aws-sdk-machinelearning 1.0.0.rc1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/lib/aws-sdk-machinelearning.rb +48 -0
- data/lib/aws-sdk-machinelearning/client.rb +2037 -0
- data/lib/aws-sdk-machinelearning/client_api.rb +1304 -0
- data/lib/aws-sdk-machinelearning/customizations.rb +7 -0
- data/lib/aws-sdk-machinelearning/errors.rb +23 -0
- data/lib/aws-sdk-machinelearning/plugins/predict_endpoint.rb +22 -0
- data/lib/aws-sdk-machinelearning/resource.rb +25 -0
- data/lib/aws-sdk-machinelearning/types.rb +3711 -0
- data/lib/aws-sdk-machinelearning/waiters.rb +190 -0
- metadata +82 -0
@@ -0,0 +1,23 @@
|
|
1
|
+
# WARNING ABOUT GENERATED CODE
|
2
|
+
#
|
3
|
+
# This file is generated. See the contributing for info on making contributions:
|
4
|
+
# https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
|
5
|
+
#
|
6
|
+
# WARNING ABOUT GENERATED CODE
|
7
|
+
|
8
|
+
module Aws
|
9
|
+
module MachineLearning
|
10
|
+
module Errors
|
11
|
+
|
12
|
+
extend Aws::Errors::DynamicErrors
|
13
|
+
|
14
|
+
# Raised when calling #load or #data on a resource class that can not be
|
15
|
+
# loaded. This can happen when:
|
16
|
+
#
|
17
|
+
# * A resource class has identifiers, but no data attributes.
|
18
|
+
# * Resource data is only available when making an API call that
|
19
|
+
# enumerates all resources of that type.
|
20
|
+
class ResourceNotLoadable < RuntimeError; end
|
21
|
+
end
|
22
|
+
end
|
23
|
+
end
|
@@ -0,0 +1,22 @@
|
|
1
|
+
module Aws
|
2
|
+
module MachineLearning
|
3
|
+
module Plugins
|
4
|
+
# @api private
|
5
|
+
class PredictEndpoint < Seahorse::Client::Plugin
|
6
|
+
|
7
|
+
class Handler < Seahorse::Client::Handler
|
8
|
+
|
9
|
+
def call(context)
|
10
|
+
endpoint = context.params.delete(:predict_endpoint)
|
11
|
+
context.http_request.endpoint = URI.parse(endpoint.to_s)
|
12
|
+
@handler.call(context)
|
13
|
+
end
|
14
|
+
|
15
|
+
end
|
16
|
+
|
17
|
+
handle(Handler, operations: [:predict])
|
18
|
+
|
19
|
+
end
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
@@ -0,0 +1,25 @@
|
|
1
|
+
# WARNING ABOUT GENERATED CODE
|
2
|
+
#
|
3
|
+
# This file is generated. See the contributing for info on making contributions:
|
4
|
+
# https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
|
5
|
+
#
|
6
|
+
# WARNING ABOUT GENERATED CODE
|
7
|
+
|
8
|
+
module Aws
|
9
|
+
module MachineLearning
|
10
|
+
class Resource
|
11
|
+
|
12
|
+
# @param options ({})
|
13
|
+
# @option options [Client] :client
|
14
|
+
def initialize(options = {})
|
15
|
+
@client = options[:client] || Client.new(options)
|
16
|
+
end
|
17
|
+
|
18
|
+
# @return [Client]
|
19
|
+
def client
|
20
|
+
@client
|
21
|
+
end
|
22
|
+
|
23
|
+
end
|
24
|
+
end
|
25
|
+
end
|
@@ -0,0 +1,3711 @@
|
|
1
|
+
# WARNING ABOUT GENERATED CODE
|
2
|
+
#
|
3
|
+
# This file is generated. See the contributing for info on making contributions:
|
4
|
+
# https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
|
5
|
+
#
|
6
|
+
# WARNING ABOUT GENERATED CODE
|
7
|
+
|
8
|
+
module Aws
|
9
|
+
module MachineLearning
|
10
|
+
module Types
|
11
|
+
|
12
|
+
# @note When making an API call, pass AddTagsInput
|
13
|
+
# data as a hash:
|
14
|
+
#
|
15
|
+
# {
|
16
|
+
# tags: [ # required
|
17
|
+
# {
|
18
|
+
# key: "TagKey",
|
19
|
+
# value: "TagValue",
|
20
|
+
# },
|
21
|
+
# ],
|
22
|
+
# resource_id: "EntityId", # required
|
23
|
+
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
|
24
|
+
# }
|
25
|
+
# @!attribute [rw] tags
|
26
|
+
# The key-value pairs to use to create tags. If you specify a key
|
27
|
+
# without specifying a value, Amazon ML creates a tag with the
|
28
|
+
# specified key and a value of null.
|
29
|
+
# @return [Array<Types::Tag>]
|
30
|
+
#
|
31
|
+
# @!attribute [rw] resource_id
|
32
|
+
# The ID of the ML object to tag. For example, `exampleModelId`.
|
33
|
+
# @return [String]
|
34
|
+
#
|
35
|
+
# @!attribute [rw] resource_type
|
36
|
+
# The type of the ML object to tag.
|
37
|
+
# @return [String]
|
38
|
+
class AddTagsInput < Struct.new(
|
39
|
+
:tags,
|
40
|
+
:resource_id,
|
41
|
+
:resource_type)
|
42
|
+
include Aws::Structure
|
43
|
+
end
|
44
|
+
|
45
|
+
# Amazon ML returns the following elements.
|
46
|
+
# @!attribute [rw] resource_id
|
47
|
+
# The ID of the ML object that was tagged.
|
48
|
+
# @return [String]
|
49
|
+
#
|
50
|
+
# @!attribute [rw] resource_type
|
51
|
+
# The type of the ML object that was tagged.
|
52
|
+
# @return [String]
|
53
|
+
class AddTagsOutput < Struct.new(
|
54
|
+
:resource_id,
|
55
|
+
:resource_type)
|
56
|
+
include Aws::Structure
|
57
|
+
end
|
58
|
+
|
59
|
+
# Represents the output of a `GetBatchPrediction` operation.
|
60
|
+
#
|
61
|
+
# The content consists of the detailed metadata, the status, and the
|
62
|
+
# data file information of a `Batch Prediction`.
|
63
|
+
# @!attribute [rw] batch_prediction_id
|
64
|
+
# The ID assigned to the `BatchPrediction` at creation. This value
|
65
|
+
# should be identical to the value of the `BatchPredictionID` in the
|
66
|
+
# request.
|
67
|
+
# @return [String]
|
68
|
+
#
|
69
|
+
# @!attribute [rw] ml_model_id
|
70
|
+
# The ID of the `MLModel` that generated predictions for the
|
71
|
+
# `BatchPrediction` request.
|
72
|
+
# @return [String]
|
73
|
+
#
|
74
|
+
# @!attribute [rw] batch_prediction_data_source_id
|
75
|
+
# The ID of the `DataSource` that points to the group of observations
|
76
|
+
# to predict.
|
77
|
+
# @return [String]
|
78
|
+
#
|
79
|
+
# @!attribute [rw] input_data_location_s3
|
80
|
+
# The location of the data file or directory in Amazon Simple Storage
|
81
|
+
# Service (Amazon S3).
|
82
|
+
# @return [String]
|
83
|
+
#
|
84
|
+
# @!attribute [rw] created_by_iam_user
|
85
|
+
# The AWS user account that invoked the `BatchPrediction`. The account
|
86
|
+
# type can be either an AWS root account or an AWS Identity and Access
|
87
|
+
# Management (IAM) user account.
|
88
|
+
# @return [String]
|
89
|
+
#
|
90
|
+
# @!attribute [rw] created_at
|
91
|
+
# The time that the `BatchPrediction` was created. The time is
|
92
|
+
# expressed in epoch time.
|
93
|
+
# @return [Time]
|
94
|
+
#
|
95
|
+
# @!attribute [rw] last_updated_at
|
96
|
+
# The time of the most recent edit to the `BatchPrediction`. The time
|
97
|
+
# is expressed in epoch time.
|
98
|
+
# @return [Time]
|
99
|
+
#
|
100
|
+
# @!attribute [rw] name
|
101
|
+
# A user-supplied name or description of the `BatchPrediction`.
|
102
|
+
# @return [String]
|
103
|
+
#
|
104
|
+
# @!attribute [rw] status
|
105
|
+
# The status of the `BatchPrediction`. This element can have one of
|
106
|
+
# the following values:
|
107
|
+
#
|
108
|
+
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
109
|
+
# request to generate predictions for a batch of observations.
|
110
|
+
# * `INPROGRESS` - The process is underway.
|
111
|
+
# * `FAILED` - The request to perform a batch prediction did not run
|
112
|
+
# to completion. It is not usable.
|
113
|
+
# * `COMPLETED` - The batch prediction process completed successfully.
|
114
|
+
# * `DELETED` - The `BatchPrediction` is marked as deleted. It is not
|
115
|
+
# usable.
|
116
|
+
# @return [String]
|
117
|
+
#
|
118
|
+
# @!attribute [rw] output_uri
|
119
|
+
# The location of an Amazon S3 bucket or directory to receive the
|
120
|
+
# operation results. The following substrings are not allowed in the
|
121
|
+
# `s3 key` portion of the `outputURI` field: ':', '//', '/./',
|
122
|
+
# '/../'.
|
123
|
+
# @return [String]
|
124
|
+
#
|
125
|
+
# @!attribute [rw] message
|
126
|
+
# A description of the most recent details about processing the batch
|
127
|
+
# prediction request.
|
128
|
+
# @return [String]
|
129
|
+
#
|
130
|
+
# @!attribute [rw] compute_time
|
131
|
+
# Long integer type that is a 64-bit signed number.
|
132
|
+
# @return [Integer]
|
133
|
+
#
|
134
|
+
# @!attribute [rw] finished_at
|
135
|
+
# A timestamp represented in epoch time.
|
136
|
+
# @return [Time]
|
137
|
+
#
|
138
|
+
# @!attribute [rw] started_at
|
139
|
+
# A timestamp represented in epoch time.
|
140
|
+
# @return [Time]
|
141
|
+
#
|
142
|
+
# @!attribute [rw] total_record_count
|
143
|
+
# Long integer type that is a 64-bit signed number.
|
144
|
+
# @return [Integer]
|
145
|
+
#
|
146
|
+
# @!attribute [rw] invalid_record_count
|
147
|
+
# Long integer type that is a 64-bit signed number.
|
148
|
+
# @return [Integer]
|
149
|
+
class BatchPrediction < Struct.new(
|
150
|
+
:batch_prediction_id,
|
151
|
+
:ml_model_id,
|
152
|
+
:batch_prediction_data_source_id,
|
153
|
+
:input_data_location_s3,
|
154
|
+
:created_by_iam_user,
|
155
|
+
:created_at,
|
156
|
+
:last_updated_at,
|
157
|
+
:name,
|
158
|
+
:status,
|
159
|
+
:output_uri,
|
160
|
+
:message,
|
161
|
+
:compute_time,
|
162
|
+
:finished_at,
|
163
|
+
:started_at,
|
164
|
+
:total_record_count,
|
165
|
+
:invalid_record_count)
|
166
|
+
include Aws::Structure
|
167
|
+
end
|
168
|
+
|
169
|
+
# @note When making an API call, pass CreateBatchPredictionInput
|
170
|
+
# data as a hash:
|
171
|
+
#
|
172
|
+
# {
|
173
|
+
# batch_prediction_id: "EntityId", # required
|
174
|
+
# batch_prediction_name: "EntityName",
|
175
|
+
# ml_model_id: "EntityId", # required
|
176
|
+
# batch_prediction_data_source_id: "EntityId", # required
|
177
|
+
# output_uri: "S3Url", # required
|
178
|
+
# }
|
179
|
+
# @!attribute [rw] batch_prediction_id
|
180
|
+
# A user-supplied ID that uniquely identifies the `BatchPrediction`.
|
181
|
+
# @return [String]
|
182
|
+
#
|
183
|
+
# @!attribute [rw] batch_prediction_name
|
184
|
+
# A user-supplied name or description of the `BatchPrediction`.
|
185
|
+
# `BatchPredictionName` can only use the UTF-8 character set.
|
186
|
+
# @return [String]
|
187
|
+
#
|
188
|
+
# @!attribute [rw] ml_model_id
|
189
|
+
# The ID of the `MLModel` that will generate predictions for the group
|
190
|
+
# of observations.
|
191
|
+
# @return [String]
|
192
|
+
#
|
193
|
+
# @!attribute [rw] batch_prediction_data_source_id
|
194
|
+
# The ID of the `DataSource` that points to the group of observations
|
195
|
+
# to predict.
|
196
|
+
# @return [String]
|
197
|
+
#
|
198
|
+
# @!attribute [rw] output_uri
|
199
|
+
# The location of an Amazon Simple Storage Service (Amazon S3) bucket
|
200
|
+
# or directory to store the batch prediction results. The following
|
201
|
+
# substrings are not allowed in the `s3 key` portion of the
|
202
|
+
# `outputURI` field: ':', '//', '/./', '/../'.
|
203
|
+
#
|
204
|
+
# Amazon ML needs permissions to store and retrieve the logs on your
|
205
|
+
# behalf. For information about how to set permissions, see the
|
206
|
+
# [Amazon Machine Learning Developer Guide][1].
|
207
|
+
#
|
208
|
+
#
|
209
|
+
#
|
210
|
+
# [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
|
211
|
+
# @return [String]
|
212
|
+
class CreateBatchPredictionInput < Struct.new(
|
213
|
+
:batch_prediction_id,
|
214
|
+
:batch_prediction_name,
|
215
|
+
:ml_model_id,
|
216
|
+
:batch_prediction_data_source_id,
|
217
|
+
:output_uri)
|
218
|
+
include Aws::Structure
|
219
|
+
end
|
220
|
+
|
221
|
+
# Represents the output of a `CreateBatchPrediction` operation, and is
|
222
|
+
# an acknowledgement that Amazon ML received the request.
|
223
|
+
#
|
224
|
+
# The `CreateBatchPrediction` operation is asynchronous. You can poll
|
225
|
+
# for status updates by using the `>GetBatchPrediction` operation and
|
226
|
+
# checking the `Status` parameter of the result.
|
227
|
+
# @!attribute [rw] batch_prediction_id
|
228
|
+
# A user-supplied ID that uniquely identifies the `BatchPrediction`.
|
229
|
+
# This value is identical to the value of the `BatchPredictionId` in
|
230
|
+
# the request.
|
231
|
+
# @return [String]
|
232
|
+
class CreateBatchPredictionOutput < Struct.new(
|
233
|
+
:batch_prediction_id)
|
234
|
+
include Aws::Structure
|
235
|
+
end
|
236
|
+
|
237
|
+
# @note When making an API call, pass CreateDataSourceFromRDSInput
|
238
|
+
# data as a hash:
|
239
|
+
#
|
240
|
+
# {
|
241
|
+
# data_source_id: "EntityId", # required
|
242
|
+
# data_source_name: "EntityName",
|
243
|
+
# rds_data: { # required
|
244
|
+
# database_information: { # required
|
245
|
+
# instance_identifier: "RDSInstanceIdentifier", # required
|
246
|
+
# database_name: "RDSDatabaseName", # required
|
247
|
+
# },
|
248
|
+
# select_sql_query: "RDSSelectSqlQuery", # required
|
249
|
+
# database_credentials: { # required
|
250
|
+
# username: "RDSDatabaseUsername", # required
|
251
|
+
# password: "RDSDatabasePassword", # required
|
252
|
+
# },
|
253
|
+
# s3_staging_location: "S3Url", # required
|
254
|
+
# data_rearrangement: "DataRearrangement",
|
255
|
+
# data_schema: "DataSchema",
|
256
|
+
# data_schema_uri: "S3Url",
|
257
|
+
# resource_role: "EDPResourceRole", # required
|
258
|
+
# service_role: "EDPServiceRole", # required
|
259
|
+
# subnet_id: "EDPSubnetId", # required
|
260
|
+
# security_group_ids: ["EDPSecurityGroupId"], # required
|
261
|
+
# },
|
262
|
+
# role_arn: "RoleARN", # required
|
263
|
+
# compute_statistics: false,
|
264
|
+
# }
|
265
|
+
# @!attribute [rw] data_source_id
|
266
|
+
# A user-supplied ID that uniquely identifies the `DataSource`.
|
267
|
+
# Typically, an Amazon Resource Number (ARN) becomes the ID for a
|
268
|
+
# `DataSource`.
|
269
|
+
# @return [String]
|
270
|
+
#
|
271
|
+
# @!attribute [rw] data_source_name
|
272
|
+
# A user-supplied name or description of the `DataSource`.
|
273
|
+
# @return [String]
|
274
|
+
#
|
275
|
+
# @!attribute [rw] rds_data
|
276
|
+
# The data specification of an Amazon RDS `DataSource`\:
|
277
|
+
#
|
278
|
+
# * DatabaseInformation - * `DatabaseName` - The name of the Amazon
|
279
|
+
# RDS database.
|
280
|
+
# * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
|
281
|
+
# database instance.
|
282
|
+
#
|
283
|
+
# * DatabaseCredentials - AWS Identity and Access Management (IAM)
|
284
|
+
# credentials that are used to connect to the Amazon RDS database.
|
285
|
+
#
|
286
|
+
# * ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by
|
287
|
+
# an EC2 instance to carry out the copy task from Amazon RDS to
|
288
|
+
# Amazon Simple Storage Service (Amazon S3). For more information,
|
289
|
+
# see [Role templates][1] for data pipelines.
|
290
|
+
#
|
291
|
+
# * ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS
|
292
|
+
# Data Pipeline service to monitor the progress of the copy task
|
293
|
+
# from Amazon RDS to Amazon S3. For more information, see [Role
|
294
|
+
# templates][1] for data pipelines.
|
295
|
+
#
|
296
|
+
# * SecurityInfo - The security information to use to access an RDS DB
|
297
|
+
# instance. You need to set up appropriate ingress rules for the
|
298
|
+
# security entity IDs provided to allow access to the Amazon RDS
|
299
|
+
# instance. Specify a \[`SubnetId`, `SecurityGroupIds`\] pair for a
|
300
|
+
# VPC-based RDS DB instance.
|
301
|
+
#
|
302
|
+
# * SelectSqlQuery - A query that is used to retrieve the observation
|
303
|
+
# data for the `Datasource`.
|
304
|
+
#
|
305
|
+
# * S3StagingLocation - The Amazon S3 location for staging Amazon RDS
|
306
|
+
# data. The data retrieved from Amazon RDS using `SelectSqlQuery` is
|
307
|
+
# stored in this location.
|
308
|
+
#
|
309
|
+
# * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
|
310
|
+
#
|
311
|
+
# * DataSchema - A JSON string representing the schema. This is not
|
312
|
+
# required if `DataSchemaUri` is specified.
|
313
|
+
#
|
314
|
+
# * DataRearrangement - A JSON string that represents the splitting
|
315
|
+
# and rearrangement requirements for the `Datasource`.
|
316
|
+
#
|
317
|
+
#
|
318
|
+
# Sample - `
|
319
|
+
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
|
320
|
+
#
|
321
|
+
#
|
322
|
+
#
|
323
|
+
# [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
324
|
+
# @return [Types::RDSDataSpec]
|
325
|
+
#
|
326
|
+
# @!attribute [rw] role_arn
|
327
|
+
# The role that Amazon ML assumes on behalf of the user to create and
|
328
|
+
# activate a data pipeline in the user's account and copy data using
|
329
|
+
# the `SelectSqlQuery` query from Amazon RDS to Amazon S3.
|
330
|
+
# @return [String]
|
331
|
+
#
|
332
|
+
# @!attribute [rw] compute_statistics
|
333
|
+
# The compute statistics for a `DataSource`. The statistics are
|
334
|
+
# generated from the observation data referenced by a `DataSource`.
|
335
|
+
# Amazon ML uses the statistics internally during `MLModel` training.
|
336
|
+
# This parameter must be set to `true` if the ``DataSource`` needs to
|
337
|
+
# be used for `MLModel` training.
|
338
|
+
# @return [Boolean]
|
339
|
+
class CreateDataSourceFromRDSInput < Struct.new(
|
340
|
+
:data_source_id,
|
341
|
+
:data_source_name,
|
342
|
+
:rds_data,
|
343
|
+
:role_arn,
|
344
|
+
:compute_statistics)
|
345
|
+
include Aws::Structure
|
346
|
+
end
|
347
|
+
|
348
|
+
# Represents the output of a `CreateDataSourceFromRDS` operation, and is
|
349
|
+
# an acknowledgement that Amazon ML received the request.
|
350
|
+
#
|
351
|
+
# The `CreateDataSourceFromRDS`> operation is asynchronous. You can
|
352
|
+
# poll for updates by using the `GetBatchPrediction` operation and
|
353
|
+
# checking the `Status` parameter. You can inspect the `Message` when
|
354
|
+
# `Status` shows up as `FAILED`. You can also check the progress of the
|
355
|
+
# copy operation by going to the `DataPipeline` console and looking up
|
356
|
+
# the pipeline using the `pipelineId ` from the describe call.
|
357
|
+
# @!attribute [rw] data_source_id
|
358
|
+
# A user-supplied ID that uniquely identifies the datasource. This
|
359
|
+
# value should be identical to the value of the `DataSourceID` in the
|
360
|
+
# request.
|
361
|
+
# @return [String]
|
362
|
+
class CreateDataSourceFromRDSOutput < Struct.new(
|
363
|
+
:data_source_id)
|
364
|
+
include Aws::Structure
|
365
|
+
end
|
366
|
+
|
367
|
+
# @note When making an API call, pass CreateDataSourceFromRedshiftInput
|
368
|
+
# data as a hash:
|
369
|
+
#
|
370
|
+
# {
|
371
|
+
# data_source_id: "EntityId", # required
|
372
|
+
# data_source_name: "EntityName",
|
373
|
+
# data_spec: { # required
|
374
|
+
# database_information: { # required
|
375
|
+
# database_name: "RedshiftDatabaseName", # required
|
376
|
+
# cluster_identifier: "RedshiftClusterIdentifier", # required
|
377
|
+
# },
|
378
|
+
# select_sql_query: "RedshiftSelectSqlQuery", # required
|
379
|
+
# database_credentials: { # required
|
380
|
+
# username: "RedshiftDatabaseUsername", # required
|
381
|
+
# password: "RedshiftDatabasePassword", # required
|
382
|
+
# },
|
383
|
+
# s3_staging_location: "S3Url", # required
|
384
|
+
# data_rearrangement: "DataRearrangement",
|
385
|
+
# data_schema: "DataSchema",
|
386
|
+
# data_schema_uri: "S3Url",
|
387
|
+
# },
|
388
|
+
# role_arn: "RoleARN", # required
|
389
|
+
# compute_statistics: false,
|
390
|
+
# }
|
391
|
+
# @!attribute [rw] data_source_id
|
392
|
+
# A user-supplied ID that uniquely identifies the `DataSource`.
|
393
|
+
# @return [String]
|
394
|
+
#
|
395
|
+
# @!attribute [rw] data_source_name
|
396
|
+
# A user-supplied name or description of the `DataSource`.
|
397
|
+
# @return [String]
|
398
|
+
#
|
399
|
+
# @!attribute [rw] data_spec
|
400
|
+
# The data specification of an Amazon Redshift `DataSource`\:
|
401
|
+
#
|
402
|
+
# * DatabaseInformation - * `DatabaseName` - The name of the Amazon
|
403
|
+
# Redshift database.
|
404
|
+
# * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
|
405
|
+
# cluster.
|
406
|
+
#
|
407
|
+
# * DatabaseCredentials - The AWS Identity and Access Management (IAM)
|
408
|
+
# credentials that are used to connect to the Amazon Redshift
|
409
|
+
# database.
|
410
|
+
#
|
411
|
+
# * SelectSqlQuery - The query that is used to retrieve the
|
412
|
+
# observation data for the `Datasource`.
|
413
|
+
#
|
414
|
+
# * S3StagingLocation - The Amazon Simple Storage Service (Amazon S3)
|
415
|
+
# location for staging Amazon Redshift data. The data retrieved from
|
416
|
+
# Amazon Redshift using the `SelectSqlQuery` query is stored in this
|
417
|
+
# location.
|
418
|
+
#
|
419
|
+
# * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
|
420
|
+
#
|
421
|
+
# * DataSchema - A JSON string representing the schema. This is not
|
422
|
+
# required if `DataSchemaUri` is specified.
|
423
|
+
#
|
424
|
+
# * DataRearrangement - A JSON string that represents the splitting
|
425
|
+
# and rearrangement requirements for the `DataSource`.
|
426
|
+
#
|
427
|
+
# Sample - `
|
428
|
+
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
|
429
|
+
# @return [Types::RedshiftDataSpec]
|
430
|
+
#
|
431
|
+
# @!attribute [rw] role_arn
|
432
|
+
# A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
|
433
|
+
# the role on behalf of the user to create the following:
|
434
|
+
#
|
435
|
+
# * A security group to allow Amazon ML to execute the
|
436
|
+
# `SelectSqlQuery` query on an Amazon Redshift cluster
|
437
|
+
#
|
438
|
+
# * An Amazon S3 bucket policy to grant Amazon ML read/write
|
439
|
+
# permissions on the `S3StagingLocation`
|
440
|
+
# @return [String]
|
441
|
+
#
|
442
|
+
# @!attribute [rw] compute_statistics
|
443
|
+
# The compute statistics for a `DataSource`. The statistics are
|
444
|
+
# generated from the observation data referenced by a `DataSource`.
|
445
|
+
# Amazon ML uses the statistics internally during `MLModel` training.
|
446
|
+
# This parameter must be set to `true` if the `DataSource` needs to be
|
447
|
+
# used for `MLModel` training.
|
448
|
+
# @return [Boolean]
|
449
|
+
class CreateDataSourceFromRedshiftInput < Struct.new(
|
450
|
+
:data_source_id,
|
451
|
+
:data_source_name,
|
452
|
+
:data_spec,
|
453
|
+
:role_arn,
|
454
|
+
:compute_statistics)
|
455
|
+
include Aws::Structure
|
456
|
+
end
|
457
|
+
|
458
|
+
# Represents the output of a `CreateDataSourceFromRedshift` operation,
|
459
|
+
# and is an acknowledgement that Amazon ML received the request.
|
460
|
+
#
|
461
|
+
# The `CreateDataSourceFromRedshift` operation is asynchronous. You can
|
462
|
+
# poll for updates by using the `GetBatchPrediction` operation and
|
463
|
+
# checking the `Status` parameter.
|
464
|
+
# @!attribute [rw] data_source_id
|
465
|
+
# A user-supplied ID that uniquely identifies the datasource. This
|
466
|
+
# value should be identical to the value of the `DataSourceID` in the
|
467
|
+
# request.
|
468
|
+
# @return [String]
|
469
|
+
class CreateDataSourceFromRedshiftOutput < Struct.new(
|
470
|
+
:data_source_id)
|
471
|
+
include Aws::Structure
|
472
|
+
end
|
473
|
+
|
474
|
+
# @note When making an API call, pass CreateDataSourceFromS3Input
|
475
|
+
# data as a hash:
|
476
|
+
#
|
477
|
+
# {
|
478
|
+
# data_source_id: "EntityId", # required
|
479
|
+
# data_source_name: "EntityName",
|
480
|
+
# data_spec: { # required
|
481
|
+
# data_location_s3: "S3Url", # required
|
482
|
+
# data_rearrangement: "DataRearrangement",
|
483
|
+
# data_schema: "DataSchema",
|
484
|
+
# data_schema_location_s3: "S3Url",
|
485
|
+
# },
|
486
|
+
# compute_statistics: false,
|
487
|
+
# }
|
488
|
+
# @!attribute [rw] data_source_id
|
489
|
+
# A user-supplied identifier that uniquely identifies the
|
490
|
+
# `DataSource`.
|
491
|
+
# @return [String]
|
492
|
+
#
|
493
|
+
# @!attribute [rw] data_source_name
|
494
|
+
# A user-supplied name or description of the `DataSource`.
|
495
|
+
# @return [String]
|
496
|
+
#
|
497
|
+
# @!attribute [rw] data_spec
|
498
|
+
# The data specification of a `DataSource`\:
|
499
|
+
#
|
500
|
+
# * DataLocationS3 - The Amazon S3 location of the observation data.
|
501
|
+
#
|
502
|
+
# * DataSchemaLocationS3 - The Amazon S3 location of the `DataSchema`.
|
503
|
+
#
|
504
|
+
# * DataSchema - A JSON string representing the schema. This is not
|
505
|
+
# required if `DataSchemaUri` is specified.
|
506
|
+
#
|
507
|
+
# * DataRearrangement - A JSON string that represents the splitting
|
508
|
+
# and rearrangement requirements for the `Datasource`.
|
509
|
+
#
|
510
|
+
# Sample - `
|
511
|
+
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
|
512
|
+
# @return [Types::S3DataSpec]
|
513
|
+
#
|
514
|
+
# @!attribute [rw] compute_statistics
|
515
|
+
# The compute statistics for a `DataSource`. The statistics are
|
516
|
+
# generated from the observation data referenced by a `DataSource`.
|
517
|
+
# Amazon ML uses the statistics internally during `MLModel` training.
|
518
|
+
# This parameter must be set to `true` if the ``DataSource`` needs to
|
519
|
+
# be used for `MLModel` training.
|
520
|
+
# @return [Boolean]
|
521
|
+
class CreateDataSourceFromS3Input < Struct.new(
|
522
|
+
:data_source_id,
|
523
|
+
:data_source_name,
|
524
|
+
:data_spec,
|
525
|
+
:compute_statistics)
|
526
|
+
include Aws::Structure
|
527
|
+
end
|
528
|
+
|
529
|
+
# Represents the output of a `CreateDataSourceFromS3` operation, and is
|
530
|
+
# an acknowledgement that Amazon ML received the request.
|
531
|
+
#
|
532
|
+
# The `CreateDataSourceFromS3` operation is asynchronous. You can poll
|
533
|
+
# for updates by using the `GetBatchPrediction` operation and checking
|
534
|
+
# the `Status` parameter.
|
535
|
+
# @!attribute [rw] data_source_id
|
536
|
+
# A user-supplied ID that uniquely identifies the `DataSource`. This
|
537
|
+
# value should be identical to the value of the `DataSourceID` in the
|
538
|
+
# request.
|
539
|
+
# @return [String]
|
540
|
+
class CreateDataSourceFromS3Output < Struct.new(
|
541
|
+
:data_source_id)
|
542
|
+
include Aws::Structure
|
543
|
+
end
|
544
|
+
|
545
|
+
# @note When making an API call, pass CreateEvaluationInput
|
546
|
+
# data as a hash:
|
547
|
+
#
|
548
|
+
# {
|
549
|
+
# evaluation_id: "EntityId", # required
|
550
|
+
# evaluation_name: "EntityName",
|
551
|
+
# ml_model_id: "EntityId", # required
|
552
|
+
# evaluation_data_source_id: "EntityId", # required
|
553
|
+
# }
|
554
|
+
# @!attribute [rw] evaluation_id
|
555
|
+
# A user-supplied ID that uniquely identifies the `Evaluation`.
|
556
|
+
# @return [String]
|
557
|
+
#
|
558
|
+
# @!attribute [rw] evaluation_name
|
559
|
+
# A user-supplied name or description of the `Evaluation`.
|
560
|
+
# @return [String]
|
561
|
+
#
|
562
|
+
# @!attribute [rw] ml_model_id
|
563
|
+
# The ID of the `MLModel` to evaluate.
|
564
|
+
#
|
565
|
+
# The schema used in creating the `MLModel` must match the schema of
|
566
|
+
# the `DataSource` used in the `Evaluation`.
|
567
|
+
# @return [String]
|
568
|
+
#
|
569
|
+
# @!attribute [rw] evaluation_data_source_id
|
570
|
+
# The ID of the `DataSource` for the evaluation. The schema of the
|
571
|
+
# `DataSource` must match the schema used to create the `MLModel`.
|
572
|
+
# @return [String]
|
573
|
+
class CreateEvaluationInput < Struct.new(
|
574
|
+
:evaluation_id,
|
575
|
+
:evaluation_name,
|
576
|
+
:ml_model_id,
|
577
|
+
:evaluation_data_source_id)
|
578
|
+
include Aws::Structure
|
579
|
+
end
|
580
|
+
|
581
|
+
# Represents the output of a `CreateEvaluation` operation, and is an
|
582
|
+
# acknowledgement that Amazon ML received the request.
|
583
|
+
#
|
584
|
+
# `CreateEvaluation` operation is asynchronous. You can poll for status
|
585
|
+
# updates by using the `GetEvcaluation` operation and checking the
|
586
|
+
# `Status` parameter.
|
587
|
+
# @!attribute [rw] evaluation_id
|
588
|
+
# The user-supplied ID that uniquely identifies the `Evaluation`. This
|
589
|
+
# value should be identical to the value of the `EvaluationId` in the
|
590
|
+
# request.
|
591
|
+
# @return [String]
|
592
|
+
class CreateEvaluationOutput < Struct.new(
|
593
|
+
:evaluation_id)
|
594
|
+
include Aws::Structure
|
595
|
+
end
|
596
|
+
|
597
|
+
# @note When making an API call, pass CreateMLModelInput
|
598
|
+
# data as a hash:
|
599
|
+
#
|
600
|
+
# {
|
601
|
+
# ml_model_id: "EntityId", # required
|
602
|
+
# ml_model_name: "EntityName",
|
603
|
+
# ml_model_type: "REGRESSION", # required, accepts REGRESSION, BINARY, MULTICLASS
|
604
|
+
# parameters: {
|
605
|
+
# "StringType" => "StringType",
|
606
|
+
# },
|
607
|
+
# training_data_source_id: "EntityId", # required
|
608
|
+
# recipe: "Recipe",
|
609
|
+
# recipe_uri: "S3Url",
|
610
|
+
# }
|
611
|
+
# @!attribute [rw] ml_model_id
|
612
|
+
# A user-supplied ID that uniquely identifies the `MLModel`.
|
613
|
+
# @return [String]
|
614
|
+
#
|
615
|
+
# @!attribute [rw] ml_model_name
|
616
|
+
# A user-supplied name or description of the `MLModel`.
|
617
|
+
# @return [String]
|
618
|
+
#
|
619
|
+
# @!attribute [rw] ml_model_type
|
620
|
+
# The category of supervised learning that this `MLModel` will
|
621
|
+
# address. Choose from the following types:
|
622
|
+
#
|
623
|
+
# * Choose `REGRESSION` if the `MLModel` will be used to predict a
|
624
|
+
# numeric value.
|
625
|
+
# * Choose `BINARY` if the `MLModel` result has two possible values.
|
626
|
+
# * Choose `MULTICLASS` if the `MLModel` result has a limited number
|
627
|
+
# of values.
|
628
|
+
#
|
629
|
+
# For more information, see the [Amazon Machine Learning Developer
|
630
|
+
# Guide][1].
|
631
|
+
#
|
632
|
+
#
|
633
|
+
#
|
634
|
+
# [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
|
635
|
+
# @return [String]
|
636
|
+
#
|
637
|
+
# @!attribute [rw] parameters
|
638
|
+
# A list of the training parameters in the `MLModel`. The list is
|
639
|
+
# implemented as a map of key-value pairs.
|
640
|
+
#
|
641
|
+
# The following is the current set of training parameters:
|
642
|
+
#
|
643
|
+
# * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the
|
644
|
+
# model. Depending on the input data, the size of the model might
|
645
|
+
# affect its performance.
|
646
|
+
#
|
647
|
+
# The value is an integer that ranges from `100000` to `2147483648`.
|
648
|
+
# The default value is `33554432`.
|
649
|
+
#
|
650
|
+
# * `sgd.maxPasses` - The number of times that the training process
|
651
|
+
# traverses the observations to build the `MLModel`. The value is an
|
652
|
+
# integer that ranges from `1` to `10000`. The default value is
|
653
|
+
# `10`.
|
654
|
+
#
|
655
|
+
# * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
|
656
|
+
# Shuffling the data improves a model's ability to find the optimal
|
657
|
+
# solution for a variety of data types. The valid values are `auto`
|
658
|
+
# and `none`. The default value is `none`. We <?oxy\_insert\_start
|
659
|
+
# author="laurama" timestamp="20160329T131121-0700">strongly
|
660
|
+
# recommend that you shuffle your data.<?oxy\_insert\_end>
|
661
|
+
#
|
662
|
+
# * `sgd.l1RegularizationAmount` - The coefficient regularization L1
|
663
|
+
# norm. It controls overfitting the data by penalizing large
|
664
|
+
# coefficients. This tends to drive coefficients to zero, resulting
|
665
|
+
# in a sparse feature set. If you use this parameter, start by
|
666
|
+
# specifying a small value, such as `1.0E-08`.
|
667
|
+
#
|
668
|
+
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
|
669
|
+
# default is to not use L1 normalization. This parameter can't be
|
670
|
+
# used when `L2` is specified. Use this parameter sparingly.
|
671
|
+
#
|
672
|
+
# * `sgd.l2RegularizationAmount` - The coefficient regularization L2
|
673
|
+
# norm. It controls overfitting the data by penalizing large
|
674
|
+
# coefficients. This tends to drive coefficients to small, nonzero
|
675
|
+
# values. If you use this parameter, start by specifying a small
|
676
|
+
# value, such as `1.0E-08`.
|
677
|
+
#
|
678
|
+
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
|
679
|
+
# default is to not use L2 normalization. This parameter can't be
|
680
|
+
# used when `L1` is specified. Use this parameter sparingly.
|
681
|
+
# @return [Hash<String,String>]
|
682
|
+
#
|
683
|
+
# @!attribute [rw] training_data_source_id
|
684
|
+
# The `DataSource` that points to the training data.
|
685
|
+
# @return [String]
|
686
|
+
#
|
687
|
+
# @!attribute [rw] recipe
|
688
|
+
# The data recipe for creating the `MLModel`. You must specify either
|
689
|
+
# the recipe or its URI. If you don't specify a recipe or its URI,
|
690
|
+
# Amazon ML creates a default.
|
691
|
+
# @return [String]
|
692
|
+
#
|
693
|
+
# @!attribute [rw] recipe_uri
|
694
|
+
# The Amazon Simple Storage Service (Amazon S3) location and file name
|
695
|
+
# that contains the `MLModel` recipe. You must specify either the
|
696
|
+
# recipe or its URI. If you don't specify a recipe or its URI, Amazon
|
697
|
+
# ML creates a default.
|
698
|
+
# @return [String]
|
699
|
+
class CreateMLModelInput < Struct.new(
|
700
|
+
:ml_model_id,
|
701
|
+
:ml_model_name,
|
702
|
+
:ml_model_type,
|
703
|
+
:parameters,
|
704
|
+
:training_data_source_id,
|
705
|
+
:recipe,
|
706
|
+
:recipe_uri)
|
707
|
+
include Aws::Structure
|
708
|
+
end
|
709
|
+
|
710
|
+
# Represents the output of a `CreateMLModel` operation, and is an
|
711
|
+
# acknowledgement that Amazon ML received the request.
|
712
|
+
#
|
713
|
+
# The `CreateMLModel` operation is asynchronous. You can poll for status
|
714
|
+
# updates by using the `GetMLModel` operation and checking the `Status`
|
715
|
+
# parameter.
|
716
|
+
# @!attribute [rw] ml_model_id
|
717
|
+
# A user-supplied ID that uniquely identifies the `MLModel`. This
|
718
|
+
# value should be identical to the value of the `MLModelId` in the
|
719
|
+
# request.
|
720
|
+
# @return [String]
|
721
|
+
class CreateMLModelOutput < Struct.new(
|
722
|
+
:ml_model_id)
|
723
|
+
include Aws::Structure
|
724
|
+
end
|
725
|
+
|
726
|
+
# @note When making an API call, pass CreateRealtimeEndpointInput
|
727
|
+
# data as a hash:
|
728
|
+
#
|
729
|
+
# {
|
730
|
+
# ml_model_id: "EntityId", # required
|
731
|
+
# }
|
732
|
+
# @!attribute [rw] ml_model_id
|
733
|
+
# The ID assigned to the `MLModel` during creation.
|
734
|
+
# @return [String]
|
735
|
+
class CreateRealtimeEndpointInput < Struct.new(
|
736
|
+
:ml_model_id)
|
737
|
+
include Aws::Structure
|
738
|
+
end
|
739
|
+
|
740
|
+
# Represents the output of an `CreateRealtimeEndpoint` operation.
|
741
|
+
#
|
742
|
+
# The result contains the `MLModelId` and the endpoint information for
|
743
|
+
# the `MLModel`.
|
744
|
+
#
|
745
|
+
# <note markdown="1"> The endpoint information includes the URI of the `MLModel`; that is,
|
746
|
+
# the location to send online prediction requests for the specified
|
747
|
+
# `MLModel`.
|
748
|
+
#
|
749
|
+
# </note>
|
750
|
+
# @!attribute [rw] ml_model_id
|
751
|
+
# A user-supplied ID that uniquely identifies the `MLModel`. This
|
752
|
+
# value should be identical to the value of the `MLModelId` in the
|
753
|
+
# request.
|
754
|
+
# @return [String]
|
755
|
+
#
|
756
|
+
# @!attribute [rw] realtime_endpoint_info
|
757
|
+
# The endpoint information of the `MLModel`
|
758
|
+
# @return [Types::RealtimeEndpointInfo]
|
759
|
+
class CreateRealtimeEndpointOutput < Struct.new(
|
760
|
+
:ml_model_id,
|
761
|
+
:realtime_endpoint_info)
|
762
|
+
include Aws::Structure
|
763
|
+
end
|
764
|
+
|
765
|
+
# Represents the output of the `GetDataSource` operation.
|
766
|
+
#
|
767
|
+
# The content consists of the detailed metadata and data file
|
768
|
+
# information and the current status of the `DataSource`.
|
769
|
+
# @!attribute [rw] data_source_id
|
770
|
+
# The ID that is assigned to the `DataSource` during creation.
|
771
|
+
# @return [String]
|
772
|
+
#
|
773
|
+
# @!attribute [rw] data_location_s3
|
774
|
+
# The location and name of the data in Amazon Simple Storage Service
|
775
|
+
# (Amazon S3) that is used by a `DataSource`.
|
776
|
+
# @return [String]
|
777
|
+
#
|
778
|
+
# @!attribute [rw] data_rearrangement
|
779
|
+
# A JSON string that represents the splitting and rearrangement
|
780
|
+
# requirement used when this `DataSource` was created.
|
781
|
+
# @return [String]
|
782
|
+
#
|
783
|
+
# @!attribute [rw] created_by_iam_user
|
784
|
+
# The AWS user account from which the `DataSource` was created. The
|
785
|
+
# account type can be either an AWS root account or an AWS Identity
|
786
|
+
# and Access Management (IAM) user account.
|
787
|
+
# @return [String]
|
788
|
+
#
|
789
|
+
# @!attribute [rw] created_at
|
790
|
+
# The time that the `DataSource` was created. The time is expressed in
|
791
|
+
# epoch time.
|
792
|
+
# @return [Time]
|
793
|
+
#
|
794
|
+
# @!attribute [rw] last_updated_at
|
795
|
+
# The time of the most recent edit to the `BatchPrediction`. The time
|
796
|
+
# is expressed in epoch time.
|
797
|
+
# @return [Time]
|
798
|
+
#
|
799
|
+
# @!attribute [rw] data_size_in_bytes
|
800
|
+
# The total number of observations contained in the data files that
|
801
|
+
# the `DataSource` references.
|
802
|
+
# @return [Integer]
|
803
|
+
#
|
804
|
+
# @!attribute [rw] number_of_files
|
805
|
+
# The number of data files referenced by the `DataSource`.
|
806
|
+
# @return [Integer]
|
807
|
+
#
|
808
|
+
# @!attribute [rw] name
|
809
|
+
# A user-supplied name or description of the `DataSource`.
|
810
|
+
# @return [String]
|
811
|
+
#
|
812
|
+
# @!attribute [rw] status
|
813
|
+
# The current status of the `DataSource`. This element can have one of
|
814
|
+
# the following values:
|
815
|
+
#
|
816
|
+
# * PENDING - Amazon Machine Learning (Amazon ML) submitted a request
|
817
|
+
# to create a `DataSource`.
|
818
|
+
# * INPROGRESS - The creation process is underway.
|
819
|
+
# * FAILED - The request to create a `DataSource` did not run to
|
820
|
+
# completion. It is not usable.
|
821
|
+
# * COMPLETED - The creation process completed successfully.
|
822
|
+
# * DELETED - The `DataSource` is marked as deleted. It is not usable.
|
823
|
+
# @return [String]
|
824
|
+
#
|
825
|
+
# @!attribute [rw] message
|
826
|
+
# A description of the most recent details about creating the
|
827
|
+
# `DataSource`.
|
828
|
+
# @return [String]
|
829
|
+
#
|
830
|
+
# @!attribute [rw] redshift_metadata
|
831
|
+
# Describes the `DataSource` details specific to Amazon Redshift.
|
832
|
+
# @return [Types::RedshiftMetadata]
|
833
|
+
#
|
834
|
+
# @!attribute [rw] rds_metadata
|
835
|
+
# The datasource details that are specific to Amazon RDS.
|
836
|
+
# @return [Types::RDSMetadata]
|
837
|
+
#
|
838
|
+
# @!attribute [rw] role_arn
|
839
|
+
# The Amazon Resource Name (ARN) of an [AWS IAM Role][1], such as the
|
840
|
+
# following: arn:aws:iam::account:role/rolename.
|
841
|
+
#
|
842
|
+
#
|
843
|
+
#
|
844
|
+
# [1]: http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
|
845
|
+
# @return [String]
|
846
|
+
#
|
847
|
+
# @!attribute [rw] compute_statistics
|
848
|
+
# The parameter is `true` if statistics need to be generated from the
|
849
|
+
# observation data.
|
850
|
+
# @return [Boolean]
|
851
|
+
#
|
852
|
+
# @!attribute [rw] compute_time
|
853
|
+
# Long integer type that is a 64-bit signed number.
|
854
|
+
# @return [Integer]
|
855
|
+
#
|
856
|
+
# @!attribute [rw] finished_at
|
857
|
+
# A timestamp represented in epoch time.
|
858
|
+
# @return [Time]
|
859
|
+
#
|
860
|
+
# @!attribute [rw] started_at
|
861
|
+
# A timestamp represented in epoch time.
|
862
|
+
# @return [Time]
|
863
|
+
class DataSource < Struct.new(
|
864
|
+
:data_source_id,
|
865
|
+
:data_location_s3,
|
866
|
+
:data_rearrangement,
|
867
|
+
:created_by_iam_user,
|
868
|
+
:created_at,
|
869
|
+
:last_updated_at,
|
870
|
+
:data_size_in_bytes,
|
871
|
+
:number_of_files,
|
872
|
+
:name,
|
873
|
+
:status,
|
874
|
+
:message,
|
875
|
+
:redshift_metadata,
|
876
|
+
:rds_metadata,
|
877
|
+
:role_arn,
|
878
|
+
:compute_statistics,
|
879
|
+
:compute_time,
|
880
|
+
:finished_at,
|
881
|
+
:started_at)
|
882
|
+
include Aws::Structure
|
883
|
+
end
|
884
|
+
|
885
|
+
# @note When making an API call, pass DeleteBatchPredictionInput
|
886
|
+
# data as a hash:
|
887
|
+
#
|
888
|
+
# {
|
889
|
+
# batch_prediction_id: "EntityId", # required
|
890
|
+
# }
|
891
|
+
# @!attribute [rw] batch_prediction_id
|
892
|
+
# A user-supplied ID that uniquely identifies the `BatchPrediction`.
|
893
|
+
# @return [String]
|
894
|
+
class DeleteBatchPredictionInput < Struct.new(
|
895
|
+
:batch_prediction_id)
|
896
|
+
include Aws::Structure
|
897
|
+
end
|
898
|
+
|
899
|
+
# Represents the output of a `DeleteBatchPrediction` operation.
|
900
|
+
#
|
901
|
+
# You can use the `GetBatchPrediction` operation and check the value of
|
902
|
+
# the `Status` parameter to see whether a `BatchPrediction` is marked as
|
903
|
+
# `DELETED`.
|
904
|
+
# @!attribute [rw] batch_prediction_id
|
905
|
+
# A user-supplied ID that uniquely identifies the `BatchPrediction`.
|
906
|
+
# This value should be identical to the value of the
|
907
|
+
# `BatchPredictionID` in the request.
|
908
|
+
# @return [String]
|
909
|
+
class DeleteBatchPredictionOutput < Struct.new(
|
910
|
+
:batch_prediction_id)
|
911
|
+
include Aws::Structure
|
912
|
+
end
|
913
|
+
|
914
|
+
# @note When making an API call, pass DeleteDataSourceInput
|
915
|
+
# data as a hash:
|
916
|
+
#
|
917
|
+
# {
|
918
|
+
# data_source_id: "EntityId", # required
|
919
|
+
# }
|
920
|
+
# @!attribute [rw] data_source_id
|
921
|
+
# A user-supplied ID that uniquely identifies the `DataSource`.
|
922
|
+
# @return [String]
|
923
|
+
class DeleteDataSourceInput < Struct.new(
|
924
|
+
:data_source_id)
|
925
|
+
include Aws::Structure
|
926
|
+
end
|
927
|
+
|
928
|
+
# Represents the output of a `DeleteDataSource` operation.
|
929
|
+
# @!attribute [rw] data_source_id
|
930
|
+
# A user-supplied ID that uniquely identifies the `DataSource`. This
|
931
|
+
# value should be identical to the value of the `DataSourceID` in the
|
932
|
+
# request.
|
933
|
+
# @return [String]
|
934
|
+
class DeleteDataSourceOutput < Struct.new(
|
935
|
+
:data_source_id)
|
936
|
+
include Aws::Structure
|
937
|
+
end
|
938
|
+
|
939
|
+
# @note When making an API call, pass DeleteEvaluationInput
|
940
|
+
# data as a hash:
|
941
|
+
#
|
942
|
+
# {
|
943
|
+
# evaluation_id: "EntityId", # required
|
944
|
+
# }
|
945
|
+
# @!attribute [rw] evaluation_id
|
946
|
+
# A user-supplied ID that uniquely identifies the `Evaluation` to
|
947
|
+
# delete.
|
948
|
+
# @return [String]
|
949
|
+
class DeleteEvaluationInput < Struct.new(
|
950
|
+
:evaluation_id)
|
951
|
+
include Aws::Structure
|
952
|
+
end
|
953
|
+
|
954
|
+
# Represents the output of a `DeleteEvaluation` operation. The output
|
955
|
+
# indicates that Amazon Machine Learning (Amazon ML) received the
|
956
|
+
# request.
|
957
|
+
#
|
958
|
+
# You can use the `GetEvaluation` operation and check the value of the
|
959
|
+
# `Status` parameter to see whether an `Evaluation` is marked as
|
960
|
+
# `DELETED`.
|
961
|
+
# @!attribute [rw] evaluation_id
|
962
|
+
# A user-supplied ID that uniquely identifies the `Evaluation`. This
|
963
|
+
# value should be identical to the value of the `EvaluationId` in the
|
964
|
+
# request.
|
965
|
+
# @return [String]
|
966
|
+
class DeleteEvaluationOutput < Struct.new(
|
967
|
+
:evaluation_id)
|
968
|
+
include Aws::Structure
|
969
|
+
end
|
970
|
+
|
971
|
+
# @note When making an API call, pass DeleteMLModelInput
|
972
|
+
# data as a hash:
|
973
|
+
#
|
974
|
+
# {
|
975
|
+
# ml_model_id: "EntityId", # required
|
976
|
+
# }
|
977
|
+
# @!attribute [rw] ml_model_id
|
978
|
+
# A user-supplied ID that uniquely identifies the `MLModel`.
|
979
|
+
# @return [String]
|
980
|
+
class DeleteMLModelInput < Struct.new(
|
981
|
+
:ml_model_id)
|
982
|
+
include Aws::Structure
|
983
|
+
end
|
984
|
+
|
985
|
+
# Represents the output of a `DeleteMLModel` operation.
|
986
|
+
#
|
987
|
+
# You can use the `GetMLModel` operation and check the value of the
|
988
|
+
# `Status` parameter to see whether an `MLModel` is marked as `DELETED`.
|
989
|
+
# @!attribute [rw] ml_model_id
|
990
|
+
# A user-supplied ID that uniquely identifies the `MLModel`. This
|
991
|
+
# value should be identical to the value of the `MLModelID` in the
|
992
|
+
# request.
|
993
|
+
# @return [String]
|
994
|
+
class DeleteMLModelOutput < Struct.new(
|
995
|
+
:ml_model_id)
|
996
|
+
include Aws::Structure
|
997
|
+
end
|
998
|
+
|
999
|
+
# @note When making an API call, pass DeleteRealtimeEndpointInput
|
1000
|
+
# data as a hash:
|
1001
|
+
#
|
1002
|
+
# {
|
1003
|
+
# ml_model_id: "EntityId", # required
|
1004
|
+
# }
|
1005
|
+
# @!attribute [rw] ml_model_id
|
1006
|
+
# The ID assigned to the `MLModel` during creation.
|
1007
|
+
# @return [String]
|
1008
|
+
class DeleteRealtimeEndpointInput < Struct.new(
|
1009
|
+
:ml_model_id)
|
1010
|
+
include Aws::Structure
|
1011
|
+
end
|
1012
|
+
|
1013
|
+
# Represents the output of an `DeleteRealtimeEndpoint` operation.
|
1014
|
+
#
|
1015
|
+
# The result contains the `MLModelId` and the endpoint information for
|
1016
|
+
# the `MLModel`.
|
1017
|
+
# @!attribute [rw] ml_model_id
|
1018
|
+
# A user-supplied ID that uniquely identifies the `MLModel`. This
|
1019
|
+
# value should be identical to the value of the `MLModelId` in the
|
1020
|
+
# request.
|
1021
|
+
# @return [String]
|
1022
|
+
#
|
1023
|
+
# @!attribute [rw] realtime_endpoint_info
|
1024
|
+
# The endpoint information of the `MLModel`
|
1025
|
+
# @return [Types::RealtimeEndpointInfo]
|
1026
|
+
class DeleteRealtimeEndpointOutput < Struct.new(
|
1027
|
+
:ml_model_id,
|
1028
|
+
:realtime_endpoint_info)
|
1029
|
+
include Aws::Structure
|
1030
|
+
end
|
1031
|
+
|
1032
|
+
# @note When making an API call, pass DeleteTagsInput
|
1033
|
+
# data as a hash:
|
1034
|
+
#
|
1035
|
+
# {
|
1036
|
+
# tag_keys: ["TagKey"], # required
|
1037
|
+
# resource_id: "EntityId", # required
|
1038
|
+
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
|
1039
|
+
# }
|
1040
|
+
# @!attribute [rw] tag_keys
|
1041
|
+
# One or more tags to delete.
|
1042
|
+
# @return [Array<String>]
|
1043
|
+
#
|
1044
|
+
# @!attribute [rw] resource_id
|
1045
|
+
# The ID of the tagged ML object. For example, `exampleModelId`.
|
1046
|
+
# @return [String]
|
1047
|
+
#
|
1048
|
+
# @!attribute [rw] resource_type
|
1049
|
+
# The type of the tagged ML object.
|
1050
|
+
# @return [String]
|
1051
|
+
class DeleteTagsInput < Struct.new(
|
1052
|
+
:tag_keys,
|
1053
|
+
:resource_id,
|
1054
|
+
:resource_type)
|
1055
|
+
include Aws::Structure
|
1056
|
+
end
|
1057
|
+
|
1058
|
+
# Amazon ML returns the following elements.
|
1059
|
+
# @!attribute [rw] resource_id
|
1060
|
+
# The ID of the ML object from which tags were deleted.
|
1061
|
+
# @return [String]
|
1062
|
+
#
|
1063
|
+
# @!attribute [rw] resource_type
|
1064
|
+
# The type of the ML object from which tags were deleted.
|
1065
|
+
# @return [String]
|
1066
|
+
class DeleteTagsOutput < Struct.new(
|
1067
|
+
:resource_id,
|
1068
|
+
:resource_type)
|
1069
|
+
include Aws::Structure
|
1070
|
+
end
|
1071
|
+
|
1072
|
+
# @note When making an API call, pass DescribeBatchPredictionsInput
|
1073
|
+
# data as a hash:
|
1074
|
+
#
|
1075
|
+
# {
|
1076
|
+
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
|
1077
|
+
# eq: "ComparatorValue",
|
1078
|
+
# gt: "ComparatorValue",
|
1079
|
+
# lt: "ComparatorValue",
|
1080
|
+
# ge: "ComparatorValue",
|
1081
|
+
# le: "ComparatorValue",
|
1082
|
+
# ne: "ComparatorValue",
|
1083
|
+
# prefix: "ComparatorValue",
|
1084
|
+
# sort_order: "asc", # accepts asc, dsc
|
1085
|
+
# next_token: "StringType",
|
1086
|
+
# limit: 1,
|
1087
|
+
# }
|
1088
|
+
# @!attribute [rw] filter_variable
|
1089
|
+
# Use one of the following variables to filter a list of
|
1090
|
+
# `BatchPrediction`\:
|
1091
|
+
#
|
1092
|
+
# * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
|
1093
|
+
# creation date.
|
1094
|
+
# * `Status` - Sets the search criteria to the `BatchPrediction`
|
1095
|
+
# status.
|
1096
|
+
# * `Name` - Sets the search criteria to the contents of the
|
1097
|
+
# `BatchPrediction`<b> </b> `Name`.
|
1098
|
+
# * `IAMUser` - Sets the search criteria to the user account that
|
1099
|
+
# invoked the `BatchPrediction` creation.
|
1100
|
+
# * `MLModelId` - Sets the search criteria to the `MLModel` used in
|
1101
|
+
# the `BatchPrediction`.
|
1102
|
+
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
|
1103
|
+
# in the `BatchPrediction`.
|
1104
|
+
# * `DataURI` - Sets the search criteria to the data file(s) used in
|
1105
|
+
# the `BatchPrediction`. The URL can identify either a file or an
|
1106
|
+
# Amazon Simple Storage Solution (Amazon S3) bucket or directory.
|
1107
|
+
# @return [String]
|
1108
|
+
#
|
1109
|
+
# @!attribute [rw] eq
|
1110
|
+
# The equal to operator. The `BatchPrediction` results will have
|
1111
|
+
# `FilterVariable` values that exactly match the value specified with
|
1112
|
+
# `EQ`.
|
1113
|
+
# @return [String]
|
1114
|
+
#
|
1115
|
+
# @!attribute [rw] gt
|
1116
|
+
# The greater than operator. The `BatchPrediction` results will have
|
1117
|
+
# `FilterVariable` values that are greater than the value specified
|
1118
|
+
# with `GT`.
|
1119
|
+
# @return [String]
|
1120
|
+
#
|
1121
|
+
# @!attribute [rw] lt
|
1122
|
+
# The less than operator. The `BatchPrediction` results will have
|
1123
|
+
# `FilterVariable` values that are less than the value specified with
|
1124
|
+
# `LT`.
|
1125
|
+
# @return [String]
|
1126
|
+
#
|
1127
|
+
# @!attribute [rw] ge
|
1128
|
+
# The greater than or equal to operator. The `BatchPrediction` results
|
1129
|
+
# will have `FilterVariable` values that are greater than or equal to
|
1130
|
+
# the value specified with `GE`.
|
1131
|
+
# @return [String]
|
1132
|
+
#
|
1133
|
+
# @!attribute [rw] le
|
1134
|
+
# The less than or equal to operator. The `BatchPrediction` results
|
1135
|
+
# will have `FilterVariable` values that are less than or equal to the
|
1136
|
+
# value specified with `LE`.
|
1137
|
+
# @return [String]
|
1138
|
+
#
|
1139
|
+
# @!attribute [rw] ne
|
1140
|
+
# The not equal to operator. The `BatchPrediction` results will have
|
1141
|
+
# `FilterVariable` values not equal to the value specified with `NE`.
|
1142
|
+
# @return [String]
|
1143
|
+
#
|
1144
|
+
# @!attribute [rw] prefix
|
1145
|
+
# A string that is found at the beginning of a variable, such as
|
1146
|
+
# `Name` or `Id`.
|
1147
|
+
#
|
1148
|
+
# For example, a `Batch Prediction` operation could have the `Name`
|
1149
|
+
# `2014-09-09-HolidayGiftMailer`. To search for this
|
1150
|
+
# `BatchPrediction`, select `Name` for the `FilterVariable` and any of
|
1151
|
+
# the following strings for the `Prefix`\:
|
1152
|
+
#
|
1153
|
+
# * 2014-09
|
1154
|
+
#
|
1155
|
+
# * 2014-09-09
|
1156
|
+
#
|
1157
|
+
# * 2014-09-09-Holiday
|
1158
|
+
# @return [String]
|
1159
|
+
#
|
1160
|
+
# @!attribute [rw] sort_order
|
1161
|
+
# A two-value parameter that determines the sequence of the resulting
|
1162
|
+
# list of `MLModel`s.
|
1163
|
+
#
|
1164
|
+
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1165
|
+
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1166
|
+
#
|
1167
|
+
# Results are sorted by `FilterVariable`.
|
1168
|
+
# @return [String]
|
1169
|
+
#
|
1170
|
+
# @!attribute [rw] next_token
|
1171
|
+
# An ID of the page in the paginated results.
|
1172
|
+
# @return [String]
|
1173
|
+
#
|
1174
|
+
# @!attribute [rw] limit
|
1175
|
+
# The number of pages of information to include in the result. The
|
1176
|
+
# range of acceptable values is `1` through `100`. The default value
|
1177
|
+
# is `100`.
|
1178
|
+
# @return [Integer]
|
1179
|
+
class DescribeBatchPredictionsInput < Struct.new(
|
1180
|
+
:filter_variable,
|
1181
|
+
:eq,
|
1182
|
+
:gt,
|
1183
|
+
:lt,
|
1184
|
+
:ge,
|
1185
|
+
:le,
|
1186
|
+
:ne,
|
1187
|
+
:prefix,
|
1188
|
+
:sort_order,
|
1189
|
+
:next_token,
|
1190
|
+
:limit)
|
1191
|
+
include Aws::Structure
|
1192
|
+
end
|
1193
|
+
|
1194
|
+
# Represents the output of a `DescribeBatchPredictions` operation. The
|
1195
|
+
# content is essentially a list of `BatchPrediction`s.
|
1196
|
+
# @!attribute [rw] results
|
1197
|
+
# A list of `BatchPrediction` objects that meet the search criteria.
|
1198
|
+
# @return [Array<Types::BatchPrediction>]
|
1199
|
+
#
|
1200
|
+
# @!attribute [rw] next_token
|
1201
|
+
# The ID of the next page in the paginated results that indicates at
|
1202
|
+
# least one more page follows.
|
1203
|
+
# @return [String]
|
1204
|
+
class DescribeBatchPredictionsOutput < Struct.new(
|
1205
|
+
:results,
|
1206
|
+
:next_token)
|
1207
|
+
include Aws::Structure
|
1208
|
+
end
|
1209
|
+
|
1210
|
+
# @note When making an API call, pass DescribeDataSourcesInput
|
1211
|
+
# data as a hash:
|
1212
|
+
#
|
1213
|
+
# {
|
1214
|
+
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, DataLocationS3, IAMUser
|
1215
|
+
# eq: "ComparatorValue",
|
1216
|
+
# gt: "ComparatorValue",
|
1217
|
+
# lt: "ComparatorValue",
|
1218
|
+
# ge: "ComparatorValue",
|
1219
|
+
# le: "ComparatorValue",
|
1220
|
+
# ne: "ComparatorValue",
|
1221
|
+
# prefix: "ComparatorValue",
|
1222
|
+
# sort_order: "asc", # accepts asc, dsc
|
1223
|
+
# next_token: "StringType",
|
1224
|
+
# limit: 1,
|
1225
|
+
# }
|
1226
|
+
# @!attribute [rw] filter_variable
|
1227
|
+
# Use one of the following variables to filter a list of
|
1228
|
+
# `DataSource`\:
|
1229
|
+
#
|
1230
|
+
# * `CreatedAt` - Sets the search criteria to `DataSource` creation
|
1231
|
+
# dates.
|
1232
|
+
# * `Status` - Sets the search criteria to `DataSource` statuses.
|
1233
|
+
# * `Name` - Sets the search criteria to the contents of `DataSource`
|
1234
|
+
# <b> </b> `Name`.
|
1235
|
+
# * `DataUri` - Sets the search criteria to the URI of data files used
|
1236
|
+
# to create the `DataSource`. The URI can identify either a file or
|
1237
|
+
# an Amazon Simple Storage Service (Amazon S3) bucket or directory.
|
1238
|
+
# * `IAMUser` - Sets the search criteria to the user account that
|
1239
|
+
# invoked the `DataSource` creation.
|
1240
|
+
# @return [String]
|
1241
|
+
#
|
1242
|
+
# @!attribute [rw] eq
|
1243
|
+
# The equal to operator. The `DataSource` results will have
|
1244
|
+
# `FilterVariable` values that exactly match the value specified with
|
1245
|
+
# `EQ`.
|
1246
|
+
# @return [String]
|
1247
|
+
#
|
1248
|
+
# @!attribute [rw] gt
|
1249
|
+
# The greater than operator. The `DataSource` results will have
|
1250
|
+
# `FilterVariable` values that are greater than the value specified
|
1251
|
+
# with `GT`.
|
1252
|
+
# @return [String]
|
1253
|
+
#
|
1254
|
+
# @!attribute [rw] lt
|
1255
|
+
# The less than operator. The `DataSource` results will have
|
1256
|
+
# `FilterVariable` values that are less than the value specified with
|
1257
|
+
# `LT`.
|
1258
|
+
# @return [String]
|
1259
|
+
#
|
1260
|
+
# @!attribute [rw] ge
|
1261
|
+
# The greater than or equal to operator. The `DataSource` results will
|
1262
|
+
# have `FilterVariable` values that are greater than or equal to the
|
1263
|
+
# value specified with `GE`.
|
1264
|
+
# @return [String]
|
1265
|
+
#
|
1266
|
+
# @!attribute [rw] le
|
1267
|
+
# The less than or equal to operator. The `DataSource` results will
|
1268
|
+
# have `FilterVariable` values that are less than or equal to the
|
1269
|
+
# value specified with `LE`.
|
1270
|
+
# @return [String]
|
1271
|
+
#
|
1272
|
+
# @!attribute [rw] ne
|
1273
|
+
# The not equal to operator. The `DataSource` results will have
|
1274
|
+
# `FilterVariable` values not equal to the value specified with `NE`.
|
1275
|
+
# @return [String]
|
1276
|
+
#
|
1277
|
+
# @!attribute [rw] prefix
|
1278
|
+
# A string that is found at the beginning of a variable, such as
|
1279
|
+
# `Name` or `Id`.
|
1280
|
+
#
|
1281
|
+
# For example, a `DataSource` could have the `Name`
|
1282
|
+
# `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
|
1283
|
+
# select `Name` for the `FilterVariable` and any of the following
|
1284
|
+
# strings for the `Prefix`\:
|
1285
|
+
#
|
1286
|
+
# * 2014-09
|
1287
|
+
#
|
1288
|
+
# * 2014-09-09
|
1289
|
+
#
|
1290
|
+
# * 2014-09-09-Holiday
|
1291
|
+
# @return [String]
|
1292
|
+
#
|
1293
|
+
# @!attribute [rw] sort_order
|
1294
|
+
# A two-value parameter that determines the sequence of the resulting
|
1295
|
+
# list of `DataSource`.
|
1296
|
+
#
|
1297
|
+
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1298
|
+
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1299
|
+
#
|
1300
|
+
# Results are sorted by `FilterVariable`.
|
1301
|
+
# @return [String]
|
1302
|
+
#
|
1303
|
+
# @!attribute [rw] next_token
|
1304
|
+
# The ID of the page in the paginated results.
|
1305
|
+
# @return [String]
|
1306
|
+
#
|
1307
|
+
# @!attribute [rw] limit
|
1308
|
+
# The maximum number of `DataSource` to include in the result.
|
1309
|
+
# @return [Integer]
|
1310
|
+
class DescribeDataSourcesInput < Struct.new(
|
1311
|
+
:filter_variable,
|
1312
|
+
:eq,
|
1313
|
+
:gt,
|
1314
|
+
:lt,
|
1315
|
+
:ge,
|
1316
|
+
:le,
|
1317
|
+
:ne,
|
1318
|
+
:prefix,
|
1319
|
+
:sort_order,
|
1320
|
+
:next_token,
|
1321
|
+
:limit)
|
1322
|
+
include Aws::Structure
|
1323
|
+
end
|
1324
|
+
|
1325
|
+
# Represents the query results from a DescribeDataSources operation. The
|
1326
|
+
# content is essentially a list of `DataSource`.
|
1327
|
+
# @!attribute [rw] results
|
1328
|
+
# A list of `DataSource` that meet the search criteria.
|
1329
|
+
# @return [Array<Types::DataSource>]
|
1330
|
+
#
|
1331
|
+
# @!attribute [rw] next_token
|
1332
|
+
# An ID of the next page in the paginated results that indicates at
|
1333
|
+
# least one more page follows.
|
1334
|
+
# @return [String]
|
1335
|
+
class DescribeDataSourcesOutput < Struct.new(
|
1336
|
+
:results,
|
1337
|
+
:next_token)
|
1338
|
+
include Aws::Structure
|
1339
|
+
end
|
1340
|
+
|
1341
|
+
# @note When making an API call, pass DescribeEvaluationsInput
|
1342
|
+
# data as a hash:
|
1343
|
+
#
|
1344
|
+
# {
|
1345
|
+
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
|
1346
|
+
# eq: "ComparatorValue",
|
1347
|
+
# gt: "ComparatorValue",
|
1348
|
+
# lt: "ComparatorValue",
|
1349
|
+
# ge: "ComparatorValue",
|
1350
|
+
# le: "ComparatorValue",
|
1351
|
+
# ne: "ComparatorValue",
|
1352
|
+
# prefix: "ComparatorValue",
|
1353
|
+
# sort_order: "asc", # accepts asc, dsc
|
1354
|
+
# next_token: "StringType",
|
1355
|
+
# limit: 1,
|
1356
|
+
# }
|
1357
|
+
# @!attribute [rw] filter_variable
|
1358
|
+
# Use one of the following variable to filter a list of `Evaluation`
|
1359
|
+
# objects:
|
1360
|
+
#
|
1361
|
+
# * `CreatedAt` - Sets the search criteria to the `Evaluation`
|
1362
|
+
# creation date.
|
1363
|
+
# * `Status` - Sets the search criteria to the `Evaluation` status.
|
1364
|
+
# * `Name` - Sets the search criteria to the contents of `Evaluation`
|
1365
|
+
# <b> </b> `Name`.
|
1366
|
+
# * `IAMUser` - Sets the search criteria to the user account that
|
1367
|
+
# invoked an `Evaluation`.
|
1368
|
+
# * `MLModelId` - Sets the search criteria to the `MLModel` that was
|
1369
|
+
# evaluated.
|
1370
|
+
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
|
1371
|
+
# in `Evaluation`.
|
1372
|
+
# * `DataUri` - Sets the search criteria to the data file(s) used in
|
1373
|
+
# `Evaluation`. The URL can identify either a file or an Amazon
|
1374
|
+
# Simple Storage Solution (Amazon S3) bucket or directory.
|
1375
|
+
# @return [String]
|
1376
|
+
#
|
1377
|
+
# @!attribute [rw] eq
|
1378
|
+
# The equal to operator. The `Evaluation` results will have
|
1379
|
+
# `FilterVariable` values that exactly match the value specified with
|
1380
|
+
# `EQ`.
|
1381
|
+
# @return [String]
|
1382
|
+
#
|
1383
|
+
# @!attribute [rw] gt
|
1384
|
+
# The greater than operator. The `Evaluation` results will have
|
1385
|
+
# `FilterVariable` values that are greater than the value specified
|
1386
|
+
# with `GT`.
|
1387
|
+
# @return [String]
|
1388
|
+
#
|
1389
|
+
# @!attribute [rw] lt
|
1390
|
+
# The less than operator. The `Evaluation` results will have
|
1391
|
+
# `FilterVariable` values that are less than the value specified with
|
1392
|
+
# `LT`.
|
1393
|
+
# @return [String]
|
1394
|
+
#
|
1395
|
+
# @!attribute [rw] ge
|
1396
|
+
# The greater than or equal to operator. The `Evaluation` results will
|
1397
|
+
# have `FilterVariable` values that are greater than or equal to the
|
1398
|
+
# value specified with `GE`.
|
1399
|
+
# @return [String]
|
1400
|
+
#
|
1401
|
+
# @!attribute [rw] le
|
1402
|
+
# The less than or equal to operator. The `Evaluation` results will
|
1403
|
+
# have `FilterVariable` values that are less than or equal to the
|
1404
|
+
# value specified with `LE`.
|
1405
|
+
# @return [String]
|
1406
|
+
#
|
1407
|
+
# @!attribute [rw] ne
|
1408
|
+
# The not equal to operator. The `Evaluation` results will have
|
1409
|
+
# `FilterVariable` values not equal to the value specified with `NE`.
|
1410
|
+
# @return [String]
|
1411
|
+
#
|
1412
|
+
# @!attribute [rw] prefix
|
1413
|
+
# A string that is found at the beginning of a variable, such as
|
1414
|
+
# `Name` or `Id`.
|
1415
|
+
#
|
1416
|
+
# For example, an `Evaluation` could have the `Name`
|
1417
|
+
# `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
|
1418
|
+
# select `Name` for the `FilterVariable` and any of the following
|
1419
|
+
# strings for the `Prefix`\:
|
1420
|
+
#
|
1421
|
+
# * 2014-09
|
1422
|
+
#
|
1423
|
+
# * 2014-09-09
|
1424
|
+
#
|
1425
|
+
# * 2014-09-09-Holiday
|
1426
|
+
# @return [String]
|
1427
|
+
#
|
1428
|
+
# @!attribute [rw] sort_order
|
1429
|
+
# A two-value parameter that determines the sequence of the resulting
|
1430
|
+
# list of `Evaluation`.
|
1431
|
+
#
|
1432
|
+
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1433
|
+
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1434
|
+
#
|
1435
|
+
# Results are sorted by `FilterVariable`.
|
1436
|
+
# @return [String]
|
1437
|
+
#
|
1438
|
+
# @!attribute [rw] next_token
|
1439
|
+
# The ID of the page in the paginated results.
|
1440
|
+
# @return [String]
|
1441
|
+
#
|
1442
|
+
# @!attribute [rw] limit
|
1443
|
+
# The maximum number of `Evaluation` to include in the result.
|
1444
|
+
# @return [Integer]
|
1445
|
+
class DescribeEvaluationsInput < Struct.new(
|
1446
|
+
:filter_variable,
|
1447
|
+
:eq,
|
1448
|
+
:gt,
|
1449
|
+
:lt,
|
1450
|
+
:ge,
|
1451
|
+
:le,
|
1452
|
+
:ne,
|
1453
|
+
:prefix,
|
1454
|
+
:sort_order,
|
1455
|
+
:next_token,
|
1456
|
+
:limit)
|
1457
|
+
include Aws::Structure
|
1458
|
+
end
|
1459
|
+
|
1460
|
+
# Represents the query results from a `DescribeEvaluations` operation.
|
1461
|
+
# The content is essentially a list of `Evaluation`.
|
1462
|
+
# @!attribute [rw] results
|
1463
|
+
# A list of `Evaluation` that meet the search criteria.
|
1464
|
+
# @return [Array<Types::Evaluation>]
|
1465
|
+
#
|
1466
|
+
# @!attribute [rw] next_token
|
1467
|
+
# The ID of the next page in the paginated results that indicates at
|
1468
|
+
# least one more page follows.
|
1469
|
+
# @return [String]
|
1470
|
+
class DescribeEvaluationsOutput < Struct.new(
|
1471
|
+
:results,
|
1472
|
+
:next_token)
|
1473
|
+
include Aws::Structure
|
1474
|
+
end
|
1475
|
+
|
1476
|
+
# @note When making an API call, pass DescribeMLModelsInput
|
1477
|
+
# data as a hash:
|
1478
|
+
#
|
1479
|
+
# {
|
1480
|
+
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, TrainingDataSourceId, RealtimeEndpointStatus, MLModelType, Algorithm, TrainingDataURI
|
1481
|
+
# eq: "ComparatorValue",
|
1482
|
+
# gt: "ComparatorValue",
|
1483
|
+
# lt: "ComparatorValue",
|
1484
|
+
# ge: "ComparatorValue",
|
1485
|
+
# le: "ComparatorValue",
|
1486
|
+
# ne: "ComparatorValue",
|
1487
|
+
# prefix: "ComparatorValue",
|
1488
|
+
# sort_order: "asc", # accepts asc, dsc
|
1489
|
+
# next_token: "StringType",
|
1490
|
+
# limit: 1,
|
1491
|
+
# }
|
1492
|
+
# @!attribute [rw] filter_variable
|
1493
|
+
# Use one of the following variables to filter a list of `MLModel`\:
|
1494
|
+
#
|
1495
|
+
# * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
|
1496
|
+
# * `Status` - Sets the search criteria to `MLModel` status.
|
1497
|
+
# * `Name` - Sets the search criteria to the contents of `MLModel`<b>
|
1498
|
+
# </b> `Name`.
|
1499
|
+
# * `IAMUser` - Sets the search criteria to the user account that
|
1500
|
+
# invoked the `MLModel` creation.
|
1501
|
+
# * `TrainingDataSourceId` - Sets the search criteria to the
|
1502
|
+
# `DataSource` used to train one or more `MLModel`.
|
1503
|
+
# * `RealtimeEndpointStatus` - Sets the search criteria to the
|
1504
|
+
# `MLModel` real-time endpoint status.
|
1505
|
+
# * `MLModelType` - Sets the search criteria to `MLModel` type:
|
1506
|
+
# binary, regression, or multi-class.
|
1507
|
+
# * `Algorithm` - Sets the search criteria to the algorithm that the
|
1508
|
+
# `MLModel` uses.
|
1509
|
+
# * `TrainingDataURI` - Sets the search criteria to the data file(s)
|
1510
|
+
# used in training a `MLModel`. The URL can identify either a file
|
1511
|
+
# or an Amazon Simple Storage Service (Amazon S3) bucket or
|
1512
|
+
# directory.
|
1513
|
+
# @return [String]
|
1514
|
+
#
|
1515
|
+
# @!attribute [rw] eq
|
1516
|
+
# The equal to operator. The `MLModel` results will have
|
1517
|
+
# `FilterVariable` values that exactly match the value specified with
|
1518
|
+
# `EQ`.
|
1519
|
+
# @return [String]
|
1520
|
+
#
|
1521
|
+
# @!attribute [rw] gt
|
1522
|
+
# The greater than operator. The `MLModel` results will have
|
1523
|
+
# `FilterVariable` values that are greater than the value specified
|
1524
|
+
# with `GT`.
|
1525
|
+
# @return [String]
|
1526
|
+
#
|
1527
|
+
# @!attribute [rw] lt
|
1528
|
+
# The less than operator. The `MLModel` results will have
|
1529
|
+
# `FilterVariable` values that are less than the value specified with
|
1530
|
+
# `LT`.
|
1531
|
+
# @return [String]
|
1532
|
+
#
|
1533
|
+
# @!attribute [rw] ge
|
1534
|
+
# The greater than or equal to operator. The `MLModel` results will
|
1535
|
+
# have `FilterVariable` values that are greater than or equal to the
|
1536
|
+
# value specified with `GE`.
|
1537
|
+
# @return [String]
|
1538
|
+
#
|
1539
|
+
# @!attribute [rw] le
|
1540
|
+
# The less than or equal to operator. The `MLModel` results will have
|
1541
|
+
# `FilterVariable` values that are less than or equal to the value
|
1542
|
+
# specified with `LE`.
|
1543
|
+
# @return [String]
|
1544
|
+
#
|
1545
|
+
# @!attribute [rw] ne
|
1546
|
+
# The not equal to operator. The `MLModel` results will have
|
1547
|
+
# `FilterVariable` values not equal to the value specified with `NE`.
|
1548
|
+
# @return [String]
|
1549
|
+
#
|
1550
|
+
# @!attribute [rw] prefix
|
1551
|
+
# A string that is found at the beginning of a variable, such as
|
1552
|
+
# `Name` or `Id`.
|
1553
|
+
#
|
1554
|
+
# For example, an `MLModel` could have the `Name`
|
1555
|
+
# `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
|
1556
|
+
# `Name` for the `FilterVariable` and any of the following strings for
|
1557
|
+
# the `Prefix`\:
|
1558
|
+
#
|
1559
|
+
# * 2014-09
|
1560
|
+
#
|
1561
|
+
# * 2014-09-09
|
1562
|
+
#
|
1563
|
+
# * 2014-09-09-Holiday
|
1564
|
+
# @return [String]
|
1565
|
+
#
|
1566
|
+
# @!attribute [rw] sort_order
|
1567
|
+
# A two-value parameter that determines the sequence of the resulting
|
1568
|
+
# list of `MLModel`.
|
1569
|
+
#
|
1570
|
+
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1571
|
+
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1572
|
+
#
|
1573
|
+
# Results are sorted by `FilterVariable`.
|
1574
|
+
# @return [String]
|
1575
|
+
#
|
1576
|
+
# @!attribute [rw] next_token
|
1577
|
+
# The ID of the page in the paginated results.
|
1578
|
+
# @return [String]
|
1579
|
+
#
|
1580
|
+
# @!attribute [rw] limit
|
1581
|
+
# The number of pages of information to include in the result. The
|
1582
|
+
# range of acceptable values is `1` through `100`. The default value
|
1583
|
+
# is `100`.
|
1584
|
+
# @return [Integer]
|
1585
|
+
class DescribeMLModelsInput < Struct.new(
|
1586
|
+
:filter_variable,
|
1587
|
+
:eq,
|
1588
|
+
:gt,
|
1589
|
+
:lt,
|
1590
|
+
:ge,
|
1591
|
+
:le,
|
1592
|
+
:ne,
|
1593
|
+
:prefix,
|
1594
|
+
:sort_order,
|
1595
|
+
:next_token,
|
1596
|
+
:limit)
|
1597
|
+
include Aws::Structure
|
1598
|
+
end
|
1599
|
+
|
1600
|
+
# Represents the output of a `DescribeMLModels` operation. The content
|
1601
|
+
# is essentially a list of `MLModel`.
|
1602
|
+
# @!attribute [rw] results
|
1603
|
+
# A list of `MLModel` that meet the search criteria.
|
1604
|
+
# @return [Array<Types::MLModel>]
|
1605
|
+
#
|
1606
|
+
# @!attribute [rw] next_token
|
1607
|
+
# The ID of the next page in the paginated results that indicates at
|
1608
|
+
# least one more page follows.
|
1609
|
+
# @return [String]
|
1610
|
+
class DescribeMLModelsOutput < Struct.new(
|
1611
|
+
:results,
|
1612
|
+
:next_token)
|
1613
|
+
include Aws::Structure
|
1614
|
+
end
|
1615
|
+
|
1616
|
+
# @note When making an API call, pass DescribeTagsInput
|
1617
|
+
# data as a hash:
|
1618
|
+
#
|
1619
|
+
# {
|
1620
|
+
# resource_id: "EntityId", # required
|
1621
|
+
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
|
1622
|
+
# }
|
1623
|
+
# @!attribute [rw] resource_id
|
1624
|
+
# The ID of the ML object. For example, `exampleModelId`.
|
1625
|
+
# @return [String]
|
1626
|
+
#
|
1627
|
+
# @!attribute [rw] resource_type
|
1628
|
+
# The type of the ML object.
|
1629
|
+
# @return [String]
|
1630
|
+
class DescribeTagsInput < Struct.new(
|
1631
|
+
:resource_id,
|
1632
|
+
:resource_type)
|
1633
|
+
include Aws::Structure
|
1634
|
+
end
|
1635
|
+
|
1636
|
+
# Amazon ML returns the following elements.
|
1637
|
+
# @!attribute [rw] resource_id
|
1638
|
+
# The ID of the tagged ML object.
|
1639
|
+
# @return [String]
|
1640
|
+
#
|
1641
|
+
# @!attribute [rw] resource_type
|
1642
|
+
# The type of the tagged ML object.
|
1643
|
+
# @return [String]
|
1644
|
+
#
|
1645
|
+
# @!attribute [rw] tags
|
1646
|
+
# A list of tags associated with the ML object.
|
1647
|
+
# @return [Array<Types::Tag>]
|
1648
|
+
class DescribeTagsOutput < Struct.new(
|
1649
|
+
:resource_id,
|
1650
|
+
:resource_type,
|
1651
|
+
:tags)
|
1652
|
+
include Aws::Structure
|
1653
|
+
end
|
1654
|
+
|
1655
|
+
# Represents the output of `GetEvaluation` operation.
|
1656
|
+
#
|
1657
|
+
# The content consists of the detailed metadata and data file
|
1658
|
+
# information and the current status of the `Evaluation`.
|
1659
|
+
# @!attribute [rw] evaluation_id
|
1660
|
+
# The ID that is assigned to the `Evaluation` at creation.
|
1661
|
+
# @return [String]
|
1662
|
+
#
|
1663
|
+
# @!attribute [rw] ml_model_id
|
1664
|
+
# The ID of the `MLModel` that is the focus of the evaluation.
|
1665
|
+
# @return [String]
|
1666
|
+
#
|
1667
|
+
# @!attribute [rw] evaluation_data_source_id
|
1668
|
+
# The ID of the `DataSource` that is used to evaluate the `MLModel`.
|
1669
|
+
# @return [String]
|
1670
|
+
#
|
1671
|
+
# @!attribute [rw] input_data_location_s3
|
1672
|
+
# The location and name of the data in Amazon Simple Storage Server
|
1673
|
+
# (Amazon S3) that is used in the evaluation.
|
1674
|
+
# @return [String]
|
1675
|
+
#
|
1676
|
+
# @!attribute [rw] created_by_iam_user
|
1677
|
+
# The AWS user account that invoked the evaluation. The account type
|
1678
|
+
# can be either an AWS root account or an AWS Identity and Access
|
1679
|
+
# Management (IAM) user account.
|
1680
|
+
# @return [String]
|
1681
|
+
#
|
1682
|
+
# @!attribute [rw] created_at
|
1683
|
+
# The time that the `Evaluation` was created. The time is expressed in
|
1684
|
+
# epoch time.
|
1685
|
+
# @return [Time]
|
1686
|
+
#
|
1687
|
+
# @!attribute [rw] last_updated_at
|
1688
|
+
# The time of the most recent edit to the `Evaluation`. The time is
|
1689
|
+
# expressed in epoch time.
|
1690
|
+
# @return [Time]
|
1691
|
+
#
|
1692
|
+
# @!attribute [rw] name
|
1693
|
+
# A user-supplied name or description of the `Evaluation`.
|
1694
|
+
# @return [String]
|
1695
|
+
#
|
1696
|
+
# @!attribute [rw] status
|
1697
|
+
# The status of the evaluation. This element can have one of the
|
1698
|
+
# following values:
|
1699
|
+
#
|
1700
|
+
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
1701
|
+
# request to evaluate an `MLModel`.
|
1702
|
+
# * `INPROGRESS` - The evaluation is underway.
|
1703
|
+
# * `FAILED` - The request to evaluate an `MLModel` did not run to
|
1704
|
+
# completion. It is not usable.
|
1705
|
+
# * `COMPLETED` - The evaluation process completed successfully.
|
1706
|
+
# * `DELETED` - The `Evaluation` is marked as deleted. It is not
|
1707
|
+
# usable.
|
1708
|
+
# @return [String]
|
1709
|
+
#
|
1710
|
+
# @!attribute [rw] performance_metrics
|
1711
|
+
# Measurements of how well the `MLModel` performed, using observations
|
1712
|
+
# referenced by the `DataSource`. One of the following metrics is
|
1713
|
+
# returned, based on the type of the `MLModel`\:
|
1714
|
+
#
|
1715
|
+
# * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
|
1716
|
+
# technique to measure performance.
|
1717
|
+
#
|
1718
|
+
# * RegressionRMSE: A regression `MLModel` uses the Root Mean Square
|
1719
|
+
# Error (RMSE) technique to measure performance. RMSE measures the
|
1720
|
+
# difference between predicted and actual values for a single
|
1721
|
+
# variable.
|
1722
|
+
#
|
1723
|
+
# * MulticlassAvgFScore: A multiclass `MLModel` uses the F1 score
|
1724
|
+
# technique to measure performance.
|
1725
|
+
#
|
1726
|
+
# For more information about performance metrics, please see the
|
1727
|
+
# [Amazon Machine Learning Developer Guide][1].
|
1728
|
+
#
|
1729
|
+
#
|
1730
|
+
#
|
1731
|
+
# [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
|
1732
|
+
# @return [Types::PerformanceMetrics]
|
1733
|
+
#
|
1734
|
+
# @!attribute [rw] message
|
1735
|
+
# A description of the most recent details about evaluating the
|
1736
|
+
# `MLModel`.
|
1737
|
+
# @return [String]
|
1738
|
+
#
|
1739
|
+
# @!attribute [rw] compute_time
|
1740
|
+
# Long integer type that is a 64-bit signed number.
|
1741
|
+
# @return [Integer]
|
1742
|
+
#
|
1743
|
+
# @!attribute [rw] finished_at
|
1744
|
+
# A timestamp represented in epoch time.
|
1745
|
+
# @return [Time]
|
1746
|
+
#
|
1747
|
+
# @!attribute [rw] started_at
|
1748
|
+
# A timestamp represented in epoch time.
|
1749
|
+
# @return [Time]
|
1750
|
+
class Evaluation < Struct.new(
|
1751
|
+
:evaluation_id,
|
1752
|
+
:ml_model_id,
|
1753
|
+
:evaluation_data_source_id,
|
1754
|
+
:input_data_location_s3,
|
1755
|
+
:created_by_iam_user,
|
1756
|
+
:created_at,
|
1757
|
+
:last_updated_at,
|
1758
|
+
:name,
|
1759
|
+
:status,
|
1760
|
+
:performance_metrics,
|
1761
|
+
:message,
|
1762
|
+
:compute_time,
|
1763
|
+
:finished_at,
|
1764
|
+
:started_at)
|
1765
|
+
include Aws::Structure
|
1766
|
+
end
|
1767
|
+
|
1768
|
+
# @note When making an API call, pass GetBatchPredictionInput
|
1769
|
+
# data as a hash:
|
1770
|
+
#
|
1771
|
+
# {
|
1772
|
+
# batch_prediction_id: "EntityId", # required
|
1773
|
+
# }
|
1774
|
+
# @!attribute [rw] batch_prediction_id
|
1775
|
+
# An ID assigned to the `BatchPrediction` at creation.
|
1776
|
+
# @return [String]
|
1777
|
+
class GetBatchPredictionInput < Struct.new(
|
1778
|
+
:batch_prediction_id)
|
1779
|
+
include Aws::Structure
|
1780
|
+
end
|
1781
|
+
|
1782
|
+
# Represents the output of a `GetBatchPrediction` operation and
|
1783
|
+
# describes a `BatchPrediction`.
|
1784
|
+
# @!attribute [rw] batch_prediction_id
|
1785
|
+
# An ID assigned to the `BatchPrediction` at creation. This value
|
1786
|
+
# should be identical to the value of the `BatchPredictionID` in the
|
1787
|
+
# request.
|
1788
|
+
# @return [String]
|
1789
|
+
#
|
1790
|
+
# @!attribute [rw] ml_model_id
|
1791
|
+
# The ID of the `MLModel` that generated predictions for the
|
1792
|
+
# `BatchPrediction` request.
|
1793
|
+
# @return [String]
|
1794
|
+
#
|
1795
|
+
# @!attribute [rw] batch_prediction_data_source_id
|
1796
|
+
# The ID of the `DataSource` that was used to create the
|
1797
|
+
# `BatchPrediction`.
|
1798
|
+
# @return [String]
|
1799
|
+
#
|
1800
|
+
# @!attribute [rw] input_data_location_s3
|
1801
|
+
# The location of the data file or directory in Amazon Simple Storage
|
1802
|
+
# Service (Amazon S3).
|
1803
|
+
# @return [String]
|
1804
|
+
#
|
1805
|
+
# @!attribute [rw] created_by_iam_user
|
1806
|
+
# The AWS user account that invoked the `BatchPrediction`. The account
|
1807
|
+
# type can be either an AWS root account or an AWS Identity and Access
|
1808
|
+
# Management (IAM) user account.
|
1809
|
+
# @return [String]
|
1810
|
+
#
|
1811
|
+
# @!attribute [rw] created_at
|
1812
|
+
# The time when the `BatchPrediction` was created. The time is
|
1813
|
+
# expressed in epoch time.
|
1814
|
+
# @return [Time]
|
1815
|
+
#
|
1816
|
+
# @!attribute [rw] last_updated_at
|
1817
|
+
# The time of the most recent edit to `BatchPrediction`. The time is
|
1818
|
+
# expressed in epoch time.
|
1819
|
+
# @return [Time]
|
1820
|
+
#
|
1821
|
+
# @!attribute [rw] name
|
1822
|
+
# A user-supplied name or description of the `BatchPrediction`.
|
1823
|
+
# @return [String]
|
1824
|
+
#
|
1825
|
+
# @!attribute [rw] status
|
1826
|
+
# The status of the `BatchPrediction`, which can be one of the
|
1827
|
+
# following values:
|
1828
|
+
#
|
1829
|
+
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
1830
|
+
# request to generate batch predictions.
|
1831
|
+
# * `INPROGRESS` - The batch predictions are in progress.
|
1832
|
+
# * `FAILED` - The request to perform a batch prediction did not run
|
1833
|
+
# to completion. It is not usable.
|
1834
|
+
# * `COMPLETED` - The batch prediction process completed successfully.
|
1835
|
+
# * `DELETED` - The `BatchPrediction` is marked as deleted. It is not
|
1836
|
+
# usable.
|
1837
|
+
# @return [String]
|
1838
|
+
#
|
1839
|
+
# @!attribute [rw] output_uri
|
1840
|
+
# The location of an Amazon S3 bucket or directory to receive the
|
1841
|
+
# operation results.
|
1842
|
+
# @return [String]
|
1843
|
+
#
|
1844
|
+
# @!attribute [rw] log_uri
|
1845
|
+
# A link to the file that contains logs of the `CreateBatchPrediction`
|
1846
|
+
# operation.
|
1847
|
+
# @return [String]
|
1848
|
+
#
|
1849
|
+
# @!attribute [rw] message
|
1850
|
+
# A description of the most recent details about processing the batch
|
1851
|
+
# prediction request.
|
1852
|
+
# @return [String]
|
1853
|
+
#
|
1854
|
+
# @!attribute [rw] compute_time
|
1855
|
+
# The approximate CPU time in milliseconds that Amazon Machine
|
1856
|
+
# Learning spent processing the `BatchPrediction`, normalized and
|
1857
|
+
# scaled on computation resources. `ComputeTime` is only available if
|
1858
|
+
# the `BatchPrediction` is in the `COMPLETED` state.
|
1859
|
+
# @return [Integer]
|
1860
|
+
#
|
1861
|
+
# @!attribute [rw] finished_at
|
1862
|
+
# The epoch time when Amazon Machine Learning marked the
|
1863
|
+
# `BatchPrediction` as `COMPLETED` or `FAILED`. `FinishedAt` is only
|
1864
|
+
# available when the `BatchPrediction` is in the `COMPLETED` or
|
1865
|
+
# `FAILED` state.
|
1866
|
+
# @return [Time]
|
1867
|
+
#
|
1868
|
+
# @!attribute [rw] started_at
|
1869
|
+
# The epoch time when Amazon Machine Learning marked the
|
1870
|
+
# `BatchPrediction` as `INPROGRESS`. `StartedAt` isn't available if
|
1871
|
+
# the `BatchPrediction` is in the `PENDING` state.
|
1872
|
+
# @return [Time]
|
1873
|
+
#
|
1874
|
+
# @!attribute [rw] total_record_count
|
1875
|
+
# The number of total records that Amazon Machine Learning saw while
|
1876
|
+
# processing the `BatchPrediction`.
|
1877
|
+
# @return [Integer]
|
1878
|
+
#
|
1879
|
+
# @!attribute [rw] invalid_record_count
|
1880
|
+
# The number of invalid records that Amazon Machine Learning saw while
|
1881
|
+
# processing the `BatchPrediction`.
|
1882
|
+
# @return [Integer]
|
1883
|
+
class GetBatchPredictionOutput < Struct.new(
|
1884
|
+
:batch_prediction_id,
|
1885
|
+
:ml_model_id,
|
1886
|
+
:batch_prediction_data_source_id,
|
1887
|
+
:input_data_location_s3,
|
1888
|
+
:created_by_iam_user,
|
1889
|
+
:created_at,
|
1890
|
+
:last_updated_at,
|
1891
|
+
:name,
|
1892
|
+
:status,
|
1893
|
+
:output_uri,
|
1894
|
+
:log_uri,
|
1895
|
+
:message,
|
1896
|
+
:compute_time,
|
1897
|
+
:finished_at,
|
1898
|
+
:started_at,
|
1899
|
+
:total_record_count,
|
1900
|
+
:invalid_record_count)
|
1901
|
+
include Aws::Structure
|
1902
|
+
end
|
1903
|
+
|
1904
|
+
# @note When making an API call, pass GetDataSourceInput
|
1905
|
+
# data as a hash:
|
1906
|
+
#
|
1907
|
+
# {
|
1908
|
+
# data_source_id: "EntityId", # required
|
1909
|
+
# verbose: false,
|
1910
|
+
# }
|
1911
|
+
# @!attribute [rw] data_source_id
|
1912
|
+
# The ID assigned to the `DataSource` at creation.
|
1913
|
+
# @return [String]
|
1914
|
+
#
|
1915
|
+
# @!attribute [rw] verbose
|
1916
|
+
# Specifies whether the `GetDataSource` operation should return
|
1917
|
+
# `DataSourceSchema`.
|
1918
|
+
#
|
1919
|
+
# If true, `DataSourceSchema` is returned.
|
1920
|
+
#
|
1921
|
+
# If false, `DataSourceSchema` is not returned.
|
1922
|
+
# @return [Boolean]
|
1923
|
+
class GetDataSourceInput < Struct.new(
|
1924
|
+
:data_source_id,
|
1925
|
+
:verbose)
|
1926
|
+
include Aws::Structure
|
1927
|
+
end
|
1928
|
+
|
1929
|
+
# Represents the output of a `GetDataSource` operation and describes a
|
1930
|
+
# `DataSource`.
|
1931
|
+
# @!attribute [rw] data_source_id
|
1932
|
+
# The ID assigned to the `DataSource` at creation. This value should
|
1933
|
+
# be identical to the value of the `DataSourceId` in the request.
|
1934
|
+
# @return [String]
|
1935
|
+
#
|
1936
|
+
# @!attribute [rw] data_location_s3
|
1937
|
+
# The location of the data file or directory in Amazon Simple Storage
|
1938
|
+
# Service (Amazon S3).
|
1939
|
+
# @return [String]
|
1940
|
+
#
|
1941
|
+
# @!attribute [rw] data_rearrangement
|
1942
|
+
# A JSON string that represents the splitting and rearrangement
|
1943
|
+
# requirement used when this `DataSource` was created.
|
1944
|
+
# @return [String]
|
1945
|
+
#
|
1946
|
+
# @!attribute [rw] created_by_iam_user
|
1947
|
+
# The AWS user account from which the `DataSource` was created. The
|
1948
|
+
# account type can be either an AWS root account or an AWS Identity
|
1949
|
+
# and Access Management (IAM) user account.
|
1950
|
+
# @return [String]
|
1951
|
+
#
|
1952
|
+
# @!attribute [rw] created_at
|
1953
|
+
# The time that the `DataSource` was created. The time is expressed in
|
1954
|
+
# epoch time.
|
1955
|
+
# @return [Time]
|
1956
|
+
#
|
1957
|
+
# @!attribute [rw] last_updated_at
|
1958
|
+
# The time of the most recent edit to the `DataSource`. The time is
|
1959
|
+
# expressed in epoch time.
|
1960
|
+
# @return [Time]
|
1961
|
+
#
|
1962
|
+
# @!attribute [rw] data_size_in_bytes
|
1963
|
+
# The total size of observations in the data files.
|
1964
|
+
# @return [Integer]
|
1965
|
+
#
|
1966
|
+
# @!attribute [rw] number_of_files
|
1967
|
+
# The number of data files referenced by the `DataSource`.
|
1968
|
+
# @return [Integer]
|
1969
|
+
#
|
1970
|
+
# @!attribute [rw] name
|
1971
|
+
# A user-supplied name or description of the `DataSource`.
|
1972
|
+
# @return [String]
|
1973
|
+
#
|
1974
|
+
# @!attribute [rw] status
|
1975
|
+
# The current status of the `DataSource`. This element can have one of
|
1976
|
+
# the following values:
|
1977
|
+
#
|
1978
|
+
# * `PENDING` - Amazon ML submitted a request to create a
|
1979
|
+
# `DataSource`.
|
1980
|
+
# * `INPROGRESS` - The creation process is underway.
|
1981
|
+
# * `FAILED` - The request to create a `DataSource` did not run to
|
1982
|
+
# completion. It is not usable.
|
1983
|
+
# * `COMPLETED` - The creation process completed successfully.
|
1984
|
+
# * `DELETED` - The `DataSource` is marked as deleted. It is not
|
1985
|
+
# usable.
|
1986
|
+
# @return [String]
|
1987
|
+
#
|
1988
|
+
# @!attribute [rw] log_uri
|
1989
|
+
# A link to the file containing logs of `CreateDataSourceFrom*`
|
1990
|
+
# operations.
|
1991
|
+
# @return [String]
|
1992
|
+
#
|
1993
|
+
# @!attribute [rw] message
|
1994
|
+
# The user-supplied description of the most recent details about
|
1995
|
+
# creating the `DataSource`.
|
1996
|
+
# @return [String]
|
1997
|
+
#
|
1998
|
+
# @!attribute [rw] redshift_metadata
|
1999
|
+
# Describes the `DataSource` details specific to Amazon Redshift.
|
2000
|
+
# @return [Types::RedshiftMetadata]
|
2001
|
+
#
|
2002
|
+
# @!attribute [rw] rds_metadata
|
2003
|
+
# The datasource details that are specific to Amazon RDS.
|
2004
|
+
# @return [Types::RDSMetadata]
|
2005
|
+
#
|
2006
|
+
# @!attribute [rw] role_arn
|
2007
|
+
# The Amazon Resource Name (ARN) of an [AWS IAM Role][1], such as the
|
2008
|
+
# following: arn:aws:iam::account:role/rolename.
|
2009
|
+
#
|
2010
|
+
#
|
2011
|
+
#
|
2012
|
+
# [1]: http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
|
2013
|
+
# @return [String]
|
2014
|
+
#
|
2015
|
+
# @!attribute [rw] compute_statistics
|
2016
|
+
# The parameter is `true` if statistics need to be generated from the
|
2017
|
+
# observation data.
|
2018
|
+
# @return [Boolean]
|
2019
|
+
#
|
2020
|
+
# @!attribute [rw] compute_time
|
2021
|
+
# The approximate CPU time in milliseconds that Amazon Machine
|
2022
|
+
# Learning spent processing the `DataSource`, normalized and scaled on
|
2023
|
+
# computation resources. `ComputeTime` is only available if the
|
2024
|
+
# `DataSource` is in the `COMPLETED` state and the `ComputeStatistics`
|
2025
|
+
# is set to true.
|
2026
|
+
# @return [Integer]
|
2027
|
+
#
|
2028
|
+
# @!attribute [rw] finished_at
|
2029
|
+
# The epoch time when Amazon Machine Learning marked the `DataSource`
|
2030
|
+
# as `COMPLETED` or `FAILED`. `FinishedAt` is only available when the
|
2031
|
+
# `DataSource` is in the `COMPLETED` or `FAILED` state.
|
2032
|
+
# @return [Time]
|
2033
|
+
#
|
2034
|
+
# @!attribute [rw] started_at
|
2035
|
+
# The epoch time when Amazon Machine Learning marked the `DataSource`
|
2036
|
+
# as `INPROGRESS`. `StartedAt` isn't available if the `DataSource` is
|
2037
|
+
# in the `PENDING` state.
|
2038
|
+
# @return [Time]
|
2039
|
+
#
|
2040
|
+
# @!attribute [rw] data_source_schema
|
2041
|
+
# The schema used by all of the data files of this `DataSource`.
|
2042
|
+
#
|
2043
|
+
# <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
|
2044
|
+
#
|
2045
|
+
# </note>
|
2046
|
+
# @return [String]
|
2047
|
+
class GetDataSourceOutput < Struct.new(
|
2048
|
+
:data_source_id,
|
2049
|
+
:data_location_s3,
|
2050
|
+
:data_rearrangement,
|
2051
|
+
:created_by_iam_user,
|
2052
|
+
:created_at,
|
2053
|
+
:last_updated_at,
|
2054
|
+
:data_size_in_bytes,
|
2055
|
+
:number_of_files,
|
2056
|
+
:name,
|
2057
|
+
:status,
|
2058
|
+
:log_uri,
|
2059
|
+
:message,
|
2060
|
+
:redshift_metadata,
|
2061
|
+
:rds_metadata,
|
2062
|
+
:role_arn,
|
2063
|
+
:compute_statistics,
|
2064
|
+
:compute_time,
|
2065
|
+
:finished_at,
|
2066
|
+
:started_at,
|
2067
|
+
:data_source_schema)
|
2068
|
+
include Aws::Structure
|
2069
|
+
end
|
2070
|
+
|
2071
|
+
# @note When making an API call, pass GetEvaluationInput
|
2072
|
+
# data as a hash:
|
2073
|
+
#
|
2074
|
+
# {
|
2075
|
+
# evaluation_id: "EntityId", # required
|
2076
|
+
# }
|
2077
|
+
# @!attribute [rw] evaluation_id
|
2078
|
+
# The ID of the `Evaluation` to retrieve. The evaluation of each
|
2079
|
+
# `MLModel` is recorded and cataloged. The ID provides the means to
|
2080
|
+
# access the information.
|
2081
|
+
# @return [String]
|
2082
|
+
class GetEvaluationInput < Struct.new(
|
2083
|
+
:evaluation_id)
|
2084
|
+
include Aws::Structure
|
2085
|
+
end
|
2086
|
+
|
2087
|
+
# Represents the output of a `GetEvaluation` operation and describes an
|
2088
|
+
# `Evaluation`.
|
2089
|
+
# @!attribute [rw] evaluation_id
|
2090
|
+
# The evaluation ID which is same as the `EvaluationId` in the
|
2091
|
+
# request.
|
2092
|
+
# @return [String]
|
2093
|
+
#
|
2094
|
+
# @!attribute [rw] ml_model_id
|
2095
|
+
# The ID of the `MLModel` that was the focus of the evaluation.
|
2096
|
+
# @return [String]
|
2097
|
+
#
|
2098
|
+
# @!attribute [rw] evaluation_data_source_id
|
2099
|
+
# The `DataSource` used for this evaluation.
|
2100
|
+
# @return [String]
|
2101
|
+
#
|
2102
|
+
# @!attribute [rw] input_data_location_s3
|
2103
|
+
# The location of the data file or directory in Amazon Simple Storage
|
2104
|
+
# Service (Amazon S3).
|
2105
|
+
# @return [String]
|
2106
|
+
#
|
2107
|
+
# @!attribute [rw] created_by_iam_user
|
2108
|
+
# The AWS user account that invoked the evaluation. The account type
|
2109
|
+
# can be either an AWS root account or an AWS Identity and Access
|
2110
|
+
# Management (IAM) user account.
|
2111
|
+
# @return [String]
|
2112
|
+
#
|
2113
|
+
# @!attribute [rw] created_at
|
2114
|
+
# The time that the `Evaluation` was created. The time is expressed in
|
2115
|
+
# epoch time.
|
2116
|
+
# @return [Time]
|
2117
|
+
#
|
2118
|
+
# @!attribute [rw] last_updated_at
|
2119
|
+
# The time of the most recent edit to the `Evaluation`. The time is
|
2120
|
+
# expressed in epoch time.
|
2121
|
+
# @return [Time]
|
2122
|
+
#
|
2123
|
+
# @!attribute [rw] name
|
2124
|
+
# A user-supplied name or description of the `Evaluation`.
|
2125
|
+
# @return [String]
|
2126
|
+
#
|
2127
|
+
# @!attribute [rw] status
|
2128
|
+
# The status of the evaluation. This element can have one of the
|
2129
|
+
# following values:
|
2130
|
+
#
|
2131
|
+
# * `PENDING` - Amazon Machine Language (Amazon ML) submitted a
|
2132
|
+
# request to evaluate an `MLModel`.
|
2133
|
+
# * `INPROGRESS` - The evaluation is underway.
|
2134
|
+
# * `FAILED` - The request to evaluate an `MLModel` did not run to
|
2135
|
+
# completion. It is not usable.
|
2136
|
+
# * `COMPLETED` - The evaluation process completed successfully.
|
2137
|
+
# * `DELETED` - The `Evaluation` is marked as deleted. It is not
|
2138
|
+
# usable.
|
2139
|
+
# @return [String]
|
2140
|
+
#
|
2141
|
+
# @!attribute [rw] performance_metrics
|
2142
|
+
# Measurements of how well the `MLModel` performed using observations
|
2143
|
+
# referenced by the `DataSource`. One of the following metric is
|
2144
|
+
# returned based on the type of the `MLModel`\:
|
2145
|
+
#
|
2146
|
+
# * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
|
2147
|
+
# technique to measure performance.
|
2148
|
+
#
|
2149
|
+
# * RegressionRMSE: A regression `MLModel` uses the Root Mean Square
|
2150
|
+
# Error (RMSE) technique to measure performance. RMSE measures the
|
2151
|
+
# difference between predicted and actual values for a single
|
2152
|
+
# variable.
|
2153
|
+
#
|
2154
|
+
# * MulticlassAvgFScore: A multiclass `MLModel` uses the F1 score
|
2155
|
+
# technique to measure performance.
|
2156
|
+
#
|
2157
|
+
# For more information about performance metrics, please see the
|
2158
|
+
# [Amazon Machine Learning Developer Guide][1].
|
2159
|
+
#
|
2160
|
+
#
|
2161
|
+
#
|
2162
|
+
# [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
|
2163
|
+
# @return [Types::PerformanceMetrics]
|
2164
|
+
#
|
2165
|
+
# @!attribute [rw] log_uri
|
2166
|
+
# A link to the file that contains logs of the `CreateEvaluation`
|
2167
|
+
# operation.
|
2168
|
+
# @return [String]
|
2169
|
+
#
|
2170
|
+
# @!attribute [rw] message
|
2171
|
+
# A description of the most recent details about evaluating the
|
2172
|
+
# `MLModel`.
|
2173
|
+
# @return [String]
|
2174
|
+
#
|
2175
|
+
# @!attribute [rw] compute_time
|
2176
|
+
# The approximate CPU time in milliseconds that Amazon Machine
|
2177
|
+
# Learning spent processing the `Evaluation`, normalized and scaled on
|
2178
|
+
# computation resources. `ComputeTime` is only available if the
|
2179
|
+
# `Evaluation` is in the `COMPLETED` state.
|
2180
|
+
# @return [Integer]
|
2181
|
+
#
|
2182
|
+
# @!attribute [rw] finished_at
|
2183
|
+
# The epoch time when Amazon Machine Learning marked the `Evaluation`
|
2184
|
+
# as `COMPLETED` or `FAILED`. `FinishedAt` is only available when the
|
2185
|
+
# `Evaluation` is in the `COMPLETED` or `FAILED` state.
|
2186
|
+
# @return [Time]
|
2187
|
+
#
|
2188
|
+
# @!attribute [rw] started_at
|
2189
|
+
# The epoch time when Amazon Machine Learning marked the `Evaluation`
|
2190
|
+
# as `INPROGRESS`. `StartedAt` isn't available if the `Evaluation` is
|
2191
|
+
# in the `PENDING` state.
|
2192
|
+
# @return [Time]
|
2193
|
+
class GetEvaluationOutput < Struct.new(
|
2194
|
+
:evaluation_id,
|
2195
|
+
:ml_model_id,
|
2196
|
+
:evaluation_data_source_id,
|
2197
|
+
:input_data_location_s3,
|
2198
|
+
:created_by_iam_user,
|
2199
|
+
:created_at,
|
2200
|
+
:last_updated_at,
|
2201
|
+
:name,
|
2202
|
+
:status,
|
2203
|
+
:performance_metrics,
|
2204
|
+
:log_uri,
|
2205
|
+
:message,
|
2206
|
+
:compute_time,
|
2207
|
+
:finished_at,
|
2208
|
+
:started_at)
|
2209
|
+
include Aws::Structure
|
2210
|
+
end
|
2211
|
+
|
2212
|
+
# @note When making an API call, pass GetMLModelInput
|
2213
|
+
# data as a hash:
|
2214
|
+
#
|
2215
|
+
# {
|
2216
|
+
# ml_model_id: "EntityId", # required
|
2217
|
+
# verbose: false,
|
2218
|
+
# }
|
2219
|
+
# @!attribute [rw] ml_model_id
|
2220
|
+
# The ID assigned to the `MLModel` at creation.
|
2221
|
+
# @return [String]
|
2222
|
+
#
|
2223
|
+
# @!attribute [rw] verbose
|
2224
|
+
# Specifies whether the `GetMLModel` operation should return `Recipe`.
|
2225
|
+
#
|
2226
|
+
# If true, `Recipe` is returned.
|
2227
|
+
#
|
2228
|
+
# If false, `Recipe` is not returned.
|
2229
|
+
# @return [Boolean]
|
2230
|
+
class GetMLModelInput < Struct.new(
|
2231
|
+
:ml_model_id,
|
2232
|
+
:verbose)
|
2233
|
+
include Aws::Structure
|
2234
|
+
end
|
2235
|
+
|
2236
|
+
# Represents the output of a `GetMLModel` operation, and provides
|
2237
|
+
# detailed information about a `MLModel`.
|
2238
|
+
# @!attribute [rw] ml_model_id
|
2239
|
+
# The MLModel ID<?oxy\_insert\_start author="annbech"
|
2240
|
+
# timestamp="20160328T151251-0700">,<?oxy\_insert\_end> which is
|
2241
|
+
# same as the `MLModelId` in the request.
|
2242
|
+
# @return [String]
|
2243
|
+
#
|
2244
|
+
# @!attribute [rw] training_data_source_id
|
2245
|
+
# The ID of the training `DataSource`.
|
2246
|
+
# @return [String]
|
2247
|
+
#
|
2248
|
+
# @!attribute [rw] created_by_iam_user
|
2249
|
+
# The AWS user account from which the `MLModel` was created. The
|
2250
|
+
# account type can be either an AWS root account or an AWS Identity
|
2251
|
+
# and Access Management (IAM) user account.
|
2252
|
+
# @return [String]
|
2253
|
+
#
|
2254
|
+
# @!attribute [rw] created_at
|
2255
|
+
# The time that the `MLModel` was created. The time is expressed in
|
2256
|
+
# epoch time.
|
2257
|
+
# @return [Time]
|
2258
|
+
#
|
2259
|
+
# @!attribute [rw] last_updated_at
|
2260
|
+
# The time of the most recent edit to the `MLModel`. The time is
|
2261
|
+
# expressed in epoch time.
|
2262
|
+
# @return [Time]
|
2263
|
+
#
|
2264
|
+
# @!attribute [rw] name
|
2265
|
+
# A user-supplied name or description of the `MLModel`.
|
2266
|
+
# @return [String]
|
2267
|
+
#
|
2268
|
+
# @!attribute [rw] status
|
2269
|
+
# The current status of the `MLModel`. This element can have one of
|
2270
|
+
# the following values:
|
2271
|
+
#
|
2272
|
+
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
2273
|
+
# request to describe a `MLModel`.
|
2274
|
+
# * `INPROGRESS` - The request is processing.
|
2275
|
+
# * `FAILED` - The request did not run to completion. The ML model
|
2276
|
+
# isn't usable.
|
2277
|
+
# * `COMPLETED` - The request completed successfully.
|
2278
|
+
# * `DELETED` - The `MLModel` is marked as deleted. It isn't usable.
|
2279
|
+
# @return [String]
|
2280
|
+
#
|
2281
|
+
# @!attribute [rw] size_in_bytes
|
2282
|
+
# Long integer type that is a 64-bit signed number.
|
2283
|
+
# @return [Integer]
|
2284
|
+
#
|
2285
|
+
# @!attribute [rw] endpoint_info
|
2286
|
+
# The current endpoint of the `MLModel`
|
2287
|
+
# @return [Types::RealtimeEndpointInfo]
|
2288
|
+
#
|
2289
|
+
# @!attribute [rw] training_parameters
|
2290
|
+
# A list of the training parameters in the `MLModel`. The list is
|
2291
|
+
# implemented as a map of key-value pairs.
|
2292
|
+
#
|
2293
|
+
# The following is the current set of training parameters:
|
2294
|
+
#
|
2295
|
+
# * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the
|
2296
|
+
# model. Depending on the input data, the size of the model might
|
2297
|
+
# affect its performance.
|
2298
|
+
#
|
2299
|
+
# The value is an integer that ranges from `100000` to `2147483648`.
|
2300
|
+
# The default value is `33554432`.
|
2301
|
+
#
|
2302
|
+
# * `sgd.maxPasses` - The number of times that the training process
|
2303
|
+
# traverses the observations to build the `MLModel`. The value is an
|
2304
|
+
# integer that ranges from `1` to `10000`. The default value is
|
2305
|
+
# `10`.
|
2306
|
+
#
|
2307
|
+
# * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
|
2308
|
+
# Shuffling data improves a model's ability to find the optimal
|
2309
|
+
# solution for a variety of data types. The valid values are `auto`
|
2310
|
+
# and `none`. The default value is `none`. We strongly recommend
|
2311
|
+
# that you shuffle your data.
|
2312
|
+
#
|
2313
|
+
# * `sgd.l1RegularizationAmount` - The coefficient regularization L1
|
2314
|
+
# norm. It controls overfitting the data by penalizing large
|
2315
|
+
# coefficients. This tends to drive coefficients to zero, resulting
|
2316
|
+
# in a sparse feature set. If you use this parameter, start by
|
2317
|
+
# specifying a small value, such as `1.0E-08`.
|
2318
|
+
#
|
2319
|
+
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
|
2320
|
+
# default is to not use L1 normalization. This parameter can't be
|
2321
|
+
# used when `L2` is specified. Use this parameter sparingly.
|
2322
|
+
#
|
2323
|
+
# * `sgd.l2RegularizationAmount` - The coefficient regularization L2
|
2324
|
+
# norm. It controls overfitting the data by penalizing large
|
2325
|
+
# coefficients. This tends to drive coefficients to small, nonzero
|
2326
|
+
# values. If you use this parameter, start by specifying a small
|
2327
|
+
# value, such as `1.0E-08`.
|
2328
|
+
#
|
2329
|
+
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
|
2330
|
+
# default is to not use L2 normalization. This parameter can't be
|
2331
|
+
# used when `L1` is specified. Use this parameter sparingly.
|
2332
|
+
# @return [Hash<String,String>]
|
2333
|
+
#
|
2334
|
+
# @!attribute [rw] input_data_location_s3
|
2335
|
+
# The location of the data file or directory in Amazon Simple Storage
|
2336
|
+
# Service (Amazon S3).
|
2337
|
+
# @return [String]
|
2338
|
+
#
|
2339
|
+
# @!attribute [rw] ml_model_type
|
2340
|
+
# Identifies the `MLModel` category. The following are the available
|
2341
|
+
# types:
|
2342
|
+
#
|
2343
|
+
# * REGRESSION -- Produces a numeric result. For example, "What price
|
2344
|
+
# should a house be listed at?"
|
2345
|
+
# * BINARY -- Produces one of two possible results. For example, "Is
|
2346
|
+
# this an e-commerce website?"
|
2347
|
+
# * MULTICLASS -- Produces one of several possible results. For
|
2348
|
+
# example, "Is this a HIGH, LOW or MEDIUM risk trade?"
|
2349
|
+
# @return [String]
|
2350
|
+
#
|
2351
|
+
# @!attribute [rw] score_threshold
|
2352
|
+
# The scoring threshold is used in binary classification
|
2353
|
+
# `MLModel`<?oxy\_insert\_start author="laurama"
|
2354
|
+
# timestamp="20160329T114851-0700"> <?oxy\_insert\_end>models. It
|
2355
|
+
# marks the boundary between a positive prediction and a negative
|
2356
|
+
# prediction.
|
2357
|
+
#
|
2358
|
+
# Output values greater than or equal to the threshold receive a
|
2359
|
+
# positive result from the MLModel, such as `true`. Output values less
|
2360
|
+
# than the threshold receive a negative response from the MLModel,
|
2361
|
+
# such as `false`.
|
2362
|
+
# @return [Float]
|
2363
|
+
#
|
2364
|
+
# @!attribute [rw] score_threshold_last_updated_at
|
2365
|
+
# The time of the most recent edit to the `ScoreThreshold`. The time
|
2366
|
+
# is expressed in epoch time.
|
2367
|
+
# @return [Time]
|
2368
|
+
#
|
2369
|
+
# @!attribute [rw] log_uri
|
2370
|
+
# A link to the file that contains logs of the `CreateMLModel`
|
2371
|
+
# operation.
|
2372
|
+
# @return [String]
|
2373
|
+
#
|
2374
|
+
# @!attribute [rw] message
|
2375
|
+
# A description of the most recent details about accessing the
|
2376
|
+
# `MLModel`.
|
2377
|
+
# @return [String]
|
2378
|
+
#
|
2379
|
+
# @!attribute [rw] compute_time
|
2380
|
+
# The approximate CPU time in milliseconds that Amazon Machine
|
2381
|
+
# Learning spent processing the `MLModel`, normalized and scaled on
|
2382
|
+
# computation resources. `ComputeTime` is only available if the
|
2383
|
+
# `MLModel` is in the `COMPLETED` state.
|
2384
|
+
# @return [Integer]
|
2385
|
+
#
|
2386
|
+
# @!attribute [rw] finished_at
|
2387
|
+
# The epoch time when Amazon Machine Learning marked the `MLModel` as
|
2388
|
+
# `COMPLETED` or `FAILED`. `FinishedAt` is only available when the
|
2389
|
+
# `MLModel` is in the `COMPLETED` or `FAILED` state.
|
2390
|
+
# @return [Time]
|
2391
|
+
#
|
2392
|
+
# @!attribute [rw] started_at
|
2393
|
+
# The epoch time when Amazon Machine Learning marked the `MLModel` as
|
2394
|
+
# `INPROGRESS`. `StartedAt` isn't available if the `MLModel` is in
|
2395
|
+
# the `PENDING` state.
|
2396
|
+
# @return [Time]
|
2397
|
+
#
|
2398
|
+
# @!attribute [rw] recipe
|
2399
|
+
# The recipe to use when training the `MLModel`. The `Recipe` provides
|
2400
|
+
# detailed information about the observation data to use during
|
2401
|
+
# training, and manipulations to perform on the observation data
|
2402
|
+
# during training.
|
2403
|
+
#
|
2404
|
+
# <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
|
2405
|
+
#
|
2406
|
+
# </note>
|
2407
|
+
# @return [String]
|
2408
|
+
#
|
2409
|
+
# @!attribute [rw] schema
|
2410
|
+
# The schema used by all of the data files referenced by the
|
2411
|
+
# `DataSource`.
|
2412
|
+
#
|
2413
|
+
# <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
|
2414
|
+
#
|
2415
|
+
# </note>
|
2416
|
+
# @return [String]
|
2417
|
+
class GetMLModelOutput < Struct.new(
|
2418
|
+
:ml_model_id,
|
2419
|
+
:training_data_source_id,
|
2420
|
+
:created_by_iam_user,
|
2421
|
+
:created_at,
|
2422
|
+
:last_updated_at,
|
2423
|
+
:name,
|
2424
|
+
:status,
|
2425
|
+
:size_in_bytes,
|
2426
|
+
:endpoint_info,
|
2427
|
+
:training_parameters,
|
2428
|
+
:input_data_location_s3,
|
2429
|
+
:ml_model_type,
|
2430
|
+
:score_threshold,
|
2431
|
+
:score_threshold_last_updated_at,
|
2432
|
+
:log_uri,
|
2433
|
+
:message,
|
2434
|
+
:compute_time,
|
2435
|
+
:finished_at,
|
2436
|
+
:started_at,
|
2437
|
+
:recipe,
|
2438
|
+
:schema)
|
2439
|
+
include Aws::Structure
|
2440
|
+
end
|
2441
|
+
|
2442
|
+
# Represents the output of a `GetMLModel` operation.
|
2443
|
+
#
|
2444
|
+
# The content consists of the detailed metadata and the current status
|
2445
|
+
# of the `MLModel`.
|
2446
|
+
# @!attribute [rw] ml_model_id
|
2447
|
+
# The ID assigned to the `MLModel` at creation.
|
2448
|
+
# @return [String]
|
2449
|
+
#
|
2450
|
+
# @!attribute [rw] training_data_source_id
|
2451
|
+
# The ID of the training `DataSource`. The `CreateMLModel` operation
|
2452
|
+
# uses the `TrainingDataSourceId`.
|
2453
|
+
# @return [String]
|
2454
|
+
#
|
2455
|
+
# @!attribute [rw] created_by_iam_user
|
2456
|
+
# The AWS user account from which the `MLModel` was created. The
|
2457
|
+
# account type can be either an AWS root account or an AWS Identity
|
2458
|
+
# and Access Management (IAM) user account.
|
2459
|
+
# @return [String]
|
2460
|
+
#
|
2461
|
+
# @!attribute [rw] created_at
|
2462
|
+
# The time that the `MLModel` was created. The time is expressed in
|
2463
|
+
# epoch time.
|
2464
|
+
# @return [Time]
|
2465
|
+
#
|
2466
|
+
# @!attribute [rw] last_updated_at
|
2467
|
+
# The time of the most recent edit to the `MLModel`. The time is
|
2468
|
+
# expressed in epoch time.
|
2469
|
+
# @return [Time]
|
2470
|
+
#
|
2471
|
+
# @!attribute [rw] name
|
2472
|
+
# A user-supplied name or description of the `MLModel`.
|
2473
|
+
# @return [String]
|
2474
|
+
#
|
2475
|
+
# @!attribute [rw] status
|
2476
|
+
# The current status of an `MLModel`. This element can have one of the
|
2477
|
+
# following values:
|
2478
|
+
#
|
2479
|
+
# * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
|
2480
|
+
# request to create an `MLModel`.
|
2481
|
+
# * `INPROGRESS` - The creation process is underway.
|
2482
|
+
# * `FAILED` - The request to create an `MLModel` didn't run to
|
2483
|
+
# completion. The model isn't usable.
|
2484
|
+
# * `COMPLETED` - The creation process completed successfully.
|
2485
|
+
# * `DELETED` - The `MLModel` is marked as deleted. It isn't usable.
|
2486
|
+
# @return [String]
|
2487
|
+
#
|
2488
|
+
# @!attribute [rw] size_in_bytes
|
2489
|
+
# Long integer type that is a 64-bit signed number.
|
2490
|
+
# @return [Integer]
|
2491
|
+
#
|
2492
|
+
# @!attribute [rw] endpoint_info
|
2493
|
+
# The current endpoint of the `MLModel`.
|
2494
|
+
# @return [Types::RealtimeEndpointInfo]
|
2495
|
+
#
|
2496
|
+
# @!attribute [rw] training_parameters
|
2497
|
+
# A list of the training parameters in the `MLModel`. The list is
|
2498
|
+
# implemented as a map of key-value pairs.
|
2499
|
+
#
|
2500
|
+
# The following is the current set of training parameters:
|
2501
|
+
#
|
2502
|
+
# * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the
|
2503
|
+
# model. Depending on the input data, the size of the model might
|
2504
|
+
# affect its performance.
|
2505
|
+
#
|
2506
|
+
# The value is an integer that ranges from `100000` to `2147483648`.
|
2507
|
+
# The default value is `33554432`.
|
2508
|
+
#
|
2509
|
+
# * `sgd.maxPasses` - The number of times that the training process
|
2510
|
+
# traverses the observations to build the `MLModel`. The value is an
|
2511
|
+
# integer that ranges from `1` to `10000`. The default value is
|
2512
|
+
# `10`.
|
2513
|
+
#
|
2514
|
+
# * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
|
2515
|
+
# Shuffling the data improves a model's ability to find the optimal
|
2516
|
+
# solution for a variety of data types. The valid values are `auto`
|
2517
|
+
# and `none`. The default value is `none`.
|
2518
|
+
#
|
2519
|
+
# * `sgd.l1RegularizationAmount` - The coefficient regularization L1
|
2520
|
+
# norm, which controls overfitting the data by penalizing large
|
2521
|
+
# coefficients. This parameter tends to drive coefficients to zero,
|
2522
|
+
# resulting in sparse feature set. If you use this parameter, start
|
2523
|
+
# by specifying a small value, such as `1.0E-08`.
|
2524
|
+
#
|
2525
|
+
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
|
2526
|
+
# default is to not use L1 normalization. This parameter can't be
|
2527
|
+
# used when `L2` is specified. Use this parameter sparingly.
|
2528
|
+
#
|
2529
|
+
# * `sgd.l2RegularizationAmount` - The coefficient regularization L2
|
2530
|
+
# norm, which controls overfitting the data by penalizing large
|
2531
|
+
# coefficients. This tends to drive coefficients to small, nonzero
|
2532
|
+
# values. If you use this parameter, start by specifying a small
|
2533
|
+
# value, such as `1.0E-08`.
|
2534
|
+
#
|
2535
|
+
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
|
2536
|
+
# default is to not use L2 normalization. This parameter can't be
|
2537
|
+
# used when `L1` is specified. Use this parameter sparingly.
|
2538
|
+
# @return [Hash<String,String>]
|
2539
|
+
#
|
2540
|
+
# @!attribute [rw] input_data_location_s3
|
2541
|
+
# The location of the data file or directory in Amazon Simple Storage
|
2542
|
+
# Service (Amazon S3).
|
2543
|
+
# @return [String]
|
2544
|
+
#
|
2545
|
+
# @!attribute [rw] algorithm
|
2546
|
+
# The algorithm used to train the `MLModel`. The following algorithm
|
2547
|
+
# is supported:
|
2548
|
+
#
|
2549
|
+
# * `SGD` -- Stochastic gradient descent. The goal of `SGD` is to
|
2550
|
+
# minimize the gradient of the loss function.
|
2551
|
+
# @return [String]
|
2552
|
+
#
|
2553
|
+
# @!attribute [rw] ml_model_type
|
2554
|
+
# Identifies the `MLModel` category. The following are the available
|
2555
|
+
# types:
|
2556
|
+
#
|
2557
|
+
# * `REGRESSION` - Produces a numeric result. For example, "What
|
2558
|
+
# price should a house be listed at?"
|
2559
|
+
# * `BINARY` - Produces one of two possible results. For example, "Is
|
2560
|
+
# this a child-friendly web site?".
|
2561
|
+
# * `MULTICLASS` - Produces one of several possible results. For
|
2562
|
+
# example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy\_delete
|
2563
|
+
# author="annbech" timestamp="20160328T175050-0700" content="
|
2564
|
+
# "><?oxy\_insert\_start author="annbech"
|
2565
|
+
# timestamp="20160328T175050-0700">-<?oxy\_insert\_end>risk
|
2566
|
+
# trade?".
|
2567
|
+
# @return [String]
|
2568
|
+
#
|
2569
|
+
# @!attribute [rw] score_threshold
|
2570
|
+
# @return [Float]
|
2571
|
+
#
|
2572
|
+
# @!attribute [rw] score_threshold_last_updated_at
|
2573
|
+
# The time of the most recent edit to the `ScoreThreshold`. The time
|
2574
|
+
# is expressed in epoch time.
|
2575
|
+
# @return [Time]
|
2576
|
+
#
|
2577
|
+
# @!attribute [rw] message
|
2578
|
+
# A description of the most recent details about accessing the
|
2579
|
+
# `MLModel`.
|
2580
|
+
# @return [String]
|
2581
|
+
#
|
2582
|
+
# @!attribute [rw] compute_time
|
2583
|
+
# Long integer type that is a 64-bit signed number.
|
2584
|
+
# @return [Integer]
|
2585
|
+
#
|
2586
|
+
# @!attribute [rw] finished_at
|
2587
|
+
# A timestamp represented in epoch time.
|
2588
|
+
# @return [Time]
|
2589
|
+
#
|
2590
|
+
# @!attribute [rw] started_at
|
2591
|
+
# A timestamp represented in epoch time.
|
2592
|
+
# @return [Time]
|
2593
|
+
class MLModel < Struct.new(
|
2594
|
+
:ml_model_id,
|
2595
|
+
:training_data_source_id,
|
2596
|
+
:created_by_iam_user,
|
2597
|
+
:created_at,
|
2598
|
+
:last_updated_at,
|
2599
|
+
:name,
|
2600
|
+
:status,
|
2601
|
+
:size_in_bytes,
|
2602
|
+
:endpoint_info,
|
2603
|
+
:training_parameters,
|
2604
|
+
:input_data_location_s3,
|
2605
|
+
:algorithm,
|
2606
|
+
:ml_model_type,
|
2607
|
+
:score_threshold,
|
2608
|
+
:score_threshold_last_updated_at,
|
2609
|
+
:message,
|
2610
|
+
:compute_time,
|
2611
|
+
:finished_at,
|
2612
|
+
:started_at)
|
2613
|
+
include Aws::Structure
|
2614
|
+
end
|
2615
|
+
|
2616
|
+
# Measurements of how well the `MLModel` performed on known
|
2617
|
+
# observations. One of the following metrics is returned, based on the
|
2618
|
+
# type of the `MLModel`\:
|
2619
|
+
#
|
2620
|
+
# * BinaryAUC: The binary `MLModel` uses the Area Under the Curve (AUC)
|
2621
|
+
# technique to measure performance.
|
2622
|
+
#
|
2623
|
+
# * RegressionRMSE: The regression `MLModel` uses the Root Mean Square
|
2624
|
+
# Error (RMSE) technique to measure performance. RMSE measures the
|
2625
|
+
# difference between predicted and actual values for a single
|
2626
|
+
# variable.
|
2627
|
+
#
|
2628
|
+
# * MulticlassAvgFScore: The multiclass `MLModel` uses the F1 score
|
2629
|
+
# technique to measure performance.
|
2630
|
+
#
|
2631
|
+
# For more information about performance metrics, please see the [Amazon
|
2632
|
+
# Machine Learning Developer Guide][1].
|
2633
|
+
#
|
2634
|
+
#
|
2635
|
+
#
|
2636
|
+
# [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
|
2637
|
+
# @!attribute [rw] properties
|
2638
|
+
# @return [Hash<String,String>]
|
2639
|
+
class PerformanceMetrics < Struct.new(
|
2640
|
+
:properties)
|
2641
|
+
include Aws::Structure
|
2642
|
+
end
|
2643
|
+
|
2644
|
+
# @note When making an API call, pass PredictInput
|
2645
|
+
# data as a hash:
|
2646
|
+
#
|
2647
|
+
# {
|
2648
|
+
# ml_model_id: "EntityId", # required
|
2649
|
+
# record: { # required
|
2650
|
+
# "VariableName" => "VariableValue",
|
2651
|
+
# },
|
2652
|
+
# predict_endpoint: "VipURL", # required
|
2653
|
+
# }
|
2654
|
+
# @!attribute [rw] ml_model_id
|
2655
|
+
# A unique identifier of the `MLModel`.
|
2656
|
+
# @return [String]
|
2657
|
+
#
|
2658
|
+
# @!attribute [rw] record
|
2659
|
+
# A map of variable name-value pairs that represent an observation.
|
2660
|
+
# @return [Hash<String,String>]
|
2661
|
+
#
|
2662
|
+
# @!attribute [rw] predict_endpoint
|
2663
|
+
# @return [String]
|
2664
|
+
class PredictInput < Struct.new(
|
2665
|
+
:ml_model_id,
|
2666
|
+
:record,
|
2667
|
+
:predict_endpoint)
|
2668
|
+
include Aws::Structure
|
2669
|
+
end
|
2670
|
+
|
2671
|
+
# @!attribute [rw] prediction
|
2672
|
+
# The output from a `Predict` operation:
|
2673
|
+
#
|
2674
|
+
# * `Details` - Contains the following attributes:
|
2675
|
+
# `DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY |
|
2676
|
+
# MULTICLASS` `DetailsAttributes.ALGORITHM - SGD`
|
2677
|
+
#
|
2678
|
+
# * `PredictedLabel` - Present for either a `BINARY` or `MULTICLASS`
|
2679
|
+
# `MLModel` request.
|
2680
|
+
#
|
2681
|
+
# * `PredictedScores` - Contains the raw classification score
|
2682
|
+
# corresponding to each label.
|
2683
|
+
#
|
2684
|
+
# * `PredictedValue` - Present for a `REGRESSION` `MLModel` request.
|
2685
|
+
# @return [Types::Prediction]
|
2686
|
+
class PredictOutput < Struct.new(
|
2687
|
+
:prediction)
|
2688
|
+
include Aws::Structure
|
2689
|
+
end
|
2690
|
+
|
2691
|
+
# The output from a `Predict` operation:
|
2692
|
+
#
|
2693
|
+
# * `Details` - Contains the following attributes:
|
2694
|
+
# `DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY |
|
2695
|
+
# MULTICLASS` `DetailsAttributes.ALGORITHM - SGD`
|
2696
|
+
#
|
2697
|
+
# * `PredictedLabel` - Present for either a `BINARY` or `MULTICLASS`
|
2698
|
+
# `MLModel` request.
|
2699
|
+
#
|
2700
|
+
# * `PredictedScores` - Contains the raw classification score
|
2701
|
+
# corresponding to each label.
|
2702
|
+
#
|
2703
|
+
# * `PredictedValue` - Present for a `REGRESSION` `MLModel` request.
|
2704
|
+
# @!attribute [rw] predicted_label
|
2705
|
+
# The prediction label for either a `BINARY` or `MULTICLASS`
|
2706
|
+
# `MLModel`.
|
2707
|
+
# @return [String]
|
2708
|
+
#
|
2709
|
+
# @!attribute [rw] predicted_value
|
2710
|
+
# The prediction value for `REGRESSION` `MLModel`.
|
2711
|
+
# @return [Float]
|
2712
|
+
#
|
2713
|
+
# @!attribute [rw] predicted_scores
|
2714
|
+
# Provides the raw classification score corresponding to each label.
|
2715
|
+
# @return [Hash<String,Float>]
|
2716
|
+
#
|
2717
|
+
# @!attribute [rw] details
|
2718
|
+
# Provides any additional details regarding the prediction.
|
2719
|
+
# @return [Hash<String,String>]
|
2720
|
+
class Prediction < Struct.new(
|
2721
|
+
:predicted_label,
|
2722
|
+
:predicted_value,
|
2723
|
+
:predicted_scores,
|
2724
|
+
:details)
|
2725
|
+
include Aws::Structure
|
2726
|
+
end
|
2727
|
+
|
2728
|
+
# The data specification of an Amazon Relational Database Service
|
2729
|
+
# (Amazon RDS) `DataSource`.
|
2730
|
+
# @note When making an API call, pass RDSDataSpec
|
2731
|
+
# data as a hash:
|
2732
|
+
#
|
2733
|
+
# {
|
2734
|
+
# database_information: { # required
|
2735
|
+
# instance_identifier: "RDSInstanceIdentifier", # required
|
2736
|
+
# database_name: "RDSDatabaseName", # required
|
2737
|
+
# },
|
2738
|
+
# select_sql_query: "RDSSelectSqlQuery", # required
|
2739
|
+
# database_credentials: { # required
|
2740
|
+
# username: "RDSDatabaseUsername", # required
|
2741
|
+
# password: "RDSDatabasePassword", # required
|
2742
|
+
# },
|
2743
|
+
# s3_staging_location: "S3Url", # required
|
2744
|
+
# data_rearrangement: "DataRearrangement",
|
2745
|
+
# data_schema: "DataSchema",
|
2746
|
+
# data_schema_uri: "S3Url",
|
2747
|
+
# resource_role: "EDPResourceRole", # required
|
2748
|
+
# service_role: "EDPServiceRole", # required
|
2749
|
+
# subnet_id: "EDPSubnetId", # required
|
2750
|
+
# security_group_ids: ["EDPSecurityGroupId"], # required
|
2751
|
+
# }
|
2752
|
+
# @!attribute [rw] database_information
|
2753
|
+
# Describes the `DatabaseName` and `InstanceIdentifier` of an Amazon
|
2754
|
+
# RDS database.
|
2755
|
+
# @return [Types::RDSDatabase]
|
2756
|
+
#
|
2757
|
+
# @!attribute [rw] select_sql_query
|
2758
|
+
# The query that is used to retrieve the observation data for the
|
2759
|
+
# `DataSource`.
|
2760
|
+
# @return [String]
|
2761
|
+
#
|
2762
|
+
# @!attribute [rw] database_credentials
|
2763
|
+
# The AWS Identity and Access Management (IAM) credentials that are
|
2764
|
+
# used connect to the Amazon RDS database.
|
2765
|
+
# @return [Types::RDSDatabaseCredentials]
|
2766
|
+
#
|
2767
|
+
# @!attribute [rw] s3_staging_location
|
2768
|
+
# The Amazon S3 location for staging Amazon RDS data. The data
|
2769
|
+
# retrieved from Amazon RDS using `SelectSqlQuery` is stored in this
|
2770
|
+
# location.
|
2771
|
+
# @return [String]
|
2772
|
+
#
|
2773
|
+
# @!attribute [rw] data_rearrangement
|
2774
|
+
# A JSON string that represents the splitting and rearrangement
|
2775
|
+
# processing to be applied to a `DataSource`. If the
|
2776
|
+
# `DataRearrangement` parameter is not provided, all of the input data
|
2777
|
+
# is used to create the `Datasource`.
|
2778
|
+
#
|
2779
|
+
# There are multiple parameters that control what data is used to
|
2780
|
+
# create a datasource:
|
2781
|
+
#
|
2782
|
+
# * **`percentBegin`**
|
2783
|
+
#
|
2784
|
+
# Use `percentBegin` to indicate the beginning of the range of the
|
2785
|
+
# data used to create the Datasource. If you do not include
|
2786
|
+
# `percentBegin` and `percentEnd`, Amazon ML includes all of the
|
2787
|
+
# data when creating the datasource.
|
2788
|
+
#
|
2789
|
+
# * **`percentEnd`**
|
2790
|
+
#
|
2791
|
+
# Use `percentEnd` to indicate the end of the range of the data used
|
2792
|
+
# to create the Datasource. If you do not include `percentBegin` and
|
2793
|
+
# `percentEnd`, Amazon ML includes all of the data when creating the
|
2794
|
+
# datasource.
|
2795
|
+
#
|
2796
|
+
# * **`complement`**
|
2797
|
+
#
|
2798
|
+
# The `complement` parameter instructs Amazon ML to use the data
|
2799
|
+
# that is not included in the range of `percentBegin` to
|
2800
|
+
# `percentEnd` to create a datasource. The `complement` parameter is
|
2801
|
+
# useful if you need to create complementary datasources for
|
2802
|
+
# training and evaluation. To create a complementary datasource, use
|
2803
|
+
# the same values for `percentBegin` and `percentEnd`, along with
|
2804
|
+
# the `complement` parameter.
|
2805
|
+
#
|
2806
|
+
# For example, the following two datasources do not share any data,
|
2807
|
+
# and can be used to train and evaluate a model. The first
|
2808
|
+
# datasource has 25 percent of the data, and the second one has 75
|
2809
|
+
# percent of the data.
|
2810
|
+
#
|
2811
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
|
2812
|
+
# "percentEnd":25\}\}`
|
2813
|
+
#
|
2814
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":0,
|
2815
|
+
# "percentEnd":25, "complement":"true"\}\}`
|
2816
|
+
#
|
2817
|
+
# * **`strategy`**
|
2818
|
+
#
|
2819
|
+
# To change how Amazon ML splits the data for a datasource, use the
|
2820
|
+
# `strategy` parameter.
|
2821
|
+
#
|
2822
|
+
# The default value for the `strategy` parameter is `sequential`,
|
2823
|
+
# meaning that Amazon ML takes all of the data records between the
|
2824
|
+
# `percentBegin` and `percentEnd` parameters for the datasource, in
|
2825
|
+
# the order that the records appear in the input data.
|
2826
|
+
#
|
2827
|
+
# The following two `DataRearrangement` lines are examples of
|
2828
|
+
# sequentially ordered training and evaluation datasources:
|
2829
|
+
#
|
2830
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
|
2831
|
+
# "percentEnd":100, "strategy":"sequential"\}\}`
|
2832
|
+
#
|
2833
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":70,
|
2834
|
+
# "percentEnd":100, "strategy":"sequential",
|
2835
|
+
# "complement":"true"\}\}`
|
2836
|
+
#
|
2837
|
+
# To randomly split the input data into the proportions indicated by
|
2838
|
+
# the percentBegin and percentEnd parameters, set the `strategy`
|
2839
|
+
# parameter to `random` and provide a string that is used as the
|
2840
|
+
# seed value for the random data splitting (for example, you can use
|
2841
|
+
# the S3 path to your data as the random seed string). If you choose
|
2842
|
+
# the random split strategy, Amazon ML assigns each row of data a
|
2843
|
+
# pseudo-random number between 0 and 100, and then selects the rows
|
2844
|
+
# that have an assigned number between `percentBegin` and
|
2845
|
+
# `percentEnd`. Pseudo-random numbers are assigned using both the
|
2846
|
+
# input seed string value and the byte offset as a seed, so changing
|
2847
|
+
# the data results in a different split. Any existing ordering is
|
2848
|
+
# preserved. The random splitting strategy ensures that variables in
|
2849
|
+
# the training and evaluation data are distributed similarly. It is
|
2850
|
+
# useful in the cases where the input data may have an implicit sort
|
2851
|
+
# order, which would otherwise result in training and evaluation
|
2852
|
+
# datasources containing non-similar data records.
|
2853
|
+
#
|
2854
|
+
# The following two `DataRearrangement` lines are examples of
|
2855
|
+
# non-sequentially ordered training and evaluation datasources:
|
2856
|
+
#
|
2857
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
|
2858
|
+
# "percentEnd":100, "strategy":"random",
|
2859
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
|
2860
|
+
#
|
2861
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":70,
|
2862
|
+
# "percentEnd":100, "strategy":"random",
|
2863
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
2864
|
+
# "complement":"true"\}\}`
|
2865
|
+
# @return [String]
|
2866
|
+
#
|
2867
|
+
# @!attribute [rw] data_schema
|
2868
|
+
# A JSON string that represents the schema for an Amazon RDS
|
2869
|
+
# `DataSource`. The `DataSchema` defines the structure of the
|
2870
|
+
# observation data in the data file(s) referenced in the `DataSource`.
|
2871
|
+
#
|
2872
|
+
# A `DataSchema` is not required if you specify a `DataSchemaUri`
|
2873
|
+
#
|
2874
|
+
# Define your `DataSchema` as a series of key-value pairs.
|
2875
|
+
# `attributes` and `excludedVariableNames` have an array of key-value
|
2876
|
+
# pairs for their value. Use the following format to define your
|
2877
|
+
# `DataSchema`.
|
2878
|
+
#
|
2879
|
+
# \\\{ "version": "1.0",
|
2880
|
+
#
|
2881
|
+
# "recordAnnotationFieldName": "F1",
|
2882
|
+
#
|
2883
|
+
# "recordWeightFieldName": "F2",
|
2884
|
+
#
|
2885
|
+
# "targetFieldName": "F3",
|
2886
|
+
#
|
2887
|
+
# "dataFormat": "CSV",
|
2888
|
+
#
|
2889
|
+
# "dataFileContainsHeader": true,
|
2890
|
+
#
|
2891
|
+
# "attributes": \[
|
2892
|
+
#
|
2893
|
+
# \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
|
2894
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
|
2895
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
|
2896
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
|
2897
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
|
2898
|
+
# "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
|
2899
|
+
# "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
|
2900
|
+
# \\}, \\\{ "fieldName": "F8", "fieldType":
|
2901
|
+
# "WEIGHTED\_STRING\_SEQUENCE" \\} \],
|
2902
|
+
#
|
2903
|
+
# "excludedVariableNames": \[ "F6" \] \\}
|
2904
|
+
#
|
2905
|
+
# <?oxy\_insert\_end>
|
2906
|
+
# @return [String]
|
2907
|
+
#
|
2908
|
+
# @!attribute [rw] data_schema_uri
|
2909
|
+
# The Amazon S3 location of the `DataSchema`.
|
2910
|
+
# @return [String]
|
2911
|
+
#
|
2912
|
+
# @!attribute [rw] resource_role
|
2913
|
+
# The role (DataPipelineDefaultResourceRole) assumed by an Amazon
|
2914
|
+
# Elastic Compute Cloud (Amazon EC2) instance to carry out the copy
|
2915
|
+
# operation from Amazon RDS to an Amazon S3 task. For more
|
2916
|
+
# information, see [Role templates][1] for data pipelines.
|
2917
|
+
#
|
2918
|
+
#
|
2919
|
+
#
|
2920
|
+
# [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
2921
|
+
# @return [String]
|
2922
|
+
#
|
2923
|
+
# @!attribute [rw] service_role
|
2924
|
+
# The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline
|
2925
|
+
# service to monitor the progress of the copy task from Amazon RDS to
|
2926
|
+
# Amazon S3. For more information, see [Role templates][1] for data
|
2927
|
+
# pipelines.
|
2928
|
+
#
|
2929
|
+
#
|
2930
|
+
#
|
2931
|
+
# [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
2932
|
+
# @return [String]
|
2933
|
+
#
|
2934
|
+
# @!attribute [rw] subnet_id
|
2935
|
+
# The subnet ID to be used to access a VPC-based RDS DB instance. This
|
2936
|
+
# attribute is used by Data Pipeline to carry out the copy task from
|
2937
|
+
# Amazon RDS to Amazon S3.
|
2938
|
+
# @return [String]
|
2939
|
+
#
|
2940
|
+
# @!attribute [rw] security_group_ids
|
2941
|
+
# The security group IDs to be used to access a VPC-based RDS DB
|
2942
|
+
# instance. Ensure that there are appropriate ingress rules set up to
|
2943
|
+
# allow access to the RDS DB instance. This attribute is used by Data
|
2944
|
+
# Pipeline to carry out the copy operation from Amazon RDS to an
|
2945
|
+
# Amazon S3 task.
|
2946
|
+
# @return [Array<String>]
|
2947
|
+
class RDSDataSpec < Struct.new(
|
2948
|
+
:database_information,
|
2949
|
+
:select_sql_query,
|
2950
|
+
:database_credentials,
|
2951
|
+
:s3_staging_location,
|
2952
|
+
:data_rearrangement,
|
2953
|
+
:data_schema,
|
2954
|
+
:data_schema_uri,
|
2955
|
+
:resource_role,
|
2956
|
+
:service_role,
|
2957
|
+
:subnet_id,
|
2958
|
+
:security_group_ids)
|
2959
|
+
include Aws::Structure
|
2960
|
+
end
|
2961
|
+
|
2962
|
+
# The database details of an Amazon RDS database.
|
2963
|
+
# @note When making an API call, pass RDSDatabase
|
2964
|
+
# data as a hash:
|
2965
|
+
#
|
2966
|
+
# {
|
2967
|
+
# instance_identifier: "RDSInstanceIdentifier", # required
|
2968
|
+
# database_name: "RDSDatabaseName", # required
|
2969
|
+
# }
|
2970
|
+
# @!attribute [rw] instance_identifier
|
2971
|
+
# The ID of an RDS DB instance.
|
2972
|
+
# @return [String]
|
2973
|
+
#
|
2974
|
+
# @!attribute [rw] database_name
|
2975
|
+
# The name of a database hosted on an RDS DB instance.
|
2976
|
+
# @return [String]
|
2977
|
+
class RDSDatabase < Struct.new(
|
2978
|
+
:instance_identifier,
|
2979
|
+
:database_name)
|
2980
|
+
include Aws::Structure
|
2981
|
+
end
|
2982
|
+
|
2983
|
+
# The database credentials to connect to a database on an RDS DB
|
2984
|
+
# instance.
|
2985
|
+
# @note When making an API call, pass RDSDatabaseCredentials
|
2986
|
+
# data as a hash:
|
2987
|
+
#
|
2988
|
+
# {
|
2989
|
+
# username: "RDSDatabaseUsername", # required
|
2990
|
+
# password: "RDSDatabasePassword", # required
|
2991
|
+
# }
|
2992
|
+
# @!attribute [rw] username
|
2993
|
+
# The username to be used by Amazon ML to connect to database on an
|
2994
|
+
# Amazon RDS instance. The username should have sufficient permissions
|
2995
|
+
# to execute an `RDSSelectSqlQuery` query.
|
2996
|
+
# @return [String]
|
2997
|
+
#
|
2998
|
+
# @!attribute [rw] password
|
2999
|
+
# The password to be used by Amazon ML to connect to a database on an
|
3000
|
+
# RDS DB instance. The password should have sufficient permissions to
|
3001
|
+
# execute the `RDSSelectQuery` query.
|
3002
|
+
# @return [String]
|
3003
|
+
class RDSDatabaseCredentials < Struct.new(
|
3004
|
+
:username,
|
3005
|
+
:password)
|
3006
|
+
include Aws::Structure
|
3007
|
+
end
|
3008
|
+
|
3009
|
+
# The datasource details that are specific to Amazon RDS.
|
3010
|
+
# @!attribute [rw] database
|
3011
|
+
# The database details required to connect to an Amazon RDS.
|
3012
|
+
# @return [Types::RDSDatabase]
|
3013
|
+
#
|
3014
|
+
# @!attribute [rw] database_user_name
|
3015
|
+
# The username to be used by Amazon ML to connect to database on an
|
3016
|
+
# Amazon RDS instance. The username should have sufficient permissions
|
3017
|
+
# to execute an `RDSSelectSqlQuery` query.
|
3018
|
+
# @return [String]
|
3019
|
+
#
|
3020
|
+
# @!attribute [rw] select_sql_query
|
3021
|
+
# The SQL query that is supplied during CreateDataSourceFromRDS.
|
3022
|
+
# Returns only if `Verbose` is true in `GetDataSourceInput`.
|
3023
|
+
# @return [String]
|
3024
|
+
#
|
3025
|
+
# @!attribute [rw] resource_role
|
3026
|
+
# The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2
|
3027
|
+
# instance to carry out the copy task from Amazon RDS to Amazon S3.
|
3028
|
+
# For more information, see [Role templates][1] for data pipelines.
|
3029
|
+
#
|
3030
|
+
#
|
3031
|
+
#
|
3032
|
+
# [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
3033
|
+
# @return [String]
|
3034
|
+
#
|
3035
|
+
# @!attribute [rw] service_role
|
3036
|
+
# The role (DataPipelineDefaultRole) assumed by the Data Pipeline
|
3037
|
+
# service to monitor the progress of the copy task from Amazon RDS to
|
3038
|
+
# Amazon S3. For more information, see [Role templates][1] for data
|
3039
|
+
# pipelines.
|
3040
|
+
#
|
3041
|
+
#
|
3042
|
+
#
|
3043
|
+
# [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
3044
|
+
# @return [String]
|
3045
|
+
#
|
3046
|
+
# @!attribute [rw] data_pipeline_id
|
3047
|
+
# The ID of the Data Pipeline instance that is used to carry to copy
|
3048
|
+
# data from Amazon RDS to Amazon S3. You can use the ID to find
|
3049
|
+
# details about the instance in the Data Pipeline console.
|
3050
|
+
# @return [String]
|
3051
|
+
class RDSMetadata < Struct.new(
|
3052
|
+
:database,
|
3053
|
+
:database_user_name,
|
3054
|
+
:select_sql_query,
|
3055
|
+
:resource_role,
|
3056
|
+
:service_role,
|
3057
|
+
:data_pipeline_id)
|
3058
|
+
include Aws::Structure
|
3059
|
+
end
|
3060
|
+
|
3061
|
+
# Describes the real-time endpoint information for an `MLModel`.
|
3062
|
+
# @!attribute [rw] peak_requests_per_second
|
3063
|
+
# The maximum processing rate for the real-time endpoint for
|
3064
|
+
# `MLModel`, measured in incoming requests per second.
|
3065
|
+
# @return [Integer]
|
3066
|
+
#
|
3067
|
+
# @!attribute [rw] created_at
|
3068
|
+
# The time that the request to create the real-time endpoint for the
|
3069
|
+
# `MLModel` was received. The time is expressed in epoch time.
|
3070
|
+
# @return [Time]
|
3071
|
+
#
|
3072
|
+
# @!attribute [rw] endpoint_url
|
3073
|
+
# The URI that specifies where to send real-time prediction requests
|
3074
|
+
# for the `MLModel`.
|
3075
|
+
#
|
3076
|
+
# <note markdown="1"><title>Note</title> The application must wait until the real-time endpoint is ready
|
3077
|
+
# before using this URI.
|
3078
|
+
#
|
3079
|
+
# </note>
|
3080
|
+
# @return [String]
|
3081
|
+
#
|
3082
|
+
# @!attribute [rw] endpoint_status
|
3083
|
+
# The current status of the real-time endpoint for the `MLModel`. This
|
3084
|
+
# element can have one of the following values:
|
3085
|
+
#
|
3086
|
+
# * `NONE` - Endpoint does not exist or was previously deleted.
|
3087
|
+
# * `READY` - Endpoint is ready to be used for real-time predictions.
|
3088
|
+
# * `UPDATING` - Updating/creating the endpoint.
|
3089
|
+
# @return [String]
|
3090
|
+
class RealtimeEndpointInfo < Struct.new(
|
3091
|
+
:peak_requests_per_second,
|
3092
|
+
:created_at,
|
3093
|
+
:endpoint_url,
|
3094
|
+
:endpoint_status)
|
3095
|
+
include Aws::Structure
|
3096
|
+
end
|
3097
|
+
|
3098
|
+
# Describes the data specification of an Amazon Redshift `DataSource`.
|
3099
|
+
# @note When making an API call, pass RedshiftDataSpec
|
3100
|
+
# data as a hash:
|
3101
|
+
#
|
3102
|
+
# {
|
3103
|
+
# database_information: { # required
|
3104
|
+
# database_name: "RedshiftDatabaseName", # required
|
3105
|
+
# cluster_identifier: "RedshiftClusterIdentifier", # required
|
3106
|
+
# },
|
3107
|
+
# select_sql_query: "RedshiftSelectSqlQuery", # required
|
3108
|
+
# database_credentials: { # required
|
3109
|
+
# username: "RedshiftDatabaseUsername", # required
|
3110
|
+
# password: "RedshiftDatabasePassword", # required
|
3111
|
+
# },
|
3112
|
+
# s3_staging_location: "S3Url", # required
|
3113
|
+
# data_rearrangement: "DataRearrangement",
|
3114
|
+
# data_schema: "DataSchema",
|
3115
|
+
# data_schema_uri: "S3Url",
|
3116
|
+
# }
|
3117
|
+
# @!attribute [rw] database_information
|
3118
|
+
# Describes the `DatabaseName` and `ClusterIdentifier` for an Amazon
|
3119
|
+
# Redshift `DataSource`.
|
3120
|
+
# @return [Types::RedshiftDatabase]
|
3121
|
+
#
|
3122
|
+
# @!attribute [rw] select_sql_query
|
3123
|
+
# Describes the SQL Query to execute on an Amazon Redshift database
|
3124
|
+
# for an Amazon Redshift `DataSource`.
|
3125
|
+
# @return [String]
|
3126
|
+
#
|
3127
|
+
# @!attribute [rw] database_credentials
|
3128
|
+
# Describes AWS Identity and Access Management (IAM) credentials that
|
3129
|
+
# are used connect to the Amazon Redshift database.
|
3130
|
+
# @return [Types::RedshiftDatabaseCredentials]
|
3131
|
+
#
|
3132
|
+
# @!attribute [rw] s3_staging_location
|
3133
|
+
# Describes an Amazon S3 location to store the result set of the
|
3134
|
+
# `SelectSqlQuery` query.
|
3135
|
+
# @return [String]
|
3136
|
+
#
|
3137
|
+
# @!attribute [rw] data_rearrangement
|
3138
|
+
# A JSON string that represents the splitting and rearrangement
|
3139
|
+
# processing to be applied to a `DataSource`. If the
|
3140
|
+
# `DataRearrangement` parameter is not provided, all of the input data
|
3141
|
+
# is used to create the `Datasource`.
|
3142
|
+
#
|
3143
|
+
# There are multiple parameters that control what data is used to
|
3144
|
+
# create a datasource:
|
3145
|
+
#
|
3146
|
+
# * **`percentBegin`**
|
3147
|
+
#
|
3148
|
+
# Use `percentBegin` to indicate the beginning of the range of the
|
3149
|
+
# data used to create the Datasource. If you do not include
|
3150
|
+
# `percentBegin` and `percentEnd`, Amazon ML includes all of the
|
3151
|
+
# data when creating the datasource.
|
3152
|
+
#
|
3153
|
+
# * **`percentEnd`**
|
3154
|
+
#
|
3155
|
+
# Use `percentEnd` to indicate the end of the range of the data used
|
3156
|
+
# to create the Datasource. If you do not include `percentBegin` and
|
3157
|
+
# `percentEnd`, Amazon ML includes all of the data when creating the
|
3158
|
+
# datasource.
|
3159
|
+
#
|
3160
|
+
# * **`complement`**
|
3161
|
+
#
|
3162
|
+
# The `complement` parameter instructs Amazon ML to use the data
|
3163
|
+
# that is not included in the range of `percentBegin` to
|
3164
|
+
# `percentEnd` to create a datasource. The `complement` parameter is
|
3165
|
+
# useful if you need to create complementary datasources for
|
3166
|
+
# training and evaluation. To create a complementary datasource, use
|
3167
|
+
# the same values for `percentBegin` and `percentEnd`, along with
|
3168
|
+
# the `complement` parameter.
|
3169
|
+
#
|
3170
|
+
# For example, the following two datasources do not share any data,
|
3171
|
+
# and can be used to train and evaluate a model. The first
|
3172
|
+
# datasource has 25 percent of the data, and the second one has 75
|
3173
|
+
# percent of the data.
|
3174
|
+
#
|
3175
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
|
3176
|
+
# "percentEnd":25\}\}`
|
3177
|
+
#
|
3178
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":0,
|
3179
|
+
# "percentEnd":25, "complement":"true"\}\}`
|
3180
|
+
#
|
3181
|
+
# * **`strategy`**
|
3182
|
+
#
|
3183
|
+
# To change how Amazon ML splits the data for a datasource, use the
|
3184
|
+
# `strategy` parameter.
|
3185
|
+
#
|
3186
|
+
# The default value for the `strategy` parameter is `sequential`,
|
3187
|
+
# meaning that Amazon ML takes all of the data records between the
|
3188
|
+
# `percentBegin` and `percentEnd` parameters for the datasource, in
|
3189
|
+
# the order that the records appear in the input data.
|
3190
|
+
#
|
3191
|
+
# The following two `DataRearrangement` lines are examples of
|
3192
|
+
# sequentially ordered training and evaluation datasources:
|
3193
|
+
#
|
3194
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
|
3195
|
+
# "percentEnd":100, "strategy":"sequential"\}\}`
|
3196
|
+
#
|
3197
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":70,
|
3198
|
+
# "percentEnd":100, "strategy":"sequential",
|
3199
|
+
# "complement":"true"\}\}`
|
3200
|
+
#
|
3201
|
+
# To randomly split the input data into the proportions indicated by
|
3202
|
+
# the percentBegin and percentEnd parameters, set the `strategy`
|
3203
|
+
# parameter to `random` and provide a string that is used as the
|
3204
|
+
# seed value for the random data splitting (for example, you can use
|
3205
|
+
# the S3 path to your data as the random seed string). If you choose
|
3206
|
+
# the random split strategy, Amazon ML assigns each row of data a
|
3207
|
+
# pseudo-random number between 0 and 100, and then selects the rows
|
3208
|
+
# that have an assigned number between `percentBegin` and
|
3209
|
+
# `percentEnd`. Pseudo-random numbers are assigned using both the
|
3210
|
+
# input seed string value and the byte offset as a seed, so changing
|
3211
|
+
# the data results in a different split. Any existing ordering is
|
3212
|
+
# preserved. The random splitting strategy ensures that variables in
|
3213
|
+
# the training and evaluation data are distributed similarly. It is
|
3214
|
+
# useful in the cases where the input data may have an implicit sort
|
3215
|
+
# order, which would otherwise result in training and evaluation
|
3216
|
+
# datasources containing non-similar data records.
|
3217
|
+
#
|
3218
|
+
# The following two `DataRearrangement` lines are examples of
|
3219
|
+
# non-sequentially ordered training and evaluation datasources:
|
3220
|
+
#
|
3221
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
|
3222
|
+
# "percentEnd":100, "strategy":"random",
|
3223
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
|
3224
|
+
#
|
3225
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":70,
|
3226
|
+
# "percentEnd":100, "strategy":"random",
|
3227
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
3228
|
+
# "complement":"true"\}\}`
|
3229
|
+
# @return [String]
|
3230
|
+
#
|
3231
|
+
# @!attribute [rw] data_schema
|
3232
|
+
# A JSON string that represents the schema for an Amazon Redshift
|
3233
|
+
# `DataSource`. The `DataSchema` defines the structure of the
|
3234
|
+
# observation data in the data file(s) referenced in the `DataSource`.
|
3235
|
+
#
|
3236
|
+
# A `DataSchema` is not required if you specify a `DataSchemaUri`.
|
3237
|
+
#
|
3238
|
+
# Define your `DataSchema` as a series of key-value pairs.
|
3239
|
+
# `attributes` and `excludedVariableNames` have an array of key-value
|
3240
|
+
# pairs for their value. Use the following format to define your
|
3241
|
+
# `DataSchema`.
|
3242
|
+
#
|
3243
|
+
# \\\{ "version": "1.0",
|
3244
|
+
#
|
3245
|
+
# "recordAnnotationFieldName": "F1",
|
3246
|
+
#
|
3247
|
+
# "recordWeightFieldName": "F2",
|
3248
|
+
#
|
3249
|
+
# "targetFieldName": "F3",
|
3250
|
+
#
|
3251
|
+
# "dataFormat": "CSV",
|
3252
|
+
#
|
3253
|
+
# "dataFileContainsHeader": true,
|
3254
|
+
#
|
3255
|
+
# "attributes": \[
|
3256
|
+
#
|
3257
|
+
# \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
|
3258
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
|
3259
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
|
3260
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
|
3261
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
|
3262
|
+
# "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
|
3263
|
+
# "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
|
3264
|
+
# \\}, \\\{ "fieldName": "F8", "fieldType":
|
3265
|
+
# "WEIGHTED\_STRING\_SEQUENCE" \\} \],
|
3266
|
+
#
|
3267
|
+
# "excludedVariableNames": \[ "F6" \] \\}
|
3268
|
+
# @return [String]
|
3269
|
+
#
|
3270
|
+
# @!attribute [rw] data_schema_uri
|
3271
|
+
# Describes the schema location for an Amazon Redshift `DataSource`.
|
3272
|
+
# @return [String]
|
3273
|
+
class RedshiftDataSpec < Struct.new(
|
3274
|
+
:database_information,
|
3275
|
+
:select_sql_query,
|
3276
|
+
:database_credentials,
|
3277
|
+
:s3_staging_location,
|
3278
|
+
:data_rearrangement,
|
3279
|
+
:data_schema,
|
3280
|
+
:data_schema_uri)
|
3281
|
+
include Aws::Structure
|
3282
|
+
end
|
3283
|
+
|
3284
|
+
# Describes the database details required to connect to an Amazon
|
3285
|
+
# Redshift database.
|
3286
|
+
# @note When making an API call, pass RedshiftDatabase
|
3287
|
+
# data as a hash:
|
3288
|
+
#
|
3289
|
+
# {
|
3290
|
+
# database_name: "RedshiftDatabaseName", # required
|
3291
|
+
# cluster_identifier: "RedshiftClusterIdentifier", # required
|
3292
|
+
# }
|
3293
|
+
# @!attribute [rw] database_name
|
3294
|
+
# The name of a database hosted on an Amazon Redshift cluster.
|
3295
|
+
# @return [String]
|
3296
|
+
#
|
3297
|
+
# @!attribute [rw] cluster_identifier
|
3298
|
+
# The ID of an Amazon Redshift cluster.
|
3299
|
+
# @return [String]
|
3300
|
+
class RedshiftDatabase < Struct.new(
|
3301
|
+
:database_name,
|
3302
|
+
:cluster_identifier)
|
3303
|
+
include Aws::Structure
|
3304
|
+
end
|
3305
|
+
|
3306
|
+
# Describes the database credentials for connecting to a database on an
|
3307
|
+
# Amazon Redshift cluster.
|
3308
|
+
# @note When making an API call, pass RedshiftDatabaseCredentials
|
3309
|
+
# data as a hash:
|
3310
|
+
#
|
3311
|
+
# {
|
3312
|
+
# username: "RedshiftDatabaseUsername", # required
|
3313
|
+
# password: "RedshiftDatabasePassword", # required
|
3314
|
+
# }
|
3315
|
+
# @!attribute [rw] username
|
3316
|
+
# A username to be used by Amazon Machine Learning (Amazon ML)to
|
3317
|
+
# connect to a database on an Amazon Redshift cluster. The username
|
3318
|
+
# should have sufficient permissions to execute the
|
3319
|
+
# `RedshiftSelectSqlQuery` query. The username should be valid for an
|
3320
|
+
# Amazon Redshift [USER][1].
|
3321
|
+
#
|
3322
|
+
#
|
3323
|
+
#
|
3324
|
+
# [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
|
3325
|
+
# @return [String]
|
3326
|
+
#
|
3327
|
+
# @!attribute [rw] password
|
3328
|
+
# A password to be used by Amazon ML to connect to a database on an
|
3329
|
+
# Amazon Redshift cluster. The password should have sufficient
|
3330
|
+
# permissions to execute a `RedshiftSelectSqlQuery` query. The
|
3331
|
+
# password should be valid for an Amazon Redshift [USER][1].
|
3332
|
+
#
|
3333
|
+
#
|
3334
|
+
#
|
3335
|
+
# [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
|
3336
|
+
# @return [String]
|
3337
|
+
class RedshiftDatabaseCredentials < Struct.new(
|
3338
|
+
:username,
|
3339
|
+
:password)
|
3340
|
+
include Aws::Structure
|
3341
|
+
end
|
3342
|
+
|
3343
|
+
# Describes the `DataSource` details specific to Amazon Redshift.
|
3344
|
+
# @!attribute [rw] redshift_database
|
3345
|
+
# Describes the database details required to connect to an Amazon
|
3346
|
+
# Redshift database.
|
3347
|
+
# @return [Types::RedshiftDatabase]
|
3348
|
+
#
|
3349
|
+
# @!attribute [rw] database_user_name
|
3350
|
+
# A username to be used by Amazon Machine Learning (Amazon ML)to
|
3351
|
+
# connect to a database on an Amazon Redshift cluster. The username
|
3352
|
+
# should have sufficient permissions to execute the
|
3353
|
+
# `RedshiftSelectSqlQuery` query. The username should be valid for an
|
3354
|
+
# Amazon Redshift [USER][1].
|
3355
|
+
#
|
3356
|
+
#
|
3357
|
+
#
|
3358
|
+
# [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
|
3359
|
+
# @return [String]
|
3360
|
+
#
|
3361
|
+
# @!attribute [rw] select_sql_query
|
3362
|
+
# The SQL query that is specified during CreateDataSourceFromRedshift.
|
3363
|
+
# Returns only if `Verbose` is true in GetDataSourceInput.
|
3364
|
+
# @return [String]
|
3365
|
+
class RedshiftMetadata < Struct.new(
|
3366
|
+
:redshift_database,
|
3367
|
+
:database_user_name,
|
3368
|
+
:select_sql_query)
|
3369
|
+
include Aws::Structure
|
3370
|
+
end
|
3371
|
+
|
3372
|
+
# Describes the data specification of a `DataSource`.
|
3373
|
+
# @note When making an API call, pass S3DataSpec
|
3374
|
+
# data as a hash:
|
3375
|
+
#
|
3376
|
+
# {
|
3377
|
+
# data_location_s3: "S3Url", # required
|
3378
|
+
# data_rearrangement: "DataRearrangement",
|
3379
|
+
# data_schema: "DataSchema",
|
3380
|
+
# data_schema_location_s3: "S3Url",
|
3381
|
+
# }
|
3382
|
+
# @!attribute [rw] data_location_s3
|
3383
|
+
# The location of the data file(s) used by a `DataSource`. The URI
|
3384
|
+
# specifies a data file or an Amazon Simple Storage Service (Amazon
|
3385
|
+
# S3) directory or bucket containing data files.
|
3386
|
+
# @return [String]
|
3387
|
+
#
|
3388
|
+
# @!attribute [rw] data_rearrangement
|
3389
|
+
# A JSON string that represents the splitting and rearrangement
|
3390
|
+
# processing to be applied to a `DataSource`. If the
|
3391
|
+
# `DataRearrangement` parameter is not provided, all of the input data
|
3392
|
+
# is used to create the `Datasource`.
|
3393
|
+
#
|
3394
|
+
# There are multiple parameters that control what data is used to
|
3395
|
+
# create a datasource:
|
3396
|
+
#
|
3397
|
+
# * **`percentBegin`**
|
3398
|
+
#
|
3399
|
+
# Use `percentBegin` to indicate the beginning of the range of the
|
3400
|
+
# data used to create the Datasource. If you do not include
|
3401
|
+
# `percentBegin` and `percentEnd`, Amazon ML includes all of the
|
3402
|
+
# data when creating the datasource.
|
3403
|
+
#
|
3404
|
+
# * **`percentEnd`**
|
3405
|
+
#
|
3406
|
+
# Use `percentEnd` to indicate the end of the range of the data used
|
3407
|
+
# to create the Datasource. If you do not include `percentBegin` and
|
3408
|
+
# `percentEnd`, Amazon ML includes all of the data when creating the
|
3409
|
+
# datasource.
|
3410
|
+
#
|
3411
|
+
# * **`complement`**
|
3412
|
+
#
|
3413
|
+
# The `complement` parameter instructs Amazon ML to use the data
|
3414
|
+
# that is not included in the range of `percentBegin` to
|
3415
|
+
# `percentEnd` to create a datasource. The `complement` parameter is
|
3416
|
+
# useful if you need to create complementary datasources for
|
3417
|
+
# training and evaluation. To create a complementary datasource, use
|
3418
|
+
# the same values for `percentBegin` and `percentEnd`, along with
|
3419
|
+
# the `complement` parameter.
|
3420
|
+
#
|
3421
|
+
# For example, the following two datasources do not share any data,
|
3422
|
+
# and can be used to train and evaluate a model. The first
|
3423
|
+
# datasource has 25 percent of the data, and the second one has 75
|
3424
|
+
# percent of the data.
|
3425
|
+
#
|
3426
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
|
3427
|
+
# "percentEnd":25\}\}`
|
3428
|
+
#
|
3429
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":0,
|
3430
|
+
# "percentEnd":25, "complement":"true"\}\}`
|
3431
|
+
#
|
3432
|
+
# * **`strategy`**
|
3433
|
+
#
|
3434
|
+
# To change how Amazon ML splits the data for a datasource, use the
|
3435
|
+
# `strategy` parameter.
|
3436
|
+
#
|
3437
|
+
# The default value for the `strategy` parameter is `sequential`,
|
3438
|
+
# meaning that Amazon ML takes all of the data records between the
|
3439
|
+
# `percentBegin` and `percentEnd` parameters for the datasource, in
|
3440
|
+
# the order that the records appear in the input data.
|
3441
|
+
#
|
3442
|
+
# The following two `DataRearrangement` lines are examples of
|
3443
|
+
# sequentially ordered training and evaluation datasources:
|
3444
|
+
#
|
3445
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
|
3446
|
+
# "percentEnd":100, "strategy":"sequential"\}\}`
|
3447
|
+
#
|
3448
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":70,
|
3449
|
+
# "percentEnd":100, "strategy":"sequential",
|
3450
|
+
# "complement":"true"\}\}`
|
3451
|
+
#
|
3452
|
+
# To randomly split the input data into the proportions indicated by
|
3453
|
+
# the percentBegin and percentEnd parameters, set the `strategy`
|
3454
|
+
# parameter to `random` and provide a string that is used as the
|
3455
|
+
# seed value for the random data splitting (for example, you can use
|
3456
|
+
# the S3 path to your data as the random seed string). If you choose
|
3457
|
+
# the random split strategy, Amazon ML assigns each row of data a
|
3458
|
+
# pseudo-random number between 0 and 100, and then selects the rows
|
3459
|
+
# that have an assigned number between `percentBegin` and
|
3460
|
+
# `percentEnd`. Pseudo-random numbers are assigned using both the
|
3461
|
+
# input seed string value and the byte offset as a seed, so changing
|
3462
|
+
# the data results in a different split. Any existing ordering is
|
3463
|
+
# preserved. The random splitting strategy ensures that variables in
|
3464
|
+
# the training and evaluation data are distributed similarly. It is
|
3465
|
+
# useful in the cases where the input data may have an implicit sort
|
3466
|
+
# order, which would otherwise result in training and evaluation
|
3467
|
+
# datasources containing non-similar data records.
|
3468
|
+
#
|
3469
|
+
# The following two `DataRearrangement` lines are examples of
|
3470
|
+
# non-sequentially ordered training and evaluation datasources:
|
3471
|
+
#
|
3472
|
+
# Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
|
3473
|
+
# "percentEnd":100, "strategy":"random",
|
3474
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
|
3475
|
+
#
|
3476
|
+
# Datasource for training: `\{"splitting":\{"percentBegin":70,
|
3477
|
+
# "percentEnd":100, "strategy":"random",
|
3478
|
+
# "randomSeed"="s3://my_s3_path/bucket/file.csv",
|
3479
|
+
# "complement":"true"\}\}`
|
3480
|
+
# @return [String]
|
3481
|
+
#
|
3482
|
+
# @!attribute [rw] data_schema
|
3483
|
+
# A JSON string that represents the schema for an Amazon S3
|
3484
|
+
# `DataSource`. The `DataSchema` defines the structure of the
|
3485
|
+
# observation data in the data file(s) referenced in the `DataSource`.
|
3486
|
+
#
|
3487
|
+
# You must provide either the `DataSchema` or the
|
3488
|
+
# `DataSchemaLocationS3`.
|
3489
|
+
#
|
3490
|
+
# Define your `DataSchema` as a series of key-value pairs.
|
3491
|
+
# `attributes` and `excludedVariableNames` have an array of key-value
|
3492
|
+
# pairs for their value. Use the following format to define your
|
3493
|
+
# `DataSchema`.
|
3494
|
+
#
|
3495
|
+
# \\\{ "version": "1.0",
|
3496
|
+
#
|
3497
|
+
# "recordAnnotationFieldName": "F1",
|
3498
|
+
#
|
3499
|
+
# "recordWeightFieldName": "F2",
|
3500
|
+
#
|
3501
|
+
# "targetFieldName": "F3",
|
3502
|
+
#
|
3503
|
+
# "dataFormat": "CSV",
|
3504
|
+
#
|
3505
|
+
# "dataFileContainsHeader": true,
|
3506
|
+
#
|
3507
|
+
# "attributes": \[
|
3508
|
+
#
|
3509
|
+
# \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
|
3510
|
+
# "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
|
3511
|
+
# "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
|
3512
|
+
# "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
|
3513
|
+
# "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
|
3514
|
+
# "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
|
3515
|
+
# "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
|
3516
|
+
# \\}, \\\{ "fieldName": "F8", "fieldType":
|
3517
|
+
# "WEIGHTED\_STRING\_SEQUENCE" \\} \],
|
3518
|
+
#
|
3519
|
+
# "excludedVariableNames": \[ "F6" \] \\}
|
3520
|
+
#
|
3521
|
+
# <?oxy\_insert\_end>
|
3522
|
+
# @return [String]
|
3523
|
+
#
|
3524
|
+
# @!attribute [rw] data_schema_location_s3
|
3525
|
+
# Describes the schema location in Amazon S3. You must provide either
|
3526
|
+
# the `DataSchema` or the `DataSchemaLocationS3`.
|
3527
|
+
# @return [String]
|
3528
|
+
class S3DataSpec < Struct.new(
|
3529
|
+
:data_location_s3,
|
3530
|
+
:data_rearrangement,
|
3531
|
+
:data_schema,
|
3532
|
+
:data_schema_location_s3)
|
3533
|
+
include Aws::Structure
|
3534
|
+
end
|
3535
|
+
|
3536
|
+
# A custom key-value pair associated with an ML object, such as an ML
|
3537
|
+
# model.
|
3538
|
+
# @note When making an API call, pass Tag
|
3539
|
+
# data as a hash:
|
3540
|
+
#
|
3541
|
+
# {
|
3542
|
+
# key: "TagKey",
|
3543
|
+
# value: "TagValue",
|
3544
|
+
# }
|
3545
|
+
# @!attribute [rw] key
|
3546
|
+
# A unique identifier for the tag. Valid characters include Unicode
|
3547
|
+
# letters, digits, white space, \_, ., /, =, +, -, %, and @.
|
3548
|
+
# @return [String]
|
3549
|
+
#
|
3550
|
+
# @!attribute [rw] value
|
3551
|
+
# An optional string, typically used to describe or define the tag.
|
3552
|
+
# Valid characters include Unicode letters, digits, white space, \_,
|
3553
|
+
# ., /, =, +, -, %, and @.
|
3554
|
+
# @return [String]
|
3555
|
+
class Tag < Struct.new(
|
3556
|
+
:key,
|
3557
|
+
:value)
|
3558
|
+
include Aws::Structure
|
3559
|
+
end
|
3560
|
+
|
3561
|
+
# @note When making an API call, pass UpdateBatchPredictionInput
|
3562
|
+
# data as a hash:
|
3563
|
+
#
|
3564
|
+
# {
|
3565
|
+
# batch_prediction_id: "EntityId", # required
|
3566
|
+
# batch_prediction_name: "EntityName", # required
|
3567
|
+
# }
|
3568
|
+
# @!attribute [rw] batch_prediction_id
|
3569
|
+
# The ID assigned to the `BatchPrediction` during creation.
|
3570
|
+
# @return [String]
|
3571
|
+
#
|
3572
|
+
# @!attribute [rw] batch_prediction_name
|
3573
|
+
# A new user-supplied name or description of the `BatchPrediction`.
|
3574
|
+
# @return [String]
|
3575
|
+
class UpdateBatchPredictionInput < Struct.new(
|
3576
|
+
:batch_prediction_id,
|
3577
|
+
:batch_prediction_name)
|
3578
|
+
include Aws::Structure
|
3579
|
+
end
|
3580
|
+
|
3581
|
+
# Represents the output of an `UpdateBatchPrediction` operation.
|
3582
|
+
#
|
3583
|
+
# You can see the updated content by using the `GetBatchPrediction`
|
3584
|
+
# operation.
|
3585
|
+
# @!attribute [rw] batch_prediction_id
|
3586
|
+
# The ID assigned to the `BatchPrediction` during creation. This value
|
3587
|
+
# should be identical to the value of the `BatchPredictionId` in the
|
3588
|
+
# request.
|
3589
|
+
# @return [String]
|
3590
|
+
class UpdateBatchPredictionOutput < Struct.new(
|
3591
|
+
:batch_prediction_id)
|
3592
|
+
include Aws::Structure
|
3593
|
+
end
|
3594
|
+
|
3595
|
+
# @note When making an API call, pass UpdateDataSourceInput
|
3596
|
+
# data as a hash:
|
3597
|
+
#
|
3598
|
+
# {
|
3599
|
+
# data_source_id: "EntityId", # required
|
3600
|
+
# data_source_name: "EntityName", # required
|
3601
|
+
# }
|
3602
|
+
# @!attribute [rw] data_source_id
|
3603
|
+
# The ID assigned to the `DataSource` during creation.
|
3604
|
+
# @return [String]
|
3605
|
+
#
|
3606
|
+
# @!attribute [rw] data_source_name
|
3607
|
+
# A new user-supplied name or description of the `DataSource` that
|
3608
|
+
# will replace the current description.
|
3609
|
+
# @return [String]
|
3610
|
+
class UpdateDataSourceInput < Struct.new(
|
3611
|
+
:data_source_id,
|
3612
|
+
:data_source_name)
|
3613
|
+
include Aws::Structure
|
3614
|
+
end
|
3615
|
+
|
3616
|
+
# Represents the output of an `UpdateDataSource` operation.
|
3617
|
+
#
|
3618
|
+
# You can see the updated content by using the `GetBatchPrediction`
|
3619
|
+
# operation.
|
3620
|
+
# @!attribute [rw] data_source_id
|
3621
|
+
# The ID assigned to the `DataSource` during creation. This value
|
3622
|
+
# should be identical to the value of the `DataSourceID` in the
|
3623
|
+
# request.
|
3624
|
+
# @return [String]
|
3625
|
+
class UpdateDataSourceOutput < Struct.new(
|
3626
|
+
:data_source_id)
|
3627
|
+
include Aws::Structure
|
3628
|
+
end
|
3629
|
+
|
3630
|
+
# @note When making an API call, pass UpdateEvaluationInput
|
3631
|
+
# data as a hash:
|
3632
|
+
#
|
3633
|
+
# {
|
3634
|
+
# evaluation_id: "EntityId", # required
|
3635
|
+
# evaluation_name: "EntityName", # required
|
3636
|
+
# }
|
3637
|
+
# @!attribute [rw] evaluation_id
|
3638
|
+
# The ID assigned to the `Evaluation` during creation.
|
3639
|
+
# @return [String]
|
3640
|
+
#
|
3641
|
+
# @!attribute [rw] evaluation_name
|
3642
|
+
# A new user-supplied name or description of the `Evaluation` that
|
3643
|
+
# will replace the current content.
|
3644
|
+
# @return [String]
|
3645
|
+
class UpdateEvaluationInput < Struct.new(
|
3646
|
+
:evaluation_id,
|
3647
|
+
:evaluation_name)
|
3648
|
+
include Aws::Structure
|
3649
|
+
end
|
3650
|
+
|
3651
|
+
# Represents the output of an `UpdateEvaluation` operation.
|
3652
|
+
#
|
3653
|
+
# You can see the updated content by using the `GetEvaluation`
|
3654
|
+
# operation.
|
3655
|
+
# @!attribute [rw] evaluation_id
|
3656
|
+
# The ID assigned to the `Evaluation` during creation. This value
|
3657
|
+
# should be identical to the value of the `Evaluation` in the request.
|
3658
|
+
# @return [String]
|
3659
|
+
class UpdateEvaluationOutput < Struct.new(
|
3660
|
+
:evaluation_id)
|
3661
|
+
include Aws::Structure
|
3662
|
+
end
|
3663
|
+
|
3664
|
+
# @note When making an API call, pass UpdateMLModelInput
|
3665
|
+
# data as a hash:
|
3666
|
+
#
|
3667
|
+
# {
|
3668
|
+
# ml_model_id: "EntityId", # required
|
3669
|
+
# ml_model_name: "EntityName",
|
3670
|
+
# score_threshold: 1.0,
|
3671
|
+
# }
|
3672
|
+
# @!attribute [rw] ml_model_id
|
3673
|
+
# The ID assigned to the `MLModel` during creation.
|
3674
|
+
# @return [String]
|
3675
|
+
#
|
3676
|
+
# @!attribute [rw] ml_model_name
|
3677
|
+
# A user-supplied name or description of the `MLModel`.
|
3678
|
+
# @return [String]
|
3679
|
+
#
|
3680
|
+
# @!attribute [rw] score_threshold
|
3681
|
+
# The `ScoreThreshold` used in binary classification `MLModel` that
|
3682
|
+
# marks the boundary between a positive prediction and a negative
|
3683
|
+
# prediction.
|
3684
|
+
#
|
3685
|
+
# Output values greater than or equal to the `ScoreThreshold` receive
|
3686
|
+
# a positive result from the `MLModel`, such as `true`. Output values
|
3687
|
+
# less than the `ScoreThreshold` receive a negative response from the
|
3688
|
+
# `MLModel`, such as `false`.
|
3689
|
+
# @return [Float]
|
3690
|
+
class UpdateMLModelInput < Struct.new(
|
3691
|
+
:ml_model_id,
|
3692
|
+
:ml_model_name,
|
3693
|
+
:score_threshold)
|
3694
|
+
include Aws::Structure
|
3695
|
+
end
|
3696
|
+
|
3697
|
+
# Represents the output of an `UpdateMLModel` operation.
|
3698
|
+
#
|
3699
|
+
# You can see the updated content by using the `GetMLModel` operation.
|
3700
|
+
# @!attribute [rw] ml_model_id
|
3701
|
+
# The ID assigned to the `MLModel` during creation. This value should
|
3702
|
+
# be identical to the value of the `MLModelID` in the request.
|
3703
|
+
# @return [String]
|
3704
|
+
class UpdateMLModelOutput < Struct.new(
|
3705
|
+
:ml_model_id)
|
3706
|
+
include Aws::Structure
|
3707
|
+
end
|
3708
|
+
|
3709
|
+
end
|
3710
|
+
end
|
3711
|
+
end
|