aws-sdk-sagemaker 1.120.0 → 1.123.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -422,7 +422,7 @@ module Aws::SageMaker
422
422
  req.send_request(options)
423
423
  end
424
424
 
425
- # Adds or overwrites one or more tags for the specified Amazon SageMaker
425
+ # Adds or overwrites one or more tags for the specified SageMaker
426
426
  # resource. You can add tags to notebook instances, training jobs,
427
427
  # hyperparameter tuning jobs, batch transform jobs, models, labeling
428
428
  # jobs, work teams, endpoint configurations, and endpoints.
@@ -678,8 +678,8 @@ module Aws::SageMaker
678
678
  req.send_request(options)
679
679
  end
680
680
 
681
- # Create a machine learning algorithm that you can use in Amazon
682
- # SageMaker and list in the Amazon Web Services Marketplace.
681
+ # Create a machine learning algorithm that you can use in SageMaker and
682
+ # list in the Amazon Web Services Marketplace.
683
683
  #
684
684
  # @option params [required, String] :algorithm_name
685
685
  # The name of the algorithm.
@@ -723,10 +723,10 @@ module Aws::SageMaker
723
723
  # inference.
724
724
  #
725
725
  # @option params [Types::AlgorithmValidationSpecification] :validation_specification
726
- # Specifies configurations for one or more training jobs and that Amazon
726
+ # Specifies configurations for one or more training jobs and that
727
727
  # SageMaker runs to test the algorithm's training code and, optionally,
728
- # one or more batch transform jobs that Amazon SageMaker runs to test
729
- # the algorithm's inference code.
728
+ # one or more batch transform jobs that SageMaker runs to test the
729
+ # algorithm's inference code.
730
730
  #
731
731
  # @option params [Boolean] :certify_for_marketplace
732
732
  # Whether to certify the algorithm so that it can be listed in Amazon
@@ -1210,6 +1210,7 @@ module Aws::SageMaker
1210
1210
  # compression_type: "None", # accepts None, Gzip
1211
1211
  # target_attribute_name: "TargetAttributeName", # required
1212
1212
  # content_type: "ContentType",
1213
+ # channel_type: "training", # accepts training, validation
1213
1214
  # },
1214
1215
  # ],
1215
1216
  # output_data_config: { # required
@@ -1234,6 +1235,9 @@ module Aws::SageMaker
1234
1235
  # subnets: ["SubnetId"], # required
1235
1236
  # },
1236
1237
  # },
1238
+ # data_split_config: {
1239
+ # validation_fraction: 1.0,
1240
+ # },
1237
1241
  # },
1238
1242
  # role_arn: "RoleArn", # required
1239
1243
  # generate_candidate_definitions_only: false,
@@ -1262,13 +1266,13 @@ module Aws::SageMaker
1262
1266
  req.send_request(options)
1263
1267
  end
1264
1268
 
1265
- # Creates a Git repository as a resource in your Amazon SageMaker
1266
- # account. You can associate the repository with notebook instances so
1267
- # that you can use Git source control for the notebooks you create. The
1268
- # Git repository is a resource in your Amazon SageMaker account, so it
1269
- # can be associated with more than one notebook instance, and it
1270
- # persists independently from the lifecycle of any notebook instances it
1271
- # is associated with.
1269
+ # Creates a Git repository as a resource in your SageMaker account. You
1270
+ # can associate the repository with notebook instances so that you can
1271
+ # use Git source control for the notebooks you create. The Git
1272
+ # repository is a resource in your SageMaker account, so it can be
1273
+ # associated with more than one notebook instance, and it persists
1274
+ # independently from the lifecycle of any notebook instances it is
1275
+ # associated with.
1272
1276
  #
1273
1277
  # The repository can be hosted either in [Amazon Web Services
1274
1278
  # CodeCommit][1] or in any other Git repository.
@@ -2032,13 +2036,13 @@ module Aws::SageMaker
2032
2036
  end
2033
2037
 
2034
2038
  # Creates an endpoint using the endpoint configuration specified in the
2035
- # request. Amazon SageMaker uses the endpoint to provision resources and
2036
- # deploy models. You create the endpoint configuration with the
2039
+ # request. SageMaker uses the endpoint to provision resources and deploy
2040
+ # models. You create the endpoint configuration with the
2037
2041
  # CreateEndpointConfig API.
2038
2042
  #
2039
- # Use this API to deploy models using Amazon SageMaker hosting services.
2043
+ # Use this API to deploy models using SageMaker hosting services.
2040
2044
  #
2041
- # For an example that calls this method when deploying a model to Amazon
2045
+ # For an example that calls this method when deploying a model to
2042
2046
  # SageMaker hosting services, see the [Create Endpoint example
2043
2047
  # notebook.][1]
2044
2048
  #
@@ -2052,9 +2056,9 @@ module Aws::SageMaker
2052
2056
  # The endpoint name must be unique within an Amazon Web Services Region
2053
2057
  # in your Amazon Web Services account.
2054
2058
  #
2055
- # When it receives the request, Amazon SageMaker creates the endpoint,
2056
- # launches the resources (ML compute instances), and deploys the
2057
- # model(s) on them.
2059
+ # When it receives the request, SageMaker creates the endpoint, launches
2060
+ # the resources (ML compute instances), and deploys the model(s) on
2061
+ # them.
2058
2062
  #
2059
2063
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2060
2064
  # verify that your endpoint configuration exists. When you read data
@@ -2070,21 +2074,21 @@ module Aws::SageMaker
2070
2074
  #
2071
2075
  # </note>
2072
2076
  #
2073
- # When Amazon SageMaker receives the request, it sets the endpoint
2074
- # status to `Creating`. After it creates the endpoint, it sets the
2075
- # status to `InService`. Amazon SageMaker can then process incoming
2076
- # requests for inferences. To check the status of an endpoint, use the
2077
+ # When SageMaker receives the request, it sets the endpoint status to
2078
+ # `Creating`. After it creates the endpoint, it sets the status to
2079
+ # `InService`. SageMaker can then process incoming requests for
2080
+ # inferences. To check the status of an endpoint, use the
2077
2081
  # DescribeEndpoint API.
2078
2082
  #
2079
2083
  # If any of the models hosted at this endpoint get model data from an
2080
- # Amazon S3 location, Amazon SageMaker uses Amazon Web Services Security
2081
- # Token Service to download model artifacts from the S3 path you
2082
- # provided. Amazon Web Services STS is activated in your IAM user
2083
- # account by default. If you previously deactivated Amazon Web Services
2084
- # STS for a region, you need to reactivate Amazon Web Services STS for
2085
- # that region. For more information, see [Activating and Deactivating
2086
- # Amazon Web Services STS in an Amazon Web Services Region][3] in the
2087
- # *Amazon Web Services Identity and Access Management User Guide*.
2084
+ # Amazon S3 location, SageMaker uses Amazon Web Services Security Token
2085
+ # Service to download model artifacts from the S3 path you provided.
2086
+ # Amazon Web Services STS is activated in your IAM user account by
2087
+ # default. If you previously deactivated Amazon Web Services STS for a
2088
+ # region, you need to reactivate Amazon Web Services STS for that
2089
+ # region. For more information, see [Activating and Deactivating Amazon
2090
+ # Web Services STS in an Amazon Web Services Region][3] in the *Amazon
2091
+ # Web Services Identity and Access Management User Guide*.
2088
2092
  #
2089
2093
  # <note markdown="1"> To add the IAM role policies for using this API operation, go to the
2090
2094
  # [IAM console][4], and choose Roles in the left navigation pane. Search
@@ -2202,28 +2206,28 @@ module Aws::SageMaker
2202
2206
  req.send_request(options)
2203
2207
  end
2204
2208
 
2205
- # Creates an endpoint configuration that Amazon SageMaker hosting
2206
- # services uses to deploy models. In the configuration, you identify one
2207
- # or more models, created using the `CreateModel` API, to deploy and the
2208
- # resources that you want Amazon SageMaker to provision. Then you call
2209
- # the CreateEndpoint API.
2209
+ # Creates an endpoint configuration that SageMaker hosting services uses
2210
+ # to deploy models. In the configuration, you identify one or more
2211
+ # models, created using the `CreateModel` API, to deploy and the
2212
+ # resources that you want SageMaker to provision. Then you call the
2213
+ # CreateEndpoint API.
2210
2214
  #
2211
- # <note markdown="1"> Use this API if you want to use Amazon SageMaker hosting services to
2212
- # deploy models into production.
2215
+ # <note markdown="1"> Use this API if you want to use SageMaker hosting services to deploy
2216
+ # models into production.
2213
2217
  #
2214
2218
  # </note>
2215
2219
  #
2216
2220
  # In the request, you define a `ProductionVariant`, for each model that
2217
2221
  # you want to deploy. Each `ProductionVariant` parameter also describes
2218
- # the resources that you want Amazon SageMaker to provision. This
2219
- # includes the number and type of ML compute instances to deploy.
2222
+ # the resources that you want SageMaker to provision. This includes the
2223
+ # number and type of ML compute instances to deploy.
2220
2224
  #
2221
2225
  # If you are hosting multiple models, you also assign a `VariantWeight`
2222
2226
  # to specify how much traffic you want to allocate to each model. For
2223
2227
  # example, suppose that you want to host two models, A and B, and you
2224
- # assign traffic weight 2 for model A and 1 for model B. Amazon
2225
- # SageMaker distributes two-thirds of the traffic to Model A, and
2226
- # one-third to model B.
2228
+ # assign traffic weight 2 for model A and 1 for model B. SageMaker
2229
+ # distributes two-thirds of the traffic to Model A, and one-third to
2230
+ # model B.
2227
2231
  #
2228
2232
  # <note markdown="1"> When you call CreateEndpoint, a load call is made to DynamoDB to
2229
2233
  # verify that your endpoint configuration exists. When you read data
@@ -2265,8 +2269,8 @@ module Aws::SageMaker
2265
2269
  #
2266
2270
  # @option params [String] :kms_key_id
2267
2271
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
2268
- # Service key that Amazon SageMaker uses to encrypt data on the storage
2269
- # volume attached to the ML compute instance that hosts the endpoint.
2272
+ # Service key that SageMaker uses to encrypt data on the storage volume
2273
+ # attached to the ML compute instance that hosts the endpoint.
2270
2274
  #
2271
2275
  # The KmsKeyId can be any of the following formats:
2272
2276
  #
@@ -3133,8 +3137,8 @@ module Aws::SageMaker
3133
3137
 
3134
3138
  # Creates a custom SageMaker image. A SageMaker image is a set of image
3135
3139
  # versions. Each image version represents a container image stored in
3136
- # Amazon Container Registry (ECR). For more information, see [Bring your
3137
- # own SageMaker image][1].
3140
+ # Amazon Elastic Container Registry (ECR). For more information, see
3141
+ # [Bring your own SageMaker image][1].
3138
3142
  #
3139
3143
  #
3140
3144
  #
@@ -3190,13 +3194,13 @@ module Aws::SageMaker
3190
3194
  end
3191
3195
 
3192
3196
  # Creates a version of the SageMaker image specified by `ImageName`. The
3193
- # version represents the Amazon Container Registry (ECR) container image
3194
- # specified by `BaseImage`.
3197
+ # version represents the Amazon Elastic Container Registry (ECR)
3198
+ # container image specified by `BaseImage`.
3195
3199
  #
3196
3200
  # @option params [required, String] :base_image
3197
3201
  # The registry path of the container image to use as the starting point
3198
- # for this version. The path is an Amazon Container Registry (ECR) URI
3199
- # in the following format:
3202
+ # for this version. The path is an Amazon Elastic Container Registry
3203
+ # (ECR) URI in the following format:
3200
3204
  #
3201
3205
  # `<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or
3202
3206
  # [@digest]>`
@@ -3266,6 +3270,10 @@ module Aws::SageMaker
3266
3270
  # A set of conditions for stopping a recommendation job. If any of the
3267
3271
  # conditions are met, the job is automatically stopped.
3268
3272
  #
3273
+ # @option params [Types::RecommendationJobOutputConfig] :output_config
3274
+ # Provides information about the output artifacts and the KMS key to use
3275
+ # for Amazon S3 server-side encryption.
3276
+ #
3269
3277
  # @option params [Array<Types::Tag>] :tags
3270
3278
  # The metadata that you apply to Amazon Web Services resources to help
3271
3279
  # you categorize and organize them. Each tag consists of a key and a
@@ -3318,6 +3326,7 @@ module Aws::SageMaker
3318
3326
  # },
3319
3327
  # },
3320
3328
  # ],
3329
+ # volume_kms_key_id: "KmsKeyId",
3321
3330
  # },
3322
3331
  # job_description: "RecommendationJobDescription",
3323
3332
  # stopping_conditions: {
@@ -3329,6 +3338,12 @@ module Aws::SageMaker
3329
3338
  # },
3330
3339
  # ],
3331
3340
  # },
3341
+ # output_config: {
3342
+ # kms_key_id: "KmsKeyId",
3343
+ # compiled_output_config: {
3344
+ # s3_output_uri: "S3Uri",
3345
+ # },
3346
+ # },
3332
3347
  # tags: [
3333
3348
  # {
3334
3349
  # key: "TagKey", # required
@@ -3655,34 +3670,30 @@ module Aws::SageMaker
3655
3670
  req.send_request(options)
3656
3671
  end
3657
3672
 
3658
- # Creates a model in Amazon SageMaker. In the request, you name the
3659
- # model and describe a primary container. For the primary container, you
3660
- # specify the Docker image that contains inference code, artifacts (from
3661
- # prior training), and a custom environment map that the inference code
3662
- # uses when you deploy the model for predictions.
3673
+ # Creates a model in SageMaker. In the request, you name the model and
3674
+ # describe a primary container. For the primary container, you specify
3675
+ # the Docker image that contains inference code, artifacts (from prior
3676
+ # training), and a custom environment map that the inference code uses
3677
+ # when you deploy the model for predictions.
3663
3678
  #
3664
- # Use this API to create a model if you want to use Amazon SageMaker
3665
- # hosting services or run a batch transform job.
3679
+ # Use this API to create a model if you want to use SageMaker hosting
3680
+ # services or run a batch transform job.
3666
3681
  #
3667
3682
  # To host your model, you create an endpoint configuration with the
3668
3683
  # `CreateEndpointConfig` API, and then create an endpoint with the
3669
- # `CreateEndpoint` API. Amazon SageMaker then deploys all of the
3670
- # containers that you defined for the model in the hosting environment.
3684
+ # `CreateEndpoint` API. SageMaker then deploys all of the containers
3685
+ # that you defined for the model in the hosting environment.
3671
3686
  #
3672
- # For an example that calls this method when deploying a model to Amazon
3687
+ # For an example that calls this method when deploying a model to
3673
3688
  # SageMaker hosting services, see [Deploy the Model to Amazon SageMaker
3674
3689
  # Hosting Services (Amazon Web Services SDK for Python (Boto 3)).][1]
3675
3690
  #
3676
3691
  # To run a batch transform using your model, you start a job with the
3677
- # `CreateTransformJob` API. Amazon SageMaker uses your model and your
3678
- # dataset to get inferences which are then saved to a specified S3
3679
- # location.
3692
+ # `CreateTransformJob` API. SageMaker uses your model and your dataset
3693
+ # to get inferences which are then saved to a specified S3 location.
3680
3694
  #
3681
- # In the `CreateModel` request, you must define a container with the
3682
- # `PrimaryContainer` parameter.
3683
- #
3684
- # In the request, you also provide an IAM role that Amazon SageMaker can
3685
- # assume to access model artifacts and docker image for deployment on ML
3695
+ # In the request, you also provide an IAM role that SageMaker can assume
3696
+ # to access model artifacts and docker image for deployment on ML
3686
3697
  # compute hosting instances or for batch transform jobs. In addition,
3687
3698
  # you also use the IAM role to manage permissions the inference code
3688
3699
  # needs. For example, if the inference code access any other Amazon Web
@@ -3708,14 +3719,14 @@ module Aws::SageMaker
3708
3719
  # called.
3709
3720
  #
3710
3721
  # @option params [required, String] :execution_role_arn
3711
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
3712
- # can assume to access model artifacts and docker image for deployment
3713
- # on ML compute instances or for batch transform jobs. Deploying on ML
3714
- # compute instances is part of model hosting. For more information, see
3715
- # [Amazon SageMaker Roles][1].
3722
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
3723
+ # assume to access model artifacts and docker image for deployment on ML
3724
+ # compute instances or for batch transform jobs. Deploying on ML compute
3725
+ # instances is part of model hosting. For more information, see
3726
+ # [SageMaker Roles][1].
3716
3727
  #
3717
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
3718
- # API must have the `iam:PassRole` permission.
3728
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
3729
+ # have the `iam:PassRole` permission.
3719
3730
  #
3720
3731
  # </note>
3721
3732
  #
@@ -4094,11 +4105,10 @@ module Aws::SageMaker
4094
4105
  req.send_request(options)
4095
4106
  end
4096
4107
 
4097
- # Creates a model package that you can use to create Amazon SageMaker
4098
- # models or list on Amazon Web Services Marketplace, or a versioned
4099
- # model that is part of a model group. Buyers can subscribe to model
4100
- # packages listed on Amazon Web Services Marketplace to create models in
4101
- # Amazon SageMaker.
4108
+ # Creates a model package that you can use to create SageMaker models or
4109
+ # list on Amazon Web Services Marketplace, or a versioned model that is
4110
+ # part of a model group. Buyers can subscribe to model packages listed
4111
+ # on Amazon Web Services Marketplace to create models in SageMaker.
4102
4112
  #
4103
4113
  # To create a model package by specifying a Docker container that
4104
4114
  # contains your inference code and the Amazon S3 location of your model
@@ -4147,8 +4157,8 @@ module Aws::SageMaker
4147
4157
  # for inference.
4148
4158
  #
4149
4159
  # @option params [Types::ModelPackageValidationSpecification] :validation_specification
4150
- # Specifies configurations for one or more transform jobs that Amazon
4151
- # SageMaker runs to test the model package.
4160
+ # Specifies configurations for one or more transform jobs that SageMaker
4161
+ # runs to test the model package.
4152
4162
  #
4153
4163
  # @option params [Types::SourceAlgorithmSpecification] :source_algorithm_specification
4154
4164
  # Details about the algorithm that was used to create the model package.
@@ -4786,46 +4796,45 @@ module Aws::SageMaker
4786
4796
  req.send_request(options)
4787
4797
  end
4788
4798
 
4789
- # Creates an Amazon SageMaker notebook instance. A notebook instance is
4790
- # a machine learning (ML) compute instance running on a Jupyter
4791
- # notebook.
4799
+ # Creates an SageMaker notebook instance. A notebook instance is a
4800
+ # machine learning (ML) compute instance running on a Jupyter notebook.
4792
4801
  #
4793
4802
  # In a `CreateNotebookInstance` request, specify the type of ML compute
4794
- # instance that you want to run. Amazon SageMaker launches the instance,
4803
+ # instance that you want to run. SageMaker launches the instance,
4795
4804
  # installs common libraries that you can use to explore datasets for
4796
4805
  # model training, and attaches an ML storage volume to the notebook
4797
4806
  # instance.
4798
4807
  #
4799
- # Amazon SageMaker also provides a set of example notebooks. Each
4800
- # notebook demonstrates how to use Amazon SageMaker with a specific
4801
- # algorithm or with a machine learning framework.
4808
+ # SageMaker also provides a set of example notebooks. Each notebook
4809
+ # demonstrates how to use SageMaker with a specific algorithm or with a
4810
+ # machine learning framework.
4802
4811
  #
4803
- # After receiving the request, Amazon SageMaker does the following:
4812
+ # After receiving the request, SageMaker does the following:
4804
4813
  #
4805
- # 1. Creates a network interface in the Amazon SageMaker VPC.
4814
+ # 1. Creates a network interface in the SageMaker VPC.
4806
4815
  #
4807
- # 2. (Option) If you specified `SubnetId`, Amazon SageMaker creates a
4808
- # network interface in your own VPC, which is inferred from the
4809
- # subnet ID that you provide in the input. When creating this
4810
- # network interface, Amazon SageMaker attaches the security group
4811
- # that you specified in the request to the network interface that it
4812
- # creates in your VPC.
4816
+ # 2. (Option) If you specified `SubnetId`, SageMaker creates a network
4817
+ # interface in your own VPC, which is inferred from the subnet ID
4818
+ # that you provide in the input. When creating this network
4819
+ # interface, SageMaker attaches the security group that you
4820
+ # specified in the request to the network interface that it creates
4821
+ # in your VPC.
4813
4822
  #
4814
4823
  # 3. Launches an EC2 instance of the type specified in the request in
4815
- # the Amazon SageMaker VPC. If you specified `SubnetId` of your VPC,
4816
- # Amazon SageMaker specifies both network interfaces when launching
4817
- # this instance. This enables inbound traffic from your own VPC to
4818
- # the notebook instance, assuming that the security groups allow it.
4824
+ # the SageMaker VPC. If you specified `SubnetId` of your VPC,
4825
+ # SageMaker specifies both network interfaces when launching this
4826
+ # instance. This enables inbound traffic from your own VPC to the
4827
+ # notebook instance, assuming that the security groups allow it.
4819
4828
  #
4820
- # After creating the notebook instance, Amazon SageMaker returns its
4821
- # Amazon Resource Name (ARN). You can't change the name of a notebook
4822
- # instance after you create it.
4829
+ # After creating the notebook instance, SageMaker returns its Amazon
4830
+ # Resource Name (ARN). You can't change the name of a notebook instance
4831
+ # after you create it.
4823
4832
  #
4824
- # After Amazon SageMaker creates the notebook instance, you can connect
4825
- # to the Jupyter server and work in Jupyter notebooks. For example, you
4826
- # can write code to explore a dataset that you can use for model
4827
- # training, train a model, host models by creating Amazon SageMaker
4828
- # endpoints, and validate hosted models.
4833
+ # After SageMaker creates the notebook instance, you can connect to the
4834
+ # Jupyter server and work in Jupyter notebooks. For example, you can
4835
+ # write code to explore a dataset that you can use for model training,
4836
+ # train a model, host models by creating SageMaker endpoints, and
4837
+ # validate hosted models.
4829
4838
  #
4830
4839
  # For more information, see [How It Works][1].
4831
4840
  #
@@ -4849,15 +4858,14 @@ module Aws::SageMaker
4849
4858
  #
4850
4859
  # @option params [required, String] :role_arn
4851
4860
  # When you send any requests to Amazon Web Services resources from the
4852
- # notebook instance, Amazon SageMaker assumes this role to perform tasks
4853
- # on your behalf. You must grant this role necessary permissions so
4854
- # Amazon SageMaker can perform these tasks. The policy must allow the
4855
- # Amazon SageMaker service principal (sagemaker.amazonaws.com)
4856
- # permissions to assume this role. For more information, see [Amazon
4857
- # SageMaker Roles][1].
4861
+ # notebook instance, SageMaker assumes this role to perform tasks on
4862
+ # your behalf. You must grant this role necessary permissions so
4863
+ # SageMaker can perform these tasks. The policy must allow the SageMaker
4864
+ # service principal (sagemaker.amazonaws.com) permissions to assume this
4865
+ # role. For more information, see [SageMaker Roles][1].
4858
4866
  #
4859
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
4860
- # API must have the `iam:PassRole` permission.
4867
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
4868
+ # have the `iam:PassRole` permission.
4861
4869
  #
4862
4870
  # </note>
4863
4871
  #
@@ -4867,10 +4875,10 @@ module Aws::SageMaker
4867
4875
  #
4868
4876
  # @option params [String] :kms_key_id
4869
4877
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key Management
4870
- # Service key that Amazon SageMaker uses to encrypt data on the storage
4871
- # volume attached to your notebook instance. The KMS key you provide
4872
- # must be enabled. For information, see [Enabling and Disabling Keys][1]
4873
- # in the *Amazon Web Services Key Management Service Developer Guide*.
4878
+ # Service key that SageMaker uses to encrypt data on the storage volume
4879
+ # attached to your notebook instance. The KMS key you provide must be
4880
+ # enabled. For information, see [Enabling and Disabling Keys][1] in the
4881
+ # *Amazon Web Services Key Management Service Developer Guide*.
4874
4882
  #
4875
4883
  #
4876
4884
  #
@@ -4896,11 +4904,11 @@ module Aws::SageMaker
4896
4904
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html
4897
4905
  #
4898
4906
  # @option params [String] :direct_internet_access
4899
- # Sets whether Amazon SageMaker provides internet access to the notebook
4907
+ # Sets whether SageMaker provides internet access to the notebook
4900
4908
  # instance. If you set this to `Disabled` this notebook instance is able
4901
4909
  # to access resources only in your VPC, and is not be able to connect to
4902
- # Amazon SageMaker training and endpoint services unless you configure a
4903
- # NAT Gateway in your VPC.
4910
+ # SageMaker training and endpoint services unless you configure a NAT
4911
+ # Gateway in your VPC.
4904
4912
  #
4905
4913
  # For more information, see [Notebook Instances Are Internet-Enabled by
4906
4914
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -4931,8 +4939,7 @@ module Aws::SageMaker
4931
4939
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
4932
4940
  # repository. When you open a notebook instance, it opens in the
4933
4941
  # directory that contains this repository. For more information, see
4934
- # [Associating Git Repositories with Amazon SageMaker Notebook
4935
- # Instances][2].
4942
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4936
4943
  #
4937
4944
  #
4938
4945
  #
@@ -4946,8 +4953,7 @@ module Aws::SageMaker
4946
4953
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
4947
4954
  # These repositories are cloned at the same level as the default
4948
4955
  # repository of your notebook instance. For more information, see
4949
- # [Associating Git Repositories with Amazon SageMaker Notebook
4950
- # Instances][2].
4956
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
4951
4957
  #
4952
4958
  #
4953
4959
  #
@@ -4976,7 +4982,7 @@ module Aws::SageMaker
4976
4982
  #
4977
4983
  # resp = client.create_notebook_instance({
4978
4984
  # notebook_instance_name: "NotebookInstanceName", # required
4979
- # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
4985
+ # instance_type: "ml.t2.medium", # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
4980
4986
  # subnet_id: "SubnetId",
4981
4987
  # security_group_ids: ["SecurityGroupId"],
4982
4988
  # role_arn: "RoleArn", # required
@@ -5231,10 +5237,10 @@ module Aws::SageMaker
5231
5237
  end
5232
5238
 
5233
5239
  # Returns a URL that you can use to connect to the Jupyter server from a
5234
- # notebook instance. In the Amazon SageMaker console, when you choose
5235
- # `Open` next to a notebook instance, Amazon SageMaker opens a new tab
5236
- # showing the Jupyter server home page from the notebook instance. The
5237
- # console uses this API to get the URL and show the page.
5240
+ # notebook instance. In the SageMaker console, when you choose `Open`
5241
+ # next to a notebook instance, SageMaker opens a new tab showing the
5242
+ # Jupyter server home page from the notebook instance. The console uses
5243
+ # this API to get the URL and show the page.
5238
5244
  #
5239
5245
  # The IAM role or user used to call this API defines the permissions to
5240
5246
  # access the notebook instance. Once the presigned URL is created, no
@@ -5590,15 +5596,14 @@ module Aws::SageMaker
5590
5596
  req.send_request(options)
5591
5597
  end
5592
5598
 
5593
- # Starts a model training job. After training completes, Amazon
5594
- # SageMaker saves the resulting model artifacts to an Amazon S3 location
5595
- # that you specify.
5599
+ # Starts a model training job. After training completes, SageMaker saves
5600
+ # the resulting model artifacts to an Amazon S3 location that you
5601
+ # specify.
5596
5602
  #
5597
- # If you choose to host your model using Amazon SageMaker hosting
5598
- # services, you can use the resulting model artifacts as part of the
5599
- # model. You can also use the artifacts in a machine learning service
5600
- # other than Amazon SageMaker, provided that you know how to use them
5601
- # for inference.
5603
+ # If you choose to host your model using SageMaker hosting services, you
5604
+ # can use the resulting model artifacts as part of the model. You can
5605
+ # also use the artifacts in a machine learning service other than
5606
+ # SageMaker, provided that you know how to use them for inference.
5602
5607
  #
5603
5608
  # In the request body, you provide the following:
5604
5609
  #
@@ -5608,13 +5613,13 @@ module Aws::SageMaker
5608
5613
  # enable the estimation of model parameters during training.
5609
5614
  # Hyperparameters can be tuned to optimize this learning process. For
5610
5615
  # a list of hyperparameters for each training algorithm provided by
5611
- # Amazon SageMaker, see [Algorithms][1].
5616
+ # SageMaker, see [Algorithms][1].
5612
5617
  #
5613
5618
  # * `InputDataConfig` - Describes the training dataset and the Amazon
5614
5619
  # S3, EFS, or FSx location where it is stored.
5615
5620
  #
5616
5621
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
5617
- # Amazon SageMaker to save the results of model training.
5622
+ # SageMaker to save the results of model training.
5618
5623
  #
5619
5624
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
5620
5625
  # and ML storage volumes to deploy for model training. In distributed
@@ -5624,10 +5629,10 @@ module Aws::SageMaker
5624
5629
  # learning models by up to 80% by using Amazon EC2 Spot instances. For
5625
5630
  # more information, see [Managed Spot Training][2].
5626
5631
  #
5627
- # * `RoleArn` - The Amazon Resource Name (ARN) that Amazon SageMaker
5628
- # assumes to perform tasks on your behalf during model training. You
5629
- # must grant this role the necessary permissions so that Amazon
5630
- # SageMaker can successfully complete model training.
5632
+ # * `RoleArn` - The Amazon Resource Name (ARN) that SageMaker assumes to
5633
+ # perform tasks on your behalf during model training. You must grant
5634
+ # this role the necessary permissions so that SageMaker can
5635
+ # successfully complete model training.
5631
5636
  #
5632
5637
  # * `StoppingCondition` - To help cap training costs, use
5633
5638
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
@@ -5640,7 +5645,7 @@ module Aws::SageMaker
5640
5645
  # * `RetryStrategy` - The number of times to retry the job when the job
5641
5646
  # fails due to an `InternalServerError`.
5642
5647
  #
5643
- # For more information about Amazon SageMaker, see [How It Works][3].
5648
+ # For more information about SageMaker, see [How It Works][3].
5644
5649
  #
5645
5650
  #
5646
5651
  #
@@ -5655,7 +5660,7 @@ module Aws::SageMaker
5655
5660
  # @option params [Hash<String,String>] :hyper_parameters
5656
5661
  # Algorithm-specific parameters that influence the quality of the model.
5657
5662
  # You set hyperparameters before you start the learning process. For a
5658
- # list of hyperparameters for each training algorithm provided by Amazon
5663
+ # list of hyperparameters for each training algorithm provided by
5659
5664
  # SageMaker, see [Algorithms][1].
5660
5665
  #
5661
5666
  # You can specify a maximum of 100 hyperparameters. Each hyperparameter
@@ -5669,9 +5674,9 @@ module Aws::SageMaker
5669
5674
  # @option params [required, Types::AlgorithmSpecification] :algorithm_specification
5670
5675
  # The registry path of the Docker image that contains the training
5671
5676
  # algorithm and algorithm-specific metadata, including the input mode.
5672
- # For more information about algorithms provided by Amazon SageMaker,
5673
- # see [Algorithms][1]. For information about providing your own
5674
- # algorithms, see [Using Your Own Algorithms with Amazon SageMaker][2].
5677
+ # For more information about algorithms provided by SageMaker, see
5678
+ # [Algorithms][1]. For information about providing your own algorithms,
5679
+ # see [Using Your Own Algorithms with Amazon SageMaker][2].
5675
5680
  #
5676
5681
  #
5677
5682
  #
@@ -5679,18 +5684,18 @@ module Aws::SageMaker
5679
5684
  # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
5680
5685
  #
5681
5686
  # @option params [required, String] :role_arn
5682
- # The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker
5683
- # can assume to perform tasks on your behalf.
5687
+ # The Amazon Resource Name (ARN) of an IAM role that SageMaker can
5688
+ # assume to perform tasks on your behalf.
5684
5689
  #
5685
- # During model training, Amazon SageMaker needs your permission to read
5686
- # input data from an S3 bucket, download a Docker image that contains
5687
- # training code, write model artifacts to an S3 bucket, write logs to
5688
- # Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You
5689
- # grant permissions for all of these tasks to an IAM role. For more
5690
- # information, see [Amazon SageMaker Roles][1].
5690
+ # During model training, SageMaker needs your permission to read input
5691
+ # data from an S3 bucket, download a Docker image that contains training
5692
+ # code, write model artifacts to an S3 bucket, write logs to Amazon
5693
+ # CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant
5694
+ # permissions for all of these tasks to an IAM role. For more
5695
+ # information, see [SageMaker Roles][1].
5691
5696
  #
5692
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
5693
- # API must have the `iam:PassRole` permission.
5697
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
5698
+ # have the `iam:PassRole` permission.
5694
5699
  #
5695
5700
  # </note>
5696
5701
  #
@@ -5710,16 +5715,15 @@ module Aws::SageMaker
5710
5715
  # type, compression method, and whether the data is wrapped in RecordIO
5711
5716
  # format.
5712
5717
  #
5713
- # Depending on the input mode that the algorithm supports, Amazon
5714
- # SageMaker either copies input data files from an S3 bucket to a local
5715
- # directory in the Docker container, or makes it available as input
5716
- # streams. For example, if you specify an EFS location, input data files
5717
- # will be made available as input streams. They do not need to be
5718
- # downloaded.
5718
+ # Depending on the input mode that the algorithm supports, SageMaker
5719
+ # either copies input data files from an S3 bucket to a local directory
5720
+ # in the Docker container, or makes it available as input streams. For
5721
+ # example, if you specify an EFS location, input data files are
5722
+ # available as input streams. They do not need to be downloaded.
5719
5723
  #
5720
5724
  # @option params [required, Types::OutputDataConfig] :output_data_config
5721
5725
  # Specifies the path to the S3 location where you want to store model
5722
- # artifacts. Amazon SageMaker creates subfolders for the artifacts.
5726
+ # artifacts. SageMaker creates subfolders for the artifacts.
5723
5727
  #
5724
5728
  # @option params [required, Types::ResourceConfig] :resource_config
5725
5729
  # The resources, including the ML compute instances and ML storage
@@ -5727,10 +5731,10 @@ module Aws::SageMaker
5727
5731
  #
5728
5732
  # ML storage volumes store model artifacts and incremental states.
5729
5733
  # Training algorithms might also use ML storage volumes for scratch
5730
- # space. If you want Amazon SageMaker to use the ML storage volume to
5731
- # store the training data, choose `File` as the `TrainingInputMode` in
5732
- # the algorithm specification. For distributed training algorithms,
5733
- # specify an instance count greater than 1.
5734
+ # space. If you want SageMaker to use the ML storage volume to store the
5735
+ # training data, choose `File` as the `TrainingInputMode` in the
5736
+ # algorithm specification. For distributed training algorithms, specify
5737
+ # an instance count greater than 1.
5734
5738
  #
5735
5739
  # @option params [Types::VpcConfig] :vpc_config
5736
5740
  # A VpcConfig object that specifies the VPC that you want your training
@@ -5745,13 +5749,13 @@ module Aws::SageMaker
5745
5749
  # @option params [required, Types::StoppingCondition] :stopping_condition
5746
5750
  # Specifies a limit to how long a model training job can run. It also
5747
5751
  # specifies how long a managed Spot training job has to complete. When
5748
- # the job reaches the time limit, Amazon SageMaker ends the training
5749
- # job. Use this API to cap model training costs.
5752
+ # the job reaches the time limit, SageMaker ends the training job. Use
5753
+ # this API to cap model training costs.
5750
5754
  #
5751
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5752
- # signal, which delays job termination for 120 seconds. Algorithms can
5753
- # use this 120-second window to save the model artifacts, so the results
5754
- # of training are not lost.
5755
+ # To stop a job, SageMaker sends the algorithm the `SIGTERM` signal,
5756
+ # which delays job termination for 120 seconds. Algorithms can use this
5757
+ # 120-second window to save the model artifacts, so the results of
5758
+ # training are not lost.
5755
5759
  #
5756
5760
  # @option params [Array<Types::Tag>] :tags
5757
5761
  # An array of key-value pairs. You can use tags to categorize your
@@ -5767,9 +5771,9 @@ module Aws::SageMaker
5767
5771
  # Isolates the training container. No inbound or outbound network calls
5768
5772
  # can be made, except for calls between peers within a training cluster
5769
5773
  # for distributed training. If you enable network isolation for training
5770
- # jobs that are configured to use a VPC, Amazon SageMaker downloads and
5771
- # uploads customer data and model artifacts through the specified VPC,
5772
- # but the training container does not have network access.
5774
+ # jobs that are configured to use a VPC, SageMaker downloads and uploads
5775
+ # customer data and model artifacts through the specified VPC, but the
5776
+ # training container does not have network access.
5773
5777
  #
5774
5778
  # @option params [Boolean] :enable_inter_container_traffic_encryption
5775
5779
  # To encrypt all communications between ML compute instances in
@@ -6076,6 +6080,11 @@ module Aws::SageMaker
6076
6080
  # fit within the maximum payload size, we recommend using a slightly
6077
6081
  # larger value. The default value is `6` MB.
6078
6082
  #
6083
+ # The value of `MaxPayloadInMB` cannot be greater than 100 MB. If you
6084
+ # specify the `MaxConcurrentTransforms` parameter, the value of
6085
+ # `(MaxConcurrentTransforms * MaxPayloadInMB)` also cannot exceed 100
6086
+ # MB.
6087
+ #
6079
6088
  # For cases where the payload might be arbitrarily large and is
6080
6089
  # transmitted using HTTP chunked encoding, set the value to `0`. This
6081
6090
  # feature works only in supported algorithms. Currently, Amazon
@@ -7041,13 +7050,19 @@ module Aws::SageMaker
7041
7050
  req.send_request(options)
7042
7051
  end
7043
7052
 
7044
- # Deletes an endpoint. Amazon SageMaker frees up all of the resources
7045
- # that were deployed when the endpoint was created.
7053
+ # Deletes an endpoint. SageMaker frees up all of the resources that were
7054
+ # deployed when the endpoint was created.
7046
7055
  #
7047
- # Amazon SageMaker retires any custom KMS key grants associated with the
7056
+ # SageMaker retires any custom KMS key grants associated with the
7048
7057
  # endpoint, meaning you don't need to use the [RevokeGrant][1] API
7049
7058
  # call.
7050
7059
  #
7060
+ # When you delete your endpoint, SageMaker asynchronously deletes
7061
+ # associated endpoint resources such as KMS key grants. You might still
7062
+ # see these resources in your account for a few minutes after deleting
7063
+ # your endpoint. Do not delete or revoke the permissions for your `
7064
+ # ExecutionRoleArn `, otherwise SageMaker cannot delete these resources.
7065
+ #
7051
7066
  #
7052
7067
  #
7053
7068
  # [1]: http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
@@ -7264,9 +7279,9 @@ module Aws::SageMaker
7264
7279
  end
7265
7280
 
7266
7281
  # Deletes a model. The `DeleteModel` API deletes only the model entry
7267
- # that was created in Amazon SageMaker when you called the `CreateModel`
7268
- # API. It does not delete model artifacts, inference code, or the IAM
7269
- # role that you specified when creating the model.
7282
+ # that was created in SageMaker when you called the `CreateModel` API.
7283
+ # It does not delete model artifacts, inference code, or the IAM role
7284
+ # that you specified when creating the model.
7270
7285
  #
7271
7286
  # @option params [required, String] :model_name
7272
7287
  # The name of the model to delete.
@@ -7334,10 +7349,10 @@ module Aws::SageMaker
7334
7349
 
7335
7350
  # Deletes a model package.
7336
7351
  #
7337
- # A model package is used to create Amazon SageMaker models or list on
7338
- # Amazon Web Services Marketplace. Buyers can subscribe to model
7339
- # packages listed on Amazon Web Services Marketplace to create models in
7340
- # Amazon SageMaker.
7352
+ # A model package is used to create SageMaker models or list on Amazon
7353
+ # Web Services Marketplace. Buyers can subscribe to model packages
7354
+ # listed on Amazon Web Services Marketplace to create models in
7355
+ # SageMaker.
7341
7356
  #
7342
7357
  # @option params [required, String] :model_package_name
7343
7358
  # The name or Amazon Resource Name (ARN) of the model package to delete.
@@ -7452,16 +7467,16 @@ module Aws::SageMaker
7452
7467
  req.send_request(options)
7453
7468
  end
7454
7469
 
7455
- # Deletes an Amazon SageMaker notebook instance. Before you can delete a
7470
+ # Deletes an SageMaker notebook instance. Before you can delete a
7456
7471
  # notebook instance, you must call the `StopNotebookInstance` API.
7457
7472
  #
7458
- # When you delete a notebook instance, you lose all of your data. Amazon
7473
+ # When you delete a notebook instance, you lose all of your data.
7459
7474
  # SageMaker removes the ML compute instance, and deletes the ML storage
7460
7475
  # volume and the network interface associated with the notebook
7461
7476
  # instance.
7462
7477
  #
7463
7478
  # @option params [required, String] :notebook_instance_name
7464
- # The name of the Amazon SageMaker notebook instance to delete.
7479
+ # The name of the SageMaker notebook instance to delete.
7465
7480
  #
7466
7481
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
7467
7482
  #
@@ -7589,7 +7604,7 @@ module Aws::SageMaker
7589
7604
  req.send_request(options)
7590
7605
  end
7591
7606
 
7592
- # Deletes the specified tags from an Amazon SageMaker resource.
7607
+ # Deletes the specified tags from an SageMaker resource.
7593
7608
  #
7594
7609
  # To list a resource's tags, use the `ListTags` API.
7595
7610
  #
@@ -8230,6 +8245,7 @@ module Aws::SageMaker
8230
8245
  # resp.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
8231
8246
  # resp.input_data_config[0].target_attribute_name #=> String
8232
8247
  # resp.input_data_config[0].content_type #=> String
8248
+ # resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
8233
8249
  # resp.output_data_config.kms_key_id #=> String
8234
8250
  # resp.output_data_config.s3_output_path #=> String
8235
8251
  # resp.role_arn #=> String
@@ -8244,6 +8260,7 @@ module Aws::SageMaker
8244
8260
  # resp.auto_ml_job_config.security_config.vpc_config.security_group_ids[0] #=> String
8245
8261
  # resp.auto_ml_job_config.security_config.vpc_config.subnets #=> Array
8246
8262
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
8263
+ # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
8247
8264
  # resp.creation_time #=> Time
8248
8265
  # resp.end_time #=> Time
8249
8266
  # resp.last_modified_time #=> Time
@@ -9602,6 +9619,7 @@ module Aws::SageMaker
9602
9619
  # resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].name #=> String
9603
9620
  # resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value #=> Array
9604
9621
  # resp.input_config.endpoint_configurations[0].environment_parameter_ranges.categorical_parameter_ranges[0].value[0] #=> String
9622
+ # resp.input_config.volume_kms_key_id #=> String
9605
9623
  # resp.stopping_conditions.max_invocations #=> Integer
9606
9624
  # resp.stopping_conditions.model_latency_thresholds #=> Array
9607
9625
  # resp.stopping_conditions.model_latency_thresholds[0].percentile #=> String
@@ -10207,7 +10225,7 @@ module Aws::SageMaker
10207
10225
  # Gets a description for the specified model group.
10208
10226
  #
10209
10227
  # @option params [required, String] :model_package_group_name
10210
- # The name of the model group to describe.
10228
+ # The name of gthe model group to describe.
10211
10229
  #
10212
10230
  # @return [Types::DescribeModelPackageGroupOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10213
10231
  #
@@ -10464,7 +10482,7 @@ module Aws::SageMaker
10464
10482
  # resp.notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
10465
10483
  # resp.failure_reason #=> String
10466
10484
  # resp.url #=> String
10467
- # resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
10485
+ # resp.instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
10468
10486
  # resp.subnet_id #=> String
10469
10487
  # resp.security_groups #=> Array
10470
10488
  # resp.security_groups[0] #=> String
@@ -14739,8 +14757,8 @@ module Aws::SageMaker
14739
14757
  req.send_request(options)
14740
14758
  end
14741
14759
 
14742
- # Returns a list of the Amazon SageMaker notebook instances in the
14743
- # requester's account in an Amazon Web Services Region.
14760
+ # Returns a list of the SageMaker notebook instances in the requester's
14761
+ # account in an Amazon Web Services Region.
14744
14762
  #
14745
14763
  # @option params [String] :next_token
14746
14764
  # If the previous call to the `ListNotebookInstances` is truncated, the
@@ -14836,7 +14854,7 @@ module Aws::SageMaker
14836
14854
  # resp.notebook_instances[0].notebook_instance_arn #=> String
14837
14855
  # resp.notebook_instances[0].notebook_instance_status #=> String, one of "Pending", "InService", "Stopping", "Stopped", "Failed", "Deleting", "Updating"
14838
14856
  # resp.notebook_instances[0].url #=> String
14839
- # resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge"
14857
+ # resp.notebook_instances[0].instance_type #=> String, one of "ml.t2.medium", "ml.t2.large", "ml.t2.xlarge", "ml.t2.2xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.m5d.large", "ml.m5d.xlarge", "ml.m5d.2xlarge", "ml.m5d.4xlarge", "ml.m5d.8xlarge", "ml.m5d.12xlarge", "ml.m5d.16xlarge", "ml.m5d.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5d.xlarge", "ml.c5d.2xlarge", "ml.c5d.4xlarge", "ml.c5d.9xlarge", "ml.c5d.18xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge"
14840
14858
  # resp.notebook_instances[0].creation_time #=> Time
14841
14859
  # resp.notebook_instances[0].last_modified_time #=> Time
14842
14860
  # resp.notebook_instances[0].notebook_instance_lifecycle_config_name #=> String
@@ -15411,7 +15429,7 @@ module Aws::SageMaker
15411
15429
  req.send_request(options)
15412
15430
  end
15413
15431
 
15414
- # Returns the tags for the specified Amazon SageMaker resource.
15432
+ # Returns the tags for the specified SageMaker resource.
15415
15433
  #
15416
15434
  # @option params [required, String] :resource_arn
15417
15435
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
@@ -15419,8 +15437,8 @@ module Aws::SageMaker
15419
15437
  #
15420
15438
  # @option params [String] :next_token
15421
15439
  # If the response to the previous `ListTags` request is truncated,
15422
- # Amazon SageMaker returns this token. To retrieve the next set of tags,
15423
- # use it in the subsequent request.
15440
+ # SageMaker returns this token. To retrieve the next set of tags, use it
15441
+ # in the subsequent request.
15424
15442
  #
15425
15443
  # @option params [Integer] :max_results
15426
15444
  # Maximum number of tags to return.
@@ -16145,11 +16163,12 @@ module Aws::SageMaker
16145
16163
  # starting point for your lineage query.
16146
16164
  #
16147
16165
  # @option params [String] :direction
16148
- # Associations between lineage entities are directed. This parameter
16149
- # determines the direction from the StartArn(s) the query will look.
16166
+ # Associations between lineage entities have a direction. This parameter
16167
+ # determines the direction from the StartArn(s) that the query
16168
+ # traverses.
16150
16169
  #
16151
16170
  # @option params [Boolean] :include_edges
16152
- # Setting this value to `True` will retrieve not only the entities of
16171
+ # Setting this value to `True` retrieves not only the entities of
16153
16172
  # interest but also the [Associations][1] and lineage entities on the
16154
16173
  # path. Set to `False` to only return lineage entities that match your
16155
16174
  # query.
@@ -16176,8 +16195,8 @@ module Aws::SageMaker
16176
16195
  #
16177
16196
  # @option params [Integer] :max_depth
16178
16197
  # The maximum depth in lineage relationships from the `StartArns` that
16179
- # will be traversed. Depth is a measure of the number of `Associations`
16180
- # from the `StartArn` entity to the matched results.
16198
+ # are traversed. Depth is a measure of the number of `Associations` from
16199
+ # the `StartArn` entity to the matched results.
16181
16200
  #
16182
16201
  # @option params [Integer] :max_results
16183
16202
  # Limits the number of vertices in the results. Use the `NextToken` in a
@@ -17353,9 +17372,9 @@ module Aws::SageMaker
17353
17372
 
17354
17373
  # Launches an ML compute instance with the latest version of the
17355
17374
  # libraries and attaches your ML storage volume. After configuring the
17356
- # notebook instance, Amazon SageMaker sets the notebook instance status
17357
- # to `InService`. A notebook instance's status must be `InService`
17358
- # before you can connect to your Jupyter notebook.
17375
+ # notebook instance, SageMaker sets the notebook instance status to
17376
+ # `InService`. A notebook instance's status must be `InService` before
17377
+ # you can connect to your Jupyter notebook.
17359
17378
  #
17360
17379
  # @option params [required, String] :notebook_instance_name
17361
17380
  # The name of the notebook instance to start.
@@ -17611,10 +17630,9 @@ module Aws::SageMaker
17611
17630
  end
17612
17631
 
17613
17632
  # Terminates the ML compute instance. Before terminating the instance,
17614
- # Amazon SageMaker disconnects the ML storage volume from it. Amazon
17615
- # SageMaker preserves the ML storage volume. Amazon SageMaker stops
17616
- # charging you for the ML compute instance when you call
17617
- # `StopNotebookInstance`.
17633
+ # SageMaker disconnects the ML storage volume from it. SageMaker
17634
+ # preserves the ML storage volume. SageMaker stops charging you for the
17635
+ # ML compute instance when you call `StopNotebookInstance`.
17618
17636
  #
17619
17637
  # To access data on the ML storage volume for a notebook instance that
17620
17638
  # has been terminated, call the `StartNotebookInstance` API.
@@ -17728,14 +17746,14 @@ module Aws::SageMaker
17728
17746
  req.send_request(options)
17729
17747
  end
17730
17748
 
17731
- # Stops a training job. To stop a job, Amazon SageMaker sends the
17732
- # algorithm the `SIGTERM` signal, which delays job termination for 120
17733
- # seconds. Algorithms might use this 120-second window to save the model
17749
+ # Stops a training job. To stop a job, SageMaker sends the algorithm the
17750
+ # `SIGTERM` signal, which delays job termination for 120 seconds.
17751
+ # Algorithms might use this 120-second window to save the model
17734
17752
  # artifacts, so the results of the training is not lost.
17735
17753
  #
17736
- # When it receives a `StopTrainingJob` request, Amazon SageMaker changes
17737
- # the status of the job to `Stopping`. After Amazon SageMaker stops the
17738
- # job, it sets the status to `Stopped`.
17754
+ # When it receives a `StopTrainingJob` request, SageMaker changes the
17755
+ # status of the job to `Stopping`. After SageMaker stops the job, it
17756
+ # sets the status to `Stopped`.
17739
17757
  #
17740
17758
  # @option params [required, String] :training_job_name
17741
17759
  # The name of the training job to stop.
@@ -18177,9 +18195,9 @@ module Aws::SageMaker
18177
18195
  # for the endpoint using the previous `EndpointConfig` (there is no
18178
18196
  # availability loss).
18179
18197
  #
18180
- # When Amazon SageMaker receives the request, it sets the endpoint
18181
- # status to `Updating`. After updating the endpoint, it sets the status
18182
- # to `InService`. To check the status of an endpoint, use the
18198
+ # When SageMaker receives the request, it sets the endpoint status to
18199
+ # `Updating`. After updating the endpoint, it sets the status to
18200
+ # `InService`. To check the status of an endpoint, use the
18183
18201
  # DescribeEndpoint API.
18184
18202
  #
18185
18203
  # <note markdown="1"> You must not delete an `EndpointConfig` in use by an endpoint that is
@@ -18287,13 +18305,13 @@ module Aws::SageMaker
18287
18305
 
18288
18306
  # Updates variant weight of one or more variants associated with an
18289
18307
  # existing endpoint, or capacity of one variant associated with an
18290
- # existing endpoint. When it receives the request, Amazon SageMaker sets
18291
- # the endpoint status to `Updating`. After updating the endpoint, it
18292
- # sets the status to `InService`. To check the status of an endpoint,
18293
- # use the DescribeEndpoint API.
18308
+ # existing endpoint. When it receives the request, SageMaker sets the
18309
+ # endpoint status to `Updating`. After updating the endpoint, it sets
18310
+ # the status to `InService`. To check the status of an endpoint, use the
18311
+ # DescribeEndpoint API.
18294
18312
  #
18295
18313
  # @option params [required, String] :endpoint_name
18296
- # The name of an existing Amazon SageMaker endpoint.
18314
+ # The name of an existing SageMaker endpoint.
18297
18315
  #
18298
18316
  # @option params [required, Array<Types::DesiredWeightAndCapacity>] :desired_weights_and_capacities
18299
18317
  # An object that provides new capacity and weight values for a variant.
@@ -18618,12 +18636,12 @@ module Aws::SageMaker
18618
18636
  # The Amazon ML compute instance type.
18619
18637
  #
18620
18638
  # @option params [String] :role_arn
18621
- # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
18622
- # can assume to access the notebook instance. For more information, see
18623
- # [Amazon SageMaker Roles][1].
18639
+ # The Amazon Resource Name (ARN) of the IAM role that SageMaker can
18640
+ # assume to access the notebook instance. For more information, see
18641
+ # [SageMaker Roles][1].
18624
18642
  #
18625
- # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
18626
- # API must have the `iam:PassRole` permission.
18643
+ # <note markdown="1"> To be able to pass this role to SageMaker, the caller of this API must
18644
+ # have the `iam:PassRole` permission.
18627
18645
  #
18628
18646
  # </note>
18629
18647
  #
@@ -18650,11 +18668,11 @@ module Aws::SageMaker
18650
18668
  # @option params [Integer] :volume_size_in_gb
18651
18669
  # The size, in GB, of the ML storage volume to attach to the notebook
18652
18670
  # instance. The default value is 5 GB. ML storage volumes are encrypted,
18653
- # so Amazon SageMaker can't determine the amount of available free
18654
- # space on the volume. Because of this, you can increase the volume size
18655
- # when you update a notebook instance, but you can't decrease the
18656
- # volume size. If you want to decrease the size of the ML storage volume
18657
- # in use, create a new notebook instance with the desired size.
18671
+ # so SageMaker can't determine the amount of available free space on
18672
+ # the volume. Because of this, you can increase the volume size when you
18673
+ # update a notebook instance, but you can't decrease the volume size.
18674
+ # If you want to decrease the size of the ML storage volume in use,
18675
+ # create a new notebook instance with the desired size.
18658
18676
  #
18659
18677
  # @option params [String] :default_code_repository
18660
18678
  # The Git repository to associate with the notebook instance as its
@@ -18663,8 +18681,7 @@ module Aws::SageMaker
18663
18681
  # repository in [Amazon Web Services CodeCommit][1] or in any other Git
18664
18682
  # repository. When you open a notebook instance, it opens in the
18665
18683
  # directory that contains this repository. For more information, see
18666
- # [Associating Git Repositories with Amazon SageMaker Notebook
18667
- # Instances][2].
18684
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18668
18685
  #
18669
18686
  #
18670
18687
  #
@@ -18678,8 +18695,7 @@ module Aws::SageMaker
18678
18695
  # [Amazon Web Services CodeCommit][1] or in any other Git repository.
18679
18696
  # These repositories are cloned at the same level as the default
18680
18697
  # repository of your notebook instance. For more information, see
18681
- # [Associating Git Repositories with Amazon SageMaker Notebook
18682
- # Instances][2].
18698
+ # [Associating Git Repositories with SageMaker Notebook Instances][2].
18683
18699
  #
18684
18700
  #
18685
18701
  #
@@ -18730,7 +18746,7 @@ module Aws::SageMaker
18730
18746
  #
18731
18747
  # resp = client.update_notebook_instance({
18732
18748
  # notebook_instance_name: "NotebookInstanceName", # required
18733
- # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
18749
+ # instance_type: "ml.t2.medium", # accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.m5d.large, ml.m5d.xlarge, ml.m5d.2xlarge, ml.m5d.4xlarge, ml.m5d.8xlarge, ml.m5d.12xlarge, ml.m5d.16xlarge, ml.m5d.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5d.xlarge, ml.c5d.2xlarge, ml.c5d.4xlarge, ml.c5d.9xlarge, ml.c5d.18xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge
18734
18750
  # role_arn: "RoleArn",
18735
18751
  # lifecycle_config_name: "NotebookInstanceLifecycleConfigName",
18736
18752
  # disassociate_lifecycle_config: false,
@@ -19452,7 +19468,7 @@ module Aws::SageMaker
19452
19468
  params: params,
19453
19469
  config: config)
19454
19470
  context[:gem_name] = 'aws-sdk-sagemaker'
19455
- context[:gem_version] = '1.120.0'
19471
+ context[:gem_version] = '1.123.0'
19456
19472
  Seahorse::Client::Request.new(handlers, context)
19457
19473
  end
19458
19474