aws-sdk-sagemaker 1.122.0 → 1.123.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -422,7 +422,7 @@ module Aws::SageMaker
422
422
  req.send_request(options)
423
423
  end
424
424
 
425
- # Adds or overwrites one or more tags for the specified Amazon SageMaker
425
+ # Adds or overwrites one or more tags for the specified SageMaker
426
426
  # resource. You can add tags to notebook instances, training jobs,
427
427
  # hyperparameter tuning jobs, batch transform jobs, models, labeling
428
428
  # jobs, work teams, endpoint configurations, and endpoints.
@@ -678,8 +678,8 @@ module Aws::SageMaker
678
678
  req.send_request(options)
679
679
  end
680
680
 
681
- # Create a machine learning algorithm that you can use in Amazon
682
- # SageMaker and list in the Amazon Web Services Marketplace.
681
+ # Create a machine learning algorithm that you can use in SageMaker and
682
+ # list in the Amazon Web Services Marketplace.
683
683
  #
684
684
  # @option params [required, String] :algorithm_name
685
685
  # The name of the algorithm.
@@ -723,10 +723,10 @@ module Aws::SageMaker
723
723
  # inference.
724
724
  #
725
725
  # @option params [Types::AlgorithmValidationSpecification] :validation_specification
726
- # Specifies configurations for one or more training jobs and that Amazon
726
+ # Specifies configurations for one or more training jobs and that
727
727
  # SageMaker runs to test the algorithm's training code and, optionally,
728
- # one or more batch transform jobs that Amazon SageMaker runs to test
729
- # the algorithm's inference code.
728
+ # one or more batch transform jobs that SageMaker runs to test the
729
+ # algorithm's inference code.
730
730
  #
731
731
  # @option params [Boolean] :certify_for_marketplace
732
732
  # Whether to certify the algorithm so that it can be listed in Amazon
@@ -1210,6 +1210,7 @@ module Aws::SageMaker
1210
1210
  # compression_type: "None", # accepts None, Gzip
1211
1211
  # target_attribute_name: "TargetAttributeName", # required
1212
1212
  # content_type: "ContentType",
1213
+ # channel_type: "training", # accepts training, validation
1213
1214
  # },
1214
1215
  # ],
1215
1216
  # output_data_config: { # required
@@ -1234,6 +1235,9 @@ module Aws::SageMaker
1234
1235
  # subnets: ["SubnetId"], # required
1235
1236
  # },
1236
1237
  # },
1238
+ # data_split_config: {
1239
+ # validation_fraction: 1.0,
1240
+ # },
1237
1241
  # },
1238
1242
  # role_arn: "RoleArn", # required
1239
1243
  # generate_candidate_definitions_only: false,
@@ -1262,13 +1266,13 @@ module Aws::SageMaker
1262
1266
  req.send_request(options)
1263
1267
  end
1264
1268
 
1265
- # Creates a Git repository as a resource in your Amazon SageMaker
1266
- # account. You can associate the repository with notebook instances so
1267
- # that you can use Git source control for the notebooks you create. The
1268
- # Git repository is a resource in your Amazon SageMaker account, so it
1269
- # can be associated with more than one notebook instance, and it
1270
- # persists independently from the lifecycle of any notebook instances it
1271
- # is associated with.
1269
+ # Creates a Git repository as a resource in your SageMaker account. You
1270
+ # can associate the repository with notebook instances so that you can
1271
+ # use Git source control for the notebooks you create. The Git
1272
+ # repository is a resource in your SageMaker account, so it can be
1273
+ # associated with more than one notebook instance, and it persists
1274
+ # independently from the lifecycle of any notebook instances it is
1275
+ # associated with.
1272
1276
  #
1273
1277
  # The repository can be hosted either in [Amazon Web Services
1274
1278
  # CodeCommit][1] or in any other Git repository.
@@ -2032,13 +2036,13 @@ module Aws::SageMaker
2032
2036
  end
2033
2037
 
2034
2038
  # Creates an endpoint using the endpoint configuration specified in the
2035
- # request. Amazon SageMaker uses the endpoint to provision resources and
2036
- # deploy models. You create the endpoint configuration with the
2039
+ # request. SageMaker uses the endpoint to provision resources and deploy
2040
+ # models. You create the endpoint configuration with the
2037
2041
  # CreateEndpointConfig API.
2038
2042
  #
2039
- # Use this API to deploy models using Amazon SageMaker hosting services.
2043
+ # Use this API to deploy models using SageMaker hosting services.
2040
2044
  #
2041
- # For an example that calls this method when deploying a model to Amazon
2045
+ # For an example that calls this method when deploying a model to
2042
2046
  # SageMaker hosting services, see the [Create Endpoint example
2043
2047
  # notebook.][1]
2044
2048
  #
@@ -2052,9 +2056,9 @@ module Aws::SageMaker
2052
2056
  # The endpoint name must be unique within an Amazon Web Services Region
2053
2057
  # in your Amazon Web Services account.
2054
2058
  #
2055
- # When it receives the request, Amazon SageMaker creates the endpoint,
2056
- # launches the resources (ML compute instances), and deploys the
2057
- # model(s) on them.
2059
+ # When it receives the request, SageMaker creates the endpoint, launches
2060
+ # the resources (ML compute instances), and deploys the model(s) on
2061
+ # them.
2058
2062
  #
2059
2063
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2060
2064
  # verify that your endpoint configuration exists. When you read data
@@ -2070,21 +2074,21 @@ module Aws::SageMaker
2070
2074
  #
2071
2075
  # </note>
2072
2076
  #
2073
- # When Amazon SageMaker receives the request, it sets the endpoint
2074
- # status to `Creating`. After it creates the endpoint, it sets the
2075
- # status to `InService`. Amazon SageMaker can then process incoming
2076
- # requests for inferences. To check the status of an endpoint, use the
2077
+ # When SageMaker receives the request, it sets the endpoint status to
2078
+ # `Creating`. After it creates the endpoint, it sets the status to
2079
+ # `InService`. SageMaker can then process incoming requests for
2080
+ # inferences. To check the status of an endpoint, use the
2077
2081
  # DescribeEndpoint API.
2078
2082
  #
2079
2083
  # If any of the models hosted at this endpoint get model data from an
2080
- # Amazon S3 location, Amazon SageMaker uses Amazon Web Services Security
2081
- # Token Service to download model artifacts from the S3 path you
2082
- # provided. Amazon Web Services STS is activated in your IAM user
2083
- # account by default. If you previously deactivated Amazon Web Services
2084
- # STS for a region, you need to reactivate Amazon Web Services STS for
2085
- # that region. For more information, see [Activating and Deactivating
2086
- # Amazon Web Services STS in an Amazon Web Services Region][3] in the
2087
- # *Amazon Web Services Identity and Access Management User Guide*.
2084
+ # Amazon S3 location, SageMaker uses Amazon Web Services Security Token
2085
+ # Service to download model artifacts from the S3 path you provided.
2086
+ # Amazon Web Services STS is activated in your IAM user account by
2087
+ # default. If you previously deactivated Amazon Web Services STS for a
2088
+ # region, you need to reactivate Amazon Web Services STS for that
2089
+ # region. For more information, see [Activating and Deactivating Amazon
2090
+ # Web Services STS in an Amazon Web Services Region][3] in the *Amazon
2091
+ # Web Services Identity and Access Management User Guide*.
2088
2092
  #
2089
2093
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
2090
2094
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -2202,28 +2206,28 @@ module Aws::SageMaker
2202
2206
  req.send_request(options)
2203
2207
  end
2204
2208
 
2205
- # Creates an endpoint configuration that Amazon SageMaker hosting
2206
- # services uses to deploy models. In the configuration, you identify one
2207
- # or more models, created using the `CreateModel` API, to deploy and the
2208
- # resources that you want Amazon SageMaker to provision. Then you call
2209
- # the CreateEndpoint API.
2209
+ # Creates an endpoint configuration that SageMaker hosting services uses
2210
+ # to deploy models. In the configuration, you identify one or more
2211
+ # models, created using the `CreateModel` API, to deploy and the
2212
+ # resources that you want SageMaker to provision. Then you call the
2213
+ # CreateEndpoint API.
2210
2214
  #
2211
- # <note markdown="1"> Use this API if you want to use Amazon SageMaker hosting services to
2212
- # deploy models into production.
2215
+ # <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
2216
+ # models into production.
2213
2217
  #
2214
2218
  # </note>
2215
2219
  #
2216
2220
  # In the request, you define a `ProductionVariant`, for each model that
2217
2221
  # you want to deploy. Each `ProductionVariant` parameter also describes
2218
- # the resources that you want Amazon SageMaker to provision. This
2219
- # includes the number and type of ML compute instances to deploy.
2222
+ # the resources that you want SageMaker to provision. This includes the
2223
+ # number and type of ML compute instances to deploy.
2220
2224
  #
2221
2225
  # If you are hosting multiple models, you also assign a `VariantWeight`
2222
2226
  # to specify how much traffic you want to allocate to each model. For
2223
2227
  # example, suppose that you want to host two models, A and B, and you
2224
- # assign traffic weight 2 for model A and 1 for model B. Amazon
2225
- # SageMaker distributes two-thirds of the traffic to Model A, and
2226
- # one-third to model B.
2228
+ # assign traffic weight 2 for model A and 1 for model B. SageMaker
2229
+ # distributes two-thirds of the traffic to Model A, and one-third to
2230
+ # model B.
2227
2231
  #
2228
2232
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2229
2233
  # verify that your endpoint configuration exists. When you read data
@@ -2265,8 +2269,8 @@ module Aws::SageMaker
2265
2269
  #
2266
2270
  # @option params [String] :kms_key_id
2267
2271
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
2268
- # Service key that Amazon SageMaker uses to encrypt data on the storage
2269
- # volume attached to the ML compute instance that hosts the endpoint.
2272
+ # Service key that SageMaker uses to encrypt data on the storage volume
2273
+ # attached to the ML compute instance that hosts the endpoint.
2270
2274
  #
2271
2275
  # The KmsKeyId can be any of the following formats:
2272
2276
  #
@@ -3133,8 +3137,8 @@ module Aws::SageMaker
3133
3137
 
3134
3138
  # Creates a custom SageMaker image. A SageMaker image is a set of image
3135
3139
  # versions. Each image version represents a container image stored in
3136
- # Amazon Container Registry (ECR). For more information, see [Bring your
3137
- # own SageMaker image][1].
3140
+ # Amazon Elastic Container Registry (ECR). For more information, see
3141
+ # [Bring your own SageMaker image][1].
3138
3142
  #
3139
3143
  #
3140
3144
  #
@@ -3190,13 +3194,13 @@ module Aws::SageMaker
3190
3194
  end
3191
3195
 
3192
3196
  # Creates a version of the SageMaker image specified by `ImageName`. The
3193
- # version represents the Amazon Container Registry (ECR) container image
3194
- # specified by `BaseImage`.
3197
+ # version represents the Amazon Elastic Container Registry (ECR)
3198
+ # container image specified by `BaseImage`.
3195
3199
  #
3196
3200
  # @option params [required, String] :base_image
3197
3201
  # The registry path of the container image to use as the starting point
3198
- # for this version. The path is an Amazon Container Registry (ECR) URI
3199
- # in the following format:
3202
+ # for this version. The path is an Amazon Elastic Container Registry
3203
+ # (ECR) URI in the following format:
3200
3204
  #
3201
3205
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
3202
3206
  # [@digest]>`
@@ -3666,34 +3670,30 @@ module Aws::SageMaker
3666
3670
  req.send_request(options)
3667
3671
  end
3668
3672
 
3669
- # Creates a model in Amazon SageMaker. In the request, you name the
3670
- # model and describe a primary container. For the primary container, you
3671
- # specify the Docker image that contains inference code, artifacts (from
3672
- # prior training), and a custom environment map that the inference code
3673
- # uses when you deploy the model for predictions.
3673
+ # Creates a model in SageMaker. In the request, you name the model and
3674
+ # describe a primary container. For the primary container, you specify
3675
+ # the Docker image that contains inference code, artifacts (from prior
3676
+ # training), and a custom environment map that the inference code uses
3677
+ # when you deploy the model for predictions.
3674
3678
  #
3675
- # Use this API to create a model if you want to use Amazon SageMaker
3676
- # hosting services or run a batch transform job.
3679
+ # Use this API to create a model if you want to use SageMaker hosting
3680
+ # services or run a batch transform job.
3677
3681
  #
3678
3682
  # To host your model, you create an endpoint configuration with the
3679
3683
  # `CreateEndpointConfig` API, and then create an endpoint with the
3680
- # `CreateEndpoint` API. Amazon SageMaker then deploys all of the
3681
- # containers that you defined for the model in the hosting environment.
3684
+ # `CreateEndpoint` API. SageMaker then deploys all of the containers
3685
+ # that you defined for the model in the hosting environment.
3682
3686
  #
3683
- # For an example that calls this method when deploying a model to Amazon
3687
+ # For an example that calls this method when deploying a model to
3684
3688
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
3685
3689
  # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
3686
3690
  #
3687
3691
  # To run a batch transform using your model, you start a job with the
3688
- # `CreateTransformJob` API. Amazon SageMaker uses your model and your
3689
- # dataset to get inferences which are then saved to a specified S3
3690
- # location.
3691
- #
3692
- # In the `CreateModel` request, you must define a container with the
3693
- # `PrimaryContainer` parameter.
3692
+ # `CreateTransformJob` API. SageMaker uses your model and your dataset
3693
+ # to get inferences which are then saved to a specified S3 location.
3694
3694
  #
3695
- # In the request, you also provide an IAM role that Amazon SageMaker can
3696
- # assume to access model artifacts and docker image for deployment on ML
3695
+ # In the request, you also provide an IAM role that SageMaker can assume
3696
+ # to access model artifacts and docker image for deployment on ML
3697
3697
  # compute hosting instances or for batch transform jobs. In addition,
3698
3698
  # you also use the IAM role to manage permissions the inference code
3699
3699
  # needs. For example, if the inference code access any other Amazon Web
@@ -3719,14 +3719,14 @@ module Aws::SageMaker
3719
3719
  # called.
3720
3720
  #
3721
3721
  # @option params [required, String] :execution_role_arn
3722
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
3723
- # can assume to access model artifacts and docker image for deployment
3724
- # on ML compute instances or for batch transform jobs. Deploying on ML
3725
- # compute instances is part of model hosting. For more information, see
3726
- # [Amazon SageMaker Roles][1].
3722
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
3723
+ # assume to access model artifacts and docker image for deployment on ML
3724
+ # compute instances or for batch transform jobs. Deploying on ML compute
3725
+ # instances is part of model hosting. For more information, see
3726
+ # [SageMaker Roles][1].
3727
3727
  #
3728
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
3729
- # API must have the `iam:PassRole` permission.
3728
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
3729
+ # have the `iam:PassRole` permission.
3730
3730
  #
3731
3731
  # </note>
3732
3732
  #
@@ -4105,11 +4105,10 @@ module Aws::SageMaker
4105
4105
  req.send_request(options)
4106
4106
  end
4107
4107
 
4108
- # Creates a model package that you can use to create Amazon SageMaker
4109
- # models or list on Amazon Web Services Marketplace, or a versioned
4110
- # model that is part of a model group. Buyers can subscribe to model
4111
- # packages listed on Amazon Web Services Marketplace to create models in
4112
- # Amazon SageMaker.
4108
+ # Creates a model package that you can use to create SageMaker models or
4109
+ # list on Amazon Web Services Marketplace, or a versioned model that is
4110
+ # part of a model group. Buyers can subscribe to model packages listed
4111
+ # on Amazon Web Services Marketplace to create models in SageMaker.
4113
4112
  #
4114
4113
  # To create a model package by specifying a Docker container that
4115
4114
  # contains your inference code and the Amazon S3 location of your model
@@ -4158,8 +4157,8 @@ module Aws::SageMaker
4158
4157
  # for inference.
4159
4158
  #
4160
4159
  # @option params [Types::ModelPackageValidationSpecification] :validation_specification
4161
- # Specifies configurations for one or more transform jobs that Amazon
4162
- # SageMaker runs to test the model package.
4160
+ # Specifies configurations for one or more transform jobs that SageMaker
4161
+ # runs to test the model package.
4163
4162
  #
4164
4163
  # @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
4165
4164
  # Details about the algorithm that was used to create the model package.
@@ -4797,46 +4796,45 @@ module Aws::SageMaker
4797
4796
  req.send_request(options)
4798
4797
  end
4799
4798
 
4800
- # Creates an Amazon SageMaker notebook instance. A notebook instance is
4801
- # a machine learning (ML) compute instance running on a Jupyter
4802
- # notebook.
4799
+ # Creates an SageMaker notebook instance. A notebook instance is a
4800
+ # machine learning (ML) compute instance running on a Jupyter notebook.
4803
4801
  #
4804
4802
  # In a `CreateNotebookInstance` request, specify the type of ML compute
4805
- # instance that you want to run. Amazon SageMaker launches the instance,
4803
+ # instance that you want to run. SageMaker launches the instance,
4806
4804
  # installs common libraries that you can use to explore datasets for
4807
4805
  # model training, and attaches an ML storage volume to the notebook
4808
4806
  # instance.
4809
4807
  #
4810
- # Amazon SageMaker also provides a set of example notebooks. Each
4811
- # notebook demonstrates how to use Amazon SageMaker with a specific
4812
- # algorithm or with a machine learning framework.
4808
+ # SageMaker also provides a set of example notebooks. Each notebook
4809
+ # demonstrates how to use SageMaker with a specific algorithm or with a
4810
+ # machine learning framework.
4813
4811
  #
4814
- # After receiving the request, Amazon SageMaker does the following:
4812
+ # After receiving the request, SageMaker does the following:
4815
4813
  #
4816
- # 1. Creates a network interface in the Amazon SageMaker VPC.
4814
+ # 1. Creates a network interface in the SageMaker VPC.
4817
4815
  #
4818
- # 2. (Option) If you specified `SubnetId`, Amazon SageMaker creates a
4819
- # network interface in your own VPC, which is inferred from the
4820
- # subnet ID that you provide in the input. When creating this
4821
- # network interface, Amazon SageMaker attaches the security group
4822
- # that you specified in the request to the network interface that it
4823
- # creates in your VPC.
4816
+ # 2. (Option) If you specified `SubnetId`, SageMaker creates a network
4817
+ # interface in your own VPC, which is inferred from the subnet ID
4818
+ # that you provide in the input. When creating this network
4819
+ # interface, SageMaker attaches the security group that you
4820
+ # specified in the request to the network interface that it creates
4821
+ # in your VPC.
4824
4822
  #
4825
4823
  # 3. Launches an EC2 instance of the type specified in the request in
4826
- # the Amazon SageMaker VPC. If you specified `SubnetId` of your VPC,
4827
- # Amazon SageMaker specifies both network interfaces when launching
4828
- # this instance. This enables inbound traffic from your own VPC to
4829
- # the notebook instance, assuming that the security groups allow it.
4824
+ # the SageMaker VPC. If you specified `SubnetId` of your VPC,
4825
+ # SageMaker specifies both network interfaces when launching this
4826
+ # instance. This enables inbound traffic from your own VPC to the
4827
+ # notebook instance, assuming that the security groups allow it.
4830
4828
  #
4831
- # After creating the notebook instance, Amazon SageMaker returns its
4832
- # Amazon Resource Name (ARN). You can't change the name of a notebook
4833
- # instance after you create it.
4829
+ # After creating the notebook instance, SageMaker returns its Amazon
4830
+ # Resource Name (ARN). You can't change the name of a notebook instance
4831
+ # after you create it.
4834
4832
  #
4835
- # After Amazon SageMaker creates the notebook instance, you can connect
4836
- # to the Jupyter server and work in Jupyter notebooks. For example, you
4837
- # can write code to explore a dataset that you can use for model
4838
- # training, train a model, host models by creating Amazon SageMaker
4839
- # endpoints, and validate hosted models.
4833
+ # After SageMaker creates the notebook instance, you can connect to the
4834
+ # Jupyter server and work in Jupyter notebooks. For example, you can
4835
+ # write code to explore a dataset that you can use for model training,
4836
+ # train a model, host models by creating SageMaker endpoints, and
4837
+ # validate hosted models.
4840
4838
  #
4841
4839
  # For more information, see [How It Works][1].
4842
4840
  #
@@ -4860,15 +4858,14 @@ module Aws::SageMaker
4860
4858
  #
4861
4859
  # @option params [required, String] :role_arn
4862
4860
  # When you send any requests to Amazon Web Services resources from the
4863
- # notebook instance, Amazon SageMaker assumes this role to perform tasks
4864
- # on your behalf. You must grant this role necessary permissions so
4865
- # Amazon SageMaker can perform these tasks. The policy must allow the
4866
- # Amazon SageMaker service principal (sagemaker.amazonaws.com)
4867
- # permissions to assume this role. For more information, see [Amazon
4868
- # SageMaker Roles][1].
4861
+ # notebook instance, SageMaker assumes this role to perform tasks on
4862
+ # your behalf. You must grant this role necessary permissions so
4863
+ # SageMaker can perform these tasks. The policy must allow the SageMaker
4864
+ # service principal (sagemaker.amazonaws.com) permissions to assume this
4865
+ # role. For more information, see [SageMaker Roles][1].
4869
4866
  #
4870
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
4871
- # API must have the `iam:PassRole` permission.
4867
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
4868
+ # have the `iam:PassRole` permission.
4872
4869
  #
4873
4870
  # </note>
4874
4871
  #
@@ -4878,10 +4875,10 @@ module Aws::SageMaker
4878
4875
  #
4879
4876
  # @option params [String] :kms_key_id
4880
4877
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
4881
- # Service key that Amazon SageMaker uses to encrypt data on the storage
4882
- # volume attached to your notebook instance. The KMS key you provide
4883
- # must be enabled. For information, see [Enabling and Disabling Keys][1]
4884
- # in the *Amazon Web Services Key Management Service Developer Guide*.
4878
+ # Service key that SageMaker uses to encrypt data on the storage volume
4879
+ # attached to your notebook instance. The KMS key you provide must be
4880
+ # enabled. For information, see [Enabling and Disabling Keys][1] in the
4881
+ # *Amazon Web Services Key Management Service Developer Guide*.
4885
4882
  #
4886
4883
  #
4887
4884
  #
@@ -4907,11 +4904,11 @@ module Aws::SageMaker
4907
4904
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
4908
4905
  #
4909
4906
  # @option params [String] :direct_internet_access
4910
- # Sets whether Amazon SageMaker provides internet access to the notebook
4907
+ # Sets whether SageMaker provides internet access to the notebook
4911
4908
  # instance. If you set this to `Disabled` this notebook instance is able
4912
4909
  # to access resources only in your VPC, and is not be able to connect to
4913
- # Amazon SageMaker training and endpoint services unless you configure a
4914
- # NAT Gateway in your VPC.
4910
+ # SageMaker training and endpoint services unless you configure a NAT
4911
+ # Gateway in your VPC.
4915
4912
  #
4916
4913
  # For more information, see [Notebook Instances Are Internet-Enabled by
4917
4914
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -4942,8 +4939,7 @@ module Aws::SageMaker
4942
4939
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
4943
4940
  # repository. When you open a notebook instance, it opens in the
4944
4941
  # directory that contains this repository. For more information, see
4945
- # [Associating Git Repositories with Amazon SageMaker Notebook
4946
- # Instances][2].
4942
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4947
4943
  #
4948
4944
  #
4949
4945
  #
@@ -4957,8 +4953,7 @@ module Aws::SageMaker
4957
4953
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
4958
4954
  # These repositories are cloned at the same level as the default
4959
4955
  # repository of your notebook instance. For more information, see
4960
- # [Associating Git Repositories with Amazon SageMaker Notebook
4961
- # Instances][2].
4956
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4962
4957
  #
4963
4958
  #
4964
4959
  #
@@ -5242,10 +5237,10 @@ module Aws::SageMaker
5242
5237
  end
5243
5238
 
5244
5239
  # Returns a URL that you can use to connect to the Jupyter server from a
5245
- # notebook instance. In the Amazon SageMaker console, when you choose
5246
- # `Open` next to a notebook instance, Amazon SageMaker opens a new tab
5247
- # showing the Jupyter server home page from the notebook instance. The
5248
- # console uses this API to get the URL and show the page.
5240
+ # notebook instance. In the SageMaker console, when you choose `Open`
5241
+ # next to a notebook instance, SageMaker opens a new tab showing the
5242
+ # Jupyter server home page from the notebook instance. The console uses
5243
+ # this API to get the URL and show the page.
5249
5244
  #
5250
5245
  # The IAM role or user used to call this API defines the permissions to
5251
5246
  # access the notebook instance. Once the presigned URL is created, no
@@ -5601,15 +5596,14 @@ module Aws::SageMaker
5601
5596
  req.send_request(options)
5602
5597
  end
5603
5598
 
5604
- # Starts a model training job. After training completes, Amazon
5605
- # SageMaker saves the resulting model artifacts to an Amazon S3 location
5606
- # that you specify.
5599
+ # Starts a model training job. After training completes, SageMaker saves
5600
+ # the resulting model artifacts to an Amazon S3 location that you
5601
+ # specify.
5607
5602
  #
5608
- # If you choose to host your model using Amazon SageMaker hosting
5609
- # services, you can use the resulting model artifacts as part of the
5610
- # model. You can also use the artifacts in a machine learning service
5611
- # other than Amazon SageMaker, provided that you know how to use them
5612
- # for inference.
5603
+ # If you choose to host your model using SageMaker hosting services, you
5604
+ # can use the resulting model artifacts as part of the model. You can
5605
+ # also use the artifacts in a machine learning service other than
5606
+ # SageMaker, provided that you know how to use them for inference.
5613
5607
  #
5614
5608
  # In the request body, you provide the following:
5615
5609
  #
@@ -5619,13 +5613,13 @@ module Aws::SageMaker
5619
5613
  # enable the estimation of model parameters during training.
5620
5614
  # Hyperparameters can be tuned to optimize this learning process. For
5621
5615
  # a list of hyperparameters for each training algorithm provided by
5622
- # Amazon SageMaker, see [Algorithms][1].
5616
+ # SageMaker, see [Algorithms][1].
5623
5617
  #
5624
5618
  # * `InputDataConfig` - Describes the training dataset and the Amazon
5625
5619
  # S3, EFS, or FSx location where it is stored.
5626
5620
  #
5627
5621
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
5628
- # Amazon SageMaker to save the results of model training.
5622
+ # SageMaker to save the results of model training.
5629
5623
  #
5630
5624
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
5631
5625
  # and ML storage volumes to deploy for model training. In distributed
@@ -5635,10 +5629,10 @@ module Aws::SageMaker
5635
5629
  # learning models by up to 80% by using Amazon EC2 Spot instances. For
5636
5630
  # more information, see [Managed Spot Training][2].
5637
5631
  #
5638
- # * `RoleArn` - The Amazon Resource Name (ARN) that Amazon SageMaker
5639
- # assumes to perform tasks on your behalf during model training. You
5640
- # must grant this role the necessary permissions so that Amazon
5641
- # SageMaker can successfully complete model training.
5632
+ # * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
5633
+ # perform tasks on your behalf during model training. You must grant
5634
+ # this role the necessary permissions so that SageMaker can
5635
+ # successfully complete model training.
5642
5636
  #
5643
5637
  # * `StoppingCondition` - To help cap training costs, use
5644
5638
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
@@ -5651,7 +5645,7 @@ module Aws::SageMaker
5651
5645
  # * `RetryStrategy` - The number of times to retry the job when the job
5652
5646
  # fails due to an `InternalServerError`.
5653
5647
  #
5654
- # For more information about Amazon SageMaker, see [How It Works][3].
5648
+ # For more information about SageMaker, see [How It Works][3].
5655
5649
  #
5656
5650
  #
5657
5651
  #
@@ -5666,7 +5660,7 @@ module Aws::SageMaker
5666
5660
  # @option params [Hash<String,String>] :hyper_parameters
5667
5661
  # Algorithm-specific parameters that influence the quality of the model.
5668
5662
  # You set hyperparameters before you start the learning process. For a
5669
- # list of hyperparameters for each training algorithm provided by Amazon
5663
+ # list of hyperparameters for each training algorithm provided by
5670
5664
  # SageMaker, see [Algorithms][1].
5671
5665
  #
5672
5666
  # You can specify a maximum of 100 hyperparameters. Each hyperparameter
@@ -5680,9 +5674,9 @@ module Aws::SageMaker
5680
5674
  # @option params [required, Types::AlgorithmSpecification] :algorithm_specification
5681
5675
  # The registry path of the Docker image that contains the training
5682
5676
  # algorithm and algorithm-specific metadata, including the input mode.
5683
- # For more information about algorithms provided by Amazon SageMaker,
5684
- # see [Algorithms][1]. For information about providing your own
5685
- # algorithms, see [Using Your Own Algorithms with Amazon SageMaker][2].
5677
+ # For more information about algorithms provided by SageMaker, see
5678
+ # [Algorithms][1]. For information about providing your own algorithms,
5679
+ # see [Using Your Own Algorithms with Amazon SageMaker][2].
5686
5680
  #
5687
5681
  #
5688
5682
  #
@@ -5690,18 +5684,18 @@ module Aws::SageMaker
5690
5684
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
5691
5685
  #
5692
5686
  # @option params [required, String] :role_arn
5693
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
5694
- # can assume to perform tasks on your behalf.
5687
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
5688
+ # assume to perform tasks on your behalf.
5695
5689
  #
5696
- # During model training, Amazon SageMaker needs your permission to read
5697
- # input data from an S3 bucket, download a Docker image that contains
5698
- # training code, write model artifacts to an S3 bucket, write logs to
5699
- # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You
5700
- # grant permissions for all of these tasks to an IAM role. For more
5701
- # information, see [Amazon SageMaker Roles][1].
5690
+ # During model training, SageMaker needs your permission to read input
5691
+ # data from an S3 bucket, download a Docker image that contains training
5692
+ # code, write model artifacts to an S3 bucket, write logs to Amazon
5693
+ # CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
5694
+ # permissions for all of these tasks to an IAM role. For more
5695
+ # information, see [SageMaker Roles][1].
5702
5696
  #
5703
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
5704
- # API must have the `iam:PassRole` permission.
5697
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
5698
+ # have the `iam:PassRole` permission.
5705
5699
  #
5706
5700
  # </note>
5707
5701
  #
@@ -5721,16 +5715,15 @@ module Aws::SageMaker
5721
5715
  # type, compression method, and whether the data is wrapped in RecordIO
5722
5716
  # format.
5723
5717
  #
5724
- # Depending on the input mode that the algorithm supports, Amazon
5725
- # SageMaker either copies input data files from an S3 bucket to a local
5726
- # directory in the Docker container, or makes it available as input
5727
- # streams. For example, if you specify an EFS location, input data files
5728
- # will be made available as input streams. They do not need to be
5729
- # downloaded.
5718
+ # Depending on the input mode that the algorithm supports, SageMaker
5719
+ # either copies input data files from an S3 bucket to a local directory
5720
+ # in the Docker container, or makes it available as input streams. For
5721
+ # example, if you specify an EFS location, input data files are
5722
+ # available as input streams. They do not need to be downloaded.
5730
5723
  #
5731
5724
  # @option params [required, Types::OutputDataConfig] :output_data_config
5732
5725
  # Specifies the path to the S3 location where you want to store model
5733
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
5726
+ # artifacts. SageMaker creates subfolders for the artifacts.
5734
5727
  #
5735
5728
  # @option params [required, Types::ResourceConfig] :resource_config
5736
5729
  # The resources, including the ML compute instances and ML storage
@@ -5738,10 +5731,10 @@ module Aws::SageMaker
5738
5731
  #
5739
5732
  # ML storage volumes store model artifacts and incremental states.
5740
5733
  # Training algorithms might also use ML storage volumes for scratch
5741
- # space. If you want Amazon SageMaker to use the ML storage volume to
5742
- # store the training data, choose `File` as the `TrainingInputMode` in
5743
- # the algorithm specification. For distributed training algorithms,
5744
- # specify an instance count greater than 1.
5734
+ # space. If you want SageMaker to use the ML storage volume to store the
5735
+ # training data, choose `File` as the `TrainingInputMode` in the
5736
+ # algorithm specification. For distributed training algorithms, specify
5737
+ # an instance count greater than 1.
5745
5738
  #
5746
5739
  # @option params [Types::VpcConfig] :vpc_config
5747
5740
  # A VpcConfig object that specifies the VPC that you want your training
@@ -5756,13 +5749,13 @@ module Aws::SageMaker
5756
5749
  # @option params [required, Types::StoppingCondition] :stopping_condition
5757
5750
  # Specifies a limit to how long a model training job can run. It also
5758
5751
  # specifies how long a managed Spot training job has to complete. When
5759
- # the job reaches the time limit, Amazon SageMaker ends the training
5760
- # job. Use this API to cap model training costs.
5752
+ # the job reaches the time limit, SageMaker ends the training job. Use
5753
+ # this API to cap model training costs.
5761
5754
  #
5762
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5763
- # signal, which delays job termination for 120 seconds. Algorithms can
5764
- # use this 120-second window to save the model artifacts, so the results
5765
- # of training are not lost.
5755
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
5756
+ # which delays job termination for 120 seconds. Algorithms can use this
5757
+ # 120-second window to save the model artifacts, so the results of
5758
+ # training are not lost.
5766
5759
  #
5767
5760
  # @option params [Array<Types::Tag>] :tags
5768
5761
  # An array of key-value pairs. You can use tags to categorize your
@@ -5778,9 +5771,9 @@ module Aws::SageMaker
5778
5771
  # Isolates the training container. No inbound or outbound network calls
5779
5772
  # can be made, except for calls between peers within a training cluster
5780
5773
  # for distributed training. If you enable network isolation for training
5781
- # jobs that are configured to use a VPC, Amazon SageMaker downloads and
5782
- # uploads customer data and model artifacts through the specified VPC,
5783
- # but the training container does not have network access.
5774
+ # jobs that are configured to use a VPC, SageMaker downloads and uploads
5775
+ # customer data and model artifacts through the specified VPC, but the
5776
+ # training container does not have network access.
5784
5777
  #
5785
5778
  # @option params [Boolean] :enable_inter_container_traffic_encryption
5786
5779
  # To encrypt all communications between ML compute instances in
@@ -6087,6 +6080,11 @@ module Aws::SageMaker
6087
6080
  # fit within the maximum payload size, we recommend using a slightly
6088
6081
  # larger value. The default value is `6` MB.
6089
6082
  #
6083
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
6084
+ # specify the `MaxConcurrentTransforms` parameter, the value of
6085
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
6086
+ # MB.
6087
+ #
6090
6088
  # For cases where the payload might be arbitrarily large and is
6091
6089
  # transmitted using HTTP chunked encoding, set the value to `0`. This
6092
6090
  # feature works only in supported algorithms. Currently, Amazon
@@ -7052,13 +7050,19 @@ module Aws::SageMaker
7052
7050
  req.send_request(options)
7053
7051
  end
7054
7052
 
7055
- # Deletes an endpoint. Amazon SageMaker frees up all of the resources
7056
- # that were deployed when the endpoint was created.
7053
+ # Deletes an endpoint. SageMaker frees up all of the resources that were
7054
+ # deployed when the endpoint was created.
7057
7055
  #
7058
- # Amazon SageMaker retires any custom KMS key grants associated with the
7056
+ # SageMaker retires any custom KMS key grants associated with the
7059
7057
  # endpoint, meaning you don't need to use the [RevokeGrant][1] API
7060
7058
  # call.
7061
7059
  #
7060
+ # When you delete your endpoint, SageMaker asynchronously deletes
7061
+ # associated endpoint resources such as KMS key grants. You might still
7062
+ # see these resources in your account for a few minutes after deleting
7063
+ # your endpoint. Do not delete or revoke the permissions for your `
7064
+ # ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
7065
+ #
7062
7066
  #
7063
7067
  #
7064
7068
  # [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
@@ -7275,9 +7279,9 @@ module Aws::SageMaker
7275
7279
  end
7276
7280
 
7277
7281
  # Deletes a model. The `DeleteModel` API deletes only the model entry
7278
- # that was created in Amazon SageMaker when you called the `CreateModel`
7279
- # API. It does not delete model artifacts, inference code, or the IAM
7280
- # role that you specified when creating the model.
7282
+ # that was created in SageMaker when you called the `CreateModel` API.
7283
+ # It does not delete model artifacts, inference code, or the IAM role
7284
+ # that you specified when creating the model.
7281
7285
  #
7282
7286
  # @option params [required, String] :model_name
7283
7287
  # The name of the model to delete.
@@ -7345,10 +7349,10 @@ module Aws::SageMaker
7345
7349
 
7346
7350
  # Deletes a model package.
7347
7351
  #
7348
- # A model package is used to create Amazon SageMaker models or list on
7349
- # Amazon Web Services Marketplace. Buyers can subscribe to model
7350
- # packages listed on Amazon Web Services Marketplace to create models in
7351
- # Amazon SageMaker.
7352
+ # A model package is used to create SageMaker models or list on Amazon
7353
+ # Web Services Marketplace. Buyers can subscribe to model packages
7354
+ # listed on Amazon Web Services Marketplace to create models in
7355
+ # SageMaker.
7352
7356
  #
7353
7357
  # @option params [required, String] :model_package_name
7354
7358
  # The name or Amazon Resource Name (ARN) of the model package to delete.
@@ -7463,16 +7467,16 @@ module Aws::SageMaker
7463
7467
  req.send_request(options)
7464
7468
  end
7465
7469
 
7466
- # Deletes an Amazon SageMaker notebook instance. Before you can delete a
7470
+ # Deletes an SageMaker notebook instance. Before you can delete a
7467
7471
  # notebook instance, you must call the `StopNotebookInstance` API.
7468
7472
  #
7469
- # When you delete a notebook instance, you lose all of your data. Amazon
7473
+ # When you delete a notebook instance, you lose all of your data.
7470
7474
  # SageMaker removes the ML compute instance, and deletes the ML storage
7471
7475
  # volume and the network interface associated with the notebook
7472
7476
  # instance.
7473
7477
  #
7474
7478
  # @option params [required, String] :notebook_instance_name
7475
- # The name of the Amazon SageMaker notebook instance to delete.
7479
+ # The name of the SageMaker notebook instance to delete.
7476
7480
  #
7477
7481
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
7478
7482
  #
@@ -7600,7 +7604,7 @@ module Aws::SageMaker
7600
7604
  req.send_request(options)
7601
7605
  end
7602
7606
 
7603
- # Deletes the specified tags from an Amazon SageMaker resource.
7607
+ # Deletes the specified tags from an SageMaker resource.
7604
7608
  #
7605
7609
  # To list a resource's tags, use the `ListTags` API.
7606
7610
  #
@@ -8241,6 +8245,7 @@ module Aws::SageMaker
8241
8245
  # resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
8242
8246
  # resp.input_data_config[0].target_attribute_name #=> String
8243
8247
  # resp.input_data_config[0].content_type #=> String
8248
+ # resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
8244
8249
  # resp.output_data_config.kms_key_id #=> String
8245
8250
  # resp.output_data_config.s3_output_path #=> String
8246
8251
  # resp.role_arn #=> String
@@ -8255,6 +8260,7 @@ module Aws::SageMaker
8255
8260
  # resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
8256
8261
  # resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
8257
8262
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
8263
+ # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
8258
8264
  # resp.creation_time #=> Time
8259
8265
  # resp.end_time #=> Time
8260
8266
  # resp.last_modified_time #=> Time
@@ -10219,7 +10225,7 @@ module Aws::SageMaker
10219
10225
  # Gets a description for the specified model group.
10220
10226
  #
10221
10227
  # @option params [required, String] :model_package_group_name
10222
- # The name of the model group to describe.
10228
+ # The name of gthe model group to describe.
10223
10229
  #
10224
10230
  # @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10225
10231
  #
@@ -14751,8 +14757,8 @@ module Aws::SageMaker
14751
14757
  req.send_request(options)
14752
14758
  end
14753
14759
 
14754
- # Returns a list of the Amazon SageMaker notebook instances in the
14755
- # requester's account in an Amazon Web Services Region.
14760
+ # Returns a list of the SageMaker notebook instances in the requester's
14761
+ # account in an Amazon Web Services Region.
14756
14762
  #
14757
14763
  # @option params [String] :next_token
14758
14764
  # If the previous call to the `ListNotebookInstances` is truncated, the
@@ -15423,7 +15429,7 @@ module Aws::SageMaker
15423
15429
  req.send_request(options)
15424
15430
  end
15425
15431
 
15426
- # Returns the tags for the specified Amazon SageMaker resource.
15432
+ # Returns the tags for the specified SageMaker resource.
15427
15433
  #
15428
15434
  # @option params [required, String] :resource_arn
15429
15435
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
@@ -15431,8 +15437,8 @@ module Aws::SageMaker
15431
15437
  #
15432
15438
  # @option params [String] :next_token
15433
15439
  # If the response to the previous `ListTags` request is truncated,
15434
- # Amazon SageMaker returns this token. To retrieve the next set of tags,
15435
- # use it in the subsequent request.
15440
+ # SageMaker returns this token. To retrieve the next set of tags, use it
15441
+ # in the subsequent request.
15436
15442
  #
15437
15443
  # @option params [Integer] :max_results
15438
15444
  # Maximum number of tags to return.
@@ -16157,11 +16163,12 @@ module Aws::SageMaker
16157
16163
  # starting point for your lineage query.
16158
16164
  #
16159
16165
  # @option params [String] :direction
16160
- # Associations between lineage entities are directed. This parameter
16161
- # determines the direction from the StartArn(s) the query will look.
16166
+ # Associations between lineage entities have a direction. This parameter
16167
+ # determines the direction from the StartArn(s) that the query
16168
+ # traverses.
16162
16169
  #
16163
16170
  # @option params [Boolean] :include_edges
16164
- # Setting this value to `True` will retrieve not only the entities of
16171
+ # Setting this value to `True` retrieves not only the entities of
16165
16172
  # interest but also the [Associations][1] and lineage entities on the
16166
16173
  # path. Set to `False` to only return lineage entities that match your
16167
16174
  # query.
@@ -16188,8 +16195,8 @@ module Aws::SageMaker
16188
16195
  #
16189
16196
  # @option params [Integer] :max_depth
16190
16197
  # The maximum depth in lineage relationships from the `StartArns` that
16191
- # will be traversed. Depth is a measure of the number of `Associations`
16192
- # from the `StartArn` entity to the matched results.
16198
+ # are traversed. Depth is a measure of the number of `Associations` from
16199
+ # the `StartArn` entity to the matched results.
16193
16200
  #
16194
16201
  # @option params [Integer] :max_results
16195
16202
  # Limits the number of vertices in the results. Use the `NextToken` in a
@@ -17365,9 +17372,9 @@ module Aws::SageMaker
17365
17372
 
17366
17373
  # Launches an ML compute instance with the latest version of the
17367
17374
  # libraries and attaches your ML storage volume. After configuring the
17368
- # notebook instance, Amazon SageMaker sets the notebook instance status
17369
- # to `InService`. A notebook instance's status must be `InService`
17370
- # before you can connect to your Jupyter notebook.
17375
+ # notebook instance, SageMaker sets the notebook instance status to
17376
+ # `InService`. A notebook instance's status must be `InService` before
17377
+ # you can connect to your Jupyter notebook.
17371
17378
  #
17372
17379
  # @option params [required, String] :notebook_instance_name
17373
17380
  # The name of the notebook instance to start.
@@ -17623,10 +17630,9 @@ module Aws::SageMaker
17623
17630
  end
17624
17631
 
17625
17632
  # Terminates the ML compute instance. Before terminating the instance,
17626
- # Amazon SageMaker disconnects the ML storage volume from it. Amazon
17627
- # SageMaker preserves the ML storage volume. Amazon SageMaker stops
17628
- # charging you for the ML compute instance when you call
17629
- # `StopNotebookInstance`.
17633
+ # SageMaker disconnects the ML storage volume from it. SageMaker
17634
+ # preserves the ML storage volume. SageMaker stops charging you for the
17635
+ # ML compute instance when you call `StopNotebookInstance`.
17630
17636
  #
17631
17637
  # To access data on the ML storage volume for a notebook instance that
17632
17638
  # has been terminated, call the `StartNotebookInstance` API.
@@ -17740,14 +17746,14 @@ module Aws::SageMaker
17740
17746
  req.send_request(options)
17741
17747
  end
17742
17748
 
17743
- # Stops a training job. To stop a job, Amazon SageMaker sends the
17744
- # algorithm the `SIGTERM` signal, which delays job termination for 120
17745
- # seconds. Algorithms might use this 120-second window to save the model
17749
+ # Stops a training job. To stop a job, SageMaker sends the algorithm the
17750
+ # `SIGTERM` signal, which delays job termination for 120 seconds.
17751
+ # Algorithms might use this 120-second window to save the model
17746
17752
  # artifacts, so the results of the training is not lost.
17747
17753
  #
17748
- # When it receives a `StopTrainingJob` request, Amazon SageMaker changes
17749
- # the status of the job to `Stopping`. After Amazon SageMaker stops the
17750
- # job, it sets the status to `Stopped`.
17754
+ # When it receives a `StopTrainingJob` request, SageMaker changes the
17755
+ # status of the job to `Stopping`. After SageMaker stops the job, it
17756
+ # sets the status to `Stopped`.
17751
17757
  #
17752
17758
  # @option params [required, String] :training_job_name
17753
17759
  # The name of the training job to stop.
@@ -18189,9 +18195,9 @@ module Aws::SageMaker
18189
18195
  # for the endpoint using the previous `EndpointConfig` (there is no
18190
18196
  # availability loss).
18191
18197
  #
18192
- # When Amazon SageMaker receives the request, it sets the endpoint
18193
- # status to `Updating`. After updating the endpoint, it sets the status
18194
- # to `InService`. To check the status of an endpoint, use the
18198
+ # When SageMaker receives the request, it sets the endpoint status to
18199
+ # `Updating`. After updating the endpoint, it sets the status to
18200
+ # `InService`. To check the status of an endpoint, use the
18195
18201
  # DescribeEndpoint API.
18196
18202
  #
18197
18203
  # <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
@@ -18299,13 +18305,13 @@ module Aws::SageMaker
18299
18305
 
18300
18306
  # Updates variant weight of one or more variants associated with an
18301
18307
  # existing endpoint, or capacity of one variant associated with an
18302
- # existing endpoint. When it receives the request, Amazon SageMaker sets
18303
- # the endpoint status to `Updating`. After updating the endpoint, it
18304
- # sets the status to `InService`. To check the status of an endpoint,
18305
- # use the DescribeEndpoint API.
18308
+ # existing endpoint. When it receives the request, SageMaker sets the
18309
+ # endpoint status to `Updating`. After updating the endpoint, it sets
18310
+ # the status to `InService`. To check the status of an endpoint, use the
18311
+ # DescribeEndpoint API.
18306
18312
  #
18307
18313
  # @option params [required, String] :endpoint_name
18308
- # The name of an existing Amazon SageMaker endpoint.
18314
+ # The name of an existing SageMaker endpoint.
18309
18315
  #
18310
18316
  # @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
18311
18317
  # An object that provides new capacity and weight values for a variant.
@@ -18630,12 +18636,12 @@ module Aws::SageMaker
18630
18636
  # The Amazon ML compute instance type.
18631
18637
  #
18632
18638
  # @option params [String] :role_arn
18633
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
18634
- # can assume to access the notebook instance. For more information, see
18635
- # [Amazon SageMaker Roles][1].
18639
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
18640
+ # assume to access the notebook instance. For more information, see
18641
+ # [SageMaker Roles][1].
18636
18642
  #
18637
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
18638
- # API must have the `iam:PassRole` permission.
18643
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
18644
+ # have the `iam:PassRole` permission.
18639
18645
  #
18640
18646
  # </note>
18641
18647
  #
@@ -18662,11 +18668,11 @@ module Aws::SageMaker
18662
18668
  # @option params [Integer] :volume_size_in_gb
18663
18669
  # The size, in GB, of the ML storage volume to attach to the notebook
18664
18670
  # instance. The default value is 5 GB. ML storage volumes are encrypted,
18665
- # so Amazon SageMaker can't determine the amount of available free
18666
- # space on the volume. Because of this, you can increase the volume size
18667
- # when you update a notebook instance, but you can't decrease the
18668
- # volume size. If you want to decrease the size of the ML storage volume
18669
- # in use, create a new notebook instance with the desired size.
18671
+ # so SageMaker can't determine the amount of available free space on
18672
+ # the volume. Because of this, you can increase the volume size when you
18673
+ # update a notebook instance, but you can't decrease the volume size.
18674
+ # If you want to decrease the size of the ML storage volume in use,
18675
+ # create a new notebook instance with the desired size.
18670
18676
  #
18671
18677
  # @option params [String] :default_code_repository
18672
18678
  # The Git repository to associate with the notebook instance as its
@@ -18675,8 +18681,7 @@ module Aws::SageMaker
18675
18681
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
18676
18682
  # repository. When you open a notebook instance, it opens in the
18677
18683
  # directory that contains this repository. For more information, see
18678
- # [Associating Git Repositories with Amazon SageMaker Notebook
18679
- # Instances][2].
18684
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18680
18685
  #
18681
18686
  #
18682
18687
  #
@@ -18690,8 +18695,7 @@ module Aws::SageMaker
18690
18695
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
18691
18696
  # These repositories are cloned at the same level as the default
18692
18697
  # repository of your notebook instance. For more information, see
18693
- # [Associating Git Repositories with Amazon SageMaker Notebook
18694
- # Instances][2].
18698
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18695
18699
  #
18696
18700
  #
18697
18701
  #
@@ -19464,7 +19468,7 @@ module Aws::SageMaker
19464
19468
  params: params,
19465
19469
  config: config)
19466
19470
  context[:gem_name] = 'aws-sdk-sagemaker'
19467
- context[:gem_version] = '1.122.0'
19471
+ context[:gem_version] = '1.123.0'
19468
19472
  Seahorse::Client::Request.new(handlers, context)
19469
19473
  end
19470
19474