aws-sdk-sagemaker 1.120.0 → 1.123.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -192,7 +192,7 @@ module Aws::SageMaker
192
192
  end
193
193
 
194
194
  # @!attribute [rw] tags
195
- # A list of tags associated with the Amazon SageMaker resource.
195
+ # A list of tags associated with the SageMaker resource.
196
196
  # @return [Array<Types::Tag>]
197
197
  #
198
198
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AddTagsOutput AWS API Documentation
@@ -328,9 +328,9 @@ module Aws::SageMaker
328
328
  # Specifies the training algorithm to use in a CreateTrainingJob
329
329
  # request.
330
330
  #
331
- # For more information about algorithms provided by Amazon SageMaker,
332
- # see [Algorithms][1]. For information about using your own algorithms,
333
- # see [Using Your Own Algorithms with Amazon SageMaker][2].
331
+ # For more information about algorithms provided by SageMaker, see
332
+ # [Algorithms][1]. For information about using your own algorithms, see
333
+ # [Using Your Own Algorithms with Amazon SageMaker][2].
334
334
  #
335
335
  #
336
336
  #
@@ -357,10 +357,10 @@ module Aws::SageMaker
357
357
  # The registry path of the Docker image that contains the training
358
358
  # algorithm. For information about docker registry paths for built-in
359
359
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
360
- # Parameters][1]. Amazon SageMaker supports both
361
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
362
- # path formats. For more information, see [Using Your Own Algorithms
363
- # with Amazon SageMaker][2].
360
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
361
+ # and `registry/repository[@digest]` image path formats. For more
362
+ # information, see [Using Your Own Algorithms with Amazon
363
+ # SageMaker][2].
364
364
  #
365
365
  #
366
366
  #
@@ -424,7 +424,7 @@ module Aws::SageMaker
424
424
  # @!attribute [rw] metric_definitions
425
425
  # A list of metric definition objects. Each object specifies the
426
426
  # metric name and regular expressions used to parse algorithm logs.
427
- # Amazon SageMaker publishes each metric to Amazon CloudWatch.
427
+ # SageMaker publishes each metric to Amazon CloudWatch.
428
428
  # @return [Array<Types::MetricDefinition>]
429
429
  #
430
430
  # @!attribute [rw] enable_sage_maker_metrics_time_series
@@ -432,9 +432,9 @@ module Aws::SageMaker
432
432
  # `true`. The default is `false` and time-series metrics aren't
433
433
  # generated except in the following cases:
434
434
  #
435
- # * You use one of the Amazon SageMaker built-in algorithms
435
+ # * You use one of the SageMaker built-in algorithms
436
436
  #
437
- # * You use one of the following [Prebuilt Amazon SageMaker Docker
437
+ # * You use one of the following [Prebuilt SageMaker Docker
438
438
  # Images][1]\:
439
439
  #
440
440
  # * Tensorflow (version &gt;= 1.15)
@@ -540,8 +540,8 @@ module Aws::SageMaker
540
540
  include Aws::Structure
541
541
  end
542
542
 
543
- # Defines a training job and a batch transform job that Amazon SageMaker
544
- # runs to validate your algorithm.
543
+ # Defines a training job and a batch transform job that SageMaker runs
544
+ # to validate your algorithm.
545
545
  #
546
546
  # The data provided in the validation profile is made available to your
547
547
  # buyers on Amazon Web Services Marketplace.
@@ -636,12 +636,12 @@ module Aws::SageMaker
636
636
  #
637
637
  # @!attribute [rw] training_job_definition
638
638
  # The `TrainingJobDefinition` object that describes the training job
639
- # that Amazon SageMaker runs to validate your algorithm.
639
+ # that SageMaker runs to validate your algorithm.
640
640
  # @return [Types::TrainingJobDefinition]
641
641
  #
642
642
  # @!attribute [rw] transform_job_definition
643
643
  # The `TransformJobDefinition` object that describes the transform job
644
- # that Amazon SageMaker runs to validate your algorithm.
644
+ # that SageMaker runs to validate your algorithm.
645
645
  # @return [Types::TransformJobDefinition]
646
646
  #
647
647
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationProfile AWS API Documentation
@@ -654,8 +654,8 @@ module Aws::SageMaker
654
654
  include Aws::Structure
655
655
  end
656
656
 
657
- # Specifies configurations for one or more training jobs that Amazon
658
- # SageMaker runs to test the algorithm.
657
+ # Specifies configurations for one or more training jobs that SageMaker
658
+ # runs to test the algorithm.
659
659
  #
660
660
  # @note When making an API call, you may pass AlgorithmValidationSpecification
661
661
  # data as a hash:
@@ -746,13 +746,13 @@ module Aws::SageMaker
746
746
  # }
747
747
  #
748
748
  # @!attribute [rw] validation_role
749
- # The IAM roles that Amazon SageMaker uses to run the training jobs.
749
+ # The IAM roles that SageMaker uses to run the training jobs.
750
750
  # @return [String]
751
751
  #
752
752
  # @!attribute [rw] validation_profiles
753
753
  # An array of `AlgorithmValidationProfile` objects, each of which
754
- # specifies a training job and batch transform job that Amazon
755
- # SageMaker runs to validate your algorithm.
754
+ # specifies a training job and batch transform job that SageMaker runs
755
+ # to validate your algorithm.
756
756
  # @return [Array<Types::AlgorithmValidationProfile>]
757
757
  #
758
758
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AlgorithmValidationSpecification AWS API Documentation
@@ -1742,8 +1742,8 @@ module Aws::SageMaker
1742
1742
  include Aws::Structure
1743
1743
  end
1744
1744
 
1745
- # Configures the behavior of the client used by Amazon SageMaker to
1746
- # interact with the model container during asynchronous inference.
1745
+ # Configures the behavior of the client used by SageMaker to interact
1746
+ # with the model container during asynchronous inference.
1747
1747
  #
1748
1748
  # @note When making an API call, you may pass AsyncInferenceClientConfig
1749
1749
  # data as a hash:
@@ -1754,8 +1754,8 @@ module Aws::SageMaker
1754
1754
  #
1755
1755
  # @!attribute [rw] max_concurrent_invocations_per_instance
1756
1756
  # The maximum number of concurrent requests sent by the SageMaker
1757
- # client to the model container. If no value is provided, Amazon
1758
- # SageMaker will choose an optimal value for you.
1757
+ # client to the model container. If no value is provided, SageMaker
1758
+ # chooses an optimal value.
1759
1759
  # @return [Integer]
1760
1760
  #
1761
1761
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AsyncInferenceClientConfig AWS API Documentation
@@ -1787,8 +1787,8 @@ module Aws::SageMaker
1787
1787
  # }
1788
1788
  #
1789
1789
  # @!attribute [rw] client_config
1790
- # Configures the behavior of the client used by Amazon SageMaker to
1791
- # interact with the model container during asynchronous inference.
1790
+ # Configures the behavior of the client used by SageMaker to interact
1791
+ # with the model container during asynchronous inference.
1792
1792
  # @return [Types::AsyncInferenceClientConfig]
1793
1793
  #
1794
1794
  # @!attribute [rw] output_config
@@ -1853,8 +1853,8 @@ module Aws::SageMaker
1853
1853
  #
1854
1854
  # @!attribute [rw] kms_key_id
1855
1855
  # The Amazon Web Services Key Management Service (Amazon Web Services
1856
- # KMS) key that Amazon SageMaker uses to encrypt the asynchronous
1857
- # inference output in Amazon S3.
1856
+ # KMS) key that SageMaker uses to encrypt the asynchronous inference
1857
+ # output in Amazon S3.
1858
1858
  # @return [String]
1859
1859
  #
1860
1860
  # @!attribute [rw] s3_output_path
@@ -2034,7 +2034,14 @@ module Aws::SageMaker
2034
2034
  end
2035
2035
 
2036
2036
  # A channel is a named input source that training algorithms can
2037
- # consume. For more information, see .
2037
+ # consume. The validation dataset size is limited to less than 2 GB. The
2038
+ # training dataset size must be less than 100 GB. For more information,
2039
+ # see .
2040
+ #
2041
+ # <note markdown="1"> A validation dataset must contain the same headers as the training
2042
+ # dataset.
2043
+ #
2044
+ # </note>
2038
2045
  #
2039
2046
  # @note When making an API call, you may pass AutoMLChannel
2040
2047
  # data as a hash:
@@ -2049,6 +2056,7 @@ module Aws::SageMaker
2049
2056
  # compression_type: "None", # accepts None, Gzip
2050
2057
  # target_attribute_name: "TargetAttributeName", # required
2051
2058
  # content_type: "ContentType",
2059
+ # channel_type: "training", # accepts training, validation
2052
2060
  # }
2053
2061
  #
2054
2062
  # @!attribute [rw] data_source
@@ -2070,13 +2078,20 @@ module Aws::SageMaker
2070
2078
  # default value is `text/csv;header=present`.
2071
2079
  # @return [String]
2072
2080
  #
2081
+ # @!attribute [rw] channel_type
2082
+ # The channel type (optional) is an enum string. The default value is
2083
+ # `training`. Channels for training and validation must share the same
2084
+ # `ContentType` and `TargetAttributeName`.
2085
+ # @return [String]
2086
+ #
2073
2087
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
2074
2088
  #
2075
2089
  class AutoMLChannel < Struct.new(
2076
2090
  :data_source,
2077
2091
  :compression_type,
2078
2092
  :target_attribute_name,
2079
- :content_type)
2093
+ :content_type,
2094
+ :channel_type)
2080
2095
  SENSITIVE = []
2081
2096
  include Aws::Structure
2082
2097
  end
@@ -2136,6 +2151,32 @@ module Aws::SageMaker
2136
2151
  include Aws::Structure
2137
2152
  end
2138
2153
 
2154
+ # This structure specifies how to split the data into train and test
2155
+ # datasets. The validation and training datasets must contain the same
2156
+ # headers. The validation dataset must be less than 2 GB in size.
2157
+ #
2158
+ # @note When making an API call, you may pass AutoMLDataSplitConfig
2159
+ # data as a hash:
2160
+ #
2161
+ # {
2162
+ # validation_fraction: 1.0,
2163
+ # }
2164
+ #
2165
+ # @!attribute [rw] validation_fraction
2166
+ # The validation fraction (optional) is a float that specifies the
2167
+ # portion of the training dataset to be used for validation. The
2168
+ # default value is 0.2, and values can range from 0 to 1. We recommend
2169
+ # setting this value to be less than 0.5.
2170
+ # @return [Float]
2171
+ #
2172
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLDataSplitConfig AWS API Documentation
2173
+ #
2174
+ class AutoMLDataSplitConfig < Struct.new(
2175
+ :validation_fraction)
2176
+ SENSITIVE = []
2177
+ include Aws::Structure
2178
+ end
2179
+
2139
2180
  # The artifacts that are generated during an AutoML job.
2140
2181
  #
2141
2182
  # @!attribute [rw] candidate_definition_notebook_location
@@ -2217,6 +2258,9 @@ module Aws::SageMaker
2217
2258
  # subnets: ["SubnetId"], # required
2218
2259
  # },
2219
2260
  # },
2261
+ # data_split_config: {
2262
+ # validation_fraction: 1.0,
2263
+ # },
2220
2264
  # }
2221
2265
  #
2222
2266
  # @!attribute [rw] completion_criteria
@@ -2229,11 +2273,18 @@ module Aws::SageMaker
2229
2273
  # settings.
2230
2274
  # @return [Types::AutoMLSecurityConfig]
2231
2275
  #
2276
+ # @!attribute [rw] data_split_config
2277
+ # The configuration for splitting the input training dataset.
2278
+ #
2279
+ # Type: AutoMLDataSplitConfig
2280
+ # @return [Types::AutoMLDataSplitConfig]
2281
+ #
2232
2282
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
2233
2283
  #
2234
2284
  class AutoMLJobConfig < Struct.new(
2235
2285
  :completion_criteria,
2236
- :security_config)
2286
+ :security_config,
2287
+ :data_split_config)
2237
2288
  SENSITIVE = []
2238
2289
  include Aws::Structure
2239
2290
  end
@@ -3005,10 +3056,10 @@ module Aws::SageMaker
3005
3056
  # @!attribute [rw] record_wrapper_type
3006
3057
  # Specify RecordIO as the value when input data is in raw format but
3007
3058
  # the training algorithm requires the RecordIO format. In this case,
3008
- # Amazon SageMaker wraps each individual S3 object in a RecordIO
3009
- # record. If the input data is already in RecordIO format, you don't
3010
- # need to set this attribute. For more information, see [Create a
3011
- # Dataset Using RecordIO][1].
3059
+ # SageMaker wraps each individual S3 object in a RecordIO record. If
3060
+ # the input data is already in RecordIO format, you don't need to set
3061
+ # this attribute. For more information, see [Create a Dataset Using
3062
+ # RecordIO][1].
3012
3063
  #
3013
3064
  # In File mode, leave this field unset or set it to None.
3014
3065
  #
@@ -3019,15 +3070,15 @@ module Aws::SageMaker
3019
3070
  #
3020
3071
  # @!attribute [rw] input_mode
3021
3072
  # (Optional) The input mode to use for the data channel in a training
3022
- # job. If you don't set a value for `InputMode`, Amazon SageMaker
3023
- # uses the value set for `TrainingInputMode`. Use this parameter to
3024
- # override the `TrainingInputMode` setting in a AlgorithmSpecification
3025
- # request when you have a channel that needs a different input mode
3026
- # from the training job's general setting. To download the data from
3027
- # Amazon Simple Storage Service (Amazon S3) to the provisioned ML
3028
- # storage volume, and mount the directory to a Docker volume, use
3029
- # `File` input mode. To stream data directly from Amazon S3 to the
3030
- # container, choose `Pipe` input mode.
3073
+ # job. If you don't set a value for `InputMode`, SageMaker uses the
3074
+ # value set for `TrainingInputMode`. Use this parameter to override
3075
+ # the `TrainingInputMode` setting in a AlgorithmSpecification request
3076
+ # when you have a channel that needs a different input mode from the
3077
+ # training job's general setting. To download the data from Amazon
3078
+ # Simple Storage Service (Amazon S3) to the provisioned ML storage
3079
+ # volume, and mount the directory to a Docker volume, use `File` input
3080
+ # mode. To stream data directly from Amazon S3 to the container,
3081
+ # choose `Pipe` input mode.
3031
3082
  #
3032
3083
  # To use a model for incremental training, choose `File` input model.
3033
3084
  # @return [String]
@@ -3137,7 +3188,7 @@ module Aws::SageMaker
3137
3188
  # }
3138
3189
  #
3139
3190
  # @!attribute [rw] s3_uri
3140
- # Identifies the S3 path where you want Amazon SageMaker to store
3191
+ # Identifies the S3 path where you want SageMaker to store
3141
3192
  # checkpoints. For example, `s3://bucket-name/key-name-prefix`.
3142
3193
  # @return [String]
3143
3194
  #
@@ -3514,11 +3565,11 @@ module Aws::SageMaker
3514
3565
  # Amazon EC2 Container Registry or in a Docker registry that is
3515
3566
  # accessible from the same VPC that you configure for your endpoint.
3516
3567
  # If you are using your own custom algorithm instead of an algorithm
3517
- # provided by Amazon SageMaker, the inference code must meet Amazon
3518
- # SageMaker requirements. Amazon SageMaker supports both
3519
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
3520
- # path formats. For more information, see [Using Your Own Algorithms
3521
- # with Amazon SageMaker][1]
3568
+ # provided by SageMaker, the inference code must meet SageMaker
3569
+ # requirements. SageMaker supports both `registry/repository[:tag]`
3570
+ # and `registry/repository[@digest]` image path formats. For more
3571
+ # information, see [Using Your Own Algorithms with Amazon
3572
+ # SageMaker][1]
3522
3573
  #
3523
3574
  #
3524
3575
  #
@@ -3545,7 +3596,7 @@ module Aws::SageMaker
3545
3596
  # The S3 path where the model artifacts, which result from model
3546
3597
  # training, are stored. This path must point to a single gzip
3547
3598
  # compressed tar archive (.tar.gz suffix). The S3 path is required for
3548
- # Amazon SageMaker built-in algorithms, but not if you use your own
3599
+ # SageMaker built-in algorithms, but not if you use your own
3549
3600
  # algorithms. For more information on built-in algorithms, see [Common
3550
3601
  # Parameters][1].
3551
3602
  #
@@ -3554,17 +3605,17 @@ module Aws::SageMaker
3554
3605
  #
3555
3606
  # </note>
3556
3607
  #
3557
- # If you provide a value for this parameter, Amazon SageMaker uses
3558
- # Amazon Web Services Security Token Service to download model
3559
- # artifacts from the S3 path you provide. Amazon Web Services STS is
3560
- # activated in your IAM user account by default. If you previously
3561
- # deactivated Amazon Web Services STS for a region, you need to
3562
- # reactivate Amazon Web Services STS for that region. For more
3563
- # information, see [Activating and Deactivating Amazon Web Services
3564
- # STS in an Amazon Web Services Region][2] in the *Amazon Web Services
3565
- # Identity and Access Management User Guide*.
3566
- #
3567
- # If you use a built-in algorithm to create a model, Amazon SageMaker
3608
+ # If you provide a value for this parameter, SageMaker uses Amazon Web
3609
+ # Services Security Token Service to download model artifacts from the
3610
+ # S3 path you provide. Amazon Web Services STS is activated in your
3611
+ # IAM user account by default. If you previously deactivated Amazon
3612
+ # Web Services STS for a region, you need to reactivate Amazon Web
3613
+ # Services STS for that region. For more information, see [Activating
3614
+ # and Deactivating Amazon Web Services STS in an Amazon Web Services
3615
+ # Region][2] in the *Amazon Web Services Identity and Access
3616
+ # Management User Guide*.
3617
+ #
3618
+ # If you use a built-in algorithm to create a model, SageMaker
3568
3619
  # requires that you provide a S3 path to the model artifacts in
3569
3620
  # `ModelDataUrl`.
3570
3621
  #
@@ -3717,8 +3768,8 @@ module Aws::SageMaker
3717
3768
  #
3718
3769
  # Auto
3719
3770
  #
3720
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
3721
- # the hyperparameter.
3771
+ # : SageMaker hyperparameter tuning chooses the best scale for the
3772
+ # hyperparameter.
3722
3773
  #
3723
3774
  # Linear
3724
3775
  #
@@ -4096,9 +4147,9 @@ module Aws::SageMaker
4096
4147
  #
4097
4148
  # @!attribute [rw] validation_specification
4098
4149
  # Specifies configurations for one or more training jobs and that
4099
- # Amazon SageMaker runs to test the algorithm's training code and,
4100
- # optionally, one or more batch transform jobs that Amazon SageMaker
4101
- # runs to test the algorithm's inference code.
4150
+ # SageMaker runs to test the algorithm's training code and,
4151
+ # optionally, one or more batch transform jobs that SageMaker runs to
4152
+ # test the algorithm's inference code.
4102
4153
  # @return [Types::AlgorithmValidationSpecification]
4103
4154
  #
4104
4155
  # @!attribute [rw] certify_for_marketplace
@@ -4376,6 +4427,7 @@ module Aws::SageMaker
4376
4427
  # compression_type: "None", # accepts None, Gzip
4377
4428
  # target_attribute_name: "TargetAttributeName", # required
4378
4429
  # content_type: "ContentType",
4430
+ # channel_type: "training", # accepts training, validation
4379
4431
  # },
4380
4432
  # ],
4381
4433
  # output_data_config: { # required
@@ -4400,6 +4452,9 @@ module Aws::SageMaker
4400
4452
  # subnets: ["SubnetId"], # required
4401
4453
  # },
4402
4454
  # },
4455
+ # data_split_config: {
4456
+ # validation_fraction: 1.0,
4457
+ # },
4403
4458
  # },
4404
4459
  # role_arn: "RoleArn", # required
4405
4460
  # generate_candidate_definitions_only: false,
@@ -5361,9 +5416,9 @@ module Aws::SageMaker
5361
5416
  #
5362
5417
  # @!attribute [rw] kms_key_id
5363
5418
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
5364
- # Management Service key that Amazon SageMaker uses to encrypt data on
5365
- # the storage volume attached to the ML compute instance that hosts
5366
- # the endpoint.
5419
+ # Management Service key that SageMaker uses to encrypt data on the
5420
+ # storage volume attached to the ML compute instance that hosts the
5421
+ # endpoint.
5367
5422
  #
5368
5423
  # The KmsKeyId can be any of the following formats:
5369
5424
  #
@@ -6277,8 +6332,8 @@ module Aws::SageMaker
6277
6332
  end
6278
6333
 
6279
6334
  # @!attribute [rw] hyper_parameter_tuning_job_arn
6280
- # The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker
6281
- # assigns an ARN to a hyperparameter tuning job when you create it.
6335
+ # The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns
6336
+ # an ARN to a hyperparameter tuning job when you create it.
6282
6337
  # @return [String]
6283
6338
  #
6284
6339
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJobResponse AWS API Documentation
@@ -6362,8 +6417,8 @@ module Aws::SageMaker
6362
6417
  #
6363
6418
  # @!attribute [rw] base_image
6364
6419
  # The registry path of the container image to use as the starting
6365
- # point for this version. The path is an Amazon Container Registry
6366
- # (ECR) URI in the following format:
6420
+ # point for this version. The path is an Amazon Elastic Container
6421
+ # Registry (ECR) URI in the following format:
6367
6422
  #
6368
6423
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
6369
6424
  # [@digest]>`
@@ -6442,6 +6497,7 @@ module Aws::SageMaker
6442
6497
  # },
6443
6498
  # },
6444
6499
  # ],
6500
+ # volume_kms_key_id: "KmsKeyId",
6445
6501
  # },
6446
6502
  # job_description: "RecommendationJobDescription",
6447
6503
  # stopping_conditions: {
@@ -6453,6 +6509,12 @@ module Aws::SageMaker
6453
6509
  # },
6454
6510
  # ],
6455
6511
  # },
6512
+ # output_config: {
6513
+ # kms_key_id: "KmsKeyId",
6514
+ # compiled_output_config: {
6515
+ # s3_output_uri: "S3Uri",
6516
+ # },
6517
+ # },
6456
6518
  # tags: [
6457
6519
  # {
6458
6520
  # key: "TagKey", # required
@@ -6494,6 +6556,11 @@ module Aws::SageMaker
6494
6556
  # conditions are met, the job is automatically stopped.
6495
6557
  # @return [Types::RecommendationJobStoppingConditions]
6496
6558
  #
6559
+ # @!attribute [rw] output_config
6560
+ # Provides information about the output artifacts and the KMS key to
6561
+ # use for Amazon S3 server-side encryption.
6562
+ # @return [Types::RecommendationJobOutputConfig]
6563
+ #
6497
6564
  # @!attribute [rw] tags
6498
6565
  # The metadata that you apply to Amazon Web Services resources to help
6499
6566
  # you categorize and organize them. Each tag consists of a key and a
@@ -6515,6 +6582,7 @@ module Aws::SageMaker
6515
6582
  :input_config,
6516
6583
  :job_description,
6517
6584
  :stopping_conditions,
6585
+ :output_config,
6518
6586
  :tags)
6519
6587
  SENSITIVE = []
6520
6588
  include Aws::Structure
@@ -7203,14 +7271,14 @@ module Aws::SageMaker
7203
7271
  # @return [Types::InferenceExecutionConfig]
7204
7272
  #
7205
7273
  # @!attribute [rw] execution_role_arn
7206
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
7207
- # can assume to access model artifacts and docker image for deployment
7208
- # on ML compute instances or for batch transform jobs. Deploying on ML
7274
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
7275
+ # assume to access model artifacts and docker image for deployment on
7276
+ # ML compute instances or for batch transform jobs. Deploying on ML
7209
7277
  # compute instances is part of model hosting. For more information,
7210
- # see [Amazon SageMaker Roles][1].
7278
+ # see [SageMaker Roles][1].
7211
7279
  #
7212
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
7213
- # API must have the `iam:PassRole` permission.
7280
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
7281
+ # must have the `iam:PassRole` permission.
7214
7282
  #
7215
7283
  # </note>
7216
7284
  #
@@ -7265,7 +7333,7 @@ module Aws::SageMaker
7265
7333
  end
7266
7334
 
7267
7335
  # @!attribute [rw] model_arn
7268
- # The ARN of the model created in Amazon SageMaker.
7336
+ # The ARN of the model created in SageMaker.
7269
7337
  # @return [String]
7270
7338
  #
7271
7339
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateModelOutput AWS API Documentation
@@ -7598,7 +7666,7 @@ module Aws::SageMaker
7598
7666
  # @return [Types::InferenceSpecification]
7599
7667
  #
7600
7668
  # @!attribute [rw] validation_specification
7601
- # Specifies configurations for one or more transform jobs that Amazon
7669
+ # Specifies configurations for one or more transform jobs that
7602
7670
  # SageMaker runs to test the model package.
7603
7671
  # @return [Types::ModelPackageValidationSpecification]
7604
7672
  #
@@ -8019,7 +8087,7 @@ module Aws::SageMaker
8019
8087
  #
8020
8088
  # {
8021
8089
  # notebook_instance_name: "NotebookInstanceName", # required
8022
- # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
8090
+ # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
8023
8091
  # subnet_id: "SubnetId",
8024
8092
  # security_group_ids: ["SecurityGroupId"],
8025
8093
  # role_arn: "RoleArn", # required
@@ -8060,15 +8128,14 @@ module Aws::SageMaker
8060
8128
  #
8061
8129
  # @!attribute [rw] role_arn
8062
8130
  # When you send any requests to Amazon Web Services resources from the
8063
- # notebook instance, Amazon SageMaker assumes this role to perform
8064
- # tasks on your behalf. You must grant this role necessary permissions
8065
- # so Amazon SageMaker can perform these tasks. The policy must allow
8066
- # the Amazon SageMaker service principal (sagemaker.amazonaws.com)
8067
- # permissions to assume this role. For more information, see [Amazon
8068
- # SageMaker Roles][1].
8131
+ # notebook instance, SageMaker assumes this role to perform tasks on
8132
+ # your behalf. You must grant this role necessary permissions so
8133
+ # SageMaker can perform these tasks. The policy must allow the
8134
+ # SageMaker service principal (sagemaker.amazonaws.com) permissions to
8135
+ # assume this role. For more information, see [SageMaker Roles][1].
8069
8136
  #
8070
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
8071
- # API must have the `iam:PassRole` permission.
8137
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
8138
+ # must have the `iam:PassRole` permission.
8072
8139
  #
8073
8140
  # </note>
8074
8141
  #
@@ -8079,9 +8146,9 @@ module Aws::SageMaker
8079
8146
  #
8080
8147
  # @!attribute [rw] kms_key_id
8081
8148
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
8082
- # Management Service key that Amazon SageMaker uses to encrypt data on
8083
- # the storage volume attached to your notebook instance. The KMS key
8084
- # you provide must be enabled. For information, see [Enabling and
8149
+ # Management Service key that SageMaker uses to encrypt data on the
8150
+ # storage volume attached to your notebook instance. The KMS key you
8151
+ # provide must be enabled. For information, see [Enabling and
8085
8152
  # Disabling Keys][1] in the *Amazon Web Services Key Management
8086
8153
  # Service Developer Guide*.
8087
8154
  #
@@ -8112,11 +8179,11 @@ module Aws::SageMaker
8112
8179
  # @return [String]
8113
8180
  #
8114
8181
  # @!attribute [rw] direct_internet_access
8115
- # Sets whether Amazon SageMaker provides internet access to the
8116
- # notebook instance. If you set this to `Disabled` this notebook
8117
- # instance is able to access resources only in your VPC, and is not be
8118
- # able to connect to Amazon SageMaker training and endpoint services
8119
- # unless you configure a NAT Gateway in your VPC.
8182
+ # Sets whether SageMaker provides internet access to the notebook
8183
+ # instance. If you set this to `Disabled` this notebook instance is
8184
+ # able to access resources only in your VPC, and is not be able to
8185
+ # connect to SageMaker training and endpoint services unless you
8186
+ # configure a NAT Gateway in your VPC.
8120
8187
  #
8121
8188
  # For more information, see [Notebook Instances Are Internet-Enabled
8122
8189
  # by Default][1]. You can set the value of this parameter to
@@ -8150,8 +8217,7 @@ module Aws::SageMaker
8150
8217
  # repository in [Amazon Web Services CodeCommit][1] or in any other
8151
8218
  # Git repository. When you open a notebook instance, it opens in the
8152
8219
  # directory that contains this repository. For more information, see
8153
- # [Associating Git Repositories with Amazon SageMaker Notebook
8154
- # Instances][2].
8220
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
8155
8221
  #
8156
8222
  #
8157
8223
  #
@@ -8166,7 +8232,7 @@ module Aws::SageMaker
8166
8232
  # in [Amazon Web Services CodeCommit][1] or in any other Git
8167
8233
  # repository. These repositories are cloned at the same level as the
8168
8234
  # default repository of your notebook instance. For more information,
8169
- # see [Associating Git Repositories with Amazon SageMaker Notebook
8235
+ # see [Associating Git Repositories with SageMaker Notebook
8170
8236
  # Instances][2].
8171
8237
  #
8172
8238
  #
@@ -8961,7 +9027,7 @@ module Aws::SageMaker
8961
9027
  # Algorithm-specific parameters that influence the quality of the
8962
9028
  # model. You set hyperparameters before you start the learning
8963
9029
  # process. For a list of hyperparameters for each training algorithm
8964
- # provided by Amazon SageMaker, see [Algorithms][1].
9030
+ # provided by SageMaker, see [Algorithms][1].
8965
9031
  #
8966
9032
  # You can specify a maximum of 100 hyperparameters. Each
8967
9033
  # hyperparameter is a key-value pair. Each key and value is limited to
@@ -8975,8 +9041,8 @@ module Aws::SageMaker
8975
9041
  # @!attribute [rw] algorithm_specification
8976
9042
  # The registry path of the Docker image that contains the training
8977
9043
  # algorithm and algorithm-specific metadata, including the input mode.
8978
- # For more information about algorithms provided by Amazon SageMaker,
8979
- # see [Algorithms][1]. For information about providing your own
9044
+ # For more information about algorithms provided by SageMaker, see
9045
+ # [Algorithms][1]. For information about providing your own
8980
9046
  # algorithms, see [Using Your Own Algorithms with Amazon
8981
9047
  # SageMaker][2].
8982
9048
  #
@@ -8987,18 +9053,18 @@ module Aws::SageMaker
8987
9053
  # @return [Types::AlgorithmSpecification]
8988
9054
  #
8989
9055
  # @!attribute [rw] role_arn
8990
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
8991
- # can assume to perform tasks on your behalf.
9056
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
9057
+ # assume to perform tasks on your behalf.
8992
9058
  #
8993
- # During model training, Amazon SageMaker needs your permission to
8994
- # read input data from an S3 bucket, download a Docker image that
8995
- # contains training code, write model artifacts to an S3 bucket, write
8996
- # logs to Amazon CloudWatch Logs, and publish metrics to Amazon
8997
- # CloudWatch. You grant permissions for all of these tasks to an IAM
8998
- # role. For more information, see [Amazon SageMaker Roles][1].
9059
+ # During model training, SageMaker needs your permission to read input
9060
+ # data from an S3 bucket, download a Docker image that contains
9061
+ # training code, write model artifacts to an S3 bucket, write logs to
9062
+ # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
9063
+ # You grant permissions for all of these tasks to an IAM role. For
9064
+ # more information, see [SageMaker Roles][1].
8999
9065
  #
9000
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
9001
- # API must have the `iam:PassRole` permission.
9066
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
9067
+ # must have the `iam:PassRole` permission.
9002
9068
  #
9003
9069
  # </note>
9004
9070
  #
@@ -9019,17 +9085,17 @@ module Aws::SageMaker
9019
9085
  # MIME type, compression method, and whether the data is wrapped in
9020
9086
  # RecordIO format.
9021
9087
  #
9022
- # Depending on the input mode that the algorithm supports, Amazon
9023
- # SageMaker either copies input data files from an S3 bucket to a
9024
- # local directory in the Docker container, or makes it available as
9025
- # input streams. For example, if you specify an EFS location, input
9026
- # data files will be made available as input streams. They do not need
9027
- # to be downloaded.
9088
+ # Depending on the input mode that the algorithm supports, SageMaker
9089
+ # either copies input data files from an S3 bucket to a local
9090
+ # directory in the Docker container, or makes it available as input
9091
+ # streams. For example, if you specify an EFS location, input data
9092
+ # files are available as input streams. They do not need to be
9093
+ # downloaded.
9028
9094
  # @return [Array<Types::Channel>]
9029
9095
  #
9030
9096
  # @!attribute [rw] output_data_config
9031
9097
  # Specifies the path to the S3 location where you want to store model
9032
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
9098
+ # artifacts. SageMaker creates subfolders for the artifacts.
9033
9099
  # @return [Types::OutputDataConfig]
9034
9100
  #
9035
9101
  # @!attribute [rw] resource_config
@@ -9038,9 +9104,9 @@ module Aws::SageMaker
9038
9104
  #
9039
9105
  # ML storage volumes store model artifacts and incremental states.
9040
9106
  # Training algorithms might also use ML storage volumes for scratch
9041
- # space. If you want Amazon SageMaker to use the ML storage volume to
9042
- # store the training data, choose `File` as the `TrainingInputMode` in
9043
- # the algorithm specification. For distributed training algorithms,
9107
+ # space. If you want SageMaker to use the ML storage volume to store
9108
+ # the training data, choose `File` as the `TrainingInputMode` in the
9109
+ # algorithm specification. For distributed training algorithms,
9044
9110
  # specify an instance count greater than 1.
9045
9111
  # @return [Types::ResourceConfig]
9046
9112
  #
@@ -9058,13 +9124,13 @@ module Aws::SageMaker
9058
9124
  # @!attribute [rw] stopping_condition
9059
9125
  # Specifies a limit to how long a model training job can run. It also
9060
9126
  # specifies how long a managed Spot training job has to complete. When
9061
- # the job reaches the time limit, Amazon SageMaker ends the training
9062
- # job. Use this API to cap model training costs.
9127
+ # the job reaches the time limit, SageMaker ends the training job. Use
9128
+ # this API to cap model training costs.
9063
9129
  #
9064
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
9065
- # signal, which delays job termination for 120 seconds. Algorithms can
9066
- # use this 120-second window to save the model artifacts, so the
9067
- # results of training are not lost.
9130
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
9131
+ # which delays job termination for 120 seconds. Algorithms can use
9132
+ # this 120-second window to save the model artifacts, so the results
9133
+ # of training are not lost.
9068
9134
  # @return [Types::StoppingCondition]
9069
9135
  #
9070
9136
  # @!attribute [rw] tags
@@ -9082,7 +9148,7 @@ module Aws::SageMaker
9082
9148
  # Isolates the training container. No inbound or outbound network
9083
9149
  # calls can be made, except for calls between peers within a training
9084
9150
  # cluster for distributed training. If you enable network isolation
9085
- # for training jobs that are configured to use a VPC, Amazon SageMaker
9151
+ # for training jobs that are configured to use a VPC, SageMaker
9086
9152
  # downloads and uploads customer data and model artifacts through the
9087
9153
  # specified VPC, but the training container does not have network
9088
9154
  # access.
@@ -9312,6 +9378,11 @@ module Aws::SageMaker
9312
9378
  # records fit within the maximum payload size, we recommend using a
9313
9379
  # slightly larger value. The default value is `6` MB.
9314
9380
  #
9381
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
9382
+ # specify the `MaxConcurrentTransforms` parameter, the value of
9383
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
9384
+ # MB.
9385
+ #
9315
9386
  # For cases where the payload might be arbitrarily large and is
9316
9387
  # transmitted using HTTP chunked encoding, set the value to `0`. This
9317
9388
  # feature works only in supported algorithms. Currently, Amazon
@@ -10127,8 +10198,8 @@ module Aws::SageMaker
10127
10198
  # A [JSONPath][1] expression used to select a portion of the input
10128
10199
  # data to pass to the algorithm. Use the `InputFilter` parameter to
10129
10200
  # exclude fields, such as an ID column, from the input. If you want
10130
- # Amazon SageMaker to pass the entire input dataset to the algorithm,
10131
- # accept the default value `$`.
10201
+ # SageMaker to pass the entire input dataset to the algorithm, accept
10202
+ # the default value `$`.
10132
10203
  #
10133
10204
  # Examples: `"$"`, `"$[1:]"`, `"$.features"`
10134
10205
  #
@@ -10140,10 +10211,9 @@ module Aws::SageMaker
10140
10211
  # @!attribute [rw] output_filter
10141
10212
  # A [JSONPath][1] expression used to select a portion of the joined
10142
10213
  # dataset to save in the output file for a batch transform job. If you
10143
- # want Amazon SageMaker to store the entire input dataset in the
10144
- # output file, leave the default value, `$`. If you specify indexes
10145
- # that aren't within the dimension size of the joined dataset, you
10146
- # get an error.
10214
+ # want SageMaker to store the entire input dataset in the output file,
10215
+ # leave the default value, `$`. If you specify indexes that aren't
10216
+ # within the dimension size of the joined dataset, you get an error.
10147
10217
  #
10148
10218
  # Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
10149
10219
  #
@@ -11272,7 +11342,7 @@ module Aws::SageMaker
11272
11342
  # }
11273
11343
  #
11274
11344
  # @!attribute [rw] notebook_instance_name
11275
- # The name of the Amazon SageMaker notebook instance to delete.
11345
+ # The name of the SageMaker notebook instance to delete.
11276
11346
  # @return [String]
11277
11347
  #
11278
11348
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteNotebookInstanceInput AWS API Documentation
@@ -11813,7 +11883,7 @@ module Aws::SageMaker
11813
11883
  #
11814
11884
  # @!attribute [rw] validation_specification
11815
11885
  # Details about configurations for one or more training jobs that
11816
- # Amazon SageMaker runs to test the algorithm.
11886
+ # SageMaker runs to test the algorithm.
11817
11887
  # @return [Types::AlgorithmValidationSpecification]
11818
11888
  #
11819
11889
  # @!attribute [rw] algorithm_status
@@ -13024,7 +13094,7 @@ module Aws::SageMaker
13024
13094
  end
13025
13095
 
13026
13096
  # @!attribute [rw] endpoint_config_name
13027
- # Name of the Amazon SageMaker endpoint configuration.
13097
+ # Name of the SageMaker endpoint configuration.
13028
13098
  # @return [String]
13029
13099
  #
13030
13100
  # @!attribute [rw] endpoint_config_arn
@@ -13966,8 +14036,8 @@ module Aws::SageMaker
13966
14036
  # @return [Types::LabelingJobOutputConfig]
13967
14037
  #
13968
14038
  # @!attribute [rw] role_arn
13969
- # The Amazon Resource Name (ARN) that Amazon SageMaker assumes to
13970
- # perform tasks on your behalf during data labeling.
14039
+ # The Amazon Resource Name (ARN) that SageMaker assumes to perform
14040
+ # tasks on your behalf during data labeling.
13971
14041
  # @return [String]
13972
14042
  #
13973
14043
  # @!attribute [rw] label_category_config_s3_uri
@@ -14333,7 +14403,7 @@ module Aws::SageMaker
14333
14403
  end
14334
14404
 
14335
14405
  # @!attribute [rw] model_name
14336
- # Name of the Amazon SageMaker model.
14406
+ # Name of the SageMaker model.
14337
14407
  # @return [String]
14338
14408
  #
14339
14409
  # @!attribute [rw] primary_container
@@ -14403,7 +14473,7 @@ module Aws::SageMaker
14403
14473
  # }
14404
14474
  #
14405
14475
  # @!attribute [rw] model_package_group_name
14406
- # The name of the model group to describe.
14476
+ # The name of gthe model group to describe.
14407
14477
  # @return [String]
14408
14478
  #
14409
14479
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageGroupInput AWS API Documentation
@@ -14547,7 +14617,7 @@ module Aws::SageMaker
14547
14617
  # @return [Types::ModelMetrics]
14548
14618
  #
14549
14619
  # @!attribute [rw] last_modified_time
14550
- # The last time the model package was modified.
14620
+ # The last time that the model package was modified.
14551
14621
  # @return [Time]
14552
14622
  #
14553
14623
  # @!attribute [rw] last_modified_by
@@ -14891,7 +14961,7 @@ module Aws::SageMaker
14891
14961
  # @return [String]
14892
14962
  #
14893
14963
  # @!attribute [rw] notebook_instance_name
14894
- # The name of the Amazon SageMaker notebook instance.
14964
+ # The name of the SageMaker notebook instance.
14895
14965
  # @return [String]
14896
14966
  #
14897
14967
  # @!attribute [rw] notebook_instance_status
@@ -14925,14 +14995,13 @@ module Aws::SageMaker
14925
14995
  # @return [String]
14926
14996
  #
14927
14997
  # @!attribute [rw] kms_key_id
14928
- # The Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt
14929
- # data when storing it on the ML storage volume attached to the
14930
- # instance.
14998
+ # The Amazon Web Services KMS key ID SageMaker uses to encrypt data
14999
+ # when storing it on the ML storage volume attached to the instance.
14931
15000
  # @return [String]
14932
15001
  #
14933
15002
  # @!attribute [rw] network_interface_id
14934
- # The network interface IDs that Amazon SageMaker created at the time
14935
- # of creating the instance.
15003
+ # The network interface IDs that SageMaker created at the time of
15004
+ # creating the instance.
14936
15005
  # @return [String]
14937
15006
  #
14938
15007
  # @!attribute [rw] last_modified_time
@@ -14957,10 +15026,10 @@ module Aws::SageMaker
14957
15026
  # @return [String]
14958
15027
  #
14959
15028
  # @!attribute [rw] direct_internet_access
14960
- # Describes whether Amazon SageMaker provides internet access to the
14961
- # notebook instance. If this value is set to *Disabled*, the notebook
14962
- # instance does not have internet access, and cannot connect to Amazon
14963
- # SageMaker training and endpoint services.
15029
+ # Describes whether SageMaker provides internet access to the notebook
15030
+ # instance. If this value is set to *Disabled*, the notebook instance
15031
+ # does not have internet access, and cannot connect to SageMaker
15032
+ # training and endpoint services.
14964
15033
  #
14965
15034
  # For more information, see [Notebook Instances Are Internet-Enabled
14966
15035
  # by Default][1].
@@ -14993,8 +15062,7 @@ module Aws::SageMaker
14993
15062
  # repository in [Amazon Web Services CodeCommit][1] or in any other
14994
15063
  # Git repository. When you open a notebook instance, it opens in the
14995
15064
  # directory that contains this repository. For more information, see
14996
- # [Associating Git Repositories with Amazon SageMaker Notebook
14997
- # Instances][2].
15065
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
14998
15066
  #
14999
15067
  #
15000
15068
  #
@@ -15009,7 +15077,7 @@ module Aws::SageMaker
15009
15077
  # in [Amazon Web Services CodeCommit][1] or in any other Git
15010
15078
  # repository. These repositories are cloned at the same level as the
15011
15079
  # default repository of your notebook instance. For more information,
15012
- # see [Associating Git Repositories with Amazon SageMaker Notebook
15080
+ # see [Associating Git Repositories with SageMaker Notebook
15013
15081
  # Instances][2].
15014
15082
  #
15015
15083
  #
@@ -15631,7 +15699,7 @@ module Aws::SageMaker
15631
15699
  # @return [String]
15632
15700
  #
15633
15701
  # @!attribute [rw] labeling_job_arn
15634
- # The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth
15702
+ # The Amazon Resource Name (ARN) of the SageMaker Ground Truth
15635
15703
  # labeling job that created the transform or training job.
15636
15704
  # @return [String]
15637
15705
  #
@@ -15647,7 +15715,7 @@ module Aws::SageMaker
15647
15715
  # @!attribute [rw] training_job_status
15648
15716
  # The status of the training job.
15649
15717
  #
15650
- # Amazon SageMaker provides the following training job statuses:
15718
+ # SageMaker provides the following training job statuses:
15651
15719
  #
15652
15720
  # * `InProgress` - The training is in progress.
15653
15721
  #
@@ -15669,8 +15737,8 @@ module Aws::SageMaker
15669
15737
  # For detailed information on the secondary status of the training
15670
15738
  # job, see `StatusMessage` under SecondaryStatusTransition.
15671
15739
  #
15672
- # Amazon SageMaker provides primary statuses and secondary statuses
15673
- # that apply to each of them:
15740
+ # SageMaker provides primary statuses and secondary statuses that
15741
+ # apply to each of them:
15674
15742
  #
15675
15743
  # InProgress
15676
15744
  # : * `Starting` - Starting the training job.
@@ -15749,7 +15817,7 @@ module Aws::SageMaker
15749
15817
  #
15750
15818
  # @!attribute [rw] output_data_config
15751
15819
  # The S3 path where model artifacts that you configured when creating
15752
- # the job are stored. Amazon SageMaker creates subfolders for model
15820
+ # the job are stored. SageMaker creates subfolders for model
15753
15821
  # artifacts.
15754
15822
  # @return [Types::OutputDataConfig]
15755
15823
  #
@@ -15771,13 +15839,13 @@ module Aws::SageMaker
15771
15839
  # @!attribute [rw] stopping_condition
15772
15840
  # Specifies a limit to how long a model training job can run. It also
15773
15841
  # specifies how long a managed Spot training job has to complete. When
15774
- # the job reaches the time limit, Amazon SageMaker ends the training
15775
- # job. Use this API to cap model training costs.
15842
+ # the job reaches the time limit, SageMaker ends the training job. Use
15843
+ # this API to cap model training costs.
15776
15844
  #
15777
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
15778
- # signal, which delays job termination for 120 seconds. Algorithms can
15779
- # use this 120-second window to save the model artifacts, so the
15780
- # results of training are not lost.
15845
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
15846
+ # which delays job termination for 120 seconds. Algorithms can use
15847
+ # this 120-second window to save the model artifacts, so the results
15848
+ # of training are not lost.
15781
15849
  # @return [Types::StoppingCondition]
15782
15850
  #
15783
15851
  # @!attribute [rw] creation_time
@@ -15798,8 +15866,7 @@ module Aws::SageMaker
15798
15866
  # You are billed for the time interval between the value of
15799
15867
  # `TrainingStartTime` and this time. For successful jobs and stopped
15800
15868
  # jobs, this is the time after model artifacts are uploaded. For
15801
- # failed jobs, this is the time when Amazon SageMaker detects a job
15802
- # failure.
15869
+ # failed jobs, this is the time when SageMaker detects a job failure.
15803
15870
  # @return [Time]
15804
15871
  #
15805
15872
  # @!attribute [rw] last_modified_time
@@ -15822,10 +15889,9 @@ module Aws::SageMaker
15822
15889
  # If you want to allow inbound or outbound network calls, except for
15823
15890
  # calls between peers within a training cluster for distributed
15824
15891
  # training, choose `True`. If you enable network isolation for
15825
- # training jobs that are configured to use a VPC, Amazon SageMaker
15826
- # downloads and uploads customer data and model artifacts through the
15827
- # specified VPC, but the training container does not have network
15828
- # access.
15892
+ # training jobs that are configured to use a VPC, SageMaker downloads
15893
+ # and uploads customer data and model artifacts through the specified
15894
+ # VPC, but the training container does not have network access.
15829
15895
  # @return [Boolean]
15830
15896
  #
15831
15897
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -15857,7 +15923,7 @@ module Aws::SageMaker
15857
15923
  #
15858
15924
  # Multiply `BillableTimeInSeconds` by the number of instances
15859
15925
  # (`InstanceCount`) in your training cluster to get the total compute
15860
- # time SageMaker will bill you if you run distributed training. The
15926
+ # time SageMaker bills you if you run distributed training. The
15861
15927
  # formula is as follows: `BillableTimeInSeconds * InstanceCount` .
15862
15928
  #
15863
15929
  # You can calculate the savings from using managed spot training using
@@ -20065,10 +20131,10 @@ module Aws::SageMaker
20065
20131
  # The registry path of the Docker image that contains the training
20066
20132
  # algorithm. For information about Docker registry paths for built-in
20067
20133
  # algorithms, see [Algorithms Provided by Amazon SageMaker: Common
20068
- # Parameters][1]. Amazon SageMaker supports both
20069
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
20070
- # path formats. For more information, see [Using Your Own Algorithms
20071
- # with Amazon SageMaker][2].
20134
+ # Parameters][1]. SageMaker supports both `registry/repository[:tag]`
20135
+ # and `registry/repository[@digest]` image path formats. For more
20136
+ # information, see [Using Your Own Algorithms with Amazon
20137
+ # SageMaker][2].
20072
20138
  #
20073
20139
  #
20074
20140
  #
@@ -20393,27 +20459,26 @@ module Aws::SageMaker
20393
20459
  #
20394
20460
  # Storage volumes store model artifacts and incremental states.
20395
20461
  # Training algorithms might also use storage volumes for scratch
20396
- # space. If you want Amazon SageMaker to use the storage volume to
20397
- # store the training data, choose `File` as the `TrainingInputMode` in
20398
- # the algorithm specification. For distributed training algorithms,
20462
+ # space. If you want SageMaker to use the storage volume to store the
20463
+ # training data, choose `File` as the `TrainingInputMode` in the
20464
+ # algorithm specification. For distributed training algorithms,
20399
20465
  # specify an instance count greater than 1.
20400
20466
  # @return [Types::ResourceConfig]
20401
20467
  #
20402
20468
  # @!attribute [rw] stopping_condition
20403
20469
  # Specifies a limit to how long a model hyperparameter training job
20404
20470
  # can run. It also specifies how long a managed spot training job has
20405
- # to complete. When the job reaches the time limit, Amazon SageMaker
20406
- # ends the training job. Use this API to cap model training costs.
20471
+ # to complete. When the job reaches the time limit, SageMaker ends the
20472
+ # training job. Use this API to cap model training costs.
20407
20473
  # @return [Types::StoppingCondition]
20408
20474
  #
20409
20475
  # @!attribute [rw] enable_network_isolation
20410
20476
  # Isolates the training container. No inbound or outbound network
20411
20477
  # calls can be made, except for calls between peers within a training
20412
20478
  # cluster for distributed training. If network isolation is used for
20413
- # training jobs that are configured to use a VPC, Amazon SageMaker
20414
- # downloads and uploads customer data and model artifacts through the
20415
- # specified VPC, but the training container does not have network
20416
- # access.
20479
+ # training jobs that are configured to use a VPC, SageMaker downloads
20480
+ # and uploads customer data and model artifacts through the specified
20481
+ # VPC, but the training container does not have network access.
20417
20482
  # @return [Boolean]
20418
20483
  #
20419
20484
  # @!attribute [rw] enable_inter_container_traffic_encryption
@@ -20463,7 +20528,7 @@ module Aws::SageMaker
20463
20528
  include Aws::Structure
20464
20529
  end
20465
20530
 
20466
- # Specifies summary information about a training job.
20531
+ # The container for the summary information about a training job.
20467
20532
  #
20468
20533
  # @!attribute [rw] training_job_definition_name
20469
20534
  # The training job definition name.
@@ -20494,8 +20559,7 @@ module Aws::SageMaker
20494
20559
  # You are billed for the time interval between the value of
20495
20560
  # `TrainingStartTime` and this time. For successful jobs and stopped
20496
20561
  # jobs, this is the time after model artifacts are uploaded. For
20497
- # failed jobs, this is the time when Amazon SageMaker detects a job
20498
- # failure.
20562
+ # failed jobs, this is the time when SageMaker detects a job failure.
20499
20563
  # @return [Time]
20500
20564
  #
20501
20565
  # @!attribute [rw] training_job_status
@@ -20644,9 +20708,9 @@ module Aws::SageMaker
20644
20708
  #
20645
20709
  # AUTO
20646
20710
  #
20647
- # : Amazon SageMaker stops training jobs launched by the
20648
- # hyperparameter tuning job when they are unlikely to perform better
20649
- # than previously completed training jobs. For more information, see
20711
+ # : SageMaker stops training jobs launched by the hyperparameter
20712
+ # tuning job when they are unlikely to perform better than
20713
+ # previously completed training jobs. For more information, see
20650
20714
  # [Stop Training Jobs Early][1].
20651
20715
  #
20652
20716
  #
@@ -21447,8 +21511,8 @@ module Aws::SageMaker
21447
21511
  #
21448
21512
  # Auto
21449
21513
  #
21450
- # : Amazon SageMaker hyperparameter tuning chooses the best scale for
21451
- # the hyperparameter.
21514
+ # : SageMaker hyperparameter tuning chooses the best scale for the
21515
+ # hyperparameter.
21452
21516
  #
21453
21517
  # Linear
21454
21518
  #
@@ -21523,12 +21587,20 @@ module Aws::SageMaker
21523
21587
  #
21524
21588
  # @!attribute [rw] default_resource_spec
21525
21589
  # The default instance type and the Amazon Resource Name (ARN) of the
21526
- # default SageMaker image used by the JupyterServer app.
21590
+ # default SageMaker image used by the JupyterServer app. If you use
21591
+ # the `LifecycleConfigArns` parameter, then this parameter is also
21592
+ # required.
21527
21593
  # @return [Types::ResourceSpec]
21528
21594
  #
21529
21595
  # @!attribute [rw] lifecycle_config_arns
21530
21596
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21531
- # attached to the JupyterServerApp.
21597
+ # attached to the JupyterServerApp. If you use this parameter, the
21598
+ # `DefaultResourceSpec` parameter is also required.
21599
+ #
21600
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21601
+ # an empty list.
21602
+ #
21603
+ # </note>
21532
21604
  # @return [Array<String>]
21533
21605
  #
21534
21606
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/JupyterServerAppSettings AWS API Documentation
@@ -21565,6 +21637,14 @@ module Aws::SageMaker
21565
21637
  # @!attribute [rw] default_resource_spec
21566
21638
  # The default instance type and the Amazon Resource Name (ARN) of the
21567
21639
  # default SageMaker image used by the KernelGateway app.
21640
+ #
21641
+ # <note markdown="1"> The Amazon SageMaker Studio UI does not use the default instance
21642
+ # type value set here. The default instance type set here is used when
21643
+ # Apps are created using the Amazon Web Services Command Line
21644
+ # Interface or Amazon Web Services CloudFormation and the instance
21645
+ # type parameter value is not passed.
21646
+ #
21647
+ # </note>
21568
21648
  # @return [Types::ResourceSpec]
21569
21649
  #
21570
21650
  # @!attribute [rw] custom_images
@@ -21575,6 +21655,11 @@ module Aws::SageMaker
21575
21655
  # @!attribute [rw] lifecycle_config_arns
21576
21656
  # The Amazon Resource Name (ARN) of the Lifecycle Configurations
21577
21657
  # attached to the the user profile or domain.
21658
+ #
21659
+ # <note markdown="1"> To remove a Lifecycle Config, you must set `LifecycleConfigArns` to
21660
+ # an empty list.
21661
+ #
21662
+ # </note>
21578
21663
  # @return [Array<String>]
21579
21664
  #
21580
21665
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/KernelGatewayAppSettings AWS API Documentation
@@ -21782,8 +21867,8 @@ module Aws::SageMaker
21782
21867
  #
21783
21868
  # @!attribute [rw] content_classifiers
21784
21869
  # Declares that your content is free of personally identifiable
21785
- # information or adult content. Amazon SageMaker may restrict the
21786
- # Amazon Mechanical Turk workers that can view your task based on this
21870
+ # information or adult content. SageMaker may restrict the Amazon
21871
+ # Mechanical Turk workers that can view your task based on this
21787
21872
  # information.
21788
21873
  # @return [Array<String>]
21789
21874
  #
@@ -21927,8 +22012,8 @@ module Aws::SageMaker
21927
22012
  # @return [String]
21928
22013
  #
21929
22014
  # @!attribute [rw] final_active_learning_model_arn
21930
- # The Amazon Resource Name (ARN) for the most recent Amazon SageMaker
21931
- # model trained as part of automated data labeling.
22015
+ # The Amazon Resource Name (ARN) for the most recent SageMaker model
22016
+ # trained as part of automated data labeling.
21932
22017
  # @return [String]
21933
22018
  #
21934
22019
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutput AWS API Documentation
@@ -22438,8 +22523,8 @@ module Aws::SageMaker
22438
22523
  # @return [Array<Types::AlgorithmSummary>]
22439
22524
  #
22440
22525
  # @!attribute [rw] next_token
22441
- # If the response is truncated, Amazon SageMaker returns this token.
22442
- # To retrieve the next set of algorithms, use it in the subsequent
22526
+ # If the response is truncated, SageMaker returns this token. To
22527
+ # retrieve the next set of algorithms, use it in the subsequent
22443
22528
  # request.
22444
22529
  # @return [String]
22445
22530
  #
@@ -23713,8 +23798,8 @@ module Aws::SageMaker
23713
23798
  # @return [Array<Types::EndpointConfigSummary>]
23714
23799
  #
23715
23800
  # @!attribute [rw] next_token
23716
- # If the response is truncated, Amazon SageMaker returns this token.
23717
- # To retrieve the next set of endpoint configurations, use it in the
23801
+ # If the response is truncated, SageMaker returns this token. To
23802
+ # retrieve the next set of endpoint configurations, use it in the
23718
23803
  # subsequent request
23719
23804
  # @return [String]
23720
23805
  #
@@ -23813,8 +23898,8 @@ module Aws::SageMaker
23813
23898
  # @return [Array<Types::EndpointSummary>]
23814
23899
  #
23815
23900
  # @!attribute [rw] next_token
23816
- # If the response is truncated, Amazon SageMaker returns this token.
23817
- # To retrieve the next set of training jobs, use it in the subsequent
23901
+ # If the response is truncated, SageMaker returns this token. To
23902
+ # retrieve the next set of training jobs, use it in the subsequent
23818
23903
  # request.
23819
23904
  # @return [String]
23820
23905
  #
@@ -24579,8 +24664,8 @@ module Aws::SageMaker
24579
24664
  # @return [Array<Types::LabelingJobForWorkteamSummary>]
24580
24665
  #
24581
24666
  # @!attribute [rw] next_token
24582
- # If the response is truncated, Amazon SageMaker returns this token.
24583
- # To retrieve the next set of labeling jobs, use it in the subsequent
24667
+ # If the response is truncated, SageMaker returns this token. To
24668
+ # retrieve the next set of labeling jobs, use it in the subsequent
24584
24669
  # request.
24585
24670
  # @return [String]
24586
24671
  #
@@ -24680,8 +24765,8 @@ module Aws::SageMaker
24680
24765
  # @return [Array<Types::LabelingJobSummary>]
24681
24766
  #
24682
24767
  # @!attribute [rw] next_token
24683
- # If the response is truncated, Amazon SageMaker returns this token.
24684
- # To retrieve the next set of labeling jobs, use it in the subsequent
24768
+ # If the response is truncated, SageMaker returns this token. To
24769
+ # retrieve the next set of labeling jobs, use it in the subsequent
24685
24770
  # request.
24686
24771
  # @return [String]
24687
24772
  #
@@ -25178,8 +25263,8 @@ module Aws::SageMaker
25178
25263
  # @return [Array<Types::ModelPackageSummary>]
25179
25264
  #
25180
25265
  # @!attribute [rw] next_token
25181
- # If the response is truncated, Amazon SageMaker returns this token.
25182
- # To retrieve the next set of model packages, use it in the subsequent
25266
+ # If the response is truncated, SageMaker returns this token. To
25267
+ # retrieve the next set of model packages, use it in the subsequent
25183
25268
  # request.
25184
25269
  # @return [String]
25185
25270
  #
@@ -25346,9 +25431,8 @@ module Aws::SageMaker
25346
25431
  # @return [Array<Types::ModelSummary>]
25347
25432
  #
25348
25433
  # @!attribute [rw] next_token
25349
- # If the response is truncated, Amazon SageMaker returns this token.
25350
- # To retrieve the next set of models, use it in the subsequent
25351
- # request.
25434
+ # If the response is truncated, SageMaker returns this token. To
25435
+ # retrieve the next set of models, use it in the subsequent request.
25352
25436
  # @return [String]
25353
25437
  #
25354
25438
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListModelsOutput AWS API Documentation
@@ -25687,8 +25771,8 @@ module Aws::SageMaker
25687
25771
  end
25688
25772
 
25689
25773
  # @!attribute [rw] next_token
25690
- # If the response is truncated, Amazon SageMaker returns this token.
25691
- # To get the next set of lifecycle configurations, use it in the next
25774
+ # If the response is truncated, SageMaker returns this token. To get
25775
+ # the next set of lifecycle configurations, use it in the next
25692
25776
  # request.
25693
25777
  # @return [String]
25694
25778
  #
@@ -25821,8 +25905,8 @@ module Aws::SageMaker
25821
25905
 
25822
25906
  # @!attribute [rw] next_token
25823
25907
  # If the response to the previous `ListNotebookInstances` request was
25824
- # truncated, Amazon SageMaker returns this token. To retrieve the next
25825
- # set of notebook instances, use the token in the next request.
25908
+ # truncated, SageMaker returns this token. To retrieve the next set of
25909
+ # notebook instances, use the token in the next request.
25826
25910
  # @return [String]
25827
25911
  #
25828
25912
  # @!attribute [rw] notebook_instances
@@ -26470,8 +26554,8 @@ module Aws::SageMaker
26470
26554
  #
26471
26555
  # @!attribute [rw] next_token
26472
26556
  # If the response to the previous `ListTags` request is truncated,
26473
- # Amazon SageMaker returns this token. To retrieve the next set of
26474
- # tags, use it in the subsequent request.
26557
+ # SageMaker returns this token. To retrieve the next set of tags, use
26558
+ # it in the subsequent request.
26475
26559
  # @return [String]
26476
26560
  #
26477
26561
  # @!attribute [rw] max_results
@@ -26493,7 +26577,7 @@ module Aws::SageMaker
26493
26577
  # @return [Array<Types::Tag>]
26494
26578
  #
26495
26579
  # @!attribute [rw] next_token
26496
- # If response is truncated, Amazon SageMaker includes a token in the
26580
+ # If response is truncated, SageMaker includes a token in the
26497
26581
  # response. You can use this token in your subsequent request to fetch
26498
26582
  # next set of tokens.
26499
26583
  # @return [String]
@@ -26672,8 +26756,8 @@ module Aws::SageMaker
26672
26756
  # @return [Array<Types::TrainingJobSummary>]
26673
26757
  #
26674
26758
  # @!attribute [rw] next_token
26675
- # If the response is truncated, Amazon SageMaker returns this token.
26676
- # To retrieve the next set of training jobs, use it in the subsequent
26759
+ # If the response is truncated, SageMaker returns this token. To
26760
+ # retrieve the next set of training jobs, use it in the subsequent
26677
26761
  # request.
26678
26762
  # @return [String]
26679
26763
  #
@@ -27290,9 +27374,9 @@ module Aws::SageMaker
27290
27374
  end
27291
27375
 
27292
27376
  # Specifies a metric that the training algorithm writes to `stderr` or
27293
- # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
27294
- # metrics. You specify one metric that a hyperparameter tuning job uses
27295
- # as its objective metric to choose the best training job.
27377
+ # `stdout`. SageMakerhyperparameter tuning captures all defined metrics.
27378
+ # You specify one metric that a hyperparameter tuning job uses as its
27379
+ # objective metric to choose the best training job.
27296
27380
  #
27297
27381
  # @note When making an API call, you may pass MetricDefinition
27298
27382
  # data as a hash:
@@ -27496,11 +27580,13 @@ module Aws::SageMaker
27496
27580
  # }
27497
27581
  #
27498
27582
  # @!attribute [rw] invocations_timeout_in_seconds
27499
- # The timeout value in seconds for an invocation request.
27583
+ # The timeout value in seconds for an invocation request. The default
27584
+ # value is 600.
27500
27585
  # @return [Integer]
27501
27586
  #
27502
27587
  # @!attribute [rw] invocations_max_retries
27503
27588
  # The maximum number of retries when invocation requests are failing.
27589
+ # The default value is 3.
27504
27590
  # @return [Integer]
27505
27591
  #
27506
27592
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelClientConfig AWS API Documentation
@@ -28004,8 +28090,8 @@ module Aws::SageMaker
28004
28090
  # @return [Types::SourceAlgorithmSpecification]
28005
28091
  #
28006
28092
  # @!attribute [rw] validation_specification
28007
- # Specifies batch transform jobs that Amazon SageMaker runs to
28008
- # validate your model package.
28093
+ # Specifies batch transform jobs that SageMaker runs to validate your
28094
+ # model package.
28009
28095
  # @return [Types::ModelPackageValidationSpecification]
28010
28096
  #
28011
28097
  # @!attribute [rw] model_package_status
@@ -28184,11 +28270,11 @@ module Aws::SageMaker
28184
28270
  # code is stored.
28185
28271
  #
28186
28272
  # If you are using your own custom algorithm instead of an algorithm
28187
- # provided by Amazon SageMaker, the inference code must meet Amazon
28188
- # SageMaker requirements. Amazon SageMaker supports both
28189
- # `registry/repository[:tag]` and `registry/repository[@digest]` image
28190
- # path formats. For more information, see [Using Your Own Algorithms
28191
- # with Amazon SageMaker][1].
28273
+ # provided by SageMaker, the inference code must meet SageMaker
28274
+ # requirements. SageMaker supports both `registry/repository[:tag]`
28275
+ # and `registry/repository[@digest]` image path formats. For more
28276
+ # information, see [Using Your Own Algorithms with Amazon
28277
+ # SageMaker][1].
28192
28278
  #
28193
28279
  #
28194
28280
  #
@@ -28520,8 +28606,8 @@ module Aws::SageMaker
28520
28606
  include Aws::Structure
28521
28607
  end
28522
28608
 
28523
- # Specifies batch transform jobs that Amazon SageMaker runs to validate
28524
- # your model package.
28609
+ # Specifies batch transform jobs that SageMaker runs to validate your
28610
+ # model package.
28525
28611
  #
28526
28612
  # @note When making an API call, you may pass ModelPackageValidationSpecification
28527
28613
  # data as a hash:
@@ -28571,8 +28657,8 @@ module Aws::SageMaker
28571
28657
  #
28572
28658
  # @!attribute [rw] validation_profiles
28573
28659
  # An array of `ModelPackageValidationProfile` objects, each of which
28574
- # specifies a batch transform job that Amazon SageMaker runs to
28575
- # validate your model package.
28660
+ # specifies a batch transform job that SageMaker runs to validate your
28661
+ # model package.
28576
28662
  # @return [Array<Types::ModelPackageValidationProfile>]
28577
28663
  #
28578
28664
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelPackageValidationSpecification AWS API Documentation
@@ -29945,8 +30031,7 @@ module Aws::SageMaker
29945
30031
  include Aws::Structure
29946
30032
  end
29947
30033
 
29948
- # Provides summary information for an Amazon SageMaker notebook
29949
- # instance.
30034
+ # Provides summary information for an SageMaker notebook instance.
29950
30035
  #
29951
30036
  # @!attribute [rw] notebook_instance_name
29952
30037
  # The name of the notebook instance that you want a summary for.
@@ -29961,7 +30046,7 @@ module Aws::SageMaker
29961
30046
  # @return [String]
29962
30047
  #
29963
30048
  # @!attribute [rw] url
29964
- # The URL that you use to connect to the Jupyter instance running in
30049
+ # The URL that you use to connect to the Jupyter notebook running in
29965
30050
  # your notebook instance.
29966
30051
  # @return [String]
29967
30052
  #
@@ -29997,8 +30082,7 @@ module Aws::SageMaker
29997
30082
  # repository in [Amazon Web Services CodeCommit][1] or in any other
29998
30083
  # Git repository. When you open a notebook instance, it opens in the
29999
30084
  # directory that contains this repository. For more information, see
30000
- # [Associating Git Repositories with Amazon SageMaker Notebook
30001
- # Instances][2].
30085
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
30002
30086
  #
30003
30087
  #
30004
30088
  #
@@ -30013,7 +30097,7 @@ module Aws::SageMaker
30013
30097
  # in [Amazon Web Services CodeCommit][1] or in any other Git
30014
30098
  # repository. These repositories are cloned at the same level as the
30015
30099
  # default repository of your notebook instance. For more information,
30016
- # see [Associating Git Repositories with Amazon SageMaker Notebook
30100
+ # see [Associating Git Repositories with SageMaker Notebook
30017
30101
  # Instances][2].
30018
30102
  #
30019
30103
  #
@@ -30639,9 +30723,9 @@ module Aws::SageMaker
30639
30723
  #
30640
30724
  # @!attribute [rw] kms_key_id
30641
30725
  # The Amazon Web Services Key Management Service (Amazon Web Services
30642
- # KMS) key that Amazon SageMaker uses to encrypt the model artifacts
30643
- # at rest using Amazon S3 server-side encryption. The `KmsKeyId` can
30644
- # be any of the following formats:
30726
+ # KMS) key that SageMaker uses to encrypt the model artifacts at rest
30727
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
30728
+ # the following formats:
30645
30729
  #
30646
30730
  # * // KMS Key ID
30647
30731
  #
@@ -30659,14 +30743,13 @@ module Aws::SageMaker
30659
30743
  #
30660
30744
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
30661
30745
  #
30662
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
30663
- # SageMaker execution role must include permissions to call
30664
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
30665
- # uses the default KMS key for Amazon S3 for your role's account.
30666
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
30667
- # for `OutputDataConfig`. If you use a bucket policy with an
30668
- # `s3:PutObject` permission that only allows objects with server-side
30669
- # encryption, set the condition key of
30746
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
30747
+ # execution role must include permissions to call `kms:Encrypt`. If
30748
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
30749
+ # for Amazon S3 for your role's account. SageMaker uses server-side
30750
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
30751
+ # a bucket policy with an `s3:PutObject` permission that only allows
30752
+ # objects with server-side encryption, set the condition key of
30670
30753
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
30671
30754
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
30672
30755
  # Simple Storage Service Developer Guide.*
@@ -30684,8 +30767,8 @@ module Aws::SageMaker
30684
30767
  # @return [String]
30685
30768
  #
30686
30769
  # @!attribute [rw] s3_output_path
30687
- # Identifies the S3 path where you want Amazon SageMaker to store the
30688
- # model artifacts. For example, `s3://bucket-name/key-name-prefix`.
30770
+ # Identifies the S3 path where you want SageMaker to store the model
30771
+ # artifacts. For example, `s3://bucket-name/key-name-prefix`.
30689
30772
  # @return [String]
30690
30773
  #
30691
30774
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputDataConfig AWS API Documentation
@@ -31014,23 +31097,11 @@ module Aws::SageMaker
31014
31097
  #
31015
31098
  # @!attribute [rw] current_serverless_config
31016
31099
  # The serverless configuration for the endpoint.
31017
- #
31018
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31019
- # is subject to change. We do not recommend using this feature in
31020
- # production environments.
31021
- #
31022
- # </note>
31023
31100
  # @return [Types::ProductionVariantServerlessConfig]
31024
31101
  #
31025
31102
  # @!attribute [rw] desired_serverless_config
31026
31103
  # The serverless configuration requested for this deployment, as
31027
31104
  # specified in the endpoint configuration for the endpoint.
31028
- #
31029
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
31030
- # is subject to change. We do not recommend using this feature in
31031
- # production environments.
31032
- #
31033
- # </note>
31034
31105
  # @return [Types::ProductionVariantServerlessConfig]
31035
31106
  #
31036
31107
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingProductionVariantSummary AWS API Documentation
@@ -32232,8 +32303,8 @@ module Aws::SageMaker
32232
32303
 
32233
32304
  # Identifies a model that you want to host and the resources chosen to
32234
32305
  # deploy for hosting it. If you are deploying multiple models, tell
32235
- # Amazon SageMaker how to distribute traffic among the models by
32236
- # specifying variant weights.
32306
+ # SageMaker how to distribute traffic among the models by specifying
32307
+ # variant weights.
32237
32308
  #
32238
32309
  # @note When making an API call, you may pass ProductionVariant
32239
32310
  # data as a hash:
@@ -32300,12 +32371,6 @@ module Aws::SageMaker
32300
32371
  # The serverless configuration for an endpoint. Specifies a serverless
32301
32372
  # endpoint configuration instead of an instance-based endpoint
32302
32373
  # configuration.
32303
- #
32304
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32305
- # is subject to change. We do not recommend using this feature in
32306
- # production environments.
32307
- #
32308
- # </note>
32309
32374
  # @return [Types::ProductionVariantServerlessConfig]
32310
32375
  #
32311
32376
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariant AWS API Documentation
@@ -32340,9 +32405,9 @@ module Aws::SageMaker
32340
32405
  #
32341
32406
  # @!attribute [rw] kms_key_id
32342
32407
  # The Amazon Web Services Key Management Service (Amazon Web Services
32343
- # KMS) key that Amazon SageMaker uses to encrypt the core dump data at
32344
- # rest using Amazon S3 server-side encryption. The `KmsKeyId` can be
32345
- # any of the following formats:
32408
+ # KMS) key that SageMaker uses to encrypt the core dump data at rest
32409
+ # using Amazon S3 server-side encryption. The `KmsKeyId` can be any of
32410
+ # the following formats:
32346
32411
  #
32347
32412
  # * // KMS Key ID
32348
32413
  #
@@ -32360,14 +32425,13 @@ module Aws::SageMaker
32360
32425
  #
32361
32426
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
32362
32427
  #
32363
- # If you use a KMS key ID or an alias of your KMS key, the Amazon
32364
- # SageMaker execution role must include permissions to call
32365
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
32366
- # uses the default KMS key for Amazon S3 for your role's account.
32367
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
32368
- # for `OutputDataConfig`. If you use a bucket policy with an
32369
- # `s3:PutObject` permission that only allows objects with server-side
32370
- # encryption, set the condition key of
32428
+ # If you use a KMS key ID or an alias of your KMS key, the SageMaker
32429
+ # execution role must include permissions to call `kms:Encrypt`. If
32430
+ # you don't provide a KMS key ID, SageMaker uses the default KMS key
32431
+ # for Amazon S3 for your role's account. SageMaker uses server-side
32432
+ # encryption with KMS-managed keys for `OutputDataConfig`. If you use
32433
+ # a bucket policy with an `s3:PutObject` permission that only allows
32434
+ # objects with server-side encryption, set the condition key of
32371
32435
  # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
32372
32436
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
32373
32437
  # Simple Storage Service Developer Guide.*
@@ -32393,10 +32457,6 @@ module Aws::SageMaker
32393
32457
  include Aws::Structure
32394
32458
  end
32395
32459
 
32396
- # Serverless Inference is in preview release for Amazon SageMaker and is
32397
- # subject to change. We do not recommend using this feature in
32398
- # production environments.
32399
- #
32400
32460
  # Specifies the serverless configuration for an endpoint variant.
32401
32461
  #
32402
32462
  # @note When making an API call, you may pass ProductionVariantServerlessConfig
@@ -32506,22 +32566,10 @@ module Aws::SageMaker
32506
32566
  #
32507
32567
  # @!attribute [rw] current_serverless_config
32508
32568
  # The serverless configuration for the endpoint.
32509
- #
32510
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32511
- # is subject to change. We do not recommend using this feature in
32512
- # production environments.
32513
- #
32514
- # </note>
32515
32569
  # @return [Types::ProductionVariantServerlessConfig]
32516
32570
  #
32517
32571
  # @!attribute [rw] desired_serverless_config
32518
32572
  # The serverless configuration requested for the endpoint update.
32519
- #
32520
- # <note markdown="1"> Serverless Inference is in preview release for Amazon SageMaker and
32521
- # is subject to change. We do not recommend using this feature in
32522
- # production environments.
32523
- #
32524
- # </note>
32525
32573
  # @return [Types::ProductionVariantServerlessConfig]
32526
32574
  #
32527
32575
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ProductionVariantSummary AWS API Documentation
@@ -33338,8 +33386,8 @@ module Aws::SageMaker
33338
33386
  # @!attribute [rw] properties
33339
33387
  # Filter the lineage entities connected to the `StartArn`(s) by a set
33340
33388
  # if property key value pairs. If multiple pairs are provided, an
33341
- # entity will be included in the results if it matches any of the
33342
- # provided pairs.
33389
+ # entity is included in the results if it matches any of the provided
33390
+ # pairs.
33343
33391
  # @return [Hash<String,String>]
33344
33392
  #
33345
33393
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/QueryFilters AWS API Documentation
@@ -33385,12 +33433,13 @@ module Aws::SageMaker
33385
33433
  # @return [Array<String>]
33386
33434
  #
33387
33435
  # @!attribute [rw] direction
33388
- # Associations between lineage entities are directed. This parameter
33389
- # determines the direction from the StartArn(s) the query will look.
33436
+ # Associations between lineage entities have a direction. This
33437
+ # parameter determines the direction from the StartArn(s) that the
33438
+ # query traverses.
33390
33439
  # @return [String]
33391
33440
  #
33392
33441
  # @!attribute [rw] include_edges
33393
- # Setting this value to `True` will retrieve not only the entities of
33442
+ # Setting this value to `True` retrieves not only the entities of
33394
33443
  # interest but also the [Associations][1] and lineage entities on the
33395
33444
  # path. Set to `False` to only return lineage entities that match your
33396
33445
  # query.
@@ -33419,8 +33468,8 @@ module Aws::SageMaker
33419
33468
  #
33420
33469
  # @!attribute [rw] max_depth
33421
33470
  # The maximum depth in lineage relationships from the `StartArns` that
33422
- # will be traversed. Depth is a measure of the number of
33423
- # `Associations` from the `StartArn` entity to the matched results.
33471
+ # are traversed. Depth is a measure of the number of `Associations`
33472
+ # from the `StartArn` entity to the matched results.
33424
33473
  # @return [Integer]
33425
33474
  #
33426
33475
  # @!attribute [rw] max_results
@@ -33594,6 +33643,29 @@ module Aws::SageMaker
33594
33643
  include Aws::Structure
33595
33644
  end
33596
33645
 
33646
+ # Provides information about the output configuration for the compiled
33647
+ # model.
33648
+ #
33649
+ # @note When making an API call, you may pass RecommendationJobCompiledOutputConfig
33650
+ # data as a hash:
33651
+ #
33652
+ # {
33653
+ # s3_output_uri: "S3Uri",
33654
+ # }
33655
+ #
33656
+ # @!attribute [rw] s3_output_uri
33657
+ # Identifies the Amazon S3 bucket where you want SageMaker to store
33658
+ # the compiled model artifacts.
33659
+ # @return [String]
33660
+ #
33661
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobCompiledOutputConfig AWS API Documentation
33662
+ #
33663
+ class RecommendationJobCompiledOutputConfig < Struct.new(
33664
+ :s3_output_uri)
33665
+ SENSITIVE = []
33666
+ include Aws::Structure
33667
+ end
33668
+
33597
33669
  # The input configuration of the recommendation job.
33598
33670
  #
33599
33671
  # @note When making an API call, you may pass RecommendationJobInputConfig
@@ -33630,6 +33702,7 @@ module Aws::SageMaker
33630
33702
  # },
33631
33703
  # },
33632
33704
  # ],
33705
+ # volume_kms_key_id: "KmsKeyId",
33633
33706
  # }
33634
33707
  #
33635
33708
  # @!attribute [rw] model_package_version_arn
@@ -33652,6 +33725,46 @@ module Aws::SageMaker
33652
33725
  # Specifies the endpoint configuration to use for a job.
33653
33726
  # @return [Array<Types::EndpointInputConfiguration>]
33654
33727
  #
33728
+ # @!attribute [rw] volume_kms_key_id
33729
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key
33730
+ # Management Service (Amazon Web Services KMS) key that Amazon
33731
+ # SageMaker uses to encrypt data on the storage volume attached to the
33732
+ # ML compute instance that hosts the endpoint. This key will be passed
33733
+ # to SageMaker Hosting for endpoint creation.
33734
+ #
33735
+ # The SageMaker execution role must have `kms:CreateGrant` permission
33736
+ # in order to encrypt data on the storage volume of the endpoints
33737
+ # created for inference recommendation. The inference recommendation
33738
+ # job will fail asynchronously during endpoint configuration creation
33739
+ # if the role passed does not have `kms:CreateGrant` permission.
33740
+ #
33741
+ # The `KmsKeyId` can be any of the following formats:
33742
+ #
33743
+ # * // KMS Key ID
33744
+ #
33745
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
33746
+ #
33747
+ # * // Amazon Resource Name (ARN) of a KMS Key
33748
+ #
33749
+ # `"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"`
33750
+ #
33751
+ # * // KMS Key Alias
33752
+ #
33753
+ # `"alias/ExampleAlias"`
33754
+ #
33755
+ # * // Amazon Resource Name (ARN) of a KMS Key Alias
33756
+ #
33757
+ # `"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"`
33758
+ #
33759
+ # For more information about key identifiers, see [Key identifiers
33760
+ # (KeyID)][1] in the Amazon Web Services Key Management Service
33761
+ # (Amazon Web Services KMS) documentation.
33762
+ #
33763
+ #
33764
+ #
33765
+ # [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
33766
+ # @return [String]
33767
+ #
33655
33768
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobInputConfig AWS API Documentation
33656
33769
  #
33657
33770
  class RecommendationJobInputConfig < Struct.new(
@@ -33659,7 +33772,69 @@ module Aws::SageMaker
33659
33772
  :job_duration_in_seconds,
33660
33773
  :traffic_pattern,
33661
33774
  :resource_limit,
33662
- :endpoint_configurations)
33775
+ :endpoint_configurations,
33776
+ :volume_kms_key_id)
33777
+ SENSITIVE = []
33778
+ include Aws::Structure
33779
+ end
33780
+
33781
+ # Provides information about the output configuration for the compiled
33782
+ # model.
33783
+ #
33784
+ # @note When making an API call, you may pass RecommendationJobOutputConfig
33785
+ # data as a hash:
33786
+ #
33787
+ # {
33788
+ # kms_key_id: "KmsKeyId",
33789
+ # compiled_output_config: {
33790
+ # s3_output_uri: "S3Uri",
33791
+ # },
33792
+ # }
33793
+ #
33794
+ # @!attribute [rw] kms_key_id
33795
+ # The Amazon Resource Name (ARN) of a Amazon Web Services Key
33796
+ # Management Service (Amazon Web Services KMS) key that Amazon
33797
+ # SageMaker uses to encrypt your output artifacts with Amazon S3
33798
+ # server-side encryption. The SageMaker execution role must have
33799
+ # `kms:GenerateDataKey` permission.
33800
+ #
33801
+ # The `KmsKeyId` can be any of the following formats:
33802
+ #
33803
+ # * // KMS Key ID
33804
+ #
33805
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
33806
+ #
33807
+ # * // Amazon Resource Name (ARN) of a KMS Key
33808
+ #
33809
+ # `"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"`
33810
+ #
33811
+ # * // KMS Key Alias
33812
+ #
33813
+ # `"alias/ExampleAlias"`
33814
+ #
33815
+ # * // Amazon Resource Name (ARN) of a KMS Key Alias
33816
+ #
33817
+ # `"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"`
33818
+ #
33819
+ # For more information about key identifiers, see [Key identifiers
33820
+ # (KeyID)][1] in the Amazon Web Services Key Management Service
33821
+ # (Amazon Web Services KMS) documentation.
33822
+ #
33823
+ #
33824
+ #
33825
+ # [1]: https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
33826
+ # @return [String]
33827
+ #
33828
+ # @!attribute [rw] compiled_output_config
33829
+ # Provides information about the output configuration for the compiled
33830
+ # model.
33831
+ # @return [Types::RecommendationJobCompiledOutputConfig]
33832
+ #
33833
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobOutputConfig AWS API Documentation
33834
+ #
33835
+ class RecommendationJobOutputConfig < Struct.new(
33836
+ :kms_key_id,
33837
+ :compiled_output_config)
33663
33838
  SENSITIVE = []
33664
33839
  include Aws::Structure
33665
33840
  end
@@ -34093,15 +34268,15 @@ module Aws::SageMaker
34093
34268
  #
34094
34269
  # You must specify sufficient ML storage for your scenario.
34095
34270
  #
34096
- # <note markdown="1"> Amazon SageMaker supports only the General Purpose SSD (gp2) ML
34097
- # storage volume type.
34271
+ # <note markdown="1"> SageMaker supports only the General Purpose SSD (gp2) ML storage
34272
+ # volume type.
34098
34273
  #
34099
34274
  # </note>
34100
34275
  #
34101
34276
  # <note markdown="1"> Certain Nitro-based instances include local storage with a fixed
34102
34277
  # total size, dependent on the instance type. When using these
34103
- # instances for training, Amazon SageMaker mounts the local instance
34104
- # storage instead of Amazon EBS gp2 storage. You can't request a
34278
+ # instances for training, SageMaker mounts the local instance storage
34279
+ # instead of Amazon EBS gp2 storage. You can't request a
34105
34280
  # `VolumeSizeInGB` greater than the total size of the local instance
34106
34281
  # storage.
34107
34282
  #
@@ -34117,9 +34292,9 @@ module Aws::SageMaker
34117
34292
  # @return [Integer]
34118
34293
  #
34119
34294
  # @!attribute [rw] volume_kms_key_id
34120
- # The Amazon Web Services KMS key that Amazon SageMaker uses to
34121
- # encrypt data on the storage volume attached to the ML compute
34122
- # instance(s) that run the training job.
34295
+ # The Amazon Web Services KMS key that SageMaker uses to encrypt data
34296
+ # on the storage volume attached to the ML compute instance(s) that
34297
+ # run the training job.
34123
34298
  #
34124
34299
  # <note markdown="1"> Certain Nitro-based instances include local storage, dependent on
34125
34300
  # the instance type. Local storage volumes are encrypted using a
@@ -34174,8 +34349,8 @@ module Aws::SageMaker
34174
34349
  include Aws::Structure
34175
34350
  end
34176
34351
 
34177
- # You have exceeded an Amazon SageMaker resource limit. For example, you
34178
- # might have too many training jobs created.
34352
+ # You have exceeded an SageMaker resource limit. For example, you might
34353
+ # have too many training jobs created.
34179
34354
  #
34180
34355
  # @!attribute [rw] message
34181
34356
  # @return [String]
@@ -34254,6 +34429,12 @@ module Aws::SageMaker
34254
34429
  #
34255
34430
  # @!attribute [rw] instance_type
34256
34431
  # The instance type that the image version runs on.
34432
+ #
34433
+ # <note markdown="1"> JupyterServer Apps only support the `system` value. KernelGateway
34434
+ # Apps do not support the `system` value, but support all other values
34435
+ # for available instance types.
34436
+ #
34437
+ # </note>
34257
34438
  # @return [String]
34258
34439
  #
34259
34440
  # @!attribute [rw] lifecycle_config_arn
@@ -34388,11 +34569,11 @@ module Aws::SageMaker
34388
34569
  #
34389
34570
  # @!attribute [rw] s3_data_type
34390
34571
  # If you choose `S3Prefix`, `S3Uri` identifies a key name prefix.
34391
- # Amazon SageMaker uses all objects that match the specified key name
34392
- # prefix for model training.
34572
+ # SageMaker uses all objects that match the specified key name prefix
34573
+ # for model training.
34393
34574
  #
34394
34575
  # If you choose `ManifestFile`, `S3Uri` identifies an object that is a
34395
- # manifest file containing a list of object keys that you want Amazon
34576
+ # manifest file containing a list of object keys that you want
34396
34577
  # SageMaker to use for model training.
34397
34578
  #
34398
34579
  # If you choose `AugmentedManifestFile`, S3Uri identifies an object
@@ -34446,17 +34627,17 @@ module Aws::SageMaker
34446
34627
  #
34447
34628
  # The complete set of `S3Uri` in this manifest is the input data for
34448
34629
  # the channel for this data source. The object that each `S3Uri`
34449
- # points to must be readable by the IAM role that Amazon SageMaker
34450
- # uses to perform tasks on your behalf.
34630
+ # points to must be readable by the IAM role that SageMaker uses to
34631
+ # perform tasks on your behalf.
34451
34632
  # @return [String]
34452
34633
  #
34453
34634
  # @!attribute [rw] s3_data_distribution_type
34454
- # If you want Amazon SageMaker to replicate the entire dataset on each
34455
- # ML compute instance that is launched for model training, specify
34635
+ # If you want SageMaker to replicate the entire dataset on each ML
34636
+ # compute instance that is launched for model training, specify
34456
34637
  # `FullyReplicated`.
34457
34638
  #
34458
- # If you want Amazon SageMaker to replicate a subset of data on each
34459
- # ML compute instance that is launched for model training, specify
34639
+ # If you want SageMaker to replicate a subset of data on each ML
34640
+ # compute instance that is launched for model training, specify
34460
34641
  # `ShardedByS3Key`. If there are *n* ML compute instances launched for
34461
34642
  # a training job, each instance gets approximately 1/*n* of the number
34462
34643
  # of S3 objects. In this case, model training on each machine uses
@@ -34880,9 +35061,9 @@ module Aws::SageMaker
34880
35061
  # transitioned through. A training job can be in one of several states,
34881
35062
  # for example, starting, downloading, training, or uploading. Within
34882
35063
  # each state, there are a number of intermediate states. For example,
34883
- # within the starting state, Amazon SageMaker could be starting the
34884
- # training job or launching the ML instances. These transitional states
34885
- # are referred to as the job's secondary status.
35064
+ # within the starting state, SageMaker could be starting the training
35065
+ # job or launching the ML instances. These transitional states are
35066
+ # referred to as the job's secondary status.
34886
35067
  #
34887
35068
  # @!attribute [rw] status
34888
35069
  # Contains a secondary status information from a training job.
@@ -34947,8 +35128,8 @@ module Aws::SageMaker
34947
35128
  # @!attribute [rw] status_message
34948
35129
  # A detailed description of the progress within a secondary status.
34949
35130
  #
34950
- # Amazon SageMaker provides secondary statuses and status messages
34951
- # that apply to each of them:
35131
+ # SageMaker provides secondary statuses and status messages that apply
35132
+ # to each of them:
34952
35133
  #
34953
35134
  # Starting
34954
35135
  # : * Starting the training job.
@@ -35313,9 +35494,9 @@ module Aws::SageMaker
35313
35494
  end
35314
35495
 
35315
35496
  # Specifies an algorithm that was used to create the model package. The
35316
- # algorithm must be either an algorithm resource in your Amazon
35317
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35318
- # that you are subscribed to.
35497
+ # algorithm must be either an algorithm resource in your SageMaker
35498
+ # account or an algorithm in Amazon Web Services Marketplace that you
35499
+ # are subscribed to.
35319
35500
  #
35320
35501
  # @note When making an API call, you may pass SourceAlgorithm
35321
35502
  # data as a hash:
@@ -35338,9 +35519,9 @@ module Aws::SageMaker
35338
35519
  #
35339
35520
  # @!attribute [rw] algorithm_name
35340
35521
  # The name of an algorithm that was used to create the model package.
35341
- # The algorithm must be either an algorithm resource in your Amazon
35342
- # SageMaker account or an algorithm in Amazon Web Services Marketplace
35343
- # that you are subscribed to.
35522
+ # The algorithm must be either an algorithm resource in your SageMaker
35523
+ # account or an algorithm in Amazon Web Services Marketplace that you
35524
+ # are subscribed to.
35344
35525
  # @return [String]
35345
35526
  #
35346
35527
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SourceAlgorithm AWS API Documentation
@@ -35784,21 +35965,21 @@ module Aws::SageMaker
35784
35965
  # Specifies a limit to how long a model training job or model
35785
35966
  # compilation job can run. It also specifies how long a managed spot
35786
35967
  # training job has to complete. When the job reaches the time limit,
35787
- # Amazon SageMaker ends the training or compilation job. Use this API to
35788
- # cap model training costs.
35789
- #
35790
- # To stop a training job, Amazon SageMaker sends the algorithm the
35791
- # `SIGTERM` signal, which delays job termination for 120 seconds.
35792
- # Algorithms can use this 120-second window to save the model artifacts,
35793
- # so the results of training are not lost.
35794
- #
35795
- # The training algorithms provided by Amazon SageMaker automatically
35796
- # save the intermediate results of a model training job when possible.
35797
- # This attempt to save artifacts is only a best effort case as model
35798
- # might not be in a state from which it can be saved. For example, if
35799
- # training has just started, the model might not be ready to save. When
35800
- # saved, this intermediate data is a valid model artifact. You can use
35801
- # it to create a model with `CreateModel`.
35968
+ # SageMaker ends the training or compilation job. Use this API to cap
35969
+ # model training costs.
35970
+ #
35971
+ # To stop a training job, SageMaker sends the algorithm the `SIGTERM`
35972
+ # signal, which delays job termination for 120 seconds. Algorithms can
35973
+ # use this 120-second window to save the model artifacts, so the results
35974
+ # of training are not lost.
35975
+ #
35976
+ # The training algorithms provided by SageMaker automatically save the
35977
+ # intermediate results of a model training job when possible. This
35978
+ # attempt to save artifacts is only a best effort case as model might
35979
+ # not be in a state from which it can be saved. For example, if training
35980
+ # has just started, the model might not be ready to save. When saved,
35981
+ # this intermediate data is a valid model artifact. You can use it to
35982
+ # create a model with `CreateModel`.
35802
35983
  #
35803
35984
  # <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
35804
35985
  # intermediate model artifacts. When training NTMs, make sure that the
@@ -35819,14 +36000,14 @@ module Aws::SageMaker
35819
36000
  # compilation job can run.
35820
36001
  #
35821
36002
  # For compilation jobs, if the job does not complete during this time,
35822
- # you will receive a `TimeOut` error. We recommend starting with 900
35823
- # seconds and increase as necessary based on your model.
36003
+ # a `TimeOut` error is generated. We recommend starting with 900
36004
+ # seconds and increasing as necessary based on your model.
35824
36005
  #
35825
36006
  # For all other jobs, if the job does not complete during this time,
35826
- # Amazon SageMaker ends the job. When `RetryStrategy` is specified in
35827
- # the job request, `MaxRuntimeInSeconds` specifies the maximum time
35828
- # for all of the attempts in total, not each individual attempt. The
35829
- # default value is 1 day. The maximum value is 28 days.
36007
+ # SageMaker ends the job. When `RetryStrategy` is specified in the job
36008
+ # request, `MaxRuntimeInSeconds` specifies the maximum time for all of
36009
+ # the attempts in total, not each individual attempt. The default
36010
+ # value is 1 day. The maximum value is 28 days.
35830
36011
  # @return [Integer]
35831
36012
  #
35832
36013
  # @!attribute [rw] max_wait_time_in_seconds
@@ -35834,7 +36015,7 @@ module Aws::SageMaker
35834
36015
  # job has to complete. It is the amount of time spent waiting for Spot
35835
36016
  # capacity plus the amount of time the job can run. It must be equal
35836
36017
  # to or greater than `MaxRuntimeInSeconds`. If the job does not
35837
- # complete during this time, Amazon SageMaker ends the job.
36018
+ # complete during this time, SageMaker ends the job.
35838
36019
  #
35839
36020
  # When `RetryStrategy` is specified in the job request,
35840
36021
  # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
@@ -36254,8 +36435,8 @@ module Aws::SageMaker
36254
36435
  # For detailed information about the secondary status of the training
36255
36436
  # job, see `StatusMessage` under SecondaryStatusTransition.
36256
36437
  #
36257
- # Amazon SageMaker provides primary statuses and secondary statuses
36258
- # that apply to each of them:
36438
+ # SageMaker provides primary statuses and secondary statuses that
36439
+ # apply to each of them:
36259
36440
  #
36260
36441
  # InProgress
36261
36442
  # : * `Starting` - Starting the training job.
@@ -36328,7 +36509,7 @@ module Aws::SageMaker
36328
36509
  #
36329
36510
  # @!attribute [rw] output_data_config
36330
36511
  # The S3 path where model artifacts that you configured when creating
36331
- # the job are stored. Amazon SageMaker creates subfolders for model
36512
+ # the job are stored. SageMaker creates subfolders for model
36332
36513
  # artifacts.
36333
36514
  # @return [Types::OutputDataConfig]
36334
36515
  #
@@ -36350,13 +36531,13 @@ module Aws::SageMaker
36350
36531
  # @!attribute [rw] stopping_condition
36351
36532
  # Specifies a limit to how long a model training job can run. It also
36352
36533
  # specifies how long a managed Spot training job has to complete. When
36353
- # the job reaches the time limit, Amazon SageMaker ends the training
36354
- # job. Use this API to cap model training costs.
36534
+ # the job reaches the time limit, SageMaker ends the training job. Use
36535
+ # this API to cap model training costs.
36355
36536
  #
36356
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
36357
- # signal, which delays job termination for 120 seconds. Algorithms can
36358
- # use this 120-second window to save the model artifacts, so the
36359
- # results of training are not lost.
36537
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
36538
+ # which delays job termination for 120 seconds. Algorithms can use
36539
+ # this 120-second window to save the model artifacts, so the results
36540
+ # of training are not lost.
36360
36541
  # @return [Types::StoppingCondition]
36361
36542
  #
36362
36543
  # @!attribute [rw] creation_time
@@ -36377,8 +36558,7 @@ module Aws::SageMaker
36377
36558
  # You are billed for the time interval between the value of
36378
36559
  # `TrainingStartTime` and this time. For successful jobs and stopped
36379
36560
  # jobs, this is the time after model artifacts are uploaded. For
36380
- # failed jobs, this is the time when Amazon SageMaker detects a job
36381
- # failure.
36561
+ # failed jobs, this is the time when SageMaker detects a job failure.
36382
36562
  # @return [Time]
36383
36563
  #
36384
36564
  # @!attribute [rw] last_modified_time
@@ -36645,7 +36825,7 @@ module Aws::SageMaker
36645
36825
  #
36646
36826
  # @!attribute [rw] output_data_config
36647
36827
  # the path to the S3 bucket where you want to store model artifacts.
36648
- # Amazon SageMaker creates subfolders for the artifacts.
36828
+ # SageMaker creates subfolders for the artifacts.
36649
36829
  # @return [Types::OutputDataConfig]
36650
36830
  #
36651
36831
  # @!attribute [rw] resource_config
@@ -36656,12 +36836,12 @@ module Aws::SageMaker
36656
36836
  # @!attribute [rw] stopping_condition
36657
36837
  # Specifies a limit to how long a model training job can run. It also
36658
36838
  # specifies how long a managed Spot training job has to complete. When
36659
- # the job reaches the time limit, Amazon SageMaker ends the training
36660
- # job. Use this API to cap model training costs.
36839
+ # the job reaches the time limit, SageMaker ends the training job. Use
36840
+ # this API to cap model training costs.
36661
36841
  #
36662
- # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
36663
- # signal, which delays job termination for 120 seconds. Algorithms can
36664
- # use this 120-second window to save the model artifacts.
36842
+ # To stop a job, SageMaker sends the algorithm the SIGTERM signal,
36843
+ # which delays job termination for 120 seconds. Algorithms can use
36844
+ # this 120-second window to save the model artifacts.
36665
36845
  # @return [Types::StoppingCondition]
36666
36846
  #
36667
36847
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
@@ -38903,7 +39083,7 @@ module Aws::SageMaker
38903
39083
  # }
38904
39084
  #
38905
39085
  # @!attribute [rw] endpoint_name
38906
- # The name of an existing Amazon SageMaker endpoint.
39086
+ # The name of an existing SageMaker endpoint.
38907
39087
  # @return [String]
38908
39088
  #
38909
39089
  # @!attribute [rw] desired_weights_and_capacities
@@ -39249,7 +39429,7 @@ module Aws::SageMaker
39249
39429
  #
39250
39430
  # {
39251
39431
  # notebook_instance_name: "NotebookInstanceName", # required
39252
- # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
39432
+ # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
39253
39433
  # role_arn: "RoleArn",
39254
39434
  # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
39255
39435
  # disassociate_lifecycle_config: false,
@@ -39272,12 +39452,12 @@ module Aws::SageMaker
39272
39452
  # @return [String]
39273
39453
  #
39274
39454
  # @!attribute [rw] role_arn
39275
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
39276
- # can assume to access the notebook instance. For more information,
39277
- # see [Amazon SageMaker Roles][1].
39455
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
39456
+ # assume to access the notebook instance. For more information, see
39457
+ # [SageMaker Roles][1].
39278
39458
  #
39279
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
39280
- # API must have the `iam:PassRole` permission.
39459
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API
39460
+ # must have the `iam:PassRole` permission.
39281
39461
  #
39282
39462
  # </note>
39283
39463
  #
@@ -39307,12 +39487,12 @@ module Aws::SageMaker
39307
39487
  # @!attribute [rw] volume_size_in_gb
39308
39488
  # The size, in GB, of the ML storage volume to attach to the notebook
39309
39489
  # instance. The default value is 5 GB. ML storage volumes are
39310
- # encrypted, so Amazon SageMaker can't determine the amount of
39311
- # available free space on the volume. Because of this, you can
39312
- # increase the volume size when you update a notebook instance, but
39313
- # you can't decrease the volume size. If you want to decrease the
39314
- # size of the ML storage volume in use, create a new notebook instance
39315
- # with the desired size.
39490
+ # encrypted, so SageMaker can't determine the amount of available
39491
+ # free space on the volume. Because of this, you can increase the
39492
+ # volume size when you update a notebook instance, but you can't
39493
+ # decrease the volume size. If you want to decrease the size of the ML
39494
+ # storage volume in use, create a new notebook instance with the
39495
+ # desired size.
39316
39496
  # @return [Integer]
39317
39497
  #
39318
39498
  # @!attribute [rw] default_code_repository
@@ -39322,8 +39502,7 @@ module Aws::SageMaker
39322
39502
  # repository in [Amazon Web Services CodeCommit][1] or in any other
39323
39503
  # Git repository. When you open a notebook instance, it opens in the
39324
39504
  # directory that contains this repository. For more information, see
39325
- # [Associating Git Repositories with Amazon SageMaker Notebook
39326
- # Instances][2].
39505
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
39327
39506
  #
39328
39507
  #
39329
39508
  #
@@ -39338,7 +39517,7 @@ module Aws::SageMaker
39338
39517
  # in [Amazon Web Services CodeCommit][1] or in any other Git
39339
39518
  # repository. These repositories are cloned at the same level as the
39340
39519
  # default repository of your notebook instance. For more information,
39341
- # see [Associating Git Repositories with Amazon SageMaker Notebook
39520
+ # see [Associating Git Repositories with SageMaker Notebook
39342
39521
  # Instances][2].
39343
39522
  #
39344
39523
  #