aws-sdk-sagemaker 1.121.0 → 1.124.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -192,7 +192,7 @@ module Aws::SageMaker
192
192
  end
193
193
 
194
194
  # @!attribute [rw] tags
195
- # A list of tags associated with the Amazon SageMaker resource.
195
+ # A list of tags associated with the SageMaker resource.
196
196
  # @return [Array<Types::Tag>]
197
197
  #
198
198
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
@@ -328,9 +328,9 @@ module Aws::SageMaker
328
328
  # Specifies the training algorithm to use in a CreateTrainingJob
329
329
  # request.
330
330
  #
331
- # For more information about algorithms provided by Amazon SageMaker,
332
- # see [Algorithms][1]. For information about using your own algorithms,
333
- # see [Using Your Own Algorithms with Amazon SageMaker][2].
331
+ # For more information about algorithms provided by SageMaker, see
332
+ # [Algorithms][1]. For information about using your own algorithms, see
333
+ # [Using Your Own Algorithms with Amazon SageMaker][2].
334
334
  #
335
335
  #
336
336
  #
@@ -357,10 +357,10 @@ module Aws::SageMaker
357
357
  # The registry path of the Docker image that contains the training
358
358
  # algorithm. For information about docker registry paths for built-in
359
359
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
360
- # Parameters][1]. Amazon SageMaker supports both
361
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
362
- # path formats. For more information, see [Using Your Own Algorithms
363
- # with Amazon SageMaker][2].
360
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
361
+ # and `registry/repository[@digest]` image path formats. For more
362
+ # information, see [Using Your Own Algorithms with Amazon
363
+ # SageMaker][2].
364
364
  #
365
365
  #
366
366
  #
@@ -424,7 +424,7 @@ module Aws::SageMaker
424
424
  # @!attribute [rw] metric_definitions
425
425
  # A list of metric definition objects. Each object specifies the
426
426
  # metric name and regular expressions used to parse algorithm logs.
427
- # Amazon SageMaker publishes each metric to Amazon CloudWatch.
427
+ # SageMaker publishes each metric to Amazon CloudWatch.
428
428
  # @return [Array<Types::MetricDefinition>]
429
429
  #
430
430
  # @!attribute [rw] enable_sage_maker_metrics_time_series
@@ -432,9 +432,9 @@ module Aws::SageMaker
432
432
  # `true`. The default is `false` and time-series metrics aren't
433
433
  # generated except in the following cases:
434
434
  #
435
- # * You use one of the Amazon SageMaker built-in algorithms
435
+ # * You use one of the SageMaker built-in algorithms
436
436
  #
437
- # * You use one of the following [Prebuilt Amazon SageMaker Docker
437
+ # * You use one of the following [Prebuilt SageMaker Docker
438
438
  # Images][1]\:
439
439
  #
440
440
  # * Tensorflow (version &gt;= 1.15)
@@ -540,8 +540,8 @@ module Aws::SageMaker
540
540
  include Aws::Structure
541
541
  end
542
542
 
543
- # Defines a training job and a batch transform job that Amazon SageMaker
544
- # runs to validate your algorithm.
543
+ # Defines a training job and a batch transform job that SageMaker runs
544
+ # to validate your algorithm.
545
545
  #
546
546
  # The data provided in the validation profile is made available to your
547
547
  # buyers on Amazon Web Services Marketplace.
@@ -636,12 +636,12 @@ module Aws::SageMaker
636
636
  #
637
637
  # @!attribute [rw] training_job_definition
638
638
  # The `TrainingJobDefinition` object that describes the training job
639
- # that Amazon SageMaker runs to validate your algorithm.
639
+ # that SageMaker runs to validate your algorithm.
640
640
  # @return [Types::TrainingJobDefinition]
641
641
  #
642
642
  # @!attribute [rw] transform_job_definition
643
643
  # The `TransformJobDefinition` object that describes the transform job
644
- # that Amazon SageMaker runs to validate your algorithm.
644
+ # that SageMaker runs to validate your algorithm.
645
645
  # @return [Types::TransformJobDefinition]
646
646
  #
647
647
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
@@ -654,8 +654,8 @@ module Aws::SageMaker
654
654
  include Aws::Structure
655
655
  end
656
656
 
657
- # Specifies configurations for one or more training jobs that Amazon
658
- # SageMaker runs to test the algorithm.
657
+ # Specifies configurations for one or more training jobs that SageMaker
658
+ # runs to test the algorithm.
659
659
  #
660
660
  # @note When making an API call, you may pass AlgorithmValidationSpecification
661
661
  # data as a hash:
@@ -746,13 +746,13 @@ module Aws::SageMaker
746
746
  # }
747
747
  #
748
748
  # @!attribute [rw] validation_role
749
- # The IAM roles that Amazon SageMaker uses to run the training jobs.
749
+ # The IAM roles that SageMaker uses to run the training jobs.
750
750
  # @return [String]
751
751
  #
752
752
  # @!attribute [rw] validation_profiles
753
753
  # An array of `AlgorithmValidationProfile` objects, each of which
754
- # specifies a training job and batch transform job that Amazon
755
- # SageMaker runs to validate your algorithm.
754
+ # specifies a training job and batch transform job that SageMaker runs
755
+ # to validate your algorithm.
756
756
  # @return [Array<Types::AlgorithmValidationProfile>]
757
757
  #
758
758
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
1742
1742
  include Aws::Structure
1743
1743
  end
1744
1744
 
1745
- # Configures the behavior of the client used by Amazon SageMaker to
1746
- # interact with the model container during asynchronous inference.
1745
+ # Configures the behavior of the client used by SageMaker to interact
1746
+ # with the model container during asynchronous inference.
1747
1747
  #
1748
1748
  # @note When making an API call, you may pass AsyncInferenceClientConfig
1749
1749
  # data as a hash:
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
1754
1754
  #
1755
1755
  # @!attribute [rw] max_concurrent_invocations_per_instance
1756
1756
  # The maximum number of concurrent requests sent by the SageMaker
1757
- # client to the model container. If no value is provided, Amazon
1758
- # SageMaker will choose an optimal value for you.
1757
+ # client to the model container. If no value is provided, SageMaker
1758
+ # chooses an optimal value.
1759
1759
  # @return [Integer]
1760
1760
  #
1761
1761
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
1787
1787
  # }
1788
1788
  #
1789
1789
  # @!attribute [rw] client_config
1790
- # Configures the behavior of the client used by Amazon SageMaker to
1791
- # interact with the model container during asynchronous inference.
1790
+ # Configures the behavior of the client used by SageMaker to interact
1791
+ # with the model container during asynchronous inference.
1792
1792
  # @return [Types::AsyncInferenceClientConfig]
1793
1793
  #
1794
1794
  # @!attribute [rw] output_config
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
1853
1853
  #
1854
1854
  # @!attribute [rw] kms_key_id
1855
1855
  # The Amazon Web Services Key Management Service (Amazon Web Services
1856
- # KMS) key that Amazon SageMaker uses to encrypt the asynchronous
1857
- # inference output in Amazon S3.
1856
+ # KMS) key that SageMaker uses to encrypt the asynchronous inference
1857
+ # output in Amazon S3.
1858
1858
  # @return [String]
1859
1859
  #
1860
1860
  # @!attribute [rw] s3_output_path
@@ -2034,7 +2034,14 @@ module Aws::SageMaker
2034
2034
  end
2035
2035
 
2036
2036
  # A channel is a named input source that training algorithms can
2037
- # consume. For more information, see .
2037
+ # consume. The validation dataset size is limited to less than 2 GB. The
2038
+ # training dataset size must be less than 100 GB. For more information,
2039
+ # see .
2040
+ #
2041
+ # <note markdown="1"> A validation dataset must contain the same headers as the training
2042
+ # dataset.
2043
+ #
2044
+ # </note>
2038
2045
  #
2039
2046
  # @note When making an API call, you may pass AutoMLChannel
2040
2047
  # data as a hash:
@@ -2049,6 +2056,7 @@ module Aws::SageMaker
2049
2056
  # compression_type: "None", # accepts None, Gzip
2050
2057
  # target_attribute_name: "TargetAttributeName", # required
2051
2058
  # content_type: "ContentType",
2059
+ # channel_type: "training", # accepts training, validation
2052
2060
  # }
2053
2061
  #
2054
2062
  # @!attribute [rw] data_source
@@ -2070,13 +2078,20 @@ module Aws::SageMaker
2070
2078
  # default value is `text/csv;header=present`.
2071
2079
  # @return [String]
2072
2080
  #
2081
+ # @!attribute [rw] channel_type
2082
+ # The channel type (optional) is an enum string. The default value is
2083
+ # `training`. Channels for training and validation must share the same
2084
+ # `ContentType` and `TargetAttributeName`.
2085
+ # @return [String]
2086
+ #
2073
2087
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
2074
2088
  #
2075
2089
  class AutoMLChannel < Struct.new(
2076
2090
  :data_source,
2077
2091
  :compression_type,
2078
2092
  :target_attribute_name,
2079
- :content_type)
2093
+ :content_type,
2094
+ :channel_type)
2080
2095
  SENSITIVE = []
2081
2096
  include Aws::Structure
2082
2097
  end
@@ -2136,6 +2151,32 @@ module Aws::SageMaker
2136
2151
  include Aws::Structure
2137
2152
  end
2138
2153
 
2154
+ # This structure specifies how to split the data into train and test
2155
+ # datasets. The validation and training datasets must contain the same
2156
+ # headers. The validation dataset must be less than 2 GB in size.
2157
+ #
2158
+ # @note When making an API call, you may pass AutoMLDataSplitConfig
2159
+ # data as a hash:
2160
+ #
2161
+ # {
2162
+ # validation_fraction: 1.0,
2163
+ # }
2164
+ #
2165
+ # @!attribute [rw] validation_fraction
2166
+ # The validation fraction (optional) is a float that specifies the
2167
+ # portion of the training dataset to be used for validation. The
2168
+ # default value is 0.2, and values can range from 0 to 1. We recommend
2169
+ # setting this value to be less than 0.5.
2170
+ # @return [Float]
2171
+ #
2172
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
2173
+ #
2174
+ class AutoMLDataSplitConfig < Struct.new(
2175
+ :validation_fraction)
2176
+ SENSITIVE = []
2177
+ include Aws::Structure
2178
+ end
2179
+
2139
2180
  # The artifacts that are generated during an AutoML job.
2140
2181
  #
2141
2182
  # @!attribute [rw] candidate_definition_notebook_location
@@ -2217,6 +2258,9 @@ module Aws::SageMaker
2217
2258
  # subnets: ["SubnetId"], # required
2218
2259
  # },
2219
2260
  # },
2261
+ # data_split_config: {
2262
+ # validation_fraction: 1.0,
2263
+ # },
2220
2264
  # }
2221
2265
  #
2222
2266
  # @!attribute [rw] completion_criteria
@@ -2229,11 +2273,18 @@ module Aws::SageMaker
2229
2273
  # settings.
2230
2274
  # @return [Types::AutoMLSecurityConfig]
2231
2275
  #
2276
+ # @!attribute [rw] data_split_config
2277
+ # The configuration for splitting the input training dataset.
2278
+ #
2279
+ # Type: AutoMLDataSplitConfig
2280
+ # @return [Types::AutoMLDataSplitConfig]
2281
+ #
2232
2282
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
2233
2283
  #
2234
2284
  class AutoMLJobConfig < Struct.new(
2235
2285
  :completion_criteria,
2236
- :security_config)
2286
+ :security_config,
2287
+ :data_split_config)
2237
2288
  SENSITIVE = []
2238
2289
  include Aws::Structure
2239
2290
  end
@@ -3005,10 +3056,10 @@ module Aws::SageMaker
3005
3056
  # @!attribute [rw] record_wrapper_type
3006
3057
  # Specify RecordIO as the value when input data is in raw format but
3007
3058
  # the training algorithm requires the RecordIO format. In this case,
3008
- # Amazon SageMaker wraps each individual S3 object in a RecordIO
3009
- # record. If the input data is already in RecordIO format, you don't
3010
- # need to set this attribute. For more information, see [Create a
3011
- # Dataset Using RecordIO][1].
3059
+ # SageMaker wraps each individual S3 object in a RecordIO record. If
3060
+ # the input data is already in RecordIO format, you don't need to set
3061
+ # this attribute. For more information, see [Create a Dataset Using
3062
+ # RecordIO][1].
3012
3063
  #
3013
3064
  # In File mode, leave this field unset or set it to None.
3014
3065
  #
@@ -3019,15 +3070,15 @@ module Aws::SageMaker
3019
3070
  #
3020
3071
  # @!attribute [rw] input_mode
3021
3072
  # (Optional) The input mode to use for the data channel in a training
3022
- # job. If you don't set a value for `InputMode`, Amazon SageMaker
3023
- # uses the value set for `TrainingInputMode`. Use this parameter to
3024
- # override the `TrainingInputMode` setting in a AlgorithmSpecification
3025
- # request when you have a channel that needs a different input mode
3026
- # from the training job's general setting. To download the data from
3027
- # Amazon Simple Storage Service (Amazon S3) to the provisioned ML
3028
- # storage volume, and mount the directory to a Docker volume, use
3029
- # `File` input mode. To stream data directly from Amazon S3 to the
3030
- # container, choose `Pipe` input mode.
3073
+ # job. If you don't set a value for `InputMode`, SageMaker uses the
3074
+ # value set for `TrainingInputMode`. Use this parameter to override
3075
+ # the `TrainingInputMode` setting in a AlgorithmSpecification request
3076
+ # when you have a channel that needs a different input mode from the
3077
+ # training job's general setting. To download the data from Amazon
3078
+ # Simple Storage Service (Amazon S3) to the provisioned ML storage
3079
+ # volume, and mount the directory to a Docker volume, use `File` input
3080
+ # mode. To stream data directly from Amazon S3 to the container,
3081
+ # choose `Pipe` input mode.
3031
3082
  #
3032
3083
  # To use a model for incremental training, choose `File` input model.
3033
3084
  # @return [String]
@@ -3137,7 +3188,7 @@ module Aws::SageMaker
3137
3188
  # }
3138
3189
  #
3139
3190
  # @!attribute [rw] s3_uri
3140
- # Identifies the S3 path where you want Amazon SageMaker to store
3191
+ # Identifies the S3 path where you want SageMaker to store
3141
3192
  # checkpoints. For example, `s3://bucket-name/key-name-prefix`.
3142
3193
  # @return [String]
3143
3194
  #
@@ -3514,11 +3565,11 @@ module Aws::SageMaker
3514
3565
  # Amazon EC2 Container Registry or in a Docker registry that is
3515
3566
  # accessible from the same VPC that you configure for your endpoint.
3516
3567
  # If you are using your own custom algorithm instead of an algorithm
3517
- # provided by Amazon SageMaker, the inference code must meet Amazon
3518
- # SageMaker requirements. Amazon SageMaker supports both
3519
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
3520
- # path formats. For more information, see [Using Your Own Algorithms
3521
- # with Amazon SageMaker][1]
3568
+ # provided by SageMaker, the inference code must meet SageMaker
3569
+ # requirements. SageMaker supports both `registry/repository[:tag]`
3570
+ # and `registry/repository[@digest]` image path formats. For more
3571
+ # information, see [Using Your Own Algorithms with Amazon
3572
+ # SageMaker][1]
3522
3573
  #
3523
3574
  #
3524
3575
  #
@@ -3545,7 +3596,7 @@ module Aws::SageMaker
3545
3596
  # The S3 path where the model artifacts, which result from model
3546
3597
  # training, are stored. This path must point to a single gzip
3547
3598
  # compressed tar archive (.tar.gz suffix). The S3 path is required for
3548
- # Amazon SageMaker built-in algorithms, but not if you use your own
3599
+ # SageMaker built-in algorithms, but not if you use your own
3549
3600
  # algorithms. For more information on built-in algorithms, see [Common
3550
3601
  # Parameters][1].
3551
3602
  #
@@ -3554,17 +3605,17 @@ module Aws::SageMaker
3554
3605
  #
3555
3606
  # </note>
3556
3607
  #
3557
- # If you provide a value for this parameter, Amazon SageMaker uses
3558
- # Amazon Web Services Security Token Service to download model
3559
- # artifacts from the S3 path you provide. Amazon Web Services STS is
3560
- # activated in your IAM user account by default. If you previously
3561
- # deactivated Amazon Web Services STS for a region, you need to
3562
- # reactivate Amazon Web Services STS for that region. For more
3563
- # information, see [Activating and Deactivating Amazon Web Services
3564
- # STS in an Amazon Web Services Region][2] in the *Amazon Web Services
3565
- # Identity and Access Management User Guide*.
3566
- #
3567
- # If you use a built-in algorithm to create a model, Amazon SageMaker
3608
+ # If you provide a value for this parameter, SageMaker uses Amazon Web
3609
+ # Services Security Token Service to download model artifacts from the
3610
+ # S3 path you provide. Amazon Web Services STS is activated in your
3611
+ # IAM user account by default. If you previously deactivated Amazon
3612
+ # Web Services STS for a region, you need to reactivate Amazon Web
3613
+ # Services STS for that region. For more information, see [Activating
3614
+ # and Deactivating Amazon Web Services STS in an Amazon Web Services
3615
+ # Region][2] in the *Amazon Web Services Identity and Access
3616
+ # Management User Guide*.
3617
+ #
3618
+ # If you use a built-in algorithm to create a model, SageMaker
3568
3619
  # requires that you provide a S3 path to the model artifacts in
3569
3620
  # `ModelDataUrl`.
3570
3621
  #
@@ -3717,8 +3768,8 @@ module Aws::SageMaker
3717
3768
  #
3718
3769
  # Auto
3719
3770
  #
3720
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
3721
- # the hyperparameter.
3771
+ # : SageMaker hyperparameter tuning chooses the best scale for the
3772
+ # hyperparameter.
3722
3773
  #
3723
3774
  # Linear
3724
3775
  #
@@ -4096,9 +4147,9 @@ module Aws::SageMaker
4096
4147
  #
4097
4148
  # @!attribute [rw] validation_specification
4098
4149
  # Specifies configurations for one or more training jobs and that
4099
- # Amazon SageMaker runs to test the algorithm's training code and,
4100
- # optionally, one or more batch transform jobs that Amazon SageMaker
4101
- # runs to test the algorithm's inference code.
4150
+ # SageMaker runs to test the algorithm's training code and,
4151
+ # optionally, one or more batch transform jobs that SageMaker runs to
4152
+ # test the algorithm's inference code.
4102
4153
  # @return [Types::AlgorithmValidationSpecification]
4103
4154
  #
4104
4155
  # @!attribute [rw] certify_for_marketplace
@@ -4376,6 +4427,7 @@ module Aws::SageMaker
4376
4427
  # compression_type: "None", # accepts None, Gzip
4377
4428
  # target_attribute_name: "TargetAttributeName", # required
4378
4429
  # content_type: "ContentType",
4430
+ # channel_type: "training", # accepts training, validation
4379
4431
  # },
4380
4432
  # ],
4381
4433
  # output_data_config: { # required
@@ -4400,6 +4452,9 @@ module Aws::SageMaker
4400
4452
  # subnets: ["SubnetId"], # required
4401
4453
  # },
4402
4454
  # },
4455
+ # data_split_config: {
4456
+ # validation_fraction: 1.0,
4457
+ # },
4403
4458
  # },
4404
4459
  # role_arn: "RoleArn", # required
4405
4460
  # generate_candidate_definitions_only: false,
@@ -5064,6 +5119,19 @@ module Aws::SageMaker
5064
5119
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
5065
5120
  # },
5066
5121
  # r_session_app_settings: {
5122
+ # default_resource_spec: {
5123
+ # sage_maker_image_arn: "ImageArn",
5124
+ # sage_maker_image_version_arn: "ImageVersionArn",
5125
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
5126
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
5127
+ # },
5128
+ # custom_images: [
5129
+ # {
5130
+ # image_name: "ImageName", # required
5131
+ # image_version_number: 1,
5132
+ # app_image_config_name: "AppImageConfigName", # required
5133
+ # },
5134
+ # ],
5067
5135
  # },
5068
5136
  # },
5069
5137
  # subnet_ids: ["SubnetId"], # required
@@ -5361,9 +5429,9 @@ module Aws::SageMaker
5361
5429
  #
5362
5430
  # @!attribute [rw] kms_key_id
5363
5431
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
5364
- # Management Service key that Amazon SageMaker uses to encrypt data on
5365
- # the storage volume attached to the ML compute instance that hosts
5366
- # the endpoint.
5432
+ # Management Service key that SageMaker uses to encrypt data on the
5433
+ # storage volume attached to the ML compute instance that hosts the
5434
+ # endpoint.
5367
5435
  #
5368
5436
  # The KmsKeyId can be any of the following formats:
5369
5437
  #
@@ -6277,8 +6345,8 @@ module Aws::SageMaker
6277
6345
  end
6278
6346
 
6279
6347
  # @!attribute [rw] hyper_parameter_tuning_job_arn
6280
- # The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker
6281
- # assigns an ARN to a hyperparameter tuning job when you create it.
6348
+ # The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
6349
+ # an ARN to a hyperparameter tuning job when you create it.
6282
6350
  # @return [String]
6283
6351
  #
6284
6352
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
@@ -6362,8 +6430,8 @@ module Aws::SageMaker
6362
6430
  #
6363
6431
  # @!attribute [rw] base_image
6364
6432
  # The registry path of the container image to use as the starting
6365
- # point for this version. The path is an Amazon Container Registry
6366
- # (ECR) URI in the following format:
6433
+ # point for this version. The path is an Amazon Elastic Container
6434
+ # Registry (ECR) URI in the following format:
6367
6435
  #
6368
6436
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
6369
6437
  # [@digest]>`
@@ -6442,6 +6510,7 @@ module Aws::SageMaker
6442
6510
  # },
6443
6511
  # },
6444
6512
  # ],
6513
+ # volume_kms_key_id: "KmsKeyId",
6445
6514
  # },
6446
6515
  # job_description: "RecommendationJobDescription",
6447
6516
  # stopping_conditions: {
@@ -6453,6 +6522,12 @@ module Aws::SageMaker
6453
6522
  # },
6454
6523
  # ],
6455
6524
  # },
6525
+ # output_config: {
6526
+ # kms_key_id: "KmsKeyId",
6527
+ # compiled_output_config: {
6528
+ # s3_output_uri: "S3Uri",
6529
+ # },
6530
+ # },
6456
6531
  # tags: [
6457
6532
  # {
6458
6533
  # key: "TagKey", # required
@@ -6494,6 +6569,11 @@ module Aws::SageMaker
6494
6569
  # conditions are met, the job is automatically stopped.
6495
6570
  # @return [Types::RecommendationJobStoppingConditions]
6496
6571
  #
6572
+ # @!attribute [rw] output_config
6573
+ # Provides information about the output artifacts and the KMS key to
6574
+ # use for Amazon S3 server-side encryption.
6575
+ # @return [Types::RecommendationJobOutputConfig]
6576
+ #
6497
6577
  # @!attribute [rw] tags
6498
6578
  # The metadata that you apply to Amazon Web Services resources to help
6499
6579
  # you categorize and organize them. Each tag consists of a key and a
@@ -6515,6 +6595,7 @@ module Aws::SageMaker
6515
6595
  :input_config,
6516
6596
  :job_description,
6517
6597
  :stopping_conditions,
6598
+ :output_config,
6518
6599
  :tags)
6519
6600
  SENSITIVE = []
6520
6601
  include Aws::Structure
@@ -7203,14 +7284,14 @@ module Aws::SageMaker
7203
7284
  # @return [Types::InferenceExecutionConfig]
7204
7285
  #
7205
7286
  # @!attribute [rw] execution_role_arn
7206
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
7207
- # can assume to access model artifacts and docker image for deployment
7208
- # on ML compute instances or for batch transform jobs. Deploying on ML
7287
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
7288
+ # assume to access model artifacts and docker image for deployment on
7289
+ # ML compute instances or for batch transform jobs. Deploying on ML
7209
7290
  # compute instances is part of model hosting. For more information,
7210
- # see [Amazon SageMaker Roles][1].
7291
+ # see [SageMaker Roles][1].
7211
7292
  #
7212
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
7213
- # API must have the `iam:PassRole` permission.
7293
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
7294
+ # must have the `iam:PassRole` permission.
7214
7295
  #
7215
7296
  # </note>
7216
7297
  #
@@ -7265,7 +7346,7 @@ module Aws::SageMaker
7265
7346
  end
7266
7347
 
7267
7348
  # @!attribute [rw] model_arn
7268
- # The ARN of the model created in Amazon SageMaker.
7349
+ # The ARN of the model created in SageMaker.
7269
7350
  # @return [String]
7270
7351
  #
7271
7352
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
@@ -7598,7 +7679,7 @@ module Aws::SageMaker
7598
7679
  # @return [Types::InferenceSpecification]
7599
7680
  #
7600
7681
  # @!attribute [rw] validation_specification
7601
- # Specifies configurations for one or more transform jobs that Amazon
7682
+ # Specifies configurations for one or more transform jobs that
7602
7683
  # SageMaker runs to test the model package.
7603
7684
  # @return [Types::ModelPackageValidationSpecification]
7604
7685
  #
@@ -8060,15 +8141,14 @@ module Aws::SageMaker
8060
8141
  #
8061
8142
  # @!attribute [rw] role_arn
8062
8143
  # When you send any requests to Amazon Web Services resources from the
8063
- # notebook instance, Amazon SageMaker assumes this role to perform
8064
- # tasks on your behalf. You must grant this role necessary permissions
8065
- # so Amazon SageMaker can perform these tasks. The policy must allow
8066
- # the Amazon SageMaker service principal (sagemaker.amazonaws.com)
8067
- # permissions to assume this role. For more information, see [Amazon
8068
- # SageMaker Roles][1].
8144
+ # notebook instance, SageMaker assumes this role to perform tasks on
8145
+ # your behalf. You must grant this role necessary permissions so
8146
+ # SageMaker can perform these tasks. The policy must allow the
8147
+ # SageMaker service principal (sagemaker.amazonaws.com) permissions to
8148
+ # assume this role. For more information, see [SageMaker Roles][1].
8069
8149
  #
8070
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
8071
- # API must have the `iam:PassRole` permission.
8150
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
8151
+ # must have the `iam:PassRole` permission.
8072
8152
  #
8073
8153
  # </note>
8074
8154
  #
@@ -8079,9 +8159,9 @@ module Aws::SageMaker
8079
8159
  #
8080
8160
  # @!attribute [rw] kms_key_id
8081
8161
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
8082
- # Management Service key that Amazon SageMaker uses to encrypt data on
8083
- # the storage volume attached to your notebook instance. The KMS key
8084
- # you provide must be enabled. For information, see [Enabling and
8162
+ # Management Service key that SageMaker uses to encrypt data on the
8163
+ # storage volume attached to your notebook instance. The KMS key you
8164
+ # provide must be enabled. For information, see [Enabling and
8085
8165
  # Disabling Keys][1] in the *Amazon Web Services Key Management
8086
8166
  # Service Developer Guide*.
8087
8167
  #
@@ -8112,11 +8192,11 @@ module Aws::SageMaker
8112
8192
  # @return [String]
8113
8193
  #
8114
8194
  # @!attribute [rw] direct_internet_access
8115
- # Sets whether Amazon SageMaker provides internet access to the
8116
- # notebook instance. If you set this to `Disabled` this notebook
8117
- # instance is able to access resources only in your VPC, and is not be
8118
- # able to connect to Amazon SageMaker training and endpoint services
8119
- # unless you configure a NAT Gateway in your VPC.
8195
+ # Sets whether SageMaker provides internet access to the notebook
8196
+ # instance. If you set this to `Disabled` this notebook instance is
8197
+ # able to access resources only in your VPC, and is not be able to
8198
+ # connect to SageMaker training and endpoint services unless you
8199
+ # configure a NAT Gateway in your VPC.
8120
8200
  #
8121
8201
  # For more information, see [Notebook Instances Are Internet-Enabled
8122
8202
  # by Default][1]. You can set the value of this parameter to
@@ -8150,8 +8230,7 @@ module Aws::SageMaker
8150
8230
  # repository in [Amazon Web Services CodeCommit][1] or in any other
8151
8231
  # Git repository. When you open a notebook instance, it opens in the
8152
8232
  # directory that contains this repository. For more information, see
8153
- # [Associating Git Repositories with Amazon SageMaker Notebook
8154
- # Instances][2].
8233
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
8155
8234
  #
8156
8235
  #
8157
8236
  #
@@ -8166,7 +8245,7 @@ module Aws::SageMaker
8166
8245
  # in [Amazon Web Services CodeCommit][1] or in any other Git
8167
8246
  # repository. These repositories are cloned at the same level as the
8168
8247
  # default repository of your notebook instance. For more information,
8169
- # see [Associating Git Repositories with Amazon SageMaker Notebook
8248
+ # see [Associating Git Repositories with SageMaker Notebook
8170
8249
  # Instances][2].
8171
8250
  #
8172
8251
  #
@@ -8961,7 +9040,7 @@ module Aws::SageMaker
8961
9040
  # Algorithm-specific parameters that influence the quality of the
8962
9041
  # model. You set hyperparameters before you start the learning
8963
9042
  # process. For a list of hyperparameters for each training algorithm
8964
- # provided by Amazon SageMaker, see [Algorithms][1].
9043
+ # provided by SageMaker, see [Algorithms][1].
8965
9044
  #
8966
9045
  # You can specify a maximum of 100 hyperparameters. Each
8967
9046
  # hyperparameter is a key-value pair. Each key and value is limited to
@@ -8975,8 +9054,8 @@ module Aws::SageMaker
8975
9054
  # @!attribute [rw] algorithm_specification
8976
9055
  # The registry path of the Docker image that contains the training
8977
9056
  # algorithm and algorithm-specific metadata, including the input mode.
8978
- # For more information about algorithms provided by Amazon SageMaker,
8979
- # see [Algorithms][1]. For information about providing your own
9057
+ # For more information about algorithms provided by SageMaker, see
9058
+ # [Algorithms][1]. For information about providing your own
8980
9059
  # algorithms, see [Using Your Own Algorithms with Amazon
8981
9060
  # SageMaker][2].
8982
9061
  #
@@ -8987,18 +9066,18 @@ module Aws::SageMaker
8987
9066
  # @return [Types::AlgorithmSpecification]
8988
9067
  #
8989
9068
  # @!attribute [rw] role_arn
8990
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
8991
- # can assume to perform tasks on your behalf.
9069
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
9070
+ # assume to perform tasks on your behalf.
8992
9071
  #
8993
- # During model training, Amazon SageMaker needs your permission to
8994
- # read input data from an S3 bucket, download a Docker image that
8995
- # contains training code, write model artifacts to an S3 bucket, write
8996
- # logs to Amazon CloudWatch Logs, and publish metrics to Amazon
8997
- # CloudWatch. You grant permissions for all of these tasks to an IAM
8998
- # role. For more information, see [Amazon SageMaker Roles][1].
9072
+ # During model training, SageMaker needs your permission to read input
9073
+ # data from an S3 bucket, download a Docker image that contains
9074
+ # training code, write model artifacts to an S3 bucket, write logs to
9075
+ # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
9076
+ # You grant permissions for all of these tasks to an IAM role. For
9077
+ # more information, see [SageMaker Roles][1].
8999
9078
  #
9000
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
9001
- # API must have the `iam:PassRole` permission.
9079
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
9080
+ # must have the `iam:PassRole` permission.
9002
9081
  #
9003
9082
  # </note>
9004
9083
  #
@@ -9019,17 +9098,17 @@ module Aws::SageMaker
9019
9098
  # MIME type, compression method, and whether the data is wrapped in
9020
9099
  # RecordIO format.
9021
9100
  #
9022
- # Depending on the input mode that the algorithm supports, Amazon
9023
- # SageMaker either copies input data files from an S3 bucket to a
9024
- # local directory in the Docker container, or makes it available as
9025
- # input streams. For example, if you specify an EFS location, input
9026
- # data files will be made available as input streams. They do not need
9027
- # to be downloaded.
9101
+ # Depending on the input mode that the algorithm supports, SageMaker
9102
+ # either copies input data files from an S3 bucket to a local
9103
+ # directory in the Docker container, or makes it available as input
9104
+ # streams. For example, if you specify an EFS location, input data
9105
+ # files are available as input streams. They do not need to be
9106
+ # downloaded.
9028
9107
  # @return [Array<Types::Channel>]
9029
9108
  #
9030
9109
  # @!attribute [rw] output_data_config
9031
9110
  # Specifies the path to the S3 location where you want to store model
9032
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
9111
+ # artifacts. SageMaker creates subfolders for the artifacts.
9033
9112
  # @return [Types::OutputDataConfig]
9034
9113
  #
9035
9114
  # @!attribute [rw] resource_config
@@ -9038,9 +9117,9 @@ module Aws::SageMaker
9038
9117
  #
9039
9118
  # ML storage volumes store model artifacts and incremental states.
9040
9119
  # Training algorithms might also use ML storage volumes for scratch
9041
- # space. If you want Amazon SageMaker to use the ML storage volume to
9042
- # store the training data, choose `File` as the `TrainingInputMode` in
9043
- # the algorithm specification. For distributed training algorithms,
9120
+ # space. If you want SageMaker to use the ML storage volume to store
9121
+ # the training data, choose `File` as the `TrainingInputMode` in the
9122
+ # algorithm specification. For distributed training algorithms,
9044
9123
  # specify an instance count greater than 1.
9045
9124
  # @return [Types::ResourceConfig]
9046
9125
  #
@@ -9058,13 +9137,13 @@ module Aws::SageMaker
9058
9137
  # @!attribute [rw] stopping_condition
9059
9138
  # Specifies a limit to how long a model training job can run. It also
9060
9139
  # specifies how long a managed Spot training job has to complete. When
9061
- # the job reaches the time limit, Amazon SageMaker ends the training
9062
- # job. Use this API to cap model training costs.
9140
+ # the job reaches the time limit, SageMaker ends the training job. Use
9141
+ # this API to cap model training costs.
9063
9142
  #
9064
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
9065
- # signal, which delays job termination for 120 seconds. Algorithms can
9066
- # use this 120-second window to save the model artifacts, so the
9067
- # results of training are not lost.
9143
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
9144
+ # which delays job termination for 120 seconds. Algorithms can use
9145
+ # this 120-second window to save the model artifacts, so the results
9146
+ # of training are not lost.
9068
9147
  # @return [Types::StoppingCondition]
9069
9148
  #
9070
9149
  # @!attribute [rw] tags
@@ -9082,7 +9161,7 @@ module Aws::SageMaker
9082
9161
  # Isolates the training container. No inbound or outbound network
9083
9162
  # calls can be made, except for calls between peers within a training
9084
9163
  # cluster for distributed training. If you enable network isolation
9085
- # for training jobs that are configured to use a VPC, Amazon SageMaker
9164
+ # for training jobs that are configured to use a VPC, SageMaker
9086
9165
  # downloads and uploads customer data and model artifacts through the
9087
9166
  # specified VPC, but the training container does not have network
9088
9167
  # access.
@@ -9312,6 +9391,11 @@ module Aws::SageMaker
9312
9391
  # records fit within the maximum payload size, we recommend using a
9313
9392
  # slightly larger value. The default value is `6` MB.
9314
9393
  #
9394
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
9395
+ # specify the `MaxConcurrentTransforms` parameter, the value of
9396
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
9397
+ # MB.
9398
+ #
9315
9399
  # For cases where the payload might be arbitrarily large and is
9316
9400
  # transmitted using HTTP chunked encoding, set the value to `0`. This
9317
9401
  # feature works only in supported algorithms. Currently, Amazon
@@ -9679,6 +9763,19 @@ module Aws::SageMaker
9679
9763
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
9680
9764
  # },
9681
9765
  # r_session_app_settings: {
9766
+ # default_resource_spec: {
9767
+ # sage_maker_image_arn: "ImageArn",
9768
+ # sage_maker_image_version_arn: "ImageVersionArn",
9769
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
9770
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
9771
+ # },
9772
+ # custom_images: [
9773
+ # {
9774
+ # image_name: "ImageName", # required
9775
+ # image_version_number: 1,
9776
+ # app_image_config_name: "AppImageConfigName", # required
9777
+ # },
9778
+ # ],
9682
9779
  # },
9683
9780
  # },
9684
9781
  # }
@@ -10127,8 +10224,8 @@ module Aws::SageMaker
10127
10224
  # A [JSONPath][1] expression used to select a portion of the input
10128
10225
  # data to pass to the algorithm. Use the `InputFilter` parameter to
10129
10226
  # exclude fields, such as an ID column, from the input. If you want
10130
- # Amazon SageMaker to pass the entire input dataset to the algorithm,
10131
- # accept the default value `$`.
10227
+ # SageMaker to pass the entire input dataset to the algorithm, accept
10228
+ # the default value `$`.
10132
10229
  #
10133
10230
  # Examples: `"$"`, `"$[1:]"`, `"$.features"`
10134
10231
  #
@@ -10140,10 +10237,9 @@ module Aws::SageMaker
10140
10237
  # @!attribute [rw] output_filter
10141
10238
  # A [JSONPath][1] expression used to select a portion of the joined
10142
10239
  # dataset to save in the output file for a batch transform job. If you
10143
- # want Amazon SageMaker to store the entire input dataset in the
10144
- # output file, leave the default value, `$`. If you specify indexes
10145
- # that aren't within the dimension size of the joined dataset, you
10146
- # get an error.
10240
+ # want SageMaker to store the entire input dataset in the output file,
10241
+ # leave the default value, `$`. If you specify indexes that aren't
10242
+ # within the dimension size of the joined dataset, you get an error.
10147
10243
  #
10148
10244
  # Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
10149
10245
  #
@@ -11272,7 +11368,7 @@ module Aws::SageMaker
11272
11368
  # }
11273
11369
  #
11274
11370
  # @!attribute [rw] notebook_instance_name
11275
- # The name of the Amazon SageMaker notebook instance to delete.
11371
+ # The name of the SageMaker notebook instance to delete.
11276
11372
  # @return [String]
11277
11373
  #
11278
11374
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
@@ -11813,7 +11909,7 @@ module Aws::SageMaker
11813
11909
  #
11814
11910
  # @!attribute [rw] validation_specification
11815
11911
  # Details about configurations for one or more training jobs that
11816
- # Amazon SageMaker runs to test the algorithm.
11912
+ # SageMaker runs to test the algorithm.
11817
11913
  # @return [Types::AlgorithmValidationSpecification]
11818
11914
  #
11819
11915
  # @!attribute [rw] algorithm_status
@@ -13024,7 +13120,7 @@ module Aws::SageMaker
13024
13120
  end
13025
13121
 
13026
13122
  # @!attribute [rw] endpoint_config_name
13027
- # Name of the Amazon SageMaker endpoint configuration.
13123
+ # Name of the SageMaker endpoint configuration.
13028
13124
  # @return [String]
13029
13125
  #
13030
13126
  # @!attribute [rw] endpoint_config_arn
@@ -13966,8 +14062,8 @@ module Aws::SageMaker
13966
14062
  # @return [Types::LabelingJobOutputConfig]
13967
14063
  #
13968
14064
  # @!attribute [rw] role_arn
13969
- # The Amazon Resource Name (ARN) that Amazon SageMaker assumes to
13970
- # perform tasks on your behalf during data labeling.
14065
+ # The Amazon Resource Name (ARN) that SageMaker assumes to perform
14066
+ # tasks on your behalf during data labeling.
13971
14067
  # @return [String]
13972
14068
  #
13973
14069
  # @!attribute [rw] label_category_config_s3_uri
@@ -14333,7 +14429,7 @@ module Aws::SageMaker
14333
14429
  end
14334
14430
 
14335
14431
  # @!attribute [rw] model_name
14336
- # Name of the Amazon SageMaker model.
14432
+ # Name of the SageMaker model.
14337
14433
  # @return [String]
14338
14434
  #
14339
14435
  # @!attribute [rw] primary_container
@@ -14403,7 +14499,7 @@ module Aws::SageMaker
14403
14499
  # }
14404
14500
  #
14405
14501
  # @!attribute [rw] model_package_group_name
14406
- # The name of the model group to describe.
14502
+ # The name of gthe model group to describe.
14407
14503
  # @return [String]
14408
14504
  #
14409
14505
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
@@ -14547,7 +14643,7 @@ module Aws::SageMaker
14547
14643
  # @return [Types::ModelMetrics]
14548
14644
  #
14549
14645
  # @!attribute [rw] last_modified_time
14550
- # The last time the model package was modified.
14646
+ # The last time that the model package was modified.
14551
14647
  # @return [Time]
14552
14648
  #
14553
14649
  # @!attribute [rw] last_modified_by
@@ -14891,7 +14987,7 @@ module Aws::SageMaker
14891
14987
  # @return [String]
14892
14988
  #
14893
14989
  # @!attribute [rw] notebook_instance_name
14894
- # The name of the Amazon SageMaker notebook instance.
14990
+ # The name of the SageMaker notebook instance.
14895
14991
  # @return [String]
14896
14992
  #
14897
14993
  # @!attribute [rw] notebook_instance_status
@@ -14925,14 +15021,13 @@ module Aws::SageMaker
14925
15021
  # @return [String]
14926
15022
  #
14927
15023
  # @!attribute [rw] kms_key_id
14928
- # The Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt
14929
- # data when storing it on the ML storage volume attached to the
14930
- # instance.
15024
+ # The Amazon Web Services KMS key ID SageMaker uses to encrypt data
15025
+ # when storing it on the ML storage volume attached to the instance.
14931
15026
  # @return [String]
14932
15027
  #
14933
15028
  # @!attribute [rw] network_interface_id
14934
- # The network interface IDs that Amazon SageMaker created at the time
14935
- # of creating the instance.
15029
+ # The network interface IDs that SageMaker created at the time of
15030
+ # creating the instance.
14936
15031
  # @return [String]
14937
15032
  #
14938
15033
  # @!attribute [rw] last_modified_time
@@ -14957,10 +15052,10 @@ module Aws::SageMaker
14957
15052
  # @return [String]
14958
15053
  #
14959
15054
  # @!attribute [rw] direct_internet_access
14960
- # Describes whether Amazon SageMaker provides internet access to the
14961
- # notebook instance. If this value is set to *Disabled*, the notebook
14962
- # instance does not have internet access, and cannot connect to Amazon
14963
- # SageMaker training and endpoint services.
15055
+ # Describes whether SageMaker provides internet access to the notebook
15056
+ # instance. If this value is set to *Disabled*, the notebook instance
15057
+ # does not have internet access, and cannot connect to SageMaker
15058
+ # training and endpoint services.
14964
15059
  #
14965
15060
  # For more information, see [Notebook Instances Are Internet-Enabled
14966
15061
  # by Default][1].
@@ -14993,8 +15088,7 @@ module Aws::SageMaker
14993
15088
  # repository in [Amazon Web Services CodeCommit][1] or in any other
14994
15089
  # Git repository. When you open a notebook instance, it opens in the
14995
15090
  # directory that contains this repository. For more information, see
14996
- # [Associating Git Repositories with Amazon SageMaker Notebook
14997
- # Instances][2].
15091
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
14998
15092
  #
14999
15093
  #
15000
15094
  #
@@ -15009,7 +15103,7 @@ module Aws::SageMaker
15009
15103
  # in [Amazon Web Services CodeCommit][1] or in any other Git
15010
15104
  # repository. These repositories are cloned at the same level as the
15011
15105
  # default repository of your notebook instance. For more information,
15012
- # see [Associating Git Repositories with Amazon SageMaker Notebook
15106
+ # see [Associating Git Repositories with SageMaker Notebook
15013
15107
  # Instances][2].
15014
15108
  #
15015
15109
  #
@@ -15631,7 +15725,7 @@ module Aws::SageMaker
15631
15725
  # @return [String]
15632
15726
  #
15633
15727
  # @!attribute [rw] labeling_job_arn
15634
- # The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth
15728
+ # The Amazon Resource Name (ARN) of the SageMaker Ground Truth
15635
15729
  # labeling job that created the transform or training job.
15636
15730
  # @return [String]
15637
15731
  #
@@ -15647,7 +15741,7 @@ module Aws::SageMaker
15647
15741
  # @!attribute [rw] training_job_status
15648
15742
  # The status of the training job.
15649
15743
  #
15650
- # Amazon SageMaker provides the following training job statuses:
15744
+ # SageMaker provides the following training job statuses:
15651
15745
  #
15652
15746
  # * `InProgress` - The training is in progress.
15653
15747
  #
@@ -15669,8 +15763,8 @@ module Aws::SageMaker
15669
15763
  # For detailed information on the secondary status of the training
15670
15764
  # job, see `StatusMessage` under SecondaryStatusTransition.
15671
15765
  #
15672
- # Amazon SageMaker provides primary statuses and secondary statuses
15673
- # that apply to each of them:
15766
+ # SageMaker provides primary statuses and secondary statuses that
15767
+ # apply to each of them:
15674
15768
  #
15675
15769
  # InProgress
15676
15770
  # : * `Starting` - Starting the training job.
@@ -15749,7 +15843,7 @@ module Aws::SageMaker
15749
15843
  #
15750
15844
  # @!attribute [rw] output_data_config
15751
15845
  # The S3 path where model artifacts that you configured when creating
15752
- # the job are stored. Amazon SageMaker creates subfolders for model
15846
+ # the job are stored. SageMaker creates subfolders for model
15753
15847
  # artifacts.
15754
15848
  # @return [Types::OutputDataConfig]
15755
15849
  #
@@ -15771,13 +15865,13 @@ module Aws::SageMaker
15771
15865
  # @!attribute [rw] stopping_condition
15772
15866
  # Specifies a limit to how long a model training job can run. It also
15773
15867
  # specifies how long a managed Spot training job has to complete. When
15774
- # the job reaches the time limit, Amazon SageMaker ends the training
15775
- # job. Use this API to cap model training costs.
15868
+ # the job reaches the time limit, SageMaker ends the training job. Use
15869
+ # this API to cap model training costs.
15776
15870
  #
15777
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
15778
- # signal, which delays job termination for 120 seconds. Algorithms can
15779
- # use this 120-second window to save the model artifacts, so the
15780
- # results of training are not lost.
15871
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
15872
+ # which delays job termination for 120 seconds. Algorithms can use
15873
+ # this 120-second window to save the model artifacts, so the results
15874
+ # of training are not lost.
15781
15875
  # @return [Types::StoppingCondition]
15782
15876
  #
15783
15877
  # @!attribute [rw] creation_time
@@ -15798,8 +15892,7 @@ module Aws::SageMaker
15798
15892
  # You are billed for the time interval between the value of
15799
15893
  # `TrainingStartTime` and this time. For successful jobs and stopped
15800
15894
  # jobs, this is the time after model artifacts are uploaded. For
15801
- # failed jobs, this is the time when Amazon SageMaker detects a job
15802
- # failure.
15895
+ # failed jobs, this is the time when SageMaker detects a job failure.
15803
15896
  # @return [Time]
15804
15897
  #
15805
15898
  # @!attribute [rw] last_modified_time
@@ -15822,10 +15915,9 @@ module Aws::SageMaker
15822
15915
  # If you want to allow inbound or outbound network calls, except for
15823
15916
  # calls between peers within a training cluster for distributed
15824
15917
  # training, choose `True`. If you enable network isolation for
15825
- # training jobs that are configured to use a VPC, Amazon SageMaker
15826
- # downloads and uploads customer data and model artifacts through the
15827
- # specified VPC, but the training container does not have network
15828
- # access.
15918
+ # training jobs that are configured to use a VPC, SageMaker downloads
15919
+ # and uploads customer data and model artifacts through the specified
15920
+ # VPC, but the training container does not have network access.
15829
15921
  # @return [Boolean]
15830
15922
  #
15831
15923
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -15857,7 +15949,7 @@ module Aws::SageMaker
15857
15949
  #
15858
15950
  # Multiply `BillableTimeInSeconds` by the number of instances
15859
15951
  # (`InstanceCount`) in your training cluster to get the total compute
15860
- # time SageMaker will bill you if you run distributed training. The
15952
+ # time SageMaker bills you if you run distributed training. The
15861
15953
  # formula is as follows: `BillableTimeInSeconds * InstanceCount` .
15862
15954
  #
15863
15955
  # You can calculate the savings from using managed spot training using
@@ -20065,10 +20157,10 @@ module Aws::SageMaker
20065
20157
  # The registry path of the Docker image that contains the training
20066
20158
  # algorithm. For information about Docker registry paths for built-in
20067
20159
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
20068
- # Parameters][1]. Amazon SageMaker supports both
20069
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
20070
- # path formats. For more information, see [Using Your Own Algorithms
20071
- # with Amazon SageMaker][2].
20160
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
20161
+ # and `registry/repository[@digest]` image path formats. For more
20162
+ # information, see [Using Your Own Algorithms with Amazon
20163
+ # SageMaker][2].
20072
20164
  #
20073
20165
  #
20074
20166
  #
@@ -20393,27 +20485,26 @@ module Aws::SageMaker
20393
20485
  #
20394
20486
  # Storage volumes store model artifacts and incremental states.
20395
20487
  # Training algorithms might also use storage volumes for scratch
20396
- # space. If you want Amazon SageMaker to use the storage volume to
20397
- # store the training data, choose `File` as the `TrainingInputMode` in
20398
- # the algorithm specification. For distributed training algorithms,
20488
+ # space. If you want SageMaker to use the storage volume to store the
20489
+ # training data, choose `File` as the `TrainingInputMode` in the
20490
+ # algorithm specification. For distributed training algorithms,
20399
20491
  # specify an instance count greater than 1.
20400
20492
  # @return [Types::ResourceConfig]
20401
20493
  #
20402
20494
  # @!attribute [rw] stopping_condition
20403
20495
  # Specifies a limit to how long a model hyperparameter training job
20404
20496
  # can run. It also specifies how long a managed spot training job has
20405
- # to complete. When the job reaches the time limit, Amazon SageMaker
20406
- # ends the training job. Use this API to cap model training costs.
20497
+ # to complete. When the job reaches the time limit, SageMaker ends the
20498
+ # training job. Use this API to cap model training costs.
20407
20499
  # @return [Types::StoppingCondition]
20408
20500
  #
20409
20501
  # @!attribute [rw] enable_network_isolation
20410
20502
  # Isolates the training container. No inbound or outbound network
20411
20503
  # calls can be made, except for calls between peers within a training
20412
20504
  # cluster for distributed training. If network isolation is used for
20413
- # training jobs that are configured to use a VPC, Amazon SageMaker
20414
- # downloads and uploads customer data and model artifacts through the
20415
- # specified VPC, but the training container does not have network
20416
- # access.
20505
+ # training jobs that are configured to use a VPC, SageMaker downloads
20506
+ # and uploads customer data and model artifacts through the specified
20507
+ # VPC, but the training container does not have network access.
20417
20508
  # @return [Boolean]
20418
20509
  #
20419
20510
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -20463,7 +20554,7 @@ module Aws::SageMaker
20463
20554
  include Aws::Structure
20464
20555
  end
20465
20556
 
20466
- # Specifies summary information about a training job.
20557
+ # The container for the summary information about a training job.
20467
20558
  #
20468
20559
  # @!attribute [rw] training_job_definition_name
20469
20560
  # The training job definition name.
@@ -20494,8 +20585,7 @@ module Aws::SageMaker
20494
20585
  # You are billed for the time interval between the value of
20495
20586
  # `TrainingStartTime` and this time. For successful jobs and stopped
20496
20587
  # jobs, this is the time after model artifacts are uploaded. For
20497
- # failed jobs, this is the time when Amazon SageMaker detects a job
20498
- # failure.
20588
+ # failed jobs, this is the time when SageMaker detects a job failure.
20499
20589
  # @return [Time]
20500
20590
  #
20501
20591
  # @!attribute [rw] training_job_status
@@ -20644,9 +20734,9 @@ module Aws::SageMaker
20644
20734
  #
20645
20735
  # AUTO
20646
20736
  #
20647
- # : Amazon SageMaker stops training jobs launched by the
20648
- # hyperparameter tuning job when they are unlikely to perform better
20649
- # than previously completed training jobs. For more information, see
20737
+ # : SageMaker stops training jobs launched by the hyperparameter
20738
+ # tuning job when they are unlikely to perform better than
20739
+ # previously completed training jobs. For more information, see
20650
20740
  # [Stop Training Jobs Early][1].
20651
20741
  #
20652
20742
  #
@@ -21447,8 +21537,8 @@ module Aws::SageMaker
21447
21537
  #
21448
21538
  # Auto
21449
21539
  #
21450
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
21451
- # the hyperparameter.
21540
+ # : SageMaker hyperparameter tuning chooses the best scale for the
21541
+ # hyperparameter.
21452
21542
  #
21453
21543
  # Linear
21454
21544
  #
@@ -21523,12 +21613,20 @@ module Aws::SageMaker
21523
21613
  #
21524
21614
  # @!attribute [rw] default_resource_spec
21525
21615
  # The default instance type and the Amazon Resource Name (ARN) of the
21526
- # default SageMaker image used by the JupyterServer app.
21616
+ # default SageMaker image used by the JupyterServer app. If you use
21617
+ # the `LifecycleConfigArns` parameter, then this parameter is also
21618
+ # required.
21527
21619
  # @return [Types::ResourceSpec]
21528
21620
  #
21529
21621
  # @!attribute [rw] lifecycle_config_arns
21530
21622
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21531
- # attached to the JupyterServerApp.
21623
+ # attached to the JupyterServerApp. If you use this parameter, the
21624
+ # `DefaultResourceSpec` parameter is also required.
21625
+ #
21626
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21627
+ # an empty list.
21628
+ #
21629
+ # </note>
21532
21630
  # @return [Array<String>]
21533
21631
  #
21534
21632
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
@@ -21565,6 +21663,14 @@ module Aws::SageMaker
21565
21663
  # @!attribute [rw] default_resource_spec
21566
21664
  # The default instance type and the Amazon Resource Name (ARN) of the
21567
21665
  # default SageMaker image used by the KernelGateway app.
21666
+ #
21667
+ # <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
21668
+ # type value set here. The default instance type set here is used when
21669
+ # Apps are created using the Amazon Web Services Command Line
21670
+ # Interface or Amazon Web Services CloudFormation and the instance
21671
+ # type parameter value is not passed.
21672
+ #
21673
+ # </note>
21568
21674
  # @return [Types::ResourceSpec]
21569
21675
  #
21570
21676
  # @!attribute [rw] custom_images
@@ -21575,6 +21681,11 @@ module Aws::SageMaker
21575
21681
  # @!attribute [rw] lifecycle_config_arns
21576
21682
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21577
21683
  # attached to the the user profile or domain.
21684
+ #
21685
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21686
+ # an empty list.
21687
+ #
21688
+ # </note>
21578
21689
  # @return [Array<String>]
21579
21690
  #
21580
21691
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
@@ -21782,8 +21893,8 @@ module Aws::SageMaker
21782
21893
  #
21783
21894
  # @!attribute [rw] content_classifiers
21784
21895
  # Declares that your content is free of personally identifiable
21785
- # information or adult content. Amazon SageMaker may restrict the
21786
- # Amazon Mechanical Turk workers that can view your task based on this
21896
+ # information or adult content. SageMaker may restrict the Amazon
21897
+ # Mechanical Turk workers that can view your task based on this
21787
21898
  # information.
21788
21899
  # @return [Array<String>]
21789
21900
  #
@@ -21927,8 +22038,8 @@ module Aws::SageMaker
21927
22038
  # @return [String]
21928
22039
  #
21929
22040
  # @!attribute [rw] final_active_learning_model_arn
21930
- # The Amazon Resource Name (ARN) for the most recent Amazon SageMaker
21931
- # model trained as part of automated data labeling.
22041
+ # The Amazon Resource Name (ARN) for the most recent SageMaker model
22042
+ # trained as part of automated data labeling.
21932
22043
  # @return [String]
21933
22044
  #
21934
22045
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
@@ -22438,8 +22549,8 @@ module Aws::SageMaker
22438
22549
  # @return [Array<Types::AlgorithmSummary>]
22439
22550
  #
22440
22551
  # @!attribute [rw] next_token
22441
- # If the response is truncated, Amazon SageMaker returns this token.
22442
- # To retrieve the next set of algorithms, use it in the subsequent
22552
+ # If the response is truncated, SageMaker returns this token. To
22553
+ # retrieve the next set of algorithms, use it in the subsequent
22443
22554
  # request.
22444
22555
  # @return [String]
22445
22556
  #
@@ -23713,8 +23824,8 @@ module Aws::SageMaker
23713
23824
  # @return [Array<Types::EndpointConfigSummary>]
23714
23825
  #
23715
23826
  # @!attribute [rw] next_token
23716
- # If the response is truncated, Amazon SageMaker returns this token.
23717
- # To retrieve the next set of endpoint configurations, use it in the
23827
+ # If the response is truncated, SageMaker returns this token. To
23828
+ # retrieve the next set of endpoint configurations, use it in the
23718
23829
  # subsequent request
23719
23830
  # @return [String]
23720
23831
  #
@@ -23813,8 +23924,8 @@ module Aws::SageMaker
23813
23924
  # @return [Array<Types::EndpointSummary>]
23814
23925
  #
23815
23926
  # @!attribute [rw] next_token
23816
- # If the response is truncated, Amazon SageMaker returns this token.
23817
- # To retrieve the next set of training jobs, use it in the subsequent
23927
+ # If the response is truncated, SageMaker returns this token. To
23928
+ # retrieve the next set of training jobs, use it in the subsequent
23818
23929
  # request.
23819
23930
  # @return [String]
23820
23931
  #
@@ -24579,8 +24690,8 @@ module Aws::SageMaker
24579
24690
  # @return [Array<Types::LabelingJobForWorkteamSummary>]
24580
24691
  #
24581
24692
  # @!attribute [rw] next_token
24582
- # If the response is truncated, Amazon SageMaker returns this token.
24583
- # To retrieve the next set of labeling jobs, use it in the subsequent
24693
+ # If the response is truncated, SageMaker returns this token. To
24694
+ # retrieve the next set of labeling jobs, use it in the subsequent
24584
24695
  # request.
24585
24696
  # @return [String]
24586
24697
  #
@@ -24680,8 +24791,8 @@ module Aws::SageMaker
24680
24791
  # @return [Array<Types::LabelingJobSummary>]
24681
24792
  #
24682
24793
  # @!attribute [rw] next_token
24683
- # If the response is truncated, Amazon SageMaker returns this token.
24684
- # To retrieve the next set of labeling jobs, use it in the subsequent
24794
+ # If the response is truncated, SageMaker returns this token. To
24795
+ # retrieve the next set of labeling jobs, use it in the subsequent
24685
24796
  # request.
24686
24797
  # @return [String]
24687
24798
  #
@@ -25178,8 +25289,8 @@ module Aws::SageMaker
25178
25289
  # @return [Array<Types::ModelPackageSummary>]
25179
25290
  #
25180
25291
  # @!attribute [rw] next_token
25181
- # If the response is truncated, Amazon SageMaker returns this token.
25182
- # To retrieve the next set of model packages, use it in the subsequent
25292
+ # If the response is truncated, SageMaker returns this token. To
25293
+ # retrieve the next set of model packages, use it in the subsequent
25183
25294
  # request.
25184
25295
  # @return [String]
25185
25296
  #
@@ -25346,9 +25457,8 @@ module Aws::SageMaker
25346
25457
  # @return [Array<Types::ModelSummary>]
25347
25458
  #
25348
25459
  # @!attribute [rw] next_token
25349
- # If the response is truncated, Amazon SageMaker returns this token.
25350
- # To retrieve the next set of models, use it in the subsequent
25351
- # request.
25460
+ # If the response is truncated, SageMaker returns this token. To
25461
+ # retrieve the next set of models, use it in the subsequent request.
25352
25462
  # @return [String]
25353
25463
  #
25354
25464
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
@@ -25687,8 +25797,8 @@ module Aws::SageMaker
25687
25797
  end
25688
25798
 
25689
25799
  # @!attribute [rw] next_token
25690
- # If the response is truncated, Amazon SageMaker returns this token.
25691
- # To get the next set of lifecycle configurations, use it in the next
25800
+ # If the response is truncated, SageMaker returns this token. To get
25801
+ # the next set of lifecycle configurations, use it in the next
25692
25802
  # request.
25693
25803
  # @return [String]
25694
25804
  #
@@ -25821,8 +25931,8 @@ module Aws::SageMaker
25821
25931
 
25822
25932
  # @!attribute [rw] next_token
25823
25933
  # If the response to the previous `ListNotebookInstances` request was
25824
- # truncated, Amazon SageMaker returns this token. To retrieve the next
25825
- # set of notebook instances, use the token in the next request.
25934
+ # truncated, SageMaker returns this token. To retrieve the next set of
25935
+ # notebook instances, use the token in the next request.
25826
25936
  # @return [String]
25827
25937
  #
25828
25938
  # @!attribute [rw] notebook_instances
@@ -26470,8 +26580,8 @@ module Aws::SageMaker
26470
26580
  #
26471
26581
  # @!attribute [rw] next_token
26472
26582
  # If the response to the previous `ListTags` request is truncated,
26473
- # Amazon SageMaker returns this token. To retrieve the next set of
26474
- # tags, use it in the subsequent request.
26583
+ # SageMaker returns this token. To retrieve the next set of tags, use
26584
+ # it in the subsequent request.
26475
26585
  # @return [String]
26476
26586
  #
26477
26587
  # @!attribute [rw] max_results
@@ -26493,7 +26603,7 @@ module Aws::SageMaker
26493
26603
  # @return [Array<Types::Tag>]
26494
26604
  #
26495
26605
  # @!attribute [rw] next_token
26496
- # If response is truncated, Amazon SageMaker includes a token in the
26606
+ # If response is truncated, SageMaker includes a token in the
26497
26607
  # response. You can use this token in your subsequent request to fetch
26498
26608
  # next set of tokens.
26499
26609
  # @return [String]
@@ -26672,8 +26782,8 @@ module Aws::SageMaker
26672
26782
  # @return [Array<Types::TrainingJobSummary>]
26673
26783
  #
26674
26784
  # @!attribute [rw] next_token
26675
- # If the response is truncated, Amazon SageMaker returns this token.
26676
- # To retrieve the next set of training jobs, use it in the subsequent
26785
+ # If the response is truncated, SageMaker returns this token. To
26786
+ # retrieve the next set of training jobs, use it in the subsequent
26677
26787
  # request.
26678
26788
  # @return [String]
26679
26789
  #
@@ -27279,20 +27389,25 @@ module Aws::SageMaker
27279
27389
  # The dataset split from which the AutoML job produced the metric.
27280
27390
  # @return [String]
27281
27391
  #
27392
+ # @!attribute [rw] standard_metric_name
27393
+ # The name of the standard metric.
27394
+ # @return [String]
27395
+ #
27282
27396
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MetricDatum AWS API Documentation
27283
27397
  #
27284
27398
  class MetricDatum < Struct.new(
27285
27399
  :metric_name,
27286
27400
  :value,
27287
- :set)
27401
+ :set,
27402
+ :standard_metric_name)
27288
27403
  SENSITIVE = []
27289
27404
  include Aws::Structure
27290
27405
  end
27291
27406
 
27292
27407
  # Specifies a metric that the training algorithm writes to `stderr` or
27293
- # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
27294
- # metrics. You specify one metric that a hyperparameter tuning job uses
27295
- # as its objective metric to choose the best training job.
27408
+ # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
27409
+ # You specify one metric that a hyperparameter tuning job uses as its
27410
+ # objective metric to choose the best training job.
27296
27411
  #
27297
27412
  # @note When making an API call, you may pass MetricDefinition
27298
27413
  # data as a hash:
@@ -27496,11 +27611,13 @@ module Aws::SageMaker
27496
27611
  # }
27497
27612
  #
27498
27613
  # @!attribute [rw] invocations_timeout_in_seconds
27499
- # The timeout value in seconds for an invocation request.
27614
+ # The timeout value in seconds for an invocation request. The default
27615
+ # value is 600.
27500
27616
  # @return [Integer]
27501
27617
  #
27502
27618
  # @!attribute [rw] invocations_max_retries
27503
27619
  # The maximum number of retries when invocation requests are failing.
27620
+ # The default value is 3.
27504
27621
  # @return [Integer]
27505
27622
  #
27506
27623
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
@@ -28004,8 +28121,8 @@ module Aws::SageMaker
28004
28121
  # @return [Types::SourceAlgorithmSpecification]
28005
28122
  #
28006
28123
  # @!attribute [rw] validation_specification
28007
- # Specifies batch transform jobs that Amazon SageMaker runs to
28008
- # validate your model package.
28124
+ # Specifies batch transform jobs that SageMaker runs to validate your
28125
+ # model package.
28009
28126
  # @return [Types::ModelPackageValidationSpecification]
28010
28127
  #
28011
28128
  # @!attribute [rw] model_package_status
@@ -28184,11 +28301,11 @@ module Aws::SageMaker
28184
28301
  # code is stored.
28185
28302
  #
28186
28303
  # If you are using your own custom algorithm instead of an algorithm
28187
- # provided by Amazon SageMaker, the inference code must meet Amazon
28188
- # SageMaker requirements. Amazon SageMaker supports both
28189
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
28190
- # path formats. For more information, see [Using Your Own Algorithms
28191
- # with Amazon SageMaker][1].
28304
+ # provided by SageMaker, the inference code must meet SageMaker
28305
+ # requirements. SageMaker supports both `registry/repository[:tag]`
28306
+ # and `registry/repository[@digest]` image path formats. For more
28307
+ # information, see [Using Your Own Algorithms with Amazon
28308
+ # SageMaker][1].
28192
28309
  #
28193
28310
  #
28194
28311
  #
@@ -28520,8 +28637,8 @@ module Aws::SageMaker
28520
28637
  include Aws::Structure
28521
28638
  end
28522
28639
 
28523
- # Specifies batch transform jobs that Amazon SageMaker runs to validate
28524
- # your model package.
28640
+ # Specifies batch transform jobs that SageMaker runs to validate your
28641
+ # model package.
28525
28642
  #
28526
28643
  # @note When making an API call, you may pass ModelPackageValidationSpecification
28527
28644
  # data as a hash:
@@ -28571,8 +28688,8 @@ module Aws::SageMaker
28571
28688
  #
28572
28689
  # @!attribute [rw] validation_profiles
28573
28690
  # An array of `ModelPackageValidationProfile` objects, each of which
28574
- # specifies a batch transform job that Amazon SageMaker runs to
28575
- # validate your model package.
28691
+ # specifies a batch transform job that SageMaker runs to validate your
28692
+ # model package.
28576
28693
  # @return [Array<Types::ModelPackageValidationProfile>]
28577
28694
  #
28578
28695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
@@ -29945,8 +30062,7 @@ module Aws::SageMaker
29945
30062
  include Aws::Structure
29946
30063
  end
29947
30064
 
29948
- # Provides summary information for an Amazon SageMaker notebook
29949
- # instance.
30065
+ # Provides summary information for an SageMaker notebook instance.
29950
30066
  #
29951
30067
  # @!attribute [rw] notebook_instance_name
29952
30068
  # The name of the notebook instance that you want a summary for.
@@ -29961,7 +30077,7 @@ module Aws::SageMaker
29961
30077
  # @return [String]
29962
30078
  #
29963
30079
  # @!attribute [rw] url
29964
- # The URL that you use to connect to the Jupyter instance running in
30080
+ # The URL that you use to connect to the Jupyter notebook running in
29965
30081
  # your notebook instance.
29966
30082
  # @return [String]
29967
30083
  #
@@ -29997,8 +30113,7 @@ module Aws::SageMaker
29997
30113
  # repository in [Amazon Web Services CodeCommit][1] or in any other
29998
30114
  # Git repository. When you open a notebook instance, it opens in the
29999
30115
  # directory that contains this repository. For more information, see
30000
- # [Associating Git Repositories with Amazon SageMaker Notebook
30001
- # Instances][2].
30116
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
30002
30117
  #
30003
30118
  #
30004
30119
  #
@@ -30013,7 +30128,7 @@ module Aws::SageMaker
30013
30128
  # in [Amazon Web Services CodeCommit][1] or in any other Git
30014
30129
  # repository. These repositories are cloned at the same level as the
30015
30130
  # default repository of your notebook instance. For more information,
30016
- # see [Associating Git Repositories with Amazon SageMaker Notebook
30131
+ # see [Associating Git Repositories with SageMaker Notebook
30017
30132
  # Instances][2].
30018
30133
  #
30019
30134
  #
@@ -30639,9 +30754,9 @@ module Aws::SageMaker
30639
30754
  #
30640
30755
  # @!attribute [rw] kms_key_id
30641
30756
  # The Amazon Web Services Key Management Service (Amazon Web Services
30642
- # KMS) key that Amazon SageMaker uses to encrypt the model artifacts
30643
- # at rest using Amazon S3 server-side encryption. The `KmsKeyId` can
30644
- # be any of the following formats:
30757
+ # KMS) key that SageMaker uses to encrypt the model artifacts at rest
30758
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
30759
+ # the following formats:
30645
30760
  #
30646
30761
  # * // KMS Key ID
30647
30762
  #
@@ -30659,14 +30774,13 @@ module Aws::SageMaker
30659
30774
  #
30660
30775
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
30661
30776
  #
30662
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
30663
- # SageMaker execution role must include permissions to call
30664
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
30665
- # uses the default KMS key for Amazon S3 for your role's account.
30666
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
30667
- # for `OutputDataConfig`. If you use a bucket policy with an
30668
- # `s3:PutObject` permission that only allows objects with server-side
30669
- # encryption, set the condition key of
30777
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
30778
+ # execution role must include permissions to call `kms:Encrypt`. If
30779
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
30780
+ # for Amazon S3 for your role's account. SageMaker uses server-side
30781
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
30782
+ # a bucket policy with an `s3:PutObject` permission that only allows
30783
+ # objects with server-side encryption, set the condition key of
30670
30784
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
30671
30785
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
30672
30786
  # Simple Storage Service Developer Guide.*
@@ -30684,8 +30798,8 @@ module Aws::SageMaker
30684
30798
  # @return [String]
30685
30799
  #
30686
30800
  # @!attribute [rw] s3_output_path
30687
- # Identifies the S3 path where you want Amazon SageMaker to store the
30688
- # model artifacts. For example, `s3://bucket-name/key-name-prefix`.
30801
+ # Identifies the S3 path where you want SageMaker to store the model
30802
+ # artifacts. For example, `s3://bucket-name/key-name-prefix`.
30689
30803
  # @return [String]
30690
30804
  #
30691
30805
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
@@ -31014,23 +31128,11 @@ module Aws::SageMaker
31014
31128
  #
31015
31129
  # @!attribute [rw] current_serverless_config
31016
31130
  # The serverless configuration for the endpoint.
31017
- #
31018
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31019
- # is subject to change. We do not recommend using this feature in
31020
- # production environments.
31021
- #
31022
- # </note>
31023
31131
  # @return [Types::ProductionVariantServerlessConfig]
31024
31132
  #
31025
31133
  # @!attribute [rw] desired_serverless_config
31026
31134
  # The serverless configuration requested for this deployment, as
31027
31135
  # specified in the endpoint configuration for the endpoint.
31028
- #
31029
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31030
- # is subject to change. We do not recommend using this feature in
31031
- # production environments.
31032
- #
31033
- # </note>
31034
31136
  # @return [Types::ProductionVariantServerlessConfig]
31035
31137
  #
31036
31138
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
@@ -32232,8 +32334,8 @@ module Aws::SageMaker
32232
32334
 
32233
32335
  # Identifies a model that you want to host and the resources chosen to
32234
32336
  # deploy for hosting it. If you are deploying multiple models, tell
32235
- # Amazon SageMaker how to distribute traffic among the models by
32236
- # specifying variant weights.
32337
+ # SageMaker how to distribute traffic among the models by specifying
32338
+ # variant weights.
32237
32339
  #
32238
32340
  # @note When making an API call, you may pass ProductionVariant
32239
32341
  # data as a hash:
@@ -32300,12 +32402,6 @@ module Aws::SageMaker
32300
32402
  # The serverless configuration for an endpoint. Specifies a serverless
32301
32403
  # endpoint configuration instead of an instance-based endpoint
32302
32404
  # configuration.
32303
- #
32304
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32305
- # is subject to change. We do not recommend using this feature in
32306
- # production environments.
32307
- #
32308
- # </note>
32309
32405
  # @return [Types::ProductionVariantServerlessConfig]
32310
32406
  #
32311
32407
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -32340,9 +32436,9 @@ module Aws::SageMaker
32340
32436
  #
32341
32437
  # @!attribute [rw] kms_key_id
32342
32438
  # The Amazon Web Services Key Management Service (Amazon Web Services
32343
- # KMS) key that Amazon SageMaker uses to encrypt the core dump data at
32344
- # rest using Amazon S3 server-side encryption. The `KmsKeyId` can be
32345
- # any of the following formats:
32439
+ # KMS) key that SageMaker uses to encrypt the core dump data at rest
32440
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
32441
+ # the following formats:
32346
32442
  #
32347
32443
  # * // KMS Key ID
32348
32444
  #
@@ -32360,14 +32456,13 @@ module Aws::SageMaker
32360
32456
  #
32361
32457
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
32362
32458
  #
32363
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
32364
- # SageMaker execution role must include permissions to call
32365
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
32366
- # uses the default KMS key for Amazon S3 for your role's account.
32367
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
32368
- # for `OutputDataConfig`. If you use a bucket policy with an
32369
- # `s3:PutObject` permission that only allows objects with server-side
32370
- # encryption, set the condition key of
32459
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
32460
+ # execution role must include permissions to call `kms:Encrypt`. If
32461
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
32462
+ # for Amazon S3 for your role's account. SageMaker uses server-side
32463
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
32464
+ # a bucket policy with an `s3:PutObject` permission that only allows
32465
+ # objects with server-side encryption, set the condition key of
32371
32466
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
32372
32467
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
32373
32468
  # Simple Storage Service Developer Guide.*
@@ -32393,10 +32488,6 @@ module Aws::SageMaker
32393
32488
  include Aws::Structure
32394
32489
  end
32395
32490
 
32396
- # Serverless Inference is in preview release for Amazon SageMaker and is
32397
- # subject to change. We do not recommend using this feature in
32398
- # production environments.
32399
- #
32400
32491
  # Specifies the serverless configuration for an endpoint variant.
32401
32492
  #
32402
32493
  # @note When making an API call, you may pass ProductionVariantServerlessConfig
@@ -32506,22 +32597,10 @@ module Aws::SageMaker
32506
32597
  #
32507
32598
  # @!attribute [rw] current_serverless_config
32508
32599
  # The serverless configuration for the endpoint.
32509
- #
32510
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32511
- # is subject to change. We do not recommend using this feature in
32512
- # production environments.
32513
- #
32514
- # </note>
32515
32600
  # @return [Types::ProductionVariantServerlessConfig]
32516
32601
  #
32517
32602
  # @!attribute [rw] desired_serverless_config
32518
32603
  # The serverless configuration requested for the endpoint update.
32519
- #
32520
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32521
- # is subject to change. We do not recommend using this feature in
32522
- # production environments.
32523
- #
32524
- # </note>
32525
32604
  # @return [Types::ProductionVariantServerlessConfig]
32526
32605
  #
32527
32606
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
@@ -33338,8 +33417,8 @@ module Aws::SageMaker
33338
33417
  # @!attribute [rw] properties
33339
33418
  # Filter the lineage entities connected to the `StartArn`(s) by a set
33340
33419
  # if property key value pairs. If multiple pairs are provided, an
33341
- # entity will be included in the results if it matches any of the
33342
- # provided pairs.
33420
+ # entity is included in the results if it matches any of the provided
33421
+ # pairs.
33343
33422
  # @return [Hash<String,String>]
33344
33423
  #
33345
33424
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
@@ -33385,12 +33464,13 @@ module Aws::SageMaker
33385
33464
  # @return [Array<String>]
33386
33465
  #
33387
33466
  # @!attribute [rw] direction
33388
- # Associations between lineage entities are directed. This parameter
33389
- # determines the direction from the StartArn(s) the query will look.
33467
+ # Associations between lineage entities have a direction. This
33468
+ # parameter determines the direction from the StartArn(s) that the
33469
+ # query traverses.
33390
33470
  # @return [String]
33391
33471
  #
33392
33472
  # @!attribute [rw] include_edges
33393
- # Setting this value to `True` will retrieve not only the entities of
33473
+ # Setting this value to `True` retrieves not only the entities of
33394
33474
  # interest but also the [Associations][1] and lineage entities on the
33395
33475
  # path. Set to `False` to only return lineage entities that match your
33396
33476
  # query.
@@ -33419,8 +33499,8 @@ module Aws::SageMaker
33419
33499
  #
33420
33500
  # @!attribute [rw] max_depth
33421
33501
  # The maximum depth in lineage relationships from the `StartArns` that
33422
- # will be traversed. Depth is a measure of the number of
33423
- # `Associations` from the `StartArn` entity to the matched results.
33502
+ # are traversed. Depth is a measure of the number of `Associations`
33503
+ # from the `StartArn` entity to the matched results.
33424
33504
  # @return [Integer]
33425
33505
  #
33426
33506
  # @!attribute [rw] max_results
@@ -33473,11 +33553,43 @@ module Aws::SageMaker
33473
33553
 
33474
33554
  # A collection of settings that apply to an `RSessionGateway` app.
33475
33555
  #
33476
- # @api private
33556
+ # @note When making an API call, you may pass RSessionAppSettings
33557
+ # data as a hash:
33558
+ #
33559
+ # {
33560
+ # default_resource_spec: {
33561
+ # sage_maker_image_arn: "ImageArn",
33562
+ # sage_maker_image_version_arn: "ImageVersionArn",
33563
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
33564
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
33565
+ # },
33566
+ # custom_images: [
33567
+ # {
33568
+ # image_name: "ImageName", # required
33569
+ # image_version_number: 1,
33570
+ # app_image_config_name: "AppImageConfigName", # required
33571
+ # },
33572
+ # ],
33573
+ # }
33574
+ #
33575
+ # @!attribute [rw] default_resource_spec
33576
+ # Specifies the ARN's of a SageMaker image and SageMaker image
33577
+ # version, and the instance type that the version runs on.
33578
+ # @return [Types::ResourceSpec]
33579
+ #
33580
+ # @!attribute [rw] custom_images
33581
+ # A list of custom SageMaker images that are configured to run as a
33582
+ # RSession app.
33583
+ # @return [Array<Types::CustomImage>]
33477
33584
  #
33478
33585
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RSessionAppSettings AWS API Documentation
33479
33586
  #
33480
- class RSessionAppSettings < Aws::EmptyStructure; end
33587
+ class RSessionAppSettings < Struct.new(
33588
+ :default_resource_spec,
33589
+ :custom_images)
33590
+ SENSITIVE = []
33591
+ include Aws::Structure
33592
+ end
33481
33593
 
33482
33594
  # A collection of settings that configure user interaction with the
33483
33595
  # `RStudioServerPro` app. `RStudioServerProAppSettings` cannot be
@@ -33594,6 +33706,29 @@ module Aws::SageMaker
33594
33706
  include Aws::Structure
33595
33707
  end
33596
33708
 
33709
+ # Provides information about the output configuration for the compiled
33710
+ # model.
33711
+ #
33712
+ # @note When making an API call, you may pass RecommendationJobCompiledOutputConfig
33713
+ # data as a hash:
33714
+ #
33715
+ # {
33716
+ # s3_output_uri: "S3Uri",
33717
+ # }
33718
+ #
33719
+ # @!attribute [rw] s3_output_uri
33720
+ # Identifies the Amazon S3 bucket where you want SageMaker to store
33721
+ # the compiled model artifacts.
33722
+ # @return [String]
33723
+ #
33724
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobCompiledOutputConfig AWS API Documentation
33725
+ #
33726
+ class RecommendationJobCompiledOutputConfig < Struct.new(
33727
+ :s3_output_uri)
33728
+ SENSITIVE = []
33729
+ include Aws::Structure
33730
+ end
33731
+
33597
33732
  # The input configuration of the recommendation job.
33598
33733
  #
33599
33734
  # @note When making an API call, you may pass RecommendationJobInputConfig
@@ -33630,6 +33765,7 @@ module Aws::SageMaker
33630
33765
  # },
33631
33766
  # },
33632
33767
  # ],
33768
+ # volume_kms_key_id: "KmsKeyId",
33633
33769
  # }
33634
33770
  #
33635
33771
  # @!attribute [rw] model_package_version_arn
@@ -33652,6 +33788,46 @@ module Aws::SageMaker
33652
33788
  # Specifies the endpoint configuration to use for a job.
33653
33789
  # @return [Array<Types::EndpointInputConfiguration>]
33654
33790
  #
33791
+ # @!attribute [rw] volume_kms_key_id
33792
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key
33793
+ # Management Service (Amazon Web Services KMS) key that Amazon
33794
+ # SageMaker uses to encrypt data on the storage volume attached to the
33795
+ # ML compute instance that hosts the endpoint. This key will be passed
33796
+ # to SageMaker Hosting for endpoint creation.
33797
+ #
33798
+ # The SageMaker execution role must have `kms:CreateGrant` permission
33799
+ # in order to encrypt data on the storage volume of the endpoints
33800
+ # created for inference recommendation. The inference recommendation
33801
+ # job will fail asynchronously during endpoint configuration creation
33802
+ # if the role passed does not have `kms:CreateGrant` permission.
33803
+ #
33804
+ # The `KmsKeyId` can be any of the following formats:
33805
+ #
33806
+ # * // KMS Key ID
33807
+ #
33808
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
33809
+ #
33810
+ # * // Amazon Resource Name (ARN) of a KMS Key
33811
+ #
33812
+ # `"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"`
33813
+ #
33814
+ # * // KMS Key Alias
33815
+ #
33816
+ # `"alias/ExampleAlias"`
33817
+ #
33818
+ # * // Amazon Resource Name (ARN) of a KMS Key Alias
33819
+ #
33820
+ # `"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"`
33821
+ #
33822
+ # For more information about key identifiers, see [Key identifiers
33823
+ # (KeyID)][1] in the Amazon Web Services Key Management Service
33824
+ # (Amazon Web Services KMS) documentation.
33825
+ #
33826
+ #
33827
+ #
33828
+ # [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
33829
+ # @return [String]
33830
+ #
33655
33831
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobInputConfig AWS API Documentation
33656
33832
  #
33657
33833
  class RecommendationJobInputConfig < Struct.new(
@@ -33659,7 +33835,69 @@ module Aws::SageMaker
33659
33835
  :job_duration_in_seconds,
33660
33836
  :traffic_pattern,
33661
33837
  :resource_limit,
33662
- :endpoint_configurations)
33838
+ :endpoint_configurations,
33839
+ :volume_kms_key_id)
33840
+ SENSITIVE = []
33841
+ include Aws::Structure
33842
+ end
33843
+
33844
+ # Provides information about the output configuration for the compiled
33845
+ # model.
33846
+ #
33847
+ # @note When making an API call, you may pass RecommendationJobOutputConfig
33848
+ # data as a hash:
33849
+ #
33850
+ # {
33851
+ # kms_key_id: "KmsKeyId",
33852
+ # compiled_output_config: {
33853
+ # s3_output_uri: "S3Uri",
33854
+ # },
33855
+ # }
33856
+ #
33857
+ # @!attribute [rw] kms_key_id
33858
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key
33859
+ # Management Service (Amazon Web Services KMS) key that Amazon
33860
+ # SageMaker uses to encrypt your output artifacts with Amazon S3
33861
+ # server-side encryption. The SageMaker execution role must have
33862
+ # `kms:GenerateDataKey` permission.
33863
+ #
33864
+ # The `KmsKeyId` can be any of the following formats:
33865
+ #
33866
+ # * // KMS Key ID
33867
+ #
33868
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
33869
+ #
33870
+ # * // Amazon Resource Name (ARN) of a KMS Key
33871
+ #
33872
+ # `"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"`
33873
+ #
33874
+ # * // KMS Key Alias
33875
+ #
33876
+ # `"alias/ExampleAlias"`
33877
+ #
33878
+ # * // Amazon Resource Name (ARN) of a KMS Key Alias
33879
+ #
33880
+ # `"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"`
33881
+ #
33882
+ # For more information about key identifiers, see [Key identifiers
33883
+ # (KeyID)][1] in the Amazon Web Services Key Management Service
33884
+ # (Amazon Web Services KMS) documentation.
33885
+ #
33886
+ #
33887
+ #
33888
+ # [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
33889
+ # @return [String]
33890
+ #
33891
+ # @!attribute [rw] compiled_output_config
33892
+ # Provides information about the output configuration for the compiled
33893
+ # model.
33894
+ # @return [Types::RecommendationJobCompiledOutputConfig]
33895
+ #
33896
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobOutputConfig AWS API Documentation
33897
+ #
33898
+ class RecommendationJobOutputConfig < Struct.new(
33899
+ :kms_key_id,
33900
+ :compiled_output_config)
33663
33901
  SENSITIVE = []
33664
33902
  include Aws::Structure
33665
33903
  end
@@ -34093,15 +34331,15 @@ module Aws::SageMaker
34093
34331
  #
34094
34332
  # You must specify sufficient ML storage for your scenario.
34095
34333
  #
34096
- # <note markdown="1"> Amazon SageMaker supports only the General Purpose SSD (gp2) ML
34097
- # storage volume type.
34334
+ # <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
34335
+ # volume type.
34098
34336
  #
34099
34337
  # </note>
34100
34338
  #
34101
34339
  # <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
34102
34340
  # total size, dependent on the instance type. When using these
34103
- # instances for training, Amazon SageMaker mounts the local instance
34104
- # storage instead of Amazon EBS gp2 storage. You can't request a
34341
+ # instances for training, SageMaker mounts the local instance storage
34342
+ # instead of Amazon EBS gp2 storage. You can't request a
34105
34343
  # `VolumeSizeInGB` greater than the total size of the local instance
34106
34344
  # storage.
34107
34345
  #
@@ -34117,9 +34355,9 @@ module Aws::SageMaker
34117
34355
  # @return [Integer]
34118
34356
  #
34119
34357
  # @!attribute [rw] volume_kms_key_id
34120
- # The Amazon Web Services KMS key that Amazon SageMaker uses to
34121
- # encrypt data on the storage volume attached to the ML compute
34122
- # instance(s) that run the training job.
34358
+ # The Amazon Web Services KMS key that SageMaker uses to encrypt data
34359
+ # on the storage volume attached to the ML compute instance(s) that
34360
+ # run the training job.
34123
34361
  #
34124
34362
  # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
34125
34363
  # the instance type. Local storage volumes are encrypted using a
@@ -34174,8 +34412,8 @@ module Aws::SageMaker
34174
34412
  include Aws::Structure
34175
34413
  end
34176
34414
 
34177
- # You have exceeded an Amazon SageMaker resource limit. For example, you
34178
- # might have too many training jobs created.
34415
+ # You have exceeded an SageMaker resource limit. For example, you might
34416
+ # have too many training jobs created.
34179
34417
  #
34180
34418
  # @!attribute [rw] message
34181
34419
  # @return [String]
@@ -34254,6 +34492,12 @@ module Aws::SageMaker
34254
34492
  #
34255
34493
  # @!attribute [rw] instance_type
34256
34494
  # The instance type that the image version runs on.
34495
+ #
34496
+ # <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
34497
+ # Apps do not support the `system` value, but support all other values
34498
+ # for available instance types.
34499
+ #
34500
+ # </note>
34257
34501
  # @return [String]
34258
34502
  #
34259
34503
  # @!attribute [rw] lifecycle_config_arn
@@ -34388,11 +34632,11 @@ module Aws::SageMaker
34388
34632
  #
34389
34633
  # @!attribute [rw] s3_data_type
34390
34634
  # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
34391
- # Amazon SageMaker uses all objects that match the specified key name
34392
- # prefix for model training.
34635
+ # SageMaker uses all objects that match the specified key name prefix
34636
+ # for model training.
34393
34637
  #
34394
34638
  # If you choose `ManifestFile`, `S3Uri` identifies an object that is a
34395
- # manifest file containing a list of object keys that you want Amazon
34639
+ # manifest file containing a list of object keys that you want
34396
34640
  # SageMaker to use for model training.
34397
34641
  #
34398
34642
  # If you choose `AugmentedManifestFile`, S3Uri identifies an object
@@ -34446,17 +34690,17 @@ module Aws::SageMaker
34446
34690
  #
34447
34691
  # The complete set of `S3Uri` in this manifest is the input data for
34448
34692
  # the channel for this data source. The object that each `S3Uri`
34449
- # points to must be readable by the IAM role that Amazon SageMaker
34450
- # uses to perform tasks on your behalf.
34693
+ # points to must be readable by the IAM role that SageMaker uses to
34694
+ # perform tasks on your behalf.
34451
34695
  # @return [String]
34452
34696
  #
34453
34697
  # @!attribute [rw] s3_data_distribution_type
34454
- # If you want Amazon SageMaker to replicate the entire dataset on each
34455
- # ML compute instance that is launched for model training, specify
34698
+ # If you want SageMaker to replicate the entire dataset on each ML
34699
+ # compute instance that is launched for model training, specify
34456
34700
  # `FullyReplicated`.
34457
34701
  #
34458
- # If you want Amazon SageMaker to replicate a subset of data on each
34459
- # ML compute instance that is launched for model training, specify
34702
+ # If you want SageMaker to replicate a subset of data on each ML
34703
+ # compute instance that is launched for model training, specify
34460
34704
  # `ShardedByS3Key`. If there are *n* ML compute instances launched for
34461
34705
  # a training job, each instance gets approximately 1/*n* of the number
34462
34706
  # of S3 objects. In this case, model training on each machine uses
@@ -34880,9 +35124,9 @@ module Aws::SageMaker
34880
35124
  # transitioned through. A training job can be in one of several states,
34881
35125
  # for example, starting, downloading, training, or uploading. Within
34882
35126
  # each state, there are a number of intermediate states. For example,
34883
- # within the starting state, Amazon SageMaker could be starting the
34884
- # training job or launching the ML instances. These transitional states
34885
- # are referred to as the job's secondary status.
35127
+ # within the starting state, SageMaker could be starting the training
35128
+ # job or launching the ML instances. These transitional states are
35129
+ # referred to as the job's secondary status.
34886
35130
  #
34887
35131
  # @!attribute [rw] status
34888
35132
  # Contains a secondary status information from a training job.
@@ -34947,8 +35191,8 @@ module Aws::SageMaker
34947
35191
  # @!attribute [rw] status_message
34948
35192
  # A detailed description of the progress within a secondary status.
34949
35193
  #
34950
- # Amazon SageMaker provides secondary statuses and status messages
34951
- # that apply to each of them:
35194
+ # SageMaker provides secondary statuses and status messages that apply
35195
+ # to each of them:
34952
35196
  #
34953
35197
  # Starting
34954
35198
  # : * Starting the training job.
@@ -35313,9 +35557,9 @@ module Aws::SageMaker
35313
35557
  end
35314
35558
 
35315
35559
  # Specifies an algorithm that was used to create the model package. The
35316
- # algorithm must be either an algorithm resource in your Amazon
35317
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35318
- # that you are subscribed to.
35560
+ # algorithm must be either an algorithm resource in your SageMaker
35561
+ # account or an algorithm in Amazon Web Services Marketplace that you
35562
+ # are subscribed to.
35319
35563
  #
35320
35564
  # @note When making an API call, you may pass SourceAlgorithm
35321
35565
  # data as a hash:
@@ -35338,9 +35582,9 @@ module Aws::SageMaker
35338
35582
  #
35339
35583
  # @!attribute [rw] algorithm_name
35340
35584
  # The name of an algorithm that was used to create the model package.
35341
- # The algorithm must be either an algorithm resource in your Amazon
35342
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35343
- # that you are subscribed to.
35585
+ # The algorithm must be either an algorithm resource in your SageMaker
35586
+ # account or an algorithm in Amazon Web Services Marketplace that you
35587
+ # are subscribed to.
35344
35588
  # @return [String]
35345
35589
  #
35346
35590
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
@@ -35784,21 +36028,21 @@ module Aws::SageMaker
35784
36028
  # Specifies a limit to how long a model training job or model
35785
36029
  # compilation job can run. It also specifies how long a managed spot
35786
36030
  # training job has to complete. When the job reaches the time limit,
35787
- # Amazon SageMaker ends the training or compilation job. Use this API to
35788
- # cap model training costs.
35789
- #
35790
- # To stop a training job, Amazon SageMaker sends the algorithm the
35791
- # `SIGTERM` signal, which delays job termination for 120 seconds.
35792
- # Algorithms can use this 120-second window to save the model artifacts,
35793
- # so the results of training are not lost.
35794
- #
35795
- # The training algorithms provided by Amazon SageMaker automatically
35796
- # save the intermediate results of a model training job when possible.
35797
- # This attempt to save artifacts is only a best effort case as model
35798
- # might not be in a state from which it can be saved. For example, if
35799
- # training has just started, the model might not be ready to save. When
35800
- # saved, this intermediate data is a valid model artifact. You can use
35801
- # it to create a model with `CreateModel`.
36031
+ # SageMaker ends the training or compilation job. Use this API to cap
36032
+ # model training costs.
36033
+ #
36034
+ # To stop a training job, SageMaker sends the algorithm the `SIGTERM`
36035
+ # signal, which delays job termination for 120 seconds. Algorithms can
36036
+ # use this 120-second window to save the model artifacts, so the results
36037
+ # of training are not lost.
36038
+ #
36039
+ # The training algorithms provided by SageMaker automatically save the
36040
+ # intermediate results of a model training job when possible. This
36041
+ # attempt to save artifacts is only a best effort case as model might
36042
+ # not be in a state from which it can be saved. For example, if training
36043
+ # has just started, the model might not be ready to save. When saved,
36044
+ # this intermediate data is a valid model artifact. You can use it to
36045
+ # create a model with `CreateModel`.
35802
36046
  #
35803
36047
  # <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
35804
36048
  # intermediate model artifacts. When training NTMs, make sure that the
@@ -35819,14 +36063,14 @@ module Aws::SageMaker
35819
36063
  # compilation job can run.
35820
36064
  #
35821
36065
  # For compilation jobs, if the job does not complete during this time,
35822
- # you will receive a `TimeOut` error. We recommend starting with 900
35823
- # seconds and increase as necessary based on your model.
36066
+ # a `TimeOut` error is generated. We recommend starting with 900
36067
+ # seconds and increasing as necessary based on your model.
35824
36068
  #
35825
36069
  # For all other jobs, if the job does not complete during this time,
35826
- # Amazon SageMaker ends the job. When `RetryStrategy` is specified in
35827
- # the job request, `MaxRuntimeInSeconds` specifies the maximum time
35828
- # for all of the attempts in total, not each individual attempt. The
35829
- # default value is 1 day. The maximum value is 28 days.
36070
+ # SageMaker ends the job. When `RetryStrategy` is specified in the job
36071
+ # request, `MaxRuntimeInSeconds` specifies the maximum time for all of
36072
+ # the attempts in total, not each individual attempt. The default
36073
+ # value is 1 day. The maximum value is 28 days.
35830
36074
  # @return [Integer]
35831
36075
  #
35832
36076
  # @!attribute [rw] max_wait_time_in_seconds
@@ -35834,7 +36078,7 @@ module Aws::SageMaker
35834
36078
  # job has to complete. It is the amount of time spent waiting for Spot
35835
36079
  # capacity plus the amount of time the job can run. It must be equal
35836
36080
  # to or greater than `MaxRuntimeInSeconds`. If the job does not
35837
- # complete during this time, Amazon SageMaker ends the job.
36081
+ # complete during this time, SageMaker ends the job.
35838
36082
  #
35839
36083
  # When `RetryStrategy` is specified in the job request,
35840
36084
  # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
@@ -36254,8 +36498,8 @@ module Aws::SageMaker
36254
36498
  # For detailed information about the secondary status of the training
36255
36499
  # job, see `StatusMessage` under SecondaryStatusTransition.
36256
36500
  #
36257
- # Amazon SageMaker provides primary statuses and secondary statuses
36258
- # that apply to each of them:
36501
+ # SageMaker provides primary statuses and secondary statuses that
36502
+ # apply to each of them:
36259
36503
  #
36260
36504
  # InProgress
36261
36505
  # : * `Starting` - Starting the training job.
@@ -36328,7 +36572,7 @@ module Aws::SageMaker
36328
36572
  #
36329
36573
  # @!attribute [rw] output_data_config
36330
36574
  # The S3 path where model artifacts that you configured when creating
36331
- # the job are stored. Amazon SageMaker creates subfolders for model
36575
+ # the job are stored. SageMaker creates subfolders for model
36332
36576
  # artifacts.
36333
36577
  # @return [Types::OutputDataConfig]
36334
36578
  #
@@ -36350,13 +36594,13 @@ module Aws::SageMaker
36350
36594
  # @!attribute [rw] stopping_condition
36351
36595
  # Specifies a limit to how long a model training job can run. It also
36352
36596
  # specifies how long a managed Spot training job has to complete. When
36353
- # the job reaches the time limit, Amazon SageMaker ends the training
36354
- # job. Use this API to cap model training costs.
36597
+ # the job reaches the time limit, SageMaker ends the training job. Use
36598
+ # this API to cap model training costs.
36355
36599
  #
36356
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
36357
- # signal, which delays job termination for 120 seconds. Algorithms can
36358
- # use this 120-second window to save the model artifacts, so the
36359
- # results of training are not lost.
36600
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
36601
+ # which delays job termination for 120 seconds. Algorithms can use
36602
+ # this 120-second window to save the model artifacts, so the results
36603
+ # of training are not lost.
36360
36604
  # @return [Types::StoppingCondition]
36361
36605
  #
36362
36606
  # @!attribute [rw] creation_time
@@ -36377,8 +36621,7 @@ module Aws::SageMaker
36377
36621
  # You are billed for the time interval between the value of
36378
36622
  # `TrainingStartTime` and this time. For successful jobs and stopped
36379
36623
  # jobs, this is the time after model artifacts are uploaded. For
36380
- # failed jobs, this is the time when Amazon SageMaker detects a job
36381
- # failure.
36624
+ # failed jobs, this is the time when SageMaker detects a job failure.
36382
36625
  # @return [Time]
36383
36626
  #
36384
36627
  # @!attribute [rw] last_modified_time
@@ -36645,7 +36888,7 @@ module Aws::SageMaker
36645
36888
  #
36646
36889
  # @!attribute [rw] output_data_config
36647
36890
  # the path to the S3 bucket where you want to store model artifacts.
36648
- # Amazon SageMaker creates subfolders for the artifacts.
36891
+ # SageMaker creates subfolders for the artifacts.
36649
36892
  # @return [Types::OutputDataConfig]
36650
36893
  #
36651
36894
  # @!attribute [rw] resource_config
@@ -36656,12 +36899,12 @@ module Aws::SageMaker
36656
36899
  # @!attribute [rw] stopping_condition
36657
36900
  # Specifies a limit to how long a model training job can run. It also
36658
36901
  # specifies how long a managed Spot training job has to complete. When
36659
- # the job reaches the time limit, Amazon SageMaker ends the training
36660
- # job. Use this API to cap model training costs.
36902
+ # the job reaches the time limit, SageMaker ends the training job. Use
36903
+ # this API to cap model training costs.
36661
36904
  #
36662
- # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
36663
- # signal, which delays job termination for 120 seconds. Algorithms can
36664
- # use this 120-second window to save the model artifacts.
36905
+ # To stop a job, SageMaker sends the algorithm the SIGTERM signal,
36906
+ # which delays job termination for 120 seconds. Algorithms can use
36907
+ # this 120-second window to save the model artifacts.
36665
36908
  # @return [Types::StoppingCondition]
36666
36909
  #
36667
36910
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
@@ -38733,6 +38976,19 @@ module Aws::SageMaker
38733
38976
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
38734
38977
  # },
38735
38978
  # r_session_app_settings: {
38979
+ # default_resource_spec: {
38980
+ # sage_maker_image_arn: "ImageArn",
38981
+ # sage_maker_image_version_arn: "ImageVersionArn",
38982
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
38983
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
38984
+ # },
38985
+ # custom_images: [
38986
+ # {
38987
+ # image_name: "ImageName", # required
38988
+ # image_version_number: 1,
38989
+ # app_image_config_name: "AppImageConfigName", # required
38990
+ # },
38991
+ # ],
38736
38992
  # },
38737
38993
  # },
38738
38994
  # domain_settings_for_update: {
@@ -38903,7 +39159,7 @@ module Aws::SageMaker
38903
39159
  # }
38904
39160
  #
38905
39161
  # @!attribute [rw] endpoint_name
38906
- # The name of an existing Amazon SageMaker endpoint.
39162
+ # The name of an existing SageMaker endpoint.
38907
39163
  # @return [String]
38908
39164
  #
38909
39165
  # @!attribute [rw] desired_weights_and_capacities
@@ -39272,12 +39528,12 @@ module Aws::SageMaker
39272
39528
  # @return [String]
39273
39529
  #
39274
39530
  # @!attribute [rw] role_arn
39275
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
39276
- # can assume to access the notebook instance. For more information,
39277
- # see [Amazon SageMaker Roles][1].
39531
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
39532
+ # assume to access the notebook instance. For more information, see
39533
+ # [SageMaker Roles][1].
39278
39534
  #
39279
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
39280
- # API must have the `iam:PassRole` permission.
39535
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
39536
+ # must have the `iam:PassRole` permission.
39281
39537
  #
39282
39538
  # </note>
39283
39539
  #
@@ -39307,12 +39563,12 @@ module Aws::SageMaker
39307
39563
  # @!attribute [rw] volume_size_in_gb
39308
39564
  # The size, in GB, of the ML storage volume to attach to the notebook
39309
39565
  # instance. The default value is 5 GB. ML storage volumes are
39310
- # encrypted, so Amazon SageMaker can't determine the amount of
39311
- # available free space on the volume. Because of this, you can
39312
- # increase the volume size when you update a notebook instance, but
39313
- # you can't decrease the volume size. If you want to decrease the
39314
- # size of the ML storage volume in use, create a new notebook instance
39315
- # with the desired size.
39566
+ # encrypted, so SageMaker can't determine the amount of available
39567
+ # free space on the volume. Because of this, you can increase the
39568
+ # volume size when you update a notebook instance, but you can't
39569
+ # decrease the volume size. If you want to decrease the size of the ML
39570
+ # storage volume in use, create a new notebook instance with the
39571
+ # desired size.
39316
39572
  # @return [Integer]
39317
39573
  #
39318
39574
  # @!attribute [rw] default_code_repository
@@ -39322,8 +39578,7 @@ module Aws::SageMaker
39322
39578
  # repository in [Amazon Web Services CodeCommit][1] or in any other
39323
39579
  # Git repository. When you open a notebook instance, it opens in the
39324
39580
  # directory that contains this repository. For more information, see
39325
- # [Associating Git Repositories with Amazon SageMaker Notebook
39326
- # Instances][2].
39581
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
39327
39582
  #
39328
39583
  #
39329
39584
  #
@@ -39338,7 +39593,7 @@ module Aws::SageMaker
39338
39593
  # in [Amazon Web Services CodeCommit][1] or in any other Git
39339
39594
  # repository. These repositories are cloned at the same level as the
39340
39595
  # default repository of your notebook instance. For more information,
39341
- # see [Associating Git Repositories with Amazon SageMaker Notebook
39596
+ # see [Associating Git Repositories with SageMaker Notebook
39342
39597
  # Instances][2].
39343
39598
  #
39344
39599
  #
@@ -39934,6 +40189,19 @@ module Aws::SageMaker
39934
40189
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
39935
40190
  # },
39936
40191
  # r_session_app_settings: {
40192
+ # default_resource_spec: {
40193
+ # sage_maker_image_arn: "ImageArn",
40194
+ # sage_maker_image_version_arn: "ImageVersionArn",
40195
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
40196
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
40197
+ # },
40198
+ # custom_images: [
40199
+ # {
40200
+ # image_name: "ImageName", # required
40201
+ # image_version_number: 1,
40202
+ # app_image_config_name: "AppImageConfigName", # required
40203
+ # },
40204
+ # ],
39937
40205
  # },
39938
40206
  # },
39939
40207
  # }
@@ -40252,6 +40520,19 @@ module Aws::SageMaker
40252
40520
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
40253
40521
  # },
40254
40522
  # r_session_app_settings: {
40523
+ # default_resource_spec: {
40524
+ # sage_maker_image_arn: "ImageArn",
40525
+ # sage_maker_image_version_arn: "ImageVersionArn",
40526
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
40527
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
40528
+ # },
40529
+ # custom_images: [
40530
+ # {
40531
+ # image_name: "ImageName", # required
40532
+ # image_version_number: 1,
40533
+ # app_image_config_name: "AppImageConfigName", # required
40534
+ # },
40535
+ # ],
40255
40536
  # },
40256
40537
  # }
40257
40538
  #