aws-sdk-sagemaker 1.121.0 → 1.124.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -422,7 +422,7 @@ module Aws::SageMaker
422
422
  req.send_request(options)
423
423
  end
424
424
 
425
- # Adds or overwrites one or more tags for the specified Amazon SageMaker
425
+ # Adds or overwrites one or more tags for the specified SageMaker
426
426
  # resource. You can add tags to notebook instances, training jobs,
427
427
  # hyperparameter tuning jobs, batch transform jobs, models, labeling
428
428
  # jobs, work teams, endpoint configurations, and endpoints.
@@ -678,8 +678,8 @@ module Aws::SageMaker
678
678
  req.send_request(options)
679
679
  end
680
680
 
681
- # Create a machine learning algorithm that you can use in Amazon
682
- # SageMaker and list in the Amazon Web Services Marketplace.
681
+ # Create a machine learning algorithm that you can use in SageMaker and
682
+ # list in the Amazon Web Services Marketplace.
683
683
  #
684
684
  # @option params [required, String] :algorithm_name
685
685
  # The name of the algorithm.
@@ -723,10 +723,10 @@ module Aws::SageMaker
723
723
  # inference.
724
724
  #
725
725
  # @option params [Types::AlgorithmValidationSpecification] :validation_specification
726
- # Specifies configurations for one or more training jobs and that Amazon
726
+ # Specifies configurations for one or more training jobs and that
727
727
  # SageMaker runs to test the algorithm's training code and, optionally,
728
- # one or more batch transform jobs that Amazon SageMaker runs to test
729
- # the algorithm's inference code.
728
+ # one or more batch transform jobs that SageMaker runs to test the
729
+ # algorithm's inference code.
730
730
  #
731
731
  # @option params [Boolean] :certify_for_marketplace
732
732
  # Whether to certify the algorithm so that it can be listed in Amazon
@@ -1210,6 +1210,7 @@ module Aws::SageMaker
1210
1210
  # compression_type: "None", # accepts None, Gzip
1211
1211
  # target_attribute_name: "TargetAttributeName", # required
1212
1212
  # content_type: "ContentType",
1213
+ # channel_type: "training", # accepts training, validation
1213
1214
  # },
1214
1215
  # ],
1215
1216
  # output_data_config: { # required
@@ -1234,6 +1235,9 @@ module Aws::SageMaker
1234
1235
  # subnets: ["SubnetId"], # required
1235
1236
  # },
1236
1237
  # },
1238
+ # data_split_config: {
1239
+ # validation_fraction: 1.0,
1240
+ # },
1237
1241
  # },
1238
1242
  # role_arn: "RoleArn", # required
1239
1243
  # generate_candidate_definitions_only: false,
@@ -1262,13 +1266,13 @@ module Aws::SageMaker
1262
1266
  req.send_request(options)
1263
1267
  end
1264
1268
 
1265
- # Creates a Git repository as a resource in your Amazon SageMaker
1266
- # account. You can associate the repository with notebook instances so
1267
- # that you can use Git source control for the notebooks you create. The
1268
- # Git repository is a resource in your Amazon SageMaker account, so it
1269
- # can be associated with more than one notebook instance, and it
1270
- # persists independently from the lifecycle of any notebook instances it
1271
- # is associated with.
1269
+ # Creates a Git repository as a resource in your SageMaker account. You
1270
+ # can associate the repository with notebook instances so that you can
1271
+ # use Git source control for the notebooks you create. The Git
1272
+ # repository is a resource in your SageMaker account, so it can be
1273
+ # associated with more than one notebook instance, and it persists
1274
+ # independently from the lifecycle of any notebook instances it is
1275
+ # associated with.
1272
1276
  #
1273
1277
  # The repository can be hosted either in [Amazon Web Services
1274
1278
  # CodeCommit][1] or in any other Git repository.
@@ -1920,6 +1924,19 @@ module Aws::SageMaker
1920
1924
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
1921
1925
  # },
1922
1926
  # r_session_app_settings: {
1927
+ # default_resource_spec: {
1928
+ # sage_maker_image_arn: "ImageArn",
1929
+ # sage_maker_image_version_arn: "ImageVersionArn",
1930
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
1931
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
1932
+ # },
1933
+ # custom_images: [
1934
+ # {
1935
+ # image_name: "ImageName", # required
1936
+ # image_version_number: 1,
1937
+ # app_image_config_name: "AppImageConfigName", # required
1938
+ # },
1939
+ # ],
1923
1940
  # },
1924
1941
  # },
1925
1942
  # subnet_ids: ["SubnetId"], # required
@@ -2032,13 +2049,13 @@ module Aws::SageMaker
2032
2049
  end
2033
2050
 
2034
2051
  # Creates an endpoint using the endpoint configuration specified in the
2035
- # request. Amazon SageMaker uses the endpoint to provision resources and
2036
- # deploy models. You create the endpoint configuration with the
2052
+ # request. SageMaker uses the endpoint to provision resources and deploy
2053
+ # models. You create the endpoint configuration with the
2037
2054
  # CreateEndpointConfig API.
2038
2055
  #
2039
- # Use this API to deploy models using Amazon SageMaker hosting services.
2056
+ # Use this API to deploy models using SageMaker hosting services.
2040
2057
  #
2041
- # For an example that calls this method when deploying a model to Amazon
2058
+ # For an example that calls this method when deploying a model to
2042
2059
  # SageMaker hosting services, see the [Create Endpoint example
2043
2060
  # notebook.][1]
2044
2061
  #
@@ -2052,9 +2069,9 @@ module Aws::SageMaker
2052
2069
  # The endpoint name must be unique within an Amazon Web Services Region
2053
2070
  # in your Amazon Web Services account.
2054
2071
  #
2055
- # When it receives the request, Amazon SageMaker creates the endpoint,
2056
- # launches the resources (ML compute instances), and deploys the
2057
- # model(s) on them.
2072
+ # When it receives the request, SageMaker creates the endpoint, launches
2073
+ # the resources (ML compute instances), and deploys the model(s) on
2074
+ # them.
2058
2075
  #
2059
2076
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2060
2077
  # verify that your endpoint configuration exists. When you read data
@@ -2070,21 +2087,21 @@ module Aws::SageMaker
2070
2087
  #
2071
2088
  # </note>
2072
2089
  #
2073
- # When Amazon SageMaker receives the request, it sets the endpoint
2074
- # status to `Creating`. After it creates the endpoint, it sets the
2075
- # status to `InService`. Amazon SageMaker can then process incoming
2076
- # requests for inferences. To check the status of an endpoint, use the
2090
+ # When SageMaker receives the request, it sets the endpoint status to
2091
+ # `Creating`. After it creates the endpoint, it sets the status to
2092
+ # `InService`. SageMaker can then process incoming requests for
2093
+ # inferences. To check the status of an endpoint, use the
2077
2094
  # DescribeEndpoint API.
2078
2095
  #
2079
2096
  # If any of the models hosted at this endpoint get model data from an
2080
- # Amazon S3 location, Amazon SageMaker uses Amazon Web Services Security
2081
- # Token Service to download model artifacts from the S3 path you
2082
- # provided. Amazon Web Services STS is activated in your IAM user
2083
- # account by default. If you previously deactivated Amazon Web Services
2084
- # STS for a region, you need to reactivate Amazon Web Services STS for
2085
- # that region. For more information, see [Activating and Deactivating
2086
- # Amazon Web Services STS in an Amazon Web Services Region][3] in the
2087
- # *Amazon Web Services Identity and Access Management User Guide*.
2097
+ # Amazon S3 location, SageMaker uses Amazon Web Services Security Token
2098
+ # Service to download model artifacts from the S3 path you provided.
2099
+ # Amazon Web Services STS is activated in your IAM user account by
2100
+ # default. If you previously deactivated Amazon Web Services STS for a
2101
+ # region, you need to reactivate Amazon Web Services STS for that
2102
+ # region. For more information, see [Activating and Deactivating Amazon
2103
+ # Web Services STS in an Amazon Web Services Region][3] in the *Amazon
2104
+ # Web Services Identity and Access Management User Guide*.
2088
2105
  #
2089
2106
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
2090
2107
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -2202,28 +2219,28 @@ module Aws::SageMaker
2202
2219
  req.send_request(options)
2203
2220
  end
2204
2221
 
2205
- # Creates an endpoint configuration that Amazon SageMaker hosting
2206
- # services uses to deploy models. In the configuration, you identify one
2207
- # or more models, created using the `CreateModel` API, to deploy and the
2208
- # resources that you want Amazon SageMaker to provision. Then you call
2209
- # the CreateEndpoint API.
2222
+ # Creates an endpoint configuration that SageMaker hosting services uses
2223
+ # to deploy models. In the configuration, you identify one or more
2224
+ # models, created using the `CreateModel` API, to deploy and the
2225
+ # resources that you want SageMaker to provision. Then you call the
2226
+ # CreateEndpoint API.
2210
2227
  #
2211
- # <note markdown="1"> Use this API if you want to use Amazon SageMaker hosting services to
2212
- # deploy models into production.
2228
+ # <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
2229
+ # models into production.
2213
2230
  #
2214
2231
  # </note>
2215
2232
  #
2216
2233
  # In the request, you define a `ProductionVariant`, for each model that
2217
2234
  # you want to deploy. Each `ProductionVariant` parameter also describes
2218
- # the resources that you want Amazon SageMaker to provision. This
2219
- # includes the number and type of ML compute instances to deploy.
2235
+ # the resources that you want SageMaker to provision. This includes the
2236
+ # number and type of ML compute instances to deploy.
2220
2237
  #
2221
2238
  # If you are hosting multiple models, you also assign a `VariantWeight`
2222
2239
  # to specify how much traffic you want to allocate to each model. For
2223
2240
  # example, suppose that you want to host two models, A and B, and you
2224
- # assign traffic weight 2 for model A and 1 for model B. Amazon
2225
- # SageMaker distributes two-thirds of the traffic to Model A, and
2226
- # one-third to model B.
2241
+ # assign traffic weight 2 for model A and 1 for model B. SageMaker
2242
+ # distributes two-thirds of the traffic to Model A, and one-third to
2243
+ # model B.
2227
2244
  #
2228
2245
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2229
2246
  # verify that your endpoint configuration exists. When you read data
@@ -2265,8 +2282,8 @@ module Aws::SageMaker
2265
2282
  #
2266
2283
  # @option params [String] :kms_key_id
2267
2284
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
2268
- # Service key that Amazon SageMaker uses to encrypt data on the storage
2269
- # volume attached to the ML compute instance that hosts the endpoint.
2285
+ # Service key that SageMaker uses to encrypt data on the storage volume
2286
+ # attached to the ML compute instance that hosts the endpoint.
2270
2287
  #
2271
2288
  # The KmsKeyId can be any of the following formats:
2272
2289
  #
@@ -3133,8 +3150,8 @@ module Aws::SageMaker
3133
3150
 
3134
3151
  # Creates a custom SageMaker image. A SageMaker image is a set of image
3135
3152
  # versions. Each image version represents a container image stored in
3136
- # Amazon Container Registry (ECR). For more information, see [Bring your
3137
- # own SageMaker image][1].
3153
+ # Amazon Elastic Container Registry (ECR). For more information, see
3154
+ # [Bring your own SageMaker image][1].
3138
3155
  #
3139
3156
  #
3140
3157
  #
@@ -3190,13 +3207,13 @@ module Aws::SageMaker
3190
3207
  end
3191
3208
 
3192
3209
  # Creates a version of the SageMaker image specified by `ImageName`. The
3193
- # version represents the Amazon Container Registry (ECR) container image
3194
- # specified by `BaseImage`.
3210
+ # version represents the Amazon Elastic Container Registry (ECR)
3211
+ # container image specified by `BaseImage`.
3195
3212
  #
3196
3213
  # @option params [required, String] :base_image
3197
3214
  # The registry path of the container image to use as the starting point
3198
- # for this version. The path is an Amazon Container Registry (ECR) URI
3199
- # in the following format:
3215
+ # for this version. The path is an Amazon Elastic Container Registry
3216
+ # (ECR) URI in the following format:
3200
3217
  #
3201
3218
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
3202
3219
  # [@digest]>`
@@ -3266,6 +3283,10 @@ module Aws::SageMaker
3266
3283
  # A set of conditions for stopping a recommendation job. If any of the
3267
3284
  # conditions are met, the job is automatically stopped.
3268
3285
  #
3286
+ # @option params [Types::RecommendationJobOutputConfig] :output_config
3287
+ # Provides information about the output artifacts and the KMS key to use
3288
+ # for Amazon S3 server-side encryption.
3289
+ #
3269
3290
  # @option params [Array<Types::Tag>] :tags
3270
3291
  # The metadata that you apply to Amazon Web Services resources to help
3271
3292
  # you categorize and organize them. Each tag consists of a key and a
@@ -3318,6 +3339,7 @@ module Aws::SageMaker
3318
3339
  # },
3319
3340
  # },
3320
3341
  # ],
3342
+ # volume_kms_key_id: "KmsKeyId",
3321
3343
  # },
3322
3344
  # job_description: "RecommendationJobDescription",
3323
3345
  # stopping_conditions: {
@@ -3329,6 +3351,12 @@ module Aws::SageMaker
3329
3351
  # },
3330
3352
  # ],
3331
3353
  # },
3354
+ # output_config: {
3355
+ # kms_key_id: "KmsKeyId",
3356
+ # compiled_output_config: {
3357
+ # s3_output_uri: "S3Uri",
3358
+ # },
3359
+ # },
3332
3360
  # tags: [
3333
3361
  # {
3334
3362
  # key: "TagKey", # required
@@ -3655,34 +3683,30 @@ module Aws::SageMaker
3655
3683
  req.send_request(options)
3656
3684
  end
3657
3685
 
3658
- # Creates a model in Amazon SageMaker. In the request, you name the
3659
- # model and describe a primary container. For the primary container, you
3660
- # specify the Docker image that contains inference code, artifacts (from
3661
- # prior training), and a custom environment map that the inference code
3662
- # uses when you deploy the model for predictions.
3686
+ # Creates a model in SageMaker. In the request, you name the model and
3687
+ # describe a primary container. For the primary container, you specify
3688
+ # the Docker image that contains inference code, artifacts (from prior
3689
+ # training), and a custom environment map that the inference code uses
3690
+ # when you deploy the model for predictions.
3663
3691
  #
3664
- # Use this API to create a model if you want to use Amazon SageMaker
3665
- # hosting services or run a batch transform job.
3692
+ # Use this API to create a model if you want to use SageMaker hosting
3693
+ # services or run a batch transform job.
3666
3694
  #
3667
3695
  # To host your model, you create an endpoint configuration with the
3668
3696
  # `CreateEndpointConfig` API, and then create an endpoint with the
3669
- # `CreateEndpoint` API. Amazon SageMaker then deploys all of the
3670
- # containers that you defined for the model in the hosting environment.
3697
+ # `CreateEndpoint` API. SageMaker then deploys all of the containers
3698
+ # that you defined for the model in the hosting environment.
3671
3699
  #
3672
- # For an example that calls this method when deploying a model to Amazon
3700
+ # For an example that calls this method when deploying a model to
3673
3701
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
3674
3702
  # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
3675
3703
  #
3676
3704
  # To run a batch transform using your model, you start a job with the
3677
- # `CreateTransformJob` API. Amazon SageMaker uses your model and your
3678
- # dataset to get inferences which are then saved to a specified S3
3679
- # location.
3680
- #
3681
- # In the `CreateModel` request, you must define a container with the
3682
- # `PrimaryContainer` parameter.
3705
+ # `CreateTransformJob` API. SageMaker uses your model and your dataset
3706
+ # to get inferences which are then saved to a specified S3 location.
3683
3707
  #
3684
- # In the request, you also provide an IAM role that Amazon SageMaker can
3685
- # assume to access model artifacts and docker image for deployment on ML
3708
+ # In the request, you also provide an IAM role that SageMaker can assume
3709
+ # to access model artifacts and docker image for deployment on ML
3686
3710
  # compute hosting instances or for batch transform jobs. In addition,
3687
3711
  # you also use the IAM role to manage permissions the inference code
3688
3712
  # needs. For example, if the inference code access any other Amazon Web
@@ -3708,14 +3732,14 @@ module Aws::SageMaker
3708
3732
  # called.
3709
3733
  #
3710
3734
  # @option params [required, String] :execution_role_arn
3711
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
3712
- # can assume to access model artifacts and docker image for deployment
3713
- # on ML compute instances or for batch transform jobs. Deploying on ML
3714
- # compute instances is part of model hosting. For more information, see
3715
- # [Amazon SageMaker Roles][1].
3735
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
3736
+ # assume to access model artifacts and docker image for deployment on ML
3737
+ # compute instances or for batch transform jobs. Deploying on ML compute
3738
+ # instances is part of model hosting. For more information, see
3739
+ # [SageMaker Roles][1].
3716
3740
  #
3717
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
3718
- # API must have the `iam:PassRole` permission.
3741
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
3742
+ # have the `iam:PassRole` permission.
3719
3743
  #
3720
3744
  # </note>
3721
3745
  #
@@ -4094,11 +4118,10 @@ module Aws::SageMaker
4094
4118
  req.send_request(options)
4095
4119
  end
4096
4120
 
4097
- # Creates a model package that you can use to create Amazon SageMaker
4098
- # models or list on Amazon Web Services Marketplace, or a versioned
4099
- # model that is part of a model group. Buyers can subscribe to model
4100
- # packages listed on Amazon Web Services Marketplace to create models in
4101
- # Amazon SageMaker.
4121
+ # Creates a model package that you can use to create SageMaker models or
4122
+ # list on Amazon Web Services Marketplace, or a versioned model that is
4123
+ # part of a model group. Buyers can subscribe to model packages listed
4124
+ # on Amazon Web Services Marketplace to create models in SageMaker.
4102
4125
  #
4103
4126
  # To create a model package by specifying a Docker container that
4104
4127
  # contains your inference code and the Amazon S3 location of your model
@@ -4147,8 +4170,8 @@ module Aws::SageMaker
4147
4170
  # for inference.
4148
4171
  #
4149
4172
  # @option params [Types::ModelPackageValidationSpecification] :validation_specification
4150
- # Specifies configurations for one or more transform jobs that Amazon
4151
- # SageMaker runs to test the model package.
4173
+ # Specifies configurations for one or more transform jobs that SageMaker
4174
+ # runs to test the model package.
4152
4175
  #
4153
4176
  # @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
4154
4177
  # Details about the algorithm that was used to create the model package.
@@ -4786,46 +4809,45 @@ module Aws::SageMaker
4786
4809
  req.send_request(options)
4787
4810
  end
4788
4811
 
4789
- # Creates an Amazon SageMaker notebook instance. A notebook instance is
4790
- # a machine learning (ML) compute instance running on a Jupyter
4791
- # notebook.
4812
+ # Creates an SageMaker notebook instance. A notebook instance is a
4813
+ # machine learning (ML) compute instance running on a Jupyter notebook.
4792
4814
  #
4793
4815
  # In a `CreateNotebookInstance` request, specify the type of ML compute
4794
- # instance that you want to run. Amazon SageMaker launches the instance,
4816
+ # instance that you want to run. SageMaker launches the instance,
4795
4817
  # installs common libraries that you can use to explore datasets for
4796
4818
  # model training, and attaches an ML storage volume to the notebook
4797
4819
  # instance.
4798
4820
  #
4799
- # Amazon SageMaker also provides a set of example notebooks. Each
4800
- # notebook demonstrates how to use Amazon SageMaker with a specific
4801
- # algorithm or with a machine learning framework.
4821
+ # SageMaker also provides a set of example notebooks. Each notebook
4822
+ # demonstrates how to use SageMaker with a specific algorithm or with a
4823
+ # machine learning framework.
4802
4824
  #
4803
- # After receiving the request, Amazon SageMaker does the following:
4825
+ # After receiving the request, SageMaker does the following:
4804
4826
  #
4805
- # 1. Creates a network interface in the Amazon SageMaker VPC.
4827
+ # 1. Creates a network interface in the SageMaker VPC.
4806
4828
  #
4807
- # 2. (Option) If you specified `SubnetId`, Amazon SageMaker creates a
4808
- # network interface in your own VPC, which is inferred from the
4809
- # subnet ID that you provide in the input. When creating this
4810
- # network interface, Amazon SageMaker attaches the security group
4811
- # that you specified in the request to the network interface that it
4812
- # creates in your VPC.
4829
+ # 2. (Option) If you specified `SubnetId`, SageMaker creates a network
4830
+ # interface in your own VPC, which is inferred from the subnet ID
4831
+ # that you provide in the input. When creating this network
4832
+ # interface, SageMaker attaches the security group that you
4833
+ # specified in the request to the network interface that it creates
4834
+ # in your VPC.
4813
4835
  #
4814
4836
  # 3. Launches an EC2 instance of the type specified in the request in
4815
- # the Amazon SageMaker VPC. If you specified `SubnetId` of your VPC,
4816
- # Amazon SageMaker specifies both network interfaces when launching
4817
- # this instance. This enables inbound traffic from your own VPC to
4818
- # the notebook instance, assuming that the security groups allow it.
4837
+ # the SageMaker VPC. If you specified `SubnetId` of your VPC,
4838
+ # SageMaker specifies both network interfaces when launching this
4839
+ # instance. This enables inbound traffic from your own VPC to the
4840
+ # notebook instance, assuming that the security groups allow it.
4819
4841
  #
4820
- # After creating the notebook instance, Amazon SageMaker returns its
4821
- # Amazon Resource Name (ARN). You can't change the name of a notebook
4822
- # instance after you create it.
4842
+ # After creating the notebook instance, SageMaker returns its Amazon
4843
+ # Resource Name (ARN). You can't change the name of a notebook instance
4844
+ # after you create it.
4823
4845
  #
4824
- # After Amazon SageMaker creates the notebook instance, you can connect
4825
- # to the Jupyter server and work in Jupyter notebooks. For example, you
4826
- # can write code to explore a dataset that you can use for model
4827
- # training, train a model, host models by creating Amazon SageMaker
4828
- # endpoints, and validate hosted models.
4846
+ # After SageMaker creates the notebook instance, you can connect to the
4847
+ # Jupyter server and work in Jupyter notebooks. For example, you can
4848
+ # write code to explore a dataset that you can use for model training,
4849
+ # train a model, host models by creating SageMaker endpoints, and
4850
+ # validate hosted models.
4829
4851
  #
4830
4852
  # For more information, see [How It Works][1].
4831
4853
  #
@@ -4849,15 +4871,14 @@ module Aws::SageMaker
4849
4871
  #
4850
4872
  # @option params [required, String] :role_arn
4851
4873
  # When you send any requests to Amazon Web Services resources from the
4852
- # notebook instance, Amazon SageMaker assumes this role to perform tasks
4853
- # on your behalf. You must grant this role necessary permissions so
4854
- # Amazon SageMaker can perform these tasks. The policy must allow the
4855
- # Amazon SageMaker service principal (sagemaker.amazonaws.com)
4856
- # permissions to assume this role. For more information, see [Amazon
4857
- # SageMaker Roles][1].
4874
+ # notebook instance, SageMaker assumes this role to perform tasks on
4875
+ # your behalf. You must grant this role necessary permissions so
4876
+ # SageMaker can perform these tasks. The policy must allow the SageMaker
4877
+ # service principal (sagemaker.amazonaws.com) permissions to assume this
4878
+ # role. For more information, see [SageMaker Roles][1].
4858
4879
  #
4859
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
4860
- # API must have the `iam:PassRole` permission.
4880
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
4881
+ # have the `iam:PassRole` permission.
4861
4882
  #
4862
4883
  # </note>
4863
4884
  #
@@ -4867,10 +4888,10 @@ module Aws::SageMaker
4867
4888
  #
4868
4889
  # @option params [String] :kms_key_id
4869
4890
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
4870
- # Service key that Amazon SageMaker uses to encrypt data on the storage
4871
- # volume attached to your notebook instance. The KMS key you provide
4872
- # must be enabled. For information, see [Enabling and Disabling Keys][1]
4873
- # in the *Amazon Web Services Key Management Service Developer Guide*.
4891
+ # Service key that SageMaker uses to encrypt data on the storage volume
4892
+ # attached to your notebook instance. The KMS key you provide must be
4893
+ # enabled. For information, see [Enabling and Disabling Keys][1] in the
4894
+ # *Amazon Web Services Key Management Service Developer Guide*.
4874
4895
  #
4875
4896
  #
4876
4897
  #
@@ -4896,11 +4917,11 @@ module Aws::SageMaker
4896
4917
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
4897
4918
  #
4898
4919
  # @option params [String] :direct_internet_access
4899
- # Sets whether Amazon SageMaker provides internet access to the notebook
4920
+ # Sets whether SageMaker provides internet access to the notebook
4900
4921
  # instance. If you set this to `Disabled` this notebook instance is able
4901
4922
  # to access resources only in your VPC, and is not be able to connect to
4902
- # Amazon SageMaker training and endpoint services unless you configure a
4903
- # NAT Gateway in your VPC.
4923
+ # SageMaker training and endpoint services unless you configure a NAT
4924
+ # Gateway in your VPC.
4904
4925
  #
4905
4926
  # For more information, see [Notebook Instances Are Internet-Enabled by
4906
4927
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -4931,8 +4952,7 @@ module Aws::SageMaker
4931
4952
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
4932
4953
  # repository. When you open a notebook instance, it opens in the
4933
4954
  # directory that contains this repository. For more information, see
4934
- # [Associating Git Repositories with Amazon SageMaker Notebook
4935
- # Instances][2].
4955
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4936
4956
  #
4937
4957
  #
4938
4958
  #
@@ -4946,8 +4966,7 @@ module Aws::SageMaker
4946
4966
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
4947
4967
  # These repositories are cloned at the same level as the default
4948
4968
  # repository of your notebook instance. For more information, see
4949
- # [Associating Git Repositories with Amazon SageMaker Notebook
4950
- # Instances][2].
4969
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4951
4970
  #
4952
4971
  #
4953
4972
  #
@@ -5231,10 +5250,10 @@ module Aws::SageMaker
5231
5250
  end
5232
5251
 
5233
5252
  # Returns a URL that you can use to connect to the Jupyter server from a
5234
- # notebook instance. In the Amazon SageMaker console, when you choose
5235
- # `Open` next to a notebook instance, Amazon SageMaker opens a new tab
5236
- # showing the Jupyter server home page from the notebook instance. The
5237
- # console uses this API to get the URL and show the page.
5253
+ # notebook instance. In the SageMaker console, when you choose `Open`
5254
+ # next to a notebook instance, SageMaker opens a new tab showing the
5255
+ # Jupyter server home page from the notebook instance. The console uses
5256
+ # this API to get the URL and show the page.
5238
5257
  #
5239
5258
  # The IAM role or user used to call this API defines the permissions to
5240
5259
  # access the notebook instance. Once the presigned URL is created, no
@@ -5590,15 +5609,14 @@ module Aws::SageMaker
5590
5609
  req.send_request(options)
5591
5610
  end
5592
5611
 
5593
- # Starts a model training job. After training completes, Amazon
5594
- # SageMaker saves the resulting model artifacts to an Amazon S3 location
5595
- # that you specify.
5612
+ # Starts a model training job. After training completes, SageMaker saves
5613
+ # the resulting model artifacts to an Amazon S3 location that you
5614
+ # specify.
5596
5615
  #
5597
- # If you choose to host your model using Amazon SageMaker hosting
5598
- # services, you can use the resulting model artifacts as part of the
5599
- # model. You can also use the artifacts in a machine learning service
5600
- # other than Amazon SageMaker, provided that you know how to use them
5601
- # for inference.
5616
+ # If you choose to host your model using SageMaker hosting services, you
5617
+ # can use the resulting model artifacts as part of the model. You can
5618
+ # also use the artifacts in a machine learning service other than
5619
+ # SageMaker, provided that you know how to use them for inference.
5602
5620
  #
5603
5621
  # In the request body, you provide the following:
5604
5622
  #
@@ -5608,13 +5626,13 @@ module Aws::SageMaker
5608
5626
  # enable the estimation of model parameters during training.
5609
5627
  # Hyperparameters can be tuned to optimize this learning process. For
5610
5628
  # a list of hyperparameters for each training algorithm provided by
5611
- # Amazon SageMaker, see [Algorithms][1].
5629
+ # SageMaker, see [Algorithms][1].
5612
5630
  #
5613
5631
  # * `InputDataConfig` - Describes the training dataset and the Amazon
5614
5632
  # S3, EFS, or FSx location where it is stored.
5615
5633
  #
5616
5634
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
5617
- # Amazon SageMaker to save the results of model training.
5635
+ # SageMaker to save the results of model training.
5618
5636
  #
5619
5637
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
5620
5638
  # and ML storage volumes to deploy for model training. In distributed
@@ -5624,10 +5642,10 @@ module Aws::SageMaker
5624
5642
  # learning models by up to 80% by using Amazon EC2 Spot instances. For
5625
5643
  # more information, see [Managed Spot Training][2].
5626
5644
  #
5627
- # * `RoleArn` - The Amazon Resource Name (ARN) that Amazon SageMaker
5628
- # assumes to perform tasks on your behalf during model training. You
5629
- # must grant this role the necessary permissions so that Amazon
5630
- # SageMaker can successfully complete model training.
5645
+ # * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
5646
+ # perform tasks on your behalf during model training. You must grant
5647
+ # this role the necessary permissions so that SageMaker can
5648
+ # successfully complete model training.
5631
5649
  #
5632
5650
  # * `StoppingCondition` - To help cap training costs, use
5633
5651
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
@@ -5640,7 +5658,7 @@ module Aws::SageMaker
5640
5658
  # * `RetryStrategy` - The number of times to retry the job when the job
5641
5659
  # fails due to an `InternalServerError`.
5642
5660
  #
5643
- # For more information about Amazon SageMaker, see [How It Works][3].
5661
+ # For more information about SageMaker, see [How It Works][3].
5644
5662
  #
5645
5663
  #
5646
5664
  #
@@ -5655,7 +5673,7 @@ module Aws::SageMaker
5655
5673
  # @option params [Hash<String,String>] :hyper_parameters
5656
5674
  # Algorithm-specific parameters that influence the quality of the model.
5657
5675
  # You set hyperparameters before you start the learning process. For a
5658
- # list of hyperparameters for each training algorithm provided by Amazon
5676
+ # list of hyperparameters for each training algorithm provided by
5659
5677
  # SageMaker, see [Algorithms][1].
5660
5678
  #
5661
5679
  # You can specify a maximum of 100 hyperparameters. Each hyperparameter
@@ -5669,9 +5687,9 @@ module Aws::SageMaker
5669
5687
  # @option params [required, Types::AlgorithmSpecification] :algorithm_specification
5670
5688
  # The registry path of the Docker image that contains the training
5671
5689
  # algorithm and algorithm-specific metadata, including the input mode.
5672
- # For more information about algorithms provided by Amazon SageMaker,
5673
- # see [Algorithms][1]. For information about providing your own
5674
- # algorithms, see [Using Your Own Algorithms with Amazon SageMaker][2].
5690
+ # For more information about algorithms provided by SageMaker, see
5691
+ # [Algorithms][1]. For information about providing your own algorithms,
5692
+ # see [Using Your Own Algorithms with Amazon SageMaker][2].
5675
5693
  #
5676
5694
  #
5677
5695
  #
@@ -5679,18 +5697,18 @@ module Aws::SageMaker
5679
5697
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
5680
5698
  #
5681
5699
  # @option params [required, String] :role_arn
5682
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
5683
- # can assume to perform tasks on your behalf.
5700
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
5701
+ # assume to perform tasks on your behalf.
5684
5702
  #
5685
- # During model training, Amazon SageMaker needs your permission to read
5686
- # input data from an S3 bucket, download a Docker image that contains
5687
- # training code, write model artifacts to an S3 bucket, write logs to
5688
- # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You
5689
- # grant permissions for all of these tasks to an IAM role. For more
5690
- # information, see [Amazon SageMaker Roles][1].
5703
+ # During model training, SageMaker needs your permission to read input
5704
+ # data from an S3 bucket, download a Docker image that contains training
5705
+ # code, write model artifacts to an S3 bucket, write logs to Amazon
5706
+ # CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
5707
+ # permissions for all of these tasks to an IAM role. For more
5708
+ # information, see [SageMaker Roles][1].
5691
5709
  #
5692
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
5693
- # API must have the `iam:PassRole` permission.
5710
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
5711
+ # have the `iam:PassRole` permission.
5694
5712
  #
5695
5713
  # </note>
5696
5714
  #
@@ -5710,16 +5728,15 @@ module Aws::SageMaker
5710
5728
  # type, compression method, and whether the data is wrapped in RecordIO
5711
5729
  # format.
5712
5730
  #
5713
- # Depending on the input mode that the algorithm supports, Amazon
5714
- # SageMaker either copies input data files from an S3 bucket to a local
5715
- # directory in the Docker container, or makes it available as input
5716
- # streams. For example, if you specify an EFS location, input data files
5717
- # will be made available as input streams. They do not need to be
5718
- # downloaded.
5731
+ # Depending on the input mode that the algorithm supports, SageMaker
5732
+ # either copies input data files from an S3 bucket to a local directory
5733
+ # in the Docker container, or makes it available as input streams. For
5734
+ # example, if you specify an EFS location, input data files are
5735
+ # available as input streams. They do not need to be downloaded.
5719
5736
  #
5720
5737
  # @option params [required, Types::OutputDataConfig] :output_data_config
5721
5738
  # Specifies the path to the S3 location where you want to store model
5722
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
5739
+ # artifacts. SageMaker creates subfolders for the artifacts.
5723
5740
  #
5724
5741
  # @option params [required, Types::ResourceConfig] :resource_config
5725
5742
  # The resources, including the ML compute instances and ML storage
@@ -5727,10 +5744,10 @@ module Aws::SageMaker
5727
5744
  #
5728
5745
  # ML storage volumes store model artifacts and incremental states.
5729
5746
  # Training algorithms might also use ML storage volumes for scratch
5730
- # space. If you want Amazon SageMaker to use the ML storage volume to
5731
- # store the training data, choose `File` as the `TrainingInputMode` in
5732
- # the algorithm specification. For distributed training algorithms,
5733
- # specify an instance count greater than 1.
5747
+ # space. If you want SageMaker to use the ML storage volume to store the
5748
+ # training data, choose `File` as the `TrainingInputMode` in the
5749
+ # algorithm specification. For distributed training algorithms, specify
5750
+ # an instance count greater than 1.
5734
5751
  #
5735
5752
  # @option params [Types::VpcConfig] :vpc_config
5736
5753
  # A VpcConfig object that specifies the VPC that you want your training
@@ -5745,13 +5762,13 @@ module Aws::SageMaker
5745
5762
  # @option params [required, Types::StoppingCondition] :stopping_condition
5746
5763
  # Specifies a limit to how long a model training job can run. It also
5747
5764
  # specifies how long a managed Spot training job has to complete. When
5748
- # the job reaches the time limit, Amazon SageMaker ends the training
5749
- # job. Use this API to cap model training costs.
5765
+ # the job reaches the time limit, SageMaker ends the training job. Use
5766
+ # this API to cap model training costs.
5750
5767
  #
5751
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5752
- # signal, which delays job termination for 120 seconds. Algorithms can
5753
- # use this 120-second window to save the model artifacts, so the results
5754
- # of training are not lost.
5768
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
5769
+ # which delays job termination for 120 seconds. Algorithms can use this
5770
+ # 120-second window to save the model artifacts, so the results of
5771
+ # training are not lost.
5755
5772
  #
5756
5773
  # @option params [Array<Types::Tag>] :tags
5757
5774
  # An array of key-value pairs. You can use tags to categorize your
@@ -5767,9 +5784,9 @@ module Aws::SageMaker
5767
5784
  # Isolates the training container. No inbound or outbound network calls
5768
5785
  # can be made, except for calls between peers within a training cluster
5769
5786
  # for distributed training. If you enable network isolation for training
5770
- # jobs that are configured to use a VPC, Amazon SageMaker downloads and
5771
- # uploads customer data and model artifacts through the specified VPC,
5772
- # but the training container does not have network access.
5787
+ # jobs that are configured to use a VPC, SageMaker downloads and uploads
5788
+ # customer data and model artifacts through the specified VPC, but the
5789
+ # training container does not have network access.
5773
5790
  #
5774
5791
  # @option params [Boolean] :enable_inter_container_traffic_encryption
5775
5792
  # To encrypt all communications between ML compute instances in
@@ -6076,6 +6093,11 @@ module Aws::SageMaker
6076
6093
  # fit within the maximum payload size, we recommend using a slightly
6077
6094
  # larger value. The default value is `6` MB.
6078
6095
  #
6096
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
6097
+ # specify the `MaxConcurrentTransforms` parameter, the value of
6098
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
6099
+ # MB.
6100
+ #
6079
6101
  # For cases where the payload might be arbitrarily large and is
6080
6102
  # transmitted using HTTP chunked encoding, set the value to `0`. This
6081
6103
  # feature works only in supported algorithms. Currently, Amazon
@@ -6506,6 +6528,19 @@ module Aws::SageMaker
6506
6528
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
6507
6529
  # },
6508
6530
  # r_session_app_settings: {
6531
+ # default_resource_spec: {
6532
+ # sage_maker_image_arn: "ImageArn",
6533
+ # sage_maker_image_version_arn: "ImageVersionArn",
6534
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
6535
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
6536
+ # },
6537
+ # custom_images: [
6538
+ # {
6539
+ # image_name: "ImageName", # required
6540
+ # image_version_number: 1,
6541
+ # app_image_config_name: "AppImageConfigName", # required
6542
+ # },
6543
+ # ],
6509
6544
  # },
6510
6545
  # },
6511
6546
  # })
@@ -7041,13 +7076,19 @@ module Aws::SageMaker
7041
7076
  req.send_request(options)
7042
7077
  end
7043
7078
 
7044
- # Deletes an endpoint. Amazon SageMaker frees up all of the resources
7045
- # that were deployed when the endpoint was created.
7079
+ # Deletes an endpoint. SageMaker frees up all of the resources that were
7080
+ # deployed when the endpoint was created.
7046
7081
  #
7047
- # Amazon SageMaker retires any custom KMS key grants associated with the
7082
+ # SageMaker retires any custom KMS key grants associated with the
7048
7083
  # endpoint, meaning you don't need to use the [RevokeGrant][1] API
7049
7084
  # call.
7050
7085
  #
7086
+ # When you delete your endpoint, SageMaker asynchronously deletes
7087
+ # associated endpoint resources such as KMS key grants. You might still
7088
+ # see these resources in your account for a few minutes after deleting
7089
+ # your endpoint. Do not delete or revoke the permissions for your `
7090
+ # ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
7091
+ #
7051
7092
  #
7052
7093
  #
7053
7094
  # [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
@@ -7264,9 +7305,9 @@ module Aws::SageMaker
7264
7305
  end
7265
7306
 
7266
7307
  # Deletes a model. The `DeleteModel` API deletes only the model entry
7267
- # that was created in Amazon SageMaker when you called the `CreateModel`
7268
- # API. It does not delete model artifacts, inference code, or the IAM
7269
- # role that you specified when creating the model.
7308
+ # that was created in SageMaker when you called the `CreateModel` API.
7309
+ # It does not delete model artifacts, inference code, or the IAM role
7310
+ # that you specified when creating the model.
7270
7311
  #
7271
7312
  # @option params [required, String] :model_name
7272
7313
  # The name of the model to delete.
@@ -7334,10 +7375,10 @@ module Aws::SageMaker
7334
7375
 
7335
7376
  # Deletes a model package.
7336
7377
  #
7337
- # A model package is used to create Amazon SageMaker models or list on
7338
- # Amazon Web Services Marketplace. Buyers can subscribe to model
7339
- # packages listed on Amazon Web Services Marketplace to create models in
7340
- # Amazon SageMaker.
7378
+ # A model package is used to create SageMaker models or list on Amazon
7379
+ # Web Services Marketplace. Buyers can subscribe to model packages
7380
+ # listed on Amazon Web Services Marketplace to create models in
7381
+ # SageMaker.
7341
7382
  #
7342
7383
  # @option params [required, String] :model_package_name
7343
7384
  # The name or Amazon Resource Name (ARN) of the model package to delete.
@@ -7452,16 +7493,16 @@ module Aws::SageMaker
7452
7493
  req.send_request(options)
7453
7494
  end
7454
7495
 
7455
- # Deletes an Amazon SageMaker notebook instance. Before you can delete a
7496
+ # Deletes an SageMaker notebook instance. Before you can delete a
7456
7497
  # notebook instance, you must call the `StopNotebookInstance` API.
7457
7498
  #
7458
- # When you delete a notebook instance, you lose all of your data. Amazon
7499
+ # When you delete a notebook instance, you lose all of your data.
7459
7500
  # SageMaker removes the ML compute instance, and deletes the ML storage
7460
7501
  # volume and the network interface associated with the notebook
7461
7502
  # instance.
7462
7503
  #
7463
7504
  # @option params [required, String] :notebook_instance_name
7464
- # The name of the Amazon SageMaker notebook instance to delete.
7505
+ # The name of the SageMaker notebook instance to delete.
7465
7506
  #
7466
7507
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
7467
7508
  #
@@ -7589,7 +7630,7 @@ module Aws::SageMaker
7589
7630
  req.send_request(options)
7590
7631
  end
7591
7632
 
7592
- # Deletes the specified tags from an Amazon SageMaker resource.
7633
+ # Deletes the specified tags from an SageMaker resource.
7593
7634
  #
7594
7635
  # To list a resource's tags, use the `ListTags` API.
7595
7636
  #
@@ -8230,6 +8271,7 @@ module Aws::SageMaker
8230
8271
  # resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
8231
8272
  # resp.input_data_config[0].target_attribute_name #=> String
8232
8273
  # resp.input_data_config[0].content_type #=> String
8274
+ # resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
8233
8275
  # resp.output_data_config.kms_key_id #=> String
8234
8276
  # resp.output_data_config.s3_output_path #=> String
8235
8277
  # resp.role_arn #=> String
@@ -8244,6 +8286,7 @@ module Aws::SageMaker
8244
8286
  # resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
8245
8287
  # resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
8246
8288
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
8289
+ # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
8247
8290
  # resp.creation_time #=> Time
8248
8291
  # resp.end_time #=> Time
8249
8292
  # resp.last_modified_time #=> Time
@@ -8275,6 +8318,7 @@ module Aws::SageMaker
8275
8318
  # resp.best_candidate.candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
8276
8319
  # resp.best_candidate.candidate_properties.candidate_metrics[0].value #=> Float
8277
8320
  # resp.best_candidate.candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
8321
+ # resp.best_candidate.candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss"
8278
8322
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
8279
8323
  # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError", "GeneratingModelInsightsReport", "ModelInsightsError"
8280
8324
  # resp.generate_candidate_definitions_only #=> Boolean
@@ -8726,6 +8770,14 @@ module Aws::SageMaker
8726
8770
  # resp.default_user_settings.tensor_board_app_settings.default_resource_spec.lifecycle_config_arn #=> String
8727
8771
  # resp.default_user_settings.r_studio_server_pro_app_settings.access_status #=> String, one of "ENABLED", "DISABLED"
8728
8772
  # resp.default_user_settings.r_studio_server_pro_app_settings.user_group #=> String, one of "R_STUDIO_ADMIN", "R_STUDIO_USER"
8773
+ # resp.default_user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_arn #=> String
8774
+ # resp.default_user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
8775
+ # resp.default_user_settings.r_session_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
8776
+ # resp.default_user_settings.r_session_app_settings.default_resource_spec.lifecycle_config_arn #=> String
8777
+ # resp.default_user_settings.r_session_app_settings.custom_images #=> Array
8778
+ # resp.default_user_settings.r_session_app_settings.custom_images[0].image_name #=> String
8779
+ # resp.default_user_settings.r_session_app_settings.custom_images[0].image_version_number #=> Integer
8780
+ # resp.default_user_settings.r_session_app_settings.custom_images[0].app_image_config_name #=> String
8729
8781
  # resp.app_network_access_type #=> String, one of "PublicInternetOnly", "VpcOnly"
8730
8782
  # resp.home_efs_file_system_kms_key_id #=> String
8731
8783
  # resp.subnet_ids #=> Array
@@ -9602,6 +9654,7 @@ module Aws::SageMaker
9602
9654
  # resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].name #=> String
9603
9655
  # resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value #=> Array
9604
9656
  # resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value[0] #=> String
9657
+ # resp.input_config.volume_kms_key_id #=> String
9605
9658
  # resp.stopping_conditions.max_invocations #=> Integer
9606
9659
  # resp.stopping_conditions.model_latency_thresholds #=> Array
9607
9660
  # resp.stopping_conditions.model_latency_thresholds[0].percentile #=> String
@@ -10207,7 +10260,7 @@ module Aws::SageMaker
10207
10260
  # Gets a description for the specified model group.
10208
10261
  #
10209
10262
  # @option params [required, String] :model_package_group_name
10210
- # The name of the model group to describe.
10263
+ # The name of gthe model group to describe.
10211
10264
  #
10212
10265
  # @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10213
10266
  #
@@ -11432,6 +11485,14 @@ module Aws::SageMaker
11432
11485
  # resp.user_settings.tensor_board_app_settings.default_resource_spec.lifecycle_config_arn #=> String
11433
11486
  # resp.user_settings.r_studio_server_pro_app_settings.access_status #=> String, one of "ENABLED", "DISABLED"
11434
11487
  # resp.user_settings.r_studio_server_pro_app_settings.user_group #=> String, one of "R_STUDIO_ADMIN", "R_STUDIO_USER"
11488
+ # resp.user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_arn #=> String
11489
+ # resp.user_settings.r_session_app_settings.default_resource_spec.sage_maker_image_version_arn #=> String
11490
+ # resp.user_settings.r_session_app_settings.default_resource_spec.instance_type #=> String, one of "system", "ml.t3.micro", "ml.t3.small", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.8xlarge", "ml.m5.12xlarge", "ml.m5.16xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c5.large", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.12xlarge", "ml.c5.18xlarge", "ml.c5.24xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
11491
+ # resp.user_settings.r_session_app_settings.default_resource_spec.lifecycle_config_arn #=> String
11492
+ # resp.user_settings.r_session_app_settings.custom_images #=> Array
11493
+ # resp.user_settings.r_session_app_settings.custom_images[0].image_name #=> String
11494
+ # resp.user_settings.r_session_app_settings.custom_images[0].image_version_number #=> Integer
11495
+ # resp.user_settings.r_session_app_settings.custom_images[0].app_image_config_name #=> String
11435
11496
  #
11436
11497
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfile AWS API Documentation
11437
11498
  #
@@ -12395,6 +12456,7 @@ module Aws::SageMaker
12395
12456
  # resp.candidates[0].candidate_properties.candidate_metrics[0].metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
12396
12457
  # resp.candidates[0].candidate_properties.candidate_metrics[0].value #=> Float
12397
12458
  # resp.candidates[0].candidate_properties.candidate_metrics[0].set #=> String, one of "Train", "Validation", "Test"
12459
+ # resp.candidates[0].candidate_properties.candidate_metrics[0].standard_metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC", "RMSE", "MAE", "R2", "BalancedAccuracy", "Precision", "PrecisionMacro", "Recall", "RecallMacro", "LogLoss"
12398
12460
  # resp.next_token #=> String
12399
12461
  #
12400
12462
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
@@ -14739,8 +14801,8 @@ module Aws::SageMaker
14739
14801
  req.send_request(options)
14740
14802
  end
14741
14803
 
14742
- # Returns a list of the Amazon SageMaker notebook instances in the
14743
- # requester's account in an Amazon Web Services Region.
14804
+ # Returns a list of the SageMaker notebook instances in the requester's
14805
+ # account in an Amazon Web Services Region.
14744
14806
  #
14745
14807
  # @option params [String] :next_token
14746
14808
  # If the previous call to the `ListNotebookInstances` is truncated, the
@@ -15411,7 +15473,7 @@ module Aws::SageMaker
15411
15473
  req.send_request(options)
15412
15474
  end
15413
15475
 
15414
- # Returns the tags for the specified Amazon SageMaker resource.
15476
+ # Returns the tags for the specified SageMaker resource.
15415
15477
  #
15416
15478
  # @option params [required, String] :resource_arn
15417
15479
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
@@ -15419,8 +15481,8 @@ module Aws::SageMaker
15419
15481
  #
15420
15482
  # @option params [String] :next_token
15421
15483
  # If the response to the previous `ListTags` request is truncated,
15422
- # Amazon SageMaker returns this token. To retrieve the next set of tags,
15423
- # use it in the subsequent request.
15484
+ # SageMaker returns this token. To retrieve the next set of tags, use it
15485
+ # in the subsequent request.
15424
15486
  #
15425
15487
  # @option params [Integer] :max_results
15426
15488
  # Maximum number of tags to return.
@@ -16145,11 +16207,12 @@ module Aws::SageMaker
16145
16207
  # starting point for your lineage query.
16146
16208
  #
16147
16209
  # @option params [String] :direction
16148
- # Associations between lineage entities are directed. This parameter
16149
- # determines the direction from the StartArn(s) the query will look.
16210
+ # Associations between lineage entities have a direction. This parameter
16211
+ # determines the direction from the StartArn(s) that the query
16212
+ # traverses.
16150
16213
  #
16151
16214
  # @option params [Boolean] :include_edges
16152
- # Setting this value to `True` will retrieve not only the entities of
16215
+ # Setting this value to `True` retrieves not only the entities of
16153
16216
  # interest but also the [Associations][1] and lineage entities on the
16154
16217
  # path. Set to `False` to only return lineage entities that match your
16155
16218
  # query.
@@ -16176,8 +16239,8 @@ module Aws::SageMaker
16176
16239
  #
16177
16240
  # @option params [Integer] :max_depth
16178
16241
  # The maximum depth in lineage relationships from the `StartArns` that
16179
- # will be traversed. Depth is a measure of the number of `Associations`
16180
- # from the `StartArn` entity to the matched results.
16242
+ # are traversed. Depth is a measure of the number of `Associations` from
16243
+ # the `StartArn` entity to the matched results.
16181
16244
  #
16182
16245
  # @option params [Integer] :max_results
16183
16246
  # Limits the number of vertices in the results. Use the `NextToken` in a
@@ -17353,9 +17416,9 @@ module Aws::SageMaker
17353
17416
 
17354
17417
  # Launches an ML compute instance with the latest version of the
17355
17418
  # libraries and attaches your ML storage volume. After configuring the
17356
- # notebook instance, Amazon SageMaker sets the notebook instance status
17357
- # to `InService`. A notebook instance's status must be `InService`
17358
- # before you can connect to your Jupyter notebook.
17419
+ # notebook instance, SageMaker sets the notebook instance status to
17420
+ # `InService`. A notebook instance's status must be `InService` before
17421
+ # you can connect to your Jupyter notebook.
17359
17422
  #
17360
17423
  # @option params [required, String] :notebook_instance_name
17361
17424
  # The name of the notebook instance to start.
@@ -17611,10 +17674,9 @@ module Aws::SageMaker
17611
17674
  end
17612
17675
 
17613
17676
  # Terminates the ML compute instance. Before terminating the instance,
17614
- # Amazon SageMaker disconnects the ML storage volume from it. Amazon
17615
- # SageMaker preserves the ML storage volume. Amazon SageMaker stops
17616
- # charging you for the ML compute instance when you call
17617
- # `StopNotebookInstance`.
17677
+ # SageMaker disconnects the ML storage volume from it. SageMaker
17678
+ # preserves the ML storage volume. SageMaker stops charging you for the
17679
+ # ML compute instance when you call `StopNotebookInstance`.
17618
17680
  #
17619
17681
  # To access data on the ML storage volume for a notebook instance that
17620
17682
  # has been terminated, call the `StartNotebookInstance` API.
@@ -17728,14 +17790,14 @@ module Aws::SageMaker
17728
17790
  req.send_request(options)
17729
17791
  end
17730
17792
 
17731
- # Stops a training job. To stop a job, Amazon SageMaker sends the
17732
- # algorithm the `SIGTERM` signal, which delays job termination for 120
17733
- # seconds. Algorithms might use this 120-second window to save the model
17793
+ # Stops a training job. To stop a job, SageMaker sends the algorithm the
17794
+ # `SIGTERM` signal, which delays job termination for 120 seconds.
17795
+ # Algorithms might use this 120-second window to save the model
17734
17796
  # artifacts, so the results of the training is not lost.
17735
17797
  #
17736
- # When it receives a `StopTrainingJob` request, Amazon SageMaker changes
17737
- # the status of the job to `Stopping`. After Amazon SageMaker stops the
17738
- # job, it sets the status to `Stopped`.
17798
+ # When it receives a `StopTrainingJob` request, SageMaker changes the
17799
+ # status of the job to `Stopping`. After SageMaker stops the job, it
17800
+ # sets the status to `Stopped`.
17739
17801
  #
17740
17802
  # @option params [required, String] :training_job_name
17741
17803
  # The name of the training job to stop.
@@ -18144,6 +18206,19 @@ module Aws::SageMaker
18144
18206
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
18145
18207
  # },
18146
18208
  # r_session_app_settings: {
18209
+ # default_resource_spec: {
18210
+ # sage_maker_image_arn: "ImageArn",
18211
+ # sage_maker_image_version_arn: "ImageVersionArn",
18212
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
18213
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
18214
+ # },
18215
+ # custom_images: [
18216
+ # {
18217
+ # image_name: "ImageName", # required
18218
+ # image_version_number: 1,
18219
+ # app_image_config_name: "AppImageConfigName", # required
18220
+ # },
18221
+ # ],
18147
18222
  # },
18148
18223
  # },
18149
18224
  # domain_settings_for_update: {
@@ -18177,9 +18252,9 @@ module Aws::SageMaker
18177
18252
  # for the endpoint using the previous `EndpointConfig` (there is no
18178
18253
  # availability loss).
18179
18254
  #
18180
- # When Amazon SageMaker receives the request, it sets the endpoint
18181
- # status to `Updating`. After updating the endpoint, it sets the status
18182
- # to `InService`. To check the status of an endpoint, use the
18255
+ # When SageMaker receives the request, it sets the endpoint status to
18256
+ # `Updating`. After updating the endpoint, it sets the status to
18257
+ # `InService`. To check the status of an endpoint, use the
18183
18258
  # DescribeEndpoint API.
18184
18259
  #
18185
18260
  # <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
@@ -18287,13 +18362,13 @@ module Aws::SageMaker
18287
18362
 
18288
18363
  # Updates variant weight of one or more variants associated with an
18289
18364
  # existing endpoint, or capacity of one variant associated with an
18290
- # existing endpoint. When it receives the request, Amazon SageMaker sets
18291
- # the endpoint status to `Updating`. After updating the endpoint, it
18292
- # sets the status to `InService`. To check the status of an endpoint,
18293
- # use the DescribeEndpoint API.
18365
+ # existing endpoint. When it receives the request, SageMaker sets the
18366
+ # endpoint status to `Updating`. After updating the endpoint, it sets
18367
+ # the status to `InService`. To check the status of an endpoint, use the
18368
+ # DescribeEndpoint API.
18294
18369
  #
18295
18370
  # @option params [required, String] :endpoint_name
18296
- # The name of an existing Amazon SageMaker endpoint.
18371
+ # The name of an existing SageMaker endpoint.
18297
18372
  #
18298
18373
  # @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
18299
18374
  # An object that provides new capacity and weight values for a variant.
@@ -18618,12 +18693,12 @@ module Aws::SageMaker
18618
18693
  # The Amazon ML compute instance type.
18619
18694
  #
18620
18695
  # @option params [String] :role_arn
18621
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
18622
- # can assume to access the notebook instance. For more information, see
18623
- # [Amazon SageMaker Roles][1].
18696
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
18697
+ # assume to access the notebook instance. For more information, see
18698
+ # [SageMaker Roles][1].
18624
18699
  #
18625
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
18626
- # API must have the `iam:PassRole` permission.
18700
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
18701
+ # have the `iam:PassRole` permission.
18627
18702
  #
18628
18703
  # </note>
18629
18704
  #
@@ -18650,11 +18725,11 @@ module Aws::SageMaker
18650
18725
  # @option params [Integer] :volume_size_in_gb
18651
18726
  # The size, in GB, of the ML storage volume to attach to the notebook
18652
18727
  # instance. The default value is 5 GB. ML storage volumes are encrypted,
18653
- # so Amazon SageMaker can't determine the amount of available free
18654
- # space on the volume. Because of this, you can increase the volume size
18655
- # when you update a notebook instance, but you can't decrease the
18656
- # volume size. If you want to decrease the size of the ML storage volume
18657
- # in use, create a new notebook instance with the desired size.
18728
+ # so SageMaker can't determine the amount of available free space on
18729
+ # the volume. Because of this, you can increase the volume size when you
18730
+ # update a notebook instance, but you can't decrease the volume size.
18731
+ # If you want to decrease the size of the ML storage volume in use,
18732
+ # create a new notebook instance with the desired size.
18658
18733
  #
18659
18734
  # @option params [String] :default_code_repository
18660
18735
  # The Git repository to associate with the notebook instance as its
@@ -18663,8 +18738,7 @@ module Aws::SageMaker
18663
18738
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
18664
18739
  # repository. When you open a notebook instance, it opens in the
18665
18740
  # directory that contains this repository. For more information, see
18666
- # [Associating Git Repositories with Amazon SageMaker Notebook
18667
- # Instances][2].
18741
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18668
18742
  #
18669
18743
  #
18670
18744
  #
@@ -18678,8 +18752,7 @@ module Aws::SageMaker
18678
18752
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
18679
18753
  # These repositories are cloned at the same level as the default
18680
18754
  # repository of your notebook instance. For more information, see
18681
- # [Associating Git Repositories with Amazon SageMaker Notebook
18682
- # Instances][2].
18755
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18683
18756
  #
18684
18757
  #
18685
18758
  #
@@ -19225,6 +19298,19 @@ module Aws::SageMaker
19225
19298
  # user_group: "R_STUDIO_ADMIN", # accepts R_STUDIO_ADMIN, R_STUDIO_USER
19226
19299
  # },
19227
19300
  # r_session_app_settings: {
19301
+ # default_resource_spec: {
19302
+ # sage_maker_image_arn: "ImageArn",
19303
+ # sage_maker_image_version_arn: "ImageVersionArn",
19304
+ # instance_type: "system", # accepts system, ml.t3.micro, ml.t3.small, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.8xlarge, ml.m5.12xlarge, ml.m5.16xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.12xlarge, ml.c5.18xlarge, ml.c5.24xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
19305
+ # lifecycle_config_arn: "StudioLifecycleConfigArn",
19306
+ # },
19307
+ # custom_images: [
19308
+ # {
19309
+ # image_name: "ImageName", # required
19310
+ # image_version_number: 1,
19311
+ # app_image_config_name: "AppImageConfigName", # required
19312
+ # },
19313
+ # ],
19228
19314
  # },
19229
19315
  # },
19230
19316
  # })
@@ -19452,7 +19538,7 @@ module Aws::SageMaker
19452
19538
  params: params,
19453
19539
  config: config)
19454
19540
  context[:gem_name] = 'aws-sdk-sagemaker'
19455
- context[:gem_version] = '1.121.0'
19541
+ context[:gem_version] = '1.124.0'
19456
19542
  Seahorse::Client::Request.new(handlers, context)
19457
19543
  end
19458
19544