aws-sdk-sagemaker 1.120.0 → 1.123.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +264 -248
- data/lib/aws-sdk-sagemaker/client_api.rb +19 -0
- data/lib/aws-sdk-sagemaker/types.rb +580 -401
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
@@ -422,7 +422,7 @@ module Aws::SageMaker
|
|
422
422
|
req.send_request(options)
|
423
423
|
end
|
424
424
|
|
425
|
-
# Adds or overwrites one or more tags for the specified
|
425
|
+
# Adds or overwrites one or more tags for the specified SageMaker
|
426
426
|
# resource. You can add tags to notebook instances, training jobs,
|
427
427
|
# hyperparameter tuning jobs, batch transform jobs, models, labeling
|
428
428
|
# jobs, work teams, endpoint configurations, and endpoints.
|
@@ -678,8 +678,8 @@ module Aws::SageMaker
|
|
678
678
|
req.send_request(options)
|
679
679
|
end
|
680
680
|
|
681
|
-
# Create a machine learning algorithm that you can use in
|
682
|
-
#
|
681
|
+
# Create a machine learning algorithm that you can use in SageMaker and
|
682
|
+
# list in the Amazon Web Services Marketplace.
|
683
683
|
#
|
684
684
|
# @option params [required, String] :algorithm_name
|
685
685
|
# The name of the algorithm.
|
@@ -723,10 +723,10 @@ module Aws::SageMaker
|
|
723
723
|
# inference.
|
724
724
|
#
|
725
725
|
# @option params [Types::AlgorithmValidationSpecification] :validation_specification
|
726
|
-
# Specifies configurations for one or more training jobs and that
|
726
|
+
# Specifies configurations for one or more training jobs and that
|
727
727
|
# SageMaker runs to test the algorithm's training code and, optionally,
|
728
|
-
# one or more batch transform jobs that
|
729
|
-
#
|
728
|
+
# one or more batch transform jobs that SageMaker runs to test the
|
729
|
+
# algorithm's inference code.
|
730
730
|
#
|
731
731
|
# @option params [Boolean] :certify_for_marketplace
|
732
732
|
# Whether to certify the algorithm so that it can be listed in Amazon
|
@@ -1210,6 +1210,7 @@ module Aws::SageMaker
|
|
1210
1210
|
# compression_type: "None", # accepts None, Gzip
|
1211
1211
|
# target_attribute_name: "TargetAttributeName", # required
|
1212
1212
|
# content_type: "ContentType",
|
1213
|
+
# channel_type: "training", # accepts training, validation
|
1213
1214
|
# },
|
1214
1215
|
# ],
|
1215
1216
|
# output_data_config: { # required
|
@@ -1234,6 +1235,9 @@ module Aws::SageMaker
|
|
1234
1235
|
# subnets: ["SubnetId"], # required
|
1235
1236
|
# },
|
1236
1237
|
# },
|
1238
|
+
# data_split_config: {
|
1239
|
+
# validation_fraction: 1.0,
|
1240
|
+
# },
|
1237
1241
|
# },
|
1238
1242
|
# role_arn: "RoleArn", # required
|
1239
1243
|
# generate_candidate_definitions_only: false,
|
@@ -1262,13 +1266,13 @@ module Aws::SageMaker
|
|
1262
1266
|
req.send_request(options)
|
1263
1267
|
end
|
1264
1268
|
|
1265
|
-
# Creates a Git repository as a resource in your
|
1266
|
-
#
|
1267
|
-
#
|
1268
|
-
#
|
1269
|
-
#
|
1270
|
-
#
|
1271
|
-
#
|
1269
|
+
# Creates a Git repository as a resource in your SageMaker account. You
|
1270
|
+
# can associate the repository with notebook instances so that you can
|
1271
|
+
# use Git source control for the notebooks you create. The Git
|
1272
|
+
# repository is a resource in your SageMaker account, so it can be
|
1273
|
+
# associated with more than one notebook instance, and it persists
|
1274
|
+
# independently from the lifecycle of any notebook instances it is
|
1275
|
+
# associated with.
|
1272
1276
|
#
|
1273
1277
|
# The repository can be hosted either in [Amazon Web Services
|
1274
1278
|
# CodeCommit][1] or in any other Git repository.
|
@@ -2032,13 +2036,13 @@ module Aws::SageMaker
|
|
2032
2036
|
end
|
2033
2037
|
|
2034
2038
|
# Creates an endpoint using the endpoint configuration specified in the
|
2035
|
-
# request.
|
2036
|
-
#
|
2039
|
+
# request. SageMaker uses the endpoint to provision resources and deploy
|
2040
|
+
# models. You create the endpoint configuration with the
|
2037
2041
|
# CreateEndpointConfig API.
|
2038
2042
|
#
|
2039
|
-
# Use this API to deploy models using
|
2043
|
+
# Use this API to deploy models using SageMaker hosting services.
|
2040
2044
|
#
|
2041
|
-
# For an example that calls this method when deploying a model to
|
2045
|
+
# For an example that calls this method when deploying a model to
|
2042
2046
|
# SageMaker hosting services, see the [Create Endpoint example
|
2043
2047
|
# notebook.][1]
|
2044
2048
|
#
|
@@ -2052,9 +2056,9 @@ module Aws::SageMaker
|
|
2052
2056
|
# The endpoint name must be unique within an Amazon Web Services Region
|
2053
2057
|
# in your Amazon Web Services account.
|
2054
2058
|
#
|
2055
|
-
# When it receives the request,
|
2056
|
-
#
|
2057
|
-
#
|
2059
|
+
# When it receives the request, SageMaker creates the endpoint, launches
|
2060
|
+
# the resources (ML compute instances), and deploys the model(s) on
|
2061
|
+
# them.
|
2058
2062
|
#
|
2059
2063
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2060
2064
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2070,21 +2074,21 @@ module Aws::SageMaker
|
|
2070
2074
|
#
|
2071
2075
|
# </note>
|
2072
2076
|
#
|
2073
|
-
# When
|
2074
|
-
#
|
2075
|
-
#
|
2076
|
-
#
|
2077
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
2078
|
+
# `Creating`. After it creates the endpoint, it sets the status to
|
2079
|
+
# `InService`. SageMaker can then process incoming requests for
|
2080
|
+
# inferences. To check the status of an endpoint, use the
|
2077
2081
|
# DescribeEndpoint API.
|
2078
2082
|
#
|
2079
2083
|
# If any of the models hosted at this endpoint get model data from an
|
2080
|
-
# Amazon S3 location,
|
2081
|
-
#
|
2082
|
-
#
|
2083
|
-
#
|
2084
|
-
#
|
2085
|
-
#
|
2086
|
-
#
|
2087
|
-
#
|
2084
|
+
# Amazon S3 location, SageMaker uses Amazon Web Services Security Token
|
2085
|
+
# Service to download model artifacts from the S3 path you provided.
|
2086
|
+
# Amazon Web Services STS is activated in your IAM user account by
|
2087
|
+
# default. If you previously deactivated Amazon Web Services STS for a
|
2088
|
+
# region, you need to reactivate Amazon Web Services STS for that
|
2089
|
+
# region. For more information, see [Activating and Deactivating Amazon
|
2090
|
+
# Web Services STS in an Amazon Web Services Region][3] in the *Amazon
|
2091
|
+
# Web Services Identity and Access Management User Guide*.
|
2088
2092
|
#
|
2089
2093
|
# <note markdown="1"> To add the IAM role policies for using this API operation, go to the
|
2090
2094
|
# [IAM console][4], and choose Roles in the left navigation pane. Search
|
@@ -2202,28 +2206,28 @@ module Aws::SageMaker
|
|
2202
2206
|
req.send_request(options)
|
2203
2207
|
end
|
2204
2208
|
|
2205
|
-
# Creates an endpoint configuration that
|
2206
|
-
#
|
2207
|
-
#
|
2208
|
-
# resources that you want
|
2209
|
-
#
|
2209
|
+
# Creates an endpoint configuration that SageMaker hosting services uses
|
2210
|
+
# to deploy models. In the configuration, you identify one or more
|
2211
|
+
# models, created using the `CreateModel` API, to deploy and the
|
2212
|
+
# resources that you want SageMaker to provision. Then you call the
|
2213
|
+
# CreateEndpoint API.
|
2210
2214
|
#
|
2211
|
-
# <note markdown="1"> Use this API if you want to use
|
2212
|
-
#
|
2215
|
+
# <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
|
2216
|
+
# models into production.
|
2213
2217
|
#
|
2214
2218
|
# </note>
|
2215
2219
|
#
|
2216
2220
|
# In the request, you define a `ProductionVariant`, for each model that
|
2217
2221
|
# you want to deploy. Each `ProductionVariant` parameter also describes
|
2218
|
-
# the resources that you want
|
2219
|
-
#
|
2222
|
+
# the resources that you want SageMaker to provision. This includes the
|
2223
|
+
# number and type of ML compute instances to deploy.
|
2220
2224
|
#
|
2221
2225
|
# If you are hosting multiple models, you also assign a `VariantWeight`
|
2222
2226
|
# to specify how much traffic you want to allocate to each model. For
|
2223
2227
|
# example, suppose that you want to host two models, A and B, and you
|
2224
|
-
# assign traffic weight 2 for model A and 1 for model B.
|
2225
|
-
#
|
2226
|
-
#
|
2228
|
+
# assign traffic weight 2 for model A and 1 for model B. SageMaker
|
2229
|
+
# distributes two-thirds of the traffic to Model A, and one-third to
|
2230
|
+
# model B.
|
2227
2231
|
#
|
2228
2232
|
# <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
|
2229
2233
|
# verify that your endpoint configuration exists. When you read data
|
@@ -2265,8 +2269,8 @@ module Aws::SageMaker
|
|
2265
2269
|
#
|
2266
2270
|
# @option params [String] :kms_key_id
|
2267
2271
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
2268
|
-
# Service key that
|
2269
|
-
#
|
2272
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
2273
|
+
# attached to the ML compute instance that hosts the endpoint.
|
2270
2274
|
#
|
2271
2275
|
# The KmsKeyId can be any of the following formats:
|
2272
2276
|
#
|
@@ -3133,8 +3137,8 @@ module Aws::SageMaker
|
|
3133
3137
|
|
3134
3138
|
# Creates a custom SageMaker image. A SageMaker image is a set of image
|
3135
3139
|
# versions. Each image version represents a container image stored in
|
3136
|
-
# Amazon Container Registry (ECR). For more information, see
|
3137
|
-
# own SageMaker image][1].
|
3140
|
+
# Amazon Elastic Container Registry (ECR). For more information, see
|
3141
|
+
# [Bring your own SageMaker image][1].
|
3138
3142
|
#
|
3139
3143
|
#
|
3140
3144
|
#
|
@@ -3190,13 +3194,13 @@ module Aws::SageMaker
|
|
3190
3194
|
end
|
3191
3195
|
|
3192
3196
|
# Creates a version of the SageMaker image specified by `ImageName`. The
|
3193
|
-
# version represents the Amazon Container Registry (ECR)
|
3194
|
-
# specified by `BaseImage`.
|
3197
|
+
# version represents the Amazon Elastic Container Registry (ECR)
|
3198
|
+
# container image specified by `BaseImage`.
|
3195
3199
|
#
|
3196
3200
|
# @option params [required, String] :base_image
|
3197
3201
|
# The registry path of the container image to use as the starting point
|
3198
|
-
# for this version. The path is an Amazon Container Registry
|
3199
|
-
# in the following format:
|
3202
|
+
# for this version. The path is an Amazon Elastic Container Registry
|
3203
|
+
# (ECR) URI in the following format:
|
3200
3204
|
#
|
3201
3205
|
# `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
|
3202
3206
|
# [@digest]>`
|
@@ -3266,6 +3270,10 @@ module Aws::SageMaker
|
|
3266
3270
|
# A set of conditions for stopping a recommendation job. If any of the
|
3267
3271
|
# conditions are met, the job is automatically stopped.
|
3268
3272
|
#
|
3273
|
+
# @option params [Types::RecommendationJobOutputConfig] :output_config
|
3274
|
+
# Provides information about the output artifacts and the KMS key to use
|
3275
|
+
# for Amazon S3 server-side encryption.
|
3276
|
+
#
|
3269
3277
|
# @option params [Array<Types::Tag>] :tags
|
3270
3278
|
# The metadata that you apply to Amazon Web Services resources to help
|
3271
3279
|
# you categorize and organize them. Each tag consists of a key and a
|
@@ -3318,6 +3326,7 @@ module Aws::SageMaker
|
|
3318
3326
|
# },
|
3319
3327
|
# },
|
3320
3328
|
# ],
|
3329
|
+
# volume_kms_key_id: "KmsKeyId",
|
3321
3330
|
# },
|
3322
3331
|
# job_description: "RecommendationJobDescription",
|
3323
3332
|
# stopping_conditions: {
|
@@ -3329,6 +3338,12 @@ module Aws::SageMaker
|
|
3329
3338
|
# },
|
3330
3339
|
# ],
|
3331
3340
|
# },
|
3341
|
+
# output_config: {
|
3342
|
+
# kms_key_id: "KmsKeyId",
|
3343
|
+
# compiled_output_config: {
|
3344
|
+
# s3_output_uri: "S3Uri",
|
3345
|
+
# },
|
3346
|
+
# },
|
3332
3347
|
# tags: [
|
3333
3348
|
# {
|
3334
3349
|
# key: "TagKey", # required
|
@@ -3655,34 +3670,30 @@ module Aws::SageMaker
|
|
3655
3670
|
req.send_request(options)
|
3656
3671
|
end
|
3657
3672
|
|
3658
|
-
# Creates a model in
|
3659
|
-
#
|
3660
|
-
#
|
3661
|
-
#
|
3662
|
-
#
|
3673
|
+
# Creates a model in SageMaker. In the request, you name the model and
|
3674
|
+
# describe a primary container. For the primary container, you specify
|
3675
|
+
# the Docker image that contains inference code, artifacts (from prior
|
3676
|
+
# training), and a custom environment map that the inference code uses
|
3677
|
+
# when you deploy the model for predictions.
|
3663
3678
|
#
|
3664
|
-
# Use this API to create a model if you want to use
|
3665
|
-
#
|
3679
|
+
# Use this API to create a model if you want to use SageMaker hosting
|
3680
|
+
# services or run a batch transform job.
|
3666
3681
|
#
|
3667
3682
|
# To host your model, you create an endpoint configuration with the
|
3668
3683
|
# `CreateEndpointConfig` API, and then create an endpoint with the
|
3669
|
-
# `CreateEndpoint` API.
|
3670
|
-
#
|
3684
|
+
# `CreateEndpoint` API. SageMaker then deploys all of the containers
|
3685
|
+
# that you defined for the model in the hosting environment.
|
3671
3686
|
#
|
3672
|
-
# For an example that calls this method when deploying a model to
|
3687
|
+
# For an example that calls this method when deploying a model to
|
3673
3688
|
# SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
|
3674
3689
|
# Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
|
3675
3690
|
#
|
3676
3691
|
# To run a batch transform using your model, you start a job with the
|
3677
|
-
# `CreateTransformJob` API.
|
3678
|
-
#
|
3679
|
-
# location.
|
3692
|
+
# `CreateTransformJob` API. SageMaker uses your model and your dataset
|
3693
|
+
# to get inferences which are then saved to a specified S3 location.
|
3680
3694
|
#
|
3681
|
-
# In the
|
3682
|
-
#
|
3683
|
-
#
|
3684
|
-
# In the request, you also provide an IAM role that Amazon SageMaker can
|
3685
|
-
# assume to access model artifacts and docker image for deployment on ML
|
3695
|
+
# In the request, you also provide an IAM role that SageMaker can assume
|
3696
|
+
# to access model artifacts and docker image for deployment on ML
|
3686
3697
|
# compute hosting instances or for batch transform jobs. In addition,
|
3687
3698
|
# you also use the IAM role to manage permissions the inference code
|
3688
3699
|
# needs. For example, if the inference code access any other Amazon Web
|
@@ -3708,14 +3719,14 @@ module Aws::SageMaker
|
|
3708
3719
|
# called.
|
3709
3720
|
#
|
3710
3721
|
# @option params [required, String] :execution_role_arn
|
3711
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
3712
|
-
#
|
3713
|
-
#
|
3714
|
-
#
|
3715
|
-
# [
|
3722
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
3723
|
+
# assume to access model artifacts and docker image for deployment on ML
|
3724
|
+
# compute instances or for batch transform jobs. Deploying on ML compute
|
3725
|
+
# instances is part of model hosting. For more information, see
|
3726
|
+
# [SageMaker Roles][1].
|
3716
3727
|
#
|
3717
|
-
# <note markdown="1"> To be able to pass this role to
|
3718
|
-
#
|
3728
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
3729
|
+
# have the `iam:PassRole` permission.
|
3719
3730
|
#
|
3720
3731
|
# </note>
|
3721
3732
|
#
|
@@ -4094,11 +4105,10 @@ module Aws::SageMaker
|
|
4094
4105
|
req.send_request(options)
|
4095
4106
|
end
|
4096
4107
|
|
4097
|
-
# Creates a model package that you can use to create
|
4098
|
-
#
|
4099
|
-
#
|
4100
|
-
#
|
4101
|
-
# Amazon SageMaker.
|
4108
|
+
# Creates a model package that you can use to create SageMaker models or
|
4109
|
+
# list on Amazon Web Services Marketplace, or a versioned model that is
|
4110
|
+
# part of a model group. Buyers can subscribe to model packages listed
|
4111
|
+
# on Amazon Web Services Marketplace to create models in SageMaker.
|
4102
4112
|
#
|
4103
4113
|
# To create a model package by specifying a Docker container that
|
4104
4114
|
# contains your inference code and the Amazon S3 location of your model
|
@@ -4147,8 +4157,8 @@ module Aws::SageMaker
|
|
4147
4157
|
# for inference.
|
4148
4158
|
#
|
4149
4159
|
# @option params [Types::ModelPackageValidationSpecification] :validation_specification
|
4150
|
-
# Specifies configurations for one or more transform jobs that
|
4151
|
-
#
|
4160
|
+
# Specifies configurations for one or more transform jobs that SageMaker
|
4161
|
+
# runs to test the model package.
|
4152
4162
|
#
|
4153
4163
|
# @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
|
4154
4164
|
# Details about the algorithm that was used to create the model package.
|
@@ -4786,46 +4796,45 @@ module Aws::SageMaker
|
|
4786
4796
|
req.send_request(options)
|
4787
4797
|
end
|
4788
4798
|
|
4789
|
-
# Creates an
|
4790
|
-
#
|
4791
|
-
# notebook.
|
4799
|
+
# Creates an SageMaker notebook instance. A notebook instance is a
|
4800
|
+
# machine learning (ML) compute instance running on a Jupyter notebook.
|
4792
4801
|
#
|
4793
4802
|
# In a `CreateNotebookInstance` request, specify the type of ML compute
|
4794
|
-
# instance that you want to run.
|
4803
|
+
# instance that you want to run. SageMaker launches the instance,
|
4795
4804
|
# installs common libraries that you can use to explore datasets for
|
4796
4805
|
# model training, and attaches an ML storage volume to the notebook
|
4797
4806
|
# instance.
|
4798
4807
|
#
|
4799
|
-
#
|
4800
|
-
#
|
4801
|
-
#
|
4808
|
+
# SageMaker also provides a set of example notebooks. Each notebook
|
4809
|
+
# demonstrates how to use SageMaker with a specific algorithm or with a
|
4810
|
+
# machine learning framework.
|
4802
4811
|
#
|
4803
|
-
# After receiving the request,
|
4812
|
+
# After receiving the request, SageMaker does the following:
|
4804
4813
|
#
|
4805
|
-
# 1. Creates a network interface in the
|
4814
|
+
# 1. Creates a network interface in the SageMaker VPC.
|
4806
4815
|
#
|
4807
|
-
# 2. (Option) If you specified `SubnetId`,
|
4808
|
-
#
|
4809
|
-
#
|
4810
|
-
#
|
4811
|
-
#
|
4812
|
-
#
|
4816
|
+
# 2. (Option) If you specified `SubnetId`, SageMaker creates a network
|
4817
|
+
# interface in your own VPC, which is inferred from the subnet ID
|
4818
|
+
# that you provide in the input. When creating this network
|
4819
|
+
# interface, SageMaker attaches the security group that you
|
4820
|
+
# specified in the request to the network interface that it creates
|
4821
|
+
# in your VPC.
|
4813
4822
|
#
|
4814
4823
|
# 3. Launches an EC2 instance of the type specified in the request in
|
4815
|
-
# the
|
4816
|
-
#
|
4817
|
-
#
|
4818
|
-
#
|
4824
|
+
# the SageMaker VPC. If you specified `SubnetId` of your VPC,
|
4825
|
+
# SageMaker specifies both network interfaces when launching this
|
4826
|
+
# instance. This enables inbound traffic from your own VPC to the
|
4827
|
+
# notebook instance, assuming that the security groups allow it.
|
4819
4828
|
#
|
4820
|
-
# After creating the notebook instance,
|
4821
|
-
#
|
4822
|
-
#
|
4829
|
+
# After creating the notebook instance, SageMaker returns its Amazon
|
4830
|
+
# Resource Name (ARN). You can't change the name of a notebook instance
|
4831
|
+
# after you create it.
|
4823
4832
|
#
|
4824
|
-
# After
|
4825
|
-
#
|
4826
|
-
#
|
4827
|
-
#
|
4828
|
-
#
|
4833
|
+
# After SageMaker creates the notebook instance, you can connect to the
|
4834
|
+
# Jupyter server and work in Jupyter notebooks. For example, you can
|
4835
|
+
# write code to explore a dataset that you can use for model training,
|
4836
|
+
# train a model, host models by creating SageMaker endpoints, and
|
4837
|
+
# validate hosted models.
|
4829
4838
|
#
|
4830
4839
|
# For more information, see [How It Works][1].
|
4831
4840
|
#
|
@@ -4849,15 +4858,14 @@ module Aws::SageMaker
|
|
4849
4858
|
#
|
4850
4859
|
# @option params [required, String] :role_arn
|
4851
4860
|
# When you send any requests to Amazon Web Services resources from the
|
4852
|
-
# notebook instance,
|
4853
|
-
#
|
4854
|
-
#
|
4855
|
-
#
|
4856
|
-
#
|
4857
|
-
# SageMaker Roles][1].
|
4861
|
+
# notebook instance, SageMaker assumes this role to perform tasks on
|
4862
|
+
# your behalf. You must grant this role necessary permissions so
|
4863
|
+
# SageMaker can perform these tasks. The policy must allow the SageMaker
|
4864
|
+
# service principal (sagemaker.amazonaws.com) permissions to assume this
|
4865
|
+
# role. For more information, see [SageMaker Roles][1].
|
4858
4866
|
#
|
4859
|
-
# <note markdown="1"> To be able to pass this role to
|
4860
|
-
#
|
4867
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
4868
|
+
# have the `iam:PassRole` permission.
|
4861
4869
|
#
|
4862
4870
|
# </note>
|
4863
4871
|
#
|
@@ -4867,10 +4875,10 @@ module Aws::SageMaker
|
|
4867
4875
|
#
|
4868
4876
|
# @option params [String] :kms_key_id
|
4869
4877
|
# The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
|
4870
|
-
# Service key that
|
4871
|
-
#
|
4872
|
-
#
|
4873
|
-
#
|
4878
|
+
# Service key that SageMaker uses to encrypt data on the storage volume
|
4879
|
+
# attached to your notebook instance. The KMS key you provide must be
|
4880
|
+
# enabled. For information, see [Enabling and Disabling Keys][1] in the
|
4881
|
+
# *Amazon Web Services Key Management Service Developer Guide*.
|
4874
4882
|
#
|
4875
4883
|
#
|
4876
4884
|
#
|
@@ -4896,11 +4904,11 @@ module Aws::SageMaker
|
|
4896
4904
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
|
4897
4905
|
#
|
4898
4906
|
# @option params [String] :direct_internet_access
|
4899
|
-
# Sets whether
|
4907
|
+
# Sets whether SageMaker provides internet access to the notebook
|
4900
4908
|
# instance. If you set this to `Disabled` this notebook instance is able
|
4901
4909
|
# to access resources only in your VPC, and is not be able to connect to
|
4902
|
-
#
|
4903
|
-
#
|
4910
|
+
# SageMaker training and endpoint services unless you configure a NAT
|
4911
|
+
# Gateway in your VPC.
|
4904
4912
|
#
|
4905
4913
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4906
4914
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -4931,8 +4939,7 @@ module Aws::SageMaker
|
|
4931
4939
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
4932
4940
|
# repository. When you open a notebook instance, it opens in the
|
4933
4941
|
# directory that contains this repository. For more information, see
|
4934
|
-
# [Associating Git Repositories with
|
4935
|
-
# Instances][2].
|
4942
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4936
4943
|
#
|
4937
4944
|
#
|
4938
4945
|
#
|
@@ -4946,8 +4953,7 @@ module Aws::SageMaker
|
|
4946
4953
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
4947
4954
|
# These repositories are cloned at the same level as the default
|
4948
4955
|
# repository of your notebook instance. For more information, see
|
4949
|
-
# [Associating Git Repositories with
|
4950
|
-
# Instances][2].
|
4956
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
4951
4957
|
#
|
4952
4958
|
#
|
4953
4959
|
#
|
@@ -4976,7 +4982,7 @@ module Aws::SageMaker
|
|
4976
4982
|
#
|
4977
4983
|
# resp = client.create_notebook_instance({
|
4978
4984
|
# notebook_instance_name: "NotebookInstanceName", # required
|
4979
|
-
# instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
4985
|
+
# instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
|
4980
4986
|
# subnet_id: "SubnetId",
|
4981
4987
|
# security_group_ids: ["SecurityGroupId"],
|
4982
4988
|
# role_arn: "RoleArn", # required
|
@@ -5231,10 +5237,10 @@ module Aws::SageMaker
|
|
5231
5237
|
end
|
5232
5238
|
|
5233
5239
|
# Returns a URL that you can use to connect to the Jupyter server from a
|
5234
|
-
# notebook instance. In the
|
5235
|
-
#
|
5236
|
-
#
|
5237
|
-
#
|
5240
|
+
# notebook instance. In the SageMaker console, when you choose `Open`
|
5241
|
+
# next to a notebook instance, SageMaker opens a new tab showing the
|
5242
|
+
# Jupyter server home page from the notebook instance. The console uses
|
5243
|
+
# this API to get the URL and show the page.
|
5238
5244
|
#
|
5239
5245
|
# The IAM role or user used to call this API defines the permissions to
|
5240
5246
|
# access the notebook instance. Once the presigned URL is created, no
|
@@ -5590,15 +5596,14 @@ module Aws::SageMaker
|
|
5590
5596
|
req.send_request(options)
|
5591
5597
|
end
|
5592
5598
|
|
5593
|
-
# Starts a model training job. After training completes,
|
5594
|
-
#
|
5595
|
-
#
|
5599
|
+
# Starts a model training job. After training completes, SageMaker saves
|
5600
|
+
# the resulting model artifacts to an Amazon S3 location that you
|
5601
|
+
# specify.
|
5596
5602
|
#
|
5597
|
-
# If you choose to host your model using
|
5598
|
-
#
|
5599
|
-
#
|
5600
|
-
#
|
5601
|
-
# for inference.
|
5603
|
+
# If you choose to host your model using SageMaker hosting services, you
|
5604
|
+
# can use the resulting model artifacts as part of the model. You can
|
5605
|
+
# also use the artifacts in a machine learning service other than
|
5606
|
+
# SageMaker, provided that you know how to use them for inference.
|
5602
5607
|
#
|
5603
5608
|
# In the request body, you provide the following:
|
5604
5609
|
#
|
@@ -5608,13 +5613,13 @@ module Aws::SageMaker
|
|
5608
5613
|
# enable the estimation of model parameters during training.
|
5609
5614
|
# Hyperparameters can be tuned to optimize this learning process. For
|
5610
5615
|
# a list of hyperparameters for each training algorithm provided by
|
5611
|
-
#
|
5616
|
+
# SageMaker, see [Algorithms][1].
|
5612
5617
|
#
|
5613
5618
|
# * `InputDataConfig` - Describes the training dataset and the Amazon
|
5614
5619
|
# S3, EFS, or FSx location where it is stored.
|
5615
5620
|
#
|
5616
5621
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
5617
|
-
#
|
5622
|
+
# SageMaker to save the results of model training.
|
5618
5623
|
#
|
5619
5624
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
5620
5625
|
# and ML storage volumes to deploy for model training. In distributed
|
@@ -5624,10 +5629,10 @@ module Aws::SageMaker
|
|
5624
5629
|
# learning models by up to 80% by using Amazon EC2 Spot instances. For
|
5625
5630
|
# more information, see [Managed Spot Training][2].
|
5626
5631
|
#
|
5627
|
-
# * `RoleArn` - The Amazon Resource Name (ARN) that
|
5628
|
-
#
|
5629
|
-
#
|
5630
|
-
#
|
5632
|
+
# * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
|
5633
|
+
# perform tasks on your behalf during model training. You must grant
|
5634
|
+
# this role the necessary permissions so that SageMaker can
|
5635
|
+
# successfully complete model training.
|
5631
5636
|
#
|
5632
5637
|
# * `StoppingCondition` - To help cap training costs, use
|
5633
5638
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
@@ -5640,7 +5645,7 @@ module Aws::SageMaker
|
|
5640
5645
|
# * `RetryStrategy` - The number of times to retry the job when the job
|
5641
5646
|
# fails due to an `InternalServerError`.
|
5642
5647
|
#
|
5643
|
-
# For more information about
|
5648
|
+
# For more information about SageMaker, see [How It Works][3].
|
5644
5649
|
#
|
5645
5650
|
#
|
5646
5651
|
#
|
@@ -5655,7 +5660,7 @@ module Aws::SageMaker
|
|
5655
5660
|
# @option params [Hash<String,String>] :hyper_parameters
|
5656
5661
|
# Algorithm-specific parameters that influence the quality of the model.
|
5657
5662
|
# You set hyperparameters before you start the learning process. For a
|
5658
|
-
# list of hyperparameters for each training algorithm provided by
|
5663
|
+
# list of hyperparameters for each training algorithm provided by
|
5659
5664
|
# SageMaker, see [Algorithms][1].
|
5660
5665
|
#
|
5661
5666
|
# You can specify a maximum of 100 hyperparameters. Each hyperparameter
|
@@ -5669,9 +5674,9 @@ module Aws::SageMaker
|
|
5669
5674
|
# @option params [required, Types::AlgorithmSpecification] :algorithm_specification
|
5670
5675
|
# The registry path of the Docker image that contains the training
|
5671
5676
|
# algorithm and algorithm-specific metadata, including the input mode.
|
5672
|
-
# For more information about algorithms provided by
|
5673
|
-
#
|
5674
|
-
#
|
5677
|
+
# For more information about algorithms provided by SageMaker, see
|
5678
|
+
# [Algorithms][1]. For information about providing your own algorithms,
|
5679
|
+
# see [Using Your Own Algorithms with Amazon SageMaker][2].
|
5675
5680
|
#
|
5676
5681
|
#
|
5677
5682
|
#
|
@@ -5679,18 +5684,18 @@ module Aws::SageMaker
|
|
5679
5684
|
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
|
5680
5685
|
#
|
5681
5686
|
# @option params [required, String] :role_arn
|
5682
|
-
# The Amazon Resource Name (ARN) of an IAM role that
|
5683
|
-
#
|
5687
|
+
# The Amazon Resource Name (ARN) of an IAM role that SageMaker can
|
5688
|
+
# assume to perform tasks on your behalf.
|
5684
5689
|
#
|
5685
|
-
# During model training,
|
5686
|
-
#
|
5687
|
-
#
|
5688
|
-
#
|
5689
|
-
#
|
5690
|
-
# information, see [
|
5690
|
+
# During model training, SageMaker needs your permission to read input
|
5691
|
+
# data from an S3 bucket, download a Docker image that contains training
|
5692
|
+
# code, write model artifacts to an S3 bucket, write logs to Amazon
|
5693
|
+
# CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
|
5694
|
+
# permissions for all of these tasks to an IAM role. For more
|
5695
|
+
# information, see [SageMaker Roles][1].
|
5691
5696
|
#
|
5692
|
-
# <note markdown="1"> To be able to pass this role to
|
5693
|
-
#
|
5697
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
5698
|
+
# have the `iam:PassRole` permission.
|
5694
5699
|
#
|
5695
5700
|
# </note>
|
5696
5701
|
#
|
@@ -5710,16 +5715,15 @@ module Aws::SageMaker
|
|
5710
5715
|
# type, compression method, and whether the data is wrapped in RecordIO
|
5711
5716
|
# format.
|
5712
5717
|
#
|
5713
|
-
# Depending on the input mode that the algorithm supports,
|
5714
|
-
#
|
5715
|
-
#
|
5716
|
-
#
|
5717
|
-
#
|
5718
|
-
# downloaded.
|
5718
|
+
# Depending on the input mode that the algorithm supports, SageMaker
|
5719
|
+
# either copies input data files from an S3 bucket to a local directory
|
5720
|
+
# in the Docker container, or makes it available as input streams. For
|
5721
|
+
# example, if you specify an EFS location, input data files are
|
5722
|
+
# available as input streams. They do not need to be downloaded.
|
5719
5723
|
#
|
5720
5724
|
# @option params [required, Types::OutputDataConfig] :output_data_config
|
5721
5725
|
# Specifies the path to the S3 location where you want to store model
|
5722
|
-
# artifacts.
|
5726
|
+
# artifacts. SageMaker creates subfolders for the artifacts.
|
5723
5727
|
#
|
5724
5728
|
# @option params [required, Types::ResourceConfig] :resource_config
|
5725
5729
|
# The resources, including the ML compute instances and ML storage
|
@@ -5727,10 +5731,10 @@ module Aws::SageMaker
|
|
5727
5731
|
#
|
5728
5732
|
# ML storage volumes store model artifacts and incremental states.
|
5729
5733
|
# Training algorithms might also use ML storage volumes for scratch
|
5730
|
-
# space. If you want
|
5731
|
-
#
|
5732
|
-
#
|
5733
|
-
#
|
5734
|
+
# space. If you want SageMaker to use the ML storage volume to store the
|
5735
|
+
# training data, choose `File` as the `TrainingInputMode` in the
|
5736
|
+
# algorithm specification. For distributed training algorithms, specify
|
5737
|
+
# an instance count greater than 1.
|
5734
5738
|
#
|
5735
5739
|
# @option params [Types::VpcConfig] :vpc_config
|
5736
5740
|
# A VpcConfig object that specifies the VPC that you want your training
|
@@ -5745,13 +5749,13 @@ module Aws::SageMaker
|
|
5745
5749
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5746
5750
|
# Specifies a limit to how long a model training job can run. It also
|
5747
5751
|
# specifies how long a managed Spot training job has to complete. When
|
5748
|
-
# the job reaches the time limit,
|
5749
|
-
#
|
5752
|
+
# the job reaches the time limit, SageMaker ends the training job. Use
|
5753
|
+
# this API to cap model training costs.
|
5750
5754
|
#
|
5751
|
-
# To stop a job,
|
5752
|
-
#
|
5753
|
-
#
|
5754
|
-
#
|
5755
|
+
# To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
|
5756
|
+
# which delays job termination for 120 seconds. Algorithms can use this
|
5757
|
+
# 120-second window to save the model artifacts, so the results of
|
5758
|
+
# training are not lost.
|
5755
5759
|
#
|
5756
5760
|
# @option params [Array<Types::Tag>] :tags
|
5757
5761
|
# An array of key-value pairs. You can use tags to categorize your
|
@@ -5767,9 +5771,9 @@ module Aws::SageMaker
|
|
5767
5771
|
# Isolates the training container. No inbound or outbound network calls
|
5768
5772
|
# can be made, except for calls between peers within a training cluster
|
5769
5773
|
# for distributed training. If you enable network isolation for training
|
5770
|
-
# jobs that are configured to use a VPC,
|
5771
|
-
#
|
5772
|
-
#
|
5774
|
+
# jobs that are configured to use a VPC, SageMaker downloads and uploads
|
5775
|
+
# customer data and model artifacts through the specified VPC, but the
|
5776
|
+
# training container does not have network access.
|
5773
5777
|
#
|
5774
5778
|
# @option params [Boolean] :enable_inter_container_traffic_encryption
|
5775
5779
|
# To encrypt all communications between ML compute instances in
|
@@ -6076,6 +6080,11 @@ module Aws::SageMaker
|
|
6076
6080
|
# fit within the maximum payload size, we recommend using a slightly
|
6077
6081
|
# larger value. The default value is `6` MB.
|
6078
6082
|
#
|
6083
|
+
# The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
|
6084
|
+
# specify the `MaxConcurrentTransforms` parameter, the value of
|
6085
|
+
# `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
|
6086
|
+
# MB.
|
6087
|
+
#
|
6079
6088
|
# For cases where the payload might be arbitrarily large and is
|
6080
6089
|
# transmitted using HTTP chunked encoding, set the value to `0`. This
|
6081
6090
|
# feature works only in supported algorithms. Currently, Amazon
|
@@ -7041,13 +7050,19 @@ module Aws::SageMaker
|
|
7041
7050
|
req.send_request(options)
|
7042
7051
|
end
|
7043
7052
|
|
7044
|
-
# Deletes an endpoint.
|
7045
|
-
#
|
7053
|
+
# Deletes an endpoint. SageMaker frees up all of the resources that were
|
7054
|
+
# deployed when the endpoint was created.
|
7046
7055
|
#
|
7047
|
-
#
|
7056
|
+
# SageMaker retires any custom KMS key grants associated with the
|
7048
7057
|
# endpoint, meaning you don't need to use the [RevokeGrant][1] API
|
7049
7058
|
# call.
|
7050
7059
|
#
|
7060
|
+
# When you delete your endpoint, SageMaker asynchronously deletes
|
7061
|
+
# associated endpoint resources such as KMS key grants. You might still
|
7062
|
+
# see these resources in your account for a few minutes after deleting
|
7063
|
+
# your endpoint. Do not delete or revoke the permissions for your `
|
7064
|
+
# ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
|
7065
|
+
#
|
7051
7066
|
#
|
7052
7067
|
#
|
7053
7068
|
# [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
|
@@ -7264,9 +7279,9 @@ module Aws::SageMaker
|
|
7264
7279
|
end
|
7265
7280
|
|
7266
7281
|
# Deletes a model. The `DeleteModel` API deletes only the model entry
|
7267
|
-
# that was created in
|
7268
|
-
#
|
7269
|
-
#
|
7282
|
+
# that was created in SageMaker when you called the `CreateModel` API.
|
7283
|
+
# It does not delete model artifacts, inference code, or the IAM role
|
7284
|
+
# that you specified when creating the model.
|
7270
7285
|
#
|
7271
7286
|
# @option params [required, String] :model_name
|
7272
7287
|
# The name of the model to delete.
|
@@ -7334,10 +7349,10 @@ module Aws::SageMaker
|
|
7334
7349
|
|
7335
7350
|
# Deletes a model package.
|
7336
7351
|
#
|
7337
|
-
# A model package is used to create
|
7338
|
-
#
|
7339
|
-
#
|
7340
|
-
#
|
7352
|
+
# A model package is used to create SageMaker models or list on Amazon
|
7353
|
+
# Web Services Marketplace. Buyers can subscribe to model packages
|
7354
|
+
# listed on Amazon Web Services Marketplace to create models in
|
7355
|
+
# SageMaker.
|
7341
7356
|
#
|
7342
7357
|
# @option params [required, String] :model_package_name
|
7343
7358
|
# The name or Amazon Resource Name (ARN) of the model package to delete.
|
@@ -7452,16 +7467,16 @@ module Aws::SageMaker
|
|
7452
7467
|
req.send_request(options)
|
7453
7468
|
end
|
7454
7469
|
|
7455
|
-
# Deletes an
|
7470
|
+
# Deletes an SageMaker notebook instance. Before you can delete a
|
7456
7471
|
# notebook instance, you must call the `StopNotebookInstance` API.
|
7457
7472
|
#
|
7458
|
-
# When you delete a notebook instance, you lose all of your data.
|
7473
|
+
# When you delete a notebook instance, you lose all of your data.
|
7459
7474
|
# SageMaker removes the ML compute instance, and deletes the ML storage
|
7460
7475
|
# volume and the network interface associated with the notebook
|
7461
7476
|
# instance.
|
7462
7477
|
#
|
7463
7478
|
# @option params [required, String] :notebook_instance_name
|
7464
|
-
# The name of the
|
7479
|
+
# The name of the SageMaker notebook instance to delete.
|
7465
7480
|
#
|
7466
7481
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
7467
7482
|
#
|
@@ -7589,7 +7604,7 @@ module Aws::SageMaker
|
|
7589
7604
|
req.send_request(options)
|
7590
7605
|
end
|
7591
7606
|
|
7592
|
-
# Deletes the specified tags from an
|
7607
|
+
# Deletes the specified tags from an SageMaker resource.
|
7593
7608
|
#
|
7594
7609
|
# To list a resource's tags, use the `ListTags` API.
|
7595
7610
|
#
|
@@ -8230,6 +8245,7 @@ module Aws::SageMaker
|
|
8230
8245
|
# resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
|
8231
8246
|
# resp.input_data_config[0].target_attribute_name #=> String
|
8232
8247
|
# resp.input_data_config[0].content_type #=> String
|
8248
|
+
# resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
|
8233
8249
|
# resp.output_data_config.kms_key_id #=> String
|
8234
8250
|
# resp.output_data_config.s3_output_path #=> String
|
8235
8251
|
# resp.role_arn #=> String
|
@@ -8244,6 +8260,7 @@ module Aws::SageMaker
|
|
8244
8260
|
# resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
|
8245
8261
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
|
8246
8262
|
# resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
|
8263
|
+
# resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
|
8247
8264
|
# resp.creation_time #=> Time
|
8248
8265
|
# resp.end_time #=> Time
|
8249
8266
|
# resp.last_modified_time #=> Time
|
@@ -9602,6 +9619,7 @@ module Aws::SageMaker
|
|
9602
9619
|
# resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].name #=> String
|
9603
9620
|
# resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value #=> Array
|
9604
9621
|
# resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value[0] #=> String
|
9622
|
+
# resp.input_config.volume_kms_key_id #=> String
|
9605
9623
|
# resp.stopping_conditions.max_invocations #=> Integer
|
9606
9624
|
# resp.stopping_conditions.model_latency_thresholds #=> Array
|
9607
9625
|
# resp.stopping_conditions.model_latency_thresholds[0].percentile #=> String
|
@@ -10207,7 +10225,7 @@ module Aws::SageMaker
|
|
10207
10225
|
# Gets a description for the specified model group.
|
10208
10226
|
#
|
10209
10227
|
# @option params [required, String] :model_package_group_name
|
10210
|
-
# The name of
|
10228
|
+
# The name of gthe model group to describe.
|
10211
10229
|
#
|
10212
10230
|
# @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10213
10231
|
#
|
@@ -10464,7 +10482,7 @@ module Aws::SageMaker
|
|
10464
10482
|
# resp.notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
|
10465
10483
|
# resp.failure_reason #=> String
|
10466
10484
|
# resp.url #=> String
|
10467
|
-
# resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
|
10485
|
+
# resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
|
10468
10486
|
# resp.subnet_id #=> String
|
10469
10487
|
# resp.security_groups #=> Array
|
10470
10488
|
# resp.security_groups[0] #=> String
|
@@ -14739,8 +14757,8 @@ module Aws::SageMaker
|
|
14739
14757
|
req.send_request(options)
|
14740
14758
|
end
|
14741
14759
|
|
14742
|
-
# Returns a list of the
|
14743
|
-
#
|
14760
|
+
# Returns a list of the SageMaker notebook instances in the requester's
|
14761
|
+
# account in an Amazon Web Services Region.
|
14744
14762
|
#
|
14745
14763
|
# @option params [String] :next_token
|
14746
14764
|
# If the previous call to the `ListNotebookInstances` is truncated, the
|
@@ -14836,7 +14854,7 @@ module Aws::SageMaker
|
|
14836
14854
|
# resp.notebook_instances[0].notebook_instance_arn #=> String
|
14837
14855
|
# resp.notebook_instances[0].notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
|
14838
14856
|
# resp.notebook_instances[0].url #=> String
|
14839
|
-
# resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
|
14857
|
+
# resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
|
14840
14858
|
# resp.notebook_instances[0].creation_time #=> Time
|
14841
14859
|
# resp.notebook_instances[0].last_modified_time #=> Time
|
14842
14860
|
# resp.notebook_instances[0].notebook_instance_lifecycle_config_name #=> String
|
@@ -15411,7 +15429,7 @@ module Aws::SageMaker
|
|
15411
15429
|
req.send_request(options)
|
15412
15430
|
end
|
15413
15431
|
|
15414
|
-
# Returns the tags for the specified
|
15432
|
+
# Returns the tags for the specified SageMaker resource.
|
15415
15433
|
#
|
15416
15434
|
# @option params [required, String] :resource_arn
|
15417
15435
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
@@ -15419,8 +15437,8 @@ module Aws::SageMaker
|
|
15419
15437
|
#
|
15420
15438
|
# @option params [String] :next_token
|
15421
15439
|
# If the response to the previous `ListTags` request is truncated,
|
15422
|
-
#
|
15423
|
-
#
|
15440
|
+
# SageMaker returns this token. To retrieve the next set of tags, use it
|
15441
|
+
# in the subsequent request.
|
15424
15442
|
#
|
15425
15443
|
# @option params [Integer] :max_results
|
15426
15444
|
# Maximum number of tags to return.
|
@@ -16145,11 +16163,12 @@ module Aws::SageMaker
|
|
16145
16163
|
# starting point for your lineage query.
|
16146
16164
|
#
|
16147
16165
|
# @option params [String] :direction
|
16148
|
-
# Associations between lineage entities
|
16149
|
-
# determines the direction from the StartArn(s) the query
|
16166
|
+
# Associations between lineage entities have a direction. This parameter
|
16167
|
+
# determines the direction from the StartArn(s) that the query
|
16168
|
+
# traverses.
|
16150
16169
|
#
|
16151
16170
|
# @option params [Boolean] :include_edges
|
16152
|
-
# Setting this value to `True`
|
16171
|
+
# Setting this value to `True` retrieves not only the entities of
|
16153
16172
|
# interest but also the [Associations][1] and lineage entities on the
|
16154
16173
|
# path. Set to `False` to only return lineage entities that match your
|
16155
16174
|
# query.
|
@@ -16176,8 +16195,8 @@ module Aws::SageMaker
|
|
16176
16195
|
#
|
16177
16196
|
# @option params [Integer] :max_depth
|
16178
16197
|
# The maximum depth in lineage relationships from the `StartArns` that
|
16179
|
-
#
|
16180
|
-
#
|
16198
|
+
# are traversed. Depth is a measure of the number of `Associations` from
|
16199
|
+
# the `StartArn` entity to the matched results.
|
16181
16200
|
#
|
16182
16201
|
# @option params [Integer] :max_results
|
16183
16202
|
# Limits the number of vertices in the results. Use the `NextToken` in a
|
@@ -17353,9 +17372,9 @@ module Aws::SageMaker
|
|
17353
17372
|
|
17354
17373
|
# Launches an ML compute instance with the latest version of the
|
17355
17374
|
# libraries and attaches your ML storage volume. After configuring the
|
17356
|
-
# notebook instance,
|
17357
|
-
#
|
17358
|
-
#
|
17375
|
+
# notebook instance, SageMaker sets the notebook instance status to
|
17376
|
+
# `InService`. A notebook instance's status must be `InService` before
|
17377
|
+
# you can connect to your Jupyter notebook.
|
17359
17378
|
#
|
17360
17379
|
# @option params [required, String] :notebook_instance_name
|
17361
17380
|
# The name of the notebook instance to start.
|
@@ -17611,10 +17630,9 @@ module Aws::SageMaker
|
|
17611
17630
|
end
|
17612
17631
|
|
17613
17632
|
# Terminates the ML compute instance. Before terminating the instance,
|
17614
|
-
#
|
17615
|
-
#
|
17616
|
-
#
|
17617
|
-
# `StopNotebookInstance`.
|
17633
|
+
# SageMaker disconnects the ML storage volume from it. SageMaker
|
17634
|
+
# preserves the ML storage volume. SageMaker stops charging you for the
|
17635
|
+
# ML compute instance when you call `StopNotebookInstance`.
|
17618
17636
|
#
|
17619
17637
|
# To access data on the ML storage volume for a notebook instance that
|
17620
17638
|
# has been terminated, call the `StartNotebookInstance` API.
|
@@ -17728,14 +17746,14 @@ module Aws::SageMaker
|
|
17728
17746
|
req.send_request(options)
|
17729
17747
|
end
|
17730
17748
|
|
17731
|
-
# Stops a training job. To stop a job,
|
17732
|
-
#
|
17733
|
-
#
|
17749
|
+
# Stops a training job. To stop a job, SageMaker sends the algorithm the
|
17750
|
+
# `SIGTERM` signal, which delays job termination for 120 seconds.
|
17751
|
+
# Algorithms might use this 120-second window to save the model
|
17734
17752
|
# artifacts, so the results of the training is not lost.
|
17735
17753
|
#
|
17736
|
-
# When it receives a `StopTrainingJob` request,
|
17737
|
-
#
|
17738
|
-
#
|
17754
|
+
# When it receives a `StopTrainingJob` request, SageMaker changes the
|
17755
|
+
# status of the job to `Stopping`. After SageMaker stops the job, it
|
17756
|
+
# sets the status to `Stopped`.
|
17739
17757
|
#
|
17740
17758
|
# @option params [required, String] :training_job_name
|
17741
17759
|
# The name of the training job to stop.
|
@@ -18177,9 +18195,9 @@ module Aws::SageMaker
|
|
18177
18195
|
# for the endpoint using the previous `EndpointConfig` (there is no
|
18178
18196
|
# availability loss).
|
18179
18197
|
#
|
18180
|
-
# When
|
18181
|
-
#
|
18182
|
-
#
|
18198
|
+
# When SageMaker receives the request, it sets the endpoint status to
|
18199
|
+
# `Updating`. After updating the endpoint, it sets the status to
|
18200
|
+
# `InService`. To check the status of an endpoint, use the
|
18183
18201
|
# DescribeEndpoint API.
|
18184
18202
|
#
|
18185
18203
|
# <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
|
@@ -18287,13 +18305,13 @@ module Aws::SageMaker
|
|
18287
18305
|
|
18288
18306
|
# Updates variant weight of one or more variants associated with an
|
18289
18307
|
# existing endpoint, or capacity of one variant associated with an
|
18290
|
-
# existing endpoint. When it receives the request,
|
18291
|
-
#
|
18292
|
-
#
|
18293
|
-
#
|
18308
|
+
# existing endpoint. When it receives the request, SageMaker sets the
|
18309
|
+
# endpoint status to `Updating`. After updating the endpoint, it sets
|
18310
|
+
# the status to `InService`. To check the status of an endpoint, use the
|
18311
|
+
# DescribeEndpoint API.
|
18294
18312
|
#
|
18295
18313
|
# @option params [required, String] :endpoint_name
|
18296
|
-
# The name of an existing
|
18314
|
+
# The name of an existing SageMaker endpoint.
|
18297
18315
|
#
|
18298
18316
|
# @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
|
18299
18317
|
# An object that provides new capacity and weight values for a variant.
|
@@ -18618,12 +18636,12 @@ module Aws::SageMaker
|
|
18618
18636
|
# The Amazon ML compute instance type.
|
18619
18637
|
#
|
18620
18638
|
# @option params [String] :role_arn
|
18621
|
-
# The Amazon Resource Name (ARN) of the IAM role that
|
18622
|
-
#
|
18623
|
-
# [
|
18639
|
+
# The Amazon Resource Name (ARN) of the IAM role that SageMaker can
|
18640
|
+
# assume to access the notebook instance. For more information, see
|
18641
|
+
# [SageMaker Roles][1].
|
18624
18642
|
#
|
18625
|
-
# <note markdown="1"> To be able to pass this role to
|
18626
|
-
#
|
18643
|
+
# <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
|
18644
|
+
# have the `iam:PassRole` permission.
|
18627
18645
|
#
|
18628
18646
|
# </note>
|
18629
18647
|
#
|
@@ -18650,11 +18668,11 @@ module Aws::SageMaker
|
|
18650
18668
|
# @option params [Integer] :volume_size_in_gb
|
18651
18669
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
18652
18670
|
# instance. The default value is 5 GB. ML storage volumes are encrypted,
|
18653
|
-
# so
|
18654
|
-
#
|
18655
|
-
#
|
18656
|
-
#
|
18657
|
-
#
|
18671
|
+
# so SageMaker can't determine the amount of available free space on
|
18672
|
+
# the volume. Because of this, you can increase the volume size when you
|
18673
|
+
# update a notebook instance, but you can't decrease the volume size.
|
18674
|
+
# If you want to decrease the size of the ML storage volume in use,
|
18675
|
+
# create a new notebook instance with the desired size.
|
18658
18676
|
#
|
18659
18677
|
# @option params [String] :default_code_repository
|
18660
18678
|
# The Git repository to associate with the notebook instance as its
|
@@ -18663,8 +18681,7 @@ module Aws::SageMaker
|
|
18663
18681
|
# repository in [Amazon Web Services CodeCommit][1] or in any other Git
|
18664
18682
|
# repository. When you open a notebook instance, it opens in the
|
18665
18683
|
# directory that contains this repository. For more information, see
|
18666
|
-
# [Associating Git Repositories with
|
18667
|
-
# Instances][2].
|
18684
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18668
18685
|
#
|
18669
18686
|
#
|
18670
18687
|
#
|
@@ -18678,8 +18695,7 @@ module Aws::SageMaker
|
|
18678
18695
|
# [Amazon Web Services CodeCommit][1] or in any other Git repository.
|
18679
18696
|
# These repositories are cloned at the same level as the default
|
18680
18697
|
# repository of your notebook instance. For more information, see
|
18681
|
-
# [Associating Git Repositories with
|
18682
|
-
# Instances][2].
|
18698
|
+
# [Associating Git Repositories with SageMaker Notebook Instances][2].
|
18683
18699
|
#
|
18684
18700
|
#
|
18685
18701
|
#
|
@@ -18730,7 +18746,7 @@ module Aws::SageMaker
|
|
18730
18746
|
#
|
18731
18747
|
# resp = client.update_notebook_instance({
|
18732
18748
|
# notebook_instance_name: "NotebookInstanceName", # required
|
18733
|
-
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
|
18749
|
+
# instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
|
18734
18750
|
# role_arn: "RoleArn",
|
18735
18751
|
# lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
|
18736
18752
|
# disassociate_lifecycle_config: false,
|
@@ -19452,7 +19468,7 @@ module Aws::SageMaker
|
|
19452
19468
|
params: params,
|
19453
19469
|
config: config)
|
19454
19470
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
19455
|
-
context[:gem_version] = '1.
|
19471
|
+
context[:gem_version] = '1.123.0'
|
19456
19472
|
Seahorse::Client::Request.new(handlers, context)
|
19457
19473
|
end
|
19458
19474
|
|