aws-sdk-sagemaker 1.121.0 → 1.124.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +330 -244
- data/lib/aws-sdk-sagemaker/client_api.rb +23 -0
- data/lib/aws-sdk-sagemaker/types.rb +683 -402
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -192,7 +192,7 @@ module Aws::SageMaker
|
|
192
192
|
end
|
193
193
|
|
194
194
|
# @!attribute [rw] tags
|
195
|
-
# A list of tags associated with the
|
195
|
+
# A list of tags associated with the SageMaker resource.
|
196
196
|
# @return [Array<Types::Tag>]
|
197
197
|
#
|
198
198
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
|
@@ -328,9 +328,9 @@ module Aws::SageMaker
|
|
328
328
|
# Specifies the training algorithm to use in a CreateTrainingJob
|
329
329
|
# request.
|
330
330
|
#
|
331
|
-
# For more information about algorithms provided by
|
332
|
-
#
|
333
|
-
#
|
331
|
+
# For more information about algorithms provided by SageMaker, see
|
332
|
+
# [Algorithms][1]. For information about using your own algorithms, see
|
333
|
+
# [Using Your Own Algorithms with Amazon SageMaker][2].
|
334
334
|
#
|
335
335
|
#
|
336
336
|
#
|
@@ -357,10 +357,10 @@ module Aws::SageMaker
|
|
357
357
|
# The registry path of the Docker image that contains the training
|
358
358
|
# algorithm. For information about docker registry paths for built-in
|
359
359
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
360
|
-
# Parameters][1].
|
361
|
-
#
|
362
|
-
#
|
363
|
-
#
|
360
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
361
|
+
# and `registry/repository[@digest]` image path formats. For more
|
362
|
+
# information, see [Using Your Own Algorithms with Amazon
|
363
|
+
# SageMaker][2].
|
364
364
|
#
|
365
365
|
#
|
366
366
|
#
|
@@ -424,7 +424,7 @@ module Aws::SageMaker
|
|
424
424
|
# @!attribute [rw] metric_definitions
|
425
425
|
# A list of metric definition objects. Each object specifies the
|
426
426
|
# metric name and regular expressions used to parse algorithm logs.
|
427
|
-
#
|
427
|
+
# SageMaker publishes each metric to Amazon CloudWatch.
|
428
428
|
# @return [Array<Types::MetricDefinition>]
|
429
429
|
#
|
430
430
|
# @!attribute [rw] enable_sage_maker_metrics_time_series
|
@@ -432,9 +432,9 @@ module Aws::SageMaker
|
|
432
432
|
# `true`. The default is `false` and time-series metrics aren't
|
433
433
|
# generated except in the following cases:
|
434
434
|
#
|
435
|
-
# * You use one of the
|
435
|
+
# * You use one of the SageMaker built-in algorithms
|
436
436
|
#
|
437
|
-
# * You use one of the following [Prebuilt
|
437
|
+
# * You use one of the following [Prebuilt SageMaker Docker
|
438
438
|
# Images][1]\:
|
439
439
|
#
|
440
440
|
# * Tensorflow (version >= 1.15)
|
@@ -540,8 +540,8 @@ module Aws::SageMaker
|
|
540
540
|
include Aws::Structure
|
541
541
|
end
|
542
542
|
|
543
|
-
# Defines a training job and a batch transform job that
|
544
|
-
#
|
543
|
+
# Defines a training job and a batch transform job that SageMaker runs
|
544
|
+
# to validate your algorithm.
|
545
545
|
#
|
546
546
|
# The data provided in the validation profile is made available to your
|
547
547
|
# buyers on Amazon Web Services Marketplace.
|
@@ -636,12 +636,12 @@ module Aws::SageMaker
|
|
636
636
|
#
|
637
637
|
# @!attribute [rw] training_job_definition
|
638
638
|
# The `TrainingJobDefinition` object that describes the training job
|
639
|
-
# that
|
639
|
+
# that SageMaker runs to validate your algorithm.
|
640
640
|
# @return [Types::TrainingJobDefinition]
|
641
641
|
#
|
642
642
|
# @!attribute [rw] transform_job_definition
|
643
643
|
# The `TransformJobDefinition` object that describes the transform job
|
644
|
-
# that
|
644
|
+
# that SageMaker runs to validate your algorithm.
|
645
645
|
# @return [Types::TransformJobDefinition]
|
646
646
|
#
|
647
647
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
|
@@ -654,8 +654,8 @@ module Aws::SageMaker
|
|
654
654
|
include Aws::Structure
|
655
655
|
end
|
656
656
|
|
657
|
-
# Specifies configurations for one or more training jobs that
|
658
|
-
#
|
657
|
+
# Specifies configurations for one or more training jobs that SageMaker
|
658
|
+
# runs to test the algorithm.
|
659
659
|
#
|
660
660
|
# @note When making an API call, you may pass AlgorithmValidationSpecification
|
661
661
|
# data as a hash:
|
@@ -746,13 +746,13 @@ module Aws::SageMaker
|
|
746
746
|
# }
|
747
747
|
#
|
748
748
|
# @!attribute [rw] validation_role
|
749
|
-
# The IAM roles that
|
749
|
+
# The IAM roles that SageMaker uses to run the training jobs.
|
750
750
|
# @return [String]
|
751
751
|
#
|
752
752
|
# @!attribute [rw] validation_profiles
|
753
753
|
# An array of `AlgorithmValidationProfile` objects, each of which
|
754
|
-
# specifies a training job and batch transform job that
|
755
|
-
#
|
754
|
+
# specifies a training job and batch transform job that SageMaker runs
|
755
|
+
# to validate your algorithm.
|
756
756
|
# @return [Array<Types::AlgorithmValidationProfile>]
|
757
757
|
#
|
758
758
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
|
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
|
|
1742
1742
|
include Aws::Structure
|
1743
1743
|
end
|
1744
1744
|
|
1745
|
-
# Configures the behavior of the client used by
|
1746
|
-
#
|
1745
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1746
|
+
# with the model container during asynchronous inference.
|
1747
1747
|
#
|
1748
1748
|
# @note When making an API call, you may pass AsyncInferenceClientConfig
|
1749
1749
|
# data as a hash:
|
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
|
|
1754
1754
|
#
|
1755
1755
|
# @!attribute [rw] max_concurrent_invocations_per_instance
|
1756
1756
|
# The maximum number of concurrent requests sent by the SageMaker
|
1757
|
-
# client to the model container. If no value is provided,
|
1758
|
-
#
|
1757
|
+
# client to the model container. If no value is provided, SageMaker
|
1758
|
+
# chooses an optimal value.
|
1759
1759
|
# @return [Integer]
|
1760
1760
|
#
|
1761
1761
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
|
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
|
|
1787
1787
|
# }
|
1788
1788
|
#
|
1789
1789
|
# @!attribute [rw] client_config
|
1790
|
-
# Configures the behavior of the client used by
|
1791
|
-
#
|
1790
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1791
|
+
# with the model container during asynchronous inference.
|
1792
1792
|
# @return [Types::AsyncInferenceClientConfig]
|
1793
1793
|
#
|
1794
1794
|
# @!attribute [rw] output_config
|
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
|
|
1853
1853
|
#
|
1854
1854
|
# @!attribute [rw] kms_key_id
|
1855
1855
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
1856
|
-
# KMS) key that
|
1857
|
-
#
|
1856
|
+
# KMS) key that SageMaker uses to encrypt the asynchronous inference
|
1857
|
+
# output in Amazon S3.
|
1858
1858
|
# @return [String]
|
1859
1859
|
#
|
1860
1860
|
# @!attribute [rw] s3_output_path
|
@@ -2034,7 +2034,14 @@ module Aws::SageMaker
|
|
2034
2034
|
end
|
2035
2035
|
|
2036
2036
|
# A channel is a named input source that training algorithms can
|
2037
|
-
# consume.
|
2037
|
+
# consume. The validation dataset size is limited to less than 2 GB. The
|
2038
|
+
# training dataset size must be less than 100 GB. For more information,
|
2039
|
+
# see .
|
2040
|
+
#
|
2041
|
+
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
2042
|
+
# dataset.
|
2043
|
+
#
|
2044
|
+
# </note>
|
2038
2045
|
#
|
2039
2046
|
# @note When making an API call, you may pass AutoMLChannel
|
2040
2047
|
# data as a hash:
|
@@ -2049,6 +2056,7 @@ module Aws::SageMaker
|
|
2049
2056
|
# compression_type: "None", # accepts None, Gzip
|
2050
2057
|
# target_attribute_name: "TargetAttributeName", # required
|
2051
2058
|
# content_type: "ContentType",
|
2059
|
+
# channel_type: "training", # accepts training, validation
|
2052
2060
|
# }
|
2053
2061
|
#
|
2054
2062
|
# @!attribute [rw] data_source
|
@@ -2070,13 +2078,20 @@ module Aws::SageMaker
|
|
2070
2078
|
# default value is `text/csv;header=present`.
|
2071
2079
|
# @return [String]
|
2072
2080
|
#
|
2081
|
+
# @!attribute [rw] channel_type
|
2082
|
+
# The channel type (optional) is an enum string. The default value is
|
2083
|
+
# `training`. Channels for training and validation must share the same
|
2084
|
+
# `ContentType` and `TargetAttributeName`.
|
2085
|
+
# @return [String]
|
2086
|
+
#
|
2073
2087
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
|
2074
2088
|
#
|
2075
2089
|
class AutoMLChannel < Struct.new(
|
2076
2090
|
:data_source,
|
2077
2091
|
:compression_type,
|
2078
2092
|
:target_attribute_name,
|
2079
|
-
:content_type
|
2093
|
+
:content_type,
|
2094
|
+
:channel_type)
|
2080
2095
|
SENSITIVE = []
|
2081
2096
|
include Aws::Structure
|
2082
2097
|
end
|
@@ -2136,6 +2151,32 @@ module Aws::SageMaker
|
|
2136
2151
|
include Aws::Structure
|
2137
2152
|
end
|
2138
2153
|
|
2154
|
+
# This structure specifies how to split the data into train and test
|
2155
|
+
# datasets. The validation and training datasets must contain the same
|
2156
|
+
# headers. The validation dataset must be less than 2 GB in size.
|
2157
|
+
#
|
2158
|
+
# @note When making an API call, you may pass AutoMLDataSplitConfig
|
2159
|
+
# data as a hash:
|
2160
|
+
#
|
2161
|
+
# {
|
2162
|
+
# validation_fraction: 1.0,
|
2163
|
+
# }
|
2164
|
+
#
|
2165
|
+
# @!attribute [rw] validation_fraction
|
2166
|
+
# The validation fraction (optional) is a float that specifies the
|
2167
|
+
# portion of the training dataset to be used for validation. The
|
2168
|
+
# default value is 0.2, and values can range from 0 to 1. We recommend
|
2169
|
+
# setting this value to be less than 0.5.
|
2170
|
+
# @return [Float]
|
2171
|
+
#
|
2172
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
|
2173
|
+
#
|
2174
|
+
class AutoMLDataSplitConfig < Struct.new(
|
2175
|
+
:validation_fraction)
|
2176
|
+
SENSITIVE = []
|
2177
|
+
include Aws::Structure
|
2178
|
+
end
|
2179
|
+
|
2139
2180
|
# The artifacts that are generated during an AutoML job.
|
2140
2181
|
#
|
2141
2182
|
# @!attribute [rw] candidate_definition_notebook_location
|
@@ -2217,6 +2258,9 @@ module Aws::SageMaker
|
|
2217
2258
|
# subnets: ["SubnetId"], # required
|
2218
2259
|
# },
|
2219
2260
|
# },
|
2261
|
+
# data_split_config: {
|
2262
|
+
# validation_fraction: 1.0,
|
2263
|
+
# },
|
2220
2264
|
# }
|
2221
2265
|
#
|
2222
2266
|
# @!attribute [rw] completion_criteria
|
@@ -2229,11 +2273,18 @@ module Aws::SageMaker
|
|
2229
2273
|
# settings.
|
2230
2274
|
# @return [Types::AutoMLSecurityConfig]
|
2231
2275
|
#
|
2276
|
+
# @!attribute [rw] data_split_config
|
2277
|
+
# The configuration for splitting the input training dataset.
|
2278
|
+
#
|
2279
|
+
# Type: AutoMLDataSplitConfig
|
2280
|
+
# @return [Types::AutoMLDataSplitConfig]
|
2281
|
+
#
|
2232
2282
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
2233
2283
|
#
|
2234
2284
|
class AutoMLJobConfig < Struct.new(
|
2235
2285
|
:completion_criteria,
|
2236
|
-
:security_config
|
2286
|
+
:security_config,
|
2287
|
+
:data_split_config)
|
2237
2288
|
SENSITIVE = []
|
2238
2289
|
include Aws::Structure
|
2239
2290
|
end
|
@@ -3005,10 +3056,10 @@ module Aws::SageMaker
|
|
3005
3056
|
# @!attribute [rw] record_wrapper_type
|
3006
3057
|
# Specify RecordIO as the value when input data is in raw format but
|
3007
3058
|
# the training algorithm requires the RecordIO format. In this case,
|
3008
|
-
#
|
3009
|
-
#
|
3010
|
-
#
|
3011
|
-
#
|
3059
|
+
# SageMaker wraps each individual S3 object in a RecordIO record. If
|
3060
|
+
# the input data is already in RecordIO format, you don't need to set
|
3061
|
+
# this attribute. For more information, see [Create a Dataset Using
|
3062
|
+
# RecordIO][1].
|
3012
3063
|
#
|
3013
3064
|
# In File mode, leave this field unset or set it to None.
|
3014
3065
|
#
|
@@ -3019,15 +3070,15 @@ module Aws::SageMaker
|
|
3019
3070
|
#
|
3020
3071
|
# @!attribute [rw] input_mode
|
3021
3072
|
# (Optional) The input mode to use for the data channel in a training
|
3022
|
-
# job. If you don't set a value for `InputMode`,
|
3023
|
-
#
|
3024
|
-
#
|
3025
|
-
#
|
3026
|
-
#
|
3027
|
-
#
|
3028
|
-
#
|
3029
|
-
#
|
3030
|
-
#
|
3073
|
+
# job. If you don't set a value for `InputMode`, SageMaker uses the
|
3074
|
+
# value set for `TrainingInputMode`. Use this parameter to override
|
3075
|
+
# the `TrainingInputMode` setting in a AlgorithmSpecification request
|
3076
|
+
# when you have a channel that needs a different input mode from the
|
3077
|
+
# training job's general setting. To download the data from Amazon
|
3078
|
+
# Simple Storage Service (Amazon S3) to the provisioned ML storage
|
3079
|
+
# volume, and mount the directory to a Docker volume, use `File` input
|
3080
|
+
# mode. To stream data directly from Amazon S3 to the container,
|
3081
|
+
# choose `Pipe` input mode.
|
3031
3082
|
#
|
3032
3083
|
# To use a model for incremental training, choose `File` input model.
|
3033
3084
|
# @return [String]
|
@@ -3137,7 +3188,7 @@ module Aws::SageMaker
|
|
3137
3188
|
# }
|
3138
3189
|
#
|
3139
3190
|
# @!attribute [rw] s3_uri
|
3140
|
-
# Identifies the S3 path where you want
|
3191
|
+
# Identifies the S3 path where you want SageMaker to store
|
3141
3192
|
# checkpoints. For example, `s3://bucket-name/key-name-prefix`.
|
3142
3193
|
# @return [String]
|
3143
3194
|
#
|
@@ -3514,11 +3565,11 @@ module Aws::SageMaker
|
|
3514
3565
|
# Amazon EC2 Container Registry or in a Docker registry that is
|
3515
3566
|
# accessible from the same VPC that you configure for your endpoint.
|
3516
3567
|
# If you are using your own custom algorithm instead of an algorithm
|
3517
|
-
# provided by
|
3518
|
-
#
|
3519
|
-
#
|
3520
|
-
#
|
3521
|
-
#
|
3568
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
3569
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
3570
|
+
# and `registry/repository[@digest]` image path formats. For more
|
3571
|
+
# information, see [Using Your Own Algorithms with Amazon
|
3572
|
+
# SageMaker][1]
|
3522
3573
|
#
|
3523
3574
|
#
|
3524
3575
|
#
|
@@ -3545,7 +3596,7 @@ module Aws::SageMaker
|
|
3545
3596
|
# The S3 path where the model artifacts, which result from model
|
3546
3597
|
# training, are stored. This path must point to a single gzip
|
3547
3598
|
# compressed tar archive (.tar.gz suffix). The S3 path is required for
|
3548
|
-
#
|
3599
|
+
# SageMaker built-in algorithms, but not if you use your own
|
3549
3600
|
# algorithms. For more information on built-in algorithms, see [Common
|
3550
3601
|
# Parameters][1].
|
3551
3602
|
#
|
@@ -3554,17 +3605,17 @@ module Aws::SageMaker
|
|
3554
3605
|
#
|
3555
3606
|
# </note>
|
3556
3607
|
#
|
3557
|
-
# If you provide a value for this parameter,
|
3558
|
-
#
|
3559
|
-
#
|
3560
|
-
#
|
3561
|
-
#
|
3562
|
-
#
|
3563
|
-
#
|
3564
|
-
#
|
3565
|
-
#
|
3566
|
-
#
|
3567
|
-
# If you use a built-in algorithm to create a model,
|
3608
|
+
# If you provide a value for this parameter, SageMaker uses Amazon Web
|
3609
|
+
# Services Security Token Service to download model artifacts from the
|
3610
|
+
# S3 path you provide. Amazon Web Services STS is activated in your
|
3611
|
+
# IAM user account by default. If you previously deactivated Amazon
|
3612
|
+
# Web Services STS for a region, you need to reactivate Amazon Web
|
3613
|
+
# Services STS for that region. For more information, see [Activating
|
3614
|
+
# and Deactivating Amazon Web Services STS in an Amazon Web Services
|
3615
|
+
# Region][2] in the *Amazon Web Services Identity and Access
|
3616
|
+
# Management User Guide*.
|
3617
|
+
#
|
3618
|
+
# If you use a built-in algorithm to create a model, SageMaker
|
3568
3619
|
# requires that you provide a S3 path to the model artifacts in
|
3569
3620
|
# `ModelDataUrl`.
|
3570
3621
|
#
|
@@ -3717,8 +3768,8 @@ module Aws::SageMaker
|
|
3717
3768
|
#
|
3718
3769
|
# Auto
|
3719
3770
|
#
|
3720
|
-
# :
|
3721
|
-
#
|
3771
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
3772
|
+
# hyperparameter.
|
3722
3773
|
#
|
3723
3774
|
# Linear
|
3724
3775
|
#
|
@@ -4096,9 +4147,9 @@ module Aws::SageMaker
|
|
4096
4147
|
#
|
4097
4148
|
# @!attribute [rw] validation_specification
|
4098
4149
|
# Specifies configurations for one or more training jobs and that
|
4099
|
-
#
|
4100
|
-
# optionally, one or more batch transform jobs that
|
4101
|
-
#
|
4150
|
+
# SageMaker runs to test the algorithm's training code and,
|
4151
|
+
# optionally, one or more batch transform jobs that SageMaker runs to
|
4152
|
+
# test the algorithm's inference code.
|
4102
4153
|
# @return [Types::AlgorithmValidationSpecification]
|
4103
4154
|
#
|
4104
4155
|
# @!attribute [rw] certify_for_marketplace
|
@@ -4376,6 +4427,7 @@ module Aws::SageMaker
|
|
4376
4427
|
# compression_type: "None", # accepts None, Gzip
|
4377
4428
|
# target_attribute_name: "TargetAttributeName", # required
|
4378
4429
|
# content_type: "ContentType",
|
4430
|
+
# channel_type: "training", # accepts training, validation
|
4379
4431
|
# },
|
4380
4432
|
# ],
|
4381
4433
|
# output_data_config: { # required
|
@@ -4400,6 +4452,9 @@ module Aws::SageMaker
|
|
4400
4452
|
# subnets: ["SubnetId"], # required
|
4401
4453
|
# },
|
4402
4454
|
# },
|
4455
|
+
# data_split_config: {
|
4456
|
+
# validation_fraction: 1.0,
|
4457
|
+
# },
|
4403
4458
|
# },
|
4404
4459
|
# role_arn: "RoleArn", # required
|
4405
4460
|
# generate_candidate_definitions_only: false,
|
@@ -5064,6 +5119,19 @@ module Aws::SageMaker
|
|
5064
5119
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
5065
5120
|
# },
|
5066
5121
|
# r_session_app_settings: {
|
5122
|
+
# default_resource_spec: {
|
5123
|
+
# sage_maker_image_arn: "ImageArn",
|
5124
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
5125
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
5126
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
5127
|
+
# },
|
5128
|
+
# custom_images: [
|
5129
|
+
# {
|
5130
|
+
# image_name: "ImageName", # required
|
5131
|
+
# image_version_number: 1,
|
5132
|
+
# app_image_config_name: "AppImageConfigName", # required
|
5133
|
+
# },
|
5134
|
+
# ],
|
5067
5135
|
# },
|
5068
5136
|
# },
|
5069
5137
|
# subnet_ids: ["SubnetId"], # required
|
@@ -5361,9 +5429,9 @@ module Aws::SageMaker
|
|
5361
5429
|
#
|
5362
5430
|
# @!attribute [rw] kms_key_id
|
5363
5431
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
5364
|
-
# Management Service key that
|
5365
|
-
#
|
5366
|
-
#
|
5432
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
5433
|
+
# storage volume attached to the ML compute instance that hosts the
|
5434
|
+
# endpoint.
|
5367
5435
|
#
|
5368
5436
|
# The KmsKeyId can be any of the following formats:
|
5369
5437
|
#
|
@@ -6277,8 +6345,8 @@ module Aws::SageMaker
|
|
6277
6345
|
end
|
6278
6346
|
|
6279
6347
|
# @!attribute [rw] hyper_parameter_tuning_job_arn
|
6280
|
-
# The Amazon Resource Name (ARN) of the tuning job.
|
6281
|
-
#
|
6348
|
+
# The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
|
6349
|
+
# an ARN to a hyperparameter tuning job when you create it.
|
6282
6350
|
# @return [String]
|
6283
6351
|
#
|
6284
6352
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
|
@@ -6362,8 +6430,8 @@ module Aws::SageMaker
|
|
6362
6430
|
#
|
6363
6431
|
# @!attribute [rw] base_image
|
6364
6432
|
# The registry path of the container image to use as the starting
|
6365
|
-
# point for this version. The path is an Amazon Container
|
6366
|
-
# (ECR) URI in the following format:
|
6433
|
+
# point for this version. The path is an Amazon Elastic Container
|
6434
|
+
# Registry (ECR) URI in the following format:
|
6367
6435
|
#
|
6368
6436
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
6369
6437
|
# [@digest]>`
|
@@ -6442,6 +6510,7 @@ module Aws::SageMaker
|
|
6442
6510
|
# },
|
6443
6511
|
# },
|
6444
6512
|
# ],
|
6513
|
+
# volume_kms_key_id: "KmsKeyId",
|
6445
6514
|
# },
|
6446
6515
|
# job_description: "RecommendationJobDescription",
|
6447
6516
|
# stopping_conditions: {
|
@@ -6453,6 +6522,12 @@ module Aws::SageMaker
|
|
6453
6522
|
# },
|
6454
6523
|
# ],
|
6455
6524
|
# },
|
6525
|
+
# output_config: {
|
6526
|
+
# kms_key_id: "KmsKeyId",
|
6527
|
+
# compiled_output_config: {
|
6528
|
+
# s3_output_uri: "S3Uri",
|
6529
|
+
# },
|
6530
|
+
# },
|
6456
6531
|
# tags: [
|
6457
6532
|
# {
|
6458
6533
|
# key: "TagKey", # required
|
@@ -6494,6 +6569,11 @@ module Aws::SageMaker
|
|
6494
6569
|
# conditions are met, the job is automatically stopped.
|
6495
6570
|
# @return [Types::RecommendationJobStoppingConditions]
|
6496
6571
|
#
|
6572
|
+
# @!attribute [rw] output_config
|
6573
|
+
# Provides information about the output artifacts and the KMS key to
|
6574
|
+
# use for Amazon S3 server-side encryption.
|
6575
|
+
# @return [Types::RecommendationJobOutputConfig]
|
6576
|
+
#
|
6497
6577
|
# @!attribute [rw] tags
|
6498
6578
|
# The metadata that you apply to Amazon Web Services resources to help
|
6499
6579
|
# you categorize and organize them. Each tag consists of a key and a
|
@@ -6515,6 +6595,7 @@ module Aws::SageMaker
|
|
6515
6595
|
:input_config,
|
6516
6596
|
:job_description,
|
6517
6597
|
:stopping_conditions,
|
6598
|
+
:output_config,
|
6518
6599
|
:tags)
|
6519
6600
|
SENSITIVE = []
|
6520
6601
|
include Aws::Structure
|
@@ -7203,14 +7284,14 @@ module Aws::SageMaker
|
|
7203
7284
|
# @return [Types::InferenceExecutionConfig]
|
7204
7285
|
#
|
7205
7286
|
# @!attribute [rw] execution_role_arn
|
7206
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
7207
|
-
#
|
7208
|
-
#
|
7287
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
7288
|
+
# assume to access model artifacts and docker image for deployment on
|
7289
|
+
# ML compute instances or for batch transform jobs. Deploying on ML
|
7209
7290
|
# compute instances is part of model hosting. For more information,
|
7210
|
-
# see [
|
7291
|
+
# see [SageMaker Roles][1].
|
7211
7292
|
#
|
7212
|
-
# <note markdown="1"> To be able to pass this role to
|
7213
|
-
#
|
7293
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
7294
|
+
# must have the `iam:PassRole` permission.
|
7214
7295
|
#
|
7215
7296
|
# </note>
|
7216
7297
|
#
|
@@ -7265,7 +7346,7 @@ module Aws::SageMaker
|
|
7265
7346
|
end
|
7266
7347
|
|
7267
7348
|
# @!attribute [rw] model_arn
|
7268
|
-
# The ARN of the model created in
|
7349
|
+
# The ARN of the model created in SageMaker.
|
7269
7350
|
# @return [String]
|
7270
7351
|
#
|
7271
7352
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
|
@@ -7598,7 +7679,7 @@ module Aws::SageMaker
|
|
7598
7679
|
# @return [Types::InferenceSpecification]
|
7599
7680
|
#
|
7600
7681
|
# @!attribute [rw] validation_specification
|
7601
|
-
# Specifies configurations for one or more transform jobs that
|
7682
|
+
# Specifies configurations for one or more transform jobs that
|
7602
7683
|
# SageMaker runs to test the model package.
|
7603
7684
|
# @return [Types::ModelPackageValidationSpecification]
|
7604
7685
|
#
|
@@ -8060,15 +8141,14 @@ module Aws::SageMaker
|
|
8060
8141
|
#
|
8061
8142
|
# @!attribute [rw] role_arn
|
8062
8143
|
# When you send any requests to Amazon Web Services resources from the
|
8063
|
-
# notebook instance,
|
8064
|
-
#
|
8065
|
-
#
|
8066
|
-
#
|
8067
|
-
#
|
8068
|
-
# SageMaker Roles][1].
|
8144
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
8145
|
+
# your behalf. You must grant this role necessary permissions so
|
8146
|
+
# SageMaker can perform these tasks. The policy must allow the
|
8147
|
+
# SageMaker service principal (sagemaker.amazonaws.com) permissions to
|
8148
|
+
# assume this role. For more information, see [SageMaker Roles][1].
|
8069
8149
|
#
|
8070
|
-
# <note markdown="1"> To be able to pass this role to
|
8071
|
-
#
|
8150
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
8151
|
+
# must have the `iam:PassRole` permission.
|
8072
8152
|
#
|
8073
8153
|
# </note>
|
8074
8154
|
#
|
@@ -8079,9 +8159,9 @@ module Aws::SageMaker
|
|
8079
8159
|
#
|
8080
8160
|
# @!attribute [rw] kms_key_id
|
8081
8161
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
8082
|
-
# Management Service key that
|
8083
|
-
#
|
8084
|
-
#
|
8162
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
8163
|
+
# storage volume attached to your notebook instance. The KMS key you
|
8164
|
+
# provide must be enabled. For information, see [Enabling and
|
8085
8165
|
# Disabling Keys][1] in the *Amazon Web Services Key Management
|
8086
8166
|
# Service Developer Guide*.
|
8087
8167
|
#
|
@@ -8112,11 +8192,11 @@ module Aws::SageMaker
|
|
8112
8192
|
# @return [String]
|
8113
8193
|
#
|
8114
8194
|
# @!attribute [rw] direct_internet_access
|
8115
|
-
# Sets whether
|
8116
|
-
#
|
8117
|
-
#
|
8118
|
-
#
|
8119
|
-
#
|
8195
|
+
# Sets whether SageMaker provides internet access to the notebook
|
8196
|
+
# instance. If you set this to `Disabled` this notebook instance is
|
8197
|
+
# able to access resources only in your VPC, and is not be able to
|
8198
|
+
# connect to SageMaker training and endpoint services unless you
|
8199
|
+
# configure a NAT Gateway in your VPC.
|
8120
8200
|
#
|
8121
8201
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
8122
8202
|
# by Default][1]. You can set the value of this parameter to
|
@@ -8150,8 +8230,7 @@ module Aws::SageMaker
|
|
8150
8230
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
8151
8231
|
# Git repository. When you open a notebook instance, it opens in the
|
8152
8232
|
# directory that contains this repository. For more information, see
|
8153
|
-
# [Associating Git Repositories with
|
8154
|
-
# Instances][2].
|
8233
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
8155
8234
|
#
|
8156
8235
|
#
|
8157
8236
|
#
|
@@ -8166,7 +8245,7 @@ module Aws::SageMaker
|
|
8166
8245
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
8167
8246
|
# repository. These repositories are cloned at the same level as the
|
8168
8247
|
# default repository of your notebook instance. For more information,
|
8169
|
-
# see [Associating Git Repositories with
|
8248
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
8170
8249
|
# Instances][2].
|
8171
8250
|
#
|
8172
8251
|
#
|
@@ -8961,7 +9040,7 @@ module Aws::SageMaker
|
|
8961
9040
|
# Algorithm-specific parameters that influence the quality of the
|
8962
9041
|
# model. You set hyperparameters before you start the learning
|
8963
9042
|
# process. For a list of hyperparameters for each training algorithm
|
8964
|
-
# provided by
|
9043
|
+
# provided by SageMaker, see [Algorithms][1].
|
8965
9044
|
#
|
8966
9045
|
# You can specify a maximum of 100 hyperparameters. Each
|
8967
9046
|
# hyperparameter is a key-value pair. Each key and value is limited to
|
@@ -8975,8 +9054,8 @@ module Aws::SageMaker
|
|
8975
9054
|
# @!attribute [rw] algorithm_specification
|
8976
9055
|
# The registry path of the Docker image that contains the training
|
8977
9056
|
# algorithm and algorithm-specific metadata, including the input mode.
|
8978
|
-
# For more information about algorithms provided by
|
8979
|
-
#
|
9057
|
+
# For more information about algorithms provided by SageMaker, see
|
9058
|
+
# [Algorithms][1]. For information about providing your own
|
8980
9059
|
# algorithms, see [Using Your Own Algorithms with Amazon
|
8981
9060
|
# SageMaker][2].
|
8982
9061
|
#
|
@@ -8987,18 +9066,18 @@ module Aws::SageMaker
|
|
8987
9066
|
# @return [Types::AlgorithmSpecification]
|
8988
9067
|
#
|
8989
9068
|
# @!attribute [rw] role_arn
|
8990
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
8991
|
-
#
|
9069
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
9070
|
+
# assume to perform tasks on your behalf.
|
8992
9071
|
#
|
8993
|
-
# During model training,
|
8994
|
-
#
|
8995
|
-
#
|
8996
|
-
#
|
8997
|
-
#
|
8998
|
-
#
|
9072
|
+
# During model training, SageMaker needs your permission to read input
|
9073
|
+
# data from an S3 bucket, download a Docker image that contains
|
9074
|
+
# training code, write model artifacts to an S3 bucket, write logs to
|
9075
|
+
# Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
|
9076
|
+
# You grant permissions for all of these tasks to an IAM role. For
|
9077
|
+
# more information, see [SageMaker Roles][1].
|
8999
9078
|
#
|
9000
|
-
# <note markdown="1"> To be able to pass this role to
|
9001
|
-
#
|
9079
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
9080
|
+
# must have the `iam:PassRole` permission.
|
9002
9081
|
#
|
9003
9082
|
# </note>
|
9004
9083
|
#
|
@@ -9019,17 +9098,17 @@ module Aws::SageMaker
|
|
9019
9098
|
# MIME type, compression method, and whether the data is wrapped in
|
9020
9099
|
# RecordIO format.
|
9021
9100
|
#
|
9022
|
-
# Depending on the input mode that the algorithm supports,
|
9023
|
-
#
|
9024
|
-
#
|
9025
|
-
#
|
9026
|
-
#
|
9027
|
-
#
|
9101
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
9102
|
+
# either copies input data files from an S3 bucket to a local
|
9103
|
+
# directory in the Docker container, or makes it available as input
|
9104
|
+
# streams. For example, if you specify an EFS location, input data
|
9105
|
+
# files are available as input streams. They do not need to be
|
9106
|
+
# downloaded.
|
9028
9107
|
# @return [Array<Types::Channel>]
|
9029
9108
|
#
|
9030
9109
|
# @!attribute [rw] output_data_config
|
9031
9110
|
# Specifies the path to the S3 location where you want to store model
|
9032
|
-
# artifacts.
|
9111
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
9033
9112
|
# @return [Types::OutputDataConfig]
|
9034
9113
|
#
|
9035
9114
|
# @!attribute [rw] resource_config
|
@@ -9038,9 +9117,9 @@ module Aws::SageMaker
|
|
9038
9117
|
#
|
9039
9118
|
# ML storage volumes store model artifacts and incremental states.
|
9040
9119
|
# Training algorithms might also use ML storage volumes for scratch
|
9041
|
-
# space. If you want
|
9042
|
-
#
|
9043
|
-
#
|
9120
|
+
# space. If you want SageMaker to use the ML storage volume to store
|
9121
|
+
# the training data, choose `File` as the `TrainingInputMode` in the
|
9122
|
+
# algorithm specification. For distributed training algorithms,
|
9044
9123
|
# specify an instance count greater than 1.
|
9045
9124
|
# @return [Types::ResourceConfig]
|
9046
9125
|
#
|
@@ -9058,13 +9137,13 @@ module Aws::SageMaker
|
|
9058
9137
|
# @!attribute [rw] stopping_condition
|
9059
9138
|
# Specifies a limit to how long a model training job can run. It also
|
9060
9139
|
# specifies how long a managed Spot training job has to complete. When
|
9061
|
-
# the job reaches the time limit,
|
9062
|
-
#
|
9140
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
9141
|
+
# this API to cap model training costs.
|
9063
9142
|
#
|
9064
|
-
# To stop a job,
|
9065
|
-
#
|
9066
|
-
#
|
9067
|
-
#
|
9143
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
9144
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
9145
|
+
# this 120-second window to save the model artifacts, so the results
|
9146
|
+
# of training are not lost.
|
9068
9147
|
# @return [Types::StoppingCondition]
|
9069
9148
|
#
|
9070
9149
|
# @!attribute [rw] tags
|
@@ -9082,7 +9161,7 @@ module Aws::SageMaker
|
|
9082
9161
|
# Isolates the training container. No inbound or outbound network
|
9083
9162
|
# calls can be made, except for calls between peers within a training
|
9084
9163
|
# cluster for distributed training. If you enable network isolation
|
9085
|
-
# for training jobs that are configured to use a VPC,
|
9164
|
+
# for training jobs that are configured to use a VPC, SageMaker
|
9086
9165
|
# downloads and uploads customer data and model artifacts through the
|
9087
9166
|
# specified VPC, but the training container does not have network
|
9088
9167
|
# access.
|
@@ -9312,6 +9391,11 @@ module Aws::SageMaker
|
|
9312
9391
|
# records fit within the maximum payload size, we recommend using a
|
9313
9392
|
# slightly larger value. The default value is `6` MB.
|
9314
9393
|
#
|
9394
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
9395
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
9396
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
9397
|
+
# MB.
|
9398
|
+
#
|
9315
9399
|
# For cases where the payload might be arbitrarily large and is
|
9316
9400
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
9317
9401
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -9679,6 +9763,19 @@ module Aws::SageMaker
|
|
9679
9763
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
9680
9764
|
# },
|
9681
9765
|
# r_session_app_settings: {
|
9766
|
+
# default_resource_spec: {
|
9767
|
+
# sage_maker_image_arn: "ImageArn",
|
9768
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
9769
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
9770
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
9771
|
+
# },
|
9772
|
+
# custom_images: [
|
9773
|
+
# {
|
9774
|
+
# image_name: "ImageName", # required
|
9775
|
+
# image_version_number: 1,
|
9776
|
+
# app_image_config_name: "AppImageConfigName", # required
|
9777
|
+
# },
|
9778
|
+
# ],
|
9682
9779
|
# },
|
9683
9780
|
# },
|
9684
9781
|
# }
|
@@ -10127,8 +10224,8 @@ module Aws::SageMaker
|
|
10127
10224
|
# A [JSONPath][1] expression used to select a portion of the input
|
10128
10225
|
# data to pass to the algorithm. Use the `InputFilter` parameter to
|
10129
10226
|
# exclude fields, such as an ID column, from the input. If you want
|
10130
|
-
#
|
10131
|
-
#
|
10227
|
+
# SageMaker to pass the entire input dataset to the algorithm, accept
|
10228
|
+
# the default value `$`.
|
10132
10229
|
#
|
10133
10230
|
# Examples: `"$"`, `"$[1:]"`, `"$.features"`
|
10134
10231
|
#
|
@@ -10140,10 +10237,9 @@ module Aws::SageMaker
|
|
10140
10237
|
# @!attribute [rw] output_filter
|
10141
10238
|
# A [JSONPath][1] expression used to select a portion of the joined
|
10142
10239
|
# dataset to save in the output file for a batch transform job. If you
|
10143
|
-
# want
|
10144
|
-
#
|
10145
|
-
#
|
10146
|
-
# get an error.
|
10240
|
+
# want SageMaker to store the entire input dataset in the output file,
|
10241
|
+
# leave the default value, `$`. If you specify indexes that aren't
|
10242
|
+
# within the dimension size of the joined dataset, you get an error.
|
10147
10243
|
#
|
10148
10244
|
# Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
|
10149
10245
|
#
|
@@ -11272,7 +11368,7 @@ module Aws::SageMaker
|
|
11272
11368
|
# }
|
11273
11369
|
#
|
11274
11370
|
# @!attribute [rw] notebook_instance_name
|
11275
|
-
# The name of the
|
11371
|
+
# The name of the SageMaker notebook instance to delete.
|
11276
11372
|
# @return [String]
|
11277
11373
|
#
|
11278
11374
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
|
@@ -11813,7 +11909,7 @@ module Aws::SageMaker
|
|
11813
11909
|
#
|
11814
11910
|
# @!attribute [rw] validation_specification
|
11815
11911
|
# Details about configurations for one or more training jobs that
|
11816
|
-
#
|
11912
|
+
# SageMaker runs to test the algorithm.
|
11817
11913
|
# @return [Types::AlgorithmValidationSpecification]
|
11818
11914
|
#
|
11819
11915
|
# @!attribute [rw] algorithm_status
|
@@ -13024,7 +13120,7 @@ module Aws::SageMaker
|
|
13024
13120
|
end
|
13025
13121
|
|
13026
13122
|
# @!attribute [rw] endpoint_config_name
|
13027
|
-
# Name of the
|
13123
|
+
# Name of the SageMaker endpoint configuration.
|
13028
13124
|
# @return [String]
|
13029
13125
|
#
|
13030
13126
|
# @!attribute [rw] endpoint_config_arn
|
@@ -13966,8 +14062,8 @@ module Aws::SageMaker
|
|
13966
14062
|
# @return [Types::LabelingJobOutputConfig]
|
13967
14063
|
#
|
13968
14064
|
# @!attribute [rw] role_arn
|
13969
|
-
# The Amazon Resource Name (ARN) that
|
13970
|
-
#
|
14065
|
+
# The Amazon Resource Name (ARN) that SageMaker assumes to perform
|
14066
|
+
# tasks on your behalf during data labeling.
|
13971
14067
|
# @return [String]
|
13972
14068
|
#
|
13973
14069
|
# @!attribute [rw] label_category_config_s3_uri
|
@@ -14333,7 +14429,7 @@ module Aws::SageMaker
|
|
14333
14429
|
end
|
14334
14430
|
|
14335
14431
|
# @!attribute [rw] model_name
|
14336
|
-
# Name of the
|
14432
|
+
# Name of the SageMaker model.
|
14337
14433
|
# @return [String]
|
14338
14434
|
#
|
14339
14435
|
# @!attribute [rw] primary_container
|
@@ -14403,7 +14499,7 @@ module Aws::SageMaker
|
|
14403
14499
|
# }
|
14404
14500
|
#
|
14405
14501
|
# @!attribute [rw] model_package_group_name
|
14406
|
-
# The name of
|
14502
|
+
# The name of gthe model group to describe.
|
14407
14503
|
# @return [String]
|
14408
14504
|
#
|
14409
14505
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
|
@@ -14547,7 +14643,7 @@ module Aws::SageMaker
|
|
14547
14643
|
# @return [Types::ModelMetrics]
|
14548
14644
|
#
|
14549
14645
|
# @!attribute [rw] last_modified_time
|
14550
|
-
# The last time the model package was modified.
|
14646
|
+
# The last time that the model package was modified.
|
14551
14647
|
# @return [Time]
|
14552
14648
|
#
|
14553
14649
|
# @!attribute [rw] last_modified_by
|
@@ -14891,7 +14987,7 @@ module Aws::SageMaker
|
|
14891
14987
|
# @return [String]
|
14892
14988
|
#
|
14893
14989
|
# @!attribute [rw] notebook_instance_name
|
14894
|
-
# The name of the
|
14990
|
+
# The name of the SageMaker notebook instance.
|
14895
14991
|
# @return [String]
|
14896
14992
|
#
|
14897
14993
|
# @!attribute [rw] notebook_instance_status
|
@@ -14925,14 +15021,13 @@ module Aws::SageMaker
|
|
14925
15021
|
# @return [String]
|
14926
15022
|
#
|
14927
15023
|
# @!attribute [rw] kms_key_id
|
14928
|
-
# The Amazon Web Services KMS key ID
|
14929
|
-
#
|
14930
|
-
# instance.
|
15024
|
+
# The Amazon Web Services KMS key ID SageMaker uses to encrypt data
|
15025
|
+
# when storing it on the ML storage volume attached to the instance.
|
14931
15026
|
# @return [String]
|
14932
15027
|
#
|
14933
15028
|
# @!attribute [rw] network_interface_id
|
14934
|
-
# The network interface IDs that
|
14935
|
-
#
|
15029
|
+
# The network interface IDs that SageMaker created at the time of
|
15030
|
+
# creating the instance.
|
14936
15031
|
# @return [String]
|
14937
15032
|
#
|
14938
15033
|
# @!attribute [rw] last_modified_time
|
@@ -14957,10 +15052,10 @@ module Aws::SageMaker
|
|
14957
15052
|
# @return [String]
|
14958
15053
|
#
|
14959
15054
|
# @!attribute [rw] direct_internet_access
|
14960
|
-
# Describes whether
|
14961
|
-
#
|
14962
|
-
#
|
14963
|
-
#
|
15055
|
+
# Describes whether SageMaker provides internet access to the notebook
|
15056
|
+
# instance. If this value is set to *Disabled*, the notebook instance
|
15057
|
+
# does not have internet access, and cannot connect to SageMaker
|
15058
|
+
# training and endpoint services.
|
14964
15059
|
#
|
14965
15060
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
14966
15061
|
# by Default][1].
|
@@ -14993,8 +15088,7 @@ module Aws::SageMaker
|
|
14993
15088
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
14994
15089
|
# Git repository. When you open a notebook instance, it opens in the
|
14995
15090
|
# directory that contains this repository. For more information, see
|
14996
|
-
# [Associating Git Repositories with
|
14997
|
-
# Instances][2].
|
15091
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
14998
15092
|
#
|
14999
15093
|
#
|
15000
15094
|
#
|
@@ -15009,7 +15103,7 @@ module Aws::SageMaker
|
|
15009
15103
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
15010
15104
|
# repository. These repositories are cloned at the same level as the
|
15011
15105
|
# default repository of your notebook instance. For more information,
|
15012
|
-
# see [Associating Git Repositories with
|
15106
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
15013
15107
|
# Instances][2].
|
15014
15108
|
#
|
15015
15109
|
#
|
@@ -15631,7 +15725,7 @@ module Aws::SageMaker
|
|
15631
15725
|
# @return [String]
|
15632
15726
|
#
|
15633
15727
|
# @!attribute [rw] labeling_job_arn
|
15634
|
-
# The Amazon Resource Name (ARN) of the
|
15728
|
+
# The Amazon Resource Name (ARN) of the SageMaker Ground Truth
|
15635
15729
|
# labeling job that created the transform or training job.
|
15636
15730
|
# @return [String]
|
15637
15731
|
#
|
@@ -15647,7 +15741,7 @@ module Aws::SageMaker
|
|
15647
15741
|
# @!attribute [rw] training_job_status
|
15648
15742
|
# The status of the training job.
|
15649
15743
|
#
|
15650
|
-
#
|
15744
|
+
# SageMaker provides the following training job statuses:
|
15651
15745
|
#
|
15652
15746
|
# * `InProgress` - The training is in progress.
|
15653
15747
|
#
|
@@ -15669,8 +15763,8 @@ module Aws::SageMaker
|
|
15669
15763
|
# For detailed information on the secondary status of the training
|
15670
15764
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
15671
15765
|
#
|
15672
|
-
#
|
15673
|
-
#
|
15766
|
+
# SageMaker provides primary statuses and secondary statuses that
|
15767
|
+
# apply to each of them:
|
15674
15768
|
#
|
15675
15769
|
# InProgress
|
15676
15770
|
# : * `Starting` - Starting the training job.
|
@@ -15749,7 +15843,7 @@ module Aws::SageMaker
|
|
15749
15843
|
#
|
15750
15844
|
# @!attribute [rw] output_data_config
|
15751
15845
|
# The S3 path where model artifacts that you configured when creating
|
15752
|
-
# the job are stored.
|
15846
|
+
# the job are stored. SageMaker creates subfolders for model
|
15753
15847
|
# artifacts.
|
15754
15848
|
# @return [Types::OutputDataConfig]
|
15755
15849
|
#
|
@@ -15771,13 +15865,13 @@ module Aws::SageMaker
|
|
15771
15865
|
# @!attribute [rw] stopping_condition
|
15772
15866
|
# Specifies a limit to how long a model training job can run. It also
|
15773
15867
|
# specifies how long a managed Spot training job has to complete. When
|
15774
|
-
# the job reaches the time limit,
|
15775
|
-
#
|
15868
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
15869
|
+
# this API to cap model training costs.
|
15776
15870
|
#
|
15777
|
-
# To stop a job,
|
15778
|
-
#
|
15779
|
-
#
|
15780
|
-
#
|
15871
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
15872
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
15873
|
+
# this 120-second window to save the model artifacts, so the results
|
15874
|
+
# of training are not lost.
|
15781
15875
|
# @return [Types::StoppingCondition]
|
15782
15876
|
#
|
15783
15877
|
# @!attribute [rw] creation_time
|
@@ -15798,8 +15892,7 @@ module Aws::SageMaker
|
|
15798
15892
|
# You are billed for the time interval between the value of
|
15799
15893
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
15800
15894
|
# jobs, this is the time after model artifacts are uploaded. For
|
15801
|
-
# failed jobs, this is the time when
|
15802
|
-
# failure.
|
15895
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
15803
15896
|
# @return [Time]
|
15804
15897
|
#
|
15805
15898
|
# @!attribute [rw] last_modified_time
|
@@ -15822,10 +15915,9 @@ module Aws::SageMaker
|
|
15822
15915
|
# If you want to allow inbound or outbound network calls, except for
|
15823
15916
|
# calls between peers within a training cluster for distributed
|
15824
15917
|
# training, choose `True`. If you enable network isolation for
|
15825
|
-
# training jobs that are configured to use a VPC,
|
15826
|
-
#
|
15827
|
-
#
|
15828
|
-
# access.
|
15918
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
15919
|
+
# and uploads customer data and model artifacts through the specified
|
15920
|
+
# VPC, but the training container does not have network access.
|
15829
15921
|
# @return [Boolean]
|
15830
15922
|
#
|
15831
15923
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -15857,7 +15949,7 @@ module Aws::SageMaker
|
|
15857
15949
|
#
|
15858
15950
|
# Multiply `BillableTimeInSeconds` by the number of instances
|
15859
15951
|
# (`InstanceCount`) in your training cluster to get the total compute
|
15860
|
-
# time SageMaker
|
15952
|
+
# time SageMaker bills you if you run distributed training. The
|
15861
15953
|
# formula is as follows: `BillableTimeInSeconds * InstanceCount` .
|
15862
15954
|
#
|
15863
15955
|
# You can calculate the savings from using managed spot training using
|
@@ -20065,10 +20157,10 @@ module Aws::SageMaker
|
|
20065
20157
|
# The registry path of the Docker image that contains the training
|
20066
20158
|
# algorithm. For information about Docker registry paths for built-in
|
20067
20159
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
20068
|
-
# Parameters][1].
|
20069
|
-
#
|
20070
|
-
#
|
20071
|
-
#
|
20160
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
20161
|
+
# and `registry/repository[@digest]` image path formats. For more
|
20162
|
+
# information, see [Using Your Own Algorithms with Amazon
|
20163
|
+
# SageMaker][2].
|
20072
20164
|
#
|
20073
20165
|
#
|
20074
20166
|
#
|
@@ -20393,27 +20485,26 @@ module Aws::SageMaker
|
|
20393
20485
|
#
|
20394
20486
|
# Storage volumes store model artifacts and incremental states.
|
20395
20487
|
# Training algorithms might also use storage volumes for scratch
|
20396
|
-
# space. If you want
|
20397
|
-
#
|
20398
|
-
#
|
20488
|
+
# space. If you want SageMaker to use the storage volume to store the
|
20489
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
20490
|
+
# algorithm specification. For distributed training algorithms,
|
20399
20491
|
# specify an instance count greater than 1.
|
20400
20492
|
# @return [Types::ResourceConfig]
|
20401
20493
|
#
|
20402
20494
|
# @!attribute [rw] stopping_condition
|
20403
20495
|
# Specifies a limit to how long a model hyperparameter training job
|
20404
20496
|
# can run. It also specifies how long a managed spot training job has
|
20405
|
-
# to complete. When the job reaches the time limit,
|
20406
|
-
#
|
20497
|
+
# to complete. When the job reaches the time limit, SageMaker ends the
|
20498
|
+
# training job. Use this API to cap model training costs.
|
20407
20499
|
# @return [Types::StoppingCondition]
|
20408
20500
|
#
|
20409
20501
|
# @!attribute [rw] enable_network_isolation
|
20410
20502
|
# Isolates the training container. No inbound or outbound network
|
20411
20503
|
# calls can be made, except for calls between peers within a training
|
20412
20504
|
# cluster for distributed training. If network isolation is used for
|
20413
|
-
# training jobs that are configured to use a VPC,
|
20414
|
-
#
|
20415
|
-
#
|
20416
|
-
# access.
|
20505
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
20506
|
+
# and uploads customer data and model artifacts through the specified
|
20507
|
+
# VPC, but the training container does not have network access.
|
20417
20508
|
# @return [Boolean]
|
20418
20509
|
#
|
20419
20510
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -20463,7 +20554,7 @@ module Aws::SageMaker
|
|
20463
20554
|
include Aws::Structure
|
20464
20555
|
end
|
20465
20556
|
|
20466
|
-
#
|
20557
|
+
# The container for the summary information about a training job.
|
20467
20558
|
#
|
20468
20559
|
# @!attribute [rw] training_job_definition_name
|
20469
20560
|
# The training job definition name.
|
@@ -20494,8 +20585,7 @@ module Aws::SageMaker
|
|
20494
20585
|
# You are billed for the time interval between the value of
|
20495
20586
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
20496
20587
|
# jobs, this is the time after model artifacts are uploaded. For
|
20497
|
-
# failed jobs, this is the time when
|
20498
|
-
# failure.
|
20588
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
20499
20589
|
# @return [Time]
|
20500
20590
|
#
|
20501
20591
|
# @!attribute [rw] training_job_status
|
@@ -20644,9 +20734,9 @@ module Aws::SageMaker
|
|
20644
20734
|
#
|
20645
20735
|
# AUTO
|
20646
20736
|
#
|
20647
|
-
# :
|
20648
|
-
#
|
20649
|
-
#
|
20737
|
+
# : SageMaker stops training jobs launched by the hyperparameter
|
20738
|
+
# tuning job when they are unlikely to perform better than
|
20739
|
+
# previously completed training jobs. For more information, see
|
20650
20740
|
# [Stop Training Jobs Early][1].
|
20651
20741
|
#
|
20652
20742
|
#
|
@@ -21447,8 +21537,8 @@ module Aws::SageMaker
|
|
21447
21537
|
#
|
21448
21538
|
# Auto
|
21449
21539
|
#
|
21450
|
-
# :
|
21451
|
-
#
|
21540
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
21541
|
+
# hyperparameter.
|
21452
21542
|
#
|
21453
21543
|
# Linear
|
21454
21544
|
#
|
@@ -21523,12 +21613,20 @@ module Aws::SageMaker
|
|
21523
21613
|
#
|
21524
21614
|
# @!attribute [rw] default_resource_spec
|
21525
21615
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21526
|
-
# default SageMaker image used by the JupyterServer app.
|
21616
|
+
# default SageMaker image used by the JupyterServer app. If you use
|
21617
|
+
# the `LifecycleConfigArns` parameter, then this parameter is also
|
21618
|
+
# required.
|
21527
21619
|
# @return [Types::ResourceSpec]
|
21528
21620
|
#
|
21529
21621
|
# @!attribute [rw] lifecycle_config_arns
|
21530
21622
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21531
|
-
# attached to the JupyterServerApp.
|
21623
|
+
# attached to the JupyterServerApp. If you use this parameter, the
|
21624
|
+
# `DefaultResourceSpec` parameter is also required.
|
21625
|
+
#
|
21626
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21627
|
+
# an empty list.
|
21628
|
+
#
|
21629
|
+
# </note>
|
21532
21630
|
# @return [Array<String>]
|
21533
21631
|
#
|
21534
21632
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
|
@@ -21565,6 +21663,14 @@ module Aws::SageMaker
|
|
21565
21663
|
# @!attribute [rw] default_resource_spec
|
21566
21664
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21567
21665
|
# default SageMaker image used by the KernelGateway app.
|
21666
|
+
#
|
21667
|
+
# <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
|
21668
|
+
# type value set here. The default instance type set here is used when
|
21669
|
+
# Apps are created using the Amazon Web Services Command Line
|
21670
|
+
# Interface or Amazon Web Services CloudFormation and the instance
|
21671
|
+
# type parameter value is not passed.
|
21672
|
+
#
|
21673
|
+
# </note>
|
21568
21674
|
# @return [Types::ResourceSpec]
|
21569
21675
|
#
|
21570
21676
|
# @!attribute [rw] custom_images
|
@@ -21575,6 +21681,11 @@ module Aws::SageMaker
|
|
21575
21681
|
# @!attribute [rw] lifecycle_config_arns
|
21576
21682
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21577
21683
|
# attached to the the user profile or domain.
|
21684
|
+
#
|
21685
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21686
|
+
# an empty list.
|
21687
|
+
#
|
21688
|
+
# </note>
|
21578
21689
|
# @return [Array<String>]
|
21579
21690
|
#
|
21580
21691
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
|
@@ -21782,8 +21893,8 @@ module Aws::SageMaker
|
|
21782
21893
|
#
|
21783
21894
|
# @!attribute [rw] content_classifiers
|
21784
21895
|
# Declares that your content is free of personally identifiable
|
21785
|
-
# information or adult content.
|
21786
|
-
#
|
21896
|
+
# information or adult content. SageMaker may restrict the Amazon
|
21897
|
+
# Mechanical Turk workers that can view your task based on this
|
21787
21898
|
# information.
|
21788
21899
|
# @return [Array<String>]
|
21789
21900
|
#
|
@@ -21927,8 +22038,8 @@ module Aws::SageMaker
|
|
21927
22038
|
# @return [String]
|
21928
22039
|
#
|
21929
22040
|
# @!attribute [rw] final_active_learning_model_arn
|
21930
|
-
# The Amazon Resource Name (ARN) for the most recent
|
21931
|
-
#
|
22041
|
+
# The Amazon Resource Name (ARN) for the most recent SageMaker model
|
22042
|
+
# trained as part of automated data labeling.
|
21932
22043
|
# @return [String]
|
21933
22044
|
#
|
21934
22045
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
|
@@ -22438,8 +22549,8 @@ module Aws::SageMaker
|
|
22438
22549
|
# @return [Array<Types::AlgorithmSummary>]
|
22439
22550
|
#
|
22440
22551
|
# @!attribute [rw] next_token
|
22441
|
-
# If the response is truncated,
|
22442
|
-
#
|
22552
|
+
# If the response is truncated, SageMaker returns this token. To
|
22553
|
+
# retrieve the next set of algorithms, use it in the subsequent
|
22443
22554
|
# request.
|
22444
22555
|
# @return [String]
|
22445
22556
|
#
|
@@ -23713,8 +23824,8 @@ module Aws::SageMaker
|
|
23713
23824
|
# @return [Array<Types::EndpointConfigSummary>]
|
23714
23825
|
#
|
23715
23826
|
# @!attribute [rw] next_token
|
23716
|
-
# If the response is truncated,
|
23717
|
-
#
|
23827
|
+
# If the response is truncated, SageMaker returns this token. To
|
23828
|
+
# retrieve the next set of endpoint configurations, use it in the
|
23718
23829
|
# subsequent request
|
23719
23830
|
# @return [String]
|
23720
23831
|
#
|
@@ -23813,8 +23924,8 @@ module Aws::SageMaker
|
|
23813
23924
|
# @return [Array<Types::EndpointSummary>]
|
23814
23925
|
#
|
23815
23926
|
# @!attribute [rw] next_token
|
23816
|
-
# If the response is truncated,
|
23817
|
-
#
|
23927
|
+
# If the response is truncated, SageMaker returns this token. To
|
23928
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
23818
23929
|
# request.
|
23819
23930
|
# @return [String]
|
23820
23931
|
#
|
@@ -24579,8 +24690,8 @@ module Aws::SageMaker
|
|
24579
24690
|
# @return [Array<Types::LabelingJobForWorkteamSummary>]
|
24580
24691
|
#
|
24581
24692
|
# @!attribute [rw] next_token
|
24582
|
-
# If the response is truncated,
|
24583
|
-
#
|
24693
|
+
# If the response is truncated, SageMaker returns this token. To
|
24694
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24584
24695
|
# request.
|
24585
24696
|
# @return [String]
|
24586
24697
|
#
|
@@ -24680,8 +24791,8 @@ module Aws::SageMaker
|
|
24680
24791
|
# @return [Array<Types::LabelingJobSummary>]
|
24681
24792
|
#
|
24682
24793
|
# @!attribute [rw] next_token
|
24683
|
-
# If the response is truncated,
|
24684
|
-
#
|
24794
|
+
# If the response is truncated, SageMaker returns this token. To
|
24795
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24685
24796
|
# request.
|
24686
24797
|
# @return [String]
|
24687
24798
|
#
|
@@ -25178,8 +25289,8 @@ module Aws::SageMaker
|
|
25178
25289
|
# @return [Array<Types::ModelPackageSummary>]
|
25179
25290
|
#
|
25180
25291
|
# @!attribute [rw] next_token
|
25181
|
-
# If the response is truncated,
|
25182
|
-
#
|
25292
|
+
# If the response is truncated, SageMaker returns this token. To
|
25293
|
+
# retrieve the next set of model packages, use it in the subsequent
|
25183
25294
|
# request.
|
25184
25295
|
# @return [String]
|
25185
25296
|
#
|
@@ -25346,9 +25457,8 @@ module Aws::SageMaker
|
|
25346
25457
|
# @return [Array<Types::ModelSummary>]
|
25347
25458
|
#
|
25348
25459
|
# @!attribute [rw] next_token
|
25349
|
-
# If the response is truncated,
|
25350
|
-
#
|
25351
|
-
# request.
|
25460
|
+
# If the response is truncated, SageMaker returns this token. To
|
25461
|
+
# retrieve the next set of models, use it in the subsequent request.
|
25352
25462
|
# @return [String]
|
25353
25463
|
#
|
25354
25464
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
|
@@ -25687,8 +25797,8 @@ module Aws::SageMaker
|
|
25687
25797
|
end
|
25688
25798
|
|
25689
25799
|
# @!attribute [rw] next_token
|
25690
|
-
# If the response is truncated,
|
25691
|
-
#
|
25800
|
+
# If the response is truncated, SageMaker returns this token. To get
|
25801
|
+
# the next set of lifecycle configurations, use it in the next
|
25692
25802
|
# request.
|
25693
25803
|
# @return [String]
|
25694
25804
|
#
|
@@ -25821,8 +25931,8 @@ module Aws::SageMaker
|
|
25821
25931
|
|
25822
25932
|
# @!attribute [rw] next_token
|
25823
25933
|
# If the response to the previous `ListNotebookInstances` request was
|
25824
|
-
# truncated,
|
25825
|
-
#
|
25934
|
+
# truncated, SageMaker returns this token. To retrieve the next set of
|
25935
|
+
# notebook instances, use the token in the next request.
|
25826
25936
|
# @return [String]
|
25827
25937
|
#
|
25828
25938
|
# @!attribute [rw] notebook_instances
|
@@ -26470,8 +26580,8 @@ module Aws::SageMaker
|
|
26470
26580
|
#
|
26471
26581
|
# @!attribute [rw] next_token
|
26472
26582
|
# If the response to the previous `ListTags` request is truncated,
|
26473
|
-
#
|
26474
|
-
#
|
26583
|
+
# SageMaker returns this token. To retrieve the next set of tags, use
|
26584
|
+
# it in the subsequent request.
|
26475
26585
|
# @return [String]
|
26476
26586
|
#
|
26477
26587
|
# @!attribute [rw] max_results
|
@@ -26493,7 +26603,7 @@ module Aws::SageMaker
|
|
26493
26603
|
# @return [Array<Types::Tag>]
|
26494
26604
|
#
|
26495
26605
|
# @!attribute [rw] next_token
|
26496
|
-
# If response is truncated,
|
26606
|
+
# If response is truncated, SageMaker includes a token in the
|
26497
26607
|
# response. You can use this token in your subsequent request to fetch
|
26498
26608
|
# next set of tokens.
|
26499
26609
|
# @return [String]
|
@@ -26672,8 +26782,8 @@ module Aws::SageMaker
|
|
26672
26782
|
# @return [Array<Types::TrainingJobSummary>]
|
26673
26783
|
#
|
26674
26784
|
# @!attribute [rw] next_token
|
26675
|
-
# If the response is truncated,
|
26676
|
-
#
|
26785
|
+
# If the response is truncated, SageMaker returns this token. To
|
26786
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
26677
26787
|
# request.
|
26678
26788
|
# @return [String]
|
26679
26789
|
#
|
@@ -27279,20 +27389,25 @@ module Aws::SageMaker
|
|
27279
27389
|
# The dataset split from which the AutoML job produced the metric.
|
27280
27390
|
# @return [String]
|
27281
27391
|
#
|
27392
|
+
# @!attribute [rw] standard_metric_name
|
27393
|
+
# The name of the standard metric.
|
27394
|
+
# @return [String]
|
27395
|
+
#
|
27282
27396
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDatum AWS API Documentation
|
27283
27397
|
#
|
27284
27398
|
class MetricDatum < Struct.new(
|
27285
27399
|
:metric_name,
|
27286
27400
|
:value,
|
27287
|
-
:set
|
27401
|
+
:set,
|
27402
|
+
:standard_metric_name)
|
27288
27403
|
SENSITIVE = []
|
27289
27404
|
include Aws::Structure
|
27290
27405
|
end
|
27291
27406
|
|
27292
27407
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
27293
|
-
# `stdout`.
|
27294
|
-
#
|
27295
|
-
#
|
27408
|
+
# `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
|
27409
|
+
# You specify one metric that a hyperparameter tuning job uses as its
|
27410
|
+
# objective metric to choose the best training job.
|
27296
27411
|
#
|
27297
27412
|
# @note When making an API call, you may pass MetricDefinition
|
27298
27413
|
# data as a hash:
|
@@ -27496,11 +27611,13 @@ module Aws::SageMaker
|
|
27496
27611
|
# }
|
27497
27612
|
#
|
27498
27613
|
# @!attribute [rw] invocations_timeout_in_seconds
|
27499
|
-
# The timeout value in seconds for an invocation request.
|
27614
|
+
# The timeout value in seconds for an invocation request. The default
|
27615
|
+
# value is 600.
|
27500
27616
|
# @return [Integer]
|
27501
27617
|
#
|
27502
27618
|
# @!attribute [rw] invocations_max_retries
|
27503
27619
|
# The maximum number of retries when invocation requests are failing.
|
27620
|
+
# The default value is 3.
|
27504
27621
|
# @return [Integer]
|
27505
27622
|
#
|
27506
27623
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
|
@@ -28004,8 +28121,8 @@ module Aws::SageMaker
|
|
28004
28121
|
# @return [Types::SourceAlgorithmSpecification]
|
28005
28122
|
#
|
28006
28123
|
# @!attribute [rw] validation_specification
|
28007
|
-
# Specifies batch transform jobs that
|
28008
|
-
#
|
28124
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28125
|
+
# model package.
|
28009
28126
|
# @return [Types::ModelPackageValidationSpecification]
|
28010
28127
|
#
|
28011
28128
|
# @!attribute [rw] model_package_status
|
@@ -28184,11 +28301,11 @@ module Aws::SageMaker
|
|
28184
28301
|
# code is stored.
|
28185
28302
|
#
|
28186
28303
|
# If you are using your own custom algorithm instead of an algorithm
|
28187
|
-
# provided by
|
28188
|
-
#
|
28189
|
-
#
|
28190
|
-
#
|
28191
|
-
#
|
28304
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
28305
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
28306
|
+
# and `registry/repository[@digest]` image path formats. For more
|
28307
|
+
# information, see [Using Your Own Algorithms with Amazon
|
28308
|
+
# SageMaker][1].
|
28192
28309
|
#
|
28193
28310
|
#
|
28194
28311
|
#
|
@@ -28520,8 +28637,8 @@ module Aws::SageMaker
|
|
28520
28637
|
include Aws::Structure
|
28521
28638
|
end
|
28522
28639
|
|
28523
|
-
# Specifies batch transform jobs that
|
28524
|
-
#
|
28640
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28641
|
+
# model package.
|
28525
28642
|
#
|
28526
28643
|
# @note When making an API call, you may pass ModelPackageValidationSpecification
|
28527
28644
|
# data as a hash:
|
@@ -28571,8 +28688,8 @@ module Aws::SageMaker
|
|
28571
28688
|
#
|
28572
28689
|
# @!attribute [rw] validation_profiles
|
28573
28690
|
# An array of `ModelPackageValidationProfile` objects, each of which
|
28574
|
-
# specifies a batch transform job that
|
28575
|
-
#
|
28691
|
+
# specifies a batch transform job that SageMaker runs to validate your
|
28692
|
+
# model package.
|
28576
28693
|
# @return [Array<Types::ModelPackageValidationProfile>]
|
28577
28694
|
#
|
28578
28695
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
|
@@ -29945,8 +30062,7 @@ module Aws::SageMaker
|
|
29945
30062
|
include Aws::Structure
|
29946
30063
|
end
|
29947
30064
|
|
29948
|
-
# Provides summary information for an
|
29949
|
-
# instance.
|
30065
|
+
# Provides summary information for an SageMaker notebook instance.
|
29950
30066
|
#
|
29951
30067
|
# @!attribute [rw] notebook_instance_name
|
29952
30068
|
# The name of the notebook instance that you want a summary for.
|
@@ -29961,7 +30077,7 @@ module Aws::SageMaker
|
|
29961
30077
|
# @return [String]
|
29962
30078
|
#
|
29963
30079
|
# @!attribute [rw] url
|
29964
|
-
# The URL that you use to connect to the Jupyter
|
30080
|
+
# The URL that you use to connect to the Jupyter notebook running in
|
29965
30081
|
# your notebook instance.
|
29966
30082
|
# @return [String]
|
29967
30083
|
#
|
@@ -29997,8 +30113,7 @@ module Aws::SageMaker
|
|
29997
30113
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
29998
30114
|
# Git repository. When you open a notebook instance, it opens in the
|
29999
30115
|
# directory that contains this repository. For more information, see
|
30000
|
-
# [Associating Git Repositories with
|
30001
|
-
# Instances][2].
|
30116
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
30002
30117
|
#
|
30003
30118
|
#
|
30004
30119
|
#
|
@@ -30013,7 +30128,7 @@ module Aws::SageMaker
|
|
30013
30128
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
30014
30129
|
# repository. These repositories are cloned at the same level as the
|
30015
30130
|
# default repository of your notebook instance. For more information,
|
30016
|
-
# see [Associating Git Repositories with
|
30131
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
30017
30132
|
# Instances][2].
|
30018
30133
|
#
|
30019
30134
|
#
|
@@ -30639,9 +30754,9 @@ module Aws::SageMaker
|
|
30639
30754
|
#
|
30640
30755
|
# @!attribute [rw] kms_key_id
|
30641
30756
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
30642
|
-
# KMS) key that
|
30643
|
-
#
|
30644
|
-
#
|
30757
|
+
# KMS) key that SageMaker uses to encrypt the model artifacts at rest
|
30758
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
30759
|
+
# the following formats:
|
30645
30760
|
#
|
30646
30761
|
# * // KMS Key ID
|
30647
30762
|
#
|
@@ -30659,14 +30774,13 @@ module Aws::SageMaker
|
|
30659
30774
|
#
|
30660
30775
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
30661
30776
|
#
|
30662
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
30663
|
-
#
|
30664
|
-
#
|
30665
|
-
#
|
30666
|
-
#
|
30667
|
-
#
|
30668
|
-
#
|
30669
|
-
# encryption, set the condition key of
|
30777
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
30778
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
30779
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
30780
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
30781
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
30782
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
30783
|
+
# objects with server-side encryption, set the condition key of
|
30670
30784
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
30671
30785
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
30672
30786
|
# Simple Storage Service Developer Guide.*
|
@@ -30684,8 +30798,8 @@ module Aws::SageMaker
|
|
30684
30798
|
# @return [String]
|
30685
30799
|
#
|
30686
30800
|
# @!attribute [rw] s3_output_path
|
30687
|
-
# Identifies the S3 path where you want
|
30688
|
-
#
|
30801
|
+
# Identifies the S3 path where you want SageMaker to store the model
|
30802
|
+
# artifacts. For example, `s3://bucket-name/key-name-prefix`.
|
30689
30803
|
# @return [String]
|
30690
30804
|
#
|
30691
30805
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
|
@@ -31014,23 +31128,11 @@ module Aws::SageMaker
|
|
31014
31128
|
#
|
31015
31129
|
# @!attribute [rw] current_serverless_config
|
31016
31130
|
# The serverless configuration for the endpoint.
|
31017
|
-
#
|
31018
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31019
|
-
# is subject to change. We do not recommend using this feature in
|
31020
|
-
# production environments.
|
31021
|
-
#
|
31022
|
-
# </note>
|
31023
31131
|
# @return [Types::ProductionVariantServerlessConfig]
|
31024
31132
|
#
|
31025
31133
|
# @!attribute [rw] desired_serverless_config
|
31026
31134
|
# The serverless configuration requested for this deployment, as
|
31027
31135
|
# specified in the endpoint configuration for the endpoint.
|
31028
|
-
#
|
31029
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31030
|
-
# is subject to change. We do not recommend using this feature in
|
31031
|
-
# production environments.
|
31032
|
-
#
|
31033
|
-
# </note>
|
31034
31136
|
# @return [Types::ProductionVariantServerlessConfig]
|
31035
31137
|
#
|
31036
31138
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
|
@@ -32232,8 +32334,8 @@ module Aws::SageMaker
|
|
32232
32334
|
|
32233
32335
|
# Identifies a model that you want to host and the resources chosen to
|
32234
32336
|
# deploy for hosting it. If you are deploying multiple models, tell
|
32235
|
-
#
|
32236
|
-
#
|
32337
|
+
# SageMaker how to distribute traffic among the models by specifying
|
32338
|
+
# variant weights.
|
32237
32339
|
#
|
32238
32340
|
# @note When making an API call, you may pass ProductionVariant
|
32239
32341
|
# data as a hash:
|
@@ -32300,12 +32402,6 @@ module Aws::SageMaker
|
|
32300
32402
|
# The serverless configuration for an endpoint. Specifies a serverless
|
32301
32403
|
# endpoint configuration instead of an instance-based endpoint
|
32302
32404
|
# configuration.
|
32303
|
-
#
|
32304
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32305
|
-
# is subject to change. We do not recommend using this feature in
|
32306
|
-
# production environments.
|
32307
|
-
#
|
32308
|
-
# </note>
|
32309
32405
|
# @return [Types::ProductionVariantServerlessConfig]
|
32310
32406
|
#
|
32311
32407
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
|
@@ -32340,9 +32436,9 @@ module Aws::SageMaker
|
|
32340
32436
|
#
|
32341
32437
|
# @!attribute [rw] kms_key_id
|
32342
32438
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
32343
|
-
# KMS) key that
|
32344
|
-
#
|
32345
|
-
#
|
32439
|
+
# KMS) key that SageMaker uses to encrypt the core dump data at rest
|
32440
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
32441
|
+
# the following formats:
|
32346
32442
|
#
|
32347
32443
|
# * // KMS Key ID
|
32348
32444
|
#
|
@@ -32360,14 +32456,13 @@ module Aws::SageMaker
|
|
32360
32456
|
#
|
32361
32457
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
32362
32458
|
#
|
32363
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
32364
|
-
#
|
32365
|
-
#
|
32366
|
-
#
|
32367
|
-
#
|
32368
|
-
#
|
32369
|
-
#
|
32370
|
-
# encryption, set the condition key of
|
32459
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
32460
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
32461
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
32462
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
32463
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
32464
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
32465
|
+
# objects with server-side encryption, set the condition key of
|
32371
32466
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
32372
32467
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
32373
32468
|
# Simple Storage Service Developer Guide.*
|
@@ -32393,10 +32488,6 @@ module Aws::SageMaker
|
|
32393
32488
|
include Aws::Structure
|
32394
32489
|
end
|
32395
32490
|
|
32396
|
-
# Serverless Inference is in preview release for Amazon SageMaker and is
|
32397
|
-
# subject to change. We do not recommend using this feature in
|
32398
|
-
# production environments.
|
32399
|
-
#
|
32400
32491
|
# Specifies the serverless configuration for an endpoint variant.
|
32401
32492
|
#
|
32402
32493
|
# @note When making an API call, you may pass ProductionVariantServerlessConfig
|
@@ -32506,22 +32597,10 @@ module Aws::SageMaker
|
|
32506
32597
|
#
|
32507
32598
|
# @!attribute [rw] current_serverless_config
|
32508
32599
|
# The serverless configuration for the endpoint.
|
32509
|
-
#
|
32510
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32511
|
-
# is subject to change. We do not recommend using this feature in
|
32512
|
-
# production environments.
|
32513
|
-
#
|
32514
|
-
# </note>
|
32515
32600
|
# @return [Types::ProductionVariantServerlessConfig]
|
32516
32601
|
#
|
32517
32602
|
# @!attribute [rw] desired_serverless_config
|
32518
32603
|
# The serverless configuration requested for the endpoint update.
|
32519
|
-
#
|
32520
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32521
|
-
# is subject to change. We do not recommend using this feature in
|
32522
|
-
# production environments.
|
32523
|
-
#
|
32524
|
-
# </note>
|
32525
32604
|
# @return [Types::ProductionVariantServerlessConfig]
|
32526
32605
|
#
|
32527
32606
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
|
@@ -33338,8 +33417,8 @@ module Aws::SageMaker
|
|
33338
33417
|
# @!attribute [rw] properties
|
33339
33418
|
# Filter the lineage entities connected to the `StartArn`(s) by a set
|
33340
33419
|
# if property key value pairs. If multiple pairs are provided, an
|
33341
|
-
# entity
|
33342
|
-
#
|
33420
|
+
# entity is included in the results if it matches any of the provided
|
33421
|
+
# pairs.
|
33343
33422
|
# @return [Hash<String,String>]
|
33344
33423
|
#
|
33345
33424
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
|
@@ -33385,12 +33464,13 @@ module Aws::SageMaker
|
|
33385
33464
|
# @return [Array<String>]
|
33386
33465
|
#
|
33387
33466
|
# @!attribute [rw] direction
|
33388
|
-
# Associations between lineage entities
|
33389
|
-
# determines the direction from the StartArn(s) the
|
33467
|
+
# Associations between lineage entities have a direction. This
|
33468
|
+
# parameter determines the direction from the StartArn(s) that the
|
33469
|
+
# query traverses.
|
33390
33470
|
# @return [String]
|
33391
33471
|
#
|
33392
33472
|
# @!attribute [rw] include_edges
|
33393
|
-
# Setting this value to `True`
|
33473
|
+
# Setting this value to `True` retrieves not only the entities of
|
33394
33474
|
# interest but also the [Associations][1] and lineage entities on the
|
33395
33475
|
# path. Set to `False` to only return lineage entities that match your
|
33396
33476
|
# query.
|
@@ -33419,8 +33499,8 @@ module Aws::SageMaker
|
|
33419
33499
|
#
|
33420
33500
|
# @!attribute [rw] max_depth
|
33421
33501
|
# The maximum depth in lineage relationships from the `StartArns` that
|
33422
|
-
#
|
33423
|
-
#
|
33502
|
+
# are traversed. Depth is a measure of the number of `Associations`
|
33503
|
+
# from the `StartArn` entity to the matched results.
|
33424
33504
|
# @return [Integer]
|
33425
33505
|
#
|
33426
33506
|
# @!attribute [rw] max_results
|
@@ -33473,11 +33553,43 @@ module Aws::SageMaker
|
|
33473
33553
|
|
33474
33554
|
# A collection of settings that apply to an `RSessionGateway` app.
|
33475
33555
|
#
|
33476
|
-
# @
|
33556
|
+
# @note When making an API call, you may pass RSessionAppSettings
|
33557
|
+
# data as a hash:
|
33558
|
+
#
|
33559
|
+
# {
|
33560
|
+
# default_resource_spec: {
|
33561
|
+
# sage_maker_image_arn: "ImageArn",
|
33562
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
33563
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
33564
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
33565
|
+
# },
|
33566
|
+
# custom_images: [
|
33567
|
+
# {
|
33568
|
+
# image_name: "ImageName", # required
|
33569
|
+
# image_version_number: 1,
|
33570
|
+
# app_image_config_name: "AppImageConfigName", # required
|
33571
|
+
# },
|
33572
|
+
# ],
|
33573
|
+
# }
|
33574
|
+
#
|
33575
|
+
# @!attribute [rw] default_resource_spec
|
33576
|
+
# Specifies the ARN's of a SageMaker image and SageMaker image
|
33577
|
+
# version, and the instance type that the version runs on.
|
33578
|
+
# @return [Types::ResourceSpec]
|
33579
|
+
#
|
33580
|
+
# @!attribute [rw] custom_images
|
33581
|
+
# A list of custom SageMaker images that are configured to run as a
|
33582
|
+
# RSession app.
|
33583
|
+
# @return [Array<Types::CustomImage>]
|
33477
33584
|
#
|
33478
33585
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RSessionAppSettings AWS API Documentation
|
33479
33586
|
#
|
33480
|
-
class RSessionAppSettings <
|
33587
|
+
class RSessionAppSettings < Struct.new(
|
33588
|
+
:default_resource_spec,
|
33589
|
+
:custom_images)
|
33590
|
+
SENSITIVE = []
|
33591
|
+
include Aws::Structure
|
33592
|
+
end
|
33481
33593
|
|
33482
33594
|
# A collection of settings that configure user interaction with the
|
33483
33595
|
# `RStudioServerPro` app. `RStudioServerProAppSettings` cannot be
|
@@ -33594,6 +33706,29 @@ module Aws::SageMaker
|
|
33594
33706
|
include Aws::Structure
|
33595
33707
|
end
|
33596
33708
|
|
33709
|
+
# Provides information about the output configuration for the compiled
|
33710
|
+
# model.
|
33711
|
+
#
|
33712
|
+
# @note When making an API call, you may pass RecommendationJobCompiledOutputConfig
|
33713
|
+
# data as a hash:
|
33714
|
+
#
|
33715
|
+
# {
|
33716
|
+
# s3_output_uri: "S3Uri",
|
33717
|
+
# }
|
33718
|
+
#
|
33719
|
+
# @!attribute [rw] s3_output_uri
|
33720
|
+
# Identifies the Amazon S3 bucket where you want SageMaker to store
|
33721
|
+
# the compiled model artifacts.
|
33722
|
+
# @return [String]
|
33723
|
+
#
|
33724
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobCompiledOutputConfig AWS API Documentation
|
33725
|
+
#
|
33726
|
+
class RecommendationJobCompiledOutputConfig < Struct.new(
|
33727
|
+
:s3_output_uri)
|
33728
|
+
SENSITIVE = []
|
33729
|
+
include Aws::Structure
|
33730
|
+
end
|
33731
|
+
|
33597
33732
|
# The input configuration of the recommendation job.
|
33598
33733
|
#
|
33599
33734
|
# @note When making an API call, you may pass RecommendationJobInputConfig
|
@@ -33630,6 +33765,7 @@ module Aws::SageMaker
|
|
33630
33765
|
# },
|
33631
33766
|
# },
|
33632
33767
|
# ],
|
33768
|
+
# volume_kms_key_id: "KmsKeyId",
|
33633
33769
|
# }
|
33634
33770
|
#
|
33635
33771
|
# @!attribute [rw] model_package_version_arn
|
@@ -33652,6 +33788,46 @@ module Aws::SageMaker
|
|
33652
33788
|
# Specifies the endpoint configuration to use for a job.
|
33653
33789
|
# @return [Array<Types::EndpointInputConfiguration>]
|
33654
33790
|
#
|
33791
|
+
# @!attribute [rw] volume_kms_key_id
|
33792
|
+
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
33793
|
+
# Management Service (Amazon Web Services KMS) key that Amazon
|
33794
|
+
# SageMaker uses to encrypt data on the storage volume attached to the
|
33795
|
+
# ML compute instance that hosts the endpoint. This key will be passed
|
33796
|
+
# to SageMaker Hosting for endpoint creation.
|
33797
|
+
#
|
33798
|
+
# The SageMaker execution role must have `kms:CreateGrant` permission
|
33799
|
+
# in order to encrypt data on the storage volume of the endpoints
|
33800
|
+
# created for inference recommendation. The inference recommendation
|
33801
|
+
# job will fail asynchronously during endpoint configuration creation
|
33802
|
+
# if the role passed does not have `kms:CreateGrant` permission.
|
33803
|
+
#
|
33804
|
+
# The `KmsKeyId` can be any of the following formats:
|
33805
|
+
#
|
33806
|
+
# * // KMS Key ID
|
33807
|
+
#
|
33808
|
+
# `"1234abcd-12ab-34cd-56ef-1234567890ab"`
|
33809
|
+
#
|
33810
|
+
# * // Amazon Resource Name (ARN) of a KMS Key
|
33811
|
+
#
|
33812
|
+
# `"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"`
|
33813
|
+
#
|
33814
|
+
# * // KMS Key Alias
|
33815
|
+
#
|
33816
|
+
# `"alias/ExampleAlias"`
|
33817
|
+
#
|
33818
|
+
# * // Amazon Resource Name (ARN) of a KMS Key Alias
|
33819
|
+
#
|
33820
|
+
# `"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"`
|
33821
|
+
#
|
33822
|
+
# For more information about key identifiers, see [Key identifiers
|
33823
|
+
# (KeyID)][1] in the Amazon Web Services Key Management Service
|
33824
|
+
# (Amazon Web Services KMS) documentation.
|
33825
|
+
#
|
33826
|
+
#
|
33827
|
+
#
|
33828
|
+
# [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
|
33829
|
+
# @return [String]
|
33830
|
+
#
|
33655
33831
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobInputConfig AWS API Documentation
|
33656
33832
|
#
|
33657
33833
|
class RecommendationJobInputConfig < Struct.new(
|
@@ -33659,7 +33835,69 @@ module Aws::SageMaker
|
|
33659
33835
|
:job_duration_in_seconds,
|
33660
33836
|
:traffic_pattern,
|
33661
33837
|
:resource_limit,
|
33662
|
-
:endpoint_configurations
|
33838
|
+
:endpoint_configurations,
|
33839
|
+
:volume_kms_key_id)
|
33840
|
+
SENSITIVE = []
|
33841
|
+
include Aws::Structure
|
33842
|
+
end
|
33843
|
+
|
33844
|
+
# Provides information about the output configuration for the compiled
|
33845
|
+
# model.
|
33846
|
+
#
|
33847
|
+
# @note When making an API call, you may pass RecommendationJobOutputConfig
|
33848
|
+
# data as a hash:
|
33849
|
+
#
|
33850
|
+
# {
|
33851
|
+
# kms_key_id: "KmsKeyId",
|
33852
|
+
# compiled_output_config: {
|
33853
|
+
# s3_output_uri: "S3Uri",
|
33854
|
+
# },
|
33855
|
+
# }
|
33856
|
+
#
|
33857
|
+
# @!attribute [rw] kms_key_id
|
33858
|
+
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
33859
|
+
# Management Service (Amazon Web Services KMS) key that Amazon
|
33860
|
+
# SageMaker uses to encrypt your output artifacts with Amazon S3
|
33861
|
+
# server-side encryption. The SageMaker execution role must have
|
33862
|
+
# `kms:GenerateDataKey` permission.
|
33863
|
+
#
|
33864
|
+
# The `KmsKeyId` can be any of the following formats:
|
33865
|
+
#
|
33866
|
+
# * // KMS Key ID
|
33867
|
+
#
|
33868
|
+
# `"1234abcd-12ab-34cd-56ef-1234567890ab"`
|
33869
|
+
#
|
33870
|
+
# * // Amazon Resource Name (ARN) of a KMS Key
|
33871
|
+
#
|
33872
|
+
# `"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"`
|
33873
|
+
#
|
33874
|
+
# * // KMS Key Alias
|
33875
|
+
#
|
33876
|
+
# `"alias/ExampleAlias"`
|
33877
|
+
#
|
33878
|
+
# * // Amazon Resource Name (ARN) of a KMS Key Alias
|
33879
|
+
#
|
33880
|
+
# `"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"`
|
33881
|
+
#
|
33882
|
+
# For more information about key identifiers, see [Key identifiers
|
33883
|
+
# (KeyID)][1] in the Amazon Web Services Key Management Service
|
33884
|
+
# (Amazon Web Services KMS) documentation.
|
33885
|
+
#
|
33886
|
+
#
|
33887
|
+
#
|
33888
|
+
# [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
|
33889
|
+
# @return [String]
|
33890
|
+
#
|
33891
|
+
# @!attribute [rw] compiled_output_config
|
33892
|
+
# Provides information about the output configuration for the compiled
|
33893
|
+
# model.
|
33894
|
+
# @return [Types::RecommendationJobCompiledOutputConfig]
|
33895
|
+
#
|
33896
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobOutputConfig AWS API Documentation
|
33897
|
+
#
|
33898
|
+
class RecommendationJobOutputConfig < Struct.new(
|
33899
|
+
:kms_key_id,
|
33900
|
+
:compiled_output_config)
|
33663
33901
|
SENSITIVE = []
|
33664
33902
|
include Aws::Structure
|
33665
33903
|
end
|
@@ -34093,15 +34331,15 @@ module Aws::SageMaker
|
|
34093
34331
|
#
|
34094
34332
|
# You must specify sufficient ML storage for your scenario.
|
34095
34333
|
#
|
34096
|
-
# <note markdown="1">
|
34097
|
-
#
|
34334
|
+
# <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
|
34335
|
+
# volume type.
|
34098
34336
|
#
|
34099
34337
|
# </note>
|
34100
34338
|
#
|
34101
34339
|
# <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
|
34102
34340
|
# total size, dependent on the instance type. When using these
|
34103
|
-
# instances for training,
|
34104
|
-
#
|
34341
|
+
# instances for training, SageMaker mounts the local instance storage
|
34342
|
+
# instead of Amazon EBS gp2 storage. You can't request a
|
34105
34343
|
# `VolumeSizeInGB` greater than the total size of the local instance
|
34106
34344
|
# storage.
|
34107
34345
|
#
|
@@ -34117,9 +34355,9 @@ module Aws::SageMaker
|
|
34117
34355
|
# @return [Integer]
|
34118
34356
|
#
|
34119
34357
|
# @!attribute [rw] volume_kms_key_id
|
34120
|
-
# The Amazon Web Services KMS key that
|
34121
|
-
#
|
34122
|
-
#
|
34358
|
+
# The Amazon Web Services KMS key that SageMaker uses to encrypt data
|
34359
|
+
# on the storage volume attached to the ML compute instance(s) that
|
34360
|
+
# run the training job.
|
34123
34361
|
#
|
34124
34362
|
# <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
|
34125
34363
|
# the instance type. Local storage volumes are encrypted using a
|
@@ -34174,8 +34412,8 @@ module Aws::SageMaker
|
|
34174
34412
|
include Aws::Structure
|
34175
34413
|
end
|
34176
34414
|
|
34177
|
-
# You have exceeded an
|
34178
|
-
#
|
34415
|
+
# You have exceeded an SageMaker resource limit. For example, you might
|
34416
|
+
# have too many training jobs created.
|
34179
34417
|
#
|
34180
34418
|
# @!attribute [rw] message
|
34181
34419
|
# @return [String]
|
@@ -34254,6 +34492,12 @@ module Aws::SageMaker
|
|
34254
34492
|
#
|
34255
34493
|
# @!attribute [rw] instance_type
|
34256
34494
|
# The instance type that the image version runs on.
|
34495
|
+
#
|
34496
|
+
# <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
|
34497
|
+
# Apps do not support the `system` value, but support all other values
|
34498
|
+
# for available instance types.
|
34499
|
+
#
|
34500
|
+
# </note>
|
34257
34501
|
# @return [String]
|
34258
34502
|
#
|
34259
34503
|
# @!attribute [rw] lifecycle_config_arn
|
@@ -34388,11 +34632,11 @@ module Aws::SageMaker
|
|
34388
34632
|
#
|
34389
34633
|
# @!attribute [rw] s3_data_type
|
34390
34634
|
# If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
34391
|
-
#
|
34392
|
-
#
|
34635
|
+
# SageMaker uses all objects that match the specified key name prefix
|
34636
|
+
# for model training.
|
34393
34637
|
#
|
34394
34638
|
# If you choose `ManifestFile`, `S3Uri` identifies an object that is a
|
34395
|
-
# manifest file containing a list of object keys that you want
|
34639
|
+
# manifest file containing a list of object keys that you want
|
34396
34640
|
# SageMaker to use for model training.
|
34397
34641
|
#
|
34398
34642
|
# If you choose `AugmentedManifestFile`, S3Uri identifies an object
|
@@ -34446,17 +34690,17 @@ module Aws::SageMaker
|
|
34446
34690
|
#
|
34447
34691
|
# The complete set of `S3Uri` in this manifest is the input data for
|
34448
34692
|
# the channel for this data source. The object that each `S3Uri`
|
34449
|
-
# points to must be readable by the IAM role that
|
34450
|
-
#
|
34693
|
+
# points to must be readable by the IAM role that SageMaker uses to
|
34694
|
+
# perform tasks on your behalf.
|
34451
34695
|
# @return [String]
|
34452
34696
|
#
|
34453
34697
|
# @!attribute [rw] s3_data_distribution_type
|
34454
|
-
# If you want
|
34455
|
-
#
|
34698
|
+
# If you want SageMaker to replicate the entire dataset on each ML
|
34699
|
+
# compute instance that is launched for model training, specify
|
34456
34700
|
# `FullyReplicated`.
|
34457
34701
|
#
|
34458
|
-
# If you want
|
34459
|
-
#
|
34702
|
+
# If you want SageMaker to replicate a subset of data on each ML
|
34703
|
+
# compute instance that is launched for model training, specify
|
34460
34704
|
# `ShardedByS3Key`. If there are *n* ML compute instances launched for
|
34461
34705
|
# a training job, each instance gets approximately 1/*n* of the number
|
34462
34706
|
# of S3 objects. In this case, model training on each machine uses
|
@@ -34880,9 +35124,9 @@ module Aws::SageMaker
|
|
34880
35124
|
# transitioned through. A training job can be in one of several states,
|
34881
35125
|
# for example, starting, downloading, training, or uploading. Within
|
34882
35126
|
# each state, there are a number of intermediate states. For example,
|
34883
|
-
# within the starting state,
|
34884
|
-
#
|
34885
|
-
#
|
35127
|
+
# within the starting state, SageMaker could be starting the training
|
35128
|
+
# job or launching the ML instances. These transitional states are
|
35129
|
+
# referred to as the job's secondary status.
|
34886
35130
|
#
|
34887
35131
|
# @!attribute [rw] status
|
34888
35132
|
# Contains a secondary status information from a training job.
|
@@ -34947,8 +35191,8 @@ module Aws::SageMaker
|
|
34947
35191
|
# @!attribute [rw] status_message
|
34948
35192
|
# A detailed description of the progress within a secondary status.
|
34949
35193
|
#
|
34950
|
-
#
|
34951
|
-
#
|
35194
|
+
# SageMaker provides secondary statuses and status messages that apply
|
35195
|
+
# to each of them:
|
34952
35196
|
#
|
34953
35197
|
# Starting
|
34954
35198
|
# : * Starting the training job.
|
@@ -35313,9 +35557,9 @@ module Aws::SageMaker
|
|
35313
35557
|
end
|
35314
35558
|
|
35315
35559
|
# Specifies an algorithm that was used to create the model package. The
|
35316
|
-
# algorithm must be either an algorithm resource in your
|
35317
|
-
#
|
35318
|
-
#
|
35560
|
+
# algorithm must be either an algorithm resource in your SageMaker
|
35561
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35562
|
+
# are subscribed to.
|
35319
35563
|
#
|
35320
35564
|
# @note When making an API call, you may pass SourceAlgorithm
|
35321
35565
|
# data as a hash:
|
@@ -35338,9 +35582,9 @@ module Aws::SageMaker
|
|
35338
35582
|
#
|
35339
35583
|
# @!attribute [rw] algorithm_name
|
35340
35584
|
# The name of an algorithm that was used to create the model package.
|
35341
|
-
# The algorithm must be either an algorithm resource in your
|
35342
|
-
#
|
35343
|
-
#
|
35585
|
+
# The algorithm must be either an algorithm resource in your SageMaker
|
35586
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35587
|
+
# are subscribed to.
|
35344
35588
|
# @return [String]
|
35345
35589
|
#
|
35346
35590
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
|
@@ -35784,21 +36028,21 @@ module Aws::SageMaker
|
|
35784
36028
|
# Specifies a limit to how long a model training job or model
|
35785
36029
|
# compilation job can run. It also specifies how long a managed spot
|
35786
36030
|
# training job has to complete. When the job reaches the time limit,
|
35787
|
-
#
|
35788
|
-
#
|
35789
|
-
#
|
35790
|
-
# To stop a training job,
|
35791
|
-
#
|
35792
|
-
#
|
35793
|
-
#
|
35794
|
-
#
|
35795
|
-
# The training algorithms provided by
|
35796
|
-
#
|
35797
|
-
#
|
35798
|
-
#
|
35799
|
-
#
|
35800
|
-
#
|
35801
|
-
#
|
36031
|
+
# SageMaker ends the training or compilation job. Use this API to cap
|
36032
|
+
# model training costs.
|
36033
|
+
#
|
36034
|
+
# To stop a training job, SageMaker sends the algorithm the `SIGTERM`
|
36035
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
36036
|
+
# use this 120-second window to save the model artifacts, so the results
|
36037
|
+
# of training are not lost.
|
36038
|
+
#
|
36039
|
+
# The training algorithms provided by SageMaker automatically save the
|
36040
|
+
# intermediate results of a model training job when possible. This
|
36041
|
+
# attempt to save artifacts is only a best effort case as model might
|
36042
|
+
# not be in a state from which it can be saved. For example, if training
|
36043
|
+
# has just started, the model might not be ready to save. When saved,
|
36044
|
+
# this intermediate data is a valid model artifact. You can use it to
|
36045
|
+
# create a model with `CreateModel`.
|
35802
36046
|
#
|
35803
36047
|
# <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
|
35804
36048
|
# intermediate model artifacts. When training NTMs, make sure that the
|
@@ -35819,14 +36063,14 @@ module Aws::SageMaker
|
|
35819
36063
|
# compilation job can run.
|
35820
36064
|
#
|
35821
36065
|
# For compilation jobs, if the job does not complete during this time,
|
35822
|
-
#
|
35823
|
-
# seconds and
|
36066
|
+
# a `TimeOut` error is generated. We recommend starting with 900
|
36067
|
+
# seconds and increasing as necessary based on your model.
|
35824
36068
|
#
|
35825
36069
|
# For all other jobs, if the job does not complete during this time,
|
35826
|
-
#
|
35827
|
-
#
|
35828
|
-
#
|
35829
|
-
#
|
36070
|
+
# SageMaker ends the job. When `RetryStrategy` is specified in the job
|
36071
|
+
# request, `MaxRuntimeInSeconds` specifies the maximum time for all of
|
36072
|
+
# the attempts in total, not each individual attempt. The default
|
36073
|
+
# value is 1 day. The maximum value is 28 days.
|
35830
36074
|
# @return [Integer]
|
35831
36075
|
#
|
35832
36076
|
# @!attribute [rw] max_wait_time_in_seconds
|
@@ -35834,7 +36078,7 @@ module Aws::SageMaker
|
|
35834
36078
|
# job has to complete. It is the amount of time spent waiting for Spot
|
35835
36079
|
# capacity plus the amount of time the job can run. It must be equal
|
35836
36080
|
# to or greater than `MaxRuntimeInSeconds`. If the job does not
|
35837
|
-
# complete during this time,
|
36081
|
+
# complete during this time, SageMaker ends the job.
|
35838
36082
|
#
|
35839
36083
|
# When `RetryStrategy` is specified in the job request,
|
35840
36084
|
# `MaxWaitTimeInSeconds` specifies the maximum time for all of the
|
@@ -36254,8 +36498,8 @@ module Aws::SageMaker
|
|
36254
36498
|
# For detailed information about the secondary status of the training
|
36255
36499
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
36256
36500
|
#
|
36257
|
-
#
|
36258
|
-
#
|
36501
|
+
# SageMaker provides primary statuses and secondary statuses that
|
36502
|
+
# apply to each of them:
|
36259
36503
|
#
|
36260
36504
|
# InProgress
|
36261
36505
|
# : * `Starting` - Starting the training job.
|
@@ -36328,7 +36572,7 @@ module Aws::SageMaker
|
|
36328
36572
|
#
|
36329
36573
|
# @!attribute [rw] output_data_config
|
36330
36574
|
# The S3 path where model artifacts that you configured when creating
|
36331
|
-
# the job are stored.
|
36575
|
+
# the job are stored. SageMaker creates subfolders for model
|
36332
36576
|
# artifacts.
|
36333
36577
|
# @return [Types::OutputDataConfig]
|
36334
36578
|
#
|
@@ -36350,13 +36594,13 @@ module Aws::SageMaker
|
|
36350
36594
|
# @!attribute [rw] stopping_condition
|
36351
36595
|
# Specifies a limit to how long a model training job can run. It also
|
36352
36596
|
# specifies how long a managed Spot training job has to complete. When
|
36353
|
-
# the job reaches the time limit,
|
36354
|
-
#
|
36597
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36598
|
+
# this API to cap model training costs.
|
36355
36599
|
#
|
36356
|
-
# To stop a job,
|
36357
|
-
#
|
36358
|
-
#
|
36359
|
-
#
|
36600
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
36601
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36602
|
+
# this 120-second window to save the model artifacts, so the results
|
36603
|
+
# of training are not lost.
|
36360
36604
|
# @return [Types::StoppingCondition]
|
36361
36605
|
#
|
36362
36606
|
# @!attribute [rw] creation_time
|
@@ -36377,8 +36621,7 @@ module Aws::SageMaker
|
|
36377
36621
|
# You are billed for the time interval between the value of
|
36378
36622
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
36379
36623
|
# jobs, this is the time after model artifacts are uploaded. For
|
36380
|
-
# failed jobs, this is the time when
|
36381
|
-
# failure.
|
36624
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
36382
36625
|
# @return [Time]
|
36383
36626
|
#
|
36384
36627
|
# @!attribute [rw] last_modified_time
|
@@ -36645,7 +36888,7 @@ module Aws::SageMaker
|
|
36645
36888
|
#
|
36646
36889
|
# @!attribute [rw] output_data_config
|
36647
36890
|
# the path to the S3 bucket where you want to store model artifacts.
|
36648
|
-
#
|
36891
|
+
# SageMaker creates subfolders for the artifacts.
|
36649
36892
|
# @return [Types::OutputDataConfig]
|
36650
36893
|
#
|
36651
36894
|
# @!attribute [rw] resource_config
|
@@ -36656,12 +36899,12 @@ module Aws::SageMaker
|
|
36656
36899
|
# @!attribute [rw] stopping_condition
|
36657
36900
|
# Specifies a limit to how long a model training job can run. It also
|
36658
36901
|
# specifies how long a managed Spot training job has to complete. When
|
36659
|
-
# the job reaches the time limit,
|
36660
|
-
#
|
36902
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36903
|
+
# this API to cap model training costs.
|
36661
36904
|
#
|
36662
|
-
# To stop a job,
|
36663
|
-
#
|
36664
|
-
#
|
36905
|
+
# To stop a job, SageMaker sends the algorithm the SIGTERM signal,
|
36906
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36907
|
+
# this 120-second window to save the model artifacts.
|
36665
36908
|
# @return [Types::StoppingCondition]
|
36666
36909
|
#
|
36667
36910
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
|
@@ -38733,6 +38976,19 @@ module Aws::SageMaker
|
|
38733
38976
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
38734
38977
|
# },
|
38735
38978
|
# r_session_app_settings: {
|
38979
|
+
# default_resource_spec: {
|
38980
|
+
# sage_maker_image_arn: "ImageArn",
|
38981
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
38982
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
38983
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
38984
|
+
# },
|
38985
|
+
# custom_images: [
|
38986
|
+
# {
|
38987
|
+
# image_name: "ImageName", # required
|
38988
|
+
# image_version_number: 1,
|
38989
|
+
# app_image_config_name: "AppImageConfigName", # required
|
38990
|
+
# },
|
38991
|
+
# ],
|
38736
38992
|
# },
|
38737
38993
|
# },
|
38738
38994
|
# domain_settings_for_update: {
|
@@ -38903,7 +39159,7 @@ module Aws::SageMaker
|
|
38903
39159
|
# }
|
38904
39160
|
#
|
38905
39161
|
# @!attribute [rw] endpoint_name
|
38906
|
-
# The name of an existing
|
39162
|
+
# The name of an existing SageMaker endpoint.
|
38907
39163
|
# @return [String]
|
38908
39164
|
#
|
38909
39165
|
# @!attribute [rw] desired_weights_and_capacities
|
@@ -39272,12 +39528,12 @@ module Aws::SageMaker
|
|
39272
39528
|
# @return [String]
|
39273
39529
|
#
|
39274
39530
|
# @!attribute [rw] role_arn
|
39275
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
39276
|
-
#
|
39277
|
-
#
|
39531
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
39532
|
+
# assume to access the notebook instance. For more information, see
|
39533
|
+
# [SageMaker Roles][1].
|
39278
39534
|
#
|
39279
|
-
# <note markdown="1"> To be able to pass this role to
|
39280
|
-
#
|
39535
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
39536
|
+
# must have the `iam:PassRole` permission.
|
39281
39537
|
#
|
39282
39538
|
# </note>
|
39283
39539
|
#
|
@@ -39307,12 +39563,12 @@ module Aws::SageMaker
|
|
39307
39563
|
# @!attribute [rw] volume_size_in_gb
|
39308
39564
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
39309
39565
|
# instance. The default value is 5 GB. ML storage volumes are
|
39310
|
-
# encrypted, so
|
39311
|
-
#
|
39312
|
-
#
|
39313
|
-
#
|
39314
|
-
#
|
39315
|
-
#
|
39566
|
+
# encrypted, so SageMaker can't determine the amount of available
|
39567
|
+
# free space on the volume. Because of this, you can increase the
|
39568
|
+
# volume size when you update a notebook instance, but you can't
|
39569
|
+
# decrease the volume size. If you want to decrease the size of the ML
|
39570
|
+
# storage volume in use, create a new notebook instance with the
|
39571
|
+
# desired size.
|
39316
39572
|
# @return [Integer]
|
39317
39573
|
#
|
39318
39574
|
# @!attribute [rw] default_code_repository
|
@@ -39322,8 +39578,7 @@ module Aws::SageMaker
|
|
39322
39578
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
39323
39579
|
# Git repository. When you open a notebook instance, it opens in the
|
39324
39580
|
# directory that contains this repository. For more information, see
|
39325
|
-
# [Associating Git Repositories with
|
39326
|
-
# Instances][2].
|
39581
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
39327
39582
|
#
|
39328
39583
|
#
|
39329
39584
|
#
|
@@ -39338,7 +39593,7 @@ module Aws::SageMaker
|
|
39338
39593
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
39339
39594
|
# repository. These repositories are cloned at the same level as the
|
39340
39595
|
# default repository of your notebook instance. For more information,
|
39341
|
-
# see [Associating Git Repositories with
|
39596
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
39342
39597
|
# Instances][2].
|
39343
39598
|
#
|
39344
39599
|
#
|
@@ -39934,6 +40189,19 @@ module Aws::SageMaker
|
|
39934
40189
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
39935
40190
|
# },
|
39936
40191
|
# r_session_app_settings: {
|
40192
|
+
# default_resource_spec: {
|
40193
|
+
# sage_maker_image_arn: "ImageArn",
|
40194
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
40195
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
40196
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
40197
|
+
# },
|
40198
|
+
# custom_images: [
|
40199
|
+
# {
|
40200
|
+
# image_name: "ImageName", # required
|
40201
|
+
# image_version_number: 1,
|
40202
|
+
# app_image_config_name: "AppImageConfigName", # required
|
40203
|
+
# },
|
40204
|
+
# ],
|
39937
40205
|
# },
|
39938
40206
|
# },
|
39939
40207
|
# }
|
@@ -40252,6 +40520,19 @@ module Aws::SageMaker
|
|
40252
40520
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
40253
40521
|
# },
|
40254
40522
|
# r_session_app_settings: {
|
40523
|
+
# default_resource_spec: {
|
40524
|
+
# sage_maker_image_arn: "ImageArn",
|
40525
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
40526
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
40527
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
40528
|
+
# },
|
40529
|
+
# custom_images: [
|
40530
|
+
# {
|
40531
|
+
# image_name: "ImageName", # required
|
40532
|
+
# image_version_number: 1,
|
40533
|
+
# app_image_config_name: "AppImageConfigName", # required
|
40534
|
+
# },
|
40535
|
+
# ],
|
40255
40536
|
# },
|
40256
40537
|
# }
|
40257
40538
|
#
|