aws-sdk-sagemaker 1.120.0 → 1.123.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +264 -248
- data/lib/aws-sdk-sagemaker/client_api.rb +19 -0
- data/lib/aws-sdk-sagemaker/types.rb +580 -401
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -192,7 +192,7 @@ module Aws::SageMaker
|
|
192
192
|
end
|
193
193
|
|
194
194
|
# @!attribute [rw] tags
|
195
|
-
# A list of tags associated with the
|
195
|
+
# A list of tags associated with the SageMaker resource.
|
196
196
|
# @return [Array<Types::Tag>]
|
197
197
|
#
|
198
198
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
|
@@ -328,9 +328,9 @@ module Aws::SageMaker
|
|
328
328
|
# Specifies the training algorithm to use in a CreateTrainingJob
|
329
329
|
# request.
|
330
330
|
#
|
331
|
-
# For more information about algorithms provided by
|
332
|
-
#
|
333
|
-
#
|
331
|
+
# For more information about algorithms provided by SageMaker, see
|
332
|
+
# [Algorithms][1]. For information about using your own algorithms, see
|
333
|
+
# [Using Your Own Algorithms with Amazon SageMaker][2].
|
334
334
|
#
|
335
335
|
#
|
336
336
|
#
|
@@ -357,10 +357,10 @@ module Aws::SageMaker
|
|
357
357
|
# The registry path of the Docker image that contains the training
|
358
358
|
# algorithm. For information about docker registry paths for built-in
|
359
359
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
360
|
-
# Parameters][1].
|
361
|
-
#
|
362
|
-
#
|
363
|
-
#
|
360
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
361
|
+
# and `registry/repository[@digest]` image path formats. For more
|
362
|
+
# information, see [Using Your Own Algorithms with Amazon
|
363
|
+
# SageMaker][2].
|
364
364
|
#
|
365
365
|
#
|
366
366
|
#
|
@@ -424,7 +424,7 @@ module Aws::SageMaker
|
|
424
424
|
# @!attribute [rw] metric_definitions
|
425
425
|
# A list of metric definition objects. Each object specifies the
|
426
426
|
# metric name and regular expressions used to parse algorithm logs.
|
427
|
-
#
|
427
|
+
# SageMaker publishes each metric to Amazon CloudWatch.
|
428
428
|
# @return [Array<Types::MetricDefinition>]
|
429
429
|
#
|
430
430
|
# @!attribute [rw] enable_sage_maker_metrics_time_series
|
@@ -432,9 +432,9 @@ module Aws::SageMaker
|
|
432
432
|
# `true`. The default is `false` and time-series metrics aren't
|
433
433
|
# generated except in the following cases:
|
434
434
|
#
|
435
|
-
# * You use one of the
|
435
|
+
# * You use one of the SageMaker built-in algorithms
|
436
436
|
#
|
437
|
-
# * You use one of the following [Prebuilt
|
437
|
+
# * You use one of the following [Prebuilt SageMaker Docker
|
438
438
|
# Images][1]\:
|
439
439
|
#
|
440
440
|
# * Tensorflow (version >= 1.15)
|
@@ -540,8 +540,8 @@ module Aws::SageMaker
|
|
540
540
|
include Aws::Structure
|
541
541
|
end
|
542
542
|
|
543
|
-
# Defines a training job and a batch transform job that
|
544
|
-
#
|
543
|
+
# Defines a training job and a batch transform job that SageMaker runs
|
544
|
+
# to validate your algorithm.
|
545
545
|
#
|
546
546
|
# The data provided in the validation profile is made available to your
|
547
547
|
# buyers on Amazon Web Services Marketplace.
|
@@ -636,12 +636,12 @@ module Aws::SageMaker
|
|
636
636
|
#
|
637
637
|
# @!attribute [rw] training_job_definition
|
638
638
|
# The `TrainingJobDefinition` object that describes the training job
|
639
|
-
# that
|
639
|
+
# that SageMaker runs to validate your algorithm.
|
640
640
|
# @return [Types::TrainingJobDefinition]
|
641
641
|
#
|
642
642
|
# @!attribute [rw] transform_job_definition
|
643
643
|
# The `TransformJobDefinition` object that describes the transform job
|
644
|
-
# that
|
644
|
+
# that SageMaker runs to validate your algorithm.
|
645
645
|
# @return [Types::TransformJobDefinition]
|
646
646
|
#
|
647
647
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
|
@@ -654,8 +654,8 @@ module Aws::SageMaker
|
|
654
654
|
include Aws::Structure
|
655
655
|
end
|
656
656
|
|
657
|
-
# Specifies configurations for one or more training jobs that
|
658
|
-
#
|
657
|
+
# Specifies configurations for one or more training jobs that SageMaker
|
658
|
+
# runs to test the algorithm.
|
659
659
|
#
|
660
660
|
# @note When making an API call, you may pass AlgorithmValidationSpecification
|
661
661
|
# data as a hash:
|
@@ -746,13 +746,13 @@ module Aws::SageMaker
|
|
746
746
|
# }
|
747
747
|
#
|
748
748
|
# @!attribute [rw] validation_role
|
749
|
-
# The IAM roles that
|
749
|
+
# The IAM roles that SageMaker uses to run the training jobs.
|
750
750
|
# @return [String]
|
751
751
|
#
|
752
752
|
# @!attribute [rw] validation_profiles
|
753
753
|
# An array of `AlgorithmValidationProfile` objects, each of which
|
754
|
-
# specifies a training job and batch transform job that
|
755
|
-
#
|
754
|
+
# specifies a training job and batch transform job that SageMaker runs
|
755
|
+
# to validate your algorithm.
|
756
756
|
# @return [Array<Types::AlgorithmValidationProfile>]
|
757
757
|
#
|
758
758
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
|
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
|
|
1742
1742
|
include Aws::Structure
|
1743
1743
|
end
|
1744
1744
|
|
1745
|
-
# Configures the behavior of the client used by
|
1746
|
-
#
|
1745
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1746
|
+
# with the model container during asynchronous inference.
|
1747
1747
|
#
|
1748
1748
|
# @note When making an API call, you may pass AsyncInferenceClientConfig
|
1749
1749
|
# data as a hash:
|
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
|
|
1754
1754
|
#
|
1755
1755
|
# @!attribute [rw] max_concurrent_invocations_per_instance
|
1756
1756
|
# The maximum number of concurrent requests sent by the SageMaker
|
1757
|
-
# client to the model container. If no value is provided,
|
1758
|
-
#
|
1757
|
+
# client to the model container. If no value is provided, SageMaker
|
1758
|
+
# chooses an optimal value.
|
1759
1759
|
# @return [Integer]
|
1760
1760
|
#
|
1761
1761
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
|
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
|
|
1787
1787
|
# }
|
1788
1788
|
#
|
1789
1789
|
# @!attribute [rw] client_config
|
1790
|
-
# Configures the behavior of the client used by
|
1791
|
-
#
|
1790
|
+
# Configures the behavior of the client used by SageMaker to interact
|
1791
|
+
# with the model container during asynchronous inference.
|
1792
1792
|
# @return [Types::AsyncInferenceClientConfig]
|
1793
1793
|
#
|
1794
1794
|
# @!attribute [rw] output_config
|
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
|
|
1853
1853
|
#
|
1854
1854
|
# @!attribute [rw] kms_key_id
|
1855
1855
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
1856
|
-
# KMS) key that
|
1857
|
-
#
|
1856
|
+
# KMS) key that SageMaker uses to encrypt the asynchronous inference
|
1857
|
+
# output in Amazon S3.
|
1858
1858
|
# @return [String]
|
1859
1859
|
#
|
1860
1860
|
# @!attribute [rw] s3_output_path
|
@@ -2034,7 +2034,14 @@ module Aws::SageMaker
|
|
2034
2034
|
end
|
2035
2035
|
|
2036
2036
|
# A channel is a named input source that training algorithms can
|
2037
|
-
# consume.
|
2037
|
+
# consume. The validation dataset size is limited to less than 2 GB. The
|
2038
|
+
# training dataset size must be less than 100 GB. For more information,
|
2039
|
+
# see .
|
2040
|
+
#
|
2041
|
+
# <note markdown="1"> A validation dataset must contain the same headers as the training
|
2042
|
+
# dataset.
|
2043
|
+
#
|
2044
|
+
# </note>
|
2038
2045
|
#
|
2039
2046
|
# @note When making an API call, you may pass AutoMLChannel
|
2040
2047
|
# data as a hash:
|
@@ -2049,6 +2056,7 @@ module Aws::SageMaker
|
|
2049
2056
|
# compression_type: "None", # accepts None, Gzip
|
2050
2057
|
# target_attribute_name: "TargetAttributeName", # required
|
2051
2058
|
# content_type: "ContentType",
|
2059
|
+
# channel_type: "training", # accepts training, validation
|
2052
2060
|
# }
|
2053
2061
|
#
|
2054
2062
|
# @!attribute [rw] data_source
|
@@ -2070,13 +2078,20 @@ module Aws::SageMaker
|
|
2070
2078
|
# default value is `text/csv;header=present`.
|
2071
2079
|
# @return [String]
|
2072
2080
|
#
|
2081
|
+
# @!attribute [rw] channel_type
|
2082
|
+
# The channel type (optional) is an enum string. The default value is
|
2083
|
+
# `training`. Channels for training and validation must share the same
|
2084
|
+
# `ContentType` and `TargetAttributeName`.
|
2085
|
+
# @return [String]
|
2086
|
+
#
|
2073
2087
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
|
2074
2088
|
#
|
2075
2089
|
class AutoMLChannel < Struct.new(
|
2076
2090
|
:data_source,
|
2077
2091
|
:compression_type,
|
2078
2092
|
:target_attribute_name,
|
2079
|
-
:content_type
|
2093
|
+
:content_type,
|
2094
|
+
:channel_type)
|
2080
2095
|
SENSITIVE = []
|
2081
2096
|
include Aws::Structure
|
2082
2097
|
end
|
@@ -2136,6 +2151,32 @@ module Aws::SageMaker
|
|
2136
2151
|
include Aws::Structure
|
2137
2152
|
end
|
2138
2153
|
|
2154
|
+
# This structure specifies how to split the data into train and test
|
2155
|
+
# datasets. The validation and training datasets must contain the same
|
2156
|
+
# headers. The validation dataset must be less than 2 GB in size.
|
2157
|
+
#
|
2158
|
+
# @note When making an API call, you may pass AutoMLDataSplitConfig
|
2159
|
+
# data as a hash:
|
2160
|
+
#
|
2161
|
+
# {
|
2162
|
+
# validation_fraction: 1.0,
|
2163
|
+
# }
|
2164
|
+
#
|
2165
|
+
# @!attribute [rw] validation_fraction
|
2166
|
+
# The validation fraction (optional) is a float that specifies the
|
2167
|
+
# portion of the training dataset to be used for validation. The
|
2168
|
+
# default value is 0.2, and values can range from 0 to 1. We recommend
|
2169
|
+
# setting this value to be less than 0.5.
|
2170
|
+
# @return [Float]
|
2171
|
+
#
|
2172
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
|
2173
|
+
#
|
2174
|
+
class AutoMLDataSplitConfig < Struct.new(
|
2175
|
+
:validation_fraction)
|
2176
|
+
SENSITIVE = []
|
2177
|
+
include Aws::Structure
|
2178
|
+
end
|
2179
|
+
|
2139
2180
|
# The artifacts that are generated during an AutoML job.
|
2140
2181
|
#
|
2141
2182
|
# @!attribute [rw] candidate_definition_notebook_location
|
@@ -2217,6 +2258,9 @@ module Aws::SageMaker
|
|
2217
2258
|
# subnets: ["SubnetId"], # required
|
2218
2259
|
# },
|
2219
2260
|
# },
|
2261
|
+
# data_split_config: {
|
2262
|
+
# validation_fraction: 1.0,
|
2263
|
+
# },
|
2220
2264
|
# }
|
2221
2265
|
#
|
2222
2266
|
# @!attribute [rw] completion_criteria
|
@@ -2229,11 +2273,18 @@ module Aws::SageMaker
|
|
2229
2273
|
# settings.
|
2230
2274
|
# @return [Types::AutoMLSecurityConfig]
|
2231
2275
|
#
|
2276
|
+
# @!attribute [rw] data_split_config
|
2277
|
+
# The configuration for splitting the input training dataset.
|
2278
|
+
#
|
2279
|
+
# Type: AutoMLDataSplitConfig
|
2280
|
+
# @return [Types::AutoMLDataSplitConfig]
|
2281
|
+
#
|
2232
2282
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
|
2233
2283
|
#
|
2234
2284
|
class AutoMLJobConfig < Struct.new(
|
2235
2285
|
:completion_criteria,
|
2236
|
-
:security_config
|
2286
|
+
:security_config,
|
2287
|
+
:data_split_config)
|
2237
2288
|
SENSITIVE = []
|
2238
2289
|
include Aws::Structure
|
2239
2290
|
end
|
@@ -3005,10 +3056,10 @@ module Aws::SageMaker
|
|
3005
3056
|
# @!attribute [rw] record_wrapper_type
|
3006
3057
|
# Specify RecordIO as the value when input data is in raw format but
|
3007
3058
|
# the training algorithm requires the RecordIO format. In this case,
|
3008
|
-
#
|
3009
|
-
#
|
3010
|
-
#
|
3011
|
-
#
|
3059
|
+
# SageMaker wraps each individual S3 object in a RecordIO record. If
|
3060
|
+
# the input data is already in RecordIO format, you don't need to set
|
3061
|
+
# this attribute. For more information, see [Create a Dataset Using
|
3062
|
+
# RecordIO][1].
|
3012
3063
|
#
|
3013
3064
|
# In File mode, leave this field unset or set it to None.
|
3014
3065
|
#
|
@@ -3019,15 +3070,15 @@ module Aws::SageMaker
|
|
3019
3070
|
#
|
3020
3071
|
# @!attribute [rw] input_mode
|
3021
3072
|
# (Optional) The input mode to use for the data channel in a training
|
3022
|
-
# job. If you don't set a value for `InputMode`,
|
3023
|
-
#
|
3024
|
-
#
|
3025
|
-
#
|
3026
|
-
#
|
3027
|
-
#
|
3028
|
-
#
|
3029
|
-
#
|
3030
|
-
#
|
3073
|
+
# job. If you don't set a value for `InputMode`, SageMaker uses the
|
3074
|
+
# value set for `TrainingInputMode`. Use this parameter to override
|
3075
|
+
# the `TrainingInputMode` setting in a AlgorithmSpecification request
|
3076
|
+
# when you have a channel that needs a different input mode from the
|
3077
|
+
# training job's general setting. To download the data from Amazon
|
3078
|
+
# Simple Storage Service (Amazon S3) to the provisioned ML storage
|
3079
|
+
# volume, and mount the directory to a Docker volume, use `File` input
|
3080
|
+
# mode. To stream data directly from Amazon S3 to the container,
|
3081
|
+
# choose `Pipe` input mode.
|
3031
3082
|
#
|
3032
3083
|
# To use a model for incremental training, choose `File` input model.
|
3033
3084
|
# @return [String]
|
@@ -3137,7 +3188,7 @@ module Aws::SageMaker
|
|
3137
3188
|
# }
|
3138
3189
|
#
|
3139
3190
|
# @!attribute [rw] s3_uri
|
3140
|
-
# Identifies the S3 path where you want
|
3191
|
+
# Identifies the S3 path where you want SageMaker to store
|
3141
3192
|
# checkpoints. For example, `s3://bucket-name/key-name-prefix`.
|
3142
3193
|
# @return [String]
|
3143
3194
|
#
|
@@ -3514,11 +3565,11 @@ module Aws::SageMaker
|
|
3514
3565
|
# Amazon EC2 Container Registry or in a Docker registry that is
|
3515
3566
|
# accessible from the same VPC that you configure for your endpoint.
|
3516
3567
|
# If you are using your own custom algorithm instead of an algorithm
|
3517
|
-
# provided by
|
3518
|
-
#
|
3519
|
-
#
|
3520
|
-
#
|
3521
|
-
#
|
3568
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
3569
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
3570
|
+
# and `registry/repository[@digest]` image path formats. For more
|
3571
|
+
# information, see [Using Your Own Algorithms with Amazon
|
3572
|
+
# SageMaker][1]
|
3522
3573
|
#
|
3523
3574
|
#
|
3524
3575
|
#
|
@@ -3545,7 +3596,7 @@ module Aws::SageMaker
|
|
3545
3596
|
# The S3 path where the model artifacts, which result from model
|
3546
3597
|
# training, are stored. This path must point to a single gzip
|
3547
3598
|
# compressed tar archive (.tar.gz suffix). The S3 path is required for
|
3548
|
-
#
|
3599
|
+
# SageMaker built-in algorithms, but not if you use your own
|
3549
3600
|
# algorithms. For more information on built-in algorithms, see [Common
|
3550
3601
|
# Parameters][1].
|
3551
3602
|
#
|
@@ -3554,17 +3605,17 @@ module Aws::SageMaker
|
|
3554
3605
|
#
|
3555
3606
|
# </note>
|
3556
3607
|
#
|
3557
|
-
# If you provide a value for this parameter,
|
3558
|
-
#
|
3559
|
-
#
|
3560
|
-
#
|
3561
|
-
#
|
3562
|
-
#
|
3563
|
-
#
|
3564
|
-
#
|
3565
|
-
#
|
3566
|
-
#
|
3567
|
-
# If you use a built-in algorithm to create a model,
|
3608
|
+
# If you provide a value for this parameter, SageMaker uses Amazon Web
|
3609
|
+
# Services Security Token Service to download model artifacts from the
|
3610
|
+
# S3 path you provide. Amazon Web Services STS is activated in your
|
3611
|
+
# IAM user account by default. If you previously deactivated Amazon
|
3612
|
+
# Web Services STS for a region, you need to reactivate Amazon Web
|
3613
|
+
# Services STS for that region. For more information, see [Activating
|
3614
|
+
# and Deactivating Amazon Web Services STS in an Amazon Web Services
|
3615
|
+
# Region][2] in the *Amazon Web Services Identity and Access
|
3616
|
+
# Management User Guide*.
|
3617
|
+
#
|
3618
|
+
# If you use a built-in algorithm to create a model, SageMaker
|
3568
3619
|
# requires that you provide a S3 path to the model artifacts in
|
3569
3620
|
# `ModelDataUrl`.
|
3570
3621
|
#
|
@@ -3717,8 +3768,8 @@ module Aws::SageMaker
|
|
3717
3768
|
#
|
3718
3769
|
# Auto
|
3719
3770
|
#
|
3720
|
-
# :
|
3721
|
-
#
|
3771
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
3772
|
+
# hyperparameter.
|
3722
3773
|
#
|
3723
3774
|
# Linear
|
3724
3775
|
#
|
@@ -4096,9 +4147,9 @@ module Aws::SageMaker
|
|
4096
4147
|
#
|
4097
4148
|
# @!attribute [rw] validation_specification
|
4098
4149
|
# Specifies configurations for one or more training jobs and that
|
4099
|
-
#
|
4100
|
-
# optionally, one or more batch transform jobs that
|
4101
|
-
#
|
4150
|
+
# SageMaker runs to test the algorithm's training code and,
|
4151
|
+
# optionally, one or more batch transform jobs that SageMaker runs to
|
4152
|
+
# test the algorithm's inference code.
|
4102
4153
|
# @return [Types::AlgorithmValidationSpecification]
|
4103
4154
|
#
|
4104
4155
|
# @!attribute [rw] certify_for_marketplace
|
@@ -4376,6 +4427,7 @@ module Aws::SageMaker
|
|
4376
4427
|
# compression_type: "None", # accepts None, Gzip
|
4377
4428
|
# target_attribute_name: "TargetAttributeName", # required
|
4378
4429
|
# content_type: "ContentType",
|
4430
|
+
# channel_type: "training", # accepts training, validation
|
4379
4431
|
# },
|
4380
4432
|
# ],
|
4381
4433
|
# output_data_config: { # required
|
@@ -4400,6 +4452,9 @@ module Aws::SageMaker
|
|
4400
4452
|
# subnets: ["SubnetId"], # required
|
4401
4453
|
# },
|
4402
4454
|
# },
|
4455
|
+
# data_split_config: {
|
4456
|
+
# validation_fraction: 1.0,
|
4457
|
+
# },
|
4403
4458
|
# },
|
4404
4459
|
# role_arn: "RoleArn", # required
|
4405
4460
|
# generate_candidate_definitions_only: false,
|
@@ -5361,9 +5416,9 @@ module Aws::SageMaker
|
|
5361
5416
|
#
|
5362
5417
|
# @!attribute [rw] kms_key_id
|
5363
5418
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
5364
|
-
# Management Service key that
|
5365
|
-
#
|
5366
|
-
#
|
5419
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
5420
|
+
# storage volume attached to the ML compute instance that hosts the
|
5421
|
+
# endpoint.
|
5367
5422
|
#
|
5368
5423
|
# The KmsKeyId can be any of the following formats:
|
5369
5424
|
#
|
@@ -6277,8 +6332,8 @@ module Aws::SageMaker
|
|
6277
6332
|
end
|
6278
6333
|
|
6279
6334
|
# @!attribute [rw] hyper_parameter_tuning_job_arn
|
6280
|
-
# The Amazon Resource Name (ARN) of the tuning job.
|
6281
|
-
#
|
6335
|
+
# The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
|
6336
|
+
# an ARN to a hyperparameter tuning job when you create it.
|
6282
6337
|
# @return [String]
|
6283
6338
|
#
|
6284
6339
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
|
@@ -6362,8 +6417,8 @@ module Aws::SageMaker
|
|
6362
6417
|
#
|
6363
6418
|
# @!attribute [rw] base_image
|
6364
6419
|
# The registry path of the container image to use as the starting
|
6365
|
-
# point for this version. The path is an Amazon Container
|
6366
|
-
# (ECR) URI in the following format:
|
6420
|
+
# point for this version. The path is an Amazon Elastic Container
|
6421
|
+
# Registry (ECR) URI in the following format:
|
6367
6422
|
#
|
6368
6423
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
6369
6424
|
# [@digest]>`
|
@@ -6442,6 +6497,7 @@ module Aws::SageMaker
|
|
6442
6497
|
# },
|
6443
6498
|
# },
|
6444
6499
|
# ],
|
6500
|
+
# volume_kms_key_id: "KmsKeyId",
|
6445
6501
|
# },
|
6446
6502
|
# job_description: "RecommendationJobDescription",
|
6447
6503
|
# stopping_conditions: {
|
@@ -6453,6 +6509,12 @@ module Aws::SageMaker
|
|
6453
6509
|
# },
|
6454
6510
|
# ],
|
6455
6511
|
# },
|
6512
|
+
# output_config: {
|
6513
|
+
# kms_key_id: "KmsKeyId",
|
6514
|
+
# compiled_output_config: {
|
6515
|
+
# s3_output_uri: "S3Uri",
|
6516
|
+
# },
|
6517
|
+
# },
|
6456
6518
|
# tags: [
|
6457
6519
|
# {
|
6458
6520
|
# key: "TagKey", # required
|
@@ -6494,6 +6556,11 @@ module Aws::SageMaker
|
|
6494
6556
|
# conditions are met, the job is automatically stopped.
|
6495
6557
|
# @return [Types::RecommendationJobStoppingConditions]
|
6496
6558
|
#
|
6559
|
+
# @!attribute [rw] output_config
|
6560
|
+
# Provides information about the output artifacts and the KMS key to
|
6561
|
+
# use for Amazon S3 server-side encryption.
|
6562
|
+
# @return [Types::RecommendationJobOutputConfig]
|
6563
|
+
#
|
6497
6564
|
# @!attribute [rw] tags
|
6498
6565
|
# The metadata that you apply to Amazon Web Services resources to help
|
6499
6566
|
# you categorize and organize them. Each tag consists of a key and a
|
@@ -6515,6 +6582,7 @@ module Aws::SageMaker
|
|
6515
6582
|
:input_config,
|
6516
6583
|
:job_description,
|
6517
6584
|
:stopping_conditions,
|
6585
|
+
:output_config,
|
6518
6586
|
:tags)
|
6519
6587
|
SENSITIVE = []
|
6520
6588
|
include Aws::Structure
|
@@ -7203,14 +7271,14 @@ module Aws::SageMaker
|
|
7203
7271
|
# @return [Types::InferenceExecutionConfig]
|
7204
7272
|
#
|
7205
7273
|
# @!attribute [rw] execution_role_arn
|
7206
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
7207
|
-
#
|
7208
|
-
#
|
7274
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
7275
|
+
# assume to access model artifacts and docker image for deployment on
|
7276
|
+
# ML compute instances or for batch transform jobs. Deploying on ML
|
7209
7277
|
# compute instances is part of model hosting. For more information,
|
7210
|
-
# see [
|
7278
|
+
# see [SageMaker Roles][1].
|
7211
7279
|
#
|
7212
|
-
# <note markdown="1"> To be able to pass this role to
|
7213
|
-
#
|
7280
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
7281
|
+
# must have the `iam:PassRole` permission.
|
7214
7282
|
#
|
7215
7283
|
# </note>
|
7216
7284
|
#
|
@@ -7265,7 +7333,7 @@ module Aws::SageMaker
|
|
7265
7333
|
end
|
7266
7334
|
|
7267
7335
|
# @!attribute [rw] model_arn
|
7268
|
-
# The ARN of the model created in
|
7336
|
+
# The ARN of the model created in SageMaker.
|
7269
7337
|
# @return [String]
|
7270
7338
|
#
|
7271
7339
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
|
@@ -7598,7 +7666,7 @@ module Aws::SageMaker
|
|
7598
7666
|
# @return [Types::InferenceSpecification]
|
7599
7667
|
#
|
7600
7668
|
# @!attribute [rw] validation_specification
|
7601
|
-
# Specifies configurations for one or more transform jobs that
|
7669
|
+
# Specifies configurations for one or more transform jobs that
|
7602
7670
|
# SageMaker runs to test the model package.
|
7603
7671
|
# @return [Types::ModelPackageValidationSpecification]
|
7604
7672
|
#
|
@@ -8019,7 +8087,7 @@ module Aws::SageMaker
|
|
8019
8087
|
#
|
8020
8088
|
# {
|
8021
8089
|
# notebook_instance_name: "NotebookInstanceName", # required
|
8022
|
-
# instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
8090
|
+
# instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
|
8023
8091
|
# subnet_id: "SubnetId",
|
8024
8092
|
# security_group_ids: ["SecurityGroupId"],
|
8025
8093
|
# role_arn: "RoleArn", # required
|
@@ -8060,15 +8128,14 @@ module Aws::SageMaker
|
|
8060
8128
|
#
|
8061
8129
|
# @!attribute [rw] role_arn
|
8062
8130
|
# When you send any requests to Amazon Web Services resources from the
|
8063
|
-
# notebook instance,
|
8064
|
-
#
|
8065
|
-
#
|
8066
|
-
#
|
8067
|
-
#
|
8068
|
-
# SageMaker Roles][1].
|
8131
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
8132
|
+
# your behalf. You must grant this role necessary permissions so
|
8133
|
+
# SageMaker can perform these tasks. The policy must allow the
|
8134
|
+
# SageMaker service principal (sagemaker.amazonaws.com) permissions to
|
8135
|
+
# assume this role. For more information, see [SageMaker Roles][1].
|
8069
8136
|
#
|
8070
|
-
# <note markdown="1"> To be able to pass this role to
|
8071
|
-
#
|
8137
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
8138
|
+
# must have the `iam:PassRole` permission.
|
8072
8139
|
#
|
8073
8140
|
# </note>
|
8074
8141
|
#
|
@@ -8079,9 +8146,9 @@ module Aws::SageMaker
|
|
8079
8146
|
#
|
8080
8147
|
# @!attribute [rw] kms_key_id
|
8081
8148
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
8082
|
-
# Management Service key that
|
8083
|
-
#
|
8084
|
-
#
|
8149
|
+
# Management Service key that SageMaker uses to encrypt data on the
|
8150
|
+
# storage volume attached to your notebook instance. The KMS key you
|
8151
|
+
# provide must be enabled. For information, see [Enabling and
|
8085
8152
|
# Disabling Keys][1] in the *Amazon Web Services Key Management
|
8086
8153
|
# Service Developer Guide*.
|
8087
8154
|
#
|
@@ -8112,11 +8179,11 @@ module Aws::SageMaker
|
|
8112
8179
|
# @return [String]
|
8113
8180
|
#
|
8114
8181
|
# @!attribute [rw] direct_internet_access
|
8115
|
-
# Sets whether
|
8116
|
-
#
|
8117
|
-
#
|
8118
|
-
#
|
8119
|
-
#
|
8182
|
+
# Sets whether SageMaker provides internet access to the notebook
|
8183
|
+
# instance. If you set this to `Disabled` this notebook instance is
|
8184
|
+
# able to access resources only in your VPC, and is not be able to
|
8185
|
+
# connect to SageMaker training and endpoint services unless you
|
8186
|
+
# configure a NAT Gateway in your VPC.
|
8120
8187
|
#
|
8121
8188
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
8122
8189
|
# by Default][1]. You can set the value of this parameter to
|
@@ -8150,8 +8217,7 @@ module Aws::SageMaker
|
|
8150
8217
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
8151
8218
|
# Git repository. When you open a notebook instance, it opens in the
|
8152
8219
|
# directory that contains this repository. For more information, see
|
8153
|
-
# [Associating Git Repositories with
|
8154
|
-
# Instances][2].
|
8220
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
8155
8221
|
#
|
8156
8222
|
#
|
8157
8223
|
#
|
@@ -8166,7 +8232,7 @@ module Aws::SageMaker
|
|
8166
8232
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
8167
8233
|
# repository. These repositories are cloned at the same level as the
|
8168
8234
|
# default repository of your notebook instance. For more information,
|
8169
|
-
# see [Associating Git Repositories with
|
8235
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
8170
8236
|
# Instances][2].
|
8171
8237
|
#
|
8172
8238
|
#
|
@@ -8961,7 +9027,7 @@ module Aws::SageMaker
|
|
8961
9027
|
# Algorithm-specific parameters that influence the quality of the
|
8962
9028
|
# model. You set hyperparameters before you start the learning
|
8963
9029
|
# process. For a list of hyperparameters for each training algorithm
|
8964
|
-
# provided by
|
9030
|
+
# provided by SageMaker, see [Algorithms][1].
|
8965
9031
|
#
|
8966
9032
|
# You can specify a maximum of 100 hyperparameters. Each
|
8967
9033
|
# hyperparameter is a key-value pair. Each key and value is limited to
|
@@ -8975,8 +9041,8 @@ module Aws::SageMaker
|
|
8975
9041
|
# @!attribute [rw] algorithm_specification
|
8976
9042
|
# The registry path of the Docker image that contains the training
|
8977
9043
|
# algorithm and algorithm-specific metadata, including the input mode.
|
8978
|
-
# For more information about algorithms provided by
|
8979
|
-
#
|
9044
|
+
# For more information about algorithms provided by SageMaker, see
|
9045
|
+
# [Algorithms][1]. For information about providing your own
|
8980
9046
|
# algorithms, see [Using Your Own Algorithms with Amazon
|
8981
9047
|
# SageMaker][2].
|
8982
9048
|
#
|
@@ -8987,18 +9053,18 @@ module Aws::SageMaker
|
|
8987
9053
|
# @return [Types::AlgorithmSpecification]
|
8988
9054
|
#
|
8989
9055
|
# @!attribute [rw] role_arn
|
8990
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
8991
|
-
#
|
9056
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
9057
|
+
# assume to perform tasks on your behalf.
|
8992
9058
|
#
|
8993
|
-
# During model training,
|
8994
|
-
#
|
8995
|
-
#
|
8996
|
-
#
|
8997
|
-
#
|
8998
|
-
#
|
9059
|
+
# During model training, SageMaker needs your permission to read input
|
9060
|
+
# data from an S3 bucket, download a Docker image that contains
|
9061
|
+
# training code, write model artifacts to an S3 bucket, write logs to
|
9062
|
+
# Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
|
9063
|
+
# You grant permissions for all of these tasks to an IAM role. For
|
9064
|
+
# more information, see [SageMaker Roles][1].
|
8999
9065
|
#
|
9000
|
-
# <note markdown="1"> To be able to pass this role to
|
9001
|
-
#
|
9066
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
9067
|
+
# must have the `iam:PassRole` permission.
|
9002
9068
|
#
|
9003
9069
|
# </note>
|
9004
9070
|
#
|
@@ -9019,17 +9085,17 @@ module Aws::SageMaker
|
|
9019
9085
|
# MIME type, compression method, and whether the data is wrapped in
|
9020
9086
|
# RecordIO format.
|
9021
9087
|
#
|
9022
|
-
# Depending on the input mode that the algorithm supports,
|
9023
|
-
#
|
9024
|
-
#
|
9025
|
-
#
|
9026
|
-
#
|
9027
|
-
#
|
9088
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
9089
|
+
# either copies input data files from an S3 bucket to a local
|
9090
|
+
# directory in the Docker container, or makes it available as input
|
9091
|
+
# streams. For example, if you specify an EFS location, input data
|
9092
|
+
# files are available as input streams. They do not need to be
|
9093
|
+
# downloaded.
|
9028
9094
|
# @return [Array<Types::Channel>]
|
9029
9095
|
#
|
9030
9096
|
# @!attribute [rw] output_data_config
|
9031
9097
|
# Specifies the path to the S3 location where you want to store model
|
9032
|
-
# artifacts.
|
9098
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
9033
9099
|
# @return [Types::OutputDataConfig]
|
9034
9100
|
#
|
9035
9101
|
# @!attribute [rw] resource_config
|
@@ -9038,9 +9104,9 @@ module Aws::SageMaker
|
|
9038
9104
|
#
|
9039
9105
|
# ML storage volumes store model artifacts and incremental states.
|
9040
9106
|
# Training algorithms might also use ML storage volumes for scratch
|
9041
|
-
# space. If you want
|
9042
|
-
#
|
9043
|
-
#
|
9107
|
+
# space. If you want SageMaker to use the ML storage volume to store
|
9108
|
+
# the training data, choose `File` as the `TrainingInputMode` in the
|
9109
|
+
# algorithm specification. For distributed training algorithms,
|
9044
9110
|
# specify an instance count greater than 1.
|
9045
9111
|
# @return [Types::ResourceConfig]
|
9046
9112
|
#
|
@@ -9058,13 +9124,13 @@ module Aws::SageMaker
|
|
9058
9124
|
# @!attribute [rw] stopping_condition
|
9059
9125
|
# Specifies a limit to how long a model training job can run. It also
|
9060
9126
|
# specifies how long a managed Spot training job has to complete. When
|
9061
|
-
# the job reaches the time limit,
|
9062
|
-
#
|
9127
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
9128
|
+
# this API to cap model training costs.
|
9063
9129
|
#
|
9064
|
-
# To stop a job,
|
9065
|
-
#
|
9066
|
-
#
|
9067
|
-
#
|
9130
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
9131
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
9132
|
+
# this 120-second window to save the model artifacts, so the results
|
9133
|
+
# of training are not lost.
|
9068
9134
|
# @return [Types::StoppingCondition]
|
9069
9135
|
#
|
9070
9136
|
# @!attribute [rw] tags
|
@@ -9082,7 +9148,7 @@ module Aws::SageMaker
|
|
9082
9148
|
# Isolates the training container. No inbound or outbound network
|
9083
9149
|
# calls can be made, except for calls between peers within a training
|
9084
9150
|
# cluster for distributed training. If you enable network isolation
|
9085
|
-
# for training jobs that are configured to use a VPC,
|
9151
|
+
# for training jobs that are configured to use a VPC, SageMaker
|
9086
9152
|
# downloads and uploads customer data and model artifacts through the
|
9087
9153
|
# specified VPC, but the training container does not have network
|
9088
9154
|
# access.
|
@@ -9312,6 +9378,11 @@ module Aws::SageMaker
|
|
9312
9378
|
# records fit within the maximum payload size, we recommend using a
|
9313
9379
|
# slightly larger value. The default value is `6` MB.
|
9314
9380
|
#
|
9381
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
9382
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
9383
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
9384
|
+
# MB.
|
9385
|
+
#
|
9315
9386
|
# For cases where the payload might be arbitrarily large and is
|
9316
9387
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
9317
9388
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -10127,8 +10198,8 @@ module Aws::SageMaker
|
|
10127
10198
|
# A [JSONPath][1] expression used to select a portion of the input
|
10128
10199
|
# data to pass to the algorithm. Use the `InputFilter` parameter to
|
10129
10200
|
# exclude fields, such as an ID column, from the input. If you want
|
10130
|
-
#
|
10131
|
-
#
|
10201
|
+
# SageMaker to pass the entire input dataset to the algorithm, accept
|
10202
|
+
# the default value `$`.
|
10132
10203
|
#
|
10133
10204
|
# Examples: `"$"`, `"$[1:]"`, `"$.features"`
|
10134
10205
|
#
|
@@ -10140,10 +10211,9 @@ module Aws::SageMaker
|
|
10140
10211
|
# @!attribute [rw] output_filter
|
10141
10212
|
# A [JSONPath][1] expression used to select a portion of the joined
|
10142
10213
|
# dataset to save in the output file for a batch transform job. If you
|
10143
|
-
# want
|
10144
|
-
#
|
10145
|
-
#
|
10146
|
-
# get an error.
|
10214
|
+
# want SageMaker to store the entire input dataset in the output file,
|
10215
|
+
# leave the default value, `$`. If you specify indexes that aren't
|
10216
|
+
# within the dimension size of the joined dataset, you get an error.
|
10147
10217
|
#
|
10148
10218
|
# Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
|
10149
10219
|
#
|
@@ -11272,7 +11342,7 @@ module Aws::SageMaker
|
|
11272
11342
|
# }
|
11273
11343
|
#
|
11274
11344
|
# @!attribute [rw] notebook_instance_name
|
11275
|
-
# The name of the
|
11345
|
+
# The name of the SageMaker notebook instance to delete.
|
11276
11346
|
# @return [String]
|
11277
11347
|
#
|
11278
11348
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
|
@@ -11813,7 +11883,7 @@ module Aws::SageMaker
|
|
11813
11883
|
#
|
11814
11884
|
# @!attribute [rw] validation_specification
|
11815
11885
|
# Details about configurations for one or more training jobs that
|
11816
|
-
#
|
11886
|
+
# SageMaker runs to test the algorithm.
|
11817
11887
|
# @return [Types::AlgorithmValidationSpecification]
|
11818
11888
|
#
|
11819
11889
|
# @!attribute [rw] algorithm_status
|
@@ -13024,7 +13094,7 @@ module Aws::SageMaker
|
|
13024
13094
|
end
|
13025
13095
|
|
13026
13096
|
# @!attribute [rw] endpoint_config_name
|
13027
|
-
# Name of the
|
13097
|
+
# Name of the SageMaker endpoint configuration.
|
13028
13098
|
# @return [String]
|
13029
13099
|
#
|
13030
13100
|
# @!attribute [rw] endpoint_config_arn
|
@@ -13966,8 +14036,8 @@ module Aws::SageMaker
|
|
13966
14036
|
# @return [Types::LabelingJobOutputConfig]
|
13967
14037
|
#
|
13968
14038
|
# @!attribute [rw] role_arn
|
13969
|
-
# The Amazon Resource Name (ARN) that
|
13970
|
-
#
|
14039
|
+
# The Amazon Resource Name (ARN) that SageMaker assumes to perform
|
14040
|
+
# tasks on your behalf during data labeling.
|
13971
14041
|
# @return [String]
|
13972
14042
|
#
|
13973
14043
|
# @!attribute [rw] label_category_config_s3_uri
|
@@ -14333,7 +14403,7 @@ module Aws::SageMaker
|
|
14333
14403
|
end
|
14334
14404
|
|
14335
14405
|
# @!attribute [rw] model_name
|
14336
|
-
# Name of the
|
14406
|
+
# Name of the SageMaker model.
|
14337
14407
|
# @return [String]
|
14338
14408
|
#
|
14339
14409
|
# @!attribute [rw] primary_container
|
@@ -14403,7 +14473,7 @@ module Aws::SageMaker
|
|
14403
14473
|
# }
|
14404
14474
|
#
|
14405
14475
|
# @!attribute [rw] model_package_group_name
|
14406
|
-
# The name of
|
14476
|
+
# The name of gthe model group to describe.
|
14407
14477
|
# @return [String]
|
14408
14478
|
#
|
14409
14479
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
|
@@ -14547,7 +14617,7 @@ module Aws::SageMaker
|
|
14547
14617
|
# @return [Types::ModelMetrics]
|
14548
14618
|
#
|
14549
14619
|
# @!attribute [rw] last_modified_time
|
14550
|
-
# The last time the model package was modified.
|
14620
|
+
# The last time that the model package was modified.
|
14551
14621
|
# @return [Time]
|
14552
14622
|
#
|
14553
14623
|
# @!attribute [rw] last_modified_by
|
@@ -14891,7 +14961,7 @@ module Aws::SageMaker
|
|
14891
14961
|
# @return [String]
|
14892
14962
|
#
|
14893
14963
|
# @!attribute [rw] notebook_instance_name
|
14894
|
-
# The name of the
|
14964
|
+
# The name of the SageMaker notebook instance.
|
14895
14965
|
# @return [String]
|
14896
14966
|
#
|
14897
14967
|
# @!attribute [rw] notebook_instance_status
|
@@ -14925,14 +14995,13 @@ module Aws::SageMaker
|
|
14925
14995
|
# @return [String]
|
14926
14996
|
#
|
14927
14997
|
# @!attribute [rw] kms_key_id
|
14928
|
-
# The Amazon Web Services KMS key ID
|
14929
|
-
#
|
14930
|
-
# instance.
|
14998
|
+
# The Amazon Web Services KMS key ID SageMaker uses to encrypt data
|
14999
|
+
# when storing it on the ML storage volume attached to the instance.
|
14931
15000
|
# @return [String]
|
14932
15001
|
#
|
14933
15002
|
# @!attribute [rw] network_interface_id
|
14934
|
-
# The network interface IDs that
|
14935
|
-
#
|
15003
|
+
# The network interface IDs that SageMaker created at the time of
|
15004
|
+
# creating the instance.
|
14936
15005
|
# @return [String]
|
14937
15006
|
#
|
14938
15007
|
# @!attribute [rw] last_modified_time
|
@@ -14957,10 +15026,10 @@ module Aws::SageMaker
|
|
14957
15026
|
# @return [String]
|
14958
15027
|
#
|
14959
15028
|
# @!attribute [rw] direct_internet_access
|
14960
|
-
# Describes whether
|
14961
|
-
#
|
14962
|
-
#
|
14963
|
-
#
|
15029
|
+
# Describes whether SageMaker provides internet access to the notebook
|
15030
|
+
# instance. If this value is set to *Disabled*, the notebook instance
|
15031
|
+
# does not have internet access, and cannot connect to SageMaker
|
15032
|
+
# training and endpoint services.
|
14964
15033
|
#
|
14965
15034
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
14966
15035
|
# by Default][1].
|
@@ -14993,8 +15062,7 @@ module Aws::SageMaker
|
|
14993
15062
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
14994
15063
|
# Git repository. When you open a notebook instance, it opens in the
|
14995
15064
|
# directory that contains this repository. For more information, see
|
14996
|
-
# [Associating Git Repositories with
|
14997
|
-
# Instances][2].
|
15065
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
14998
15066
|
#
|
14999
15067
|
#
|
15000
15068
|
#
|
@@ -15009,7 +15077,7 @@ module Aws::SageMaker
|
|
15009
15077
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
15010
15078
|
# repository. These repositories are cloned at the same level as the
|
15011
15079
|
# default repository of your notebook instance. For more information,
|
15012
|
-
# see [Associating Git Repositories with
|
15080
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
15013
15081
|
# Instances][2].
|
15014
15082
|
#
|
15015
15083
|
#
|
@@ -15631,7 +15699,7 @@ module Aws::SageMaker
|
|
15631
15699
|
# @return [String]
|
15632
15700
|
#
|
15633
15701
|
# @!attribute [rw] labeling_job_arn
|
15634
|
-
# The Amazon Resource Name (ARN) of the
|
15702
|
+
# The Amazon Resource Name (ARN) of the SageMaker Ground Truth
|
15635
15703
|
# labeling job that created the transform or training job.
|
15636
15704
|
# @return [String]
|
15637
15705
|
#
|
@@ -15647,7 +15715,7 @@ module Aws::SageMaker
|
|
15647
15715
|
# @!attribute [rw] training_job_status
|
15648
15716
|
# The status of the training job.
|
15649
15717
|
#
|
15650
|
-
#
|
15718
|
+
# SageMaker provides the following training job statuses:
|
15651
15719
|
#
|
15652
15720
|
# * `InProgress` - The training is in progress.
|
15653
15721
|
#
|
@@ -15669,8 +15737,8 @@ module Aws::SageMaker
|
|
15669
15737
|
# For detailed information on the secondary status of the training
|
15670
15738
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
15671
15739
|
#
|
15672
|
-
#
|
15673
|
-
#
|
15740
|
+
# SageMaker provides primary statuses and secondary statuses that
|
15741
|
+
# apply to each of them:
|
15674
15742
|
#
|
15675
15743
|
# InProgress
|
15676
15744
|
# : * `Starting` - Starting the training job.
|
@@ -15749,7 +15817,7 @@ module Aws::SageMaker
|
|
15749
15817
|
#
|
15750
15818
|
# @!attribute [rw] output_data_config
|
15751
15819
|
# The S3 path where model artifacts that you configured when creating
|
15752
|
-
# the job are stored.
|
15820
|
+
# the job are stored. SageMaker creates subfolders for model
|
15753
15821
|
# artifacts.
|
15754
15822
|
# @return [Types::OutputDataConfig]
|
15755
15823
|
#
|
@@ -15771,13 +15839,13 @@ module Aws::SageMaker
|
|
15771
15839
|
# @!attribute [rw] stopping_condition
|
15772
15840
|
# Specifies a limit to how long a model training job can run. It also
|
15773
15841
|
# specifies how long a managed Spot training job has to complete. When
|
15774
|
-
# the job reaches the time limit,
|
15775
|
-
#
|
15842
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
15843
|
+
# this API to cap model training costs.
|
15776
15844
|
#
|
15777
|
-
# To stop a job,
|
15778
|
-
#
|
15779
|
-
#
|
15780
|
-
#
|
15845
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
15846
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
15847
|
+
# this 120-second window to save the model artifacts, so the results
|
15848
|
+
# of training are not lost.
|
15781
15849
|
# @return [Types::StoppingCondition]
|
15782
15850
|
#
|
15783
15851
|
# @!attribute [rw] creation_time
|
@@ -15798,8 +15866,7 @@ module Aws::SageMaker
|
|
15798
15866
|
# You are billed for the time interval between the value of
|
15799
15867
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
15800
15868
|
# jobs, this is the time after model artifacts are uploaded. For
|
15801
|
-
# failed jobs, this is the time when
|
15802
|
-
# failure.
|
15869
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
15803
15870
|
# @return [Time]
|
15804
15871
|
#
|
15805
15872
|
# @!attribute [rw] last_modified_time
|
@@ -15822,10 +15889,9 @@ module Aws::SageMaker
|
|
15822
15889
|
# If you want to allow inbound or outbound network calls, except for
|
15823
15890
|
# calls between peers within a training cluster for distributed
|
15824
15891
|
# training, choose `True`. If you enable network isolation for
|
15825
|
-
# training jobs that are configured to use a VPC,
|
15826
|
-
#
|
15827
|
-
#
|
15828
|
-
# access.
|
15892
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
15893
|
+
# and uploads customer data and model artifacts through the specified
|
15894
|
+
# VPC, but the training container does not have network access.
|
15829
15895
|
# @return [Boolean]
|
15830
15896
|
#
|
15831
15897
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -15857,7 +15923,7 @@ module Aws::SageMaker
|
|
15857
15923
|
#
|
15858
15924
|
# Multiply `BillableTimeInSeconds` by the number of instances
|
15859
15925
|
# (`InstanceCount`) in your training cluster to get the total compute
|
15860
|
-
# time SageMaker
|
15926
|
+
# time SageMaker bills you if you run distributed training. The
|
15861
15927
|
# formula is as follows: `BillableTimeInSeconds * InstanceCount` .
|
15862
15928
|
#
|
15863
15929
|
# You can calculate the savings from using managed spot training using
|
@@ -20065,10 +20131,10 @@ module Aws::SageMaker
|
|
20065
20131
|
# The registry path of the Docker image that contains the training
|
20066
20132
|
# algorithm. For information about Docker registry paths for built-in
|
20067
20133
|
# algorithms, see [Algorithms Provided by Amazon SageMaker: Common
|
20068
|
-
# Parameters][1].
|
20069
|
-
#
|
20070
|
-
#
|
20071
|
-
#
|
20134
|
+
# Parameters][1]. SageMaker supports both `registry/repository[:tag]`
|
20135
|
+
# and `registry/repository[@digest]` image path formats. For more
|
20136
|
+
# information, see [Using Your Own Algorithms with Amazon
|
20137
|
+
# SageMaker][2].
|
20072
20138
|
#
|
20073
20139
|
#
|
20074
20140
|
#
|
@@ -20393,27 +20459,26 @@ module Aws::SageMaker
|
|
20393
20459
|
#
|
20394
20460
|
# Storage volumes store model artifacts and incremental states.
|
20395
20461
|
# Training algorithms might also use storage volumes for scratch
|
20396
|
-
# space. If you want
|
20397
|
-
#
|
20398
|
-
#
|
20462
|
+
# space. If you want SageMaker to use the storage volume to store the
|
20463
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
20464
|
+
# algorithm specification. For distributed training algorithms,
|
20399
20465
|
# specify an instance count greater than 1.
|
20400
20466
|
# @return [Types::ResourceConfig]
|
20401
20467
|
#
|
20402
20468
|
# @!attribute [rw] stopping_condition
|
20403
20469
|
# Specifies a limit to how long a model hyperparameter training job
|
20404
20470
|
# can run. It also specifies how long a managed spot training job has
|
20405
|
-
# to complete. When the job reaches the time limit,
|
20406
|
-
#
|
20471
|
+
# to complete. When the job reaches the time limit, SageMaker ends the
|
20472
|
+
# training job. Use this API to cap model training costs.
|
20407
20473
|
# @return [Types::StoppingCondition]
|
20408
20474
|
#
|
20409
20475
|
# @!attribute [rw] enable_network_isolation
|
20410
20476
|
# Isolates the training container. No inbound or outbound network
|
20411
20477
|
# calls can be made, except for calls between peers within a training
|
20412
20478
|
# cluster for distributed training. If network isolation is used for
|
20413
|
-
# training jobs that are configured to use a VPC,
|
20414
|
-
#
|
20415
|
-
#
|
20416
|
-
# access.
|
20479
|
+
# training jobs that are configured to use a VPC, SageMaker downloads
|
20480
|
+
# and uploads customer data and model artifacts through the specified
|
20481
|
+
# VPC, but the training container does not have network access.
|
20417
20482
|
# @return [Boolean]
|
20418
20483
|
#
|
20419
20484
|
# @!attribute [rw] enable_inter_container_traffic_encryption
|
@@ -20463,7 +20528,7 @@ module Aws::SageMaker
|
|
20463
20528
|
include Aws::Structure
|
20464
20529
|
end
|
20465
20530
|
|
20466
|
-
#
|
20531
|
+
# The container for the summary information about a training job.
|
20467
20532
|
#
|
20468
20533
|
# @!attribute [rw] training_job_definition_name
|
20469
20534
|
# The training job definition name.
|
@@ -20494,8 +20559,7 @@ module Aws::SageMaker
|
|
20494
20559
|
# You are billed for the time interval between the value of
|
20495
20560
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
20496
20561
|
# jobs, this is the time after model artifacts are uploaded. For
|
20497
|
-
# failed jobs, this is the time when
|
20498
|
-
# failure.
|
20562
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
20499
20563
|
# @return [Time]
|
20500
20564
|
#
|
20501
20565
|
# @!attribute [rw] training_job_status
|
@@ -20644,9 +20708,9 @@ module Aws::SageMaker
|
|
20644
20708
|
#
|
20645
20709
|
# AUTO
|
20646
20710
|
#
|
20647
|
-
# :
|
20648
|
-
#
|
20649
|
-
#
|
20711
|
+
# : SageMaker stops training jobs launched by the hyperparameter
|
20712
|
+
# tuning job when they are unlikely to perform better than
|
20713
|
+
# previously completed training jobs. For more information, see
|
20650
20714
|
# [Stop Training Jobs Early][1].
|
20651
20715
|
#
|
20652
20716
|
#
|
@@ -21447,8 +21511,8 @@ module Aws::SageMaker
|
|
21447
21511
|
#
|
21448
21512
|
# Auto
|
21449
21513
|
#
|
21450
|
-
# :
|
21451
|
-
#
|
21514
|
+
# : SageMaker hyperparameter tuning chooses the best scale for the
|
21515
|
+
# hyperparameter.
|
21452
21516
|
#
|
21453
21517
|
# Linear
|
21454
21518
|
#
|
@@ -21523,12 +21587,20 @@ module Aws::SageMaker
|
|
21523
21587
|
#
|
21524
21588
|
# @!attribute [rw] default_resource_spec
|
21525
21589
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21526
|
-
# default SageMaker image used by the JupyterServer app.
|
21590
|
+
# default SageMaker image used by the JupyterServer app. If you use
|
21591
|
+
# the `LifecycleConfigArns` parameter, then this parameter is also
|
21592
|
+
# required.
|
21527
21593
|
# @return [Types::ResourceSpec]
|
21528
21594
|
#
|
21529
21595
|
# @!attribute [rw] lifecycle_config_arns
|
21530
21596
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21531
|
-
# attached to the JupyterServerApp.
|
21597
|
+
# attached to the JupyterServerApp. If you use this parameter, the
|
21598
|
+
# `DefaultResourceSpec` parameter is also required.
|
21599
|
+
#
|
21600
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21601
|
+
# an empty list.
|
21602
|
+
#
|
21603
|
+
# </note>
|
21532
21604
|
# @return [Array<String>]
|
21533
21605
|
#
|
21534
21606
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
|
@@ -21565,6 +21637,14 @@ module Aws::SageMaker
|
|
21565
21637
|
# @!attribute [rw] default_resource_spec
|
21566
21638
|
# The default instance type and the Amazon Resource Name (ARN) of the
|
21567
21639
|
# default SageMaker image used by the KernelGateway app.
|
21640
|
+
#
|
21641
|
+
# <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
|
21642
|
+
# type value set here. The default instance type set here is used when
|
21643
|
+
# Apps are created using the Amazon Web Services Command Line
|
21644
|
+
# Interface or Amazon Web Services CloudFormation and the instance
|
21645
|
+
# type parameter value is not passed.
|
21646
|
+
#
|
21647
|
+
# </note>
|
21568
21648
|
# @return [Types::ResourceSpec]
|
21569
21649
|
#
|
21570
21650
|
# @!attribute [rw] custom_images
|
@@ -21575,6 +21655,11 @@ module Aws::SageMaker
|
|
21575
21655
|
# @!attribute [rw] lifecycle_config_arns
|
21576
21656
|
# The Amazon Resource Name (ARN) of the Lifecycle Configurations
|
21577
21657
|
# attached to the the user profile or domain.
|
21658
|
+
#
|
21659
|
+
# <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
|
21660
|
+
# an empty list.
|
21661
|
+
#
|
21662
|
+
# </note>
|
21578
21663
|
# @return [Array<String>]
|
21579
21664
|
#
|
21580
21665
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
|
@@ -21782,8 +21867,8 @@ module Aws::SageMaker
|
|
21782
21867
|
#
|
21783
21868
|
# @!attribute [rw] content_classifiers
|
21784
21869
|
# Declares that your content is free of personally identifiable
|
21785
|
-
# information or adult content.
|
21786
|
-
#
|
21870
|
+
# information or adult content. SageMaker may restrict the Amazon
|
21871
|
+
# Mechanical Turk workers that can view your task based on this
|
21787
21872
|
# information.
|
21788
21873
|
# @return [Array<String>]
|
21789
21874
|
#
|
@@ -21927,8 +22012,8 @@ module Aws::SageMaker
|
|
21927
22012
|
# @return [String]
|
21928
22013
|
#
|
21929
22014
|
# @!attribute [rw] final_active_learning_model_arn
|
21930
|
-
# The Amazon Resource Name (ARN) for the most recent
|
21931
|
-
#
|
22015
|
+
# The Amazon Resource Name (ARN) for the most recent SageMaker model
|
22016
|
+
# trained as part of automated data labeling.
|
21932
22017
|
# @return [String]
|
21933
22018
|
#
|
21934
22019
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
|
@@ -22438,8 +22523,8 @@ module Aws::SageMaker
|
|
22438
22523
|
# @return [Array<Types::AlgorithmSummary>]
|
22439
22524
|
#
|
22440
22525
|
# @!attribute [rw] next_token
|
22441
|
-
# If the response is truncated,
|
22442
|
-
#
|
22526
|
+
# If the response is truncated, SageMaker returns this token. To
|
22527
|
+
# retrieve the next set of algorithms, use it in the subsequent
|
22443
22528
|
# request.
|
22444
22529
|
# @return [String]
|
22445
22530
|
#
|
@@ -23713,8 +23798,8 @@ module Aws::SageMaker
|
|
23713
23798
|
# @return [Array<Types::EndpointConfigSummary>]
|
23714
23799
|
#
|
23715
23800
|
# @!attribute [rw] next_token
|
23716
|
-
# If the response is truncated,
|
23717
|
-
#
|
23801
|
+
# If the response is truncated, SageMaker returns this token. To
|
23802
|
+
# retrieve the next set of endpoint configurations, use it in the
|
23718
23803
|
# subsequent request
|
23719
23804
|
# @return [String]
|
23720
23805
|
#
|
@@ -23813,8 +23898,8 @@ module Aws::SageMaker
|
|
23813
23898
|
# @return [Array<Types::EndpointSummary>]
|
23814
23899
|
#
|
23815
23900
|
# @!attribute [rw] next_token
|
23816
|
-
# If the response is truncated,
|
23817
|
-
#
|
23901
|
+
# If the response is truncated, SageMaker returns this token. To
|
23902
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
23818
23903
|
# request.
|
23819
23904
|
# @return [String]
|
23820
23905
|
#
|
@@ -24579,8 +24664,8 @@ module Aws::SageMaker
|
|
24579
24664
|
# @return [Array<Types::LabelingJobForWorkteamSummary>]
|
24580
24665
|
#
|
24581
24666
|
# @!attribute [rw] next_token
|
24582
|
-
# If the response is truncated,
|
24583
|
-
#
|
24667
|
+
# If the response is truncated, SageMaker returns this token. To
|
24668
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24584
24669
|
# request.
|
24585
24670
|
# @return [String]
|
24586
24671
|
#
|
@@ -24680,8 +24765,8 @@ module Aws::SageMaker
|
|
24680
24765
|
# @return [Array<Types::LabelingJobSummary>]
|
24681
24766
|
#
|
24682
24767
|
# @!attribute [rw] next_token
|
24683
|
-
# If the response is truncated,
|
24684
|
-
#
|
24768
|
+
# If the response is truncated, SageMaker returns this token. To
|
24769
|
+
# retrieve the next set of labeling jobs, use it in the subsequent
|
24685
24770
|
# request.
|
24686
24771
|
# @return [String]
|
24687
24772
|
#
|
@@ -25178,8 +25263,8 @@ module Aws::SageMaker
|
|
25178
25263
|
# @return [Array<Types::ModelPackageSummary>]
|
25179
25264
|
#
|
25180
25265
|
# @!attribute [rw] next_token
|
25181
|
-
# If the response is truncated,
|
25182
|
-
#
|
25266
|
+
# If the response is truncated, SageMaker returns this token. To
|
25267
|
+
# retrieve the next set of model packages, use it in the subsequent
|
25183
25268
|
# request.
|
25184
25269
|
# @return [String]
|
25185
25270
|
#
|
@@ -25346,9 +25431,8 @@ module Aws::SageMaker
|
|
25346
25431
|
# @return [Array<Types::ModelSummary>]
|
25347
25432
|
#
|
25348
25433
|
# @!attribute [rw] next_token
|
25349
|
-
# If the response is truncated,
|
25350
|
-
#
|
25351
|
-
# request.
|
25434
|
+
# If the response is truncated, SageMaker returns this token. To
|
25435
|
+
# retrieve the next set of models, use it in the subsequent request.
|
25352
25436
|
# @return [String]
|
25353
25437
|
#
|
25354
25438
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
|
@@ -25687,8 +25771,8 @@ module Aws::SageMaker
|
|
25687
25771
|
end
|
25688
25772
|
|
25689
25773
|
# @!attribute [rw] next_token
|
25690
|
-
# If the response is truncated,
|
25691
|
-
#
|
25774
|
+
# If the response is truncated, SageMaker returns this token. To get
|
25775
|
+
# the next set of lifecycle configurations, use it in the next
|
25692
25776
|
# request.
|
25693
25777
|
# @return [String]
|
25694
25778
|
#
|
@@ -25821,8 +25905,8 @@ module Aws::SageMaker
|
|
25821
25905
|
|
25822
25906
|
# @!attribute [rw] next_token
|
25823
25907
|
# If the response to the previous `ListNotebookInstances` request was
|
25824
|
-
# truncated,
|
25825
|
-
#
|
25908
|
+
# truncated, SageMaker returns this token. To retrieve the next set of
|
25909
|
+
# notebook instances, use the token in the next request.
|
25826
25910
|
# @return [String]
|
25827
25911
|
#
|
25828
25912
|
# @!attribute [rw] notebook_instances
|
@@ -26470,8 +26554,8 @@ module Aws::SageMaker
|
|
26470
26554
|
#
|
26471
26555
|
# @!attribute [rw] next_token
|
26472
26556
|
# If the response to the previous `ListTags` request is truncated,
|
26473
|
-
#
|
26474
|
-
#
|
26557
|
+
# SageMaker returns this token. To retrieve the next set of tags, use
|
26558
|
+
# it in the subsequent request.
|
26475
26559
|
# @return [String]
|
26476
26560
|
#
|
26477
26561
|
# @!attribute [rw] max_results
|
@@ -26493,7 +26577,7 @@ module Aws::SageMaker
|
|
26493
26577
|
# @return [Array<Types::Tag>]
|
26494
26578
|
#
|
26495
26579
|
# @!attribute [rw] next_token
|
26496
|
-
# If response is truncated,
|
26580
|
+
# If response is truncated, SageMaker includes a token in the
|
26497
26581
|
# response. You can use this token in your subsequent request to fetch
|
26498
26582
|
# next set of tokens.
|
26499
26583
|
# @return [String]
|
@@ -26672,8 +26756,8 @@ module Aws::SageMaker
|
|
26672
26756
|
# @return [Array<Types::TrainingJobSummary>]
|
26673
26757
|
#
|
26674
26758
|
# @!attribute [rw] next_token
|
26675
|
-
# If the response is truncated,
|
26676
|
-
#
|
26759
|
+
# If the response is truncated, SageMaker returns this token. To
|
26760
|
+
# retrieve the next set of training jobs, use it in the subsequent
|
26677
26761
|
# request.
|
26678
26762
|
# @return [String]
|
26679
26763
|
#
|
@@ -27290,9 +27374,9 @@ module Aws::SageMaker
|
|
27290
27374
|
end
|
27291
27375
|
|
27292
27376
|
# Specifies a metric that the training algorithm writes to `stderr` or
|
27293
|
-
# `stdout`.
|
27294
|
-
#
|
27295
|
-
#
|
27377
|
+
# `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
|
27378
|
+
# You specify one metric that a hyperparameter tuning job uses as its
|
27379
|
+
# objective metric to choose the best training job.
|
27296
27380
|
#
|
27297
27381
|
# @note When making an API call, you may pass MetricDefinition
|
27298
27382
|
# data as a hash:
|
@@ -27496,11 +27580,13 @@ module Aws::SageMaker
|
|
27496
27580
|
# }
|
27497
27581
|
#
|
27498
27582
|
# @!attribute [rw] invocations_timeout_in_seconds
|
27499
|
-
# The timeout value in seconds for an invocation request.
|
27583
|
+
# The timeout value in seconds for an invocation request. The default
|
27584
|
+
# value is 600.
|
27500
27585
|
# @return [Integer]
|
27501
27586
|
#
|
27502
27587
|
# @!attribute [rw] invocations_max_retries
|
27503
27588
|
# The maximum number of retries when invocation requests are failing.
|
27589
|
+
# The default value is 3.
|
27504
27590
|
# @return [Integer]
|
27505
27591
|
#
|
27506
27592
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
|
@@ -28004,8 +28090,8 @@ module Aws::SageMaker
|
|
28004
28090
|
# @return [Types::SourceAlgorithmSpecification]
|
28005
28091
|
#
|
28006
28092
|
# @!attribute [rw] validation_specification
|
28007
|
-
# Specifies batch transform jobs that
|
28008
|
-
#
|
28093
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28094
|
+
# model package.
|
28009
28095
|
# @return [Types::ModelPackageValidationSpecification]
|
28010
28096
|
#
|
28011
28097
|
# @!attribute [rw] model_package_status
|
@@ -28184,11 +28270,11 @@ module Aws::SageMaker
|
|
28184
28270
|
# code is stored.
|
28185
28271
|
#
|
28186
28272
|
# If you are using your own custom algorithm instead of an algorithm
|
28187
|
-
# provided by
|
28188
|
-
#
|
28189
|
-
#
|
28190
|
-
#
|
28191
|
-
#
|
28273
|
+
# provided by SageMaker, the inference code must meet SageMaker
|
28274
|
+
# requirements. SageMaker supports both `registry/repository[:tag]`
|
28275
|
+
# and `registry/repository[@digest]` image path formats. For more
|
28276
|
+
# information, see [Using Your Own Algorithms with Amazon
|
28277
|
+
# SageMaker][1].
|
28192
28278
|
#
|
28193
28279
|
#
|
28194
28280
|
#
|
@@ -28520,8 +28606,8 @@ module Aws::SageMaker
|
|
28520
28606
|
include Aws::Structure
|
28521
28607
|
end
|
28522
28608
|
|
28523
|
-
# Specifies batch transform jobs that
|
28524
|
-
#
|
28609
|
+
# Specifies batch transform jobs that SageMaker runs to validate your
|
28610
|
+
# model package.
|
28525
28611
|
#
|
28526
28612
|
# @note When making an API call, you may pass ModelPackageValidationSpecification
|
28527
28613
|
# data as a hash:
|
@@ -28571,8 +28657,8 @@ module Aws::SageMaker
|
|
28571
28657
|
#
|
28572
28658
|
# @!attribute [rw] validation_profiles
|
28573
28659
|
# An array of `ModelPackageValidationProfile` objects, each of which
|
28574
|
-
# specifies a batch transform job that
|
28575
|
-
#
|
28660
|
+
# specifies a batch transform job that SageMaker runs to validate your
|
28661
|
+
# model package.
|
28576
28662
|
# @return [Array<Types::ModelPackageValidationProfile>]
|
28577
28663
|
#
|
28578
28664
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
|
@@ -29945,8 +30031,7 @@ module Aws::SageMaker
|
|
29945
30031
|
include Aws::Structure
|
29946
30032
|
end
|
29947
30033
|
|
29948
|
-
# Provides summary information for an
|
29949
|
-
# instance.
|
30034
|
+
# Provides summary information for an SageMaker notebook instance.
|
29950
30035
|
#
|
29951
30036
|
# @!attribute [rw] notebook_instance_name
|
29952
30037
|
# The name of the notebook instance that you want a summary for.
|
@@ -29961,7 +30046,7 @@ module Aws::SageMaker
|
|
29961
30046
|
# @return [String]
|
29962
30047
|
#
|
29963
30048
|
# @!attribute [rw] url
|
29964
|
-
# The URL that you use to connect to the Jupyter
|
30049
|
+
# The URL that you use to connect to the Jupyter notebook running in
|
29965
30050
|
# your notebook instance.
|
29966
30051
|
# @return [String]
|
29967
30052
|
#
|
@@ -29997,8 +30082,7 @@ module Aws::SageMaker
|
|
29997
30082
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
29998
30083
|
# Git repository. When you open a notebook instance, it opens in the
|
29999
30084
|
# directory that contains this repository. For more information, see
|
30000
|
-
# [Associating Git Repositories with
|
30001
|
-
# Instances][2].
|
30085
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
30002
30086
|
#
|
30003
30087
|
#
|
30004
30088
|
#
|
@@ -30013,7 +30097,7 @@ module Aws::SageMaker
|
|
30013
30097
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
30014
30098
|
# repository. These repositories are cloned at the same level as the
|
30015
30099
|
# default repository of your notebook instance. For more information,
|
30016
|
-
# see [Associating Git Repositories with
|
30100
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
30017
30101
|
# Instances][2].
|
30018
30102
|
#
|
30019
30103
|
#
|
@@ -30639,9 +30723,9 @@ module Aws::SageMaker
|
|
30639
30723
|
#
|
30640
30724
|
# @!attribute [rw] kms_key_id
|
30641
30725
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
30642
|
-
# KMS) key that
|
30643
|
-
#
|
30644
|
-
#
|
30726
|
+
# KMS) key that SageMaker uses to encrypt the model artifacts at rest
|
30727
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
30728
|
+
# the following formats:
|
30645
30729
|
#
|
30646
30730
|
# * // KMS Key ID
|
30647
30731
|
#
|
@@ -30659,14 +30743,13 @@ module Aws::SageMaker
|
|
30659
30743
|
#
|
30660
30744
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
30661
30745
|
#
|
30662
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
30663
|
-
#
|
30664
|
-
#
|
30665
|
-
#
|
30666
|
-
#
|
30667
|
-
#
|
30668
|
-
#
|
30669
|
-
# encryption, set the condition key of
|
30746
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
30747
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
30748
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
30749
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
30750
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
30751
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
30752
|
+
# objects with server-side encryption, set the condition key of
|
30670
30753
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
30671
30754
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
30672
30755
|
# Simple Storage Service Developer Guide.*
|
@@ -30684,8 +30767,8 @@ module Aws::SageMaker
|
|
30684
30767
|
# @return [String]
|
30685
30768
|
#
|
30686
30769
|
# @!attribute [rw] s3_output_path
|
30687
|
-
# Identifies the S3 path where you want
|
30688
|
-
#
|
30770
|
+
# Identifies the S3 path where you want SageMaker to store the model
|
30771
|
+
# artifacts. For example, `s3://bucket-name/key-name-prefix`.
|
30689
30772
|
# @return [String]
|
30690
30773
|
#
|
30691
30774
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
|
@@ -31014,23 +31097,11 @@ module Aws::SageMaker
|
|
31014
31097
|
#
|
31015
31098
|
# @!attribute [rw] current_serverless_config
|
31016
31099
|
# The serverless configuration for the endpoint.
|
31017
|
-
#
|
31018
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31019
|
-
# is subject to change. We do not recommend using this feature in
|
31020
|
-
# production environments.
|
31021
|
-
#
|
31022
|
-
# </note>
|
31023
31100
|
# @return [Types::ProductionVariantServerlessConfig]
|
31024
31101
|
#
|
31025
31102
|
# @!attribute [rw] desired_serverless_config
|
31026
31103
|
# The serverless configuration requested for this deployment, as
|
31027
31104
|
# specified in the endpoint configuration for the endpoint.
|
31028
|
-
#
|
31029
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
31030
|
-
# is subject to change. We do not recommend using this feature in
|
31031
|
-
# production environments.
|
31032
|
-
#
|
31033
|
-
# </note>
|
31034
31105
|
# @return [Types::ProductionVariantServerlessConfig]
|
31035
31106
|
#
|
31036
31107
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
|
@@ -32232,8 +32303,8 @@ module Aws::SageMaker
|
|
32232
32303
|
|
32233
32304
|
# Identifies a model that you want to host and the resources chosen to
|
32234
32305
|
# deploy for hosting it. If you are deploying multiple models, tell
|
32235
|
-
#
|
32236
|
-
#
|
32306
|
+
# SageMaker how to distribute traffic among the models by specifying
|
32307
|
+
# variant weights.
|
32237
32308
|
#
|
32238
32309
|
# @note When making an API call, you may pass ProductionVariant
|
32239
32310
|
# data as a hash:
|
@@ -32300,12 +32371,6 @@ module Aws::SageMaker
|
|
32300
32371
|
# The serverless configuration for an endpoint. Specifies a serverless
|
32301
32372
|
# endpoint configuration instead of an instance-based endpoint
|
32302
32373
|
# configuration.
|
32303
|
-
#
|
32304
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32305
|
-
# is subject to change. We do not recommend using this feature in
|
32306
|
-
# production environments.
|
32307
|
-
#
|
32308
|
-
# </note>
|
32309
32374
|
# @return [Types::ProductionVariantServerlessConfig]
|
32310
32375
|
#
|
32311
32376
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
|
@@ -32340,9 +32405,9 @@ module Aws::SageMaker
|
|
32340
32405
|
#
|
32341
32406
|
# @!attribute [rw] kms_key_id
|
32342
32407
|
# The Amazon Web Services Key Management Service (Amazon Web Services
|
32343
|
-
# KMS) key that
|
32344
|
-
#
|
32345
|
-
#
|
32408
|
+
# KMS) key that SageMaker uses to encrypt the core dump data at rest
|
32409
|
+
# using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
|
32410
|
+
# the following formats:
|
32346
32411
|
#
|
32347
32412
|
# * // KMS Key ID
|
32348
32413
|
#
|
@@ -32360,14 +32425,13 @@ module Aws::SageMaker
|
|
32360
32425
|
#
|
32361
32426
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
32362
32427
|
#
|
32363
|
-
# If you use a KMS key ID or an alias of your KMS key, the
|
32364
|
-
#
|
32365
|
-
#
|
32366
|
-
#
|
32367
|
-
#
|
32368
|
-
#
|
32369
|
-
#
|
32370
|
-
# encryption, set the condition key of
|
32428
|
+
# If you use a KMS key ID or an alias of your KMS key, the SageMaker
|
32429
|
+
# execution role must include permissions to call `kms:Encrypt`. If
|
32430
|
+
# you don't provide a KMS key ID, SageMaker uses the default KMS key
|
32431
|
+
# for Amazon S3 for your role's account. SageMaker uses server-side
|
32432
|
+
# encryption with KMS-managed keys for `OutputDataConfig`. If you use
|
32433
|
+
# a bucket policy with an `s3:PutObject` permission that only allows
|
32434
|
+
# objects with server-side encryption, set the condition key of
|
32371
32435
|
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
32372
32436
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
32373
32437
|
# Simple Storage Service Developer Guide.*
|
@@ -32393,10 +32457,6 @@ module Aws::SageMaker
|
|
32393
32457
|
include Aws::Structure
|
32394
32458
|
end
|
32395
32459
|
|
32396
|
-
# Serverless Inference is in preview release for Amazon SageMaker and is
|
32397
|
-
# subject to change. We do not recommend using this feature in
|
32398
|
-
# production environments.
|
32399
|
-
#
|
32400
32460
|
# Specifies the serverless configuration for an endpoint variant.
|
32401
32461
|
#
|
32402
32462
|
# @note When making an API call, you may pass ProductionVariantServerlessConfig
|
@@ -32506,22 +32566,10 @@ module Aws::SageMaker
|
|
32506
32566
|
#
|
32507
32567
|
# @!attribute [rw] current_serverless_config
|
32508
32568
|
# The serverless configuration for the endpoint.
|
32509
|
-
#
|
32510
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32511
|
-
# is subject to change. We do not recommend using this feature in
|
32512
|
-
# production environments.
|
32513
|
-
#
|
32514
|
-
# </note>
|
32515
32569
|
# @return [Types::ProductionVariantServerlessConfig]
|
32516
32570
|
#
|
32517
32571
|
# @!attribute [rw] desired_serverless_config
|
32518
32572
|
# The serverless configuration requested for the endpoint update.
|
32519
|
-
#
|
32520
|
-
# <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
|
32521
|
-
# is subject to change. We do not recommend using this feature in
|
32522
|
-
# production environments.
|
32523
|
-
#
|
32524
|
-
# </note>
|
32525
32573
|
# @return [Types::ProductionVariantServerlessConfig]
|
32526
32574
|
#
|
32527
32575
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
|
@@ -33338,8 +33386,8 @@ module Aws::SageMaker
|
|
33338
33386
|
# @!attribute [rw] properties
|
33339
33387
|
# Filter the lineage entities connected to the `StartArn`(s) by a set
|
33340
33388
|
# if property key value pairs. If multiple pairs are provided, an
|
33341
|
-
# entity
|
33342
|
-
#
|
33389
|
+
# entity is included in the results if it matches any of the provided
|
33390
|
+
# pairs.
|
33343
33391
|
# @return [Hash<String,String>]
|
33344
33392
|
#
|
33345
33393
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
|
@@ -33385,12 +33433,13 @@ module Aws::SageMaker
|
|
33385
33433
|
# @return [Array<String>]
|
33386
33434
|
#
|
33387
33435
|
# @!attribute [rw] direction
|
33388
|
-
# Associations between lineage entities
|
33389
|
-
# determines the direction from the StartArn(s) the
|
33436
|
+
# Associations between lineage entities have a direction. This
|
33437
|
+
# parameter determines the direction from the StartArn(s) that the
|
33438
|
+
# query traverses.
|
33390
33439
|
# @return [String]
|
33391
33440
|
#
|
33392
33441
|
# @!attribute [rw] include_edges
|
33393
|
-
# Setting this value to `True`
|
33442
|
+
# Setting this value to `True` retrieves not only the entities of
|
33394
33443
|
# interest but also the [Associations][1] and lineage entities on the
|
33395
33444
|
# path. Set to `False` to only return lineage entities that match your
|
33396
33445
|
# query.
|
@@ -33419,8 +33468,8 @@ module Aws::SageMaker
|
|
33419
33468
|
#
|
33420
33469
|
# @!attribute [rw] max_depth
|
33421
33470
|
# The maximum depth in lineage relationships from the `StartArns` that
|
33422
|
-
#
|
33423
|
-
#
|
33471
|
+
# are traversed. Depth is a measure of the number of `Associations`
|
33472
|
+
# from the `StartArn` entity to the matched results.
|
33424
33473
|
# @return [Integer]
|
33425
33474
|
#
|
33426
33475
|
# @!attribute [rw] max_results
|
@@ -33594,6 +33643,29 @@ module Aws::SageMaker
|
|
33594
33643
|
include Aws::Structure
|
33595
33644
|
end
|
33596
33645
|
|
33646
|
+
# Provides information about the output configuration for the compiled
|
33647
|
+
# model.
|
33648
|
+
#
|
33649
|
+
# @note When making an API call, you may pass RecommendationJobCompiledOutputConfig
|
33650
|
+
# data as a hash:
|
33651
|
+
#
|
33652
|
+
# {
|
33653
|
+
# s3_output_uri: "S3Uri",
|
33654
|
+
# }
|
33655
|
+
#
|
33656
|
+
# @!attribute [rw] s3_output_uri
|
33657
|
+
# Identifies the Amazon S3 bucket where you want SageMaker to store
|
33658
|
+
# the compiled model artifacts.
|
33659
|
+
# @return [String]
|
33660
|
+
#
|
33661
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobCompiledOutputConfig AWS API Documentation
|
33662
|
+
#
|
33663
|
+
class RecommendationJobCompiledOutputConfig < Struct.new(
|
33664
|
+
:s3_output_uri)
|
33665
|
+
SENSITIVE = []
|
33666
|
+
include Aws::Structure
|
33667
|
+
end
|
33668
|
+
|
33597
33669
|
# The input configuration of the recommendation job.
|
33598
33670
|
#
|
33599
33671
|
# @note When making an API call, you may pass RecommendationJobInputConfig
|
@@ -33630,6 +33702,7 @@ module Aws::SageMaker
|
|
33630
33702
|
# },
|
33631
33703
|
# },
|
33632
33704
|
# ],
|
33705
|
+
# volume_kms_key_id: "KmsKeyId",
|
33633
33706
|
# }
|
33634
33707
|
#
|
33635
33708
|
# @!attribute [rw] model_package_version_arn
|
@@ -33652,6 +33725,46 @@ module Aws::SageMaker
|
|
33652
33725
|
# Specifies the endpoint configuration to use for a job.
|
33653
33726
|
# @return [Array<Types::EndpointInputConfiguration>]
|
33654
33727
|
#
|
33728
|
+
# @!attribute [rw] volume_kms_key_id
|
33729
|
+
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
33730
|
+
# Management Service (Amazon Web Services KMS) key that Amazon
|
33731
|
+
# SageMaker uses to encrypt data on the storage volume attached to the
|
33732
|
+
# ML compute instance that hosts the endpoint. This key will be passed
|
33733
|
+
# to SageMaker Hosting for endpoint creation.
|
33734
|
+
#
|
33735
|
+
# The SageMaker execution role must have `kms:CreateGrant` permission
|
33736
|
+
# in order to encrypt data on the storage volume of the endpoints
|
33737
|
+
# created for inference recommendation. The inference recommendation
|
33738
|
+
# job will fail asynchronously during endpoint configuration creation
|
33739
|
+
# if the role passed does not have `kms:CreateGrant` permission.
|
33740
|
+
#
|
33741
|
+
# The `KmsKeyId` can be any of the following formats:
|
33742
|
+
#
|
33743
|
+
# * // KMS Key ID
|
33744
|
+
#
|
33745
|
+
# `"1234abcd-12ab-34cd-56ef-1234567890ab"`
|
33746
|
+
#
|
33747
|
+
# * // Amazon Resource Name (ARN) of a KMS Key
|
33748
|
+
#
|
33749
|
+
# `"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"`
|
33750
|
+
#
|
33751
|
+
# * // KMS Key Alias
|
33752
|
+
#
|
33753
|
+
# `"alias/ExampleAlias"`
|
33754
|
+
#
|
33755
|
+
# * // Amazon Resource Name (ARN) of a KMS Key Alias
|
33756
|
+
#
|
33757
|
+
# `"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"`
|
33758
|
+
#
|
33759
|
+
# For more information about key identifiers, see [Key identifiers
|
33760
|
+
# (KeyID)][1] in the Amazon Web Services Key Management Service
|
33761
|
+
# (Amazon Web Services KMS) documentation.
|
33762
|
+
#
|
33763
|
+
#
|
33764
|
+
#
|
33765
|
+
# [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
|
33766
|
+
# @return [String]
|
33767
|
+
#
|
33655
33768
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobInputConfig AWS API Documentation
|
33656
33769
|
#
|
33657
33770
|
class RecommendationJobInputConfig < Struct.new(
|
@@ -33659,7 +33772,69 @@ module Aws::SageMaker
|
|
33659
33772
|
:job_duration_in_seconds,
|
33660
33773
|
:traffic_pattern,
|
33661
33774
|
:resource_limit,
|
33662
|
-
:endpoint_configurations
|
33775
|
+
:endpoint_configurations,
|
33776
|
+
:volume_kms_key_id)
|
33777
|
+
SENSITIVE = []
|
33778
|
+
include Aws::Structure
|
33779
|
+
end
|
33780
|
+
|
33781
|
+
# Provides information about the output configuration for the compiled
|
33782
|
+
# model.
|
33783
|
+
#
|
33784
|
+
# @note When making an API call, you may pass RecommendationJobOutputConfig
|
33785
|
+
# data as a hash:
|
33786
|
+
#
|
33787
|
+
# {
|
33788
|
+
# kms_key_id: "KmsKeyId",
|
33789
|
+
# compiled_output_config: {
|
33790
|
+
# s3_output_uri: "S3Uri",
|
33791
|
+
# },
|
33792
|
+
# }
|
33793
|
+
#
|
33794
|
+
# @!attribute [rw] kms_key_id
|
33795
|
+
# The Amazon Resource Name (ARN) of a Amazon Web Services Key
|
33796
|
+
# Management Service (Amazon Web Services KMS) key that Amazon
|
33797
|
+
# SageMaker uses to encrypt your output artifacts with Amazon S3
|
33798
|
+
# server-side encryption. The SageMaker execution role must have
|
33799
|
+
# `kms:GenerateDataKey` permission.
|
33800
|
+
#
|
33801
|
+
# The `KmsKeyId` can be any of the following formats:
|
33802
|
+
#
|
33803
|
+
# * // KMS Key ID
|
33804
|
+
#
|
33805
|
+
# `"1234abcd-12ab-34cd-56ef-1234567890ab"`
|
33806
|
+
#
|
33807
|
+
# * // Amazon Resource Name (ARN) of a KMS Key
|
33808
|
+
#
|
33809
|
+
# `"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"`
|
33810
|
+
#
|
33811
|
+
# * // KMS Key Alias
|
33812
|
+
#
|
33813
|
+
# `"alias/ExampleAlias"`
|
33814
|
+
#
|
33815
|
+
# * // Amazon Resource Name (ARN) of a KMS Key Alias
|
33816
|
+
#
|
33817
|
+
# `"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"`
|
33818
|
+
#
|
33819
|
+
# For more information about key identifiers, see [Key identifiers
|
33820
|
+
# (KeyID)][1] in the Amazon Web Services Key Management Service
|
33821
|
+
# (Amazon Web Services KMS) documentation.
|
33822
|
+
#
|
33823
|
+
#
|
33824
|
+
#
|
33825
|
+
# [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
|
33826
|
+
# @return [String]
|
33827
|
+
#
|
33828
|
+
# @!attribute [rw] compiled_output_config
|
33829
|
+
# Provides information about the output configuration for the compiled
|
33830
|
+
# model.
|
33831
|
+
# @return [Types::RecommendationJobCompiledOutputConfig]
|
33832
|
+
#
|
33833
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobOutputConfig AWS API Documentation
|
33834
|
+
#
|
33835
|
+
class RecommendationJobOutputConfig < Struct.new(
|
33836
|
+
:kms_key_id,
|
33837
|
+
:compiled_output_config)
|
33663
33838
|
SENSITIVE = []
|
33664
33839
|
include Aws::Structure
|
33665
33840
|
end
|
@@ -34093,15 +34268,15 @@ module Aws::SageMaker
|
|
34093
34268
|
#
|
34094
34269
|
# You must specify sufficient ML storage for your scenario.
|
34095
34270
|
#
|
34096
|
-
# <note markdown="1">
|
34097
|
-
#
|
34271
|
+
# <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
|
34272
|
+
# volume type.
|
34098
34273
|
#
|
34099
34274
|
# </note>
|
34100
34275
|
#
|
34101
34276
|
# <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
|
34102
34277
|
# total size, dependent on the instance type. When using these
|
34103
|
-
# instances for training,
|
34104
|
-
#
|
34278
|
+
# instances for training, SageMaker mounts the local instance storage
|
34279
|
+
# instead of Amazon EBS gp2 storage. You can't request a
|
34105
34280
|
# `VolumeSizeInGB` greater than the total size of the local instance
|
34106
34281
|
# storage.
|
34107
34282
|
#
|
@@ -34117,9 +34292,9 @@ module Aws::SageMaker
|
|
34117
34292
|
# @return [Integer]
|
34118
34293
|
#
|
34119
34294
|
# @!attribute [rw] volume_kms_key_id
|
34120
|
-
# The Amazon Web Services KMS key that
|
34121
|
-
#
|
34122
|
-
#
|
34295
|
+
# The Amazon Web Services KMS key that SageMaker uses to encrypt data
|
34296
|
+
# on the storage volume attached to the ML compute instance(s) that
|
34297
|
+
# run the training job.
|
34123
34298
|
#
|
34124
34299
|
# <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
|
34125
34300
|
# the instance type. Local storage volumes are encrypted using a
|
@@ -34174,8 +34349,8 @@ module Aws::SageMaker
|
|
34174
34349
|
include Aws::Structure
|
34175
34350
|
end
|
34176
34351
|
|
34177
|
-
# You have exceeded an
|
34178
|
-
#
|
34352
|
+
# You have exceeded an SageMaker resource limit. For example, you might
|
34353
|
+
# have too many training jobs created.
|
34179
34354
|
#
|
34180
34355
|
# @!attribute [rw] message
|
34181
34356
|
# @return [String]
|
@@ -34254,6 +34429,12 @@ module Aws::SageMaker
|
|
34254
34429
|
#
|
34255
34430
|
# @!attribute [rw] instance_type
|
34256
34431
|
# The instance type that the image version runs on.
|
34432
|
+
#
|
34433
|
+
# <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
|
34434
|
+
# Apps do not support the `system` value, but support all other values
|
34435
|
+
# for available instance types.
|
34436
|
+
#
|
34437
|
+
# </note>
|
34257
34438
|
# @return [String]
|
34258
34439
|
#
|
34259
34440
|
# @!attribute [rw] lifecycle_config_arn
|
@@ -34388,11 +34569,11 @@ module Aws::SageMaker
|
|
34388
34569
|
#
|
34389
34570
|
# @!attribute [rw] s3_data_type
|
34390
34571
|
# If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
|
34391
|
-
#
|
34392
|
-
#
|
34572
|
+
# SageMaker uses all objects that match the specified key name prefix
|
34573
|
+
# for model training.
|
34393
34574
|
#
|
34394
34575
|
# If you choose `ManifestFile`, `S3Uri` identifies an object that is a
|
34395
|
-
# manifest file containing a list of object keys that you want
|
34576
|
+
# manifest file containing a list of object keys that you want
|
34396
34577
|
# SageMaker to use for model training.
|
34397
34578
|
#
|
34398
34579
|
# If you choose `AugmentedManifestFile`, S3Uri identifies an object
|
@@ -34446,17 +34627,17 @@ module Aws::SageMaker
|
|
34446
34627
|
#
|
34447
34628
|
# The complete set of `S3Uri` in this manifest is the input data for
|
34448
34629
|
# the channel for this data source. The object that each `S3Uri`
|
34449
|
-
# points to must be readable by the IAM role that
|
34450
|
-
#
|
34630
|
+
# points to must be readable by the IAM role that SageMaker uses to
|
34631
|
+
# perform tasks on your behalf.
|
34451
34632
|
# @return [String]
|
34452
34633
|
#
|
34453
34634
|
# @!attribute [rw] s3_data_distribution_type
|
34454
|
-
# If you want
|
34455
|
-
#
|
34635
|
+
# If you want SageMaker to replicate the entire dataset on each ML
|
34636
|
+
# compute instance that is launched for model training, specify
|
34456
34637
|
# `FullyReplicated`.
|
34457
34638
|
#
|
34458
|
-
# If you want
|
34459
|
-
#
|
34639
|
+
# If you want SageMaker to replicate a subset of data on each ML
|
34640
|
+
# compute instance that is launched for model training, specify
|
34460
34641
|
# `ShardedByS3Key`. If there are *n* ML compute instances launched for
|
34461
34642
|
# a training job, each instance gets approximately 1/*n* of the number
|
34462
34643
|
# of S3 objects. In this case, model training on each machine uses
|
@@ -34880,9 +35061,9 @@ module Aws::SageMaker
|
|
34880
35061
|
# transitioned through. A training job can be in one of several states,
|
34881
35062
|
# for example, starting, downloading, training, or uploading. Within
|
34882
35063
|
# each state, there are a number of intermediate states. For example,
|
34883
|
-
# within the starting state,
|
34884
|
-
#
|
34885
|
-
#
|
35064
|
+
# within the starting state, SageMaker could be starting the training
|
35065
|
+
# job or launching the ML instances. These transitional states are
|
35066
|
+
# referred to as the job's secondary status.
|
34886
35067
|
#
|
34887
35068
|
# @!attribute [rw] status
|
34888
35069
|
# Contains a secondary status information from a training job.
|
@@ -34947,8 +35128,8 @@ module Aws::SageMaker
|
|
34947
35128
|
# @!attribute [rw] status_message
|
34948
35129
|
# A detailed description of the progress within a secondary status.
|
34949
35130
|
#
|
34950
|
-
#
|
34951
|
-
#
|
35131
|
+
# SageMaker provides secondary statuses and status messages that apply
|
35132
|
+
# to each of them:
|
34952
35133
|
#
|
34953
35134
|
# Starting
|
34954
35135
|
# : * Starting the training job.
|
@@ -35313,9 +35494,9 @@ module Aws::SageMaker
|
|
35313
35494
|
end
|
35314
35495
|
|
35315
35496
|
# Specifies an algorithm that was used to create the model package. The
|
35316
|
-
# algorithm must be either an algorithm resource in your
|
35317
|
-
#
|
35318
|
-
#
|
35497
|
+
# algorithm must be either an algorithm resource in your SageMaker
|
35498
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35499
|
+
# are subscribed to.
|
35319
35500
|
#
|
35320
35501
|
# @note When making an API call, you may pass SourceAlgorithm
|
35321
35502
|
# data as a hash:
|
@@ -35338,9 +35519,9 @@ module Aws::SageMaker
|
|
35338
35519
|
#
|
35339
35520
|
# @!attribute [rw] algorithm_name
|
35340
35521
|
# The name of an algorithm that was used to create the model package.
|
35341
|
-
# The algorithm must be either an algorithm resource in your
|
35342
|
-
#
|
35343
|
-
#
|
35522
|
+
# The algorithm must be either an algorithm resource in your SageMaker
|
35523
|
+
# account or an algorithm in Amazon Web Services Marketplace that you
|
35524
|
+
# are subscribed to.
|
35344
35525
|
# @return [String]
|
35345
35526
|
#
|
35346
35527
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
|
@@ -35784,21 +35965,21 @@ module Aws::SageMaker
|
|
35784
35965
|
# Specifies a limit to how long a model training job or model
|
35785
35966
|
# compilation job can run. It also specifies how long a managed spot
|
35786
35967
|
# training job has to complete. When the job reaches the time limit,
|
35787
|
-
#
|
35788
|
-
#
|
35789
|
-
#
|
35790
|
-
# To stop a training job,
|
35791
|
-
#
|
35792
|
-
#
|
35793
|
-
#
|
35794
|
-
#
|
35795
|
-
# The training algorithms provided by
|
35796
|
-
#
|
35797
|
-
#
|
35798
|
-
#
|
35799
|
-
#
|
35800
|
-
#
|
35801
|
-
#
|
35968
|
+
# SageMaker ends the training or compilation job. Use this API to cap
|
35969
|
+
# model training costs.
|
35970
|
+
#
|
35971
|
+
# To stop a training job, SageMaker sends the algorithm the `SIGTERM`
|
35972
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
35973
|
+
# use this 120-second window to save the model artifacts, so the results
|
35974
|
+
# of training are not lost.
|
35975
|
+
#
|
35976
|
+
# The training algorithms provided by SageMaker automatically save the
|
35977
|
+
# intermediate results of a model training job when possible. This
|
35978
|
+
# attempt to save artifacts is only a best effort case as model might
|
35979
|
+
# not be in a state from which it can be saved. For example, if training
|
35980
|
+
# has just started, the model might not be ready to save. When saved,
|
35981
|
+
# this intermediate data is a valid model artifact. You can use it to
|
35982
|
+
# create a model with `CreateModel`.
|
35802
35983
|
#
|
35803
35984
|
# <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
|
35804
35985
|
# intermediate model artifacts. When training NTMs, make sure that the
|
@@ -35819,14 +36000,14 @@ module Aws::SageMaker
|
|
35819
36000
|
# compilation job can run.
|
35820
36001
|
#
|
35821
36002
|
# For compilation jobs, if the job does not complete during this time,
|
35822
|
-
#
|
35823
|
-
# seconds and
|
36003
|
+
# a `TimeOut` error is generated. We recommend starting with 900
|
36004
|
+
# seconds and increasing as necessary based on your model.
|
35824
36005
|
#
|
35825
36006
|
# For all other jobs, if the job does not complete during this time,
|
35826
|
-
#
|
35827
|
-
#
|
35828
|
-
#
|
35829
|
-
#
|
36007
|
+
# SageMaker ends the job. When `RetryStrategy` is specified in the job
|
36008
|
+
# request, `MaxRuntimeInSeconds` specifies the maximum time for all of
|
36009
|
+
# the attempts in total, not each individual attempt. The default
|
36010
|
+
# value is 1 day. The maximum value is 28 days.
|
35830
36011
|
# @return [Integer]
|
35831
36012
|
#
|
35832
36013
|
# @!attribute [rw] max_wait_time_in_seconds
|
@@ -35834,7 +36015,7 @@ module Aws::SageMaker
|
|
35834
36015
|
# job has to complete. It is the amount of time spent waiting for Spot
|
35835
36016
|
# capacity plus the amount of time the job can run. It must be equal
|
35836
36017
|
# to or greater than `MaxRuntimeInSeconds`. If the job does not
|
35837
|
-
# complete during this time,
|
36018
|
+
# complete during this time, SageMaker ends the job.
|
35838
36019
|
#
|
35839
36020
|
# When `RetryStrategy` is specified in the job request,
|
35840
36021
|
# `MaxWaitTimeInSeconds` specifies the maximum time for all of the
|
@@ -36254,8 +36435,8 @@ module Aws::SageMaker
|
|
36254
36435
|
# For detailed information about the secondary status of the training
|
36255
36436
|
# job, see `StatusMessage` under SecondaryStatusTransition.
|
36256
36437
|
#
|
36257
|
-
#
|
36258
|
-
#
|
36438
|
+
# SageMaker provides primary statuses and secondary statuses that
|
36439
|
+
# apply to each of them:
|
36259
36440
|
#
|
36260
36441
|
# InProgress
|
36261
36442
|
# : * `Starting` - Starting the training job.
|
@@ -36328,7 +36509,7 @@ module Aws::SageMaker
|
|
36328
36509
|
#
|
36329
36510
|
# @!attribute [rw] output_data_config
|
36330
36511
|
# The S3 path where model artifacts that you configured when creating
|
36331
|
-
# the job are stored.
|
36512
|
+
# the job are stored. SageMaker creates subfolders for model
|
36332
36513
|
# artifacts.
|
36333
36514
|
# @return [Types::OutputDataConfig]
|
36334
36515
|
#
|
@@ -36350,13 +36531,13 @@ module Aws::SageMaker
|
|
36350
36531
|
# @!attribute [rw] stopping_condition
|
36351
36532
|
# Specifies a limit to how long a model training job can run. It also
|
36352
36533
|
# specifies how long a managed Spot training job has to complete. When
|
36353
|
-
# the job reaches the time limit,
|
36354
|
-
#
|
36534
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36535
|
+
# this API to cap model training costs.
|
36355
36536
|
#
|
36356
|
-
# To stop a job,
|
36357
|
-
#
|
36358
|
-
#
|
36359
|
-
#
|
36537
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
36538
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36539
|
+
# this 120-second window to save the model artifacts, so the results
|
36540
|
+
# of training are not lost.
|
36360
36541
|
# @return [Types::StoppingCondition]
|
36361
36542
|
#
|
36362
36543
|
# @!attribute [rw] creation_time
|
@@ -36377,8 +36558,7 @@ module Aws::SageMaker
|
|
36377
36558
|
# You are billed for the time interval between the value of
|
36378
36559
|
# `TrainingStartTime` and this time. For successful jobs and stopped
|
36379
36560
|
# jobs, this is the time after model artifacts are uploaded. For
|
36380
|
-
# failed jobs, this is the time when
|
36381
|
-
# failure.
|
36561
|
+
# failed jobs, this is the time when SageMaker detects a job failure.
|
36382
36562
|
# @return [Time]
|
36383
36563
|
#
|
36384
36564
|
# @!attribute [rw] last_modified_time
|
@@ -36645,7 +36825,7 @@ module Aws::SageMaker
|
|
36645
36825
|
#
|
36646
36826
|
# @!attribute [rw] output_data_config
|
36647
36827
|
# the path to the S3 bucket where you want to store model artifacts.
|
36648
|
-
#
|
36828
|
+
# SageMaker creates subfolders for the artifacts.
|
36649
36829
|
# @return [Types::OutputDataConfig]
|
36650
36830
|
#
|
36651
36831
|
# @!attribute [rw] resource_config
|
@@ -36656,12 +36836,12 @@ module Aws::SageMaker
|
|
36656
36836
|
# @!attribute [rw] stopping_condition
|
36657
36837
|
# Specifies a limit to how long a model training job can run. It also
|
36658
36838
|
# specifies how long a managed Spot training job has to complete. When
|
36659
|
-
# the job reaches the time limit,
|
36660
|
-
#
|
36839
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
36840
|
+
# this API to cap model training costs.
|
36661
36841
|
#
|
36662
|
-
# To stop a job,
|
36663
|
-
#
|
36664
|
-
#
|
36842
|
+
# To stop a job, SageMaker sends the algorithm the SIGTERM signal,
|
36843
|
+
# which delays job termination for 120 seconds. Algorithms can use
|
36844
|
+
# this 120-second window to save the model artifacts.
|
36665
36845
|
# @return [Types::StoppingCondition]
|
36666
36846
|
#
|
36667
36847
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
|
@@ -38903,7 +39083,7 @@ module Aws::SageMaker
|
|
38903
39083
|
# }
|
38904
39084
|
#
|
38905
39085
|
# @!attribute [rw] endpoint_name
|
38906
|
-
# The name of an existing
|
39086
|
+
# The name of an existing SageMaker endpoint.
|
38907
39087
|
# @return [String]
|
38908
39088
|
#
|
38909
39089
|
# @!attribute [rw] desired_weights_and_capacities
|
@@ -39249,7 +39429,7 @@ module Aws::SageMaker
|
|
39249
39429
|
#
|
39250
39430
|
# {
|
39251
39431
|
# notebook_instance_name: "NotebookInstanceName", # required
|
39252
|
-
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
39432
|
+
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
|
39253
39433
|
# role_arn: "RoleArn",
|
39254
39434
|
# lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
|
39255
39435
|
# disassociate_lifecycle_config: false,
|
@@ -39272,12 +39452,12 @@ module Aws::SageMaker
|
|
39272
39452
|
# @return [String]
|
39273
39453
|
#
|
39274
39454
|
# @!attribute [rw] role_arn
|
39275
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
39276
|
-
#
|
39277
|
-
#
|
39455
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
39456
|
+
# assume to access the notebook instance. For more information, see
|
39457
|
+
# [SageMaker Roles][1].
|
39278
39458
|
#
|
39279
|
-
# <note markdown="1"> To be able to pass this role to
|
39280
|
-
#
|
39459
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
|
39460
|
+
# must have the `iam:PassRole` permission.
|
39281
39461
|
#
|
39282
39462
|
# </note>
|
39283
39463
|
#
|
@@ -39307,12 +39487,12 @@ module Aws::SageMaker
|
|
39307
39487
|
# @!attribute [rw] volume_size_in_gb
|
39308
39488
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
39309
39489
|
# instance. The default value is 5 GB. ML storage volumes are
|
39310
|
-
# encrypted, so
|
39311
|
-
#
|
39312
|
-
#
|
39313
|
-
#
|
39314
|
-
#
|
39315
|
-
#
|
39490
|
+
# encrypted, so SageMaker can't determine the amount of available
|
39491
|
+
# free space on the volume. Because of this, you can increase the
|
39492
|
+
# volume size when you update a notebook instance, but you can't
|
39493
|
+
# decrease the volume size. If you want to decrease the size of the ML
|
39494
|
+
# storage volume in use, create a new notebook instance with the
|
39495
|
+
# desired size.
|
39316
39496
|
# @return [Integer]
|
39317
39497
|
#
|
39318
39498
|
# @!attribute [rw] default_code_repository
|
@@ -39322,8 +39502,7 @@ module Aws::SageMaker
|
|
39322
39502
|
# repository in [Amazon Web Services CodeCommit][1] or in any other
|
39323
39503
|
# Git repository. When you open a notebook instance, it opens in the
|
39324
39504
|
# directory that contains this repository. For more information, see
|
39325
|
-
# [Associating Git Repositories with
|
39326
|
-
# Instances][2].
|
39505
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
39327
39506
|
#
|
39328
39507
|
#
|
39329
39508
|
#
|
@@ -39338,7 +39517,7 @@ module Aws::SageMaker
|
|
39338
39517
|
# in [Amazon Web Services CodeCommit][1] or in any other Git
|
39339
39518
|
# repository. These repositories are cloned at the same level as the
|
39340
39519
|
# default repository of your notebook instance. For more information,
|
39341
|
-
# see [Associating Git Repositories with
|
39520
|
+
# see [Associating Git Repositories with SageMaker Notebook
|
39342
39521
|
# Instances][2].
|
39343
39522
|
#
|
39344
39523
|
#
|