aws-sdk-sagemaker 1.121.0 → 1.124.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +330 -244
- data/lib/aws-sdk-sagemaker/client_api.rb +23 -0
- data/lib/aws-sdk-sagemaker/types.rb +683 -402
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -422,7 +422,7 @@ module Aws::SageMaker
|
|
422
422
|
req.send_request(options)
|
423
423
|
end
|
424
424
|
|
425
|
-
# Adds or overwrites one or more tags for the specified
|
425
|
+
# Adds or overwrites one or more tags for the specified SageMaker
|
426
426
|
# resource. You can add tags to notebook instances, training jobs,
|
427
427
|
# hyperparameter tuning jobs, batch transform jobs, models, labeling
|
428
428
|
# jobs, work teams, endpoint configurations, and endpoints.
|
@@ -678,8 +678,8 @@ module Aws::SageMaker
|
|
678
678
|
req.send_request(options)
|
679
679
|
end
|
680
680
|
|
681
|
-
# Create a machine learning algorithm that you can use in
|
682
|
-
#
|
681
|
+
# Create a machine learning algorithm that you can use in SageMaker and
|
682
|
+
# list in the Amazon Web Services Marketplace.
|
683
683
|
#
|
684
684
|
# @option params [required, String] :algorithm_name
|
685
685
|
# The name of the algorithm.
|
@@ -723,10 +723,10 @@ module Aws::SageMaker
|
|
723
723
|
# inference.
|
724
724
|
#
|
725
725
|
# @option params [Types::AlgorithmValidationSpecification] :validation_specification
|
726
|
-
# Specifies configurations for one or more training jobs and that
|
726
|
+
# Specifies configurations for one or more training jobs and that
|
727
727
|
# SageMaker runs to test the algorithm's training code and, optionally,
|
728
|
-
# one or more batch transform jobs that
|
729
|
-
#
|
728
|
+
# one or more batch transform jobs that SageMaker runs to test the
|
729
|
+
# algorithm's inference code.
|
730
730
|
#
|
731
731
|
# @option params [Boolean] :certify_for_marketplace
|
732
732
|
# Whether to certify the algorithm so that it can be listed in Amazon
|
@@ -1210,6 +1210,7 @@ module Aws::SageMaker
|
|
1210
1210
|
# compression_type: "None", # accepts None, Gzip
|
1211
1211
|
# target_attribute_name: "TargetAttributeName", # required
|
1212
1212
|
# content_type: "ContentType",
|
1213
|
+
# channel_type: "training", # accepts training, validation
|
1213
1214
|
# },
|
1214
1215
|
# ],
|
1215
1216
|
# output_data_config: { # required
|
@@ -1234,6 +1235,9 @@ module Aws::SageMaker
|
|
1234
1235
|
# subnets: ["SubnetId"], # required
|
1235
1236
|
# },
|
1236
1237
|
# },
|
1238
|
+
# data_split_config: {
|
1239
|
+
# validation_fraction: 1.0,
|
1240
|
+
# },
|
1237
1241
|
# },
|
1238
1242
|
# role_arn: "RoleArn", # required
|
1239
1243
|
# generate_candidate_definitions_only: false,
|
@@ -1262,13 +1266,13 @@ module Aws::SageMaker
|
|
1262
1266
|
req.send_request(options)
|
1263
1267
|
end
|
1264
1268
|
|
1265
|
-
# Creates a Git repository as a resource in your
|
1266
|
-
#
|
1267
|
-
#
|
1268
|
-
#
|
1269
|
-
#
|
1270
|
-
#
|
1271
|
-
#
|
1269
|
+
# Creates a Git repository as a resource in your SageMaker account. You
|
1270
|
+
# can associate the repository with notebook instances so that you can
|
1271
|
+
# use Git source control for the notebooks you create. The Git
|
1272
|
+
# repository is a resource in your SageMaker account, so it can be
|
1273
|
+
# associated with more than one notebook instance, and it persists
|
1274
|
+
# independently from the lifecycle of any notebook instances it is
|
1275
|
+
# associated with.
|
1272
1276
|
#
|
1273
1277
|
# The repository can be hosted either in [Amazon Web Services
|
1274
1278
|
# CodeCommit][1] or in any other Git repository.
|
@@ -1920,6 +1924,19 @@ module Aws::SageMaker
|
|
1920
1924
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
1921
1925
|
# },
|
1922
1926
|
# r_session_app_settings: {
|
1927
|
+
# default_resource_spec: {
|
1928
|
+
# sage_maker_image_arn: "ImageArn",
|
1929
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
1930
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
1931
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
1932
|
+
# },
|
1933
|
+
# custom_images: [
|
1934
|
+
# {
|
1935
|
+
# image_name: "ImageName", # required
|
1936
|
+
# image_version_number: 1,
|
1937
|
+
# app_image_config_name: "AppImageConfigName", # required
|
1938
|
+
# },
|
1939
|
+
# ],
|
1923
1940
|
# },
|
1924
1941
|
# },
|
1925
1942
|
# subnet_ids: ["SubnetId"], # required
|
@@ -2032,13 +2049,13 @@ module Aws::SageMaker
|
|
2032
2049
|
end
|
2033
2050
|
|
2034
2051
|
# Creates an endpoint using the endpoint configuration specified in the
|
2035
|
-
# request.
|
2036
|
-
#
|
2052
|
+
# request. SageMaker uses the endpoint to provision resources and deploy
|
2053
|
+
# models. You create the endpoint configuration with the
|
2037
2054
|
# CreateEndpointConfig API.
|
2038
2055
|
#
|
2039
|
-
# Use this API to deploy models using
|
2056
|
+
# Use this API to deploy models using SageMaker hosting services.
|
2040
2057
|
#
|
2041
|
-
# For an example that calls this method when deploying a model to
|
2058
|
+
# For an example that calls this method when deploying a model to
|
2042
2059
|
# SageMaker hosting services, see the [Create Endpoint example
|
2043
2060
|
# notebook.][1]
|
2044
2061
|
#
|
@@ -2052,9 +2069,9 @@ module Aws::SageMaker
|
|
2052
2069
|
# The endpoint name must be unique within an Amazon Web Services Region
|
2053
2070
|
# in your Amazon Web Services account.
|
2054
2071
|
#
|
2055
|
-
# When it receives the request,
|
2056
|
-
#
|
2057
|
-
#
|
2072
|
+
# When it receives the request, SageMaker creates the endpoint, launches
|
2073
|
+
# the resources (ML compute instances), and deploys the model(s) on
|
2074
|
+
# them.
|
2058
2075
|
#
|
2059
2076
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2060
2077
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2070,21 +2087,21 @@ module Aws::SageMaker
|
|
2070
2087
|
#
|
2071
2088
|
# </note>
|
2072
2089
|
#
|
2073
|
-
# When
|
2074
|
-
#
|
2075
|
-
#
|
2076
|
-
#
|
2090
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
2091
|
+
# `Creating`. After it creates the endpoint, it sets the status to
|
2092
|
+
# `InService`. SageMaker can then process incoming requests for
|
2093
|
+
# inferences. To check the status of an endpoint, use the
|
2077
2094
|
# DescribeEndpoint API.
|
2078
2095
|
#
|
2079
2096
|
# If any of the models hosted at this endpoint get model data from an
|
2080
|
-
# Amazon S3 location,
|
2081
|
-
#
|
2082
|
-
#
|
2083
|
-
#
|
2084
|
-
#
|
2085
|
-
#
|
2086
|
-
#
|
2087
|
-
#
|
2097
|
+
# Amazon S3 location, SageMaker uses Amazon Web Services Security Token
|
2098
|
+
# Service to download model artifacts from the S3 path you provided.
|
2099
|
+
# Amazon Web Services STS is activated in your IAM user account by
|
2100
|
+
# default. If you previously deactivated Amazon Web Services STS for a
|
2101
|
+
# region, you need to reactivate Amazon Web Services STS for that
|
2102
|
+
# region. For more information, see [Activating and Deactivating Amazon
|
2103
|
+
# Web Services STS in an Amazon Web Services Region][3] in the *Amazon
|
2104
|
+
# Web Services Identity and Access Management User Guide*.
|
2088
2105
|
#
|
2089
2106
|
# <note markdown="1"> To add the IAM role policies for using this API operation, go to the
|
2090
2107
|
# [IAM console][4], and choose Roles in the left navigation pane. Search
|
@@ -2202,28 +2219,28 @@ module Aws::SageMaker
|
|
2202
2219
|
req.send_request(options)
|
2203
2220
|
end
|
2204
2221
|
|
2205
|
-
# Creates an endpoint configuration that
|
2206
|
-
#
|
2207
|
-
#
|
2208
|
-
# resources that you want
|
2209
|
-
#
|
2222
|
+
# Creates an endpoint configuration that SageMaker hosting services uses
|
2223
|
+
# to deploy models. In the configuration, you identify one or more
|
2224
|
+
# models, created using the `CreateModel` API, to deploy and the
|
2225
|
+
# resources that you want SageMaker to provision. Then you call the
|
2226
|
+
# CreateEndpoint API.
|
2210
2227
|
#
|
2211
|
-
# <note markdown="1"> Use this API if you want to use
|
2212
|
-
#
|
2228
|
+
# <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
|
2229
|
+
# models into production.
|
2213
2230
|
#
|
2214
2231
|
# </note>
|
2215
2232
|
#
|
2216
2233
|
# In the request, you define a `ProductionVariant`, for each model that
|
2217
2234
|
# you want to deploy. Each `ProductionVariant` parameter also describes
|
2218
|
-
# the resources that you want
|
2219
|
-
#
|
2235
|
+
# the resources that you want SageMaker to provision. This includes the
|
2236
|
+
# number and type of ML compute instances to deploy.
|
2220
2237
|
#
|
2221
2238
|
# If you are hosting multiple models, you also assign a `VariantWeight`
|
2222
2239
|
# to specify how much traffic you want to allocate to each model. For
|
2223
2240
|
# example, suppose that you want to host two models, A and B, and you
|
2224
|
-
# assign traffic weight 2 for model A and 1 for model B.
|
2225
|
-
#
|
2226
|
-
#
|
2241
|
+
# assign traffic weight 2 for model A and 1 for model B. SageMaker
|
2242
|
+
# distributes two-thirds of the traffic to Model A, and one-third to
|
2243
|
+
# model B.
|
2227
2244
|
#
|
2228
2245
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2229
2246
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2265,8 +2282,8 @@ module Aws::SageMaker
|
|
2265
2282
|
#
|
2266
2283
|
# @option params [String] :kms_key_id
|
2267
2284
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
2268
|
-
# Service key that
|
2269
|
-
#
|
2285
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
2286
|
+
# attached to the ML compute instance that hosts the endpoint.
|
2270
2287
|
#
|
2271
2288
|
# The KmsKeyId can be any of the following formats:
|
2272
2289
|
#
|
@@ -3133,8 +3150,8 @@ module Aws::SageMaker
|
|
3133
3150
|
|
3134
3151
|
# Creates a custom SageMaker image. A SageMaker image is a set of image
|
3135
3152
|
# versions. Each image version represents a container image stored in
|
3136
|
-
# Amazon Container Registry (ECR). For more information, see
|
3137
|
-
# own SageMaker image][1].
|
3153
|
+
# Amazon Elastic Container Registry (ECR). For more information, see
|
3154
|
+
# [Bring your own SageMaker image][1].
|
3138
3155
|
#
|
3139
3156
|
#
|
3140
3157
|
#
|
@@ -3190,13 +3207,13 @@ module Aws::SageMaker
|
|
3190
3207
|
end
|
3191
3208
|
|
3192
3209
|
# Creates a version of the SageMaker image specified by `ImageName`. The
|
3193
|
-
# version represents the Amazon Container Registry (ECR)
|
3194
|
-
# specified by `BaseImage`.
|
3210
|
+
# version represents the Amazon Elastic Container Registry (ECR)
|
3211
|
+
# container image specified by `BaseImage`.
|
3195
3212
|
#
|
3196
3213
|
# @option params [required, String] :base_image
|
3197
3214
|
# The registry path of the container image to use as the starting point
|
3198
|
-
# for this version. The path is an Amazon Container Registry
|
3199
|
-
# in the following format:
|
3215
|
+
# for this version. The path is an Amazon Elastic Container Registry
|
3216
|
+
# (ECR) URI in the following format:
|
3200
3217
|
#
|
3201
3218
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
3202
3219
|
# [@digest]>`
|
@@ -3266,6 +3283,10 @@ module Aws::SageMaker
|
|
3266
3283
|
# A set of conditions for stopping a recommendation job. If any of the
|
3267
3284
|
# conditions are met, the job is automatically stopped.
|
3268
3285
|
#
|
3286
|
+
# @option params [Types::RecommendationJobOutputConfig] :output_config
|
3287
|
+
# Provides information about the output artifacts and the KMS key to use
|
3288
|
+
# for Amazon S3 server-side encryption.
|
3289
|
+
#
|
3269
3290
|
# @option params [Array<Types::Tag>] :tags
|
3270
3291
|
# The metadata that you apply to Amazon Web Services resources to help
|
3271
3292
|
# you categorize and organize them. Each tag consists of a key and a
|
@@ -3318,6 +3339,7 @@ module Aws::SageMaker
|
|
3318
3339
|
# },
|
3319
3340
|
# },
|
3320
3341
|
# ],
|
3342
|
+
# volume_kms_key_id: "KmsKeyId",
|
3321
3343
|
# },
|
3322
3344
|
# job_description: "RecommendationJobDescription",
|
3323
3345
|
# stopping_conditions: {
|
@@ -3329,6 +3351,12 @@ module Aws::SageMaker
|
|
3329
3351
|
# },
|
3330
3352
|
# ],
|
3331
3353
|
# },
|
3354
|
+
# output_config: {
|
3355
|
+
# kms_key_id: "KmsKeyId",
|
3356
|
+
# compiled_output_config: {
|
3357
|
+
# s3_output_uri: "S3Uri",
|
3358
|
+
# },
|
3359
|
+
# },
|
3332
3360
|
# tags: [
|
3333
3361
|
# {
|
3334
3362
|
# key: "TagKey", # required
|
@@ -3655,34 +3683,30 @@ module Aws::SageMaker
|
|
3655
3683
|
req.send_request(options)
|
3656
3684
|
end
|
3657
3685
|
|
3658
|
-
# Creates a model in
|
3659
|
-
#
|
3660
|
-
#
|
3661
|
-
#
|
3662
|
-
#
|
3686
|
+
# Creates a model in SageMaker. In the request, you name the model and
|
3687
|
+
# describe a primary container. For the primary container, you specify
|
3688
|
+
# the Docker image that contains inference code, artifacts (from prior
|
3689
|
+
# training), and a custom environment map that the inference code uses
|
3690
|
+
# when you deploy the model for predictions.
|
3663
3691
|
#
|
3664
|
-
# Use this API to create a model if you want to use
|
3665
|
-
#
|
3692
|
+
# Use this API to create a model if you want to use SageMaker hosting
|
3693
|
+
# services or run a batch transform job.
|
3666
3694
|
#
|
3667
3695
|
# To host your model, you create an endpoint configuration with the
|
3668
3696
|
# `CreateEndpointConfig` API, and then create an endpoint with the
|
3669
|
-
# `CreateEndpoint` API.
|
3670
|
-
#
|
3697
|
+
# `CreateEndpoint` API. SageMaker then deploys all of the containers
|
3698
|
+
# that you defined for the model in the hosting environment.
|
3671
3699
|
#
|
3672
|
-
# For an example that calls this method when deploying a model to
|
3700
|
+
# For an example that calls this method when deploying a model to
|
3673
3701
|
# SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
|
3674
3702
|
# Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
|
3675
3703
|
#
|
3676
3704
|
# To run a batch transform using your model, you start a job with the
|
3677
|
-
# `CreateTransformJob` API.
|
3678
|
-
#
|
3679
|
-
# location.
|
3680
|
-
#
|
3681
|
-
# In the `CreateModel` request, you must define a container with the
|
3682
|
-
# `PrimaryContainer` parameter.
|
3705
|
+
# `CreateTransformJob` API. SageMaker uses your model and your dataset
|
3706
|
+
# to get inferences which are then saved to a specified S3 location.
|
3683
3707
|
#
|
3684
|
-
# In the request, you also provide an IAM role that
|
3685
|
-
#
|
3708
|
+
# In the request, you also provide an IAM role that SageMaker can assume
|
3709
|
+
# to access model artifacts and docker image for deployment on ML
|
3686
3710
|
# compute hosting instances or for batch transform jobs. In addition,
|
3687
3711
|
# you also use the IAM role to manage permissions the inference code
|
3688
3712
|
# needs. For example, if the inference code access any other Amazon Web
|
@@ -3708,14 +3732,14 @@ module Aws::SageMaker
|
|
3708
3732
|
# called.
|
3709
3733
|
#
|
3710
3734
|
# @option params [required, String] :execution_role_arn
|
3711
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
3712
|
-
#
|
3713
|
-
#
|
3714
|
-
#
|
3715
|
-
# [
|
3735
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
3736
|
+
# assume to access model artifacts and docker image for deployment on ML
|
3737
|
+
# compute instances or for batch transform jobs. Deploying on ML compute
|
3738
|
+
# instances is part of model hosting. For more information, see
|
3739
|
+
# [SageMaker Roles][1].
|
3716
3740
|
#
|
3717
|
-
# <note markdown="1"> To be able to pass this role to
|
3718
|
-
#
|
3741
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
3742
|
+
# have the `iam:PassRole` permission.
|
3719
3743
|
#
|
3720
3744
|
# </note>
|
3721
3745
|
#
|
@@ -4094,11 +4118,10 @@ module Aws::SageMaker
|
|
4094
4118
|
req.send_request(options)
|
4095
4119
|
end
|
4096
4120
|
|
4097
|
-
# Creates a model package that you can use to create
|
4098
|
-
#
|
4099
|
-
#
|
4100
|
-
#
|
4101
|
-
# Amazon SageMaker.
|
4121
|
+
# Creates a model package that you can use to create SageMaker models or
|
4122
|
+
# list on Amazon Web Services Marketplace, or a versioned model that is
|
4123
|
+
# part of a model group. Buyers can subscribe to model packages listed
|
4124
|
+
# on Amazon Web Services Marketplace to create models in SageMaker.
|
4102
4125
|
#
|
4103
4126
|
# To create a model package by specifying a Docker container that
|
4104
4127
|
# contains your inference code and the Amazon S3 location of your model
|
@@ -4147,8 +4170,8 @@ module Aws::SageMaker
|
|
4147
4170
|
# for inference.
|
4148
4171
|
#
|
4149
4172
|
# @option params [Types::ModelPackageValidationSpecification] :validation_specification
|
4150
|
-
# Specifies configurations for one or more transform jobs that
|
4151
|
-
#
|
4173
|
+
# Specifies configurations for one or more transform jobs that SageMaker
|
4174
|
+
# runs to test the model package.
|
4152
4175
|
#
|
4153
4176
|
# @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
|
4154
4177
|
# Details about the algorithm that was used to create the model package.
|
@@ -4786,46 +4809,45 @@ module Aws::SageMaker
|
|
4786
4809
|
req.send_request(options)
|
4787
4810
|
end
|
4788
4811
|
|
4789
|
-
# Creates an
|
4790
|
-
#
|
4791
|
-
# notebook.
|
4812
|
+
# Creates an SageMaker notebook instance. A notebook instance is a
|
4813
|
+
# machine learning (ML) compute instance running on a Jupyter notebook.
|
4792
4814
|
#
|
4793
4815
|
# In a `CreateNotebookInstance` request, specify the type of ML compute
|
4794
|
-
# instance that you want to run.
|
4816
|
+
# instance that you want to run. SageMaker launches the instance,
|
4795
4817
|
# installs common libraries that you can use to explore datasets for
|
4796
4818
|
# model training, and attaches an ML storage volume to the notebook
|
4797
4819
|
# instance.
|
4798
4820
|
#
|
4799
|
-
#
|
4800
|
-
#
|
4801
|
-
#
|
4821
|
+
# SageMaker also provides a set of example notebooks. Each notebook
|
4822
|
+
# demonstrates how to use SageMaker with a specific algorithm or with a
|
4823
|
+
# machine learning framework.
|
4802
4824
|
#
|
4803
|
-
# After receiving the request,
|
4825
|
+
# After receiving the request, SageMaker does the following:
|
4804
4826
|
#
|
4805
|
-
# 1. Creates a network interface in the
|
4827
|
+
# 1. Creates a network interface in the SageMaker VPC.
|
4806
4828
|
#
|
4807
|
-
# 2. (Option) If you specified `SubnetId`,
|
4808
|
-
#
|
4809
|
-
#
|
4810
|
-
#
|
4811
|
-
#
|
4812
|
-
#
|
4829
|
+
# 2. (Option) If you specified `SubnetId`, SageMaker creates a network
|
4830
|
+
# interface in your own VPC, which is inferred from the subnet ID
|
4831
|
+
# that you provide in the input. When creating this network
|
4832
|
+
# interface, SageMaker attaches the security group that you
|
4833
|
+
# specified in the request to the network interface that it creates
|
4834
|
+
# in your VPC.
|
4813
4835
|
#
|
4814
4836
|
# 3. Launches an EC2 instance of the type specified in the request in
|
4815
|
-
# the
|
4816
|
-
#
|
4817
|
-
#
|
4818
|
-
#
|
4837
|
+
# the SageMaker VPC. If you specified `SubnetId` of your VPC,
|
4838
|
+
# SageMaker specifies both network interfaces when launching this
|
4839
|
+
# instance. This enables inbound traffic from your own VPC to the
|
4840
|
+
# notebook instance, assuming that the security groups allow it.
|
4819
4841
|
#
|
4820
|
-
# After creating the notebook instance,
|
4821
|
-
#
|
4822
|
-
#
|
4842
|
+
# After creating the notebook instance, SageMaker returns its Amazon
|
4843
|
+
# Resource Name (ARN). You can't change the name of a notebook instance
|
4844
|
+
# after you create it.
|
4823
4845
|
#
|
4824
|
-
# After
|
4825
|
-
#
|
4826
|
-
#
|
4827
|
-
#
|
4828
|
-
#
|
4846
|
+
# After SageMaker creates the notebook instance, you can connect to the
|
4847
|
+
# Jupyter server and work in Jupyter notebooks. For example, you can
|
4848
|
+
# write code to explore a dataset that you can use for model training,
|
4849
|
+
# train a model, host models by creating SageMaker endpoints, and
|
4850
|
+
# validate hosted models.
|
4829
4851
|
#
|
4830
4852
|
# For more information, see [How It Works][1].
|
4831
4853
|
#
|
@@ -4849,15 +4871,14 @@ module Aws::SageMaker
|
|
4849
4871
|
#
|
4850
4872
|
# @option params [required, String] :role_arn
|
4851
4873
|
# When you send any requests to Amazon Web Services resources from the
|
4852
|
-
# notebook instance,
|
4853
|
-
#
|
4854
|
-
#
|
4855
|
-
#
|
4856
|
-
#
|
4857
|
-
# SageMaker Roles][1].
|
4874
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
4875
|
+
# your behalf. You must grant this role necessary permissions so
|
4876
|
+
# SageMaker can perform these tasks. The policy must allow the SageMaker
|
4877
|
+
# service principal (sagemaker.amazonaws.com) permissions to assume this
|
4878
|
+
# role. For more information, see [SageMaker Roles][1].
|
4858
4879
|
#
|
4859
|
-
# <note markdown="1"> To be able to pass this role to
|
4860
|
-
#
|
4880
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
4881
|
+
# have the `iam:PassRole` permission.
|
4861
4882
|
#
|
4862
4883
|
# </note>
|
4863
4884
|
#
|
@@ -4867,10 +4888,10 @@ module Aws::SageMaker
|
|
4867
4888
|
#
|
4868
4889
|
# @option params [String] :kms_key_id
|
4869
4890
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
4870
|
-
# Service key that
|
4871
|
-
#
|
4872
|
-
#
|
4873
|
-
#
|
4891
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
4892
|
+
# attached to your notebook instance. The KMS key you provide must be
|
4893
|
+
# enabled. For information, see [Enabling and Disabling Keys][1] in the
|
4894
|
+
# *Amazon Web Services Key Management Service Developer Guide*.
|
4874
4895
|
#
|
4875
4896
|
#
|
4876
4897
|
#
|
@@ -4896,11 +4917,11 @@ module Aws::SageMaker
|
|
4896
4917
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
|
4897
4918
|
#
|
4898
4919
|
# @option params [String] :direct_internet_access
|
4899
|
-
# Sets whether
|
4920
|
+
# Sets whether SageMaker provides internet access to the notebook
|
4900
4921
|
# instance. If you set this to `Disabled` this notebook instance is able
|
4901
4922
|
# to access resources only in your VPC, and is not be able to connect to
|
4902
|
-
#
|
4903
|
-
#
|
4923
|
+
# SageMaker training and endpoint services unless you configure a NAT
|
4924
|
+
# Gateway in your VPC.
|
4904
4925
|
#
|
4905
4926
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4906
4927
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -4931,8 +4952,7 @@ module Aws::SageMaker
|
|
4931
4952
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
4932
4953
|
# repository. When you open a notebook instance, it opens in the
|
4933
4954
|
# directory that contains this repository. For more information, see
|
4934
|
-
# [Associating Git Repositories with
|
4935
|
-
# Instances][2].
|
4955
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4936
4956
|
#
|
4937
4957
|
#
|
4938
4958
|
#
|
@@ -4946,8 +4966,7 @@ module Aws::SageMaker
|
|
4946
4966
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
4947
4967
|
# These repositories are cloned at the same level as the default
|
4948
4968
|
# repository of your notebook instance. For more information, see
|
4949
|
-
# [Associating Git Repositories with
|
4950
|
-
# Instances][2].
|
4969
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4951
4970
|
#
|
4952
4971
|
#
|
4953
4972
|
#
|
@@ -5231,10 +5250,10 @@ module Aws::SageMaker
|
|
5231
5250
|
end
|
5232
5251
|
|
5233
5252
|
# Returns a URL that you can use to connect to the Jupyter server from a
|
5234
|
-
# notebook instance. In the
|
5235
|
-
#
|
5236
|
-
#
|
5237
|
-
#
|
5253
|
+
# notebook instance. In the SageMaker console, when you choose `Open`
|
5254
|
+
# next to a notebook instance, SageMaker opens a new tab showing the
|
5255
|
+
# Jupyter server home page from the notebook instance. The console uses
|
5256
|
+
# this API to get the URL and show the page.
|
5238
5257
|
#
|
5239
5258
|
# The IAM role or user used to call this API defines the permissions to
|
5240
5259
|
# access the notebook instance. Once the presigned URL is created, no
|
@@ -5590,15 +5609,14 @@ module Aws::SageMaker
|
|
5590
5609
|
req.send_request(options)
|
5591
5610
|
end
|
5592
5611
|
|
5593
|
-
# Starts a model training job. After training completes,
|
5594
|
-
#
|
5595
|
-
#
|
5612
|
+
# Starts a model training job. After training completes, SageMaker saves
|
5613
|
+
# the resulting model artifacts to an Amazon S3 location that you
|
5614
|
+
# specify.
|
5596
5615
|
#
|
5597
|
-
# If you choose to host your model using
|
5598
|
-
#
|
5599
|
-
#
|
5600
|
-
#
|
5601
|
-
# for inference.
|
5616
|
+
# If you choose to host your model using SageMaker hosting services, you
|
5617
|
+
# can use the resulting model artifacts as part of the model. You can
|
5618
|
+
# also use the artifacts in a machine learning service other than
|
5619
|
+
# SageMaker, provided that you know how to use them for inference.
|
5602
5620
|
#
|
5603
5621
|
# In the request body, you provide the following:
|
5604
5622
|
#
|
@@ -5608,13 +5626,13 @@ module Aws::SageMaker
|
|
5608
5626
|
# enable the estimation of model parameters during training.
|
5609
5627
|
# Hyperparameters can be tuned to optimize this learning process. For
|
5610
5628
|
# a list of hyperparameters for each training algorithm provided by
|
5611
|
-
#
|
5629
|
+
# SageMaker, see [Algorithms][1].
|
5612
5630
|
#
|
5613
5631
|
# * `InputDataConfig` - Describes the training dataset and the Amazon
|
5614
5632
|
# S3, EFS, or FSx location where it is stored.
|
5615
5633
|
#
|
5616
5634
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
5617
|
-
#
|
5635
|
+
# SageMaker to save the results of model training.
|
5618
5636
|
#
|
5619
5637
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
5620
5638
|
# and ML storage volumes to deploy for model training. In distributed
|
@@ -5624,10 +5642,10 @@ module Aws::SageMaker
|
|
5624
5642
|
# learning models by up to 80% by using Amazon EC2 Spot instances. For
|
5625
5643
|
# more information, see [Managed Spot Training][2].
|
5626
5644
|
#
|
5627
|
-
# * `RoleArn` - The Amazon Resource Name (ARN) that
|
5628
|
-
#
|
5629
|
-
#
|
5630
|
-
#
|
5645
|
+
# * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
|
5646
|
+
# perform tasks on your behalf during model training. You must grant
|
5647
|
+
# this role the necessary permissions so that SageMaker can
|
5648
|
+
# successfully complete model training.
|
5631
5649
|
#
|
5632
5650
|
# * `StoppingCondition` - To help cap training costs, use
|
5633
5651
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
@@ -5640,7 +5658,7 @@ module Aws::SageMaker
|
|
5640
5658
|
# * `RetryStrategy` - The number of times to retry the job when the job
|
5641
5659
|
# fails due to an `InternalServerError`.
|
5642
5660
|
#
|
5643
|
-
# For more information about
|
5661
|
+
# For more information about SageMaker, see [How It Works][3].
|
5644
5662
|
#
|
5645
5663
|
#
|
5646
5664
|
#
|
@@ -5655,7 +5673,7 @@ module Aws::SageMaker
|
|
5655
5673
|
# @option params [Hash<String,String>] :hyper_parameters
|
5656
5674
|
# Algorithm-specific parameters that influence the quality of the model.
|
5657
5675
|
# You set hyperparameters before you start the learning process. For a
|
5658
|
-
# list of hyperparameters for each training algorithm provided by
|
5676
|
+
# list of hyperparameters for each training algorithm provided by
|
5659
5677
|
# SageMaker, see [Algorithms][1].
|
5660
5678
|
#
|
5661
5679
|
# You can specify a maximum of 100 hyperparameters. Each hyperparameter
|
@@ -5669,9 +5687,9 @@ module Aws::SageMaker
|
|
5669
5687
|
# @option params [required, Types::AlgorithmSpecification] :algorithm_specification
|
5670
5688
|
# The registry path of the Docker image that contains the training
|
5671
5689
|
# algorithm and algorithm-specific metadata, including the input mode.
|
5672
|
-
# For more information about algorithms provided by
|
5673
|
-
#
|
5674
|
-
#
|
5690
|
+
# For more information about algorithms provided by SageMaker, see
|
5691
|
+
# [Algorithms][1]. For information about providing your own algorithms,
|
5692
|
+
# see [Using Your Own Algorithms with Amazon SageMaker][2].
|
5675
5693
|
#
|
5676
5694
|
#
|
5677
5695
|
#
|
@@ -5679,18 +5697,18 @@ module Aws::SageMaker
|
|
5679
5697
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
5680
5698
|
#
|
5681
5699
|
# @option params [required, String] :role_arn
|
5682
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
5683
|
-
#
|
5700
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
5701
|
+
# assume to perform tasks on your behalf.
|
5684
5702
|
#
|
5685
|
-
# During model training,
|
5686
|
-
#
|
5687
|
-
#
|
5688
|
-
#
|
5689
|
-
#
|
5690
|
-
# information, see [
|
5703
|
+
# During model training, SageMaker needs your permission to read input
|
5704
|
+
# data from an S3 bucket, download a Docker image that contains training
|
5705
|
+
# code, write model artifacts to an S3 bucket, write logs to Amazon
|
5706
|
+
# CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
|
5707
|
+
# permissions for all of these tasks to an IAM role. For more
|
5708
|
+
# information, see [SageMaker Roles][1].
|
5691
5709
|
#
|
5692
|
-
# <note markdown="1"> To be able to pass this role to
|
5693
|
-
#
|
5710
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
5711
|
+
# have the `iam:PassRole` permission.
|
5694
5712
|
#
|
5695
5713
|
# </note>
|
5696
5714
|
#
|
@@ -5710,16 +5728,15 @@ module Aws::SageMaker
|
|
5710
5728
|
# type, compression method, and whether the data is wrapped in RecordIO
|
5711
5729
|
# format.
|
5712
5730
|
#
|
5713
|
-
# Depending on the input mode that the algorithm supports,
|
5714
|
-
#
|
5715
|
-
#
|
5716
|
-
#
|
5717
|
-
#
|
5718
|
-
# downloaded.
|
5731
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
5732
|
+
# either copies input data files from an S3 bucket to a local directory
|
5733
|
+
# in the Docker container, or makes it available as input streams. For
|
5734
|
+
# example, if you specify an EFS location, input data files are
|
5735
|
+
# available as input streams. They do not need to be downloaded.
|
5719
5736
|
#
|
5720
5737
|
# @option params [required, Types::OutputDataConfig] :output_data_config
|
5721
5738
|
# Specifies the path to the S3 location where you want to store model
|
5722
|
-
# artifacts.
|
5739
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
5723
5740
|
#
|
5724
5741
|
# @option params [required, Types::ResourceConfig] :resource_config
|
5725
5742
|
# The resources, including the ML compute instances and ML storage
|
@@ -5727,10 +5744,10 @@ module Aws::SageMaker
|
|
5727
5744
|
#
|
5728
5745
|
# ML storage volumes store model artifacts and incremental states.
|
5729
5746
|
# Training algorithms might also use ML storage volumes for scratch
|
5730
|
-
# space. If you want
|
5731
|
-
#
|
5732
|
-
#
|
5733
|
-
#
|
5747
|
+
# space. If you want SageMaker to use the ML storage volume to store the
|
5748
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
5749
|
+
# algorithm specification. For distributed training algorithms, specify
|
5750
|
+
# an instance count greater than 1.
|
5734
5751
|
#
|
5735
5752
|
# @option params [Types::VpcConfig] :vpc_config
|
5736
5753
|
# A VpcConfig object that specifies the VPC that you want your training
|
@@ -5745,13 +5762,13 @@ module Aws::SageMaker
|
|
5745
5762
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5746
5763
|
# Specifies a limit to how long a model training job can run. It also
|
5747
5764
|
# specifies how long a managed Spot training job has to complete. When
|
5748
|
-
# the job reaches the time limit,
|
5749
|
-
#
|
5765
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
5766
|
+
# this API to cap model training costs.
|
5750
5767
|
#
|
5751
|
-
# To stop a job,
|
5752
|
-
#
|
5753
|
-
#
|
5754
|
-
#
|
5768
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
5769
|
+
# which delays job termination for 120 seconds. Algorithms can use this
|
5770
|
+
# 120-second window to save the model artifacts, so the results of
|
5771
|
+
# training are not lost.
|
5755
5772
|
#
|
5756
5773
|
# @option params [Array<Types::Tag>] :tags
|
5757
5774
|
# An array of key-value pairs. You can use tags to categorize your
|
@@ -5767,9 +5784,9 @@ module Aws::SageMaker
|
|
5767
5784
|
# Isolates the training container. No inbound or outbound network calls
|
5768
5785
|
# can be made, except for calls between peers within a training cluster
|
5769
5786
|
# for distributed training. If you enable network isolation for training
|
5770
|
-
# jobs that are configured to use a VPC,
|
5771
|
-
#
|
5772
|
-
#
|
5787
|
+
# jobs that are configured to use a VPC, SageMaker downloads and uploads
|
5788
|
+
# customer data and model artifacts through the specified VPC, but the
|
5789
|
+
# training container does not have network access.
|
5773
5790
|
#
|
5774
5791
|
# @option params [Boolean] :enable_inter_container_traffic_encryption
|
5775
5792
|
# To encrypt all communications between ML compute instances in
|
@@ -6076,6 +6093,11 @@ module Aws::SageMaker
|
|
6076
6093
|
# fit within the maximum payload size, we recommend using a slightly
|
6077
6094
|
# larger value. The default value is `6` MB.
|
6078
6095
|
#
|
6096
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
6097
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
6098
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
6099
|
+
# MB.
|
6100
|
+
#
|
6079
6101
|
# For cases where the payload might be arbitrarily large and is
|
6080
6102
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
6081
6103
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -6506,6 +6528,19 @@ module Aws::SageMaker
|
|
6506
6528
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
6507
6529
|
# },
|
6508
6530
|
# r_session_app_settings: {
|
6531
|
+
# default_resource_spec: {
|
6532
|
+
# sage_maker_image_arn: "ImageArn",
|
6533
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
6534
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
6535
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
6536
|
+
# },
|
6537
|
+
# custom_images: [
|
6538
|
+
# {
|
6539
|
+
# image_name: "ImageName", # required
|
6540
|
+
# image_version_number: 1,
|
6541
|
+
# app_image_config_name: "AppImageConfigName", # required
|
6542
|
+
# },
|
6543
|
+
# ],
|
6509
6544
|
# },
|
6510
6545
|
# },
|
6511
6546
|
# })
|
@@ -7041,13 +7076,19 @@ module Aws::SageMaker
|
|
7041
7076
|
req.send_request(options)
|
7042
7077
|
end
|
7043
7078
|
|
7044
|
-
# Deletes an endpoint.
|
7045
|
-
#
|
7079
|
+
# Deletes an endpoint. SageMaker frees up all of the resources that were
|
7080
|
+
# deployed when the endpoint was created.
|
7046
7081
|
#
|
7047
|
-
#
|
7082
|
+
# SageMaker retires any custom KMS key grants associated with the
|
7048
7083
|
# endpoint, meaning you don't need to use the [RevokeGrant][1] API
|
7049
7084
|
# call.
|
7050
7085
|
#
|
7086
|
+
# When you delete your endpoint, SageMaker asynchronously deletes
|
7087
|
+
# associated endpoint resources such as KMS key grants. You might still
|
7088
|
+
# see these resources in your account for a few minutes after deleting
|
7089
|
+
# your endpoint. Do not delete or revoke the permissions for your `
|
7090
|
+
# ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
|
7091
|
+
#
|
7051
7092
|
#
|
7052
7093
|
#
|
7053
7094
|
# [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
|
@@ -7264,9 +7305,9 @@ module Aws::SageMaker
|
|
7264
7305
|
end
|
7265
7306
|
|
7266
7307
|
# Deletes a model. The `DeleteModel` API deletes only the model entry
|
7267
|
-
# that was created in
|
7268
|
-
#
|
7269
|
-
#
|
7308
|
+
# that was created in SageMaker when you called the `CreateModel` API.
|
7309
|
+
# It does not delete model artifacts, inference code, or the IAM role
|
7310
|
+
# that you specified when creating the model.
|
7270
7311
|
#
|
7271
7312
|
# @option params [required, String] :model_name
|
7272
7313
|
# The name of the model to delete.
|
@@ -7334,10 +7375,10 @@ module Aws::SageMaker
|
|
7334
7375
|
|
7335
7376
|
# Deletes a model package.
|
7336
7377
|
#
|
7337
|
-
# A model package is used to create
|
7338
|
-
#
|
7339
|
-
#
|
7340
|
-
#
|
7378
|
+
# A model package is used to create SageMaker models or list on Amazon
|
7379
|
+
# Web Services Marketplace. Buyers can subscribe to model packages
|
7380
|
+
# listed on Amazon Web Services Marketplace to create models in
|
7381
|
+
# SageMaker.
|
7341
7382
|
#
|
7342
7383
|
# @option params [required, String] :model_package_name
|
7343
7384
|
# The name or Amazon Resource Name (ARN) of the model package to delete.
|
@@ -7452,16 +7493,16 @@ module Aws::SageMaker
|
|
7452
7493
|
req.send_request(options)
|
7453
7494
|
end
|
7454
7495
|
|
7455
|
-
# Deletes an
|
7496
|
+
# Deletes an SageMaker notebook instance. Before you can delete a
|
7456
7497
|
# notebook instance, you must call the `StopNotebookInstance` API.
|
7457
7498
|
#
|
7458
|
-
# When you delete a notebook instance, you lose all of your data.
|
7499
|
+
# When you delete a notebook instance, you lose all of your data.
|
7459
7500
|
# SageMaker removes the ML compute instance, and deletes the ML storage
|
7460
7501
|
# volume and the network interface associated with the notebook
|
7461
7502
|
# instance.
|
7462
7503
|
#
|
7463
7504
|
# @option params [required, String] :notebook_instance_name
|
7464
|
-
# The name of the
|
7505
|
+
# The name of the SageMaker notebook instance to delete.
|
7465
7506
|
#
|
7466
7507
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
7467
7508
|
#
|
@@ -7589,7 +7630,7 @@ module Aws::SageMaker
|
|
7589
7630
|
req.send_request(options)
|
7590
7631
|
end
|
7591
7632
|
|
7592
|
-
# Deletes the specified tags from an
|
7633
|
+
# Deletes the specified tags from an SageMaker resource.
|
7593
7634
|
#
|
7594
7635
|
# To list a resource's tags, use the `ListTags` API.
|
7595
7636
|
#
|
@@ -8230,6 +8271,7 @@ module Aws::SageMaker
|
|
8230
8271
|
# resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
|
8231
8272
|
# resp.input_data_config[0].target_attribute_name #=> String
|
8232
8273
|
# resp.input_data_config[0].content_type #=> String
|
8274
|
+
# resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
|
8233
8275
|
# resp.output_data_config.kms_key_id #=> String
|
8234
8276
|
# resp.output_data_config.s3_output_path #=> String
|
8235
8277
|
# resp.role_arn #=> String
|
@@ -8244,6 +8286,7 @@ module Aws::SageMaker
|
|
8244
8286
|
# resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
|
8245
8287
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
|
8246
8288
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
|
8289
|
+
# resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
|
8247
8290
|
# resp.creation_time #=> Time
|
8248
8291
|
# resp.end_time #=> Time
|
8249
8292
|
# resp.last_modified_time #=> Time
|
@@ -8275,6 +8318,7 @@ module Aws::SageMaker
|
|
8275
8318
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
8276
8319
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
|
8277
8320
|
# resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
8321
|
+
# resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss"
|
8278
8322
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
8279
8323
|
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError"
|
8280
8324
|
# resp.generate_candidate_definitions_only #=> Boolean
|
@@ -8726,6 +8770,14 @@ module Aws::SageMaker
|
|
8726
8770
|
# resp.default_user_settings.tensor_board_app_settings.default_resource_spec.lifecycle_config_arn #=> String
|
8727
8771
|
# resp.default_user_settings.r_studio_server_pro_app_settings.access_status #=> String, one of "ENABLED", "DISABLED"
|
8728
8772
|
# resp.default_user_settings.r_studio_server_pro_app_settings.user_group #=> String, one of "R_STUDIO_ADMIN", "R_STUDIO_USER"
|
8773
|
+
# resp.default_user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
8774
|
+
# resp.default_user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
8775
|
+
# resp.default_user_settings.r_session_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
|
8776
|
+
# resp.default_user_settings.r_session_app_settings.default_resource_spec.lifecycle_config_arn #=> String
|
8777
|
+
# resp.default_user_settings.r_session_app_settings.custom_images #=> Array
|
8778
|
+
# resp.default_user_settings.r_session_app_settings.custom_images[0].image_name #=> String
|
8779
|
+
# resp.default_user_settings.r_session_app_settings.custom_images[0].image_version_number #=> Integer
|
8780
|
+
# resp.default_user_settings.r_session_app_settings.custom_images[0].app_image_config_name #=> String
|
8729
8781
|
# resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
|
8730
8782
|
# resp.home_efs_file_system_kms_key_id #=> String
|
8731
8783
|
# resp.subnet_ids #=> Array
|
@@ -9602,6 +9654,7 @@ module Aws::SageMaker
|
|
9602
9654
|
# resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].name #=> String
|
9603
9655
|
# resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value #=> Array
|
9604
9656
|
# resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value[0] #=> String
|
9657
|
+
# resp.input_config.volume_kms_key_id #=> String
|
9605
9658
|
# resp.stopping_conditions.max_invocations #=> Integer
|
9606
9659
|
# resp.stopping_conditions.model_latency_thresholds #=> Array
|
9607
9660
|
# resp.stopping_conditions.model_latency_thresholds[0].percentile #=> String
|
@@ -10207,7 +10260,7 @@ module Aws::SageMaker
|
|
10207
10260
|
# Gets a description for the specified model group.
|
10208
10261
|
#
|
10209
10262
|
# @option params [required, String] :model_package_group_name
|
10210
|
-
# The name of
|
10263
|
+
# The name of gthe model group to describe.
|
10211
10264
|
#
|
10212
10265
|
# @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10213
10266
|
#
|
@@ -11432,6 +11485,14 @@ module Aws::SageMaker
|
|
11432
11485
|
# resp.user_settings.tensor_board_app_settings.default_resource_spec.lifecycle_config_arn #=> String
|
11433
11486
|
# resp.user_settings.r_studio_server_pro_app_settings.access_status #=> String, one of "ENABLED", "DISABLED"
|
11434
11487
|
# resp.user_settings.r_studio_server_pro_app_settings.user_group #=> String, one of "R_STUDIO_ADMIN", "R_STUDIO_USER"
|
11488
|
+
# resp.user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_arn #=> String
|
11489
|
+
# resp.user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
|
11490
|
+
# resp.user_settings.r_session_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
|
11491
|
+
# resp.user_settings.r_session_app_settings.default_resource_spec.lifecycle_config_arn #=> String
|
11492
|
+
# resp.user_settings.r_session_app_settings.custom_images #=> Array
|
11493
|
+
# resp.user_settings.r_session_app_settings.custom_images[0].image_name #=> String
|
11494
|
+
# resp.user_settings.r_session_app_settings.custom_images[0].image_version_number #=> Integer
|
11495
|
+
# resp.user_settings.r_session_app_settings.custom_images[0].app_image_config_name #=> String
|
11435
11496
|
#
|
11436
11497
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfile AWS API Documentation
|
11437
11498
|
#
|
@@ -12395,6 +12456,7 @@ module Aws::SageMaker
|
|
12395
12456
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
12396
12457
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
|
12397
12458
|
# resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
|
12459
|
+
# resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss"
|
12398
12460
|
# resp.next_token #=> String
|
12399
12461
|
#
|
12400
12462
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
|
@@ -14739,8 +14801,8 @@ module Aws::SageMaker
|
|
14739
14801
|
req.send_request(options)
|
14740
14802
|
end
|
14741
14803
|
|
14742
|
-
# Returns a list of the
|
14743
|
-
#
|
14804
|
+
# Returns a list of the SageMaker notebook instances in the requester's
|
14805
|
+
# account in an Amazon Web Services Region.
|
14744
14806
|
#
|
14745
14807
|
# @option params [String] :next_token
|
14746
14808
|
# If the previous call to the `ListNotebookInstances` is truncated, the
|
@@ -15411,7 +15473,7 @@ module Aws::SageMaker
|
|
15411
15473
|
req.send_request(options)
|
15412
15474
|
end
|
15413
15475
|
|
15414
|
-
# Returns the tags for the specified
|
15476
|
+
# Returns the tags for the specified SageMaker resource.
|
15415
15477
|
#
|
15416
15478
|
# @option params [required, String] :resource_arn
|
15417
15479
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
@@ -15419,8 +15481,8 @@ module Aws::SageMaker
|
|
15419
15481
|
#
|
15420
15482
|
# @option params [String] :next_token
|
15421
15483
|
# If the response to the previous `ListTags` request is truncated,
|
15422
|
-
#
|
15423
|
-
#
|
15484
|
+
# SageMaker returns this token. To retrieve the next set of tags, use it
|
15485
|
+
# in the subsequent request.
|
15424
15486
|
#
|
15425
15487
|
# @option params [Integer] :max_results
|
15426
15488
|
# Maximum number of tags to return.
|
@@ -16145,11 +16207,12 @@ module Aws::SageMaker
|
|
16145
16207
|
# starting point for your lineage query.
|
16146
16208
|
#
|
16147
16209
|
# @option params [String] :direction
|
16148
|
-
# Associations between lineage entities
|
16149
|
-
# determines the direction from the StartArn(s) the query
|
16210
|
+
# Associations between lineage entities have a direction. This parameter
|
16211
|
+
# determines the direction from the StartArn(s) that the query
|
16212
|
+
# traverses.
|
16150
16213
|
#
|
16151
16214
|
# @option params [Boolean] :include_edges
|
16152
|
-
# Setting this value to `True`
|
16215
|
+
# Setting this value to `True` retrieves not only the entities of
|
16153
16216
|
# interest but also the [Associations][1] and lineage entities on the
|
16154
16217
|
# path. Set to `False` to only return lineage entities that match your
|
16155
16218
|
# query.
|
@@ -16176,8 +16239,8 @@ module Aws::SageMaker
|
|
16176
16239
|
#
|
16177
16240
|
# @option params [Integer] :max_depth
|
16178
16241
|
# The maximum depth in lineage relationships from the `StartArns` that
|
16179
|
-
#
|
16180
|
-
#
|
16242
|
+
# are traversed. Depth is a measure of the number of `Associations` from
|
16243
|
+
# the `StartArn` entity to the matched results.
|
16181
16244
|
#
|
16182
16245
|
# @option params [Integer] :max_results
|
16183
16246
|
# Limits the number of vertices in the results. Use the `NextToken` in a
|
@@ -17353,9 +17416,9 @@ module Aws::SageMaker
|
|
17353
17416
|
|
17354
17417
|
# Launches an ML compute instance with the latest version of the
|
17355
17418
|
# libraries and attaches your ML storage volume. After configuring the
|
17356
|
-
# notebook instance,
|
17357
|
-
#
|
17358
|
-
#
|
17419
|
+
# notebook instance, SageMaker sets the notebook instance status to
|
17420
|
+
# `InService`. A notebook instance's status must be `InService` before
|
17421
|
+
# you can connect to your Jupyter notebook.
|
17359
17422
|
#
|
17360
17423
|
# @option params [required, String] :notebook_instance_name
|
17361
17424
|
# The name of the notebook instance to start.
|
@@ -17611,10 +17674,9 @@ module Aws::SageMaker
|
|
17611
17674
|
end
|
17612
17675
|
|
17613
17676
|
# Terminates the ML compute instance. Before terminating the instance,
|
17614
|
-
#
|
17615
|
-
#
|
17616
|
-
#
|
17617
|
-
# `StopNotebookInstance`.
|
17677
|
+
# SageMaker disconnects the ML storage volume from it. SageMaker
|
17678
|
+
# preserves the ML storage volume. SageMaker stops charging you for the
|
17679
|
+
# ML compute instance when you call `StopNotebookInstance`.
|
17618
17680
|
#
|
17619
17681
|
# To access data on the ML storage volume for a notebook instance that
|
17620
17682
|
# has been terminated, call the `StartNotebookInstance` API.
|
@@ -17728,14 +17790,14 @@ module Aws::SageMaker
|
|
17728
17790
|
req.send_request(options)
|
17729
17791
|
end
|
17730
17792
|
|
17731
|
-
# Stops a training job. To stop a job,
|
17732
|
-
#
|
17733
|
-
#
|
17793
|
+
# Stops a training job. To stop a job, SageMaker sends the algorithm the
|
17794
|
+
# `SIGTERM` signal, which delays job termination for 120 seconds.
|
17795
|
+
# Algorithms might use this 120-second window to save the model
|
17734
17796
|
# artifacts, so the results of the training is not lost.
|
17735
17797
|
#
|
17736
|
-
# When it receives a `StopTrainingJob` request,
|
17737
|
-
#
|
17738
|
-
#
|
17798
|
+
# When it receives a `StopTrainingJob` request, SageMaker changes the
|
17799
|
+
# status of the job to `Stopping`. After SageMaker stops the job, it
|
17800
|
+
# sets the status to `Stopped`.
|
17739
17801
|
#
|
17740
17802
|
# @option params [required, String] :training_job_name
|
17741
17803
|
# The name of the training job to stop.
|
@@ -18144,6 +18206,19 @@ module Aws::SageMaker
|
|
18144
18206
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
18145
18207
|
# },
|
18146
18208
|
# r_session_app_settings: {
|
18209
|
+
# default_resource_spec: {
|
18210
|
+
# sage_maker_image_arn: "ImageArn",
|
18211
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
18212
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
18213
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
18214
|
+
# },
|
18215
|
+
# custom_images: [
|
18216
|
+
# {
|
18217
|
+
# image_name: "ImageName", # required
|
18218
|
+
# image_version_number: 1,
|
18219
|
+
# app_image_config_name: "AppImageConfigName", # required
|
18220
|
+
# },
|
18221
|
+
# ],
|
18147
18222
|
# },
|
18148
18223
|
# },
|
18149
18224
|
# domain_settings_for_update: {
|
@@ -18177,9 +18252,9 @@ module Aws::SageMaker
|
|
18177
18252
|
# for the endpoint using the previous `EndpointConfig` (there is no
|
18178
18253
|
# availability loss).
|
18179
18254
|
#
|
18180
|
-
# When
|
18181
|
-
#
|
18182
|
-
#
|
18255
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
18256
|
+
# `Updating`. After updating the endpoint, it sets the status to
|
18257
|
+
# `InService`. To check the status of an endpoint, use the
|
18183
18258
|
# DescribeEndpoint API.
|
18184
18259
|
#
|
18185
18260
|
# <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
|
@@ -18287,13 +18362,13 @@ module Aws::SageMaker
|
|
18287
18362
|
|
18288
18363
|
# Updates variant weight of one or more variants associated with an
|
18289
18364
|
# existing endpoint, or capacity of one variant associated with an
|
18290
|
-
# existing endpoint. When it receives the request,
|
18291
|
-
#
|
18292
|
-
#
|
18293
|
-
#
|
18365
|
+
# existing endpoint. When it receives the request, SageMaker sets the
|
18366
|
+
# endpoint status to `Updating`. After updating the endpoint, it sets
|
18367
|
+
# the status to `InService`. To check the status of an endpoint, use the
|
18368
|
+
# DescribeEndpoint API.
|
18294
18369
|
#
|
18295
18370
|
# @option params [required, String] :endpoint_name
|
18296
|
-
# The name of an existing
|
18371
|
+
# The name of an existing SageMaker endpoint.
|
18297
18372
|
#
|
18298
18373
|
# @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
|
18299
18374
|
# An object that provides new capacity and weight values for a variant.
|
@@ -18618,12 +18693,12 @@ module Aws::SageMaker
|
|
18618
18693
|
# The Amazon ML compute instance type.
|
18619
18694
|
#
|
18620
18695
|
# @option params [String] :role_arn
|
18621
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
18622
|
-
#
|
18623
|
-
# [
|
18696
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
18697
|
+
# assume to access the notebook instance. For more information, see
|
18698
|
+
# [SageMaker Roles][1].
|
18624
18699
|
#
|
18625
|
-
# <note markdown="1"> To be able to pass this role to
|
18626
|
-
#
|
18700
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
18701
|
+
# have the `iam:PassRole` permission.
|
18627
18702
|
#
|
18628
18703
|
# </note>
|
18629
18704
|
#
|
@@ -18650,11 +18725,11 @@ module Aws::SageMaker
|
|
18650
18725
|
# @option params [Integer] :volume_size_in_gb
|
18651
18726
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
18652
18727
|
# instance. The default value is 5 GB. ML storage volumes are encrypted,
|
18653
|
-
# so
|
18654
|
-
#
|
18655
|
-
#
|
18656
|
-
#
|
18657
|
-
#
|
18728
|
+
# so SageMaker can't determine the amount of available free space on
|
18729
|
+
# the volume. Because of this, you can increase the volume size when you
|
18730
|
+
# update a notebook instance, but you can't decrease the volume size.
|
18731
|
+
# If you want to decrease the size of the ML storage volume in use,
|
18732
|
+
# create a new notebook instance with the desired size.
|
18658
18733
|
#
|
18659
18734
|
# @option params [String] :default_code_repository
|
18660
18735
|
# The Git repository to associate with the notebook instance as its
|
@@ -18663,8 +18738,7 @@ module Aws::SageMaker
|
|
18663
18738
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
18664
18739
|
# repository. When you open a notebook instance, it opens in the
|
18665
18740
|
# directory that contains this repository. For more information, see
|
18666
|
-
# [Associating Git Repositories with
|
18667
|
-
# Instances][2].
|
18741
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18668
18742
|
#
|
18669
18743
|
#
|
18670
18744
|
#
|
@@ -18678,8 +18752,7 @@ module Aws::SageMaker
|
|
18678
18752
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
18679
18753
|
# These repositories are cloned at the same level as the default
|
18680
18754
|
# repository of your notebook instance. For more information, see
|
18681
|
-
# [Associating Git Repositories with
|
18682
|
-
# Instances][2].
|
18755
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18683
18756
|
#
|
18684
18757
|
#
|
18685
18758
|
#
|
@@ -19225,6 +19298,19 @@ module Aws::SageMaker
|
|
19225
19298
|
# user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
|
19226
19299
|
# },
|
19227
19300
|
# r_session_app_settings: {
|
19301
|
+
# default_resource_spec: {
|
19302
|
+
# sage_maker_image_arn: "ImageArn",
|
19303
|
+
# sage_maker_image_version_arn: "ImageVersionArn",
|
19304
|
+
# instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
19305
|
+
# lifecycle_config_arn: "StudioLifecycleConfigArn",
|
19306
|
+
# },
|
19307
|
+
# custom_images: [
|
19308
|
+
# {
|
19309
|
+
# image_name: "ImageName", # required
|
19310
|
+
# image_version_number: 1,
|
19311
|
+
# app_image_config_name: "AppImageConfigName", # required
|
19312
|
+
# },
|
19313
|
+
# ],
|
19228
19314
|
# },
|
19229
19315
|
# },
|
19230
19316
|
# })
|
@@ -19452,7 +19538,7 @@ module Aws::SageMaker
|
|
19452
19538
|
params: params,
|
19453
19539
|
config: config)
|
19454
19540
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
19455
|
-
context[:gem_version] = '1.
|
19541
|
+
context[:gem_version] = '1.124.0'
|
19456
19542
|
Seahorse::Client::Request.new(handlers, context)
|
19457
19543
|
end
|
19458
19544
|
|