aws-sdk-sagemaker 1.122.0 → 1.123.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -422,7 +422,7 @@ module Aws::SageMaker
422
422
  req.send_request(options)
423
423
  end
424
424
 
425
- # Adds or overwrites one or more tags for the specified Amazon SageMaker
425
+ # Adds or overwrites one or more tags for the specified SageMaker
426
426
  # resource. You can add tags to notebook instances, training jobs,
427
427
  # hyperparameter tuning jobs, batch transform jobs, models, labeling
428
428
  # jobs, work teams, endpoint configurations, and endpoints.
@@ -678,8 +678,8 @@ module Aws::SageMaker
678
678
  req.send_request(options)
679
679
  end
680
680
 
681
- # Create a machine learning algorithm that you can use in Amazon
682
- # SageMaker and list in the Amazon Web Services Marketplace.
681
+ # Create a machine learning algorithm that you can use in SageMaker and
682
+ # list in the Amazon Web Services Marketplace.
683
683
  #
684
684
  # @option params [required, String] :algorithm_name
685
685
  # The name of the algorithm.
@@ -723,10 +723,10 @@ module Aws::SageMaker
723
723
  # inference.
724
724
  #
725
725
  # @option params [Types::AlgorithmValidationSpecification] :validation_specification
726
- # Specifies configurations for one or more training jobs and that Amazon
726
+ # Specifies configurations for one or more training jobs and that
727
727
  # SageMaker runs to test the algorithm's training code and, optionally,
728
- # one or more batch transform jobs that Amazon SageMaker runs to test
729
- # the algorithm's inference code.
728
+ # one or more batch transform jobs that SageMaker runs to test the
729
+ # algorithm's inference code.
730
730
  #
731
731
  # @option params [Boolean] :certify_for_marketplace
732
732
  # Whether to certify the algorithm so that it can be listed in Amazon
@@ -1210,6 +1210,7 @@ module Aws::SageMaker
1210
1210
  # compression_type: "None", # accepts None, Gzip
1211
1211
  # target_attribute_name: "TargetAttributeName", # required
1212
1212
  # content_type: "ContentType",
1213
+ # channel_type: "training", # accepts training, validation
1213
1214
  # },
1214
1215
  # ],
1215
1216
  # output_data_config: { # required
@@ -1234,6 +1235,9 @@ module Aws::SageMaker
1234
1235
  # subnets: ["SubnetId"], # required
1235
1236
  # },
1236
1237
  # },
1238
+ # data_split_config: {
1239
+ # validation_fraction: 1.0,
1240
+ # },
1237
1241
  # },
1238
1242
  # role_arn: "RoleArn", # required
1239
1243
  # generate_candidate_definitions_only: false,
@@ -1262,13 +1266,13 @@ module Aws::SageMaker
1262
1266
  req.send_request(options)
1263
1267
  end
1264
1268
 
1265
- # Creates a Git repository as a resource in your Amazon SageMaker
1266
- # account. You can associate the repository with notebook instances so
1267
- # that you can use Git source control for the notebooks you create. The
1268
- # Git repository is a resource in your Amazon SageMaker account, so it
1269
- # can be associated with more than one notebook instance, and it
1270
- # persists independently from the lifecycle of any notebook instances it
1271
- # is associated with.
1269
+ # Creates a Git repository as a resource in your SageMaker account. You
1270
+ # can associate the repository with notebook instances so that you can
1271
+ # use Git source control for the notebooks you create. The Git
1272
+ # repository is a resource in your SageMaker account, so it can be
1273
+ # associated with more than one notebook instance, and it persists
1274
+ # independently from the lifecycle of any notebook instances it is
1275
+ # associated with.
1272
1276
  #
1273
1277
  # The repository can be hosted either in [Amazon Web Services
1274
1278
  # CodeCommit][1] or in any other Git repository.
@@ -2032,13 +2036,13 @@ module Aws::SageMaker
2032
2036
  end
2033
2037
 
2034
2038
  # Creates an endpoint using the endpoint configuration specified in the
2035
- # request. Amazon SageMaker uses the endpoint to provision resources and
2036
- # deploy models. You create the endpoint configuration with the
2039
+ # request. SageMaker uses the endpoint to provision resources and deploy
2040
+ # models. You create the endpoint configuration with the
2037
2041
  # CreateEndpointConfig API.
2038
2042
  #
2039
- # Use this API to deploy models using Amazon SageMaker hosting services.
2043
+ # Use this API to deploy models using SageMaker hosting services.
2040
2044
  #
2041
- # For an example that calls this method when deploying a model to Amazon
2045
+ # For an example that calls this method when deploying a model to
2042
2046
  # SageMaker hosting services, see the [Create Endpoint example
2043
2047
  # notebook.][1]
2044
2048
  #
@@ -2052,9 +2056,9 @@ module Aws::SageMaker
2052
2056
  # The endpoint name must be unique within an Amazon Web Services Region
2053
2057
  # in your Amazon Web Services account.
2054
2058
  #
2055
- # When it receives the request, Amazon SageMaker creates the endpoint,
2056
- # launches the resources (ML compute instances), and deploys the
2057
- # model(s) on them.
2059
+ # When it receives the request, SageMaker creates the endpoint, launches
2060
+ # the resources (ML compute instances), and deploys the model(s) on
2061
+ # them.
2058
2062
  #
2059
2063
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2060
2064
  # verify that your endpoint configuration exists. When you read data
@@ -2070,21 +2074,21 @@ module Aws::SageMaker
2070
2074
  #
2071
2075
  # </note>
2072
2076
  #
2073
- # When Amazon SageMaker receives the request, it sets the endpoint
2074
- # status to `Creating`. After it creates the endpoint, it sets the
2075
- # status to `InService`. Amazon SageMaker can then process incoming
2076
- # requests for inferences. To check the status of an endpoint, use the
2077
+ # When SageMaker receives the request, it sets the endpoint status to
2078
+ # `Creating`. After it creates the endpoint, it sets the status to
2079
+ # `InService`. SageMaker can then process incoming requests for
2080
+ # inferences. To check the status of an endpoint, use the
2077
2081
  # DescribeEndpoint API.
2078
2082
  #
2079
2083
  # If any of the models hosted at this endpoint get model data from an
2080
- # Amazon S3 location, Amazon SageMaker uses Amazon Web Services Security
2081
- # Token Service to download model artifacts from the S3 path you
2082
- # provided. Amazon Web Services STS is activated in your IAM user
2083
- # account by default. If you previously deactivated Amazon Web Services
2084
- # STS for a region, you need to reactivate Amazon Web Services STS for
2085
- # that region. For more information, see [Activating and Deactivating
2086
- # Amazon Web Services STS in an Amazon Web Services Region][3] in the
2087
- # *Amazon Web Services Identity and Access Management User Guide*.
2084
+ # Amazon S3 location, SageMaker uses Amazon Web Services Security Token
2085
+ # Service to download model artifacts from the S3 path you provided.
2086
+ # Amazon Web Services STS is activated in your IAM user account by
2087
+ # default. If you previously deactivated Amazon Web Services STS for a
2088
+ # region, you need to reactivate Amazon Web Services STS for that
2089
+ # region. For more information, see [Activating and Deactivating Amazon
2090
+ # Web Services STS in an Amazon Web Services Region][3] in the *Amazon
2091
+ # Web Services Identity and Access Management User Guide*.
2088
2092
  #
2089
2093
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
2090
2094
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -2202,28 +2206,28 @@ module Aws::SageMaker
2202
2206
  req.send_request(options)
2203
2207
  end
2204
2208
 
2205
- # Creates an endpoint configuration that Amazon SageMaker hosting
2206
- # services uses to deploy models. In the configuration, you identify one
2207
- # or more models, created using the `CreateModel` API, to deploy and the
2208
- # resources that you want Amazon SageMaker to provision. Then you call
2209
- # the CreateEndpoint API.
2209
+ # Creates an endpoint configuration that SageMaker hosting services uses
2210
+ # to deploy models. In the configuration, you identify one or more
2211
+ # models, created using the `CreateModel` API, to deploy and the
2212
+ # resources that you want SageMaker to provision. Then you call the
2213
+ # CreateEndpoint API.
2210
2214
  #
2211
- # <note markdown="1"> Use this API if you want to use Amazon SageMaker hosting services to
2212
- # deploy models into production.
2215
+ # <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
2216
+ # models into production.
2213
2217
  #
2214
2218
  # </note>
2215
2219
  #
2216
2220
  # In the request, you define a `ProductionVariant`, for each model that
2217
2221
  # you want to deploy. Each `ProductionVariant` parameter also describes
2218
- # the resources that you want Amazon SageMaker to provision. This
2219
- # includes the number and type of ML compute instances to deploy.
2222
+ # the resources that you want SageMaker to provision. This includes the
2223
+ # number and type of ML compute instances to deploy.
2220
2224
  #
2221
2225
  # If you are hosting multiple models, you also assign a `VariantWeight`
2222
2226
  # to specify how much traffic you want to allocate to each model. For
2223
2227
  # example, suppose that you want to host two models, A and B, and you
2224
- # assign traffic weight 2 for model A and 1 for model B. Amazon
2225
- # SageMaker distributes two-thirds of the traffic to Model A, and
2226
- # one-third to model B.
2228
+ # assign traffic weight 2 for model A and 1 for model B. SageMaker
2229
+ # distributes two-thirds of the traffic to Model A, and one-third to
2230
+ # model B.
2227
2231
  #
2228
2232
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2229
2233
  # verify that your endpoint configuration exists. When you read data
@@ -2265,8 +2269,8 @@ module Aws::SageMaker
2265
2269
  #
2266
2270
  # @option params [String] :kms_key_id
2267
2271
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
2268
- # Service key that Amazon SageMaker uses to encrypt data on the storage
2269
- # volume attached to the ML compute instance that hosts the endpoint.
2272
+ # Service key that SageMaker uses to encrypt data on the storage volume
2273
+ # attached to the ML compute instance that hosts the endpoint.
2270
2274
  #
2271
2275
  # The KmsKeyId can be any of the following formats:
2272
2276
  #
@@ -3133,8 +3137,8 @@ module Aws::SageMaker
3133
3137
 
3134
3138
  # Creates a custom SageMaker image. A SageMaker image is a set of image
3135
3139
  # versions. Each image version represents a container image stored in
3136
- # Amazon Container Registry (ECR). For more information, see [Bring your
3137
- # own SageMaker image][1].
3140
+ # Amazon Elastic Container Registry (ECR). For more information, see
3141
+ # [Bring your own SageMaker image][1].
3138
3142
  #
3139
3143
  #
3140
3144
  #
@@ -3190,13 +3194,13 @@ module Aws::SageMaker
3190
3194
  end
3191
3195
 
3192
3196
  # Creates a version of the SageMaker image specified by `ImageName`. The
3193
- # version represents the Amazon Container Registry (ECR) container image
3194
- # specified by `BaseImage`.
3197
+ # version represents the Amazon Elastic Container Registry (ECR)
3198
+ # container image specified by `BaseImage`.
3195
3199
  #
3196
3200
  # @option params [required, String] :base_image
3197
3201
  # The registry path of the container image to use as the starting point
3198
- # for this version. The path is an Amazon Container Registry (ECR) URI
3199
- # in the following format:
3202
+ # for this version. The path is an Amazon Elastic Container Registry
3203
+ # (ECR) URI in the following format:
3200
3204
  #
3201
3205
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
3202
3206
  # [@digest]>`
@@ -3666,34 +3670,30 @@ module Aws::SageMaker
3666
3670
  req.send_request(options)
3667
3671
  end
3668
3672
 
3669
- # Creates a model in Amazon SageMaker. In the request, you name the
3670
- # model and describe a primary container. For the primary container, you
3671
- # specify the Docker image that contains inference code, artifacts (from
3672
- # prior training), and a custom environment map that the inference code
3673
- # uses when you deploy the model for predictions.
3673
+ # Creates a model in SageMaker. In the request, you name the model and
3674
+ # describe a primary container. For the primary container, you specify
3675
+ # the Docker image that contains inference code, artifacts (from prior
3676
+ # training), and a custom environment map that the inference code uses
3677
+ # when you deploy the model for predictions.
3674
3678
  #
3675
- # Use this API to create a model if you want to use Amazon SageMaker
3676
- # hosting services or run a batch transform job.
3679
+ # Use this API to create a model if you want to use SageMaker hosting
3680
+ # services or run a batch transform job.
3677
3681
  #
3678
3682
  # To host your model, you create an endpoint configuration with the
3679
3683
  # `CreateEndpointConfig` API, and then create an endpoint with the
3680
- # `CreateEndpoint` API. Amazon SageMaker then deploys all of the
3681
- # containers that you defined for the model in the hosting environment.
3684
+ # `CreateEndpoint` API. SageMaker then deploys all of the containers
3685
+ # that you defined for the model in the hosting environment.
3682
3686
  #
3683
- # For an example that calls this method when deploying a model to Amazon
3687
+ # For an example that calls this method when deploying a model to
3684
3688
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
3685
3689
  # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
3686
3690
  #
3687
3691
  # To run a batch transform using your model, you start a job with the
3688
- # `CreateTransformJob` API. Amazon SageMaker uses your model and your
3689
- # dataset to get inferences which are then saved to a specified S3
3690
- # location.
3691
- #
3692
- # In the `CreateModel` request, you must define a container with the
3693
- # `PrimaryContainer` parameter.
3692
+ # `CreateTransformJob` API. SageMaker uses your model and your dataset
3693
+ # to get inferences which are then saved to a specified S3 location.
3694
3694
  #
3695
- # In the request, you also provide an IAM role that Amazon SageMaker can
3696
- # assume to access model artifacts and docker image for deployment on ML
3695
+ # In the request, you also provide an IAM role that SageMaker can assume
3696
+ # to access model artifacts and docker image for deployment on ML
3697
3697
  # compute hosting instances or for batch transform jobs. In addition,
3698
3698
  # you also use the IAM role to manage permissions the inference code
3699
3699
  # needs. For example, if the inference code access any other Amazon Web
@@ -3719,14 +3719,14 @@ module Aws::SageMaker
3719
3719
  # called.
3720
3720
  #
3721
3721
  # @option params [required, String] :execution_role_arn
3722
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
3723
- # can assume to access model artifacts and docker image for deployment
3724
- # on ML compute instances or for batch transform jobs. Deploying on ML
3725
- # compute instances is part of model hosting. For more information, see
3726
- # [Amazon SageMaker Roles][1].
3722
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
3723
+ # assume to access model artifacts and docker image for deployment on ML
3724
+ # compute instances or for batch transform jobs. Deploying on ML compute
3725
+ # instances is part of model hosting. For more information, see
3726
+ # [SageMaker Roles][1].
3727
3727
  #
3728
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
3729
- # API must have the `iam:PassRole` permission.
3728
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
3729
+ # have the `iam:PassRole` permission.
3730
3730
  #
3731
3731
  # </note>
3732
3732
  #
@@ -4105,11 +4105,10 @@ module Aws::SageMaker
4105
4105
  req.send_request(options)
4106
4106
  end
4107
4107
 
4108
- # Creates a model package that you can use to create Amazon SageMaker
4109
- # models or list on Amazon Web Services Marketplace, or a versioned
4110
- # model that is part of a model group. Buyers can subscribe to model
4111
- # packages listed on Amazon Web Services Marketplace to create models in
4112
- # Amazon SageMaker.
4108
+ # Creates a model package that you can use to create SageMaker models or
4109
+ # list on Amazon Web Services Marketplace, or a versioned model that is
4110
+ # part of a model group. Buyers can subscribe to model packages listed
4111
+ # on Amazon Web Services Marketplace to create models in SageMaker.
4113
4112
  #
4114
4113
  # To create a model package by specifying a Docker container that
4115
4114
  # contains your inference code and the Amazon S3 location of your model
@@ -4158,8 +4157,8 @@ module Aws::SageMaker
4158
4157
  # for inference.
4159
4158
  #
4160
4159
  # @option params [Types::ModelPackageValidationSpecification] :validation_specification
4161
- # Specifies configurations for one or more transform jobs that Amazon
4162
- # SageMaker runs to test the model package.
4160
+ # Specifies configurations for one or more transform jobs that SageMaker
4161
+ # runs to test the model package.
4163
4162
  #
4164
4163
  # @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
4165
4164
  # Details about the algorithm that was used to create the model package.
@@ -4797,46 +4796,45 @@ module Aws::SageMaker
4797
4796
  req.send_request(options)
4798
4797
  end
4799
4798
 
4800
- # Creates an Amazon SageMaker notebook instance. A notebook instance is
4801
- # a machine learning (ML) compute instance running on a Jupyter
4802
- # notebook.
4799
+ # Creates an SageMaker notebook instance. A notebook instance is a
4800
+ # machine learning (ML) compute instance running on a Jupyter notebook.
4803
4801
  #
4804
4802
  # In a `CreateNotebookInstance` request, specify the type of ML compute
4805
- # instance that you want to run. Amazon SageMaker launches the instance,
4803
+ # instance that you want to run. SageMaker launches the instance,
4806
4804
  # installs common libraries that you can use to explore datasets for
4807
4805
  # model training, and attaches an ML storage volume to the notebook
4808
4806
  # instance.
4809
4807
  #
4810
- # Amazon SageMaker also provides a set of example notebooks. Each
4811
- # notebook demonstrates how to use Amazon SageMaker with a specific
4812
- # algorithm or with a machine learning framework.
4808
+ # SageMaker also provides a set of example notebooks. Each notebook
4809
+ # demonstrates how to use SageMaker with a specific algorithm or with a
4810
+ # machine learning framework.
4813
4811
  #
4814
- # After receiving the request, Amazon SageMaker does the following:
4812
+ # After receiving the request, SageMaker does the following:
4815
4813
  #
4816
- # 1. Creates a network interface in the Amazon SageMaker VPC.
4814
+ # 1. Creates a network interface in the SageMaker VPC.
4817
4815
  #
4818
- # 2. (Option) If you specified `SubnetId`, Amazon SageMaker creates a
4819
- # network interface in your own VPC, which is inferred from the
4820
- # subnet ID that you provide in the input. When creating this
4821
- # network interface, Amazon SageMaker attaches the security group
4822
- # that you specified in the request to the network interface that it
4823
- # creates in your VPC.
4816
+ # 2. (Option) If you specified `SubnetId`, SageMaker creates a network
4817
+ # interface in your own VPC, which is inferred from the subnet ID
4818
+ # that you provide in the input. When creating this network
4819
+ # interface, SageMaker attaches the security group that you
4820
+ # specified in the request to the network interface that it creates
4821
+ # in your VPC.
4824
4822
  #
4825
4823
  # 3. Launches an EC2 instance of the type specified in the request in
4826
- # the Amazon SageMaker VPC. If you specified `SubnetId` of your VPC,
4827
- # Amazon SageMaker specifies both network interfaces when launching
4828
- # this instance. This enables inbound traffic from your own VPC to
4829
- # the notebook instance, assuming that the security groups allow it.
4824
+ # the SageMaker VPC. If you specified `SubnetId` of your VPC,
4825
+ # SageMaker specifies both network interfaces when launching this
4826
+ # instance. This enables inbound traffic from your own VPC to the
4827
+ # notebook instance, assuming that the security groups allow it.
4830
4828
  #
4831
- # After creating the notebook instance, Amazon SageMaker returns its
4832
- # Amazon Resource Name (ARN). You can't change the name of a notebook
4833
- # instance after you create it.
4829
+ # After creating the notebook instance, SageMaker returns its Amazon
4830
+ # Resource Name (ARN). You can't change the name of a notebook instance
4831
+ # after you create it.
4834
4832
  #
4835
- # After Amazon SageMaker creates the notebook instance, you can connect
4836
- # to the Jupyter server and work in Jupyter notebooks. For example, you
4837
- # can write code to explore a dataset that you can use for model
4838
- # training, train a model, host models by creating Amazon SageMaker
4839
- # endpoints, and validate hosted models.
4833
+ # After SageMaker creates the notebook instance, you can connect to the
4834
+ # Jupyter server and work in Jupyter notebooks. For example, you can
4835
+ # write code to explore a dataset that you can use for model training,
4836
+ # train a model, host models by creating SageMaker endpoints, and
4837
+ # validate hosted models.
4840
4838
  #
4841
4839
  # For more information, see [How It Works][1].
4842
4840
  #
@@ -4860,15 +4858,14 @@ module Aws::SageMaker
4860
4858
  #
4861
4859
  # @option params [required, String] :role_arn
4862
4860
  # When you send any requests to Amazon Web Services resources from the
4863
- # notebook instance, Amazon SageMaker assumes this role to perform tasks
4864
- # on your behalf. You must grant this role necessary permissions so
4865
- # Amazon SageMaker can perform these tasks. The policy must allow the
4866
- # Amazon SageMaker service principal (sagemaker.amazonaws.com)
4867
- # permissions to assume this role. For more information, see [Amazon
4868
- # SageMaker Roles][1].
4861
+ # notebook instance, SageMaker assumes this role to perform tasks on
4862
+ # your behalf. You must grant this role necessary permissions so
4863
+ # SageMaker can perform these tasks. The policy must allow the SageMaker
4864
+ # service principal (sagemaker.amazonaws.com) permissions to assume this
4865
+ # role. For more information, see [SageMaker Roles][1].
4869
4866
  #
4870
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
4871
- # API must have the `iam:PassRole` permission.
4867
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
4868
+ # have the `iam:PassRole` permission.
4872
4869
  #
4873
4870
  # </note>
4874
4871
  #
@@ -4878,10 +4875,10 @@ module Aws::SageMaker
4878
4875
  #
4879
4876
  # @option params [String] :kms_key_id
4880
4877
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
4881
- # Service key that Amazon SageMaker uses to encrypt data on the storage
4882
- # volume attached to your notebook instance. The KMS key you provide
4883
- # must be enabled. For information, see [Enabling and Disabling Keys][1]
4884
- # in the *Amazon Web Services Key Management Service Developer Guide*.
4878
+ # Service key that SageMaker uses to encrypt data on the storage volume
4879
+ # attached to your notebook instance. The KMS key you provide must be
4880
+ # enabled. For information, see [Enabling and Disabling Keys][1] in the
4881
+ # *Amazon Web Services Key Management Service Developer Guide*.
4885
4882
  #
4886
4883
  #
4887
4884
  #
@@ -4907,11 +4904,11 @@ module Aws::SageMaker
4907
4904
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
4908
4905
  #
4909
4906
  # @option params [String] :direct_internet_access
4910
- # Sets whether Amazon SageMaker provides internet access to the notebook
4907
+ # Sets whether SageMaker provides internet access to the notebook
4911
4908
  # instance. If you set this to `Disabled` this notebook instance is able
4912
4909
  # to access resources only in your VPC, and is not be able to connect to
4913
- # Amazon SageMaker training and endpoint services unless you configure a
4914
- # NAT Gateway in your VPC.
4910
+ # SageMaker training and endpoint services unless you configure a NAT
4911
+ # Gateway in your VPC.
4915
4912
  #
4916
4913
  # For more information, see [Notebook Instances Are Internet-Enabled by
4917
4914
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -4942,8 +4939,7 @@ module Aws::SageMaker
4942
4939
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
4943
4940
  # repository. When you open a notebook instance, it opens in the
4944
4941
  # directory that contains this repository. For more information, see
4945
- # [Associating Git Repositories with Amazon SageMaker Notebook
4946
- # Instances][2].
4942
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4947
4943
  #
4948
4944
  #
4949
4945
  #
@@ -4957,8 +4953,7 @@ module Aws::SageMaker
4957
4953
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
4958
4954
  # These repositories are cloned at the same level as the default
4959
4955
  # repository of your notebook instance. For more information, see
4960
- # [Associating Git Repositories with Amazon SageMaker Notebook
4961
- # Instances][2].
4956
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4962
4957
  #
4963
4958
  #
4964
4959
  #
@@ -5242,10 +5237,10 @@ module Aws::SageMaker
5242
5237
  end
5243
5238
 
5244
5239
  # Returns a URL that you can use to connect to the Jupyter server from a
5245
- # notebook instance. In the Amazon SageMaker console, when you choose
5246
- # `Open` next to a notebook instance, Amazon SageMaker opens a new tab
5247
- # showing the Jupyter server home page from the notebook instance. The
5248
- # console uses this API to get the URL and show the page.
5240
+ # notebook instance. In the SageMaker console, when you choose `Open`
5241
+ # next to a notebook instance, SageMaker opens a new tab showing the
5242
+ # Jupyter server home page from the notebook instance. The console uses
5243
+ # this API to get the URL and show the page.
5249
5244
  #
5250
5245
  # The IAM role or user used to call this API defines the permissions to
5251
5246
  # access the notebook instance. Once the presigned URL is created, no
@@ -5601,15 +5596,14 @@ module Aws::SageMaker
5601
5596
  req.send_request(options)
5602
5597
  end
5603
5598
 
5604
- # Starts a model training job. After training completes, Amazon
5605
- # SageMaker saves the resulting model artifacts to an Amazon S3 location
5606
- # that you specify.
5599
+ # Starts a model training job. After training completes, SageMaker saves
5600
+ # the resulting model artifacts to an Amazon S3 location that you
5601
+ # specify.
5607
5602
  #
5608
- # If you choose to host your model using Amazon SageMaker hosting
5609
- # services, you can use the resulting model artifacts as part of the
5610
- # model. You can also use the artifacts in a machine learning service
5611
- # other than Amazon SageMaker, provided that you know how to use them
5612
- # for inference.
5603
+ # If you choose to host your model using SageMaker hosting services, you
5604
+ # can use the resulting model artifacts as part of the model. You can
5605
+ # also use the artifacts in a machine learning service other than
5606
+ # SageMaker, provided that you know how to use them for inference.
5613
5607
  #
5614
5608
  # In the request body, you provide the following:
5615
5609
  #
@@ -5619,13 +5613,13 @@ module Aws::SageMaker
5619
5613
  # enable the estimation of model parameters during training.
5620
5614
  # Hyperparameters can be tuned to optimize this learning process. For
5621
5615
  # a list of hyperparameters for each training algorithm provided by
5622
- # Amazon SageMaker, see [Algorithms][1].
5616
+ # SageMaker, see [Algorithms][1].
5623
5617
  #
5624
5618
  # * `InputDataConfig` - Describes the training dataset and the Amazon
5625
5619
  # S3, EFS, or FSx location where it is stored.
5626
5620
  #
5627
5621
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
5628
- # Amazon SageMaker to save the results of model training.
5622
+ # SageMaker to save the results of model training.
5629
5623
  #
5630
5624
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
5631
5625
  # and ML storage volumes to deploy for model training. In distributed
@@ -5635,10 +5629,10 @@ module Aws::SageMaker
5635
5629
  # learning models by up to 80% by using Amazon EC2 Spot instances. For
5636
5630
  # more information, see [Managed Spot Training][2].
5637
5631
  #
5638
- # * `RoleArn` - The Amazon Resource Name (ARN) that Amazon SageMaker
5639
- # assumes to perform tasks on your behalf during model training. You
5640
- # must grant this role the necessary permissions so that Amazon
5641
- # SageMaker can successfully complete model training.
5632
+ # * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
5633
+ # perform tasks on your behalf during model training. You must grant
5634
+ # this role the necessary permissions so that SageMaker can
5635
+ # successfully complete model training.
5642
5636
  #
5643
5637
  # * `StoppingCondition` - To help cap training costs, use
5644
5638
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
@@ -5651,7 +5645,7 @@ module Aws::SageMaker
5651
5645
  # * `RetryStrategy` - The number of times to retry the job when the job
5652
5646
  # fails due to an `InternalServerError`.
5653
5647
  #
5654
- # For more information about Amazon SageMaker, see [How It Works][3].
5648
+ # For more information about SageMaker, see [How It Works][3].
5655
5649
  #
5656
5650
  #
5657
5651
  #
@@ -5666,7 +5660,7 @@ module Aws::SageMaker
5666
5660
  # @option params [Hash<String,String>] :hyper_parameters
5667
5661
  # Algorithm-specific parameters that influence the quality of the model.
5668
5662
  # You set hyperparameters before you start the learning process. For a
5669
- # list of hyperparameters for each training algorithm provided by Amazon
5663
+ # list of hyperparameters for each training algorithm provided by
5670
5664
  # SageMaker, see [Algorithms][1].
5671
5665
  #
5672
5666
  # You can specify a maximum of 100 hyperparameters. Each hyperparameter
@@ -5680,9 +5674,9 @@ module Aws::SageMaker
5680
5674
  # @option params [required, Types::AlgorithmSpecification] :algorithm_specification
5681
5675
  # The registry path of the Docker image that contains the training
5682
5676
  # algorithm and algorithm-specific metadata, including the input mode.
5683
- # For more information about algorithms provided by Amazon SageMaker,
5684
- # see [Algorithms][1]. For information about providing your own
5685
- # algorithms, see [Using Your Own Algorithms with Amazon SageMaker][2].
5677
+ # For more information about algorithms provided by SageMaker, see
5678
+ # [Algorithms][1]. For information about providing your own algorithms,
5679
+ # see [Using Your Own Algorithms with Amazon SageMaker][2].
5686
5680
  #
5687
5681
  #
5688
5682
  #
@@ -5690,18 +5684,18 @@ module Aws::SageMaker
5690
5684
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
5691
5685
  #
5692
5686
  # @option params [required, String] :role_arn
5693
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
5694
- # can assume to perform tasks on your behalf.
5687
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
5688
+ # assume to perform tasks on your behalf.
5695
5689
  #
5696
- # During model training, Amazon SageMaker needs your permission to read
5697
- # input data from an S3 bucket, download a Docker image that contains
5698
- # training code, write model artifacts to an S3 bucket, write logs to
5699
- # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You
5700
- # grant permissions for all of these tasks to an IAM role. For more
5701
- # information, see [Amazon SageMaker Roles][1].
5690
+ # During model training, SageMaker needs your permission to read input
5691
+ # data from an S3 bucket, download a Docker image that contains training
5692
+ # code, write model artifacts to an S3 bucket, write logs to Amazon
5693
+ # CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
5694
+ # permissions for all of these tasks to an IAM role. For more
5695
+ # information, see [SageMaker Roles][1].
5702
5696
  #
5703
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
5704
- # API must have the `iam:PassRole` permission.
5697
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
5698
+ # have the `iam:PassRole` permission.
5705
5699
  #
5706
5700
  # </note>
5707
5701
  #
@@ -5721,16 +5715,15 @@ module Aws::SageMaker
5721
5715
  # type, compression method, and whether the data is wrapped in RecordIO
5722
5716
  # format.
5723
5717
  #
5724
- # Depending on the input mode that the algorithm supports, Amazon
5725
- # SageMaker either copies input data files from an S3 bucket to a local
5726
- # directory in the Docker container, or makes it available as input
5727
- # streams. For example, if you specify an EFS location, input data files
5728
- # will be made available as input streams. They do not need to be
5729
- # downloaded.
5718
+ # Depending on the input mode that the algorithm supports, SageMaker
5719
+ # either copies input data files from an S3 bucket to a local directory
5720
+ # in the Docker container, or makes it available as input streams. For
5721
+ # example, if you specify an EFS location, input data files are
5722
+ # available as input streams. They do not need to be downloaded.
5730
5723
  #
5731
5724
  # @option params [required, Types::OutputDataConfig] :output_data_config
5732
5725
  # Specifies the path to the S3 location where you want to store model
5733
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
5726
+ # artifacts. SageMaker creates subfolders for the artifacts.
5734
5727
  #
5735
5728
  # @option params [required, Types::ResourceConfig] :resource_config
5736
5729
  # The resources, including the ML compute instances and ML storage
@@ -5738,10 +5731,10 @@ module Aws::SageMaker
5738
5731
  #
5739
5732
  # ML storage volumes store model artifacts and incremental states.
5740
5733
  # Training algorithms might also use ML storage volumes for scratch
5741
- # space. If you want Amazon SageMaker to use the ML storage volume to
5742
- # store the training data, choose `File` as the `TrainingInputMode` in
5743
- # the algorithm specification. For distributed training algorithms,
5744
- # specify an instance count greater than 1.
5734
+ # space. If you want SageMaker to use the ML storage volume to store the
5735
+ # training data, choose `File` as the `TrainingInputMode` in the
5736
+ # algorithm specification. For distributed training algorithms, specify
5737
+ # an instance count greater than 1.
5745
5738
  #
5746
5739
  # @option params [Types::VpcConfig] :vpc_config
5747
5740
  # A VpcConfig object that specifies the VPC that you want your training
@@ -5756,13 +5749,13 @@ module Aws::SageMaker
5756
5749
  # @option params [required, Types::StoppingCondition] :stopping_condition
5757
5750
  # Specifies a limit to how long a model training job can run. It also
5758
5751
  # specifies how long a managed Spot training job has to complete. When
5759
- # the job reaches the time limit, Amazon SageMaker ends the training
5760
- # job. Use this API to cap model training costs.
5752
+ # the job reaches the time limit, SageMaker ends the training job. Use
5753
+ # this API to cap model training costs.
5761
5754
  #
5762
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5763
- # signal, which delays job termination for 120 seconds. Algorithms can
5764
- # use this 120-second window to save the model artifacts, so the results
5765
- # of training are not lost.
5755
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
5756
+ # which delays job termination for 120 seconds. Algorithms can use this
5757
+ # 120-second window to save the model artifacts, so the results of
5758
+ # training are not lost.
5766
5759
  #
5767
5760
  # @option params [Array<Types::Tag>] :tags
5768
5761
  # An array of key-value pairs. You can use tags to categorize your
@@ -5778,9 +5771,9 @@ module Aws::SageMaker
5778
5771
  # Isolates the training container. No inbound or outbound network calls
5779
5772
  # can be made, except for calls between peers within a training cluster
5780
5773
  # for distributed training. If you enable network isolation for training
5781
- # jobs that are configured to use a VPC, Amazon SageMaker downloads and
5782
- # uploads customer data and model artifacts through the specified VPC,
5783
- # but the training container does not have network access.
5774
+ # jobs that are configured to use a VPC, SageMaker downloads and uploads
5775
+ # customer data and model artifacts through the specified VPC, but the
5776
+ # training container does not have network access.
5784
5777
  #
5785
5778
  # @option params [Boolean] :enable_inter_container_traffic_encryption
5786
5779
  # To encrypt all communications between ML compute instances in
@@ -6087,6 +6080,11 @@ module Aws::SageMaker
6087
6080
  # fit within the maximum payload size, we recommend using a slightly
6088
6081
  # larger value. The default value is `6` MB.
6089
6082
  #
6083
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
6084
+ # specify the `MaxConcurrentTransforms` parameter, the value of
6085
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
6086
+ # MB.
6087
+ #
6090
6088
  # For cases where the payload might be arbitrarily large and is
6091
6089
  # transmitted using HTTP chunked encoding, set the value to `0`. This
6092
6090
  # feature works only in supported algorithms. Currently, Amazon
@@ -7052,13 +7050,19 @@ module Aws::SageMaker
7052
7050
  req.send_request(options)
7053
7051
  end
7054
7052
 
7055
- # Deletes an endpoint. Amazon SageMaker frees up all of the resources
7056
- # that were deployed when the endpoint was created.
7053
+ # Deletes an endpoint. SageMaker frees up all of the resources that were
7054
+ # deployed when the endpoint was created.
7057
7055
  #
7058
- # Amazon SageMaker retires any custom KMS key grants associated with the
7056
+ # SageMaker retires any custom KMS key grants associated with the
7059
7057
  # endpoint, meaning you don't need to use the [RevokeGrant][1] API
7060
7058
  # call.
7061
7059
  #
7060
+ # When you delete your endpoint, SageMaker asynchronously deletes
7061
+ # associated endpoint resources such as KMS key grants. You might still
7062
+ # see these resources in your account for a few minutes after deleting
7063
+ # your endpoint. Do not delete or revoke the permissions for your `
7064
+ # ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
7065
+ #
7062
7066
  #
7063
7067
  #
7064
7068
  # [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
@@ -7275,9 +7279,9 @@ module Aws::SageMaker
7275
7279
  end
7276
7280
 
7277
7281
  # Deletes a model. The `DeleteModel` API deletes only the model entry
7278
- # that was created in Amazon SageMaker when you called the `CreateModel`
7279
- # API. It does not delete model artifacts, inference code, or the IAM
7280
- # role that you specified when creating the model.
7282
+ # that was created in SageMaker when you called the `CreateModel` API.
7283
+ # It does not delete model artifacts, inference code, or the IAM role
7284
+ # that you specified when creating the model.
7281
7285
  #
7282
7286
  # @option params [required, String] :model_name
7283
7287
  # The name of the model to delete.
@@ -7345,10 +7349,10 @@ module Aws::SageMaker
7345
7349
 
7346
7350
  # Deletes a model package.
7347
7351
  #
7348
- # A model package is used to create Amazon SageMaker models or list on
7349
- # Amazon Web Services Marketplace. Buyers can subscribe to model
7350
- # packages listed on Amazon Web Services Marketplace to create models in
7351
- # Amazon SageMaker.
7352
+ # A model package is used to create SageMaker models or list on Amazon
7353
+ # Web Services Marketplace. Buyers can subscribe to model packages
7354
+ # listed on Amazon Web Services Marketplace to create models in
7355
+ # SageMaker.
7352
7356
  #
7353
7357
  # @option params [required, String] :model_package_name
7354
7358
  # The name or Amazon Resource Name (ARN) of the model package to delete.
@@ -7463,16 +7467,16 @@ module Aws::SageMaker
7463
7467
  req.send_request(options)
7464
7468
  end
7465
7469
 
7466
- # Deletes an Amazon SageMaker notebook instance. Before you can delete a
7470
+ # Deletes an SageMaker notebook instance. Before you can delete a
7467
7471
  # notebook instance, you must call the `StopNotebookInstance` API.
7468
7472
  #
7469
- # When you delete a notebook instance, you lose all of your data. Amazon
7473
+ # When you delete a notebook instance, you lose all of your data.
7470
7474
  # SageMaker removes the ML compute instance, and deletes the ML storage
7471
7475
  # volume and the network interface associated with the notebook
7472
7476
  # instance.
7473
7477
  #
7474
7478
  # @option params [required, String] :notebook_instance_name
7475
- # The name of the Amazon SageMaker notebook instance to delete.
7479
+ # The name of the SageMaker notebook instance to delete.
7476
7480
  #
7477
7481
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
7478
7482
  #
@@ -7600,7 +7604,7 @@ module Aws::SageMaker
7600
7604
  req.send_request(options)
7601
7605
  end
7602
7606
 
7603
- # Deletes the specified tags from an Amazon SageMaker resource.
7607
+ # Deletes the specified tags from an SageMaker resource.
7604
7608
  #
7605
7609
  # To list a resource's tags, use the `ListTags` API.
7606
7610
  #
@@ -8241,6 +8245,7 @@ module Aws::SageMaker
8241
8245
  # resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
8242
8246
  # resp.input_data_config[0].target_attribute_name #=> String
8243
8247
  # resp.input_data_config[0].content_type #=> String
8248
+ # resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
8244
8249
  # resp.output_data_config.kms_key_id #=> String
8245
8250
  # resp.output_data_config.s3_output_path #=> String
8246
8251
  # resp.role_arn #=> String
@@ -8255,6 +8260,7 @@ module Aws::SageMaker
8255
8260
  # resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
8256
8261
  # resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
8257
8262
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
8263
+ # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
8258
8264
  # resp.creation_time #=> Time
8259
8265
  # resp.end_time #=> Time
8260
8266
  # resp.last_modified_time #=> Time
@@ -10219,7 +10225,7 @@ module Aws::SageMaker
10219
10225
  # Gets a description for the specified model group.
10220
10226
  #
10221
10227
  # @option params [required, String] :model_package_group_name
10222
- # The name of the model group to describe.
10228
+ # The name of gthe model group to describe.
10223
10229
  #
10224
10230
  # @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10225
10231
  #
@@ -14751,8 +14757,8 @@ module Aws::SageMaker
14751
14757
  req.send_request(options)
14752
14758
  end
14753
14759
 
14754
- # Returns a list of the Amazon SageMaker notebook instances in the
14755
- # requester's account in an Amazon Web Services Region.
14760
+ # Returns a list of the SageMaker notebook instances in the requester's
14761
+ # account in an Amazon Web Services Region.
14756
14762
  #
14757
14763
  # @option params [String] :next_token
14758
14764
  # If the previous call to the `ListNotebookInstances` is truncated, the
@@ -15423,7 +15429,7 @@ module Aws::SageMaker
15423
15429
  req.send_request(options)
15424
15430
  end
15425
15431
 
15426
- # Returns the tags for the specified Amazon SageMaker resource.
15432
+ # Returns the tags for the specified SageMaker resource.
15427
15433
  #
15428
15434
  # @option params [required, String] :resource_arn
15429
15435
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
@@ -15431,8 +15437,8 @@ module Aws::SageMaker
15431
15437
  #
15432
15438
  # @option params [String] :next_token
15433
15439
  # If the response to the previous `ListTags` request is truncated,
15434
- # Amazon SageMaker returns this token. To retrieve the next set of tags,
15435
- # use it in the subsequent request.
15440
+ # SageMaker returns this token. To retrieve the next set of tags, use it
15441
+ # in the subsequent request.
15436
15442
  #
15437
15443
  # @option params [Integer] :max_results
15438
15444
  # Maximum number of tags to return.
@@ -16157,11 +16163,12 @@ module Aws::SageMaker
16157
16163
  # starting point for your lineage query.
16158
16164
  #
16159
16165
  # @option params [String] :direction
16160
- # Associations between lineage entities are directed. This parameter
16161
- # determines the direction from the StartArn(s) the query will look.
16166
+ # Associations between lineage entities have a direction. This parameter
16167
+ # determines the direction from the StartArn(s) that the query
16168
+ # traverses.
16162
16169
  #
16163
16170
  # @option params [Boolean] :include_edges
16164
- # Setting this value to `True` will retrieve not only the entities of
16171
+ # Setting this value to `True` retrieves not only the entities of
16165
16172
  # interest but also the [Associations][1] and lineage entities on the
16166
16173
  # path. Set to `False` to only return lineage entities that match your
16167
16174
  # query.
@@ -16188,8 +16195,8 @@ module Aws::SageMaker
16188
16195
  #
16189
16196
  # @option params [Integer] :max_depth
16190
16197
  # The maximum depth in lineage relationships from the `StartArns` that
16191
- # will be traversed. Depth is a measure of the number of `Associations`
16192
- # from the `StartArn` entity to the matched results.
16198
+ # are traversed. Depth is a measure of the number of `Associations` from
16199
+ # the `StartArn` entity to the matched results.
16193
16200
  #
16194
16201
  # @option params [Integer] :max_results
16195
16202
  # Limits the number of vertices in the results. Use the `NextToken` in a
@@ -17365,9 +17372,9 @@ module Aws::SageMaker
17365
17372
 
17366
17373
  # Launches an ML compute instance with the latest version of the
17367
17374
  # libraries and attaches your ML storage volume. After configuring the
17368
- # notebook instance, Amazon SageMaker sets the notebook instance status
17369
- # to `InService`. A notebook instance's status must be `InService`
17370
- # before you can connect to your Jupyter notebook.
17375
+ # notebook instance, SageMaker sets the notebook instance status to
17376
+ # `InService`. A notebook instance's status must be `InService` before
17377
+ # you can connect to your Jupyter notebook.
17371
17378
  #
17372
17379
  # @option params [required, String] :notebook_instance_name
17373
17380
  # The name of the notebook instance to start.
@@ -17623,10 +17630,9 @@ module Aws::SageMaker
17623
17630
  end
17624
17631
 
17625
17632
  # Terminates the ML compute instance. Before terminating the instance,
17626
- # Amazon SageMaker disconnects the ML storage volume from it. Amazon
17627
- # SageMaker preserves the ML storage volume. Amazon SageMaker stops
17628
- # charging you for the ML compute instance when you call
17629
- # `StopNotebookInstance`.
17633
+ # SageMaker disconnects the ML storage volume from it. SageMaker
17634
+ # preserves the ML storage volume. SageMaker stops charging you for the
17635
+ # ML compute instance when you call `StopNotebookInstance`.
17630
17636
  #
17631
17637
  # To access data on the ML storage volume for a notebook instance that
17632
17638
  # has been terminated, call the `StartNotebookInstance` API.
@@ -17740,14 +17746,14 @@ module Aws::SageMaker
17740
17746
  req.send_request(options)
17741
17747
  end
17742
17748
 
17743
- # Stops a training job. To stop a job, Amazon SageMaker sends the
17744
- # algorithm the `SIGTERM` signal, which delays job termination for 120
17745
- # seconds. Algorithms might use this 120-second window to save the model
17749
+ # Stops a training job. To stop a job, SageMaker sends the algorithm the
17750
+ # `SIGTERM` signal, which delays job termination for 120 seconds.
17751
+ # Algorithms might use this 120-second window to save the model
17746
17752
  # artifacts, so the results of the training is not lost.
17747
17753
  #
17748
- # When it receives a `StopTrainingJob` request, Amazon SageMaker changes
17749
- # the status of the job to `Stopping`. After Amazon SageMaker stops the
17750
- # job, it sets the status to `Stopped`.
17754
+ # When it receives a `StopTrainingJob` request, SageMaker changes the
17755
+ # status of the job to `Stopping`. After SageMaker stops the job, it
17756
+ # sets the status to `Stopped`.
17751
17757
  #
17752
17758
  # @option params [required, String] :training_job_name
17753
17759
  # The name of the training job to stop.
@@ -18189,9 +18195,9 @@ module Aws::SageMaker
18189
18195
  # for the endpoint using the previous `EndpointConfig` (there is no
18190
18196
  # availability loss).
18191
18197
  #
18192
- # When Amazon SageMaker receives the request, it sets the endpoint
18193
- # status to `Updating`. After updating the endpoint, it sets the status
18194
- # to `InService`. To check the status of an endpoint, use the
18198
+ # When SageMaker receives the request, it sets the endpoint status to
18199
+ # `Updating`. After updating the endpoint, it sets the status to
18200
+ # `InService`. To check the status of an endpoint, use the
18195
18201
  # DescribeEndpoint API.
18196
18202
  #
18197
18203
  # <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
@@ -18299,13 +18305,13 @@ module Aws::SageMaker
18299
18305
 
18300
18306
  # Updates variant weight of one or more variants associated with an
18301
18307
  # existing endpoint, or capacity of one variant associated with an
18302
- # existing endpoint. When it receives the request, Amazon SageMaker sets
18303
- # the endpoint status to `Updating`. After updating the endpoint, it
18304
- # sets the status to `InService`. To check the status of an endpoint,
18305
- # use the DescribeEndpoint API.
18308
+ # existing endpoint. When it receives the request, SageMaker sets the
18309
+ # endpoint status to `Updating`. After updating the endpoint, it sets
18310
+ # the status to `InService`. To check the status of an endpoint, use the
18311
+ # DescribeEndpoint API.
18306
18312
  #
18307
18313
  # @option params [required, String] :endpoint_name
18308
- # The name of an existing Amazon SageMaker endpoint.
18314
+ # The name of an existing SageMaker endpoint.
18309
18315
  #
18310
18316
  # @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
18311
18317
  # An object that provides new capacity and weight values for a variant.
@@ -18630,12 +18636,12 @@ module Aws::SageMaker
18630
18636
  # The Amazon ML compute instance type.
18631
18637
  #
18632
18638
  # @option params [String] :role_arn
18633
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
18634
- # can assume to access the notebook instance. For more information, see
18635
- # [Amazon SageMaker Roles][1].
18639
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
18640
+ # assume to access the notebook instance. For more information, see
18641
+ # [SageMaker Roles][1].
18636
18642
  #
18637
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
18638
- # API must have the `iam:PassRole` permission.
18643
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
18644
+ # have the `iam:PassRole` permission.
18639
18645
  #
18640
18646
  # </note>
18641
18647
  #
@@ -18662,11 +18668,11 @@ module Aws::SageMaker
18662
18668
  # @option params [Integer] :volume_size_in_gb
18663
18669
  # The size, in GB, of the ML storage volume to attach to the notebook
18664
18670
  # instance. The default value is 5 GB. ML storage volumes are encrypted,
18665
- # so Amazon SageMaker can't determine the amount of available free
18666
- # space on the volume. Because of this, you can increase the volume size
18667
- # when you update a notebook instance, but you can't decrease the
18668
- # volume size. If you want to decrease the size of the ML storage volume
18669
- # in use, create a new notebook instance with the desired size.
18671
+ # so SageMaker can't determine the amount of available free space on
18672
+ # the volume. Because of this, you can increase the volume size when you
18673
+ # update a notebook instance, but you can't decrease the volume size.
18674
+ # If you want to decrease the size of the ML storage volume in use,
18675
+ # create a new notebook instance with the desired size.
18670
18676
  #
18671
18677
  # @option params [String] :default_code_repository
18672
18678
  # The Git repository to associate with the notebook instance as its
@@ -18675,8 +18681,7 @@ module Aws::SageMaker
18675
18681
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
18676
18682
  # repository. When you open a notebook instance, it opens in the
18677
18683
  # directory that contains this repository. For more information, see
18678
- # [Associating Git Repositories with Amazon SageMaker Notebook
18679
- # Instances][2].
18684
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18680
18685
  #
18681
18686
  #
18682
18687
  #
@@ -18690,8 +18695,7 @@ module Aws::SageMaker
18690
18695
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
18691
18696
  # These repositories are cloned at the same level as the default
18692
18697
  # repository of your notebook instance. For more information, see
18693
- # [Associating Git Repositories with Amazon SageMaker Notebook
18694
- # Instances][2].
18698
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18695
18699
  #
18696
18700
  #
18697
18701
  #
@@ -19464,7 +19468,7 @@ module Aws::SageMaker
19464
19468
  params: params,
19465
19469
  config: config)
19466
19470
  context[:gem_name] = 'aws-sdk-sagemaker'
19467
- context[:gem_version] = '1.122.0'
19471
+ context[:gem_version] = '1.123.0'
19468
19472
  Seahorse::Client::Request.new(handlers, context)
19469
19473
  end
19470
19474