aws-sdk-sagemaker 1.122.0 → 1.123.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +248 -244
- data/lib/aws-sdk-sagemaker/client_api.rb +8 -0
- data/lib/aws-sdk-sagemaker/types.rb +438 -398
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -422,7 +422,7 @@ module Aws::SageMaker
|
|
422
422
|
req.send_request(options)
|
423
423
|
end
|
424
424
|
|
425
|
-
# Adds or overwrites one or more tags for the specified
|
425
|
+
# Adds or overwrites one or more tags for the specified SageMaker
|
426
426
|
# resource. You can add tags to notebook instances, training jobs,
|
427
427
|
# hyperparameter tuning jobs, batch transform jobs, models, labeling
|
428
428
|
# jobs, work teams, endpoint configurations, and endpoints.
|
@@ -678,8 +678,8 @@ module Aws::SageMaker
|
|
678
678
|
req.send_request(options)
|
679
679
|
end
|
680
680
|
|
681
|
-
# Create a machine learning algorithm that you can use in
|
682
|
-
#
|
681
|
+
# Create a machine learning algorithm that you can use in SageMaker and
|
682
|
+
# list in the Amazon Web Services Marketplace.
|
683
683
|
#
|
684
684
|
# @option params [required, String] :algorithm_name
|
685
685
|
# The name of the algorithm.
|
@@ -723,10 +723,10 @@ module Aws::SageMaker
|
|
723
723
|
# inference.
|
724
724
|
#
|
725
725
|
# @option params [Types::AlgorithmValidationSpecification] :validation_specification
|
726
|
-
# Specifies configurations for one or more training jobs and that
|
726
|
+
# Specifies configurations for one or more training jobs and that
|
727
727
|
# SageMaker runs to test the algorithm's training code and, optionally,
|
728
|
-
# one or more batch transform jobs that
|
729
|
-
#
|
728
|
+
# one or more batch transform jobs that SageMaker runs to test the
|
729
|
+
# algorithm's inference code.
|
730
730
|
#
|
731
731
|
# @option params [Boolean] :certify_for_marketplace
|
732
732
|
# Whether to certify the algorithm so that it can be listed in Amazon
|
@@ -1210,6 +1210,7 @@ module Aws::SageMaker
|
|
1210
1210
|
# compression_type: "None", # accepts None, Gzip
|
1211
1211
|
# target_attribute_name: "TargetAttributeName", # required
|
1212
1212
|
# content_type: "ContentType",
|
1213
|
+
# channel_type: "training", # accepts training, validation
|
1213
1214
|
# },
|
1214
1215
|
# ],
|
1215
1216
|
# output_data_config: { # required
|
@@ -1234,6 +1235,9 @@ module Aws::SageMaker
|
|
1234
1235
|
# subnets: ["SubnetId"], # required
|
1235
1236
|
# },
|
1236
1237
|
# },
|
1238
|
+
# data_split_config: {
|
1239
|
+
# validation_fraction: 1.0,
|
1240
|
+
# },
|
1237
1241
|
# },
|
1238
1242
|
# role_arn: "RoleArn", # required
|
1239
1243
|
# generate_candidate_definitions_only: false,
|
@@ -1262,13 +1266,13 @@ module Aws::SageMaker
|
|
1262
1266
|
req.send_request(options)
|
1263
1267
|
end
|
1264
1268
|
|
1265
|
-
# Creates a Git repository as a resource in your
|
1266
|
-
#
|
1267
|
-
#
|
1268
|
-
#
|
1269
|
-
#
|
1270
|
-
#
|
1271
|
-
#
|
1269
|
+
# Creates a Git repository as a resource in your SageMaker account. You
|
1270
|
+
# can associate the repository with notebook instances so that you can
|
1271
|
+
# use Git source control for the notebooks you create. The Git
|
1272
|
+
# repository is a resource in your SageMaker account, so it can be
|
1273
|
+
# associated with more than one notebook instance, and it persists
|
1274
|
+
# independently from the lifecycle of any notebook instances it is
|
1275
|
+
# associated with.
|
1272
1276
|
#
|
1273
1277
|
# The repository can be hosted either in [Amazon Web Services
|
1274
1278
|
# CodeCommit][1] or in any other Git repository.
|
@@ -2032,13 +2036,13 @@ module Aws::SageMaker
|
|
2032
2036
|
end
|
2033
2037
|
|
2034
2038
|
# Creates an endpoint using the endpoint configuration specified in the
|
2035
|
-
# request.
|
2036
|
-
#
|
2039
|
+
# request. SageMaker uses the endpoint to provision resources and deploy
|
2040
|
+
# models. You create the endpoint configuration with the
|
2037
2041
|
# CreateEndpointConfig API.
|
2038
2042
|
#
|
2039
|
-
# Use this API to deploy models using
|
2043
|
+
# Use this API to deploy models using SageMaker hosting services.
|
2040
2044
|
#
|
2041
|
-
# For an example that calls this method when deploying a model to
|
2045
|
+
# For an example that calls this method when deploying a model to
|
2042
2046
|
# SageMaker hosting services, see the [Create Endpoint example
|
2043
2047
|
# notebook.][1]
|
2044
2048
|
#
|
@@ -2052,9 +2056,9 @@ module Aws::SageMaker
|
|
2052
2056
|
# The endpoint name must be unique within an Amazon Web Services Region
|
2053
2057
|
# in your Amazon Web Services account.
|
2054
2058
|
#
|
2055
|
-
# When it receives the request,
|
2056
|
-
#
|
2057
|
-
#
|
2059
|
+
# When it receives the request, SageMaker creates the endpoint, launches
|
2060
|
+
# the resources (ML compute instances), and deploys the model(s) on
|
2061
|
+
# them.
|
2058
2062
|
#
|
2059
2063
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2060
2064
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2070,21 +2074,21 @@ module Aws::SageMaker
|
|
2070
2074
|
#
|
2071
2075
|
# </note>
|
2072
2076
|
#
|
2073
|
-
# When
|
2074
|
-
#
|
2075
|
-
#
|
2076
|
-
#
|
2077
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
2078
|
+
# `Creating`. After it creates the endpoint, it sets the status to
|
2079
|
+
# `InService`. SageMaker can then process incoming requests for
|
2080
|
+
# inferences. To check the status of an endpoint, use the
|
2077
2081
|
# DescribeEndpoint API.
|
2078
2082
|
#
|
2079
2083
|
# If any of the models hosted at this endpoint get model data from an
|
2080
|
-
# Amazon S3 location,
|
2081
|
-
#
|
2082
|
-
#
|
2083
|
-
#
|
2084
|
-
#
|
2085
|
-
#
|
2086
|
-
#
|
2087
|
-
#
|
2084
|
+
# Amazon S3 location, SageMaker uses Amazon Web Services Security Token
|
2085
|
+
# Service to download model artifacts from the S3 path you provided.
|
2086
|
+
# Amazon Web Services STS is activated in your IAM user account by
|
2087
|
+
# default. If you previously deactivated Amazon Web Services STS for a
|
2088
|
+
# region, you need to reactivate Amazon Web Services STS for that
|
2089
|
+
# region. For more information, see [Activating and Deactivating Amazon
|
2090
|
+
# Web Services STS in an Amazon Web Services Region][3] in the *Amazon
|
2091
|
+
# Web Services Identity and Access Management User Guide*.
|
2088
2092
|
#
|
2089
2093
|
# <note markdown="1"> To add the IAM role policies for using this API operation, go to the
|
2090
2094
|
# [IAM console][4], and choose Roles in the left navigation pane. Search
|
@@ -2202,28 +2206,28 @@ module Aws::SageMaker
|
|
2202
2206
|
req.send_request(options)
|
2203
2207
|
end
|
2204
2208
|
|
2205
|
-
# Creates an endpoint configuration that
|
2206
|
-
#
|
2207
|
-
#
|
2208
|
-
# resources that you want
|
2209
|
-
#
|
2209
|
+
# Creates an endpoint configuration that SageMaker hosting services uses
|
2210
|
+
# to deploy models. In the configuration, you identify one or more
|
2211
|
+
# models, created using the `CreateModel` API, to deploy and the
|
2212
|
+
# resources that you want SageMaker to provision. Then you call the
|
2213
|
+
# CreateEndpoint API.
|
2210
2214
|
#
|
2211
|
-
# <note markdown="1"> Use this API if you want to use
|
2212
|
-
#
|
2215
|
+
# <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
|
2216
|
+
# models into production.
|
2213
2217
|
#
|
2214
2218
|
# </note>
|
2215
2219
|
#
|
2216
2220
|
# In the request, you define a `ProductionVariant`, for each model that
|
2217
2221
|
# you want to deploy. Each `ProductionVariant` parameter also describes
|
2218
|
-
# the resources that you want
|
2219
|
-
#
|
2222
|
+
# the resources that you want SageMaker to provision. This includes the
|
2223
|
+
# number and type of ML compute instances to deploy.
|
2220
2224
|
#
|
2221
2225
|
# If you are hosting multiple models, you also assign a `VariantWeight`
|
2222
2226
|
# to specify how much traffic you want to allocate to each model. For
|
2223
2227
|
# example, suppose that you want to host two models, A and B, and you
|
2224
|
-
# assign traffic weight 2 for model A and 1 for model B.
|
2225
|
-
#
|
2226
|
-
#
|
2228
|
+
# assign traffic weight 2 for model A and 1 for model B. SageMaker
|
2229
|
+
# distributes two-thirds of the traffic to Model A, and one-third to
|
2230
|
+
# model B.
|
2227
2231
|
#
|
2228
2232
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2229
2233
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2265,8 +2269,8 @@ module Aws::SageMaker
|
|
2265
2269
|
#
|
2266
2270
|
# @option params [String] :kms_key_id
|
2267
2271
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
2268
|
-
# Service key that
|
2269
|
-
#
|
2272
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
2273
|
+
# attached to the ML compute instance that hosts the endpoint.
|
2270
2274
|
#
|
2271
2275
|
# The KmsKeyId can be any of the following formats:
|
2272
2276
|
#
|
@@ -3133,8 +3137,8 @@ module Aws::SageMaker
|
|
3133
3137
|
|
3134
3138
|
# Creates a custom SageMaker image. A SageMaker image is a set of image
|
3135
3139
|
# versions. Each image version represents a container image stored in
|
3136
|
-
# Amazon Container Registry (ECR). For more information, see
|
3137
|
-
# own SageMaker image][1].
|
3140
|
+
# Amazon Elastic Container Registry (ECR). For more information, see
|
3141
|
+
# [Bring your own SageMaker image][1].
|
3138
3142
|
#
|
3139
3143
|
#
|
3140
3144
|
#
|
@@ -3190,13 +3194,13 @@ module Aws::SageMaker
|
|
3190
3194
|
end
|
3191
3195
|
|
3192
3196
|
# Creates a version of the SageMaker image specified by `ImageName`. The
|
3193
|
-
# version represents the Amazon Container Registry (ECR)
|
3194
|
-
# specified by `BaseImage`.
|
3197
|
+
# version represents the Amazon Elastic Container Registry (ECR)
|
3198
|
+
# container image specified by `BaseImage`.
|
3195
3199
|
#
|
3196
3200
|
# @option params [required, String] :base_image
|
3197
3201
|
# The registry path of the container image to use as the starting point
|
3198
|
-
# for this version. The path is an Amazon Container Registry
|
3199
|
-
# in the following format:
|
3202
|
+
# for this version. The path is an Amazon Elastic Container Registry
|
3203
|
+
# (ECR) URI in the following format:
|
3200
3204
|
#
|
3201
3205
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
3202
3206
|
# [@digest]>`
|
@@ -3666,34 +3670,30 @@ module Aws::SageMaker
|
|
3666
3670
|
req.send_request(options)
|
3667
3671
|
end
|
3668
3672
|
|
3669
|
-
# Creates a model in
|
3670
|
-
#
|
3671
|
-
#
|
3672
|
-
#
|
3673
|
-
#
|
3673
|
+
# Creates a model in SageMaker. In the request, you name the model and
|
3674
|
+
# describe a primary container. For the primary container, you specify
|
3675
|
+
# the Docker image that contains inference code, artifacts (from prior
|
3676
|
+
# training), and a custom environment map that the inference code uses
|
3677
|
+
# when you deploy the model for predictions.
|
3674
3678
|
#
|
3675
|
-
# Use this API to create a model if you want to use
|
3676
|
-
#
|
3679
|
+
# Use this API to create a model if you want to use SageMaker hosting
|
3680
|
+
# services or run a batch transform job.
|
3677
3681
|
#
|
3678
3682
|
# To host your model, you create an endpoint configuration with the
|
3679
3683
|
# `CreateEndpointConfig` API, and then create an endpoint with the
|
3680
|
-
# `CreateEndpoint` API.
|
3681
|
-
#
|
3684
|
+
# `CreateEndpoint` API. SageMaker then deploys all of the containers
|
3685
|
+
# that you defined for the model in the hosting environment.
|
3682
3686
|
#
|
3683
|
-
# For an example that calls this method when deploying a model to
|
3687
|
+
# For an example that calls this method when deploying a model to
|
3684
3688
|
# SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
|
3685
3689
|
# Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
|
3686
3690
|
#
|
3687
3691
|
# To run a batch transform using your model, you start a job with the
|
3688
|
-
# `CreateTransformJob` API.
|
3689
|
-
#
|
3690
|
-
# location.
|
3691
|
-
#
|
3692
|
-
# In the `CreateModel` request, you must define a container with the
|
3693
|
-
# `PrimaryContainer` parameter.
|
3692
|
+
# `CreateTransformJob` API. SageMaker uses your model and your dataset
|
3693
|
+
# to get inferences which are then saved to a specified S3 location.
|
3694
3694
|
#
|
3695
|
-
# In the request, you also provide an IAM role that
|
3696
|
-
#
|
3695
|
+
# In the request, you also provide an IAM role that SageMaker can assume
|
3696
|
+
# to access model artifacts and docker image for deployment on ML
|
3697
3697
|
# compute hosting instances or for batch transform jobs. In addition,
|
3698
3698
|
# you also use the IAM role to manage permissions the inference code
|
3699
3699
|
# needs. For example, if the inference code access any other Amazon Web
|
@@ -3719,14 +3719,14 @@ module Aws::SageMaker
|
|
3719
3719
|
# called.
|
3720
3720
|
#
|
3721
3721
|
# @option params [required, String] :execution_role_arn
|
3722
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
3723
|
-
#
|
3724
|
-
#
|
3725
|
-
#
|
3726
|
-
# [
|
3722
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
3723
|
+
# assume to access model artifacts and docker image for deployment on ML
|
3724
|
+
# compute instances or for batch transform jobs. Deploying on ML compute
|
3725
|
+
# instances is part of model hosting. For more information, see
|
3726
|
+
# [SageMaker Roles][1].
|
3727
3727
|
#
|
3728
|
-
# <note markdown="1"> To be able to pass this role to
|
3729
|
-
#
|
3728
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
3729
|
+
# have the `iam:PassRole` permission.
|
3730
3730
|
#
|
3731
3731
|
# </note>
|
3732
3732
|
#
|
@@ -4105,11 +4105,10 @@ module Aws::SageMaker
|
|
4105
4105
|
req.send_request(options)
|
4106
4106
|
end
|
4107
4107
|
|
4108
|
-
# Creates a model package that you can use to create
|
4109
|
-
#
|
4110
|
-
#
|
4111
|
-
#
|
4112
|
-
# Amazon SageMaker.
|
4108
|
+
# Creates a model package that you can use to create SageMaker models or
|
4109
|
+
# list on Amazon Web Services Marketplace, or a versioned model that is
|
4110
|
+
# part of a model group. Buyers can subscribe to model packages listed
|
4111
|
+
# on Amazon Web Services Marketplace to create models in SageMaker.
|
4113
4112
|
#
|
4114
4113
|
# To create a model package by specifying a Docker container that
|
4115
4114
|
# contains your inference code and the Amazon S3 location of your model
|
@@ -4158,8 +4157,8 @@ module Aws::SageMaker
|
|
4158
4157
|
# for inference.
|
4159
4158
|
#
|
4160
4159
|
# @option params [Types::ModelPackageValidationSpecification] :validation_specification
|
4161
|
-
# Specifies configurations for one or more transform jobs that
|
4162
|
-
#
|
4160
|
+
# Specifies configurations for one or more transform jobs that SageMaker
|
4161
|
+
# runs to test the model package.
|
4163
4162
|
#
|
4164
4163
|
# @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
|
4165
4164
|
# Details about the algorithm that was used to create the model package.
|
@@ -4797,46 +4796,45 @@ module Aws::SageMaker
|
|
4797
4796
|
req.send_request(options)
|
4798
4797
|
end
|
4799
4798
|
|
4800
|
-
# Creates an
|
4801
|
-
#
|
4802
|
-
# notebook.
|
4799
|
+
# Creates an SageMaker notebook instance. A notebook instance is a
|
4800
|
+
# machine learning (ML) compute instance running on a Jupyter notebook.
|
4803
4801
|
#
|
4804
4802
|
# In a `CreateNotebookInstance` request, specify the type of ML compute
|
4805
|
-
# instance that you want to run.
|
4803
|
+
# instance that you want to run. SageMaker launches the instance,
|
4806
4804
|
# installs common libraries that you can use to explore datasets for
|
4807
4805
|
# model training, and attaches an ML storage volume to the notebook
|
4808
4806
|
# instance.
|
4809
4807
|
#
|
4810
|
-
#
|
4811
|
-
#
|
4812
|
-
#
|
4808
|
+
# SageMaker also provides a set of example notebooks. Each notebook
|
4809
|
+
# demonstrates how to use SageMaker with a specific algorithm or with a
|
4810
|
+
# machine learning framework.
|
4813
4811
|
#
|
4814
|
-
# After receiving the request,
|
4812
|
+
# After receiving the request, SageMaker does the following:
|
4815
4813
|
#
|
4816
|
-
# 1. Creates a network interface in the
|
4814
|
+
# 1. Creates a network interface in the SageMaker VPC.
|
4817
4815
|
#
|
4818
|
-
# 2. (Option) If you specified `SubnetId`,
|
4819
|
-
#
|
4820
|
-
#
|
4821
|
-
#
|
4822
|
-
#
|
4823
|
-
#
|
4816
|
+
# 2. (Option) If you specified `SubnetId`, SageMaker creates a network
|
4817
|
+
# interface in your own VPC, which is inferred from the subnet ID
|
4818
|
+
# that you provide in the input. When creating this network
|
4819
|
+
# interface, SageMaker attaches the security group that you
|
4820
|
+
# specified in the request to the network interface that it creates
|
4821
|
+
# in your VPC.
|
4824
4822
|
#
|
4825
4823
|
# 3. Launches an EC2 instance of the type specified in the request in
|
4826
|
-
# the
|
4827
|
-
#
|
4828
|
-
#
|
4829
|
-
#
|
4824
|
+
# the SageMaker VPC. If you specified `SubnetId` of your VPC,
|
4825
|
+
# SageMaker specifies both network interfaces when launching this
|
4826
|
+
# instance. This enables inbound traffic from your own VPC to the
|
4827
|
+
# notebook instance, assuming that the security groups allow it.
|
4830
4828
|
#
|
4831
|
-
# After creating the notebook instance,
|
4832
|
-
#
|
4833
|
-
#
|
4829
|
+
# After creating the notebook instance, SageMaker returns its Amazon
|
4830
|
+
# Resource Name (ARN). You can't change the name of a notebook instance
|
4831
|
+
# after you create it.
|
4834
4832
|
#
|
4835
|
-
# After
|
4836
|
-
#
|
4837
|
-
#
|
4838
|
-
#
|
4839
|
-
#
|
4833
|
+
# After SageMaker creates the notebook instance, you can connect to the
|
4834
|
+
# Jupyter server and work in Jupyter notebooks. For example, you can
|
4835
|
+
# write code to explore a dataset that you can use for model training,
|
4836
|
+
# train a model, host models by creating SageMaker endpoints, and
|
4837
|
+
# validate hosted models.
|
4840
4838
|
#
|
4841
4839
|
# For more information, see [How It Works][1].
|
4842
4840
|
#
|
@@ -4860,15 +4858,14 @@ module Aws::SageMaker
|
|
4860
4858
|
#
|
4861
4859
|
# @option params [required, String] :role_arn
|
4862
4860
|
# When you send any requests to Amazon Web Services resources from the
|
4863
|
-
# notebook instance,
|
4864
|
-
#
|
4865
|
-
#
|
4866
|
-
#
|
4867
|
-
#
|
4868
|
-
# SageMaker Roles][1].
|
4861
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
4862
|
+
# your behalf. You must grant this role necessary permissions so
|
4863
|
+
# SageMaker can perform these tasks. The policy must allow the SageMaker
|
4864
|
+
# service principal (sagemaker.amazonaws.com) permissions to assume this
|
4865
|
+
# role. For more information, see [SageMaker Roles][1].
|
4869
4866
|
#
|
4870
|
-
# <note markdown="1"> To be able to pass this role to
|
4871
|
-
#
|
4867
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
4868
|
+
# have the `iam:PassRole` permission.
|
4872
4869
|
#
|
4873
4870
|
# </note>
|
4874
4871
|
#
|
@@ -4878,10 +4875,10 @@ module Aws::SageMaker
|
|
4878
4875
|
#
|
4879
4876
|
# @option params [String] :kms_key_id
|
4880
4877
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
4881
|
-
# Service key that
|
4882
|
-
#
|
4883
|
-
#
|
4884
|
-
#
|
4878
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
4879
|
+
# attached to your notebook instance. The KMS key you provide must be
|
4880
|
+
# enabled. For information, see [Enabling and Disabling Keys][1] in the
|
4881
|
+
# *Amazon Web Services Key Management Service Developer Guide*.
|
4885
4882
|
#
|
4886
4883
|
#
|
4887
4884
|
#
|
@@ -4907,11 +4904,11 @@ module Aws::SageMaker
|
|
4907
4904
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
|
4908
4905
|
#
|
4909
4906
|
# @option params [String] :direct_internet_access
|
4910
|
-
# Sets whether
|
4907
|
+
# Sets whether SageMaker provides internet access to the notebook
|
4911
4908
|
# instance. If you set this to `Disabled` this notebook instance is able
|
4912
4909
|
# to access resources only in your VPC, and is not be able to connect to
|
4913
|
-
#
|
4914
|
-
#
|
4910
|
+
# SageMaker training and endpoint services unless you configure a NAT
|
4911
|
+
# Gateway in your VPC.
|
4915
4912
|
#
|
4916
4913
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4917
4914
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -4942,8 +4939,7 @@ module Aws::SageMaker
|
|
4942
4939
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
4943
4940
|
# repository. When you open a notebook instance, it opens in the
|
4944
4941
|
# directory that contains this repository. For more information, see
|
4945
|
-
# [Associating Git Repositories with
|
4946
|
-
# Instances][2].
|
4942
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4947
4943
|
#
|
4948
4944
|
#
|
4949
4945
|
#
|
@@ -4957,8 +4953,7 @@ module Aws::SageMaker
|
|
4957
4953
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
4958
4954
|
# These repositories are cloned at the same level as the default
|
4959
4955
|
# repository of your notebook instance. For more information, see
|
4960
|
-
# [Associating Git Repositories with
|
4961
|
-
# Instances][2].
|
4956
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4962
4957
|
#
|
4963
4958
|
#
|
4964
4959
|
#
|
@@ -5242,10 +5237,10 @@ module Aws::SageMaker
|
|
5242
5237
|
end
|
5243
5238
|
|
5244
5239
|
# Returns a URL that you can use to connect to the Jupyter server from a
|
5245
|
-
# notebook instance. In the
|
5246
|
-
#
|
5247
|
-
#
|
5248
|
-
#
|
5240
|
+
# notebook instance. In the SageMaker console, when you choose `Open`
|
5241
|
+
# next to a notebook instance, SageMaker opens a new tab showing the
|
5242
|
+
# Jupyter server home page from the notebook instance. The console uses
|
5243
|
+
# this API to get the URL and show the page.
|
5249
5244
|
#
|
5250
5245
|
# The IAM role or user used to call this API defines the permissions to
|
5251
5246
|
# access the notebook instance. Once the presigned URL is created, no
|
@@ -5601,15 +5596,14 @@ module Aws::SageMaker
|
|
5601
5596
|
req.send_request(options)
|
5602
5597
|
end
|
5603
5598
|
|
5604
|
-
# Starts a model training job. After training completes,
|
5605
|
-
#
|
5606
|
-
#
|
5599
|
+
# Starts a model training job. After training completes, SageMaker saves
|
5600
|
+
# the resulting model artifacts to an Amazon S3 location that you
|
5601
|
+
# specify.
|
5607
5602
|
#
|
5608
|
-
# If you choose to host your model using
|
5609
|
-
#
|
5610
|
-
#
|
5611
|
-
#
|
5612
|
-
# for inference.
|
5603
|
+
# If you choose to host your model using SageMaker hosting services, you
|
5604
|
+
# can use the resulting model artifacts as part of the model. You can
|
5605
|
+
# also use the artifacts in a machine learning service other than
|
5606
|
+
# SageMaker, provided that you know how to use them for inference.
|
5613
5607
|
#
|
5614
5608
|
# In the request body, you provide the following:
|
5615
5609
|
#
|
@@ -5619,13 +5613,13 @@ module Aws::SageMaker
|
|
5619
5613
|
# enable the estimation of model parameters during training.
|
5620
5614
|
# Hyperparameters can be tuned to optimize this learning process. For
|
5621
5615
|
# a list of hyperparameters for each training algorithm provided by
|
5622
|
-
#
|
5616
|
+
# SageMaker, see [Algorithms][1].
|
5623
5617
|
#
|
5624
5618
|
# * `InputDataConfig` - Describes the training dataset and the Amazon
|
5625
5619
|
# S3, EFS, or FSx location where it is stored.
|
5626
5620
|
#
|
5627
5621
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
5628
|
-
#
|
5622
|
+
# SageMaker to save the results of model training.
|
5629
5623
|
#
|
5630
5624
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
5631
5625
|
# and ML storage volumes to deploy for model training. In distributed
|
@@ -5635,10 +5629,10 @@ module Aws::SageMaker
|
|
5635
5629
|
# learning models by up to 80% by using Amazon EC2 Spot instances. For
|
5636
5630
|
# more information, see [Managed Spot Training][2].
|
5637
5631
|
#
|
5638
|
-
# * `RoleArn` - The Amazon Resource Name (ARN) that
|
5639
|
-
#
|
5640
|
-
#
|
5641
|
-
#
|
5632
|
+
# * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
|
5633
|
+
# perform tasks on your behalf during model training. You must grant
|
5634
|
+
# this role the necessary permissions so that SageMaker can
|
5635
|
+
# successfully complete model training.
|
5642
5636
|
#
|
5643
5637
|
# * `StoppingCondition` - To help cap training costs, use
|
5644
5638
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
@@ -5651,7 +5645,7 @@ module Aws::SageMaker
|
|
5651
5645
|
# * `RetryStrategy` - The number of times to retry the job when the job
|
5652
5646
|
# fails due to an `InternalServerError`.
|
5653
5647
|
#
|
5654
|
-
# For more information about
|
5648
|
+
# For more information about SageMaker, see [How It Works][3].
|
5655
5649
|
#
|
5656
5650
|
#
|
5657
5651
|
#
|
@@ -5666,7 +5660,7 @@ module Aws::SageMaker
|
|
5666
5660
|
# @option params [Hash<String,String>] :hyper_parameters
|
5667
5661
|
# Algorithm-specific parameters that influence the quality of the model.
|
5668
5662
|
# You set hyperparameters before you start the learning process. For a
|
5669
|
-
# list of hyperparameters for each training algorithm provided by
|
5663
|
+
# list of hyperparameters for each training algorithm provided by
|
5670
5664
|
# SageMaker, see [Algorithms][1].
|
5671
5665
|
#
|
5672
5666
|
# You can specify a maximum of 100 hyperparameters. Each hyperparameter
|
@@ -5680,9 +5674,9 @@ module Aws::SageMaker
|
|
5680
5674
|
# @option params [required, Types::AlgorithmSpecification] :algorithm_specification
|
5681
5675
|
# The registry path of the Docker image that contains the training
|
5682
5676
|
# algorithm and algorithm-specific metadata, including the input mode.
|
5683
|
-
# For more information about algorithms provided by
|
5684
|
-
#
|
5685
|
-
#
|
5677
|
+
# For more information about algorithms provided by SageMaker, see
|
5678
|
+
# [Algorithms][1]. For information about providing your own algorithms,
|
5679
|
+
# see [Using Your Own Algorithms with Amazon SageMaker][2].
|
5686
5680
|
#
|
5687
5681
|
#
|
5688
5682
|
#
|
@@ -5690,18 +5684,18 @@ module Aws::SageMaker
|
|
5690
5684
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
5691
5685
|
#
|
5692
5686
|
# @option params [required, String] :role_arn
|
5693
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
5694
|
-
#
|
5687
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
5688
|
+
# assume to perform tasks on your behalf.
|
5695
5689
|
#
|
5696
|
-
# During model training,
|
5697
|
-
#
|
5698
|
-
#
|
5699
|
-
#
|
5700
|
-
#
|
5701
|
-
# information, see [
|
5690
|
+
# During model training, SageMaker needs your permission to read input
|
5691
|
+
# data from an S3 bucket, download a Docker image that contains training
|
5692
|
+
# code, write model artifacts to an S3 bucket, write logs to Amazon
|
5693
|
+
# CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
|
5694
|
+
# permissions for all of these tasks to an IAM role. For more
|
5695
|
+
# information, see [SageMaker Roles][1].
|
5702
5696
|
#
|
5703
|
-
# <note markdown="1"> To be able to pass this role to
|
5704
|
-
#
|
5697
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
5698
|
+
# have the `iam:PassRole` permission.
|
5705
5699
|
#
|
5706
5700
|
# </note>
|
5707
5701
|
#
|
@@ -5721,16 +5715,15 @@ module Aws::SageMaker
|
|
5721
5715
|
# type, compression method, and whether the data is wrapped in RecordIO
|
5722
5716
|
# format.
|
5723
5717
|
#
|
5724
|
-
# Depending on the input mode that the algorithm supports,
|
5725
|
-
#
|
5726
|
-
#
|
5727
|
-
#
|
5728
|
-
#
|
5729
|
-
# downloaded.
|
5718
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
5719
|
+
# either copies input data files from an S3 bucket to a local directory
|
5720
|
+
# in the Docker container, or makes it available as input streams. For
|
5721
|
+
# example, if you specify an EFS location, input data files are
|
5722
|
+
# available as input streams. They do not need to be downloaded.
|
5730
5723
|
#
|
5731
5724
|
# @option params [required, Types::OutputDataConfig] :output_data_config
|
5732
5725
|
# Specifies the path to the S3 location where you want to store model
|
5733
|
-
# artifacts.
|
5726
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
5734
5727
|
#
|
5735
5728
|
# @option params [required, Types::ResourceConfig] :resource_config
|
5736
5729
|
# The resources, including the ML compute instances and ML storage
|
@@ -5738,10 +5731,10 @@ module Aws::SageMaker
|
|
5738
5731
|
#
|
5739
5732
|
# ML storage volumes store model artifacts and incremental states.
|
5740
5733
|
# Training algorithms might also use ML storage volumes for scratch
|
5741
|
-
# space. If you want
|
5742
|
-
#
|
5743
|
-
#
|
5744
|
-
#
|
5734
|
+
# space. If you want SageMaker to use the ML storage volume to store the
|
5735
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
5736
|
+
# algorithm specification. For distributed training algorithms, specify
|
5737
|
+
# an instance count greater than 1.
|
5745
5738
|
#
|
5746
5739
|
# @option params [Types::VpcConfig] :vpc_config
|
5747
5740
|
# A VpcConfig object that specifies the VPC that you want your training
|
@@ -5756,13 +5749,13 @@ module Aws::SageMaker
|
|
5756
5749
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5757
5750
|
# Specifies a limit to how long a model training job can run. It also
|
5758
5751
|
# specifies how long a managed Spot training job has to complete. When
|
5759
|
-
# the job reaches the time limit,
|
5760
|
-
#
|
5752
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
5753
|
+
# this API to cap model training costs.
|
5761
5754
|
#
|
5762
|
-
# To stop a job,
|
5763
|
-
#
|
5764
|
-
#
|
5765
|
-
#
|
5755
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
5756
|
+
# which delays job termination for 120 seconds. Algorithms can use this
|
5757
|
+
# 120-second window to save the model artifacts, so the results of
|
5758
|
+
# training are not lost.
|
5766
5759
|
#
|
5767
5760
|
# @option params [Array<Types::Tag>] :tags
|
5768
5761
|
# An array of key-value pairs. You can use tags to categorize your
|
@@ -5778,9 +5771,9 @@ module Aws::SageMaker
|
|
5778
5771
|
# Isolates the training container. No inbound or outbound network calls
|
5779
5772
|
# can be made, except for calls between peers within a training cluster
|
5780
5773
|
# for distributed training. If you enable network isolation for training
|
5781
|
-
# jobs that are configured to use a VPC,
|
5782
|
-
#
|
5783
|
-
#
|
5774
|
+
# jobs that are configured to use a VPC, SageMaker downloads and uploads
|
5775
|
+
# customer data and model artifacts through the specified VPC, but the
|
5776
|
+
# training container does not have network access.
|
5784
5777
|
#
|
5785
5778
|
# @option params [Boolean] :enable_inter_container_traffic_encryption
|
5786
5779
|
# To encrypt all communications between ML compute instances in
|
@@ -6087,6 +6080,11 @@ module Aws::SageMaker
|
|
6087
6080
|
# fit within the maximum payload size, we recommend using a slightly
|
6088
6081
|
# larger value. The default value is `6` MB.
|
6089
6082
|
#
|
6083
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
6084
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
6085
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
6086
|
+
# MB.
|
6087
|
+
#
|
6090
6088
|
# For cases where the payload might be arbitrarily large and is
|
6091
6089
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
6092
6090
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -7052,13 +7050,19 @@ module Aws::SageMaker
|
|
7052
7050
|
req.send_request(options)
|
7053
7051
|
end
|
7054
7052
|
|
7055
|
-
# Deletes an endpoint.
|
7056
|
-
#
|
7053
|
+
# Deletes an endpoint. SageMaker frees up all of the resources that were
|
7054
|
+
# deployed when the endpoint was created.
|
7057
7055
|
#
|
7058
|
-
#
|
7056
|
+
# SageMaker retires any custom KMS key grants associated with the
|
7059
7057
|
# endpoint, meaning you don't need to use the [RevokeGrant][1] API
|
7060
7058
|
# call.
|
7061
7059
|
#
|
7060
|
+
# When you delete your endpoint, SageMaker asynchronously deletes
|
7061
|
+
# associated endpoint resources such as KMS key grants. You might still
|
7062
|
+
# see these resources in your account for a few minutes after deleting
|
7063
|
+
# your endpoint. Do not delete or revoke the permissions for your `
|
7064
|
+
# ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
|
7065
|
+
#
|
7062
7066
|
#
|
7063
7067
|
#
|
7064
7068
|
# [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
|
@@ -7275,9 +7279,9 @@ module Aws::SageMaker
|
|
7275
7279
|
end
|
7276
7280
|
|
7277
7281
|
# Deletes a model. The `DeleteModel` API deletes only the model entry
|
7278
|
-
# that was created in
|
7279
|
-
#
|
7280
|
-
#
|
7282
|
+
# that was created in SageMaker when you called the `CreateModel` API.
|
7283
|
+
# It does not delete model artifacts, inference code, or the IAM role
|
7284
|
+
# that you specified when creating the model.
|
7281
7285
|
#
|
7282
7286
|
# @option params [required, String] :model_name
|
7283
7287
|
# The name of the model to delete.
|
@@ -7345,10 +7349,10 @@ module Aws::SageMaker
|
|
7345
7349
|
|
7346
7350
|
# Deletes a model package.
|
7347
7351
|
#
|
7348
|
-
# A model package is used to create
|
7349
|
-
#
|
7350
|
-
#
|
7351
|
-
#
|
7352
|
+
# A model package is used to create SageMaker models or list on Amazon
|
7353
|
+
# Web Services Marketplace. Buyers can subscribe to model packages
|
7354
|
+
# listed on Amazon Web Services Marketplace to create models in
|
7355
|
+
# SageMaker.
|
7352
7356
|
#
|
7353
7357
|
# @option params [required, String] :model_package_name
|
7354
7358
|
# The name or Amazon Resource Name (ARN) of the model package to delete.
|
@@ -7463,16 +7467,16 @@ module Aws::SageMaker
|
|
7463
7467
|
req.send_request(options)
|
7464
7468
|
end
|
7465
7469
|
|
7466
|
-
# Deletes an
|
7470
|
+
# Deletes an SageMaker notebook instance. Before you can delete a
|
7467
7471
|
# notebook instance, you must call the `StopNotebookInstance` API.
|
7468
7472
|
#
|
7469
|
-
# When you delete a notebook instance, you lose all of your data.
|
7473
|
+
# When you delete a notebook instance, you lose all of your data.
|
7470
7474
|
# SageMaker removes the ML compute instance, and deletes the ML storage
|
7471
7475
|
# volume and the network interface associated with the notebook
|
7472
7476
|
# instance.
|
7473
7477
|
#
|
7474
7478
|
# @option params [required, String] :notebook_instance_name
|
7475
|
-
# The name of the
|
7479
|
+
# The name of the SageMaker notebook instance to delete.
|
7476
7480
|
#
|
7477
7481
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
7478
7482
|
#
|
@@ -7600,7 +7604,7 @@ module Aws::SageMaker
|
|
7600
7604
|
req.send_request(options)
|
7601
7605
|
end
|
7602
7606
|
|
7603
|
-
# Deletes the specified tags from an
|
7607
|
+
# Deletes the specified tags from an SageMaker resource.
|
7604
7608
|
#
|
7605
7609
|
# To list a resource's tags, use the `ListTags` API.
|
7606
7610
|
#
|
@@ -8241,6 +8245,7 @@ module Aws::SageMaker
|
|
8241
8245
|
# resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
|
8242
8246
|
# resp.input_data_config[0].target_attribute_name #=> String
|
8243
8247
|
# resp.input_data_config[0].content_type #=> String
|
8248
|
+
# resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
|
8244
8249
|
# resp.output_data_config.kms_key_id #=> String
|
8245
8250
|
# resp.output_data_config.s3_output_path #=> String
|
8246
8251
|
# resp.role_arn #=> String
|
@@ -8255,6 +8260,7 @@ module Aws::SageMaker
|
|
8255
8260
|
# resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
|
8256
8261
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
|
8257
8262
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
|
8263
|
+
# resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
|
8258
8264
|
# resp.creation_time #=> Time
|
8259
8265
|
# resp.end_time #=> Time
|
8260
8266
|
# resp.last_modified_time #=> Time
|
@@ -10219,7 +10225,7 @@ module Aws::SageMaker
|
|
10219
10225
|
# Gets a description for the specified model group.
|
10220
10226
|
#
|
10221
10227
|
# @option params [required, String] :model_package_group_name
|
10222
|
-
# The name of
|
10228
|
+
# The name of gthe model group to describe.
|
10223
10229
|
#
|
10224
10230
|
# @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10225
10231
|
#
|
@@ -14751,8 +14757,8 @@ module Aws::SageMaker
|
|
14751
14757
|
req.send_request(options)
|
14752
14758
|
end
|
14753
14759
|
|
14754
|
-
# Returns a list of the
|
14755
|
-
#
|
14760
|
+
# Returns a list of the SageMaker notebook instances in the requester's
|
14761
|
+
# account in an Amazon Web Services Region.
|
14756
14762
|
#
|
14757
14763
|
# @option params [String] :next_token
|
14758
14764
|
# If the previous call to the `ListNotebookInstances` is truncated, the
|
@@ -15423,7 +15429,7 @@ module Aws::SageMaker
|
|
15423
15429
|
req.send_request(options)
|
15424
15430
|
end
|
15425
15431
|
|
15426
|
-
# Returns the tags for the specified
|
15432
|
+
# Returns the tags for the specified SageMaker resource.
|
15427
15433
|
#
|
15428
15434
|
# @option params [required, String] :resource_arn
|
15429
15435
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
@@ -15431,8 +15437,8 @@ module Aws::SageMaker
|
|
15431
15437
|
#
|
15432
15438
|
# @option params [String] :next_token
|
15433
15439
|
# If the response to the previous `ListTags` request is truncated,
|
15434
|
-
#
|
15435
|
-
#
|
15440
|
+
# SageMaker returns this token. To retrieve the next set of tags, use it
|
15441
|
+
# in the subsequent request.
|
15436
15442
|
#
|
15437
15443
|
# @option params [Integer] :max_results
|
15438
15444
|
# Maximum number of tags to return.
|
@@ -16157,11 +16163,12 @@ module Aws::SageMaker
|
|
16157
16163
|
# starting point for your lineage query.
|
16158
16164
|
#
|
16159
16165
|
# @option params [String] :direction
|
16160
|
-
# Associations between lineage entities
|
16161
|
-
# determines the direction from the StartArn(s) the query
|
16166
|
+
# Associations between lineage entities have a direction. This parameter
|
16167
|
+
# determines the direction from the StartArn(s) that the query
|
16168
|
+
# traverses.
|
16162
16169
|
#
|
16163
16170
|
# @option params [Boolean] :include_edges
|
16164
|
-
# Setting this value to `True`
|
16171
|
+
# Setting this value to `True` retrieves not only the entities of
|
16165
16172
|
# interest but also the [Associations][1] and lineage entities on the
|
16166
16173
|
# path. Set to `False` to only return lineage entities that match your
|
16167
16174
|
# query.
|
@@ -16188,8 +16195,8 @@ module Aws::SageMaker
|
|
16188
16195
|
#
|
16189
16196
|
# @option params [Integer] :max_depth
|
16190
16197
|
# The maximum depth in lineage relationships from the `StartArns` that
|
16191
|
-
#
|
16192
|
-
#
|
16198
|
+
# are traversed. Depth is a measure of the number of `Associations` from
|
16199
|
+
# the `StartArn` entity to the matched results.
|
16193
16200
|
#
|
16194
16201
|
# @option params [Integer] :max_results
|
16195
16202
|
# Limits the number of vertices in the results. Use the `NextToken` in a
|
@@ -17365,9 +17372,9 @@ module Aws::SageMaker
|
|
17365
17372
|
|
17366
17373
|
# Launches an ML compute instance with the latest version of the
|
17367
17374
|
# libraries and attaches your ML storage volume. After configuring the
|
17368
|
-
# notebook instance,
|
17369
|
-
#
|
17370
|
-
#
|
17375
|
+
# notebook instance, SageMaker sets the notebook instance status to
|
17376
|
+
# `InService`. A notebook instance's status must be `InService` before
|
17377
|
+
# you can connect to your Jupyter notebook.
|
17371
17378
|
#
|
17372
17379
|
# @option params [required, String] :notebook_instance_name
|
17373
17380
|
# The name of the notebook instance to start.
|
@@ -17623,10 +17630,9 @@ module Aws::SageMaker
|
|
17623
17630
|
end
|
17624
17631
|
|
17625
17632
|
# Terminates the ML compute instance. Before terminating the instance,
|
17626
|
-
#
|
17627
|
-
#
|
17628
|
-
#
|
17629
|
-
# `StopNotebookInstance`.
|
17633
|
+
# SageMaker disconnects the ML storage volume from it. SageMaker
|
17634
|
+
# preserves the ML storage volume. SageMaker stops charging you for the
|
17635
|
+
# ML compute instance when you call `StopNotebookInstance`.
|
17630
17636
|
#
|
17631
17637
|
# To access data on the ML storage volume for a notebook instance that
|
17632
17638
|
# has been terminated, call the `StartNotebookInstance` API.
|
@@ -17740,14 +17746,14 @@ module Aws::SageMaker
|
|
17740
17746
|
req.send_request(options)
|
17741
17747
|
end
|
17742
17748
|
|
17743
|
-
# Stops a training job. To stop a job,
|
17744
|
-
#
|
17745
|
-
#
|
17749
|
+
# Stops a training job. To stop a job, SageMaker sends the algorithm the
|
17750
|
+
# `SIGTERM` signal, which delays job termination for 120 seconds.
|
17751
|
+
# Algorithms might use this 120-second window to save the model
|
17746
17752
|
# artifacts, so the results of the training is not lost.
|
17747
17753
|
#
|
17748
|
-
# When it receives a `StopTrainingJob` request,
|
17749
|
-
#
|
17750
|
-
#
|
17754
|
+
# When it receives a `StopTrainingJob` request, SageMaker changes the
|
17755
|
+
# status of the job to `Stopping`. After SageMaker stops the job, it
|
17756
|
+
# sets the status to `Stopped`.
|
17751
17757
|
#
|
17752
17758
|
# @option params [required, String] :training_job_name
|
17753
17759
|
# The name of the training job to stop.
|
@@ -18189,9 +18195,9 @@ module Aws::SageMaker
|
|
18189
18195
|
# for the endpoint using the previous `EndpointConfig` (there is no
|
18190
18196
|
# availability loss).
|
18191
18197
|
#
|
18192
|
-
# When
|
18193
|
-
#
|
18194
|
-
#
|
18198
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
18199
|
+
# `Updating`. After updating the endpoint, it sets the status to
|
18200
|
+
# `InService`. To check the status of an endpoint, use the
|
18195
18201
|
# DescribeEndpoint API.
|
18196
18202
|
#
|
18197
18203
|
# <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
|
@@ -18299,13 +18305,13 @@ module Aws::SageMaker
|
|
18299
18305
|
|
18300
18306
|
# Updates variant weight of one or more variants associated with an
|
18301
18307
|
# existing endpoint, or capacity of one variant associated with an
|
18302
|
-
# existing endpoint. When it receives the request,
|
18303
|
-
#
|
18304
|
-
#
|
18305
|
-
#
|
18308
|
+
# existing endpoint. When it receives the request, SageMaker sets the
|
18309
|
+
# endpoint status to `Updating`. After updating the endpoint, it sets
|
18310
|
+
# the status to `InService`. To check the status of an endpoint, use the
|
18311
|
+
# DescribeEndpoint API.
|
18306
18312
|
#
|
18307
18313
|
# @option params [required, String] :endpoint_name
|
18308
|
-
# The name of an existing
|
18314
|
+
# The name of an existing SageMaker endpoint.
|
18309
18315
|
#
|
18310
18316
|
# @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
|
18311
18317
|
# An object that provides new capacity and weight values for a variant.
|
@@ -18630,12 +18636,12 @@ module Aws::SageMaker
|
|
18630
18636
|
# The Amazon ML compute instance type.
|
18631
18637
|
#
|
18632
18638
|
# @option params [String] :role_arn
|
18633
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
18634
|
-
#
|
18635
|
-
# [
|
18639
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
18640
|
+
# assume to access the notebook instance. For more information, see
|
18641
|
+
# [SageMaker Roles][1].
|
18636
18642
|
#
|
18637
|
-
# <note markdown="1"> To be able to pass this role to
|
18638
|
-
#
|
18643
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
18644
|
+
# have the `iam:PassRole` permission.
|
18639
18645
|
#
|
18640
18646
|
# </note>
|
18641
18647
|
#
|
@@ -18662,11 +18668,11 @@ module Aws::SageMaker
|
|
18662
18668
|
# @option params [Integer] :volume_size_in_gb
|
18663
18669
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
18664
18670
|
# instance. The default value is 5 GB. ML storage volumes are encrypted,
|
18665
|
-
# so
|
18666
|
-
#
|
18667
|
-
#
|
18668
|
-
#
|
18669
|
-
#
|
18671
|
+
# so SageMaker can't determine the amount of available free space on
|
18672
|
+
# the volume. Because of this, you can increase the volume size when you
|
18673
|
+
# update a notebook instance, but you can't decrease the volume size.
|
18674
|
+
# If you want to decrease the size of the ML storage volume in use,
|
18675
|
+
# create a new notebook instance with the desired size.
|
18670
18676
|
#
|
18671
18677
|
# @option params [String] :default_code_repository
|
18672
18678
|
# The Git repository to associate with the notebook instance as its
|
@@ -18675,8 +18681,7 @@ module Aws::SageMaker
|
|
18675
18681
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
18676
18682
|
# repository. When you open a notebook instance, it opens in the
|
18677
18683
|
# directory that contains this repository. For more information, see
|
18678
|
-
# [Associating Git Repositories with
|
18679
|
-
# Instances][2].
|
18684
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18680
18685
|
#
|
18681
18686
|
#
|
18682
18687
|
#
|
@@ -18690,8 +18695,7 @@ module Aws::SageMaker
|
|
18690
18695
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
18691
18696
|
# These repositories are cloned at the same level as the default
|
18692
18697
|
# repository of your notebook instance. For more information, see
|
18693
|
-
# [Associating Git Repositories with
|
18694
|
-
# Instances][2].
|
18698
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18695
18699
|
#
|
18696
18700
|
#
|
18697
18701
|
#
|
@@ -19464,7 +19468,7 @@ module Aws::SageMaker
|
|
19464
19468
|
params: params,
|
19465
19469
|
config: config)
|
19466
19470
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
19467
|
-
context[:gem_version] = '1.
|
19471
|
+
context[:gem_version] = '1.123.0'
|
19468
19472
|
Seahorse::Client::Request.new(handlers, context)
|
19469
19473
|
end
|
19470
19474
|
|