aws-sdk-sagemaker 1.122.0 → 1.123.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +248 -244
- data/lib/aws-sdk-sagemaker/client_api.rb +8 -0
- data/lib/aws-sdk-sagemaker/types.rb +438 -398
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -422,7 +422,7 @@ module Aws::SageMaker
|
|
422
422
|
req.send_request(options)
|
423
423
|
end
|
424
424
|
|
425
|
-
# Adds or overwrites one or more tags for the specified
|
425
|
+
# Adds or overwrites one or more tags for the specified SageMaker
|
426
426
|
# resource. You can add tags to notebook instances, training jobs,
|
427
427
|
# hyperparameter tuning jobs, batch transform jobs, models, labeling
|
428
428
|
# jobs, work teams, endpoint configurations, and endpoints.
|
@@ -678,8 +678,8 @@ module Aws::SageMaker
|
|
678
678
|
req.send_request(options)
|
679
679
|
end
|
680
680
|
|
681
|
-
# Create a machine learning algorithm that you can use in
|
682
|
-
#
|
681
|
+
# Create a machine learning algorithm that you can use in SageMaker and
|
682
|
+
# list in the Amazon Web Services Marketplace.
|
683
683
|
#
|
684
684
|
# @option params [required, String] :algorithm_name
|
685
685
|
# The name of the algorithm.
|
@@ -723,10 +723,10 @@ module Aws::SageMaker
|
|
723
723
|
# inference.
|
724
724
|
#
|
725
725
|
# @option params [Types::AlgorithmValidationSpecification] :validation_specification
|
726
|
-
# Specifies configurations for one or more training jobs and that
|
726
|
+
# Specifies configurations for one or more training jobs and that
|
727
727
|
# SageMaker runs to test the algorithm's training code and, optionally,
|
728
|
-
# one or more batch transform jobs that
|
729
|
-
#
|
728
|
+
# one or more batch transform jobs that SageMaker runs to test the
|
729
|
+
# algorithm's inference code.
|
730
730
|
#
|
731
731
|
# @option params [Boolean] :certify_for_marketplace
|
732
732
|
# Whether to certify the algorithm so that it can be listed in Amazon
|
@@ -1210,6 +1210,7 @@ module Aws::SageMaker
|
|
1210
1210
|
# compression_type: "None", # accepts None, Gzip
|
1211
1211
|
# target_attribute_name: "TargetAttributeName", # required
|
1212
1212
|
# content_type: "ContentType",
|
1213
|
+
# channel_type: "training", # accepts training, validation
|
1213
1214
|
# },
|
1214
1215
|
# ],
|
1215
1216
|
# output_data_config: { # required
|
@@ -1234,6 +1235,9 @@ module Aws::SageMaker
|
|
1234
1235
|
# subnets: ["SubnetId"], # required
|
1235
1236
|
# },
|
1236
1237
|
# },
|
1238
|
+
# data_split_config: {
|
1239
|
+
# validation_fraction: 1.0,
|
1240
|
+
# },
|
1237
1241
|
# },
|
1238
1242
|
# role_arn: "RoleArn", # required
|
1239
1243
|
# generate_candidate_definitions_only: false,
|
@@ -1262,13 +1266,13 @@ module Aws::SageMaker
|
|
1262
1266
|
req.send_request(options)
|
1263
1267
|
end
|
1264
1268
|
|
1265
|
-
# Creates a Git repository as a resource in your
|
1266
|
-
#
|
1267
|
-
#
|
1268
|
-
#
|
1269
|
-
#
|
1270
|
-
#
|
1271
|
-
#
|
1269
|
+
# Creates a Git repository as a resource in your SageMaker account. You
|
1270
|
+
# can associate the repository with notebook instances so that you can
|
1271
|
+
# use Git source control for the notebooks you create. The Git
|
1272
|
+
# repository is a resource in your SageMaker account, so it can be
|
1273
|
+
# associated with more than one notebook instance, and it persists
|
1274
|
+
# independently from the lifecycle of any notebook instances it is
|
1275
|
+
# associated with.
|
1272
1276
|
#
|
1273
1277
|
# The repository can be hosted either in [Amazon Web Services
|
1274
1278
|
# CodeCommit][1] or in any other Git repository.
|
@@ -2032,13 +2036,13 @@ module Aws::SageMaker
|
|
2032
2036
|
end
|
2033
2037
|
|
2034
2038
|
# Creates an endpoint using the endpoint configuration specified in the
|
2035
|
-
# request.
|
2036
|
-
#
|
2039
|
+
# request. SageMaker uses the endpoint to provision resources and deploy
|
2040
|
+
# models. You create the endpoint configuration with the
|
2037
2041
|
# CreateEndpointConfig API.
|
2038
2042
|
#
|
2039
|
-
# Use this API to deploy models using
|
2043
|
+
# Use this API to deploy models using SageMaker hosting services.
|
2040
2044
|
#
|
2041
|
-
# For an example that calls this method when deploying a model to
|
2045
|
+
# For an example that calls this method when deploying a model to
|
2042
2046
|
# SageMaker hosting services, see the [Create Endpoint example
|
2043
2047
|
# notebook.][1]
|
2044
2048
|
#
|
@@ -2052,9 +2056,9 @@ module Aws::SageMaker
|
|
2052
2056
|
# The endpoint name must be unique within an Amazon Web Services Region
|
2053
2057
|
# in your Amazon Web Services account.
|
2054
2058
|
#
|
2055
|
-
# When it receives the request,
|
2056
|
-
#
|
2057
|
-
#
|
2059
|
+
# When it receives the request, SageMaker creates the endpoint, launches
|
2060
|
+
# the resources (ML compute instances), and deploys the model(s) on
|
2061
|
+
# them.
|
2058
2062
|
#
|
2059
2063
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2060
2064
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2070,21 +2074,21 @@ module Aws::SageMaker
|
|
2070
2074
|
#
|
2071
2075
|
# </note>
|
2072
2076
|
#
|
2073
|
-
# When
|
2074
|
-
#
|
2075
|
-
#
|
2076
|
-
#
|
2077
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
2078
|
+
# `Creating`. After it creates the endpoint, it sets the status to
|
2079
|
+
# `InService`. SageMaker can then process incoming requests for
|
2080
|
+
# inferences. To check the status of an endpoint, use the
|
2077
2081
|
# DescribeEndpoint API.
|
2078
2082
|
#
|
2079
2083
|
# If any of the models hosted at this endpoint get model data from an
|
2080
|
-
# Amazon S3 location,
|
2081
|
-
#
|
2082
|
-
#
|
2083
|
-
#
|
2084
|
-
#
|
2085
|
-
#
|
2086
|
-
#
|
2087
|
-
#
|
2084
|
+
# Amazon S3 location, SageMaker uses Amazon Web Services Security Token
|
2085
|
+
# Service to download model artifacts from the S3 path you provided.
|
2086
|
+
# Amazon Web Services STS is activated in your IAM user account by
|
2087
|
+
# default. If you previously deactivated Amazon Web Services STS for a
|
2088
|
+
# region, you need to reactivate Amazon Web Services STS for that
|
2089
|
+
# region. For more information, see [Activating and Deactivating Amazon
|
2090
|
+
# Web Services STS in an Amazon Web Services Region][3] in the *Amazon
|
2091
|
+
# Web Services Identity and Access Management User Guide*.
|
2088
2092
|
#
|
2089
2093
|
# <note markdown="1"> To add the IAM role policies for using this API operation, go to the
|
2090
2094
|
# [IAM console][4], and choose Roles in the left navigation pane. Search
|
@@ -2202,28 +2206,28 @@ module Aws::SageMaker
|
|
2202
2206
|
req.send_request(options)
|
2203
2207
|
end
|
2204
2208
|
|
2205
|
-
# Creates an endpoint configuration that
|
2206
|
-
#
|
2207
|
-
#
|
2208
|
-
# resources that you want
|
2209
|
-
#
|
2209
|
+
# Creates an endpoint configuration that SageMaker hosting services uses
|
2210
|
+
# to deploy models. In the configuration, you identify one or more
|
2211
|
+
# models, created using the `CreateModel` API, to deploy and the
|
2212
|
+
# resources that you want SageMaker to provision. Then you call the
|
2213
|
+
# CreateEndpoint API.
|
2210
2214
|
#
|
2211
|
-
# <note markdown="1"> Use this API if you want to use
|
2212
|
-
#
|
2215
|
+
# <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
|
2216
|
+
# models into production.
|
2213
2217
|
#
|
2214
2218
|
# </note>
|
2215
2219
|
#
|
2216
2220
|
# In the request, you define a `ProductionVariant`, for each model that
|
2217
2221
|
# you want to deploy. Each `ProductionVariant` parameter also describes
|
2218
|
-
# the resources that you want
|
2219
|
-
#
|
2222
|
+
# the resources that you want SageMaker to provision. This includes the
|
2223
|
+
# number and type of ML compute instances to deploy.
|
2220
2224
|
#
|
2221
2225
|
# If you are hosting multiple models, you also assign a `VariantWeight`
|
2222
2226
|
# to specify how much traffic you want to allocate to each model. For
|
2223
2227
|
# example, suppose that you want to host two models, A and B, and you
|
2224
|
-
# assign traffic weight 2 for model A and 1 for model B.
|
2225
|
-
#
|
2226
|
-
#
|
2228
|
+
# assign traffic weight 2 for model A and 1 for model B. SageMaker
|
2229
|
+
# distributes two-thirds of the traffic to Model A, and one-third to
|
2230
|
+
# model B.
|
2227
2231
|
#
|
2228
2232
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2229
2233
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2265,8 +2269,8 @@ module Aws::SageMaker
|
|
2265
2269
|
#
|
2266
2270
|
# @option params [String] :kms_key_id
|
2267
2271
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
2268
|
-
# Service key that
|
2269
|
-
#
|
2272
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
2273
|
+
# attached to the ML compute instance that hosts the endpoint.
|
2270
2274
|
#
|
2271
2275
|
# The KmsKeyId can be any of the following formats:
|
2272
2276
|
#
|
@@ -3133,8 +3137,8 @@ module Aws::SageMaker
|
|
3133
3137
|
|
3134
3138
|
# Creates a custom SageMaker image. A SageMaker image is a set of image
|
3135
3139
|
# versions. Each image version represents a container image stored in
|
3136
|
-
# Amazon Container Registry (ECR). For more information, see
|
3137
|
-
# own SageMaker image][1].
|
3140
|
+
# Amazon Elastic Container Registry (ECR). For more information, see
|
3141
|
+
# [Bring your own SageMaker image][1].
|
3138
3142
|
#
|
3139
3143
|
#
|
3140
3144
|
#
|
@@ -3190,13 +3194,13 @@ module Aws::SageMaker
|
|
3190
3194
|
end
|
3191
3195
|
|
3192
3196
|
# Creates a version of the SageMaker image specified by `ImageName`. The
|
3193
|
-
# version represents the Amazon Container Registry (ECR)
|
3194
|
-
# specified by `BaseImage`.
|
3197
|
+
# version represents the Amazon Elastic Container Registry (ECR)
|
3198
|
+
# container image specified by `BaseImage`.
|
3195
3199
|
#
|
3196
3200
|
# @option params [required, String] :base_image
|
3197
3201
|
# The registry path of the container image to use as the starting point
|
3198
|
-
# for this version. The path is an Amazon Container Registry
|
3199
|
-
# in the following format:
|
3202
|
+
# for this version. The path is an Amazon Elastic Container Registry
|
3203
|
+
# (ECR) URI in the following format:
|
3200
3204
|
#
|
3201
3205
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
3202
3206
|
# [@digest]>`
|
@@ -3666,34 +3670,30 @@ module Aws::SageMaker
|
|
3666
3670
|
req.send_request(options)
|
3667
3671
|
end
|
3668
3672
|
|
3669
|
-
# Creates a model in
|
3670
|
-
#
|
3671
|
-
#
|
3672
|
-
#
|
3673
|
-
#
|
3673
|
+
# Creates a model in SageMaker. In the request, you name the model and
|
3674
|
+
# describe a primary container. For the primary container, you specify
|
3675
|
+
# the Docker image that contains inference code, artifacts (from prior
|
3676
|
+
# training), and a custom environment map that the inference code uses
|
3677
|
+
# when you deploy the model for predictions.
|
3674
3678
|
#
|
3675
|
-
# Use this API to create a model if you want to use
|
3676
|
-
#
|
3679
|
+
# Use this API to create a model if you want to use SageMaker hosting
|
3680
|
+
# services or run a batch transform job.
|
3677
3681
|
#
|
3678
3682
|
# To host your model, you create an endpoint configuration with the
|
3679
3683
|
# `CreateEndpointConfig` API, and then create an endpoint with the
|
3680
|
-
# `CreateEndpoint` API.
|
3681
|
-
#
|
3684
|
+
# `CreateEndpoint` API. SageMaker then deploys all of the containers
|
3685
|
+
# that you defined for the model in the hosting environment.
|
3682
3686
|
#
|
3683
|
-
# For an example that calls this method when deploying a model to
|
3687
|
+
# For an example that calls this method when deploying a model to
|
3684
3688
|
# SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
|
3685
3689
|
# Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
|
3686
3690
|
#
|
3687
3691
|
# To run a batch transform using your model, you start a job with the
|
3688
|
-
# `CreateTransformJob` API.
|
3689
|
-
#
|
3690
|
-
# location.
|
3691
|
-
#
|
3692
|
-
# In the `CreateModel` request, you must define a container with the
|
3693
|
-
# `PrimaryContainer` parameter.
|
3692
|
+
# `CreateTransformJob` API. SageMaker uses your model and your dataset
|
3693
|
+
# to get inferences which are then saved to a specified S3 location.
|
3694
3694
|
#
|
3695
|
-
# In the request, you also provide an IAM role that
|
3696
|
-
#
|
3695
|
+
# In the request, you also provide an IAM role that SageMaker can assume
|
3696
|
+
# to access model artifacts and docker image for deployment on ML
|
3697
3697
|
# compute hosting instances or for batch transform jobs. In addition,
|
3698
3698
|
# you also use the IAM role to manage permissions the inference code
|
3699
3699
|
# needs. For example, if the inference code access any other Amazon Web
|
@@ -3719,14 +3719,14 @@ module Aws::SageMaker
|
|
3719
3719
|
# called.
|
3720
3720
|
#
|
3721
3721
|
# @option params [required, String] :execution_role_arn
|
3722
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
3723
|
-
#
|
3724
|
-
#
|
3725
|
-
#
|
3726
|
-
# [
|
3722
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
3723
|
+
# assume to access model artifacts and docker image for deployment on ML
|
3724
|
+
# compute instances or for batch transform jobs. Deploying on ML compute
|
3725
|
+
# instances is part of model hosting. For more information, see
|
3726
|
+
# [SageMaker Roles][1].
|
3727
3727
|
#
|
3728
|
-
# <note markdown="1"> To be able to pass this role to
|
3729
|
-
#
|
3728
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
3729
|
+
# have the `iam:PassRole` permission.
|
3730
3730
|
#
|
3731
3731
|
# </note>
|
3732
3732
|
#
|
@@ -4105,11 +4105,10 @@ module Aws::SageMaker
|
|
4105
4105
|
req.send_request(options)
|
4106
4106
|
end
|
4107
4107
|
|
4108
|
-
# Creates a model package that you can use to create
|
4109
|
-
#
|
4110
|
-
#
|
4111
|
-
#
|
4112
|
-
# Amazon SageMaker.
|
4108
|
+
# Creates a model package that you can use to create SageMaker models or
|
4109
|
+
# list on Amazon Web Services Marketplace, or a versioned model that is
|
4110
|
+
# part of a model group. Buyers can subscribe to model packages listed
|
4111
|
+
# on Amazon Web Services Marketplace to create models in SageMaker.
|
4113
4112
|
#
|
4114
4113
|
# To create a model package by specifying a Docker container that
|
4115
4114
|
# contains your inference code and the Amazon S3 location of your model
|
@@ -4158,8 +4157,8 @@ module Aws::SageMaker
|
|
4158
4157
|
# for inference.
|
4159
4158
|
#
|
4160
4159
|
# @option params [Types::ModelPackageValidationSpecification] :validation_specification
|
4161
|
-
# Specifies configurations for one or more transform jobs that
|
4162
|
-
#
|
4160
|
+
# Specifies configurations for one or more transform jobs that SageMaker
|
4161
|
+
# runs to test the model package.
|
4163
4162
|
#
|
4164
4163
|
# @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
|
4165
4164
|
# Details about the algorithm that was used to create the model package.
|
@@ -4797,46 +4796,45 @@ module Aws::SageMaker
|
|
4797
4796
|
req.send_request(options)
|
4798
4797
|
end
|
4799
4798
|
|
4800
|
-
# Creates an
|
4801
|
-
#
|
4802
|
-
# notebook.
|
4799
|
+
# Creates an SageMaker notebook instance. A notebook instance is a
|
4800
|
+
# machine learning (ML) compute instance running on a Jupyter notebook.
|
4803
4801
|
#
|
4804
4802
|
# In a `CreateNotebookInstance` request, specify the type of ML compute
|
4805
|
-
# instance that you want to run.
|
4803
|
+
# instance that you want to run. SageMaker launches the instance,
|
4806
4804
|
# installs common libraries that you can use to explore datasets for
|
4807
4805
|
# model training, and attaches an ML storage volume to the notebook
|
4808
4806
|
# instance.
|
4809
4807
|
#
|
4810
|
-
#
|
4811
|
-
#
|
4812
|
-
#
|
4808
|
+
# SageMaker also provides a set of example notebooks. Each notebook
|
4809
|
+
# demonstrates how to use SageMaker with a specific algorithm or with a
|
4810
|
+
# machine learning framework.
|
4813
4811
|
#
|
4814
|
-
# After receiving the request,
|
4812
|
+
# After receiving the request, SageMaker does the following:
|
4815
4813
|
#
|
4816
|
-
# 1. Creates a network interface in the
|
4814
|
+
# 1. Creates a network interface in the SageMaker VPC.
|
4817
4815
|
#
|
4818
|
-
# 2. (Option) If you specified `SubnetId`,
|
4819
|
-
#
|
4820
|
-
#
|
4821
|
-
#
|
4822
|
-
#
|
4823
|
-
#
|
4816
|
+
# 2. (Option) If you specified `SubnetId`, SageMaker creates a network
|
4817
|
+
# interface in your own VPC, which is inferred from the subnet ID
|
4818
|
+
# that you provide in the input. When creating this network
|
4819
|
+
# interface, SageMaker attaches the security group that you
|
4820
|
+
# specified in the request to the network interface that it creates
|
4821
|
+
# in your VPC.
|
4824
4822
|
#
|
4825
4823
|
# 3. Launches an EC2 instance of the type specified in the request in
|
4826
|
-
# the
|
4827
|
-
#
|
4828
|
-
#
|
4829
|
-
#
|
4824
|
+
# the SageMaker VPC. If you specified `SubnetId` of your VPC,
|
4825
|
+
# SageMaker specifies both network interfaces when launching this
|
4826
|
+
# instance. This enables inbound traffic from your own VPC to the
|
4827
|
+
# notebook instance, assuming that the security groups allow it.
|
4830
4828
|
#
|
4831
|
-
# After creating the notebook instance,
|
4832
|
-
#
|
4833
|
-
#
|
4829
|
+
# After creating the notebook instance, SageMaker returns its Amazon
|
4830
|
+
# Resource Name (ARN). You can't change the name of a notebook instance
|
4831
|
+
# after you create it.
|
4834
4832
|
#
|
4835
|
-
# After
|
4836
|
-
#
|
4837
|
-
#
|
4838
|
-
#
|
4839
|
-
#
|
4833
|
+
# After SageMaker creates the notebook instance, you can connect to the
|
4834
|
+
# Jupyter server and work in Jupyter notebooks. For example, you can
|
4835
|
+
# write code to explore a dataset that you can use for model training,
|
4836
|
+
# train a model, host models by creating SageMaker endpoints, and
|
4837
|
+
# validate hosted models.
|
4840
4838
|
#
|
4841
4839
|
# For more information, see [How It Works][1].
|
4842
4840
|
#
|
@@ -4860,15 +4858,14 @@ module Aws::SageMaker
|
|
4860
4858
|
#
|
4861
4859
|
# @option params [required, String] :role_arn
|
4862
4860
|
# When you send any requests to Amazon Web Services resources from the
|
4863
|
-
# notebook instance,
|
4864
|
-
#
|
4865
|
-
#
|
4866
|
-
#
|
4867
|
-
#
|
4868
|
-
# SageMaker Roles][1].
|
4861
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
4862
|
+
# your behalf. You must grant this role necessary permissions so
|
4863
|
+
# SageMaker can perform these tasks. The policy must allow the SageMaker
|
4864
|
+
# service principal (sagemaker.amazonaws.com) permissions to assume this
|
4865
|
+
# role. For more information, see [SageMaker Roles][1].
|
4869
4866
|
#
|
4870
|
-
# <note markdown="1"> To be able to pass this role to
|
4871
|
-
#
|
4867
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
4868
|
+
# have the `iam:PassRole` permission.
|
4872
4869
|
#
|
4873
4870
|
# </note>
|
4874
4871
|
#
|
@@ -4878,10 +4875,10 @@ module Aws::SageMaker
|
|
4878
4875
|
#
|
4879
4876
|
# @option params [String] :kms_key_id
|
4880
4877
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
4881
|
-
# Service key that
|
4882
|
-
#
|
4883
|
-
#
|
4884
|
-
#
|
4878
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
4879
|
+
# attached to your notebook instance. The KMS key you provide must be
|
4880
|
+
# enabled. For information, see [Enabling and Disabling Keys][1] in the
|
4881
|
+
# *Amazon Web Services Key Management Service Developer Guide*.
|
4885
4882
|
#
|
4886
4883
|
#
|
4887
4884
|
#
|
@@ -4907,11 +4904,11 @@ module Aws::SageMaker
|
|
4907
4904
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
|
4908
4905
|
#
|
4909
4906
|
# @option params [String] :direct_internet_access
|
4910
|
-
# Sets whether
|
4907
|
+
# Sets whether SageMaker provides internet access to the notebook
|
4911
4908
|
# instance. If you set this to `Disabled` this notebook instance is able
|
4912
4909
|
# to access resources only in your VPC, and is not be able to connect to
|
4913
|
-
#
|
4914
|
-
#
|
4910
|
+
# SageMaker training and endpoint services unless you configure a NAT
|
4911
|
+
# Gateway in your VPC.
|
4915
4912
|
#
|
4916
4913
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4917
4914
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -4942,8 +4939,7 @@ module Aws::SageMaker
|
|
4942
4939
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
4943
4940
|
# repository. When you open a notebook instance, it opens in the
|
4944
4941
|
# directory that contains this repository. For more information, see
|
4945
|
-
# [Associating Git Repositories with
|
4946
|
-
# Instances][2].
|
4942
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4947
4943
|
#
|
4948
4944
|
#
|
4949
4945
|
#
|
@@ -4957,8 +4953,7 @@ module Aws::SageMaker
|
|
4957
4953
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
4958
4954
|
# These repositories are cloned at the same level as the default
|
4959
4955
|
# repository of your notebook instance. For more information, see
|
4960
|
-
# [Associating Git Repositories with
|
4961
|
-
# Instances][2].
|
4956
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4962
4957
|
#
|
4963
4958
|
#
|
4964
4959
|
#
|
@@ -5242,10 +5237,10 @@ module Aws::SageMaker
|
|
5242
5237
|
end
|
5243
5238
|
|
5244
5239
|
# Returns a URL that you can use to connect to the Jupyter server from a
|
5245
|
-
# notebook instance. In the
|
5246
|
-
#
|
5247
|
-
#
|
5248
|
-
#
|
5240
|
+
# notebook instance. In the SageMaker console, when you choose `Open`
|
5241
|
+
# next to a notebook instance, SageMaker opens a new tab showing the
|
5242
|
+
# Jupyter server home page from the notebook instance. The console uses
|
5243
|
+
# this API to get the URL and show the page.
|
5249
5244
|
#
|
5250
5245
|
# The IAM role or user used to call this API defines the permissions to
|
5251
5246
|
# access the notebook instance. Once the presigned URL is created, no
|
@@ -5601,15 +5596,14 @@ module Aws::SageMaker
|
|
5601
5596
|
req.send_request(options)
|
5602
5597
|
end
|
5603
5598
|
|
5604
|
-
# Starts a model training job. After training completes,
|
5605
|
-
#
|
5606
|
-
#
|
5599
|
+
# Starts a model training job. After training completes, SageMaker saves
|
5600
|
+
# the resulting model artifacts to an Amazon S3 location that you
|
5601
|
+
# specify.
|
5607
5602
|
#
|
5608
|
-
# If you choose to host your model using
|
5609
|
-
#
|
5610
|
-
#
|
5611
|
-
#
|
5612
|
-
# for inference.
|
5603
|
+
# If you choose to host your model using SageMaker hosting services, you
|
5604
|
+
# can use the resulting model artifacts as part of the model. You can
|
5605
|
+
# also use the artifacts in a machine learning service other than
|
5606
|
+
# SageMaker, provided that you know how to use them for inference.
|
5613
5607
|
#
|
5614
5608
|
# In the request body, you provide the following:
|
5615
5609
|
#
|
@@ -5619,13 +5613,13 @@ module Aws::SageMaker
|
|
5619
5613
|
# enable the estimation of model parameters during training.
|
5620
5614
|
# Hyperparameters can be tuned to optimize this learning process. For
|
5621
5615
|
# a list of hyperparameters for each training algorithm provided by
|
5622
|
-
#
|
5616
|
+
# SageMaker, see [Algorithms][1].
|
5623
5617
|
#
|
5624
5618
|
# * `InputDataConfig` - Describes the training dataset and the Amazon
|
5625
5619
|
# S3, EFS, or FSx location where it is stored.
|
5626
5620
|
#
|
5627
5621
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
5628
|
-
#
|
5622
|
+
# SageMaker to save the results of model training.
|
5629
5623
|
#
|
5630
5624
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
5631
5625
|
# and ML storage volumes to deploy for model training. In distributed
|
@@ -5635,10 +5629,10 @@ module Aws::SageMaker
|
|
5635
5629
|
# learning models by up to 80% by using Amazon EC2 Spot instances. For
|
5636
5630
|
# more information, see [Managed Spot Training][2].
|
5637
5631
|
#
|
5638
|
-
# * `RoleArn` - The Amazon Resource Name (ARN) that
|
5639
|
-
#
|
5640
|
-
#
|
5641
|
-
#
|
5632
|
+
# * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
|
5633
|
+
# perform tasks on your behalf during model training. You must grant
|
5634
|
+
# this role the necessary permissions so that SageMaker can
|
5635
|
+
# successfully complete model training.
|
5642
5636
|
#
|
5643
5637
|
# * `StoppingCondition` - To help cap training costs, use
|
5644
5638
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
@@ -5651,7 +5645,7 @@ module Aws::SageMaker
|
|
5651
5645
|
# * `RetryStrategy` - The number of times to retry the job when the job
|
5652
5646
|
# fails due to an `InternalServerError`.
|
5653
5647
|
#
|
5654
|
-
# For more information about
|
5648
|
+
# For more information about SageMaker, see [How It Works][3].
|
5655
5649
|
#
|
5656
5650
|
#
|
5657
5651
|
#
|
@@ -5666,7 +5660,7 @@ module Aws::SageMaker
|
|
5666
5660
|
# @option params [Hash<String,String>] :hyper_parameters
|
5667
5661
|
# Algorithm-specific parameters that influence the quality of the model.
|
5668
5662
|
# You set hyperparameters before you start the learning process. For a
|
5669
|
-
# list of hyperparameters for each training algorithm provided by
|
5663
|
+
# list of hyperparameters for each training algorithm provided by
|
5670
5664
|
# SageMaker, see [Algorithms][1].
|
5671
5665
|
#
|
5672
5666
|
# You can specify a maximum of 100 hyperparameters. Each hyperparameter
|
@@ -5680,9 +5674,9 @@ module Aws::SageMaker
|
|
5680
5674
|
# @option params [required, Types::AlgorithmSpecification] :algorithm_specification
|
5681
5675
|
# The registry path of the Docker image that contains the training
|
5682
5676
|
# algorithm and algorithm-specific metadata, including the input mode.
|
5683
|
-
# For more information about algorithms provided by
|
5684
|
-
#
|
5685
|
-
#
|
5677
|
+
# For more information about algorithms provided by SageMaker, see
|
5678
|
+
# [Algorithms][1]. For information about providing your own algorithms,
|
5679
|
+
# see [Using Your Own Algorithms with Amazon SageMaker][2].
|
5686
5680
|
#
|
5687
5681
|
#
|
5688
5682
|
#
|
@@ -5690,18 +5684,18 @@ module Aws::SageMaker
|
|
5690
5684
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
5691
5685
|
#
|
5692
5686
|
# @option params [required, String] :role_arn
|
5693
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
5694
|
-
#
|
5687
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
5688
|
+
# assume to perform tasks on your behalf.
|
5695
5689
|
#
|
5696
|
-
# During model training,
|
5697
|
-
#
|
5698
|
-
#
|
5699
|
-
#
|
5700
|
-
#
|
5701
|
-
# information, see [
|
5690
|
+
# During model training, SageMaker needs your permission to read input
|
5691
|
+
# data from an S3 bucket, download a Docker image that contains training
|
5692
|
+
# code, write model artifacts to an S3 bucket, write logs to Amazon
|
5693
|
+
# CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
|
5694
|
+
# permissions for all of these tasks to an IAM role. For more
|
5695
|
+
# information, see [SageMaker Roles][1].
|
5702
5696
|
#
|
5703
|
-
# <note markdown="1"> To be able to pass this role to
|
5704
|
-
#
|
5697
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
5698
|
+
# have the `iam:PassRole` permission.
|
5705
5699
|
#
|
5706
5700
|
# </note>
|
5707
5701
|
#
|
@@ -5721,16 +5715,15 @@ module Aws::SageMaker
|
|
5721
5715
|
# type, compression method, and whether the data is wrapped in RecordIO
|
5722
5716
|
# format.
|
5723
5717
|
#
|
5724
|
-
# Depending on the input mode that the algorithm supports,
|
5725
|
-
#
|
5726
|
-
#
|
5727
|
-
#
|
5728
|
-
#
|
5729
|
-
# downloaded.
|
5718
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
5719
|
+
# either copies input data files from an S3 bucket to a local directory
|
5720
|
+
# in the Docker container, or makes it available as input streams. For
|
5721
|
+
# example, if you specify an EFS location, input data files are
|
5722
|
+
# available as input streams. They do not need to be downloaded.
|
5730
5723
|
#
|
5731
5724
|
# @option params [required, Types::OutputDataConfig] :output_data_config
|
5732
5725
|
# Specifies the path to the S3 location where you want to store model
|
5733
|
-
# artifacts.
|
5726
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
5734
5727
|
#
|
5735
5728
|
# @option params [required, Types::ResourceConfig] :resource_config
|
5736
5729
|
# The resources, including the ML compute instances and ML storage
|
@@ -5738,10 +5731,10 @@ module Aws::SageMaker
|
|
5738
5731
|
#
|
5739
5732
|
# ML storage volumes store model artifacts and incremental states.
|
5740
5733
|
# Training algorithms might also use ML storage volumes for scratch
|
5741
|
-
# space. If you want
|
5742
|
-
#
|
5743
|
-
#
|
5744
|
-
#
|
5734
|
+
# space. If you want SageMaker to use the ML storage volume to store the
|
5735
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
5736
|
+
# algorithm specification. For distributed training algorithms, specify
|
5737
|
+
# an instance count greater than 1.
|
5745
5738
|
#
|
5746
5739
|
# @option params [Types::VpcConfig] :vpc_config
|
5747
5740
|
# A VpcConfig object that specifies the VPC that you want your training
|
@@ -5756,13 +5749,13 @@ module Aws::SageMaker
|
|
5756
5749
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5757
5750
|
# Specifies a limit to how long a model training job can run. It also
|
5758
5751
|
# specifies how long a managed Spot training job has to complete. When
|
5759
|
-
# the job reaches the time limit,
|
5760
|
-
#
|
5752
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
5753
|
+
# this API to cap model training costs.
|
5761
5754
|
#
|
5762
|
-
# To stop a job,
|
5763
|
-
#
|
5764
|
-
#
|
5765
|
-
#
|
5755
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
5756
|
+
# which delays job termination for 120 seconds. Algorithms can use this
|
5757
|
+
# 120-second window to save the model artifacts, so the results of
|
5758
|
+
# training are not lost.
|
5766
5759
|
#
|
5767
5760
|
# @option params [Array<Types::Tag>] :tags
|
5768
5761
|
# An array of key-value pairs. You can use tags to categorize your
|
@@ -5778,9 +5771,9 @@ module Aws::SageMaker
|
|
5778
5771
|
# Isolates the training container. No inbound or outbound network calls
|
5779
5772
|
# can be made, except for calls between peers within a training cluster
|
5780
5773
|
# for distributed training. If you enable network isolation for training
|
5781
|
-
# jobs that are configured to use a VPC,
|
5782
|
-
#
|
5783
|
-
#
|
5774
|
+
# jobs that are configured to use a VPC, SageMaker downloads and uploads
|
5775
|
+
# customer data and model artifacts through the specified VPC, but the
|
5776
|
+
# training container does not have network access.
|
5784
5777
|
#
|
5785
5778
|
# @option params [Boolean] :enable_inter_container_traffic_encryption
|
5786
5779
|
# To encrypt all communications between ML compute instances in
|
@@ -6087,6 +6080,11 @@ module Aws::SageMaker
|
|
6087
6080
|
# fit within the maximum payload size, we recommend using a slightly
|
6088
6081
|
# larger value. The default value is `6` MB.
|
6089
6082
|
#
|
6083
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
6084
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
6085
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
6086
|
+
# MB.
|
6087
|
+
#
|
6090
6088
|
# For cases where the payload might be arbitrarily large and is
|
6091
6089
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
6092
6090
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -7052,13 +7050,19 @@ module Aws::SageMaker
|
|
7052
7050
|
req.send_request(options)
|
7053
7051
|
end
|
7054
7052
|
|
7055
|
-
# Deletes an endpoint.
|
7056
|
-
#
|
7053
|
+
# Deletes an endpoint. SageMaker frees up all of the resources that were
|
7054
|
+
# deployed when the endpoint was created.
|
7057
7055
|
#
|
7058
|
-
#
|
7056
|
+
# SageMaker retires any custom KMS key grants associated with the
|
7059
7057
|
# endpoint, meaning you don't need to use the [RevokeGrant][1] API
|
7060
7058
|
# call.
|
7061
7059
|
#
|
7060
|
+
# When you delete your endpoint, SageMaker asynchronously deletes
|
7061
|
+
# associated endpoint resources such as KMS key grants. You might still
|
7062
|
+
# see these resources in your account for a few minutes after deleting
|
7063
|
+
# your endpoint. Do not delete or revoke the permissions for your `
|
7064
|
+
# ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
|
7065
|
+
#
|
7062
7066
|
#
|
7063
7067
|
#
|
7064
7068
|
# [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
|
@@ -7275,9 +7279,9 @@ module Aws::SageMaker
|
|
7275
7279
|
end
|
7276
7280
|
|
7277
7281
|
# Deletes a model. The `DeleteModel` API deletes only the model entry
|
7278
|
-
# that was created in
|
7279
|
-
#
|
7280
|
-
#
|
7282
|
+
# that was created in SageMaker when you called the `CreateModel` API.
|
7283
|
+
# It does not delete model artifacts, inference code, or the IAM role
|
7284
|
+
# that you specified when creating the model.
|
7281
7285
|
#
|
7282
7286
|
# @option params [required, String] :model_name
|
7283
7287
|
# The name of the model to delete.
|
@@ -7345,10 +7349,10 @@ module Aws::SageMaker
|
|
7345
7349
|
|
7346
7350
|
# Deletes a model package.
|
7347
7351
|
#
|
7348
|
-
# A model package is used to create
|
7349
|
-
#
|
7350
|
-
#
|
7351
|
-
#
|
7352
|
+
# A model package is used to create SageMaker models or list on Amazon
|
7353
|
+
# Web Services Marketplace. Buyers can subscribe to model packages
|
7354
|
+
# listed on Amazon Web Services Marketplace to create models in
|
7355
|
+
# SageMaker.
|
7352
7356
|
#
|
7353
7357
|
# @option params [required, String] :model_package_name
|
7354
7358
|
# The name or Amazon Resource Name (ARN) of the model package to delete.
|
@@ -7463,16 +7467,16 @@ module Aws::SageMaker
|
|
7463
7467
|
req.send_request(options)
|
7464
7468
|
end
|
7465
7469
|
|
7466
|
-
# Deletes an
|
7470
|
+
# Deletes an SageMaker notebook instance. Before you can delete a
|
7467
7471
|
# notebook instance, you must call the `StopNotebookInstance` API.
|
7468
7472
|
#
|
7469
|
-
# When you delete a notebook instance, you lose all of your data.
|
7473
|
+
# When you delete a notebook instance, you lose all of your data.
|
7470
7474
|
# SageMaker removes the ML compute instance, and deletes the ML storage
|
7471
7475
|
# volume and the network interface associated with the notebook
|
7472
7476
|
# instance.
|
7473
7477
|
#
|
7474
7478
|
# @option params [required, String] :notebook_instance_name
|
7475
|
-
# The name of the
|
7479
|
+
# The name of the SageMaker notebook instance to delete.
|
7476
7480
|
#
|
7477
7481
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
7478
7482
|
#
|
@@ -7600,7 +7604,7 @@ module Aws::SageMaker
|
|
7600
7604
|
req.send_request(options)
|
7601
7605
|
end
|
7602
7606
|
|
7603
|
-
# Deletes the specified tags from an
|
7607
|
+
# Deletes the specified tags from an SageMaker resource.
|
7604
7608
|
#
|
7605
7609
|
# To list a resource's tags, use the `ListTags` API.
|
7606
7610
|
#
|
@@ -8241,6 +8245,7 @@ module Aws::SageMaker
|
|
8241
8245
|
# resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
|
8242
8246
|
# resp.input_data_config[0].target_attribute_name #=> String
|
8243
8247
|
# resp.input_data_config[0].content_type #=> String
|
8248
|
+
# resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
|
8244
8249
|
# resp.output_data_config.kms_key_id #=> String
|
8245
8250
|
# resp.output_data_config.s3_output_path #=> String
|
8246
8251
|
# resp.role_arn #=> String
|
@@ -8255,6 +8260,7 @@ module Aws::SageMaker
|
|
8255
8260
|
# resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
|
8256
8261
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
|
8257
8262
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
|
8263
|
+
# resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
|
8258
8264
|
# resp.creation_time #=> Time
|
8259
8265
|
# resp.end_time #=> Time
|
8260
8266
|
# resp.last_modified_time #=> Time
|
@@ -10219,7 +10225,7 @@ module Aws::SageMaker
|
|
10219
10225
|
# Gets a description for the specified model group.
|
10220
10226
|
#
|
10221
10227
|
# @option params [required, String] :model_package_group_name
|
10222
|
-
# The name of
|
10228
|
+
# The name of gthe model group to describe.
|
10223
10229
|
#
|
10224
10230
|
# @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10225
10231
|
#
|
@@ -14751,8 +14757,8 @@ module Aws::SageMaker
|
|
14751
14757
|
req.send_request(options)
|
14752
14758
|
end
|
14753
14759
|
|
14754
|
-
# Returns a list of the
|
14755
|
-
#
|
14760
|
+
# Returns a list of the SageMaker notebook instances in the requester's
|
14761
|
+
# account in an Amazon Web Services Region.
|
14756
14762
|
#
|
14757
14763
|
# @option params [String] :next_token
|
14758
14764
|
# If the previous call to the `ListNotebookInstances` is truncated, the
|
@@ -15423,7 +15429,7 @@ module Aws::SageMaker
|
|
15423
15429
|
req.send_request(options)
|
15424
15430
|
end
|
15425
15431
|
|
15426
|
-
# Returns the tags for the specified
|
15432
|
+
# Returns the tags for the specified SageMaker resource.
|
15427
15433
|
#
|
15428
15434
|
# @option params [required, String] :resource_arn
|
15429
15435
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
@@ -15431,8 +15437,8 @@ module Aws::SageMaker
|
|
15431
15437
|
#
|
15432
15438
|
# @option params [String] :next_token
|
15433
15439
|
# If the response to the previous `ListTags` request is truncated,
|
15434
|
-
#
|
15435
|
-
#
|
15440
|
+
# SageMaker returns this token. To retrieve the next set of tags, use it
|
15441
|
+
# in the subsequent request.
|
15436
15442
|
#
|
15437
15443
|
# @option params [Integer] :max_results
|
15438
15444
|
# Maximum number of tags to return.
|
@@ -16157,11 +16163,12 @@ module Aws::SageMaker
|
|
16157
16163
|
# starting point for your lineage query.
|
16158
16164
|
#
|
16159
16165
|
# @option params [String] :direction
|
16160
|
-
# Associations between lineage entities
|
16161
|
-
# determines the direction from the StartArn(s) the query
|
16166
|
+
# Associations between lineage entities have a direction. This parameter
|
16167
|
+
# determines the direction from the StartArn(s) that the query
|
16168
|
+
# traverses.
|
16162
16169
|
#
|
16163
16170
|
# @option params [Boolean] :include_edges
|
16164
|
-
# Setting this value to `True`
|
16171
|
+
# Setting this value to `True` retrieves not only the entities of
|
16165
16172
|
# interest but also the [Associations][1] and lineage entities on the
|
16166
16173
|
# path. Set to `False` to only return lineage entities that match your
|
16167
16174
|
# query.
|
@@ -16188,8 +16195,8 @@ module Aws::SageMaker
|
|
16188
16195
|
#
|
16189
16196
|
# @option params [Integer] :max_depth
|
16190
16197
|
# The maximum depth in lineage relationships from the `StartArns` that
|
16191
|
-
#
|
16192
|
-
#
|
16198
|
+
# are traversed. Depth is a measure of the number of `Associations` from
|
16199
|
+
# the `StartArn` entity to the matched results.
|
16193
16200
|
#
|
16194
16201
|
# @option params [Integer] :max_results
|
16195
16202
|
# Limits the number of vertices in the results. Use the `NextToken` in a
|
@@ -17365,9 +17372,9 @@ module Aws::SageMaker
|
|
17365
17372
|
|
17366
17373
|
# Launches an ML compute instance with the latest version of the
|
17367
17374
|
# libraries and attaches your ML storage volume. After configuring the
|
17368
|
-
# notebook instance,
|
17369
|
-
#
|
17370
|
-
#
|
17375
|
+
# notebook instance, SageMaker sets the notebook instance status to
|
17376
|
+
# `InService`. A notebook instance's status must be `InService` before
|
17377
|
+
# you can connect to your Jupyter notebook.
|
17371
17378
|
#
|
17372
17379
|
# @option params [required, String] :notebook_instance_name
|
17373
17380
|
# The name of the notebook instance to start.
|
@@ -17623,10 +17630,9 @@ module Aws::SageMaker
|
|
17623
17630
|
end
|
17624
17631
|
|
17625
17632
|
# Terminates the ML compute instance. Before terminating the instance,
|
17626
|
-
#
|
17627
|
-
#
|
17628
|
-
#
|
17629
|
-
# `StopNotebookInstance`.
|
17633
|
+
# SageMaker disconnects the ML storage volume from it. SageMaker
|
17634
|
+
# preserves the ML storage volume. SageMaker stops charging you for the
|
17635
|
+
# ML compute instance when you call `StopNotebookInstance`.
|
17630
17636
|
#
|
17631
17637
|
# To access data on the ML storage volume for a notebook instance that
|
17632
17638
|
# has been terminated, call the `StartNotebookInstance` API.
|
@@ -17740,14 +17746,14 @@ module Aws::SageMaker
|
|
17740
17746
|
req.send_request(options)
|
17741
17747
|
end
|
17742
17748
|
|
17743
|
-
# Stops a training job. To stop a job,
|
17744
|
-
#
|
17745
|
-
#
|
17749
|
+
# Stops a training job. To stop a job, SageMaker sends the algorithm the
|
17750
|
+
# `SIGTERM` signal, which delays job termination for 120 seconds.
|
17751
|
+
# Algorithms might use this 120-second window to save the model
|
17746
17752
|
# artifacts, so the results of the training is not lost.
|
17747
17753
|
#
|
17748
|
-
# When it receives a `StopTrainingJob` request,
|
17749
|
-
#
|
17750
|
-
#
|
17754
|
+
# When it receives a `StopTrainingJob` request, SageMaker changes the
|
17755
|
+
# status of the job to `Stopping`. After SageMaker stops the job, it
|
17756
|
+
# sets the status to `Stopped`.
|
17751
17757
|
#
|
17752
17758
|
# @option params [required, String] :training_job_name
|
17753
17759
|
# The name of the training job to stop.
|
@@ -18189,9 +18195,9 @@ module Aws::SageMaker
|
|
18189
18195
|
# for the endpoint using the previous `EndpointConfig` (there is no
|
18190
18196
|
# availability loss).
|
18191
18197
|
#
|
18192
|
-
# When
|
18193
|
-
#
|
18194
|
-
#
|
18198
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
18199
|
+
# `Updating`. After updating the endpoint, it sets the status to
|
18200
|
+
# `InService`. To check the status of an endpoint, use the
|
18195
18201
|
# DescribeEndpoint API.
|
18196
18202
|
#
|
18197
18203
|
# <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
|
@@ -18299,13 +18305,13 @@ module Aws::SageMaker
|
|
18299
18305
|
|
18300
18306
|
# Updates variant weight of one or more variants associated with an
|
18301
18307
|
# existing endpoint, or capacity of one variant associated with an
|
18302
|
-
# existing endpoint. When it receives the request,
|
18303
|
-
#
|
18304
|
-
#
|
18305
|
-
#
|
18308
|
+
# existing endpoint. When it receives the request, SageMaker sets the
|
18309
|
+
# endpoint status to `Updating`. After updating the endpoint, it sets
|
18310
|
+
# the status to `InService`. To check the status of an endpoint, use the
|
18311
|
+
# DescribeEndpoint API.
|
18306
18312
|
#
|
18307
18313
|
# @option params [required, String] :endpoint_name
|
18308
|
-
# The name of an existing
|
18314
|
+
# The name of an existing SageMaker endpoint.
|
18309
18315
|
#
|
18310
18316
|
# @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
|
18311
18317
|
# An object that provides new capacity and weight values for a variant.
|
@@ -18630,12 +18636,12 @@ module Aws::SageMaker
|
|
18630
18636
|
# The Amazon ML compute instance type.
|
18631
18637
|
#
|
18632
18638
|
# @option params [String] :role_arn
|
18633
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
18634
|
-
#
|
18635
|
-
# [
|
18639
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
18640
|
+
# assume to access the notebook instance. For more information, see
|
18641
|
+
# [SageMaker Roles][1].
|
18636
18642
|
#
|
18637
|
-
# <note markdown="1"> To be able to pass this role to
|
18638
|
-
#
|
18643
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
18644
|
+
# have the `iam:PassRole` permission.
|
18639
18645
|
#
|
18640
18646
|
# </note>
|
18641
18647
|
#
|
@@ -18662,11 +18668,11 @@ module Aws::SageMaker
|
|
18662
18668
|
# @option params [Integer] :volume_size_in_gb
|
18663
18669
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
18664
18670
|
# instance. The default value is 5 GB. ML storage volumes are encrypted,
|
18665
|
-
# so
|
18666
|
-
#
|
18667
|
-
#
|
18668
|
-
#
|
18669
|
-
#
|
18671
|
+
# so SageMaker can't determine the amount of available free space on
|
18672
|
+
# the volume. Because of this, you can increase the volume size when you
|
18673
|
+
# update a notebook instance, but you can't decrease the volume size.
|
18674
|
+
# If you want to decrease the size of the ML storage volume in use,
|
18675
|
+
# create a new notebook instance with the desired size.
|
18670
18676
|
#
|
18671
18677
|
# @option params [String] :default_code_repository
|
18672
18678
|
# The Git repository to associate with the notebook instance as its
|
@@ -18675,8 +18681,7 @@ module Aws::SageMaker
|
|
18675
18681
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
18676
18682
|
# repository. When you open a notebook instance, it opens in the
|
18677
18683
|
# directory that contains this repository. For more information, see
|
18678
|
-
# [Associating Git Repositories with
|
18679
|
-
# Instances][2].
|
18684
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18680
18685
|
#
|
18681
18686
|
#
|
18682
18687
|
#
|
@@ -18690,8 +18695,7 @@ module Aws::SageMaker
|
|
18690
18695
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
18691
18696
|
# These repositories are cloned at the same level as the default
|
18692
18697
|
# repository of your notebook instance. For more information, see
|
18693
|
-
# [Associating Git Repositories with
|
18694
|
-
# Instances][2].
|
18698
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18695
18699
|
#
|
18696
18700
|
#
|
18697
18701
|
#
|
@@ -19464,7 +19468,7 @@ module Aws::SageMaker
|
|
19464
19468
|
params: params,
|
19465
19469
|
config: config)
|
19466
19470
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
19467
|
-
context[:gem_version] = '1.
|
19471
|
+
context[:gem_version] = '1.123.0'
|
19468
19472
|
Seahorse::Client::Request.new(handlers, context)
|
19469
19473
|
end
|
19470
19474
|
|