|
14563
|
-
# The last time the model package was modified.
|
14620
|
+
# The last time that the model package was modified.
|
14564
14621
|
# @return [Time]
|
14565
14622
|
#
|
14566
14623
|
# @!attribute [rw] last_modified_by
|
@@ -14904,7 +14961,7 @@ module Aws::SageMaker
|
|
14904
14961
|
# @return [String]
|
14905
14962
|
#
|
14906
14963
|
# @!attribute [rw] notebook_instance_name
|
14907
|
-
# The name of the
|
14964
|
+
# The name of the SageMaker notebook instance.
|
14908
14965
|
# @return [String]
|
14909
14966
|
#
|
14910
14967
|
# @!attribute [rw] notebook_instance_status
|
@@ -14938,14 +14995,13 @@ module Aws::SageMaker
|
|
14938
14995
|
# @return [String]
|
14939
14996
|
#
|
14940
14997
|
# @!attribute [rw] kms_key_id
|
14941
|
-
# The Amazon Web Services KMS key ID
|
14942
|
-
#
|
14943
|
-
# instance.
|
14998
|
+
# The Amazon Web Services KMS key ID SageMaker uses to encrypt data
|
14999
|
+
# when storing it on the ML storage volume attached to the instance.
|
14944
15000
|
# @return [String]
|
14945
15001
|
#
|
14946
15002
|
# @!attribute [rw] network_interface_id
|
14947
|
-
# The network interface IDs that
|
14948
|
-
#
|
15003
|
+
# The network interface IDs that SageMaker created at the time of
|
15004
|
+
# creating the instance.
|
14949
15005
|
# @return [String]
|
14950
15006
|
#
|
14951
15007
|
# @!attribute [rw] last_modified_time
|
@@ -14970,10 +15026,10 @@ module Aws::SageMaker
|
|
14970
15026
|
# @return [String]
|
14971
15027
|
#
|
14972
15028
|
# @!attribute [rw] direct_internet_access
|
14973
|
-
# Describes whether
|
14974
|
-
#
|
14975
|
-
#
|
14976
|
-
#
|
15029
|
+
# Describes whether SageMaker provides internet access to the notebook
|
15030
|
+
# instance. If this value is set to *Disabled*, the notebook instance
|
15031
|
+
# does not have internet access, and cannot connect to SageMaker
|
15032
|
+
# training and endpoint services.
|
14977
15033
|
#
|
14978
15034
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
14979
15035
|
# by Default][1].
|
@@ -15006,8 +15062,7 @@ module Aws::SageMaker
|
|
15006
15062
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
15007
15063
|
# Git repository. When you open a notebook instance, it opens in the
|
15008
15064
|
# directory that contains this repository. For more information, see
|
15009
|
-
# [Associating Git Repositories with
|
15010
|
-
# Instances][2].
|
15065
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
15011
15066
|
#
|
15012
15067
|
#
|
15013
15068
|
#
|
@@ -15022,7 +15077,7 @@ module Aws::SageMaker
|
|
15022
15077
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
15023
15078
|
# repository. These repositories are cloned at the same level as the
|
15024
15079
|
# default repository of your notebook instance. For more information,
|
15025
|
-
# see [Associating Git Repositories with
|
15080
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
15026
15081
|
# Instances][2].
|
15027
15082
|
#
|
15028
15083
|
#
|
@@ -15644,7 +15699,7 @@ module Aws::SageMaker
|
|
15644
15699
|
# @return [String]
|
15645
15700
|
#
|
15646
15701
|
# @!attribute [rw] labeling_job_arn
|
15647
|
-
# The Amazon Resource Name (ARN) of the
|
15702
|
+
# The Amazon Resource Name (ARN) of the SageMaker Ground Truth
|
15648
15703
|
# labeling job that created the transform or training job.
|
15649
15704
|
# @return [String]
|
15650
15705
|
#
|
@@ -15660,7 +15715,7 @@ module Aws::SageMaker
|
|
15660
15715
|
# @!attribute [rw] training_job_status
|
15661
15716
|
# The status of the training job.
|
15662
15717
|
#
|
15663
|
-
#
|
15718
|
+
# SageMaker provides the following training job statuses:
|
15664
15719
|
#
|
15665
15720
|
# * `InProgress` - The training is in progress.
|
15666
15721
|
#
|
@@ -15682,8 +15737,8 @@ module Aws::SageMaker
|
|
15682
15737
|
# For detailed information on the secondary status of the training
|
15683
15738
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
15684
15739
|
#
|
15685
|
-
#
|
15686
|
-
#
|
15740
|
+
# SageMaker provides primary statuses and secondary statuses that
|
15741
|
+
# apply to each of them:
|
15687
15742
|
#
|
15688
15743
|
# InProgress
|
15689
15744
|
# : * `Starting` - Starting the training job.
|
@@ -15762,7 +15817,7 @@ module Aws::SageMaker
|
|
15762
15817
|
#
|
15763
15818
|
# @!attribute [rw] output_data_config
|
15764
15819
|
# The S3 path where model artifacts that you configured when creating
|
15765
|
-
# the job are stored.
|
15820
|
+
# the job are stored. SageMaker creates subfolders for model
|
15766
15821
|
# artifacts.
|
15767
15822
|
# @return [Types::OutputDataConfig]
|
15768
15823
|
#
|
@@ -15784,13 +15839,13 @@ module Aws::SageMaker
|
|
15784
15839
|
# @!attribute [rw] stopping_condition
|
15785
15840
|
# Specifies a limit to how long a model training job can run. It also
|
15786
15841
|
# specifies how long a managed Spot training job has to complete. When
|
15787
|
-
# the job reaches the time limit,
|
15788
|
-
#
|
15842
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
15843
|
+
# this API to cap model training costs.
|
15789
15844
|
#
|
15790
|
-
# To stop a job,
|
15791
|
-
#
|
15792
|
-
#
|
15793
|
-
#
|
15845
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
15846
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
15847
|
+
# this 120-second window to save the model artifacts, so the results
|
15848
|
+
# of training are not lost.
|
15794
15849
|
# @return [Types::StoppingCondition]
|
15795
15850
|
#
|
15796
15851
|
# @!attribute [rw] creation_time
|
@@ -15811,8 +15866,7 @@ module Aws::SageMaker
|
|
15811
15866
|
# You are billed for the time interval between the value of
|
15812
15867
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
15813
15868
|
# jobs, this is the time after model artifacts are uploaded. For
|
15814
|
-
# failed jobs, this is the time when
|
15815
|
-
# failure.
|
15869
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
15816
15870
|
# @return [Time]
|
15817
15871
|
#
|
15818
15872
|
# @!attribute [rw] last_modified_time
|
@@ -15835,10 +15889,9 @@ module Aws::SageMaker
|
|
15835
15889
|
# If you want to allow inbound or outbound network calls, except for
|
15836
15890
|
# calls between peers within a training cluster for distributed
|
15837
15891
|
# training, choose `True`. If you enable network isolation for
|
15838
|
-
# training jobs that are configured to use a VPC,
|
15839
|
-
#
|
15840
|
-
#
|
15841
|
-
# access.
|
15892
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
15893
|
+
# and uploads customer data and model artifacts through the specified
|
15894
|
+
# VPC, but the training container does not have network access.
|
15842
15895
|
# @return [Boolean]
|
15843
15896
|
#
|
15844
15897
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -15870,7 +15923,7 @@ module Aws::SageMaker
|
|
15870
15923
|
#
|
15871
15924
|
# Multiply `BillableTimeInSeconds` by the number of instances
|
15872
15925
|
# (`InstanceCount`) in your training cluster to get the total compute
|
15873
|
-
# time SageMaker
|
15926
|
+
# time SageMaker bills you if you run distributed training. The
|
15874
15927
|
# formula is as follows: `BillableTimeInSeconds * InstanceCount` .
|
15875
15928
|
#
|
15876
15929
|
# You can calculate the savings from using managed spot training using
|
@@ -20078,10 +20131,10 @@ module Aws::SageMaker
|
|
20078
20131
|
# The registry path of the Docker image that contains the training
|
20079
20132
|
# algorithm. For information about Docker registry paths for built-in
|
20080
20133
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
20081
|
-
# Parameters][1].
|
20082
|
-
#
|
20083
|
-
#
|
20084
|
-
#
|
20134
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
20135
|
+
# and `registry/repository[@digest]` image path formats. For more
|
20136
|
+
# information, see [Using Your Own Algorithms with Amazon
|
20137
|
+
# SageMaker][2].
|
20085
20138
|
#
|
20086
20139
|
#
|
20087
20140
|
#
|
@@ -20406,27 +20459,26 @@ module Aws::SageMaker
|
|
20406
20459
|
#
|
20407
20460
|
# Storage volumes store model artifacts and incremental states.
|
20408
20461
|
# Training algorithms might also use storage volumes for scratch
|
20409
|
-
# space. If you want
|
20410
|
-
#
|
20411
|
-
#
|
20462
|
+
# space. If you want SageMaker to use the storage volume to store the
|
20463
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
20464
|
+
# algorithm specification. For distributed training algorithms,
|
20412
20465
|
# specify an instance count greater than 1.
|
20413
20466
|
# @return [Types::ResourceConfig]
|
20414
20467
|
#
|
20415
20468
|
# @!attribute [rw] stopping_condition
|
20416
20469
|
# Specifies a limit to how long a model hyperparameter training job
|
20417
20470
|
# can run. It also specifies how long a managed spot training job has
|
20418
|
-
# to complete. When the job reaches the time limit,
|
20419
|
-
#
|
20471
|
+
# to complete. When the job reaches the time limit, SageMaker ends the
|
20472
|
+
# training job. Use this API to cap model training costs.
|
20420
20473
|
# @return [Types::StoppingCondition]
|
20421
20474
|
#
|
20422
20475
|
# @!attribute [rw] enable_network_isolation
|
20423
20476
|
# Isolates the training container. No inbound or outbound network
|
20424
20477
|
# calls can be made, except for calls between peers within a training
|
20425
20478
|
# cluster for distributed training. If network isolation is used for
|
20426
|
-
# training jobs that are configured to use a VPC,
|
20427
|
-
#
|
20428
|
-
#
|
20429
|
-
# access.
|
20479
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
20480
|
+
# and uploads customer data and model artifacts through the specified
|
20481
|
+
# VPC, but the training container does not have network access.
|
20430
20482
|
# @return [Boolean]
|
20431
20483
|
#
|
20432
20484
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -20476,7 +20528,7 @@ module Aws::SageMaker
|
|
20476
20528
|
include Aws::Structure
|
20477
20529
|
end
|
20478
20530
|
|
20479
|
-
#
|
20531
|
+
# The container for the summary information about a training job.
|
20480
20532
|
#
|
20481
20533
|
# @!attribute [rw] training_job_definition_name
|
20482
20534
|
# The training job definition name.
|
@@ -20507,8 +20559,7 @@ module Aws::SageMaker
|
|
20507
20559
|
# You are billed for the time interval between the value of
|
20508
20560
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
20509
20561
|
# jobs, this is the time after model artifacts are uploaded. For
|
20510
|
-
# failed jobs, this is the time when
|
20511
|
-
# failure.
|
20562
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
20512
20563
|
# @return [Time]
|
20513
20564
|
#
|
20514
20565
|
# @!attribute [rw] training_job_status
|
@@ -20657,9 +20708,9 @@ module Aws::SageMaker
|
|
20657
20708
|
#
|
20658
20709
|
# AUTO
|
20659
20710
|
#
|
20660
|
-
# :
|
20661
|
-
#
|
20662
|
-
#
|
20711
|
+
# : SageMaker stops training jobs launched by the hyperparameter
|
20712
|
+
# tuning job when they are unlikely to perform better than
|
20713
|
+
# previously completed training jobs. For more information, see
|
20663
20714
|
# [Stop Training Jobs Early][1].
|
20664
20715
|
#
|
20665
20716
|
#
|
@@ -21460,8 +21511,8 @@ module Aws::SageMaker
|
|
21460
21511
|
#
|
21461
21512
|
# Auto
|
21462
21513
|
#
|
21463
|
-
# :
|
21464
|
-
#
|
21514
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
21515
|
+
# hyperparameter.
|
21465
21516
|
#
|
21466
21517
|
# Linear
|
21467
21518
|
#
|
@@ -21536,12 +21587,20 @@ module Aws::SageMaker
|
|
21536
21587
|
#
|
21537
21588
|
# @!attribute [rw] default_resource_spec
|
21538
21589
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21539
|
-
# default SageMaker image used by the JupyterServer app.
|
21590
|
+
# default SageMaker image used by the JupyterServer app. If you use
|
21591
|
+
# the `LifecycleConfigArns` parameter, then this parameter is also
|
21592
|
+
# required.
|
21540
21593
|
# @return [Types::ResourceSpec]
|
21541
21594
|
#
|
21542
21595
|
# @!attribute [rw] lifecycle_config_arns
|
21543
21596
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21544
|
-
# attached to the JupyterServerApp.
|
21597
|
+
# attached to the JupyterServerApp. If you use this parameter, the
|
21598
|
+
# `DefaultResourceSpec` parameter is also required.
|
21599
|
+
#
|
21600
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21601
|
+
# an empty list.
|
21602
|
+
#
|
21603
|
+
# </note>
|
21545
21604
|
# @return [Array<String>]
|
21546
21605
|
#
|
21547
21606
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
|
@@ -21578,6 +21637,14 @@ module Aws::SageMaker
|
|
21578
21637
|
# @!attribute [rw] default_resource_spec
|
21579
21638
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21580
21639
|
# default SageMaker image used by the KernelGateway app.
|
21640
|
+
#
|
21641
|
+
# <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
|
21642
|
+
# type value set here. The default instance type set here is used when
|
21643
|
+
# Apps are created using the Amazon Web Services Command Line
|
21644
|
+
# Interface or Amazon Web Services CloudFormation and the instance
|
21645
|
+
# type parameter value is not passed.
|
21646
|
+
#
|
21647
|
+
# </note>
|
21581
21648
|
# @return [Types::ResourceSpec]
|
21582
21649
|
#
|
21583
21650
|
# @!attribute [rw] custom_images
|
@@ -21588,6 +21655,11 @@ module Aws::SageMaker
|
|
21588
21655
|
# @!attribute [rw] lifecycle_config_arns
|
21589
21656
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21590
21657
|
# attached to the the user profile or domain.
|
21658
|
+
#
|
21659
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21660
|
+
# an empty list.
|
21661
|
+
#
|
21662
|
+
# </note>
|
21591
21663
|
# @return [Array<String>]
|
21592
21664
|
#
|
21593
21665
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
|
@@ -21795,8 +21867,8 @@ module Aws::SageMaker
|
|
21795
21867
|
#
|
21796
21868
|
# @!attribute [rw] content_classifiers
|
21797
21869
|
# Declares that your content is free of personally identifiable
|
21798
|
-
# information or adult content.
|
21799
|
-
#
|
21870
|
+
# information or adult content. SageMaker may restrict the Amazon
|
21871
|
+
# Mechanical Turk workers that can view your task based on this
|
21800
21872
|
# information.
|
21801
21873
|
# @return [Array<String>]
|
21802
21874
|
#
|
@@ -21940,8 +22012,8 @@ module Aws::SageMaker
|
|
21940
22012
|
# @return [String]
|
21941
22013
|
#
|
21942
22014
|
# @!attribute [rw] final_active_learning_model_arn
|
21943
|
-
# The Amazon Resource Name (ARN) for the most recent
|
21944
|
-
#
|
22015
|
+
# The Amazon Resource Name (ARN) for the most recent SageMaker model
|
22016
|
+
# trained as part of automated data labeling.
|
21945
22017
|
# @return [String]
|
21946
22018
|
#
|
21947
22019
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
|
@@ -22451,8 +22523,8 @@ module Aws::SageMaker
|
|
22451
22523
|
# @return [Array<Types::AlgorithmSummary>]
|
22452
22524
|
#
|
22453
22525
|
# @!attribute [rw] next_token
|
22454
|
-
# If the response is truncated,
|
22455
|
-
#
|
22526
|
+
# If the response is truncated, SageMaker returns this token. To
|
22527
|
+
# retrieve the next set of algorithms, use it in the subsequent
|
22456
22528
|
# request.
|
22457
22529
|
# @return [String]
|
22458
22530
|
#
|
@@ -23726,8 +23798,8 @@ module Aws::SageMaker
|
|
23726
23798
|
# @return [Array<Types::EndpointConfigSummary>]
|
23727
23799
|
#
|
23728
23800
|
# @!attribute [rw] next_token
|
23729
|
-
# If the response is truncated,
|
23730
|
-
#
|
23801
|
+
# If the response is truncated, SageMaker returns this token. To
|
23802
|
+
# retrieve the next set of endpoint configurations, use it in the
|
23731
23803
|
# subsequent request
|
23732
23804
|
# @return [String]
|
23733
23805
|
#
|
@@ -23826,8 +23898,8 @@ module Aws::SageMaker
|
|
23826
23898
|
# @return [Array<Types::EndpointSummary>]
|
23827
23899
|
#
|
23828
23900
|
# @!attribute [rw] next_token
|
23829
|
-
# If the response is truncated,
|
23830
|
-
#
|
23901
|
+
# If the response is truncated, SageMaker returns this token. To
|
23902
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
23831
23903
|
# request.
|
23832
23904
|
# @return [String]
|
23833
23905
|
#
|
@@ -24592,8 +24664,8 @@ module Aws::SageMaker
|
|
24592
24664
|
# @return [Array<Types::LabelingJobForWorkteamSummary>]
|
24593
24665
|
#
|
24594
24666
|
# @!attribute [rw] next_token
|
24595
|
-
# If the response is truncated,
|
24596
|
-
#
|
24667
|
+
# If the response is truncated, SageMaker returns this token. To
|
24668
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24597
24669
|
# request.
|
24598
24670
|
# @return [String]
|
24599
24671
|
#
|
@@ -24693,8 +24765,8 @@ module Aws::SageMaker
|
|
24693
24765
|
# @return [Array<Types::LabelingJobSummary>]
|
24694
24766
|
#
|
24695
24767
|
# @!attribute [rw] next_token
|
24696
|
-
# If the response is truncated,
|
24697
|
-
#
|
24768
|
+
# If the response is truncated, SageMaker returns this token. To
|
24769
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24698
24770
|
# request.
|
24699
24771
|
# @return [String]
|
24700
24772
|
#
|
@@ -25191,8 +25263,8 @@ module Aws::SageMaker
|
|
25191
25263
|
# @return [Array<Types::ModelPackageSummary>]
|
25192
25264
|
#
|
25193
25265
|
# @!attribute [rw] next_token
|
25194
|
-
# If the response is truncated,
|
25195
|
-
#
|
25266
|
+
# If the response is truncated, SageMaker returns this token. To
|
25267
|
+
# retrieve the next set of model packages, use it in the subsequent
|
25196
25268
|
# request.
|
25197
25269
|
# @return [String]
|
25198
25270
|
#
|
@@ -25359,9 +25431,8 @@ module Aws::SageMaker
|
|
25359
25431
|
# @return [Array<Types::ModelSummary>]
|
25360
25432
|
#
|
25361
25433
|
# @!attribute [rw] next_token
|
25362
|
-
# If the response is truncated,
|
25363
|
-
#
|
25364
|
-
# request.
|
25434
|
+
# If the response is truncated, SageMaker returns this token. To
|
25435
|
+
# retrieve the next set of models, use it in the subsequent request.
|
25365
25436
|
# @return [String]
|
25366
25437
|
#
|
25367
25438
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
|
@@ -25700,8 +25771,8 @@ module Aws::SageMaker
|
|
25700
25771
|
end
|
25701
25772
|
|
25702
25773
|
# @!attribute [rw] next_token
|
25703
|
-
# If the response is truncated,
|
25704
|
-
#
|
25774
|
+
# If the response is truncated, SageMaker returns this token. To get
|
25775
|
+
# the next set of lifecycle configurations, use it in the next
|
25705
25776
|
# request.
|
25706
25777
|
# @return [String]
|
25707
25778
|
#
|
@@ -25834,8 +25905,8 @@ module Aws::SageMaker
|
|
25834
25905
|
|
25835
25906
|
# @!attribute [rw] next_token
|
25836
25907
|
# If the response to the previous `ListNotebookInstances` request was
|
25837
|
-
# truncated,
|
25838
|
-
#
|
25908
|
+
# truncated, SageMaker returns this token. To retrieve the next set of
|
25909
|
+
# notebook instances, use the token in the next request.
|
25839
25910
|
# @return [String]
|
25840
25911
|
#
|
25841
25912
|
# @!attribute [rw] notebook_instances
|
@@ -26483,8 +26554,8 @@ module Aws::SageMaker
|
|
26483
26554
|
#
|
26484
26555
|
# @!attribute [rw] next_token
|
26485
26556
|
# If the response to the previous `ListTags` request is truncated,
|
26486
|
-
#
|
26487
|
-
#
|
26557
|
+
# SageMaker returns this token. To retrieve the next set of tags, use
|
26558
|
+
# it in the subsequent request.
|
26488
26559
|
# @return [String]
|
26489
26560
|
#
|
26490
26561
|
# @!attribute [rw] max_results
|
@@ -26506,7 +26577,7 @@ module Aws::SageMaker
|
|
26506
26577
|
# @return [Array<Types::Tag>]
|
26507
26578
|
#
|
26508
26579
|
# @!attribute [rw] next_token
|
26509
|
-
# If response is truncated,
|
26580
|
+
# If response is truncated, SageMaker includes a token in the
|
26510
26581
|
# response. You can use this token in your subsequent request to fetch
|
26511
26582
|
# next set of tokens.
|
26512
26583
|
# @return [String]
|
@@ -26685,8 +26756,8 @@ module Aws::SageMaker
|
|
26685
26756
|
# @return [Array<Types::TrainingJobSummary>]
|
26686
26757
|
#
|
26687
26758
|
# @!attribute [rw] next_token
|
26688
|
-
# If the response is truncated,
|
26689
|
-
#
|
26759
|
+
# If the response is truncated, SageMaker returns this token. To
|
26760
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
26690
26761
|
# request.
|
26691
26762
|
# @return [String]
|
26692
26763
|
#
|
@@ -27303,9 +27374,9 @@ module Aws::SageMaker
|
|
27303
27374
|
end
|
27304
27375
|
|
27305
27376
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
27306
|
-
# `stdout`.
|
27307
|
-
#
|
27308
|
-
#
|
27377
|
+
# `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
|
27378
|
+
# You specify one metric that a hyperparameter tuning job uses as its
|
27379
|
+
# objective metric to choose the best training job.
|
27309
27380
|
#
|
27310
27381
|
# @note When making an API call, you may pass MetricDefinition
|
27311
27382
|
# data as a hash:
|
@@ -27509,11 +27580,13 @@ module Aws::SageMaker
|
|
27509
27580
|
# }
|
27510
27581
|
#
|
27511
27582
|
# @!attribute [rw] invocations_timeout_in_seconds
|
27512
|
-
# The timeout value in seconds for an invocation request.
|
27583
|
+
# The timeout value in seconds for an invocation request. The default
|
27584
|
+
# value is 600.
|
27513
27585
|
# @return [Integer]
|
27514
27586
|
#
|
27515
27587
|
# @!attribute [rw] invocations_max_retries
|
27516
27588
|
# The maximum number of retries when invocation requests are failing.
|
27589
|
+
# The default value is 3.
|
27517
27590
|
# @return [Integer]
|
27518
27591
|
#
|
27519
27592
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
|
@@ -28017,8 +28090,8 @@ module Aws::SageMaker
|
|
28017
28090
|
# @return [Types::SourceAlgorithmSpecification]
|
28018
28091
|
#
|
28019
28092
|
# @!attribute [rw] validation_specification
|
28020
|
-
# Specifies batch transform jobs that
|
28021
|
-
#
|
28093
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28094
|
+
# model package.
|
28022
28095
|
# @return [Types::ModelPackageValidationSpecification]
|
28023
28096
|
#
|
28024
28097
|
# @!attribute [rw] model_package_status
|
@@ -28197,11 +28270,11 @@ module Aws::SageMaker
|
|
28197
28270
|
# code is stored.
|
28198
28271
|
#
|
28199
28272
|
# If you are using your own custom algorithm instead of an algorithm
|
28200
|
-
# provided by
|
28201
|
-
#
|
28202
|
-
#
|
28203
|
-
#
|
28204
|
-
#
|
28273
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
28274
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
28275
|
+
# and `registry/repository[@digest]` image path formats. For more
|
28276
|
+
# information, see [Using Your Own Algorithms with Amazon
|
28277
|
+
# SageMaker][1].
|
28205
28278
|
#
|
28206
28279
|
#
|
28207
28280
|
#
|
@@ -28533,8 +28606,8 @@ module Aws::SageMaker
|
|
28533
28606
|
include Aws::Structure
|
28534
28607
|
end
|
28535
28608
|
|
28536
|
-
# Specifies batch transform jobs that
|
28537
|
-
#
|
28609
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28610
|
+
# model package.
|
28538
28611
|
#
|
28539
28612
|
# @note When making an API call, you may pass ModelPackageValidationSpecification
|
28540
28613
|
# data as a hash:
|
@@ -28584,8 +28657,8 @@ module Aws::SageMaker
|
|
28584
28657
|
#
|
28585
28658
|
# @!attribute [rw] validation_profiles
|
28586
28659
|
# An array of `ModelPackageValidationProfile` objects, each of which
|
28587
|
-
# specifies a batch transform job that
|
28588
|
-
#
|
28660
|
+
# specifies a batch transform job that SageMaker runs to validate your
|
28661
|
+
# model package.
|
28589
28662
|
# @return [Array<Types::ModelPackageValidationProfile>]
|
28590
28663
|
#
|
28591
28664
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
|
@@ -29958,8 +30031,7 @@ module Aws::SageMaker
|
|
29958
30031
|
include Aws::Structure
|
29959
30032
|
end
|
29960
30033
|
|
29961
|
-
# Provides summary information for an
|
29962
|
-
# instance.
|
30034
|
+
# Provides summary information for an SageMaker notebook instance.
|
29963
30035
|
#
|
29964
30036
|
# @!attribute [rw] notebook_instance_name
|
29965
30037
|
# The name of the notebook instance that you want a summary for.
|
@@ -29974,7 +30046,7 @@ module Aws::SageMaker
|
|
29974
30046
|
# @return [String]
|
29975
30047
|
#
|
29976
30048
|
# @!attribute [rw] url
|
29977
|
-
# The URL that you use to connect to the Jupyter
|
30049
|
+
# The URL that you use to connect to the Jupyter notebook running in
|
29978
30050
|
# your notebook instance.
|
29979
30051
|
# @return [String]
|
29980
30052
|
#
|
@@ -30010,8 +30082,7 @@ module Aws::SageMaker
|
|
30010
30082
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
30011
30083
|
# Git repository. When you open a notebook instance, it opens in the
|
30012
30084
|
# directory that contains this repository. For more information, see
|
30013
|
-
# [Associating Git Repositories with
|
30014
|
-
# Instances][2].
|
30085
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
30015
30086
|
#
|
30016
30087
|
#
|
30017
30088
|
#
|
@@ -30026,7 +30097,7 @@ module Aws::SageMaker
|
|
30026
30097
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
30027
30098
|
# repository. These repositories are cloned at the same level as the
|
30028
30099
|
# default repository of your notebook instance. For more information,
|
30029
|
-
# see [Associating Git Repositories with
|
30100
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
30030
30101
|
# Instances][2].
|
30031
30102
|
#
|
30032
30103
|
#
|
@@ -30652,9 +30723,9 @@ module Aws::SageMaker
|
|
30652
30723
|
#
|
30653
30724
|
# @!attribute [rw] kms_key_id
|
30654
30725
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
30655
|
-
# KMS) key that
|
30656
|
-
#
|
30657
|
-
#
|
30726
|
+
# KMS) key that SageMaker uses to encrypt the model artifacts at rest
|
30727
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
30728
|
+
# the following formats:
|
30658
30729
|
#
|
30659
30730
|
# * // KMS Key ID
|
30660
30731
|
#
|
@@ -30672,14 +30743,13 @@ module Aws::SageMaker
|
|
30672
30743
|
#
|
30673
30744
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
30674
30745
|
#
|
30675
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
30676
|
-
#
|
30677
|
-
#
|
30678
|
-
#
|
30679
|
-
#
|
30680
|
-
#
|
30681
|
-
#
|
30682
|
-
# encryption, set the condition key of
|
30746
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
30747
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
30748
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
30749
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
30750
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
30751
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
30752
|
+
# objects with server-side encryption, set the condition key of
|
30683
30753
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
30684
30754
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
30685
30755
|
# Simple Storage Service Developer Guide.*
|
@@ -30697,8 +30767,8 @@ module Aws::SageMaker
|
|
30697
30767
|
# @return [String]
|
30698
30768
|
#
|
30699
30769
|
# @!attribute [rw] s3_output_path
|
30700
|
-
# Identifies the S3 path where you want
|
30701
|
-
#
|
30770
|
+
# Identifies the S3 path where you want SageMaker to store the model
|
30771
|
+
# artifacts. For example, `s3://bucket-name/key-name-prefix`.
|
30702
30772
|
# @return [String]
|
30703
30773
|
#
|
30704
30774
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
|
@@ -31027,23 +31097,11 @@ module Aws::SageMaker
|
|
31027
31097
|
#
|
31028
31098
|
# @!attribute [rw] current_serverless_config
|
31029
31099
|
# The serverless configuration for the endpoint.
|
31030
|
-
#
|
31031
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31032
|
-
# is subject to change. We do not recommend using this feature in
|
31033
|
-
# production environments.
|
31034
|
-
#
|
31035
|
-
# </note>
|
31036
31100
|
# @return [Types::ProductionVariantServerlessConfig]
|
31037
31101
|
#
|
31038
31102
|
# @!attribute [rw] desired_serverless_config
|
31039
31103
|
# The serverless configuration requested for this deployment, as
|
31040
31104
|
# specified in the endpoint configuration for the endpoint.
|
31041
|
-
#
|
31042
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31043
|
-
# is subject to change. We do not recommend using this feature in
|
31044
|
-
# production environments.
|
31045
|
-
#
|
31046
|
-
# </note>
|
31047
31105
|
# @return [Types::ProductionVariantServerlessConfig]
|
31048
31106
|
#
|
31049
31107
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
|
@@ -32245,8 +32303,8 @@ module Aws::SageMaker
|
|
32245
32303
|
|
32246
32304
|
# Identifies a model that you want to host and the resources chosen to
|
32247
32305
|
# deploy for hosting it. If you are deploying multiple models, tell
|
32248
|
-
#
|
32249
|
-
#
|
32306
|
+
# SageMaker how to distribute traffic among the models by specifying
|
32307
|
+
# variant weights.
|
32250
32308
|
#
|
32251
32309
|
# @note When making an API call, you may pass ProductionVariant
|
32252
32310
|
# data as a hash:
|
@@ -32313,12 +32371,6 @@ module Aws::SageMaker
|
|
32313
32371
|
# The serverless configuration for an endpoint. Specifies a serverless
|
32314
32372
|
# endpoint configuration instead of an instance-based endpoint
|
32315
32373
|
# configuration.
|
32316
|
-
#
|
32317
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32318
|
-
# is subject to change. We do not recommend using this feature in
|
32319
|
-
# production environments.
|
32320
|
-
#
|
32321
|
-
# </note>
|
32322
32374
|
# @return [Types::ProductionVariantServerlessConfig]
|
32323
32375
|
#
|
32324
32376
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
|
@@ -32353,9 +32405,9 @@ module Aws::SageMaker
|
|
32353
32405
|
#
|
32354
32406
|
# @!attribute [rw] kms_key_id
|
32355
32407
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
32356
|
-
# KMS) key that
|
32357
|
-
#
|
32358
|
-
#
|
32408
|
+
# KMS) key that SageMaker uses to encrypt the core dump data at rest
|
32409
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
32410
|
+
# the following formats:
|
32359
32411
|
#
|
32360
32412
|
# * // KMS Key ID
|
32361
32413
|
#
|
@@ -32373,14 +32425,13 @@ module Aws::SageMaker
|
|
32373
32425
|
#
|
32374
32426
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
32375
32427
|
#
|
32376
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
32377
|
-
#
|
32378
|
-
#
|
32379
|
-
#
|
32380
|
-
#
|
32381
|
-
#
|
32382
|
-
#
|
32383
|
-
# encryption, set the condition key of
|
32428
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
32429
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
32430
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
32431
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
32432
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
32433
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
32434
|
+
# objects with server-side encryption, set the condition key of
|
32384
32435
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
32385
32436
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
32386
32437
|
# Simple Storage Service Developer Guide.*
|
@@ -32406,10 +32457,6 @@ module Aws::SageMaker
|
|
32406
32457
|
include Aws::Structure
|
32407
32458
|
end
|
32408
32459
|
|
32409
|
-
# Serverless Inference is in preview release for Amazon SageMaker and is
|
32410
|
-
# subject to change. We do not recommend using this feature in
|
32411
|
-
# production environments.
|
32412
|
-
#
|
32413
32460
|
# Specifies the serverless configuration for an endpoint variant.
|
32414
32461
|
#
|
32415
32462
|
# @note When making an API call, you may pass ProductionVariantServerlessConfig
|
@@ -32519,22 +32566,10 @@ module Aws::SageMaker
|
|
32519
32566
|
#
|
32520
32567
|
# @!attribute [rw] current_serverless_config
|
32521
32568
|
# The serverless configuration for the endpoint.
|
32522
|
-
#
|
32523
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32524
|
-
# is subject to change. We do not recommend using this feature in
|
32525
|
-
# production environments.
|
32526
|
-
#
|
32527
|
-
# </note>
|
32528
32569
|
# @return [Types::ProductionVariantServerlessConfig]
|
32529
32570
|
#
|
32530
32571
|
# @!attribute [rw] desired_serverless_config
|
32531
32572
|
# The serverless configuration requested for the endpoint update.
|
32532
|
-
#
|
32533
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32534
|
-
# is subject to change. We do not recommend using this feature in
|
32535
|
-
# production environments.
|
32536
|
-
#
|
32537
|
-
# </note>
|
32538
32573
|
# @return [Types::ProductionVariantServerlessConfig]
|
32539
32574
|
#
|
32540
32575
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
|
@@ -33351,8 +33386,8 @@ module Aws::SageMaker
|
|
33351
33386
|
# @!attribute [rw] properties
|
33352
33387
|
# Filter the lineage entities connected to the `StartArn`(s) by a set
|
33353
33388
|
# if property key value pairs. If multiple pairs are provided, an
|
33354
|
-
# entity
|
33355
|
-
#
|
33389
|
+
# entity is included in the results if it matches any of the provided
|
33390
|
+
# pairs.
|
33356
33391
|
# @return [Hash<String,String>]
|
33357
33392
|
#
|
33358
33393
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
|
@@ -33398,12 +33433,13 @@ module Aws::SageMaker
|
|
33398
33433
|
# @return [Array<String>]
|
33399
33434
|
#
|
33400
33435
|
# @!attribute [rw] direction
|
33401
|
-
# Associations between lineage entities
|
33402
|
-
# determines the direction from the StartArn(s) the
|
33436
|
+
# Associations between lineage entities have a direction. This
|
33437
|
+
# parameter determines the direction from the StartArn(s) that the
|
33438
|
+
# query traverses.
|
33403
33439
|
# @return [String]
|
33404
33440
|
#
|
33405
33441
|
# @!attribute [rw] include_edges
|
33406
|
-
# Setting this value to `True`
|
33442
|
+
# Setting this value to `True` retrieves not only the entities of
|
33407
33443
|
# interest but also the [Associations][1] and lineage entities on the
|
33408
33444
|
# path. Set to `False` to only return lineage entities that match your
|
33409
33445
|
# query.
|
@@ -33432,8 +33468,8 @@ module Aws::SageMaker
|
|
33432
33468
|
#
|
33433
33469
|
# @!attribute [rw] max_depth
|
33434
33470
|
# The maximum depth in lineage relationships from the `StartArns` that
|
33435
|
-
#
|
33436
|
-
#
|
33471
|
+
# are traversed. Depth is a measure of the number of `Associations`
|
33472
|
+
# from the `StartArn` entity to the matched results.
|
33437
33473
|
# @return [Integer]
|
33438
33474
|
#
|
33439
33475
|
# @!attribute [rw] max_results
|
@@ -34232,15 +34268,15 @@ module Aws::SageMaker
|
|
34232
34268
|
#
|
34233
34269
|
# You must specify sufficient ML storage for your scenario.
|
34234
34270
|
#
|
34235
|
-
# <note markdown="1">
|
34236
|
-
#
|
34271
|
+
# <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
|
34272
|
+
# volume type.
|
34237
34273
|
#
|
34238
34274
|
# </note>
|
34239
34275
|
#
|
34240
34276
|
# <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
|
34241
34277
|
# total size, dependent on the instance type. When using these
|
34242
|
-
# instances for training,
|
34243
|
-
#
|
34278
|
+
# instances for training, SageMaker mounts the local instance storage
|
34279
|
+
# instead of Amazon EBS gp2 storage. You can't request a
|
34244
34280
|
# `VolumeSizeInGB` greater than the total size of the local instance
|
34245
34281
|
# storage.
|
34246
34282
|
#
|
@@ -34256,9 +34292,9 @@ module Aws::SageMaker
|
|
34256
34292
|
# @return [Integer]
|
34257
34293
|
#
|
34258
34294
|
# @!attribute [rw] volume_kms_key_id
|
34259
|
-
# The Amazon Web Services KMS key that
|
34260
|
-
#
|
34261
|
-
#
|
34295
|
+
# The Amazon Web Services KMS key that SageMaker uses to encrypt data
|
34296
|
+
# on the storage volume attached to the ML compute instance(s) that
|
34297
|
+
# run the training job.
|
34262
34298
|
#
|
34263
34299
|
# <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
|
34264
34300
|
# the instance type. Local storage volumes are encrypted using a
|
@@ -34313,8 +34349,8 @@ module Aws::SageMaker
|
|
34313
34349
|
include Aws::Structure
|
34314
34350
|
end
|
34315
34351
|
|
34316
|
-
# You have exceeded an
|
34317
|
-
#
|
34352
|
+
# You have exceeded an SageMaker resource limit. For example, you might
|
34353
|
+
# have too many training jobs created.
|
34318
34354
|
#
|
34319
34355
|
# @!attribute [rw] message
|
34320
34356
|
# @return [String]
|
@@ -34393,6 +34429,12 @@ module Aws::SageMaker
|
|
34393
34429
|
#
|
34394
34430
|
# @!attribute [rw] instance_type
|
34395
34431
|
# The instance type that the image version runs on.
|
34432
|
+
#
|
34433
|
+
# <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
|
34434
|
+
# Apps do not support the `system` value, but support all other values
|
34435
|
+
# for available instance types.
|
34436
|
+
#
|
34437
|
+
# </note>
|
34396
34438
|
# @return [String]
|
34397
34439
|
#
|
34398
34440
|
# @!attribute [rw] lifecycle_config_arn
|
@@ -34527,11 +34569,11 @@ module Aws::SageMaker
|
|
34527
34569
|
#
|
34528
34570
|
# @!attribute [rw] s3_data_type
|
34529
34571
|
# If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
34530
|
-
#
|
34531
|
-
#
|
34572
|
+
# SageMaker uses all objects that match the specified key name prefix
|
34573
|
+
# for model training.
|
34532
34574
|
#
|
34533
34575
|
# If you choose `ManifestFile`, `S3Uri` identifies an object that is a
|
34534
|
-
# manifest file containing a list of object keys that you want
|
34576
|
+
# manifest file containing a list of object keys that you want
|
34535
34577
|
# SageMaker to use for model training.
|
34536
34578
|
#
|
34537
34579
|
# If you choose `AugmentedManifestFile`, S3Uri identifies an object
|
@@ -34585,17 +34627,17 @@ module Aws::SageMaker
|
|
34585
34627
|
#
|
34586
34628
|
# The complete set of `S3Uri` in this manifest is the input data for
|
34587
34629
|
# the channel for this data source. The object that each `S3Uri`
|
34588
|
-
# points to must be readable by the IAM role that
|
34589
|
-
#
|
34630
|
+
# points to must be readable by the IAM role that SageMaker uses to
|
34631
|
+
# perform tasks on your behalf.
|
34590
34632
|
# @return [String]
|
34591
34633
|
#
|
34592
34634
|
# @!attribute [rw] s3_data_distribution_type
|
34593
|
-
# If you want
|
34594
|
-
#
|
34635
|
+
# If you want SageMaker to replicate the entire dataset on each ML
|
34636
|
+
# compute instance that is launched for model training, specify
|
34595
34637
|
# `FullyReplicated`.
|
34596
34638
|
#
|
34597
|
-
# If you want
|
34598
|
-
#
|
34639
|
+
# If you want SageMaker to replicate a subset of data on each ML
|
34640
|
+
# compute instance that is launched for model training, specify
|
34599
34641
|
# `ShardedByS3Key`. If there are *n* ML compute instances launched for
|
34600
34642
|
# a training job, each instance gets approximately 1/*n* of the number
|
34601
34643
|
# of S3 objects. In this case, model training on each machine uses
|
@@ -35019,9 +35061,9 @@ module Aws::SageMaker
|
|
35019
35061
|
# transitioned through. A training job can be in one of several states,
|
35020
35062
|
# for example, starting, downloading, training, or uploading. Within
|
35021
35063
|
# each state, there are a number of intermediate states. For example,
|
35022
|
-
# within the starting state,
|
35023
|
-
#
|
35024
|
-
#
|
35064
|
+
# within the starting state, SageMaker could be starting the training
|
35065
|
+
# job or launching the ML instances. These transitional states are
|
35066
|
+
# referred to as the job's secondary status.
|
35025
35067
|
#
|
35026
35068
|
# @!attribute [rw] status
|
35027
35069
|
# Contains a secondary status information from a training job.
|
@@ -35086,8 +35128,8 @@ module Aws::SageMaker
|
|
35086
35128
|
# @!attribute [rw] status_message
|
35087
35129
|
# A detailed description of the progress within a secondary status.
|
35088
35130
|
#
|
35089
|
-
#
|
35090
|
-
#
|
35131
|
+
# SageMaker provides secondary statuses and status messages that apply
|
35132
|
+
# to each of them:
|
35091
35133
|
#
|
35092
35134
|
# Starting
|
35093
35135
|
# : * Starting the training job.
|
@@ -35452,9 +35494,9 @@ module Aws::SageMaker
|
|
35452
35494
|
end
|
35453
35495
|
|
35454
35496
|
# Specifies an algorithm that was used to create the model package. The
|
35455
|
-
# algorithm must be either an algorithm resource in your
|
35456
|
-
#
|
35457
|
-
#
|
35497
|
+
# algorithm must be either an algorithm resource in your SageMaker
|
35498
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35499
|
+
# are subscribed to.
|
35458
35500
|
#
|
35459
35501
|
# @note When making an API call, you may pass SourceAlgorithm
|
35460
35502
|
# data as a hash:
|
@@ -35477,9 +35519,9 @@ module Aws::SageMaker
|
|
35477
35519
|
#
|
35478
35520
|
# @!attribute [rw] algorithm_name
|
35479
35521
|
# The name of an algorithm that was used to create the model package.
|
35480
|
-
# The algorithm must be either an algorithm resource in your
|
35481
|
-
#
|
35482
|
-
#
|
35522
|
+
# The algorithm must be either an algorithm resource in your SageMaker
|
35523
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35524
|
+
# are subscribed to.
|
35483
35525
|
# @return [String]
|
35484
35526
|
#
|
35485
35527
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
|
@@ -35923,21 +35965,21 @@ module Aws::SageMaker
|
|
35923
35965
|
# Specifies a limit to how long a model training job or model
|
35924
35966
|
# compilation job can run. It also specifies how long a managed spot
|
35925
35967
|
# training job has to complete. When the job reaches the time limit,
|
35926
|
-
#
|
35927
|
-
#
|
35928
|
-
#
|
35929
|
-
# To stop a training job,
|
35930
|
-
#
|
35931
|
-
#
|
35932
|
-
#
|
35933
|
-
#
|
35934
|
-
# The training algorithms provided by
|
35935
|
-
#
|
35936
|
-
#
|
35937
|
-
#
|
35938
|
-
#
|
35939
|
-
#
|
35940
|
-
#
|
35968
|
+
# SageMaker ends the training or compilation job. Use this API to cap
|
35969
|
+
# model training costs.
|
35970
|
+
#
|
35971
|
+
# To stop a training job, SageMaker sends the algorithm the `SIGTERM`
|
35972
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
35973
|
+
# use this 120-second window to save the model artifacts, so the results
|
35974
|
+
# of training are not lost.
|
35975
|
+
#
|
35976
|
+
# The training algorithms provided by SageMaker automatically save the
|
35977
|
+
# intermediate results of a model training job when possible. This
|
35978
|
+
# attempt to save artifacts is only a best effort case as model might
|
35979
|
+
# not be in a state from which it can be saved. For example, if training
|
35980
|
+
# has just started, the model might not be ready to save. When saved,
|
35981
|
+
# this intermediate data is a valid model artifact. You can use it to
|
35982
|
+
# create a model with `CreateModel`.
|
35941
35983
|
#
|
35942
35984
|
# <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
|
35943
35985
|
# intermediate model artifacts. When training NTMs, make sure that the
|
@@ -35958,14 +36000,14 @@ module Aws::SageMaker
|
|
35958
36000
|
# compilation job can run.
|
35959
36001
|
#
|
35960
36002
|
# For compilation jobs, if the job does not complete during this time,
|
35961
|
-
#
|
35962
|
-
# seconds and
|
36003
|
+
# a `TimeOut` error is generated. We recommend starting with 900
|
36004
|
+
# seconds and increasing as necessary based on your model.
|
35963
36005
|
#
|
35964
36006
|
# For all other jobs, if the job does not complete during this time,
|
35965
|
-
#
|
35966
|
-
#
|
35967
|
-
#
|
35968
|
-
#
|
36007
|
+
# SageMaker ends the job. When `RetryStrategy` is specified in the job
|
36008
|
+
# request, `MaxRuntimeInSeconds` specifies the maximum time for all of
|
36009
|
+
# the attempts in total, not each individual attempt. The default
|
36010
|
+
# value is 1 day. The maximum value is 28 days.
|
35969
36011
|
# @return [Integer]
|
35970
36012
|
#
|
35971
36013
|
# @!attribute [rw] max_wait_time_in_seconds
|
@@ -35973,7 +36015,7 @@ module Aws::SageMaker
|
|
35973
36015
|
# job has to complete. It is the amount of time spent waiting for Spot
|
35974
36016
|
# capacity plus the amount of time the job can run. It must be equal
|
35975
36017
|
# to or greater than `MaxRuntimeInSeconds`. If the job does not
|
35976
|
-
# complete during this time,
|
36018
|
+
# complete during this time, SageMaker ends the job.
|
35977
36019
|
#
|
35978
36020
|
# When `RetryStrategy` is specified in the job request,
|
35979
36021
|
# `MaxWaitTimeInSeconds` specifies the maximum time for all of the
|
@@ -36393,8 +36435,8 @@ module Aws::SageMaker
|
|
36393
36435
|
# For detailed information about the secondary status of the training
|
36394
36436
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
36395
36437
|
#
|
36396
|
-
#
|
36397
|
-
#
|
36438
|
+
# SageMaker provides primary statuses and secondary statuses that
|
36439
|
+
# apply to each of them:
|
36398
36440
|
#
|
36399
36441
|
# InProgress
|
36400
36442
|
# : * `Starting` - Starting the training job.
|
@@ -36467,7 +36509,7 @@ module Aws::SageMaker
|
|
36467
36509
|
#
|
36468
36510
|
# @!attribute [rw] output_data_config
|
36469
36511
|
# The S3 path where model artifacts that you configured when creating
|
36470
|
-
# the job are stored.
|
36512
|
+
# the job are stored. SageMaker creates subfolders for model
|
36471
36513
|
# artifacts.
|
36472
36514
|
# @return [Types::OutputDataConfig]
|
36473
36515
|
#
|
@@ -36489,13 +36531,13 @@ module Aws::SageMaker
|
|
36489
36531
|
# @!attribute [rw] stopping_condition
|
36490
36532
|
# Specifies a limit to how long a model training job can run. It also
|
36491
36533
|
# specifies how long a managed Spot training job has to complete. When
|
36492
|
-
# the job reaches the time limit,
|
36493
|
-
#
|
36534
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36535
|
+
# this API to cap model training costs.
|
36494
36536
|
#
|
36495
|
-
# To stop a job,
|
36496
|
-
#
|
36497
|
-
#
|
36498
|
-
#
|
36537
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
36538
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36539
|
+
# this 120-second window to save the model artifacts, so the results
|
36540
|
+
# of training are not lost.
|
36499
36541
|
# @return [Types::StoppingCondition]
|
36500
36542
|
#
|
36501
36543
|
# @!attribute [rw] creation_time
|
@@ -36516,8 +36558,7 @@ module Aws::SageMaker
|
|
36516
36558
|
# You are billed for the time interval between the value of
|
36517
36559
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
36518
36560
|
# jobs, this is the time after model artifacts are uploaded. For
|
36519
|
-
# failed jobs, this is the time when
|
36520
|
-
# failure.
|
36561
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
36521
36562
|
# @return [Time]
|
36522
36563
|
#
|
36523
36564
|
# @!attribute [rw] last_modified_time
|
@@ -36784,7 +36825,7 @@ module Aws::SageMaker
|
|
36784
36825
|
#
|
36785
36826
|
# @!attribute [rw] output_data_config
|
36786
36827
|
# the path to the S3 bucket where you want to store model artifacts.
|
36787
|
-
#
|
36828
|
+
# SageMaker creates subfolders for the artifacts.
|
36788
36829
|
# @return [Types::OutputDataConfig]
|
36789
36830
|
#
|
36790
36831
|
# @!attribute [rw] resource_config
|
@@ -36795,12 +36836,12 @@ module Aws::SageMaker
|
|
36795
36836
|
# @!attribute [rw] stopping_condition
|
36796
36837
|
# Specifies a limit to how long a model training job can run. It also
|
36797
36838
|
# specifies how long a managed Spot training job has to complete. When
|
36798
|
-
# the job reaches the time limit,
|
36799
|
-
#
|
36839
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36840
|
+
# this API to cap model training costs.
|
36800
36841
|
#
|
36801
|
-
# To stop a job,
|
36802
|
-
#
|
36803
|
-
#
|
36842
|
+
# To stop a job, SageMaker sends the algorithm the SIGTERM signal,
|
36843
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36844
|
+
# this 120-second window to save the model artifacts.
|
36804
36845
|
# @return [Types::StoppingCondition]
|
36805
36846
|
#
|
36806
36847
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
|
@@ -39042,7 +39083,7 @@ module Aws::SageMaker
|
|
39042
39083
|
# }
|
39043
39084
|
#
|
39044
39085
|
# @!attribute [rw] endpoint_name
|
39045
|
-
# The name of an existing
|
39086
|
+
# The name of an existing SageMaker endpoint.
|
39046
39087
|
# @return [String]
|
39047
39088
|
#
|
39048
39089
|
# @!attribute [rw] desired_weights_and_capacities
|
@@ -39411,12 +39452,12 @@ module Aws::SageMaker
|
|
39411
39452
|
# @return [String]
|
39412
39453
|
#
|
39413
39454
|
# @!attribute [rw] role_arn
|
39414
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
39415
|
-
#
|
39416
|
-
#
|
39455
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
39456
|
+
# assume to access the notebook instance. For more information, see
|
39457
|
+
# [SageMaker Roles][1].
|
39417
39458
|
#
|
39418
|
-
# <note markdown="1"> To be able to pass this role to
|
39419
|
-
#
|
39459
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
39460
|
+
# must have the `iam:PassRole` permission.
|
39420
39461
|
#
|
39421
39462
|
# </note>
|
39422
39463
|
#
|
@@ -39446,12 +39487,12 @@ module Aws::SageMaker
|
|
39446
39487
|
# @!attribute [rw] volume_size_in_gb
|
39447
39488
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
39448
39489
|
# instance. The default value is 5 GB. ML storage volumes are
|
39449
|
-
# encrypted, so
|
39450
|
-
#
|
39451
|
-
#
|
39452
|
-
#
|
39453
|
-
#
|
39454
|
-
#
|
39490
|
+
# encrypted, so SageMaker can't determine the amount of available
|
39491
|
+
# free space on the volume. Because of this, you can increase the
|
39492
|
+
# volume size when you update a notebook instance, but you can't
|
39493
|
+
# decrease the volume size. If you want to decrease the size of the ML
|
39494
|
+
# storage volume in use, create a new notebook instance with the
|
39495
|
+
# desired size.
|
39455
39496
|
# @return [Integer]
|
39456
39497
|
#
|
39457
39498
|
# @!attribute [rw] default_code_repository
|
@@ -39461,8 +39502,7 @@ module Aws::SageMaker
|
|
39461
39502
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
39462
39503
|
# Git repository. When you open a notebook instance, it opens in the
|
39463
39504
|
# directory that contains this repository. For more information, see
|
39464
|
-
# [Associating Git Repositories with
|
39465
|
-
# Instances][2].
|
39505
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
39466
39506
|
#
|
39467
39507
|
#
|
39468
39508
|
#
|
@@ -39477,7 +39517,7 @@ module Aws::SageMaker
|
|
39477
39517
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
39478
39518
|
# repository. These repositories are cloned at the same level as the
|
39479
39519
|
# default repository of your notebook instance. For more information,
|
39480
|
-
# see [Associating Git Repositories with
|
39520
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
39481
39521
|
# Instances][2].
|
39482
39522
|
#
|
39483
39523
|
#
|