aws-sdk-machinelearning 1.0.0.rc1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,7 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing for info on making contributions:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
@@ -0,0 +1,23 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing for info on making contributions:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws
9
+ module MachineLearning
10
+ module Errors
11
+
12
+ extend Aws::Errors::DynamicErrors
13
+
14
+ # Raised when calling #load or #data on a resource class that can not be
15
+ # loaded. This can happen when:
16
+ #
17
+ # * A resource class has identifiers, but no data attributes.
18
+ # * Resource data is only available when making an API call that
19
+ # enumerates all resources of that type.
20
+ class ResourceNotLoadable < RuntimeError; end
21
+ end
22
+ end
23
+ end
@@ -0,0 +1,22 @@
1
+ module Aws
2
+ module MachineLearning
3
+ module Plugins
4
+ # @api private
5
+ class PredictEndpoint < Seahorse::Client::Plugin
6
+
7
+ class Handler < Seahorse::Client::Handler
8
+
9
+ def call(context)
10
+ endpoint = context.params.delete(:predict_endpoint)
11
+ context.http_request.endpoint = URI.parse(endpoint.to_s)
12
+ @handler.call(context)
13
+ end
14
+
15
+ end
16
+
17
+ handle(Handler, operations: [:predict])
18
+
19
+ end
20
+ end
21
+ end
22
+ end
@@ -0,0 +1,25 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing for info on making contributions:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws
9
+ module MachineLearning
10
+ class Resource
11
+
12
+ # @param options ({})
13
+ # @option options [Client] :client
14
+ def initialize(options = {})
15
+ @client = options[:client] || Client.new(options)
16
+ end
17
+
18
+ # @return [Client]
19
+ def client
20
+ @client
21
+ end
22
+
23
+ end
24
+ end
25
+ end
@@ -0,0 +1,3711 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing for info on making contributions:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ module Aws
9
+ module MachineLearning
10
+ module Types
11
+
12
+ # @note When making an API call, pass AddTagsInput
13
+ # data as a hash:
14
+ #
15
+ # {
16
+ # tags: [ # required
17
+ # {
18
+ # key: "TagKey",
19
+ # value: "TagValue",
20
+ # },
21
+ # ],
22
+ # resource_id: "EntityId", # required
23
+ # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
24
+ # }
25
+ # @!attribute [rw] tags
26
+ # The key-value pairs to use to create tags. If you specify a key
27
+ # without specifying a value, Amazon ML creates a tag with the
28
+ # specified key and a value of null.
29
+ # @return [Array<Types::Tag>]
30
+ #
31
+ # @!attribute [rw] resource_id
32
+ # The ID of the ML object to tag. For example, `exampleModelId`.
33
+ # @return [String]
34
+ #
35
+ # @!attribute [rw] resource_type
36
+ # The type of the ML object to tag.
37
+ # @return [String]
38
+ class AddTagsInput < Struct.new(
39
+ :tags,
40
+ :resource_id,
41
+ :resource_type)
42
+ include Aws::Structure
43
+ end
44
+
45
+ # Amazon ML returns the following elements.
46
+ # @!attribute [rw] resource_id
47
+ # The ID of the ML object that was tagged.
48
+ # @return [String]
49
+ #
50
+ # @!attribute [rw] resource_type
51
+ # The type of the ML object that was tagged.
52
+ # @return [String]
53
+ class AddTagsOutput < Struct.new(
54
+ :resource_id,
55
+ :resource_type)
56
+ include Aws::Structure
57
+ end
58
+
59
+ # Represents the output of a `GetBatchPrediction` operation.
60
+ #
61
+ # The content consists of the detailed metadata, the status, and the
62
+ # data file information of a `Batch Prediction`.
63
+ # @!attribute [rw] batch_prediction_id
64
+ # The ID assigned to the `BatchPrediction` at creation. This value
65
+ # should be identical to the value of the `BatchPredictionID` in the
66
+ # request.
67
+ # @return [String]
68
+ #
69
+ # @!attribute [rw] ml_model_id
70
+ # The ID of the `MLModel` that generated predictions for the
71
+ # `BatchPrediction` request.
72
+ # @return [String]
73
+ #
74
+ # @!attribute [rw] batch_prediction_data_source_id
75
+ # The ID of the `DataSource` that points to the group of observations
76
+ # to predict.
77
+ # @return [String]
78
+ #
79
+ # @!attribute [rw] input_data_location_s3
80
+ # The location of the data file or directory in Amazon Simple Storage
81
+ # Service (Amazon S3).
82
+ # @return [String]
83
+ #
84
+ # @!attribute [rw] created_by_iam_user
85
+ # The AWS user account that invoked the `BatchPrediction`. The account
86
+ # type can be either an AWS root account or an AWS Identity and Access
87
+ # Management (IAM) user account.
88
+ # @return [String]
89
+ #
90
+ # @!attribute [rw] created_at
91
+ # The time that the `BatchPrediction` was created. The time is
92
+ # expressed in epoch time.
93
+ # @return [Time]
94
+ #
95
+ # @!attribute [rw] last_updated_at
96
+ # The time of the most recent edit to the `BatchPrediction`. The time
97
+ # is expressed in epoch time.
98
+ # @return [Time]
99
+ #
100
+ # @!attribute [rw] name
101
+ # A user-supplied name or description of the `BatchPrediction`.
102
+ # @return [String]
103
+ #
104
+ # @!attribute [rw] status
105
+ # The status of the `BatchPrediction`. This element can have one of
106
+ # the following values:
107
+ #
108
+ # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
109
+ # request to generate predictions for a batch of observations.
110
+ # * `INPROGRESS` - The process is underway.
111
+ # * `FAILED` - The request to perform a batch prediction did not run
112
+ # to completion. It is not usable.
113
+ # * `COMPLETED` - The batch prediction process completed successfully.
114
+ # * `DELETED` - The `BatchPrediction` is marked as deleted. It is not
115
+ # usable.
116
+ # @return [String]
117
+ #
118
+ # @!attribute [rw] output_uri
119
+ # The location of an Amazon S3 bucket or directory to receive the
120
+ # operation results. The following substrings are not allowed in the
121
+ # `s3 key` portion of the `outputURI` field: ':', '//', '/./',
122
+ # '/../'.
123
+ # @return [String]
124
+ #
125
+ # @!attribute [rw] message
126
+ # A description of the most recent details about processing the batch
127
+ # prediction request.
128
+ # @return [String]
129
+ #
130
+ # @!attribute [rw] compute_time
131
+ # Long integer type that is a 64-bit signed number.
132
+ # @return [Integer]
133
+ #
134
+ # @!attribute [rw] finished_at
135
+ # A timestamp represented in epoch time.
136
+ # @return [Time]
137
+ #
138
+ # @!attribute [rw] started_at
139
+ # A timestamp represented in epoch time.
140
+ # @return [Time]
141
+ #
142
+ # @!attribute [rw] total_record_count
143
+ # Long integer type that is a 64-bit signed number.
144
+ # @return [Integer]
145
+ #
146
+ # @!attribute [rw] invalid_record_count
147
+ # Long integer type that is a 64-bit signed number.
148
+ # @return [Integer]
149
+ class BatchPrediction < Struct.new(
150
+ :batch_prediction_id,
151
+ :ml_model_id,
152
+ :batch_prediction_data_source_id,
153
+ :input_data_location_s3,
154
+ :created_by_iam_user,
155
+ :created_at,
156
+ :last_updated_at,
157
+ :name,
158
+ :status,
159
+ :output_uri,
160
+ :message,
161
+ :compute_time,
162
+ :finished_at,
163
+ :started_at,
164
+ :total_record_count,
165
+ :invalid_record_count)
166
+ include Aws::Structure
167
+ end
168
+
169
+ # @note When making an API call, pass CreateBatchPredictionInput
170
+ # data as a hash:
171
+ #
172
+ # {
173
+ # batch_prediction_id: "EntityId", # required
174
+ # batch_prediction_name: "EntityName",
175
+ # ml_model_id: "EntityId", # required
176
+ # batch_prediction_data_source_id: "EntityId", # required
177
+ # output_uri: "S3Url", # required
178
+ # }
179
+ # @!attribute [rw] batch_prediction_id
180
+ # A user-supplied ID that uniquely identifies the `BatchPrediction`.
181
+ # @return [String]
182
+ #
183
+ # @!attribute [rw] batch_prediction_name
184
+ # A user-supplied name or description of the `BatchPrediction`.
185
+ # `BatchPredictionName` can only use the UTF-8 character set.
186
+ # @return [String]
187
+ #
188
+ # @!attribute [rw] ml_model_id
189
+ # The ID of the `MLModel` that will generate predictions for the group
190
+ # of observations.
191
+ # @return [String]
192
+ #
193
+ # @!attribute [rw] batch_prediction_data_source_id
194
+ # The ID of the `DataSource` that points to the group of observations
195
+ # to predict.
196
+ # @return [String]
197
+ #
198
+ # @!attribute [rw] output_uri
199
+ # The location of an Amazon Simple Storage Service (Amazon S3) bucket
200
+ # or directory to store the batch prediction results. The following
201
+ # substrings are not allowed in the `s3 key` portion of the
202
+ # `outputURI` field: ':', '//', '/./', '/../'.
203
+ #
204
+ # Amazon ML needs permissions to store and retrieve the logs on your
205
+ # behalf. For information about how to set permissions, see the
206
+ # [Amazon Machine Learning Developer Guide][1].
207
+ #
208
+ #
209
+ #
210
+ # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
211
+ # @return [String]
212
+ class CreateBatchPredictionInput < Struct.new(
213
+ :batch_prediction_id,
214
+ :batch_prediction_name,
215
+ :ml_model_id,
216
+ :batch_prediction_data_source_id,
217
+ :output_uri)
218
+ include Aws::Structure
219
+ end
220
+
221
+ # Represents the output of a `CreateBatchPrediction` operation, and is
222
+ # an acknowledgement that Amazon ML received the request.
223
+ #
224
+ # The `CreateBatchPrediction` operation is asynchronous. You can poll
225
+ # for status updates by using the `>GetBatchPrediction` operation and
226
+ # checking the `Status` parameter of the result.
227
+ # @!attribute [rw] batch_prediction_id
228
+ # A user-supplied ID that uniquely identifies the `BatchPrediction`.
229
+ # This value is identical to the value of the `BatchPredictionId` in
230
+ # the request.
231
+ # @return [String]
232
+ class CreateBatchPredictionOutput < Struct.new(
233
+ :batch_prediction_id)
234
+ include Aws::Structure
235
+ end
236
+
237
+ # @note When making an API call, pass CreateDataSourceFromRDSInput
238
+ # data as a hash:
239
+ #
240
+ # {
241
+ # data_source_id: "EntityId", # required
242
+ # data_source_name: "EntityName",
243
+ # rds_data: { # required
244
+ # database_information: { # required
245
+ # instance_identifier: "RDSInstanceIdentifier", # required
246
+ # database_name: "RDSDatabaseName", # required
247
+ # },
248
+ # select_sql_query: "RDSSelectSqlQuery", # required
249
+ # database_credentials: { # required
250
+ # username: "RDSDatabaseUsername", # required
251
+ # password: "RDSDatabasePassword", # required
252
+ # },
253
+ # s3_staging_location: "S3Url", # required
254
+ # data_rearrangement: "DataRearrangement",
255
+ # data_schema: "DataSchema",
256
+ # data_schema_uri: "S3Url",
257
+ # resource_role: "EDPResourceRole", # required
258
+ # service_role: "EDPServiceRole", # required
259
+ # subnet_id: "EDPSubnetId", # required
260
+ # security_group_ids: ["EDPSecurityGroupId"], # required
261
+ # },
262
+ # role_arn: "RoleARN", # required
263
+ # compute_statistics: false,
264
+ # }
265
+ # @!attribute [rw] data_source_id
266
+ # A user-supplied ID that uniquely identifies the `DataSource`.
267
+ # Typically, an Amazon Resource Number (ARN) becomes the ID for a
268
+ # `DataSource`.
269
+ # @return [String]
270
+ #
271
+ # @!attribute [rw] data_source_name
272
+ # A user-supplied name or description of the `DataSource`.
273
+ # @return [String]
274
+ #
275
+ # @!attribute [rw] rds_data
276
+ # The data specification of an Amazon RDS `DataSource`\:
277
+ #
278
+ # * DatabaseInformation - * `DatabaseName` - The name of the Amazon
279
+ # RDS database.
280
+ # * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
281
+ # database instance.
282
+ #
283
+ # * DatabaseCredentials - AWS Identity and Access Management (IAM)
284
+ # credentials that are used to connect to the Amazon RDS database.
285
+ #
286
+ # * ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by
287
+ # an EC2 instance to carry out the copy task from Amazon RDS to
288
+ # Amazon Simple Storage Service (Amazon S3). For more information,
289
+ # see [Role templates][1] for data pipelines.
290
+ #
291
+ # * ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS
292
+ # Data Pipeline service to monitor the progress of the copy task
293
+ # from Amazon RDS to Amazon S3. For more information, see [Role
294
+ # templates][1] for data pipelines.
295
+ #
296
+ # * SecurityInfo - The security information to use to access an RDS DB
297
+ # instance. You need to set up appropriate ingress rules for the
298
+ # security entity IDs provided to allow access to the Amazon RDS
299
+ # instance. Specify a \[`SubnetId`, `SecurityGroupIds`\] pair for a
300
+ # VPC-based RDS DB instance.
301
+ #
302
+ # * SelectSqlQuery - A query that is used to retrieve the observation
303
+ # data for the `Datasource`.
304
+ #
305
+ # * S3StagingLocation - The Amazon S3 location for staging Amazon RDS
306
+ # data. The data retrieved from Amazon RDS using `SelectSqlQuery` is
307
+ # stored in this location.
308
+ #
309
+ # * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
310
+ #
311
+ # * DataSchema - A JSON string representing the schema. This is not
312
+ # required if `DataSchemaUri` is specified.
313
+ #
314
+ # * DataRearrangement - A JSON string that represents the splitting
315
+ # and rearrangement requirements for the `Datasource`.
316
+ #
317
+ #
318
+ # Sample - `
319
+ # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
320
+ #
321
+ #
322
+ #
323
+ # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
324
+ # @return [Types::RDSDataSpec]
325
+ #
326
+ # @!attribute [rw] role_arn
327
+ # The role that Amazon ML assumes on behalf of the user to create and
328
+ # activate a data pipeline in the user's account and copy data using
329
+ # the `SelectSqlQuery` query from Amazon RDS to Amazon S3.
330
+ # @return [String]
331
+ #
332
+ # @!attribute [rw] compute_statistics
333
+ # The compute statistics for a `DataSource`. The statistics are
334
+ # generated from the observation data referenced by a `DataSource`.
335
+ # Amazon ML uses the statistics internally during `MLModel` training.
336
+ # This parameter must be set to `true` if the ``DataSource`` needs to
337
+ # be used for `MLModel` training.
338
+ # @return [Boolean]
339
+ class CreateDataSourceFromRDSInput < Struct.new(
340
+ :data_source_id,
341
+ :data_source_name,
342
+ :rds_data,
343
+ :role_arn,
344
+ :compute_statistics)
345
+ include Aws::Structure
346
+ end
347
+
348
+ # Represents the output of a `CreateDataSourceFromRDS` operation, and is
349
+ # an acknowledgement that Amazon ML received the request.
350
+ #
351
+ # The `CreateDataSourceFromRDS`&gt; operation is asynchronous. You can
352
+ # poll for updates by using the `GetBatchPrediction` operation and
353
+ # checking the `Status` parameter. You can inspect the `Message` when
354
+ # `Status` shows up as `FAILED`. You can also check the progress of the
355
+ # copy operation by going to the `DataPipeline` console and looking up
356
+ # the pipeline using the `pipelineId ` from the describe call.
357
+ # @!attribute [rw] data_source_id
358
+ # A user-supplied ID that uniquely identifies the datasource. This
359
+ # value should be identical to the value of the `DataSourceID` in the
360
+ # request.
361
+ # @return [String]
362
+ class CreateDataSourceFromRDSOutput < Struct.new(
363
+ :data_source_id)
364
+ include Aws::Structure
365
+ end
366
+
367
+ # @note When making an API call, pass CreateDataSourceFromRedshiftInput
368
+ # data as a hash:
369
+ #
370
+ # {
371
+ # data_source_id: "EntityId", # required
372
+ # data_source_name: "EntityName",
373
+ # data_spec: { # required
374
+ # database_information: { # required
375
+ # database_name: "RedshiftDatabaseName", # required
376
+ # cluster_identifier: "RedshiftClusterIdentifier", # required
377
+ # },
378
+ # select_sql_query: "RedshiftSelectSqlQuery", # required
379
+ # database_credentials: { # required
380
+ # username: "RedshiftDatabaseUsername", # required
381
+ # password: "RedshiftDatabasePassword", # required
382
+ # },
383
+ # s3_staging_location: "S3Url", # required
384
+ # data_rearrangement: "DataRearrangement",
385
+ # data_schema: "DataSchema",
386
+ # data_schema_uri: "S3Url",
387
+ # },
388
+ # role_arn: "RoleARN", # required
389
+ # compute_statistics: false,
390
+ # }
391
+ # @!attribute [rw] data_source_id
392
+ # A user-supplied ID that uniquely identifies the `DataSource`.
393
+ # @return [String]
394
+ #
395
+ # @!attribute [rw] data_source_name
396
+ # A user-supplied name or description of the `DataSource`.
397
+ # @return [String]
398
+ #
399
+ # @!attribute [rw] data_spec
400
+ # The data specification of an Amazon Redshift `DataSource`\:
401
+ #
402
+ # * DatabaseInformation - * `DatabaseName` - The name of the Amazon
403
+ # Redshift database.
404
+ # * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
405
+ # cluster.
406
+ #
407
+ # * DatabaseCredentials - The AWS Identity and Access Management (IAM)
408
+ # credentials that are used to connect to the Amazon Redshift
409
+ # database.
410
+ #
411
+ # * SelectSqlQuery - The query that is used to retrieve the
412
+ # observation data for the `Datasource`.
413
+ #
414
+ # * S3StagingLocation - The Amazon Simple Storage Service (Amazon S3)
415
+ # location for staging Amazon Redshift data. The data retrieved from
416
+ # Amazon Redshift using the `SelectSqlQuery` query is stored in this
417
+ # location.
418
+ #
419
+ # * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
420
+ #
421
+ # * DataSchema - A JSON string representing the schema. This is not
422
+ # required if `DataSchemaUri` is specified.
423
+ #
424
+ # * DataRearrangement - A JSON string that represents the splitting
425
+ # and rearrangement requirements for the `DataSource`.
426
+ #
427
+ # Sample - `
428
+ # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
429
+ # @return [Types::RedshiftDataSpec]
430
+ #
431
+ # @!attribute [rw] role_arn
432
+ # A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
433
+ # the role on behalf of the user to create the following:
434
+ #
435
+ # * A security group to allow Amazon ML to execute the
436
+ # `SelectSqlQuery` query on an Amazon Redshift cluster
437
+ #
438
+ # * An Amazon S3 bucket policy to grant Amazon ML read/write
439
+ # permissions on the `S3StagingLocation`
440
+ # @return [String]
441
+ #
442
+ # @!attribute [rw] compute_statistics
443
+ # The compute statistics for a `DataSource`. The statistics are
444
+ # generated from the observation data referenced by a `DataSource`.
445
+ # Amazon ML uses the statistics internally during `MLModel` training.
446
+ # This parameter must be set to `true` if the `DataSource` needs to be
447
+ # used for `MLModel` training.
448
+ # @return [Boolean]
449
+ class CreateDataSourceFromRedshiftInput < Struct.new(
450
+ :data_source_id,
451
+ :data_source_name,
452
+ :data_spec,
453
+ :role_arn,
454
+ :compute_statistics)
455
+ include Aws::Structure
456
+ end
457
+
458
+ # Represents the output of a `CreateDataSourceFromRedshift` operation,
459
+ # and is an acknowledgement that Amazon ML received the request.
460
+ #
461
+ # The `CreateDataSourceFromRedshift` operation is asynchronous. You can
462
+ # poll for updates by using the `GetBatchPrediction` operation and
463
+ # checking the `Status` parameter.
464
+ # @!attribute [rw] data_source_id
465
+ # A user-supplied ID that uniquely identifies the datasource. This
466
+ # value should be identical to the value of the `DataSourceID` in the
467
+ # request.
468
+ # @return [String]
469
+ class CreateDataSourceFromRedshiftOutput < Struct.new(
470
+ :data_source_id)
471
+ include Aws::Structure
472
+ end
473
+
474
+ # @note When making an API call, pass CreateDataSourceFromS3Input
475
+ # data as a hash:
476
+ #
477
+ # {
478
+ # data_source_id: "EntityId", # required
479
+ # data_source_name: "EntityName",
480
+ # data_spec: { # required
481
+ # data_location_s3: "S3Url", # required
482
+ # data_rearrangement: "DataRearrangement",
483
+ # data_schema: "DataSchema",
484
+ # data_schema_location_s3: "S3Url",
485
+ # },
486
+ # compute_statistics: false,
487
+ # }
488
+ # @!attribute [rw] data_source_id
489
+ # A user-supplied identifier that uniquely identifies the
490
+ # `DataSource`.
491
+ # @return [String]
492
+ #
493
+ # @!attribute [rw] data_source_name
494
+ # A user-supplied name or description of the `DataSource`.
495
+ # @return [String]
496
+ #
497
+ # @!attribute [rw] data_spec
498
+ # The data specification of a `DataSource`\:
499
+ #
500
+ # * DataLocationS3 - The Amazon S3 location of the observation data.
501
+ #
502
+ # * DataSchemaLocationS3 - The Amazon S3 location of the `DataSchema`.
503
+ #
504
+ # * DataSchema - A JSON string representing the schema. This is not
505
+ # required if `DataSchemaUri` is specified.
506
+ #
507
+ # * DataRearrangement - A JSON string that represents the splitting
508
+ # and rearrangement requirements for the `Datasource`.
509
+ #
510
+ # Sample - `
511
+ # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
512
+ # @return [Types::S3DataSpec]
513
+ #
514
+ # @!attribute [rw] compute_statistics
515
+ # The compute statistics for a `DataSource`. The statistics are
516
+ # generated from the observation data referenced by a `DataSource`.
517
+ # Amazon ML uses the statistics internally during `MLModel` training.
518
+ # This parameter must be set to `true` if the ``DataSource`` needs to
519
+ # be used for `MLModel` training.
520
+ # @return [Boolean]
521
+ class CreateDataSourceFromS3Input < Struct.new(
522
+ :data_source_id,
523
+ :data_source_name,
524
+ :data_spec,
525
+ :compute_statistics)
526
+ include Aws::Structure
527
+ end
528
+
529
+ # Represents the output of a `CreateDataSourceFromS3` operation, and is
530
+ # an acknowledgement that Amazon ML received the request.
531
+ #
532
+ # The `CreateDataSourceFromS3` operation is asynchronous. You can poll
533
+ # for updates by using the `GetBatchPrediction` operation and checking
534
+ # the `Status` parameter.
535
+ # @!attribute [rw] data_source_id
536
+ # A user-supplied ID that uniquely identifies the `DataSource`. This
537
+ # value should be identical to the value of the `DataSourceID` in the
538
+ # request.
539
+ # @return [String]
540
+ class CreateDataSourceFromS3Output < Struct.new(
541
+ :data_source_id)
542
+ include Aws::Structure
543
+ end
544
+
545
+ # @note When making an API call, pass CreateEvaluationInput
546
+ # data as a hash:
547
+ #
548
+ # {
549
+ # evaluation_id: "EntityId", # required
550
+ # evaluation_name: "EntityName",
551
+ # ml_model_id: "EntityId", # required
552
+ # evaluation_data_source_id: "EntityId", # required
553
+ # }
554
+ # @!attribute [rw] evaluation_id
555
+ # A user-supplied ID that uniquely identifies the `Evaluation`.
556
+ # @return [String]
557
+ #
558
+ # @!attribute [rw] evaluation_name
559
+ # A user-supplied name or description of the `Evaluation`.
560
+ # @return [String]
561
+ #
562
+ # @!attribute [rw] ml_model_id
563
+ # The ID of the `MLModel` to evaluate.
564
+ #
565
+ # The schema used in creating the `MLModel` must match the schema of
566
+ # the `DataSource` used in the `Evaluation`.
567
+ # @return [String]
568
+ #
569
+ # @!attribute [rw] evaluation_data_source_id
570
+ # The ID of the `DataSource` for the evaluation. The schema of the
571
+ # `DataSource` must match the schema used to create the `MLModel`.
572
+ # @return [String]
573
+ class CreateEvaluationInput < Struct.new(
574
+ :evaluation_id,
575
+ :evaluation_name,
576
+ :ml_model_id,
577
+ :evaluation_data_source_id)
578
+ include Aws::Structure
579
+ end
580
+
581
+ # Represents the output of a `CreateEvaluation` operation, and is an
582
+ # acknowledgement that Amazon ML received the request.
583
+ #
584
+ # `CreateEvaluation` operation is asynchronous. You can poll for status
585
+ # updates by using the `GetEvcaluation` operation and checking the
586
+ # `Status` parameter.
587
+ # @!attribute [rw] evaluation_id
588
+ # The user-supplied ID that uniquely identifies the `Evaluation`. This
589
+ # value should be identical to the value of the `EvaluationId` in the
590
+ # request.
591
+ # @return [String]
592
+ class CreateEvaluationOutput < Struct.new(
593
+ :evaluation_id)
594
+ include Aws::Structure
595
+ end
596
+
597
+ # @note When making an API call, pass CreateMLModelInput
598
+ # data as a hash:
599
+ #
600
+ # {
601
+ # ml_model_id: "EntityId", # required
602
+ # ml_model_name: "EntityName",
603
+ # ml_model_type: "REGRESSION", # required, accepts REGRESSION, BINARY, MULTICLASS
604
+ # parameters: {
605
+ # "StringType" => "StringType",
606
+ # },
607
+ # training_data_source_id: "EntityId", # required
608
+ # recipe: "Recipe",
609
+ # recipe_uri: "S3Url",
610
+ # }
611
+ # @!attribute [rw] ml_model_id
612
+ # A user-supplied ID that uniquely identifies the `MLModel`.
613
+ # @return [String]
614
+ #
615
+ # @!attribute [rw] ml_model_name
616
+ # A user-supplied name or description of the `MLModel`.
617
+ # @return [String]
618
+ #
619
+ # @!attribute [rw] ml_model_type
620
+ # The category of supervised learning that this `MLModel` will
621
+ # address. Choose from the following types:
622
+ #
623
+ # * Choose `REGRESSION` if the `MLModel` will be used to predict a
624
+ # numeric value.
625
+ # * Choose `BINARY` if the `MLModel` result has two possible values.
626
+ # * Choose `MULTICLASS` if the `MLModel` result has a limited number
627
+ # of values.
628
+ #
629
+ # For more information, see the [Amazon Machine Learning Developer
630
+ # Guide][1].
631
+ #
632
+ #
633
+ #
634
+ # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
635
+ # @return [String]
636
+ #
637
+ # @!attribute [rw] parameters
638
+ # A list of the training parameters in the `MLModel`. The list is
639
+ # implemented as a map of key-value pairs.
640
+ #
641
+ # The following is the current set of training parameters:
642
+ #
643
+ # * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the
644
+ # model. Depending on the input data, the size of the model might
645
+ # affect its performance.
646
+ #
647
+ # The value is an integer that ranges from `100000` to `2147483648`.
648
+ # The default value is `33554432`.
649
+ #
650
+ # * `sgd.maxPasses` - The number of times that the training process
651
+ # traverses the observations to build the `MLModel`. The value is an
652
+ # integer that ranges from `1` to `10000`. The default value is
653
+ # `10`.
654
+ #
655
+ # * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
656
+ # Shuffling the data improves a model's ability to find the optimal
657
+ # solution for a variety of data types. The valid values are `auto`
658
+ # and `none`. The default value is `none`. We <?oxy\_insert\_start
659
+ # author="laurama" timestamp="20160329T131121-0700">strongly
660
+ # recommend that you shuffle your data.<?oxy\_insert\_end>
661
+ #
662
+ # * `sgd.l1RegularizationAmount` - The coefficient regularization L1
663
+ # norm. It controls overfitting the data by penalizing large
664
+ # coefficients. This tends to drive coefficients to zero, resulting
665
+ # in a sparse feature set. If you use this parameter, start by
666
+ # specifying a small value, such as `1.0E-08`.
667
+ #
668
+ # The value is a double that ranges from `0` to `MAX_DOUBLE`. The
669
+ # default is to not use L1 normalization. This parameter can't be
670
+ # used when `L2` is specified. Use this parameter sparingly.
671
+ #
672
+ # * `sgd.l2RegularizationAmount` - The coefficient regularization L2
673
+ # norm. It controls overfitting the data by penalizing large
674
+ # coefficients. This tends to drive coefficients to small, nonzero
675
+ # values. If you use this parameter, start by specifying a small
676
+ # value, such as `1.0E-08`.
677
+ #
678
+ # The value is a double that ranges from `0` to `MAX_DOUBLE`. The
679
+ # default is to not use L2 normalization. This parameter can't be
680
+ # used when `L1` is specified. Use this parameter sparingly.
681
+ # @return [Hash<String,String>]
682
+ #
683
+ # @!attribute [rw] training_data_source_id
684
+ # The `DataSource` that points to the training data.
685
+ # @return [String]
686
+ #
687
+ # @!attribute [rw] recipe
688
+ # The data recipe for creating the `MLModel`. You must specify either
689
+ # the recipe or its URI. If you don't specify a recipe or its URI,
690
+ # Amazon ML creates a default.
691
+ # @return [String]
692
+ #
693
+ # @!attribute [rw] recipe_uri
694
+ # The Amazon Simple Storage Service (Amazon S3) location and file name
695
+ # that contains the `MLModel` recipe. You must specify either the
696
+ # recipe or its URI. If you don't specify a recipe or its URI, Amazon
697
+ # ML creates a default.
698
+ # @return [String]
699
+ class CreateMLModelInput < Struct.new(
700
+ :ml_model_id,
701
+ :ml_model_name,
702
+ :ml_model_type,
703
+ :parameters,
704
+ :training_data_source_id,
705
+ :recipe,
706
+ :recipe_uri)
707
+ include Aws::Structure
708
+ end
709
+
710
+ # Represents the output of a `CreateMLModel` operation, and is an
711
+ # acknowledgement that Amazon ML received the request.
712
+ #
713
+ # The `CreateMLModel` operation is asynchronous. You can poll for status
714
+ # updates by using the `GetMLModel` operation and checking the `Status`
715
+ # parameter.
716
+ # @!attribute [rw] ml_model_id
717
+ # A user-supplied ID that uniquely identifies the `MLModel`. This
718
+ # value should be identical to the value of the `MLModelId` in the
719
+ # request.
720
+ # @return [String]
721
+ class CreateMLModelOutput < Struct.new(
722
+ :ml_model_id)
723
+ include Aws::Structure
724
+ end
725
+
726
+ # @note When making an API call, pass CreateRealtimeEndpointInput
727
+ # data as a hash:
728
+ #
729
+ # {
730
+ # ml_model_id: "EntityId", # required
731
+ # }
732
+ # @!attribute [rw] ml_model_id
733
+ # The ID assigned to the `MLModel` during creation.
734
+ # @return [String]
735
+ class CreateRealtimeEndpointInput < Struct.new(
736
+ :ml_model_id)
737
+ include Aws::Structure
738
+ end
739
+
740
+ # Represents the output of an `CreateRealtimeEndpoint` operation.
741
+ #
742
+ # The result contains the `MLModelId` and the endpoint information for
743
+ # the `MLModel`.
744
+ #
745
+ # <note markdown="1"> The endpoint information includes the URI of the `MLModel`; that is,
746
+ # the location to send online prediction requests for the specified
747
+ # `MLModel`.
748
+ #
749
+ # </note>
750
+ # @!attribute [rw] ml_model_id
751
+ # A user-supplied ID that uniquely identifies the `MLModel`. This
752
+ # value should be identical to the value of the `MLModelId` in the
753
+ # request.
754
+ # @return [String]
755
+ #
756
+ # @!attribute [rw] realtime_endpoint_info
757
+ # The endpoint information of the `MLModel`
758
+ # @return [Types::RealtimeEndpointInfo]
759
+ class CreateRealtimeEndpointOutput < Struct.new(
760
+ :ml_model_id,
761
+ :realtime_endpoint_info)
762
+ include Aws::Structure
763
+ end
764
+
765
+ # Represents the output of the `GetDataSource` operation.
766
+ #
767
+ # The content consists of the detailed metadata and data file
768
+ # information and the current status of the `DataSource`.
769
+ # @!attribute [rw] data_source_id
770
+ # The ID that is assigned to the `DataSource` during creation.
771
+ # @return [String]
772
+ #
773
+ # @!attribute [rw] data_location_s3
774
+ # The location and name of the data in Amazon Simple Storage Service
775
+ # (Amazon S3) that is used by a `DataSource`.
776
+ # @return [String]
777
+ #
778
+ # @!attribute [rw] data_rearrangement
779
+ # A JSON string that represents the splitting and rearrangement
780
+ # requirement used when this `DataSource` was created.
781
+ # @return [String]
782
+ #
783
+ # @!attribute [rw] created_by_iam_user
784
+ # The AWS user account from which the `DataSource` was created. The
785
+ # account type can be either an AWS root account or an AWS Identity
786
+ # and Access Management (IAM) user account.
787
+ # @return [String]
788
+ #
789
+ # @!attribute [rw] created_at
790
+ # The time that the `DataSource` was created. The time is expressed in
791
+ # epoch time.
792
+ # @return [Time]
793
+ #
794
+ # @!attribute [rw] last_updated_at
795
+ # The time of the most recent edit to the `BatchPrediction`. The time
796
+ # is expressed in epoch time.
797
+ # @return [Time]
798
+ #
799
+ # @!attribute [rw] data_size_in_bytes
800
+ # The total number of observations contained in the data files that
801
+ # the `DataSource` references.
802
+ # @return [Integer]
803
+ #
804
+ # @!attribute [rw] number_of_files
805
+ # The number of data files referenced by the `DataSource`.
806
+ # @return [Integer]
807
+ #
808
+ # @!attribute [rw] name
809
+ # A user-supplied name or description of the `DataSource`.
810
+ # @return [String]
811
+ #
812
+ # @!attribute [rw] status
813
+ # The current status of the `DataSource`. This element can have one of
814
+ # the following values:
815
+ #
816
+ # * PENDING - Amazon Machine Learning (Amazon ML) submitted a request
817
+ # to create a `DataSource`.
818
+ # * INPROGRESS - The creation process is underway.
819
+ # * FAILED - The request to create a `DataSource` did not run to
820
+ # completion. It is not usable.
821
+ # * COMPLETED - The creation process completed successfully.
822
+ # * DELETED - The `DataSource` is marked as deleted. It is not usable.
823
+ # @return [String]
824
+ #
825
+ # @!attribute [rw] message
826
+ # A description of the most recent details about creating the
827
+ # `DataSource`.
828
+ # @return [String]
829
+ #
830
+ # @!attribute [rw] redshift_metadata
831
+ # Describes the `DataSource` details specific to Amazon Redshift.
832
+ # @return [Types::RedshiftMetadata]
833
+ #
834
+ # @!attribute [rw] rds_metadata
835
+ # The datasource details that are specific to Amazon RDS.
836
+ # @return [Types::RDSMetadata]
837
+ #
838
+ # @!attribute [rw] role_arn
839
+ # The Amazon Resource Name (ARN) of an [AWS IAM Role][1], such as the
840
+ # following: arn:aws:iam::account:role/rolename.
841
+ #
842
+ #
843
+ #
844
+ # [1]: http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
845
+ # @return [String]
846
+ #
847
+ # @!attribute [rw] compute_statistics
848
+ # The parameter is `true` if statistics need to be generated from the
849
+ # observation data.
850
+ # @return [Boolean]
851
+ #
852
+ # @!attribute [rw] compute_time
853
+ # Long integer type that is a 64-bit signed number.
854
+ # @return [Integer]
855
+ #
856
+ # @!attribute [rw] finished_at
857
+ # A timestamp represented in epoch time.
858
+ # @return [Time]
859
+ #
860
+ # @!attribute [rw] started_at
861
+ # A timestamp represented in epoch time.
862
+ # @return [Time]
863
+ class DataSource < Struct.new(
864
+ :data_source_id,
865
+ :data_location_s3,
866
+ :data_rearrangement,
867
+ :created_by_iam_user,
868
+ :created_at,
869
+ :last_updated_at,
870
+ :data_size_in_bytes,
871
+ :number_of_files,
872
+ :name,
873
+ :status,
874
+ :message,
875
+ :redshift_metadata,
876
+ :rds_metadata,
877
+ :role_arn,
878
+ :compute_statistics,
879
+ :compute_time,
880
+ :finished_at,
881
+ :started_at)
882
+ include Aws::Structure
883
+ end
884
+
885
+ # @note When making an API call, pass DeleteBatchPredictionInput
886
+ # data as a hash:
887
+ #
888
+ # {
889
+ # batch_prediction_id: "EntityId", # required
890
+ # }
891
+ # @!attribute [rw] batch_prediction_id
892
+ # A user-supplied ID that uniquely identifies the `BatchPrediction`.
893
+ # @return [String]
894
+ class DeleteBatchPredictionInput < Struct.new(
895
+ :batch_prediction_id)
896
+ include Aws::Structure
897
+ end
898
+
899
+ # Represents the output of a `DeleteBatchPrediction` operation.
900
+ #
901
+ # You can use the `GetBatchPrediction` operation and check the value of
902
+ # the `Status` parameter to see whether a `BatchPrediction` is marked as
903
+ # `DELETED`.
904
+ # @!attribute [rw] batch_prediction_id
905
+ # A user-supplied ID that uniquely identifies the `BatchPrediction`.
906
+ # This value should be identical to the value of the
907
+ # `BatchPredictionID` in the request.
908
+ # @return [String]
909
+ class DeleteBatchPredictionOutput < Struct.new(
910
+ :batch_prediction_id)
911
+ include Aws::Structure
912
+ end
913
+
914
+ # @note When making an API call, pass DeleteDataSourceInput
915
+ # data as a hash:
916
+ #
917
+ # {
918
+ # data_source_id: "EntityId", # required
919
+ # }
920
+ # @!attribute [rw] data_source_id
921
+ # A user-supplied ID that uniquely identifies the `DataSource`.
922
+ # @return [String]
923
+ class DeleteDataSourceInput < Struct.new(
924
+ :data_source_id)
925
+ include Aws::Structure
926
+ end
927
+
928
+ # Represents the output of a `DeleteDataSource` operation.
929
+ # @!attribute [rw] data_source_id
930
+ # A user-supplied ID that uniquely identifies the `DataSource`. This
931
+ # value should be identical to the value of the `DataSourceID` in the
932
+ # request.
933
+ # @return [String]
934
+ class DeleteDataSourceOutput < Struct.new(
935
+ :data_source_id)
936
+ include Aws::Structure
937
+ end
938
+
939
+ # @note When making an API call, pass DeleteEvaluationInput
940
+ # data as a hash:
941
+ #
942
+ # {
943
+ # evaluation_id: "EntityId", # required
944
+ # }
945
+ # @!attribute [rw] evaluation_id
946
+ # A user-supplied ID that uniquely identifies the `Evaluation` to
947
+ # delete.
948
+ # @return [String]
949
+ class DeleteEvaluationInput < Struct.new(
950
+ :evaluation_id)
951
+ include Aws::Structure
952
+ end
953
+
954
+ # Represents the output of a `DeleteEvaluation` operation. The output
955
+ # indicates that Amazon Machine Learning (Amazon ML) received the
956
+ # request.
957
+ #
958
+ # You can use the `GetEvaluation` operation and check the value of the
959
+ # `Status` parameter to see whether an `Evaluation` is marked as
960
+ # `DELETED`.
961
+ # @!attribute [rw] evaluation_id
962
+ # A user-supplied ID that uniquely identifies the `Evaluation`. This
963
+ # value should be identical to the value of the `EvaluationId` in the
964
+ # request.
965
+ # @return [String]
966
+ class DeleteEvaluationOutput < Struct.new(
967
+ :evaluation_id)
968
+ include Aws::Structure
969
+ end
970
+
971
+ # @note When making an API call, pass DeleteMLModelInput
972
+ # data as a hash:
973
+ #
974
+ # {
975
+ # ml_model_id: "EntityId", # required
976
+ # }
977
+ # @!attribute [rw] ml_model_id
978
+ # A user-supplied ID that uniquely identifies the `MLModel`.
979
+ # @return [String]
980
+ class DeleteMLModelInput < Struct.new(
981
+ :ml_model_id)
982
+ include Aws::Structure
983
+ end
984
+
985
+ # Represents the output of a `DeleteMLModel` operation.
986
+ #
987
+ # You can use the `GetMLModel` operation and check the value of the
988
+ # `Status` parameter to see whether an `MLModel` is marked as `DELETED`.
989
+ # @!attribute [rw] ml_model_id
990
+ # A user-supplied ID that uniquely identifies the `MLModel`. This
991
+ # value should be identical to the value of the `MLModelID` in the
992
+ # request.
993
+ # @return [String]
994
+ class DeleteMLModelOutput < Struct.new(
995
+ :ml_model_id)
996
+ include Aws::Structure
997
+ end
998
+
999
+ # @note When making an API call, pass DeleteRealtimeEndpointInput
1000
+ # data as a hash:
1001
+ #
1002
+ # {
1003
+ # ml_model_id: "EntityId", # required
1004
+ # }
1005
+ # @!attribute [rw] ml_model_id
1006
+ # The ID assigned to the `MLModel` during creation.
1007
+ # @return [String]
1008
+ class DeleteRealtimeEndpointInput < Struct.new(
1009
+ :ml_model_id)
1010
+ include Aws::Structure
1011
+ end
1012
+
1013
+ # Represents the output of an `DeleteRealtimeEndpoint` operation.
1014
+ #
1015
+ # The result contains the `MLModelId` and the endpoint information for
1016
+ # the `MLModel`.
1017
+ # @!attribute [rw] ml_model_id
1018
+ # A user-supplied ID that uniquely identifies the `MLModel`. This
1019
+ # value should be identical to the value of the `MLModelId` in the
1020
+ # request.
1021
+ # @return [String]
1022
+ #
1023
+ # @!attribute [rw] realtime_endpoint_info
1024
+ # The endpoint information of the `MLModel`
1025
+ # @return [Types::RealtimeEndpointInfo]
1026
+ class DeleteRealtimeEndpointOutput < Struct.new(
1027
+ :ml_model_id,
1028
+ :realtime_endpoint_info)
1029
+ include Aws::Structure
1030
+ end
1031
+
1032
+ # @note When making an API call, pass DeleteTagsInput
1033
+ # data as a hash:
1034
+ #
1035
+ # {
1036
+ # tag_keys: ["TagKey"], # required
1037
+ # resource_id: "EntityId", # required
1038
+ # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
1039
+ # }
1040
+ # @!attribute [rw] tag_keys
1041
+ # One or more tags to delete.
1042
+ # @return [Array<String>]
1043
+ #
1044
+ # @!attribute [rw] resource_id
1045
+ # The ID of the tagged ML object. For example, `exampleModelId`.
1046
+ # @return [String]
1047
+ #
1048
+ # @!attribute [rw] resource_type
1049
+ # The type of the tagged ML object.
1050
+ # @return [String]
1051
+ class DeleteTagsInput < Struct.new(
1052
+ :tag_keys,
1053
+ :resource_id,
1054
+ :resource_type)
1055
+ include Aws::Structure
1056
+ end
1057
+
1058
+ # Amazon ML returns the following elements.
1059
+ # @!attribute [rw] resource_id
1060
+ # The ID of the ML object from which tags were deleted.
1061
+ # @return [String]
1062
+ #
1063
+ # @!attribute [rw] resource_type
1064
+ # The type of the ML object from which tags were deleted.
1065
+ # @return [String]
1066
+ class DeleteTagsOutput < Struct.new(
1067
+ :resource_id,
1068
+ :resource_type)
1069
+ include Aws::Structure
1070
+ end
1071
+
1072
+ # @note When making an API call, pass DescribeBatchPredictionsInput
1073
+ # data as a hash:
1074
+ #
1075
+ # {
1076
+ # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
1077
+ # eq: "ComparatorValue",
1078
+ # gt: "ComparatorValue",
1079
+ # lt: "ComparatorValue",
1080
+ # ge: "ComparatorValue",
1081
+ # le: "ComparatorValue",
1082
+ # ne: "ComparatorValue",
1083
+ # prefix: "ComparatorValue",
1084
+ # sort_order: "asc", # accepts asc, dsc
1085
+ # next_token: "StringType",
1086
+ # limit: 1,
1087
+ # }
1088
+ # @!attribute [rw] filter_variable
1089
+ # Use one of the following variables to filter a list of
1090
+ # `BatchPrediction`\:
1091
+ #
1092
+ # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1093
+ # creation date.
1094
+ # * `Status` - Sets the search criteria to the `BatchPrediction`
1095
+ # status.
1096
+ # * `Name` - Sets the search criteria to the contents of the
1097
+ # `BatchPrediction`<b> </b> `Name`.
1098
+ # * `IAMUser` - Sets the search criteria to the user account that
1099
+ # invoked the `BatchPrediction` creation.
1100
+ # * `MLModelId` - Sets the search criteria to the `MLModel` used in
1101
+ # the `BatchPrediction`.
1102
+ # * `DataSourceId` - Sets the search criteria to the `DataSource` used
1103
+ # in the `BatchPrediction`.
1104
+ # * `DataURI` - Sets the search criteria to the data file(s) used in
1105
+ # the `BatchPrediction`. The URL can identify either a file or an
1106
+ # Amazon Simple Storage Solution (Amazon S3) bucket or directory.
1107
+ # @return [String]
1108
+ #
1109
+ # @!attribute [rw] eq
1110
+ # The equal to operator. The `BatchPrediction` results will have
1111
+ # `FilterVariable` values that exactly match the value specified with
1112
+ # `EQ`.
1113
+ # @return [String]
1114
+ #
1115
+ # @!attribute [rw] gt
1116
+ # The greater than operator. The `BatchPrediction` results will have
1117
+ # `FilterVariable` values that are greater than the value specified
1118
+ # with `GT`.
1119
+ # @return [String]
1120
+ #
1121
+ # @!attribute [rw] lt
1122
+ # The less than operator. The `BatchPrediction` results will have
1123
+ # `FilterVariable` values that are less than the value specified with
1124
+ # `LT`.
1125
+ # @return [String]
1126
+ #
1127
+ # @!attribute [rw] ge
1128
+ # The greater than or equal to operator. The `BatchPrediction` results
1129
+ # will have `FilterVariable` values that are greater than or equal to
1130
+ # the value specified with `GE`.
1131
+ # @return [String]
1132
+ #
1133
+ # @!attribute [rw] le
1134
+ # The less than or equal to operator. The `BatchPrediction` results
1135
+ # will have `FilterVariable` values that are less than or equal to the
1136
+ # value specified with `LE`.
1137
+ # @return [String]
1138
+ #
1139
+ # @!attribute [rw] ne
1140
+ # The not equal to operator. The `BatchPrediction` results will have
1141
+ # `FilterVariable` values not equal to the value specified with `NE`.
1142
+ # @return [String]
1143
+ #
1144
+ # @!attribute [rw] prefix
1145
+ # A string that is found at the beginning of a variable, such as
1146
+ # `Name` or `Id`.
1147
+ #
1148
+ # For example, a `Batch Prediction` operation could have the `Name`
1149
+ # `2014-09-09-HolidayGiftMailer`. To search for this
1150
+ # `BatchPrediction`, select `Name` for the `FilterVariable` and any of
1151
+ # the following strings for the `Prefix`\:
1152
+ #
1153
+ # * 2014-09
1154
+ #
1155
+ # * 2014-09-09
1156
+ #
1157
+ # * 2014-09-09-Holiday
1158
+ # @return [String]
1159
+ #
1160
+ # @!attribute [rw] sort_order
1161
+ # A two-value parameter that determines the sequence of the resulting
1162
+ # list of `MLModel`s.
1163
+ #
1164
+ # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1165
+ # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1166
+ #
1167
+ # Results are sorted by `FilterVariable`.
1168
+ # @return [String]
1169
+ #
1170
+ # @!attribute [rw] next_token
1171
+ # An ID of the page in the paginated results.
1172
+ # @return [String]
1173
+ #
1174
+ # @!attribute [rw] limit
1175
+ # The number of pages of information to include in the result. The
1176
+ # range of acceptable values is `1` through `100`. The default value
1177
+ # is `100`.
1178
+ # @return [Integer]
1179
+ class DescribeBatchPredictionsInput < Struct.new(
1180
+ :filter_variable,
1181
+ :eq,
1182
+ :gt,
1183
+ :lt,
1184
+ :ge,
1185
+ :le,
1186
+ :ne,
1187
+ :prefix,
1188
+ :sort_order,
1189
+ :next_token,
1190
+ :limit)
1191
+ include Aws::Structure
1192
+ end
1193
+
1194
+ # Represents the output of a `DescribeBatchPredictions` operation. The
1195
+ # content is essentially a list of `BatchPrediction`s.
1196
+ # @!attribute [rw] results
1197
+ # A list of `BatchPrediction` objects that meet the search criteria.
1198
+ # @return [Array<Types::BatchPrediction>]
1199
+ #
1200
+ # @!attribute [rw] next_token
1201
+ # The ID of the next page in the paginated results that indicates at
1202
+ # least one more page follows.
1203
+ # @return [String]
1204
+ class DescribeBatchPredictionsOutput < Struct.new(
1205
+ :results,
1206
+ :next_token)
1207
+ include Aws::Structure
1208
+ end
1209
+
1210
+ # @note When making an API call, pass DescribeDataSourcesInput
1211
+ # data as a hash:
1212
+ #
1213
+ # {
1214
+ # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, DataLocationS3, IAMUser
1215
+ # eq: "ComparatorValue",
1216
+ # gt: "ComparatorValue",
1217
+ # lt: "ComparatorValue",
1218
+ # ge: "ComparatorValue",
1219
+ # le: "ComparatorValue",
1220
+ # ne: "ComparatorValue",
1221
+ # prefix: "ComparatorValue",
1222
+ # sort_order: "asc", # accepts asc, dsc
1223
+ # next_token: "StringType",
1224
+ # limit: 1,
1225
+ # }
1226
+ # @!attribute [rw] filter_variable
1227
+ # Use one of the following variables to filter a list of
1228
+ # `DataSource`\:
1229
+ #
1230
+ # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1231
+ # dates.
1232
+ # * `Status` - Sets the search criteria to `DataSource` statuses.
1233
+ # * `Name` - Sets the search criteria to the contents of `DataSource`
1234
+ # <b> </b> `Name`.
1235
+ # * `DataUri` - Sets the search criteria to the URI of data files used
1236
+ # to create the `DataSource`. The URI can identify either a file or
1237
+ # an Amazon Simple Storage Service (Amazon S3) bucket or directory.
1238
+ # * `IAMUser` - Sets the search criteria to the user account that
1239
+ # invoked the `DataSource` creation.
1240
+ # @return [String]
1241
+ #
1242
+ # @!attribute [rw] eq
1243
+ # The equal to operator. The `DataSource` results will have
1244
+ # `FilterVariable` values that exactly match the value specified with
1245
+ # `EQ`.
1246
+ # @return [String]
1247
+ #
1248
+ # @!attribute [rw] gt
1249
+ # The greater than operator. The `DataSource` results will have
1250
+ # `FilterVariable` values that are greater than the value specified
1251
+ # with `GT`.
1252
+ # @return [String]
1253
+ #
1254
+ # @!attribute [rw] lt
1255
+ # The less than operator. The `DataSource` results will have
1256
+ # `FilterVariable` values that are less than the value specified with
1257
+ # `LT`.
1258
+ # @return [String]
1259
+ #
1260
+ # @!attribute [rw] ge
1261
+ # The greater than or equal to operator. The `DataSource` results will
1262
+ # have `FilterVariable` values that are greater than or equal to the
1263
+ # value specified with `GE`.
1264
+ # @return [String]
1265
+ #
1266
+ # @!attribute [rw] le
1267
+ # The less than or equal to operator. The `DataSource` results will
1268
+ # have `FilterVariable` values that are less than or equal to the
1269
+ # value specified with `LE`.
1270
+ # @return [String]
1271
+ #
1272
+ # @!attribute [rw] ne
1273
+ # The not equal to operator. The `DataSource` results will have
1274
+ # `FilterVariable` values not equal to the value specified with `NE`.
1275
+ # @return [String]
1276
+ #
1277
+ # @!attribute [rw] prefix
1278
+ # A string that is found at the beginning of a variable, such as
1279
+ # `Name` or `Id`.
1280
+ #
1281
+ # For example, a `DataSource` could have the `Name`
1282
+ # `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
1283
+ # select `Name` for the `FilterVariable` and any of the following
1284
+ # strings for the `Prefix`\:
1285
+ #
1286
+ # * 2014-09
1287
+ #
1288
+ # * 2014-09-09
1289
+ #
1290
+ # * 2014-09-09-Holiday
1291
+ # @return [String]
1292
+ #
1293
+ # @!attribute [rw] sort_order
1294
+ # A two-value parameter that determines the sequence of the resulting
1295
+ # list of `DataSource`.
1296
+ #
1297
+ # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1298
+ # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1299
+ #
1300
+ # Results are sorted by `FilterVariable`.
1301
+ # @return [String]
1302
+ #
1303
+ # @!attribute [rw] next_token
1304
+ # The ID of the page in the paginated results.
1305
+ # @return [String]
1306
+ #
1307
+ # @!attribute [rw] limit
1308
+ # The maximum number of `DataSource` to include in the result.
1309
+ # @return [Integer]
1310
+ class DescribeDataSourcesInput < Struct.new(
1311
+ :filter_variable,
1312
+ :eq,
1313
+ :gt,
1314
+ :lt,
1315
+ :ge,
1316
+ :le,
1317
+ :ne,
1318
+ :prefix,
1319
+ :sort_order,
1320
+ :next_token,
1321
+ :limit)
1322
+ include Aws::Structure
1323
+ end
1324
+
1325
+ # Represents the query results from a DescribeDataSources operation. The
1326
+ # content is essentially a list of `DataSource`.
1327
+ # @!attribute [rw] results
1328
+ # A list of `DataSource` that meet the search criteria.
1329
+ # @return [Array<Types::DataSource>]
1330
+ #
1331
+ # @!attribute [rw] next_token
1332
+ # An ID of the next page in the paginated results that indicates at
1333
+ # least one more page follows.
1334
+ # @return [String]
1335
+ class DescribeDataSourcesOutput < Struct.new(
1336
+ :results,
1337
+ :next_token)
1338
+ include Aws::Structure
1339
+ end
1340
+
1341
+ # @note When making an API call, pass DescribeEvaluationsInput
1342
+ # data as a hash:
1343
+ #
1344
+ # {
1345
+ # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
1346
+ # eq: "ComparatorValue",
1347
+ # gt: "ComparatorValue",
1348
+ # lt: "ComparatorValue",
1349
+ # ge: "ComparatorValue",
1350
+ # le: "ComparatorValue",
1351
+ # ne: "ComparatorValue",
1352
+ # prefix: "ComparatorValue",
1353
+ # sort_order: "asc", # accepts asc, dsc
1354
+ # next_token: "StringType",
1355
+ # limit: 1,
1356
+ # }
1357
+ # @!attribute [rw] filter_variable
1358
+ # Use one of the following variable to filter a list of `Evaluation`
1359
+ # objects:
1360
+ #
1361
+ # * `CreatedAt` - Sets the search criteria to the `Evaluation`
1362
+ # creation date.
1363
+ # * `Status` - Sets the search criteria to the `Evaluation` status.
1364
+ # * `Name` - Sets the search criteria to the contents of `Evaluation`
1365
+ # <b> </b> `Name`.
1366
+ # * `IAMUser` - Sets the search criteria to the user account that
1367
+ # invoked an `Evaluation`.
1368
+ # * `MLModelId` - Sets the search criteria to the `MLModel` that was
1369
+ # evaluated.
1370
+ # * `DataSourceId` - Sets the search criteria to the `DataSource` used
1371
+ # in `Evaluation`.
1372
+ # * `DataUri` - Sets the search criteria to the data file(s) used in
1373
+ # `Evaluation`. The URL can identify either a file or an Amazon
1374
+ # Simple Storage Solution (Amazon S3) bucket or directory.
1375
+ # @return [String]
1376
+ #
1377
+ # @!attribute [rw] eq
1378
+ # The equal to operator. The `Evaluation` results will have
1379
+ # `FilterVariable` values that exactly match the value specified with
1380
+ # `EQ`.
1381
+ # @return [String]
1382
+ #
1383
+ # @!attribute [rw] gt
1384
+ # The greater than operator. The `Evaluation` results will have
1385
+ # `FilterVariable` values that are greater than the value specified
1386
+ # with `GT`.
1387
+ # @return [String]
1388
+ #
1389
+ # @!attribute [rw] lt
1390
+ # The less than operator. The `Evaluation` results will have
1391
+ # `FilterVariable` values that are less than the value specified with
1392
+ # `LT`.
1393
+ # @return [String]
1394
+ #
1395
+ # @!attribute [rw] ge
1396
+ # The greater than or equal to operator. The `Evaluation` results will
1397
+ # have `FilterVariable` values that are greater than or equal to the
1398
+ # value specified with `GE`.
1399
+ # @return [String]
1400
+ #
1401
+ # @!attribute [rw] le
1402
+ # The less than or equal to operator. The `Evaluation` results will
1403
+ # have `FilterVariable` values that are less than or equal to the
1404
+ # value specified with `LE`.
1405
+ # @return [String]
1406
+ #
1407
+ # @!attribute [rw] ne
1408
+ # The not equal to operator. The `Evaluation` results will have
1409
+ # `FilterVariable` values not equal to the value specified with `NE`.
1410
+ # @return [String]
1411
+ #
1412
+ # @!attribute [rw] prefix
1413
+ # A string that is found at the beginning of a variable, such as
1414
+ # `Name` or `Id`.
1415
+ #
1416
+ # For example, an `Evaluation` could have the `Name`
1417
+ # `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
1418
+ # select `Name` for the `FilterVariable` and any of the following
1419
+ # strings for the `Prefix`\:
1420
+ #
1421
+ # * 2014-09
1422
+ #
1423
+ # * 2014-09-09
1424
+ #
1425
+ # * 2014-09-09-Holiday
1426
+ # @return [String]
1427
+ #
1428
+ # @!attribute [rw] sort_order
1429
+ # A two-value parameter that determines the sequence of the resulting
1430
+ # list of `Evaluation`.
1431
+ #
1432
+ # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1433
+ # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1434
+ #
1435
+ # Results are sorted by `FilterVariable`.
1436
+ # @return [String]
1437
+ #
1438
+ # @!attribute [rw] next_token
1439
+ # The ID of the page in the paginated results.
1440
+ # @return [String]
1441
+ #
1442
+ # @!attribute [rw] limit
1443
+ # The maximum number of `Evaluation` to include in the result.
1444
+ # @return [Integer]
1445
+ class DescribeEvaluationsInput < Struct.new(
1446
+ :filter_variable,
1447
+ :eq,
1448
+ :gt,
1449
+ :lt,
1450
+ :ge,
1451
+ :le,
1452
+ :ne,
1453
+ :prefix,
1454
+ :sort_order,
1455
+ :next_token,
1456
+ :limit)
1457
+ include Aws::Structure
1458
+ end
1459
+
1460
+ # Represents the query results from a `DescribeEvaluations` operation.
1461
+ # The content is essentially a list of `Evaluation`.
1462
+ # @!attribute [rw] results
1463
+ # A list of `Evaluation` that meet the search criteria.
1464
+ # @return [Array<Types::Evaluation>]
1465
+ #
1466
+ # @!attribute [rw] next_token
1467
+ # The ID of the next page in the paginated results that indicates at
1468
+ # least one more page follows.
1469
+ # @return [String]
1470
+ class DescribeEvaluationsOutput < Struct.new(
1471
+ :results,
1472
+ :next_token)
1473
+ include Aws::Structure
1474
+ end
1475
+
1476
+ # @note When making an API call, pass DescribeMLModelsInput
1477
+ # data as a hash:
1478
+ #
1479
+ # {
1480
+ # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, TrainingDataSourceId, RealtimeEndpointStatus, MLModelType, Algorithm, TrainingDataURI
1481
+ # eq: "ComparatorValue",
1482
+ # gt: "ComparatorValue",
1483
+ # lt: "ComparatorValue",
1484
+ # ge: "ComparatorValue",
1485
+ # le: "ComparatorValue",
1486
+ # ne: "ComparatorValue",
1487
+ # prefix: "ComparatorValue",
1488
+ # sort_order: "asc", # accepts asc, dsc
1489
+ # next_token: "StringType",
1490
+ # limit: 1,
1491
+ # }
1492
+ # @!attribute [rw] filter_variable
1493
+ # Use one of the following variables to filter a list of `MLModel`\:
1494
+ #
1495
+ # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1496
+ # * `Status` - Sets the search criteria to `MLModel` status.
1497
+ # * `Name` - Sets the search criteria to the contents of `MLModel`<b>
1498
+ # </b> `Name`.
1499
+ # * `IAMUser` - Sets the search criteria to the user account that
1500
+ # invoked the `MLModel` creation.
1501
+ # * `TrainingDataSourceId` - Sets the search criteria to the
1502
+ # `DataSource` used to train one or more `MLModel`.
1503
+ # * `RealtimeEndpointStatus` - Sets the search criteria to the
1504
+ # `MLModel` real-time endpoint status.
1505
+ # * `MLModelType` - Sets the search criteria to `MLModel` type:
1506
+ # binary, regression, or multi-class.
1507
+ # * `Algorithm` - Sets the search criteria to the algorithm that the
1508
+ # `MLModel` uses.
1509
+ # * `TrainingDataURI` - Sets the search criteria to the data file(s)
1510
+ # used in training a `MLModel`. The URL can identify either a file
1511
+ # or an Amazon Simple Storage Service (Amazon S3) bucket or
1512
+ # directory.
1513
+ # @return [String]
1514
+ #
1515
+ # @!attribute [rw] eq
1516
+ # The equal to operator. The `MLModel` results will have
1517
+ # `FilterVariable` values that exactly match the value specified with
1518
+ # `EQ`.
1519
+ # @return [String]
1520
+ #
1521
+ # @!attribute [rw] gt
1522
+ # The greater than operator. The `MLModel` results will have
1523
+ # `FilterVariable` values that are greater than the value specified
1524
+ # with `GT`.
1525
+ # @return [String]
1526
+ #
1527
+ # @!attribute [rw] lt
1528
+ # The less than operator. The `MLModel` results will have
1529
+ # `FilterVariable` values that are less than the value specified with
1530
+ # `LT`.
1531
+ # @return [String]
1532
+ #
1533
+ # @!attribute [rw] ge
1534
+ # The greater than or equal to operator. The `MLModel` results will
1535
+ # have `FilterVariable` values that are greater than or equal to the
1536
+ # value specified with `GE`.
1537
+ # @return [String]
1538
+ #
1539
+ # @!attribute [rw] le
1540
+ # The less than or equal to operator. The `MLModel` results will have
1541
+ # `FilterVariable` values that are less than or equal to the value
1542
+ # specified with `LE`.
1543
+ # @return [String]
1544
+ #
1545
+ # @!attribute [rw] ne
1546
+ # The not equal to operator. The `MLModel` results will have
1547
+ # `FilterVariable` values not equal to the value specified with `NE`.
1548
+ # @return [String]
1549
+ #
1550
+ # @!attribute [rw] prefix
1551
+ # A string that is found at the beginning of a variable, such as
1552
+ # `Name` or `Id`.
1553
+ #
1554
+ # For example, an `MLModel` could have the `Name`
1555
+ # `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
1556
+ # `Name` for the `FilterVariable` and any of the following strings for
1557
+ # the `Prefix`\:
1558
+ #
1559
+ # * 2014-09
1560
+ #
1561
+ # * 2014-09-09
1562
+ #
1563
+ # * 2014-09-09-Holiday
1564
+ # @return [String]
1565
+ #
1566
+ # @!attribute [rw] sort_order
1567
+ # A two-value parameter that determines the sequence of the resulting
1568
+ # list of `MLModel`.
1569
+ #
1570
+ # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1571
+ # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1572
+ #
1573
+ # Results are sorted by `FilterVariable`.
1574
+ # @return [String]
1575
+ #
1576
+ # @!attribute [rw] next_token
1577
+ # The ID of the page in the paginated results.
1578
+ # @return [String]
1579
+ #
1580
+ # @!attribute [rw] limit
1581
+ # The number of pages of information to include in the result. The
1582
+ # range of acceptable values is `1` through `100`. The default value
1583
+ # is `100`.
1584
+ # @return [Integer]
1585
+ class DescribeMLModelsInput < Struct.new(
1586
+ :filter_variable,
1587
+ :eq,
1588
+ :gt,
1589
+ :lt,
1590
+ :ge,
1591
+ :le,
1592
+ :ne,
1593
+ :prefix,
1594
+ :sort_order,
1595
+ :next_token,
1596
+ :limit)
1597
+ include Aws::Structure
1598
+ end
1599
+
1600
+ # Represents the output of a `DescribeMLModels` operation. The content
1601
+ # is essentially a list of `MLModel`.
1602
+ # @!attribute [rw] results
1603
+ # A list of `MLModel` that meet the search criteria.
1604
+ # @return [Array<Types::MLModel>]
1605
+ #
1606
+ # @!attribute [rw] next_token
1607
+ # The ID of the next page in the paginated results that indicates at
1608
+ # least one more page follows.
1609
+ # @return [String]
1610
+ class DescribeMLModelsOutput < Struct.new(
1611
+ :results,
1612
+ :next_token)
1613
+ include Aws::Structure
1614
+ end
1615
+
1616
+ # @note When making an API call, pass DescribeTagsInput
1617
+ # data as a hash:
1618
+ #
1619
+ # {
1620
+ # resource_id: "EntityId", # required
1621
+ # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
1622
+ # }
1623
+ # @!attribute [rw] resource_id
1624
+ # The ID of the ML object. For example, `exampleModelId`.
1625
+ # @return [String]
1626
+ #
1627
+ # @!attribute [rw] resource_type
1628
+ # The type of the ML object.
1629
+ # @return [String]
1630
+ class DescribeTagsInput < Struct.new(
1631
+ :resource_id,
1632
+ :resource_type)
1633
+ include Aws::Structure
1634
+ end
1635
+
1636
+ # Amazon ML returns the following elements.
1637
+ # @!attribute [rw] resource_id
1638
+ # The ID of the tagged ML object.
1639
+ # @return [String]
1640
+ #
1641
+ # @!attribute [rw] resource_type
1642
+ # The type of the tagged ML object.
1643
+ # @return [String]
1644
+ #
1645
+ # @!attribute [rw] tags
1646
+ # A list of tags associated with the ML object.
1647
+ # @return [Array<Types::Tag>]
1648
+ class DescribeTagsOutput < Struct.new(
1649
+ :resource_id,
1650
+ :resource_type,
1651
+ :tags)
1652
+ include Aws::Structure
1653
+ end
1654
+
1655
+ # Represents the output of `GetEvaluation` operation.
1656
+ #
1657
+ # The content consists of the detailed metadata and data file
1658
+ # information and the current status of the `Evaluation`.
1659
+ # @!attribute [rw] evaluation_id
1660
+ # The ID that is assigned to the `Evaluation` at creation.
1661
+ # @return [String]
1662
+ #
1663
+ # @!attribute [rw] ml_model_id
1664
+ # The ID of the `MLModel` that is the focus of the evaluation.
1665
+ # @return [String]
1666
+ #
1667
+ # @!attribute [rw] evaluation_data_source_id
1668
+ # The ID of the `DataSource` that is used to evaluate the `MLModel`.
1669
+ # @return [String]
1670
+ #
1671
+ # @!attribute [rw] input_data_location_s3
1672
+ # The location and name of the data in Amazon Simple Storage Server
1673
+ # (Amazon S3) that is used in the evaluation.
1674
+ # @return [String]
1675
+ #
1676
+ # @!attribute [rw] created_by_iam_user
1677
+ # The AWS user account that invoked the evaluation. The account type
1678
+ # can be either an AWS root account or an AWS Identity and Access
1679
+ # Management (IAM) user account.
1680
+ # @return [String]
1681
+ #
1682
+ # @!attribute [rw] created_at
1683
+ # The time that the `Evaluation` was created. The time is expressed in
1684
+ # epoch time.
1685
+ # @return [Time]
1686
+ #
1687
+ # @!attribute [rw] last_updated_at
1688
+ # The time of the most recent edit to the `Evaluation`. The time is
1689
+ # expressed in epoch time.
1690
+ # @return [Time]
1691
+ #
1692
+ # @!attribute [rw] name
1693
+ # A user-supplied name or description of the `Evaluation`.
1694
+ # @return [String]
1695
+ #
1696
+ # @!attribute [rw] status
1697
+ # The status of the evaluation. This element can have one of the
1698
+ # following values:
1699
+ #
1700
+ # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
1701
+ # request to evaluate an `MLModel`.
1702
+ # * `INPROGRESS` - The evaluation is underway.
1703
+ # * `FAILED` - The request to evaluate an `MLModel` did not run to
1704
+ # completion. It is not usable.
1705
+ # * `COMPLETED` - The evaluation process completed successfully.
1706
+ # * `DELETED` - The `Evaluation` is marked as deleted. It is not
1707
+ # usable.
1708
+ # @return [String]
1709
+ #
1710
+ # @!attribute [rw] performance_metrics
1711
+ # Measurements of how well the `MLModel` performed, using observations
1712
+ # referenced by the `DataSource`. One of the following metrics is
1713
+ # returned, based on the type of the `MLModel`\:
1714
+ #
1715
+ # * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
1716
+ # technique to measure performance.
1717
+ #
1718
+ # * RegressionRMSE: A regression `MLModel` uses the Root Mean Square
1719
+ # Error (RMSE) technique to measure performance. RMSE measures the
1720
+ # difference between predicted and actual values for a single
1721
+ # variable.
1722
+ #
1723
+ # * MulticlassAvgFScore: A multiclass `MLModel` uses the F1 score
1724
+ # technique to measure performance.
1725
+ #
1726
+ # For more information about performance metrics, please see the
1727
+ # [Amazon Machine Learning Developer Guide][1].
1728
+ #
1729
+ #
1730
+ #
1731
+ # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
1732
+ # @return [Types::PerformanceMetrics]
1733
+ #
1734
+ # @!attribute [rw] message
1735
+ # A description of the most recent details about evaluating the
1736
+ # `MLModel`.
1737
+ # @return [String]
1738
+ #
1739
+ # @!attribute [rw] compute_time
1740
+ # Long integer type that is a 64-bit signed number.
1741
+ # @return [Integer]
1742
+ #
1743
+ # @!attribute [rw] finished_at
1744
+ # A timestamp represented in epoch time.
1745
+ # @return [Time]
1746
+ #
1747
+ # @!attribute [rw] started_at
1748
+ # A timestamp represented in epoch time.
1749
+ # @return [Time]
1750
+ class Evaluation < Struct.new(
1751
+ :evaluation_id,
1752
+ :ml_model_id,
1753
+ :evaluation_data_source_id,
1754
+ :input_data_location_s3,
1755
+ :created_by_iam_user,
1756
+ :created_at,
1757
+ :last_updated_at,
1758
+ :name,
1759
+ :status,
1760
+ :performance_metrics,
1761
+ :message,
1762
+ :compute_time,
1763
+ :finished_at,
1764
+ :started_at)
1765
+ include Aws::Structure
1766
+ end
1767
+
1768
+ # @note When making an API call, pass GetBatchPredictionInput
1769
+ # data as a hash:
1770
+ #
1771
+ # {
1772
+ # batch_prediction_id: "EntityId", # required
1773
+ # }
1774
+ # @!attribute [rw] batch_prediction_id
1775
+ # An ID assigned to the `BatchPrediction` at creation.
1776
+ # @return [String]
1777
+ class GetBatchPredictionInput < Struct.new(
1778
+ :batch_prediction_id)
1779
+ include Aws::Structure
1780
+ end
1781
+
1782
+ # Represents the output of a `GetBatchPrediction` operation and
1783
+ # describes a `BatchPrediction`.
1784
+ # @!attribute [rw] batch_prediction_id
1785
+ # An ID assigned to the `BatchPrediction` at creation. This value
1786
+ # should be identical to the value of the `BatchPredictionID` in the
1787
+ # request.
1788
+ # @return [String]
1789
+ #
1790
+ # @!attribute [rw] ml_model_id
1791
+ # The ID of the `MLModel` that generated predictions for the
1792
+ # `BatchPrediction` request.
1793
+ # @return [String]
1794
+ #
1795
+ # @!attribute [rw] batch_prediction_data_source_id
1796
+ # The ID of the `DataSource` that was used to create the
1797
+ # `BatchPrediction`.
1798
+ # @return [String]
1799
+ #
1800
+ # @!attribute [rw] input_data_location_s3
1801
+ # The location of the data file or directory in Amazon Simple Storage
1802
+ # Service (Amazon S3).
1803
+ # @return [String]
1804
+ #
1805
+ # @!attribute [rw] created_by_iam_user
1806
+ # The AWS user account that invoked the `BatchPrediction`. The account
1807
+ # type can be either an AWS root account or an AWS Identity and Access
1808
+ # Management (IAM) user account.
1809
+ # @return [String]
1810
+ #
1811
+ # @!attribute [rw] created_at
1812
+ # The time when the `BatchPrediction` was created. The time is
1813
+ # expressed in epoch time.
1814
+ # @return [Time]
1815
+ #
1816
+ # @!attribute [rw] last_updated_at
1817
+ # The time of the most recent edit to `BatchPrediction`. The time is
1818
+ # expressed in epoch time.
1819
+ # @return [Time]
1820
+ #
1821
+ # @!attribute [rw] name
1822
+ # A user-supplied name or description of the `BatchPrediction`.
1823
+ # @return [String]
1824
+ #
1825
+ # @!attribute [rw] status
1826
+ # The status of the `BatchPrediction`, which can be one of the
1827
+ # following values:
1828
+ #
1829
+ # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
1830
+ # request to generate batch predictions.
1831
+ # * `INPROGRESS` - The batch predictions are in progress.
1832
+ # * `FAILED` - The request to perform a batch prediction did not run
1833
+ # to completion. It is not usable.
1834
+ # * `COMPLETED` - The batch prediction process completed successfully.
1835
+ # * `DELETED` - The `BatchPrediction` is marked as deleted. It is not
1836
+ # usable.
1837
+ # @return [String]
1838
+ #
1839
+ # @!attribute [rw] output_uri
1840
+ # The location of an Amazon S3 bucket or directory to receive the
1841
+ # operation results.
1842
+ # @return [String]
1843
+ #
1844
+ # @!attribute [rw] log_uri
1845
+ # A link to the file that contains logs of the `CreateBatchPrediction`
1846
+ # operation.
1847
+ # @return [String]
1848
+ #
1849
+ # @!attribute [rw] message
1850
+ # A description of the most recent details about processing the batch
1851
+ # prediction request.
1852
+ # @return [String]
1853
+ #
1854
+ # @!attribute [rw] compute_time
1855
+ # The approximate CPU time in milliseconds that Amazon Machine
1856
+ # Learning spent processing the `BatchPrediction`, normalized and
1857
+ # scaled on computation resources. `ComputeTime` is only available if
1858
+ # the `BatchPrediction` is in the `COMPLETED` state.
1859
+ # @return [Integer]
1860
+ #
1861
+ # @!attribute [rw] finished_at
1862
+ # The epoch time when Amazon Machine Learning marked the
1863
+ # `BatchPrediction` as `COMPLETED` or `FAILED`. `FinishedAt` is only
1864
+ # available when the `BatchPrediction` is in the `COMPLETED` or
1865
+ # `FAILED` state.
1866
+ # @return [Time]
1867
+ #
1868
+ # @!attribute [rw] started_at
1869
+ # The epoch time when Amazon Machine Learning marked the
1870
+ # `BatchPrediction` as `INPROGRESS`. `StartedAt` isn't available if
1871
+ # the `BatchPrediction` is in the `PENDING` state.
1872
+ # @return [Time]
1873
+ #
1874
+ # @!attribute [rw] total_record_count
1875
+ # The number of total records that Amazon Machine Learning saw while
1876
+ # processing the `BatchPrediction`.
1877
+ # @return [Integer]
1878
+ #
1879
+ # @!attribute [rw] invalid_record_count
1880
+ # The number of invalid records that Amazon Machine Learning saw while
1881
+ # processing the `BatchPrediction`.
1882
+ # @return [Integer]
1883
+ class GetBatchPredictionOutput < Struct.new(
1884
+ :batch_prediction_id,
1885
+ :ml_model_id,
1886
+ :batch_prediction_data_source_id,
1887
+ :input_data_location_s3,
1888
+ :created_by_iam_user,
1889
+ :created_at,
1890
+ :last_updated_at,
1891
+ :name,
1892
+ :status,
1893
+ :output_uri,
1894
+ :log_uri,
1895
+ :message,
1896
+ :compute_time,
1897
+ :finished_at,
1898
+ :started_at,
1899
+ :total_record_count,
1900
+ :invalid_record_count)
1901
+ include Aws::Structure
1902
+ end
1903
+
1904
+ # @note When making an API call, pass GetDataSourceInput
1905
+ # data as a hash:
1906
+ #
1907
+ # {
1908
+ # data_source_id: "EntityId", # required
1909
+ # verbose: false,
1910
+ # }
1911
+ # @!attribute [rw] data_source_id
1912
+ # The ID assigned to the `DataSource` at creation.
1913
+ # @return [String]
1914
+ #
1915
+ # @!attribute [rw] verbose
1916
+ # Specifies whether the `GetDataSource` operation should return
1917
+ # `DataSourceSchema`.
1918
+ #
1919
+ # If true, `DataSourceSchema` is returned.
1920
+ #
1921
+ # If false, `DataSourceSchema` is not returned.
1922
+ # @return [Boolean]
1923
+ class GetDataSourceInput < Struct.new(
1924
+ :data_source_id,
1925
+ :verbose)
1926
+ include Aws::Structure
1927
+ end
1928
+
1929
+ # Represents the output of a `GetDataSource` operation and describes a
1930
+ # `DataSource`.
1931
+ # @!attribute [rw] data_source_id
1932
+ # The ID assigned to the `DataSource` at creation. This value should
1933
+ # be identical to the value of the `DataSourceId` in the request.
1934
+ # @return [String]
1935
+ #
1936
+ # @!attribute [rw] data_location_s3
1937
+ # The location of the data file or directory in Amazon Simple Storage
1938
+ # Service (Amazon S3).
1939
+ # @return [String]
1940
+ #
1941
+ # @!attribute [rw] data_rearrangement
1942
+ # A JSON string that represents the splitting and rearrangement
1943
+ # requirement used when this `DataSource` was created.
1944
+ # @return [String]
1945
+ #
1946
+ # @!attribute [rw] created_by_iam_user
1947
+ # The AWS user account from which the `DataSource` was created. The
1948
+ # account type can be either an AWS root account or an AWS Identity
1949
+ # and Access Management (IAM) user account.
1950
+ # @return [String]
1951
+ #
1952
+ # @!attribute [rw] created_at
1953
+ # The time that the `DataSource` was created. The time is expressed in
1954
+ # epoch time.
1955
+ # @return [Time]
1956
+ #
1957
+ # @!attribute [rw] last_updated_at
1958
+ # The time of the most recent edit to the `DataSource`. The time is
1959
+ # expressed in epoch time.
1960
+ # @return [Time]
1961
+ #
1962
+ # @!attribute [rw] data_size_in_bytes
1963
+ # The total size of observations in the data files.
1964
+ # @return [Integer]
1965
+ #
1966
+ # @!attribute [rw] number_of_files
1967
+ # The number of data files referenced by the `DataSource`.
1968
+ # @return [Integer]
1969
+ #
1970
+ # @!attribute [rw] name
1971
+ # A user-supplied name or description of the `DataSource`.
1972
+ # @return [String]
1973
+ #
1974
+ # @!attribute [rw] status
1975
+ # The current status of the `DataSource`. This element can have one of
1976
+ # the following values:
1977
+ #
1978
+ # * `PENDING` - Amazon ML submitted a request to create a
1979
+ # `DataSource`.
1980
+ # * `INPROGRESS` - The creation process is underway.
1981
+ # * `FAILED` - The request to create a `DataSource` did not run to
1982
+ # completion. It is not usable.
1983
+ # * `COMPLETED` - The creation process completed successfully.
1984
+ # * `DELETED` - The `DataSource` is marked as deleted. It is not
1985
+ # usable.
1986
+ # @return [String]
1987
+ #
1988
+ # @!attribute [rw] log_uri
1989
+ # A link to the file containing logs of `CreateDataSourceFrom*`
1990
+ # operations.
1991
+ # @return [String]
1992
+ #
1993
+ # @!attribute [rw] message
1994
+ # The user-supplied description of the most recent details about
1995
+ # creating the `DataSource`.
1996
+ # @return [String]
1997
+ #
1998
+ # @!attribute [rw] redshift_metadata
1999
+ # Describes the `DataSource` details specific to Amazon Redshift.
2000
+ # @return [Types::RedshiftMetadata]
2001
+ #
2002
+ # @!attribute [rw] rds_metadata
2003
+ # The datasource details that are specific to Amazon RDS.
2004
+ # @return [Types::RDSMetadata]
2005
+ #
2006
+ # @!attribute [rw] role_arn
2007
+ # The Amazon Resource Name (ARN) of an [AWS IAM Role][1], such as the
2008
+ # following: arn:aws:iam::account:role/rolename.
2009
+ #
2010
+ #
2011
+ #
2012
+ # [1]: http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts
2013
+ # @return [String]
2014
+ #
2015
+ # @!attribute [rw] compute_statistics
2016
+ # The parameter is `true` if statistics need to be generated from the
2017
+ # observation data.
2018
+ # @return [Boolean]
2019
+ #
2020
+ # @!attribute [rw] compute_time
2021
+ # The approximate CPU time in milliseconds that Amazon Machine
2022
+ # Learning spent processing the `DataSource`, normalized and scaled on
2023
+ # computation resources. `ComputeTime` is only available if the
2024
+ # `DataSource` is in the `COMPLETED` state and the `ComputeStatistics`
2025
+ # is set to true.
2026
+ # @return [Integer]
2027
+ #
2028
+ # @!attribute [rw] finished_at
2029
+ # The epoch time when Amazon Machine Learning marked the `DataSource`
2030
+ # as `COMPLETED` or `FAILED`. `FinishedAt` is only available when the
2031
+ # `DataSource` is in the `COMPLETED` or `FAILED` state.
2032
+ # @return [Time]
2033
+ #
2034
+ # @!attribute [rw] started_at
2035
+ # The epoch time when Amazon Machine Learning marked the `DataSource`
2036
+ # as `INPROGRESS`. `StartedAt` isn't available if the `DataSource` is
2037
+ # in the `PENDING` state.
2038
+ # @return [Time]
2039
+ #
2040
+ # @!attribute [rw] data_source_schema
2041
+ # The schema used by all of the data files of this `DataSource`.
2042
+ #
2043
+ # <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
2044
+ #
2045
+ # </note>
2046
+ # @return [String]
2047
+ class GetDataSourceOutput < Struct.new(
2048
+ :data_source_id,
2049
+ :data_location_s3,
2050
+ :data_rearrangement,
2051
+ :created_by_iam_user,
2052
+ :created_at,
2053
+ :last_updated_at,
2054
+ :data_size_in_bytes,
2055
+ :number_of_files,
2056
+ :name,
2057
+ :status,
2058
+ :log_uri,
2059
+ :message,
2060
+ :redshift_metadata,
2061
+ :rds_metadata,
2062
+ :role_arn,
2063
+ :compute_statistics,
2064
+ :compute_time,
2065
+ :finished_at,
2066
+ :started_at,
2067
+ :data_source_schema)
2068
+ include Aws::Structure
2069
+ end
2070
+
2071
+ # @note When making an API call, pass GetEvaluationInput
2072
+ # data as a hash:
2073
+ #
2074
+ # {
2075
+ # evaluation_id: "EntityId", # required
2076
+ # }
2077
+ # @!attribute [rw] evaluation_id
2078
+ # The ID of the `Evaluation` to retrieve. The evaluation of each
2079
+ # `MLModel` is recorded and cataloged. The ID provides the means to
2080
+ # access the information.
2081
+ # @return [String]
2082
+ class GetEvaluationInput < Struct.new(
2083
+ :evaluation_id)
2084
+ include Aws::Structure
2085
+ end
2086
+
2087
+ # Represents the output of a `GetEvaluation` operation and describes an
2088
+ # `Evaluation`.
2089
+ # @!attribute [rw] evaluation_id
2090
+ # The evaluation ID which is same as the `EvaluationId` in the
2091
+ # request.
2092
+ # @return [String]
2093
+ #
2094
+ # @!attribute [rw] ml_model_id
2095
+ # The ID of the `MLModel` that was the focus of the evaluation.
2096
+ # @return [String]
2097
+ #
2098
+ # @!attribute [rw] evaluation_data_source_id
2099
+ # The `DataSource` used for this evaluation.
2100
+ # @return [String]
2101
+ #
2102
+ # @!attribute [rw] input_data_location_s3
2103
+ # The location of the data file or directory in Amazon Simple Storage
2104
+ # Service (Amazon S3).
2105
+ # @return [String]
2106
+ #
2107
+ # @!attribute [rw] created_by_iam_user
2108
+ # The AWS user account that invoked the evaluation. The account type
2109
+ # can be either an AWS root account or an AWS Identity and Access
2110
+ # Management (IAM) user account.
2111
+ # @return [String]
2112
+ #
2113
+ # @!attribute [rw] created_at
2114
+ # The time that the `Evaluation` was created. The time is expressed in
2115
+ # epoch time.
2116
+ # @return [Time]
2117
+ #
2118
+ # @!attribute [rw] last_updated_at
2119
+ # The time of the most recent edit to the `Evaluation`. The time is
2120
+ # expressed in epoch time.
2121
+ # @return [Time]
2122
+ #
2123
+ # @!attribute [rw] name
2124
+ # A user-supplied name or description of the `Evaluation`.
2125
+ # @return [String]
2126
+ #
2127
+ # @!attribute [rw] status
2128
+ # The status of the evaluation. This element can have one of the
2129
+ # following values:
2130
+ #
2131
+ # * `PENDING` - Amazon Machine Language (Amazon ML) submitted a
2132
+ # request to evaluate an `MLModel`.
2133
+ # * `INPROGRESS` - The evaluation is underway.
2134
+ # * `FAILED` - The request to evaluate an `MLModel` did not run to
2135
+ # completion. It is not usable.
2136
+ # * `COMPLETED` - The evaluation process completed successfully.
2137
+ # * `DELETED` - The `Evaluation` is marked as deleted. It is not
2138
+ # usable.
2139
+ # @return [String]
2140
+ #
2141
+ # @!attribute [rw] performance_metrics
2142
+ # Measurements of how well the `MLModel` performed using observations
2143
+ # referenced by the `DataSource`. One of the following metric is
2144
+ # returned based on the type of the `MLModel`\:
2145
+ #
2146
+ # * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
2147
+ # technique to measure performance.
2148
+ #
2149
+ # * RegressionRMSE: A regression `MLModel` uses the Root Mean Square
2150
+ # Error (RMSE) technique to measure performance. RMSE measures the
2151
+ # difference between predicted and actual values for a single
2152
+ # variable.
2153
+ #
2154
+ # * MulticlassAvgFScore: A multiclass `MLModel` uses the F1 score
2155
+ # technique to measure performance.
2156
+ #
2157
+ # For more information about performance metrics, please see the
2158
+ # [Amazon Machine Learning Developer Guide][1].
2159
+ #
2160
+ #
2161
+ #
2162
+ # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
2163
+ # @return [Types::PerformanceMetrics]
2164
+ #
2165
+ # @!attribute [rw] log_uri
2166
+ # A link to the file that contains logs of the `CreateEvaluation`
2167
+ # operation.
2168
+ # @return [String]
2169
+ #
2170
+ # @!attribute [rw] message
2171
+ # A description of the most recent details about evaluating the
2172
+ # `MLModel`.
2173
+ # @return [String]
2174
+ #
2175
+ # @!attribute [rw] compute_time
2176
+ # The approximate CPU time in milliseconds that Amazon Machine
2177
+ # Learning spent processing the `Evaluation`, normalized and scaled on
2178
+ # computation resources. `ComputeTime` is only available if the
2179
+ # `Evaluation` is in the `COMPLETED` state.
2180
+ # @return [Integer]
2181
+ #
2182
+ # @!attribute [rw] finished_at
2183
+ # The epoch time when Amazon Machine Learning marked the `Evaluation`
2184
+ # as `COMPLETED` or `FAILED`. `FinishedAt` is only available when the
2185
+ # `Evaluation` is in the `COMPLETED` or `FAILED` state.
2186
+ # @return [Time]
2187
+ #
2188
+ # @!attribute [rw] started_at
2189
+ # The epoch time when Amazon Machine Learning marked the `Evaluation`
2190
+ # as `INPROGRESS`. `StartedAt` isn't available if the `Evaluation` is
2191
+ # in the `PENDING` state.
2192
+ # @return [Time]
2193
+ class GetEvaluationOutput < Struct.new(
2194
+ :evaluation_id,
2195
+ :ml_model_id,
2196
+ :evaluation_data_source_id,
2197
+ :input_data_location_s3,
2198
+ :created_by_iam_user,
2199
+ :created_at,
2200
+ :last_updated_at,
2201
+ :name,
2202
+ :status,
2203
+ :performance_metrics,
2204
+ :log_uri,
2205
+ :message,
2206
+ :compute_time,
2207
+ :finished_at,
2208
+ :started_at)
2209
+ include Aws::Structure
2210
+ end
2211
+
2212
+ # @note When making an API call, pass GetMLModelInput
2213
+ # data as a hash:
2214
+ #
2215
+ # {
2216
+ # ml_model_id: "EntityId", # required
2217
+ # verbose: false,
2218
+ # }
2219
+ # @!attribute [rw] ml_model_id
2220
+ # The ID assigned to the `MLModel` at creation.
2221
+ # @return [String]
2222
+ #
2223
+ # @!attribute [rw] verbose
2224
+ # Specifies whether the `GetMLModel` operation should return `Recipe`.
2225
+ #
2226
+ # If true, `Recipe` is returned.
2227
+ #
2228
+ # If false, `Recipe` is not returned.
2229
+ # @return [Boolean]
2230
+ class GetMLModelInput < Struct.new(
2231
+ :ml_model_id,
2232
+ :verbose)
2233
+ include Aws::Structure
2234
+ end
2235
+
2236
+ # Represents the output of a `GetMLModel` operation, and provides
2237
+ # detailed information about a `MLModel`.
2238
+ # @!attribute [rw] ml_model_id
2239
+ # The MLModel ID<?oxy\_insert\_start author="annbech"
2240
+ # timestamp="20160328T151251-0700">,<?oxy\_insert\_end> which is
2241
+ # same as the `MLModelId` in the request.
2242
+ # @return [String]
2243
+ #
2244
+ # @!attribute [rw] training_data_source_id
2245
+ # The ID of the training `DataSource`.
2246
+ # @return [String]
2247
+ #
2248
+ # @!attribute [rw] created_by_iam_user
2249
+ # The AWS user account from which the `MLModel` was created. The
2250
+ # account type can be either an AWS root account or an AWS Identity
2251
+ # and Access Management (IAM) user account.
2252
+ # @return [String]
2253
+ #
2254
+ # @!attribute [rw] created_at
2255
+ # The time that the `MLModel` was created. The time is expressed in
2256
+ # epoch time.
2257
+ # @return [Time]
2258
+ #
2259
+ # @!attribute [rw] last_updated_at
2260
+ # The time of the most recent edit to the `MLModel`. The time is
2261
+ # expressed in epoch time.
2262
+ # @return [Time]
2263
+ #
2264
+ # @!attribute [rw] name
2265
+ # A user-supplied name or description of the `MLModel`.
2266
+ # @return [String]
2267
+ #
2268
+ # @!attribute [rw] status
2269
+ # The current status of the `MLModel`. This element can have one of
2270
+ # the following values:
2271
+ #
2272
+ # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
2273
+ # request to describe a `MLModel`.
2274
+ # * `INPROGRESS` - The request is processing.
2275
+ # * `FAILED` - The request did not run to completion. The ML model
2276
+ # isn't usable.
2277
+ # * `COMPLETED` - The request completed successfully.
2278
+ # * `DELETED` - The `MLModel` is marked as deleted. It isn't usable.
2279
+ # @return [String]
2280
+ #
2281
+ # @!attribute [rw] size_in_bytes
2282
+ # Long integer type that is a 64-bit signed number.
2283
+ # @return [Integer]
2284
+ #
2285
+ # @!attribute [rw] endpoint_info
2286
+ # The current endpoint of the `MLModel`
2287
+ # @return [Types::RealtimeEndpointInfo]
2288
+ #
2289
+ # @!attribute [rw] training_parameters
2290
+ # A list of the training parameters in the `MLModel`. The list is
2291
+ # implemented as a map of key-value pairs.
2292
+ #
2293
+ # The following is the current set of training parameters:
2294
+ #
2295
+ # * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the
2296
+ # model. Depending on the input data, the size of the model might
2297
+ # affect its performance.
2298
+ #
2299
+ # The value is an integer that ranges from `100000` to `2147483648`.
2300
+ # The default value is `33554432`.
2301
+ #
2302
+ # * `sgd.maxPasses` - The number of times that the training process
2303
+ # traverses the observations to build the `MLModel`. The value is an
2304
+ # integer that ranges from `1` to `10000`. The default value is
2305
+ # `10`.
2306
+ #
2307
+ # * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
2308
+ # Shuffling data improves a model's ability to find the optimal
2309
+ # solution for a variety of data types. The valid values are `auto`
2310
+ # and `none`. The default value is `none`. We strongly recommend
2311
+ # that you shuffle your data.
2312
+ #
2313
+ # * `sgd.l1RegularizationAmount` - The coefficient regularization L1
2314
+ # norm. It controls overfitting the data by penalizing large
2315
+ # coefficients. This tends to drive coefficients to zero, resulting
2316
+ # in a sparse feature set. If you use this parameter, start by
2317
+ # specifying a small value, such as `1.0E-08`.
2318
+ #
2319
+ # The value is a double that ranges from `0` to `MAX_DOUBLE`. The
2320
+ # default is to not use L1 normalization. This parameter can't be
2321
+ # used when `L2` is specified. Use this parameter sparingly.
2322
+ #
2323
+ # * `sgd.l2RegularizationAmount` - The coefficient regularization L2
2324
+ # norm. It controls overfitting the data by penalizing large
2325
+ # coefficients. This tends to drive coefficients to small, nonzero
2326
+ # values. If you use this parameter, start by specifying a small
2327
+ # value, such as `1.0E-08`.
2328
+ #
2329
+ # The value is a double that ranges from `0` to `MAX_DOUBLE`. The
2330
+ # default is to not use L2 normalization. This parameter can't be
2331
+ # used when `L1` is specified. Use this parameter sparingly.
2332
+ # @return [Hash<String,String>]
2333
+ #
2334
+ # @!attribute [rw] input_data_location_s3
2335
+ # The location of the data file or directory in Amazon Simple Storage
2336
+ # Service (Amazon S3).
2337
+ # @return [String]
2338
+ #
2339
+ # @!attribute [rw] ml_model_type
2340
+ # Identifies the `MLModel` category. The following are the available
2341
+ # types:
2342
+ #
2343
+ # * REGRESSION -- Produces a numeric result. For example, "What price
2344
+ # should a house be listed at?"
2345
+ # * BINARY -- Produces one of two possible results. For example, "Is
2346
+ # this an e-commerce website?"
2347
+ # * MULTICLASS -- Produces one of several possible results. For
2348
+ # example, "Is this a HIGH, LOW or MEDIUM risk trade?"
2349
+ # @return [String]
2350
+ #
2351
+ # @!attribute [rw] score_threshold
2352
+ # The scoring threshold is used in binary classification
2353
+ # `MLModel`<?oxy\_insert\_start author="laurama"
2354
+ # timestamp="20160329T114851-0700"> <?oxy\_insert\_end>models. It
2355
+ # marks the boundary between a positive prediction and a negative
2356
+ # prediction.
2357
+ #
2358
+ # Output values greater than or equal to the threshold receive a
2359
+ # positive result from the MLModel, such as `true`. Output values less
2360
+ # than the threshold receive a negative response from the MLModel,
2361
+ # such as `false`.
2362
+ # @return [Float]
2363
+ #
2364
+ # @!attribute [rw] score_threshold_last_updated_at
2365
+ # The time of the most recent edit to the `ScoreThreshold`. The time
2366
+ # is expressed in epoch time.
2367
+ # @return [Time]
2368
+ #
2369
+ # @!attribute [rw] log_uri
2370
+ # A link to the file that contains logs of the `CreateMLModel`
2371
+ # operation.
2372
+ # @return [String]
2373
+ #
2374
+ # @!attribute [rw] message
2375
+ # A description of the most recent details about accessing the
2376
+ # `MLModel`.
2377
+ # @return [String]
2378
+ #
2379
+ # @!attribute [rw] compute_time
2380
+ # The approximate CPU time in milliseconds that Amazon Machine
2381
+ # Learning spent processing the `MLModel`, normalized and scaled on
2382
+ # computation resources. `ComputeTime` is only available if the
2383
+ # `MLModel` is in the `COMPLETED` state.
2384
+ # @return [Integer]
2385
+ #
2386
+ # @!attribute [rw] finished_at
2387
+ # The epoch time when Amazon Machine Learning marked the `MLModel` as
2388
+ # `COMPLETED` or `FAILED`. `FinishedAt` is only available when the
2389
+ # `MLModel` is in the `COMPLETED` or `FAILED` state.
2390
+ # @return [Time]
2391
+ #
2392
+ # @!attribute [rw] started_at
2393
+ # The epoch time when Amazon Machine Learning marked the `MLModel` as
2394
+ # `INPROGRESS`. `StartedAt` isn't available if the `MLModel` is in
2395
+ # the `PENDING` state.
2396
+ # @return [Time]
2397
+ #
2398
+ # @!attribute [rw] recipe
2399
+ # The recipe to use when training the `MLModel`. The `Recipe` provides
2400
+ # detailed information about the observation data to use during
2401
+ # training, and manipulations to perform on the observation data
2402
+ # during training.
2403
+ #
2404
+ # <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
2405
+ #
2406
+ # </note>
2407
+ # @return [String]
2408
+ #
2409
+ # @!attribute [rw] schema
2410
+ # The schema used by all of the data files referenced by the
2411
+ # `DataSource`.
2412
+ #
2413
+ # <note markdown="1"><title>Note</title> This parameter is provided as part of the verbose format.
2414
+ #
2415
+ # </note>
2416
+ # @return [String]
2417
+ class GetMLModelOutput < Struct.new(
2418
+ :ml_model_id,
2419
+ :training_data_source_id,
2420
+ :created_by_iam_user,
2421
+ :created_at,
2422
+ :last_updated_at,
2423
+ :name,
2424
+ :status,
2425
+ :size_in_bytes,
2426
+ :endpoint_info,
2427
+ :training_parameters,
2428
+ :input_data_location_s3,
2429
+ :ml_model_type,
2430
+ :score_threshold,
2431
+ :score_threshold_last_updated_at,
2432
+ :log_uri,
2433
+ :message,
2434
+ :compute_time,
2435
+ :finished_at,
2436
+ :started_at,
2437
+ :recipe,
2438
+ :schema)
2439
+ include Aws::Structure
2440
+ end
2441
+
2442
+ # Represents the output of a `GetMLModel` operation.
2443
+ #
2444
+ # The content consists of the detailed metadata and the current status
2445
+ # of the `MLModel`.
2446
+ # @!attribute [rw] ml_model_id
2447
+ # The ID assigned to the `MLModel` at creation.
2448
+ # @return [String]
2449
+ #
2450
+ # @!attribute [rw] training_data_source_id
2451
+ # The ID of the training `DataSource`. The `CreateMLModel` operation
2452
+ # uses the `TrainingDataSourceId`.
2453
+ # @return [String]
2454
+ #
2455
+ # @!attribute [rw] created_by_iam_user
2456
+ # The AWS user account from which the `MLModel` was created. The
2457
+ # account type can be either an AWS root account or an AWS Identity
2458
+ # and Access Management (IAM) user account.
2459
+ # @return [String]
2460
+ #
2461
+ # @!attribute [rw] created_at
2462
+ # The time that the `MLModel` was created. The time is expressed in
2463
+ # epoch time.
2464
+ # @return [Time]
2465
+ #
2466
+ # @!attribute [rw] last_updated_at
2467
+ # The time of the most recent edit to the `MLModel`. The time is
2468
+ # expressed in epoch time.
2469
+ # @return [Time]
2470
+ #
2471
+ # @!attribute [rw] name
2472
+ # A user-supplied name or description of the `MLModel`.
2473
+ # @return [String]
2474
+ #
2475
+ # @!attribute [rw] status
2476
+ # The current status of an `MLModel`. This element can have one of the
2477
+ # following values:
2478
+ #
2479
+ # * `PENDING` - Amazon Machine Learning (Amazon ML) submitted a
2480
+ # request to create an `MLModel`.
2481
+ # * `INPROGRESS` - The creation process is underway.
2482
+ # * `FAILED` - The request to create an `MLModel` didn't run to
2483
+ # completion. The model isn't usable.
2484
+ # * `COMPLETED` - The creation process completed successfully.
2485
+ # * `DELETED` - The `MLModel` is marked as deleted. It isn't usable.
2486
+ # @return [String]
2487
+ #
2488
+ # @!attribute [rw] size_in_bytes
2489
+ # Long integer type that is a 64-bit signed number.
2490
+ # @return [Integer]
2491
+ #
2492
+ # @!attribute [rw] endpoint_info
2493
+ # The current endpoint of the `MLModel`.
2494
+ # @return [Types::RealtimeEndpointInfo]
2495
+ #
2496
+ # @!attribute [rw] training_parameters
2497
+ # A list of the training parameters in the `MLModel`. The list is
2498
+ # implemented as a map of key-value pairs.
2499
+ #
2500
+ # The following is the current set of training parameters:
2501
+ #
2502
+ # * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the
2503
+ # model. Depending on the input data, the size of the model might
2504
+ # affect its performance.
2505
+ #
2506
+ # The value is an integer that ranges from `100000` to `2147483648`.
2507
+ # The default value is `33554432`.
2508
+ #
2509
+ # * `sgd.maxPasses` - The number of times that the training process
2510
+ # traverses the observations to build the `MLModel`. The value is an
2511
+ # integer that ranges from `1` to `10000`. The default value is
2512
+ # `10`.
2513
+ #
2514
+ # * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
2515
+ # Shuffling the data improves a model's ability to find the optimal
2516
+ # solution for a variety of data types. The valid values are `auto`
2517
+ # and `none`. The default value is `none`.
2518
+ #
2519
+ # * `sgd.l1RegularizationAmount` - The coefficient regularization L1
2520
+ # norm, which controls overfitting the data by penalizing large
2521
+ # coefficients. This parameter tends to drive coefficients to zero,
2522
+ # resulting in sparse feature set. If you use this parameter, start
2523
+ # by specifying a small value, such as `1.0E-08`.
2524
+ #
2525
+ # The value is a double that ranges from `0` to `MAX_DOUBLE`. The
2526
+ # default is to not use L1 normalization. This parameter can't be
2527
+ # used when `L2` is specified. Use this parameter sparingly.
2528
+ #
2529
+ # * `sgd.l2RegularizationAmount` - The coefficient regularization L2
2530
+ # norm, which controls overfitting the data by penalizing large
2531
+ # coefficients. This tends to drive coefficients to small, nonzero
2532
+ # values. If you use this parameter, start by specifying a small
2533
+ # value, such as `1.0E-08`.
2534
+ #
2535
+ # The value is a double that ranges from `0` to `MAX_DOUBLE`. The
2536
+ # default is to not use L2 normalization. This parameter can't be
2537
+ # used when `L1` is specified. Use this parameter sparingly.
2538
+ # @return [Hash<String,String>]
2539
+ #
2540
+ # @!attribute [rw] input_data_location_s3
2541
+ # The location of the data file or directory in Amazon Simple Storage
2542
+ # Service (Amazon S3).
2543
+ # @return [String]
2544
+ #
2545
+ # @!attribute [rw] algorithm
2546
+ # The algorithm used to train the `MLModel`. The following algorithm
2547
+ # is supported:
2548
+ #
2549
+ # * `SGD` -- Stochastic gradient descent. The goal of `SGD` is to
2550
+ # minimize the gradient of the loss function.
2551
+ # @return [String]
2552
+ #
2553
+ # @!attribute [rw] ml_model_type
2554
+ # Identifies the `MLModel` category. The following are the available
2555
+ # types:
2556
+ #
2557
+ # * `REGRESSION` - Produces a numeric result. For example, "What
2558
+ # price should a house be listed at?"
2559
+ # * `BINARY` - Produces one of two possible results. For example, "Is
2560
+ # this a child-friendly web site?".
2561
+ # * `MULTICLASS` - Produces one of several possible results. For
2562
+ # example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy\_delete
2563
+ # author="annbech" timestamp="20160328T175050-0700" content="
2564
+ # "><?oxy\_insert\_start author="annbech"
2565
+ # timestamp="20160328T175050-0700">-<?oxy\_insert\_end>risk
2566
+ # trade?".
2567
+ # @return [String]
2568
+ #
2569
+ # @!attribute [rw] score_threshold
2570
+ # @return [Float]
2571
+ #
2572
+ # @!attribute [rw] score_threshold_last_updated_at
2573
+ # The time of the most recent edit to the `ScoreThreshold`. The time
2574
+ # is expressed in epoch time.
2575
+ # @return [Time]
2576
+ #
2577
+ # @!attribute [rw] message
2578
+ # A description of the most recent details about accessing the
2579
+ # `MLModel`.
2580
+ # @return [String]
2581
+ #
2582
+ # @!attribute [rw] compute_time
2583
+ # Long integer type that is a 64-bit signed number.
2584
+ # @return [Integer]
2585
+ #
2586
+ # @!attribute [rw] finished_at
2587
+ # A timestamp represented in epoch time.
2588
+ # @return [Time]
2589
+ #
2590
+ # @!attribute [rw] started_at
2591
+ # A timestamp represented in epoch time.
2592
+ # @return [Time]
2593
+ class MLModel < Struct.new(
2594
+ :ml_model_id,
2595
+ :training_data_source_id,
2596
+ :created_by_iam_user,
2597
+ :created_at,
2598
+ :last_updated_at,
2599
+ :name,
2600
+ :status,
2601
+ :size_in_bytes,
2602
+ :endpoint_info,
2603
+ :training_parameters,
2604
+ :input_data_location_s3,
2605
+ :algorithm,
2606
+ :ml_model_type,
2607
+ :score_threshold,
2608
+ :score_threshold_last_updated_at,
2609
+ :message,
2610
+ :compute_time,
2611
+ :finished_at,
2612
+ :started_at)
2613
+ include Aws::Structure
2614
+ end
2615
+
2616
+ # Measurements of how well the `MLModel` performed on known
2617
+ # observations. One of the following metrics is returned, based on the
2618
+ # type of the `MLModel`\:
2619
+ #
2620
+ # * BinaryAUC: The binary `MLModel` uses the Area Under the Curve (AUC)
2621
+ # technique to measure performance.
2622
+ #
2623
+ # * RegressionRMSE: The regression `MLModel` uses the Root Mean Square
2624
+ # Error (RMSE) technique to measure performance. RMSE measures the
2625
+ # difference between predicted and actual values for a single
2626
+ # variable.
2627
+ #
2628
+ # * MulticlassAvgFScore: The multiclass `MLModel` uses the F1 score
2629
+ # technique to measure performance.
2630
+ #
2631
+ # For more information about performance metrics, please see the [Amazon
2632
+ # Machine Learning Developer Guide][1].
2633
+ #
2634
+ #
2635
+ #
2636
+ # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
2637
+ # @!attribute [rw] properties
2638
+ # @return [Hash<String,String>]
2639
+ class PerformanceMetrics < Struct.new(
2640
+ :properties)
2641
+ include Aws::Structure
2642
+ end
2643
+
2644
+ # @note When making an API call, pass PredictInput
2645
+ # data as a hash:
2646
+ #
2647
+ # {
2648
+ # ml_model_id: "EntityId", # required
2649
+ # record: { # required
2650
+ # "VariableName" => "VariableValue",
2651
+ # },
2652
+ # predict_endpoint: "VipURL", # required
2653
+ # }
2654
+ # @!attribute [rw] ml_model_id
2655
+ # A unique identifier of the `MLModel`.
2656
+ # @return [String]
2657
+ #
2658
+ # @!attribute [rw] record
2659
+ # A map of variable name-value pairs that represent an observation.
2660
+ # @return [Hash<String,String>]
2661
+ #
2662
+ # @!attribute [rw] predict_endpoint
2663
+ # @return [String]
2664
+ class PredictInput < Struct.new(
2665
+ :ml_model_id,
2666
+ :record,
2667
+ :predict_endpoint)
2668
+ include Aws::Structure
2669
+ end
2670
+
2671
+ # @!attribute [rw] prediction
2672
+ # The output from a `Predict` operation:
2673
+ #
2674
+ # * `Details` - Contains the following attributes:
2675
+ # `DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY |
2676
+ # MULTICLASS` `DetailsAttributes.ALGORITHM - SGD`
2677
+ #
2678
+ # * `PredictedLabel` - Present for either a `BINARY` or `MULTICLASS`
2679
+ # `MLModel` request.
2680
+ #
2681
+ # * `PredictedScores` - Contains the raw classification score
2682
+ # corresponding to each label.
2683
+ #
2684
+ # * `PredictedValue` - Present for a `REGRESSION` `MLModel` request.
2685
+ # @return [Types::Prediction]
2686
+ class PredictOutput < Struct.new(
2687
+ :prediction)
2688
+ include Aws::Structure
2689
+ end
2690
+
2691
+ # The output from a `Predict` operation:
2692
+ #
2693
+ # * `Details` - Contains the following attributes:
2694
+ # `DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY |
2695
+ # MULTICLASS` `DetailsAttributes.ALGORITHM - SGD`
2696
+ #
2697
+ # * `PredictedLabel` - Present for either a `BINARY` or `MULTICLASS`
2698
+ # `MLModel` request.
2699
+ #
2700
+ # * `PredictedScores` - Contains the raw classification score
2701
+ # corresponding to each label.
2702
+ #
2703
+ # * `PredictedValue` - Present for a `REGRESSION` `MLModel` request.
2704
+ # @!attribute [rw] predicted_label
2705
+ # The prediction label for either a `BINARY` or `MULTICLASS`
2706
+ # `MLModel`.
2707
+ # @return [String]
2708
+ #
2709
+ # @!attribute [rw] predicted_value
2710
+ # The prediction value for `REGRESSION` `MLModel`.
2711
+ # @return [Float]
2712
+ #
2713
+ # @!attribute [rw] predicted_scores
2714
+ # Provides the raw classification score corresponding to each label.
2715
+ # @return [Hash<String,Float>]
2716
+ #
2717
+ # @!attribute [rw] details
2718
+ # Provides any additional details regarding the prediction.
2719
+ # @return [Hash<String,String>]
2720
+ class Prediction < Struct.new(
2721
+ :predicted_label,
2722
+ :predicted_value,
2723
+ :predicted_scores,
2724
+ :details)
2725
+ include Aws::Structure
2726
+ end
2727
+
2728
+ # The data specification of an Amazon Relational Database Service
2729
+ # (Amazon RDS) `DataSource`.
2730
+ # @note When making an API call, pass RDSDataSpec
2731
+ # data as a hash:
2732
+ #
2733
+ # {
2734
+ # database_information: { # required
2735
+ # instance_identifier: "RDSInstanceIdentifier", # required
2736
+ # database_name: "RDSDatabaseName", # required
2737
+ # },
2738
+ # select_sql_query: "RDSSelectSqlQuery", # required
2739
+ # database_credentials: { # required
2740
+ # username: "RDSDatabaseUsername", # required
2741
+ # password: "RDSDatabasePassword", # required
2742
+ # },
2743
+ # s3_staging_location: "S3Url", # required
2744
+ # data_rearrangement: "DataRearrangement",
2745
+ # data_schema: "DataSchema",
2746
+ # data_schema_uri: "S3Url",
2747
+ # resource_role: "EDPResourceRole", # required
2748
+ # service_role: "EDPServiceRole", # required
2749
+ # subnet_id: "EDPSubnetId", # required
2750
+ # security_group_ids: ["EDPSecurityGroupId"], # required
2751
+ # }
2752
+ # @!attribute [rw] database_information
2753
+ # Describes the `DatabaseName` and `InstanceIdentifier` of an Amazon
2754
+ # RDS database.
2755
+ # @return [Types::RDSDatabase]
2756
+ #
2757
+ # @!attribute [rw] select_sql_query
2758
+ # The query that is used to retrieve the observation data for the
2759
+ # `DataSource`.
2760
+ # @return [String]
2761
+ #
2762
+ # @!attribute [rw] database_credentials
2763
+ # The AWS Identity and Access Management (IAM) credentials that are
2764
+ # used connect to the Amazon RDS database.
2765
+ # @return [Types::RDSDatabaseCredentials]
2766
+ #
2767
+ # @!attribute [rw] s3_staging_location
2768
+ # The Amazon S3 location for staging Amazon RDS data. The data
2769
+ # retrieved from Amazon RDS using `SelectSqlQuery` is stored in this
2770
+ # location.
2771
+ # @return [String]
2772
+ #
2773
+ # @!attribute [rw] data_rearrangement
2774
+ # A JSON string that represents the splitting and rearrangement
2775
+ # processing to be applied to a `DataSource`. If the
2776
+ # `DataRearrangement` parameter is not provided, all of the input data
2777
+ # is used to create the `Datasource`.
2778
+ #
2779
+ # There are multiple parameters that control what data is used to
2780
+ # create a datasource:
2781
+ #
2782
+ # * **`percentBegin`**
2783
+ #
2784
+ # Use `percentBegin` to indicate the beginning of the range of the
2785
+ # data used to create the Datasource. If you do not include
2786
+ # `percentBegin` and `percentEnd`, Amazon ML includes all of the
2787
+ # data when creating the datasource.
2788
+ #
2789
+ # * **`percentEnd`**
2790
+ #
2791
+ # Use `percentEnd` to indicate the end of the range of the data used
2792
+ # to create the Datasource. If you do not include `percentBegin` and
2793
+ # `percentEnd`, Amazon ML includes all of the data when creating the
2794
+ # datasource.
2795
+ #
2796
+ # * **`complement`**
2797
+ #
2798
+ # The `complement` parameter instructs Amazon ML to use the data
2799
+ # that is not included in the range of `percentBegin` to
2800
+ # `percentEnd` to create a datasource. The `complement` parameter is
2801
+ # useful if you need to create complementary datasources for
2802
+ # training and evaluation. To create a complementary datasource, use
2803
+ # the same values for `percentBegin` and `percentEnd`, along with
2804
+ # the `complement` parameter.
2805
+ #
2806
+ # For example, the following two datasources do not share any data,
2807
+ # and can be used to train and evaluate a model. The first
2808
+ # datasource has 25 percent of the data, and the second one has 75
2809
+ # percent of the data.
2810
+ #
2811
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
2812
+ # "percentEnd":25\}\}`
2813
+ #
2814
+ # Datasource for training: `\{"splitting":\{"percentBegin":0,
2815
+ # "percentEnd":25, "complement":"true"\}\}`
2816
+ #
2817
+ # * **`strategy`**
2818
+ #
2819
+ # To change how Amazon ML splits the data for a datasource, use the
2820
+ # `strategy` parameter.
2821
+ #
2822
+ # The default value for the `strategy` parameter is `sequential`,
2823
+ # meaning that Amazon ML takes all of the data records between the
2824
+ # `percentBegin` and `percentEnd` parameters for the datasource, in
2825
+ # the order that the records appear in the input data.
2826
+ #
2827
+ # The following two `DataRearrangement` lines are examples of
2828
+ # sequentially ordered training and evaluation datasources:
2829
+ #
2830
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2831
+ # "percentEnd":100, "strategy":"sequential"\}\}`
2832
+ #
2833
+ # Datasource for training: `\{"splitting":\{"percentBegin":70,
2834
+ # "percentEnd":100, "strategy":"sequential",
2835
+ # "complement":"true"\}\}`
2836
+ #
2837
+ # To randomly split the input data into the proportions indicated by
2838
+ # the percentBegin and percentEnd parameters, set the `strategy`
2839
+ # parameter to `random` and provide a string that is used as the
2840
+ # seed value for the random data splitting (for example, you can use
2841
+ # the S3 path to your data as the random seed string). If you choose
2842
+ # the random split strategy, Amazon ML assigns each row of data a
2843
+ # pseudo-random number between 0 and 100, and then selects the rows
2844
+ # that have an assigned number between `percentBegin` and
2845
+ # `percentEnd`. Pseudo-random numbers are assigned using both the
2846
+ # input seed string value and the byte offset as a seed, so changing
2847
+ # the data results in a different split. Any existing ordering is
2848
+ # preserved. The random splitting strategy ensures that variables in
2849
+ # the training and evaluation data are distributed similarly. It is
2850
+ # useful in the cases where the input data may have an implicit sort
2851
+ # order, which would otherwise result in training and evaluation
2852
+ # datasources containing non-similar data records.
2853
+ #
2854
+ # The following two `DataRearrangement` lines are examples of
2855
+ # non-sequentially ordered training and evaluation datasources:
2856
+ #
2857
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
2858
+ # "percentEnd":100, "strategy":"random",
2859
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
2860
+ #
2861
+ # Datasource for training: `\{"splitting":\{"percentBegin":70,
2862
+ # "percentEnd":100, "strategy":"random",
2863
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv",
2864
+ # "complement":"true"\}\}`
2865
+ # @return [String]
2866
+ #
2867
+ # @!attribute [rw] data_schema
2868
+ # A JSON string that represents the schema for an Amazon RDS
2869
+ # `DataSource`. The `DataSchema` defines the structure of the
2870
+ # observation data in the data file(s) referenced in the `DataSource`.
2871
+ #
2872
+ # A `DataSchema` is not required if you specify a `DataSchemaUri`
2873
+ #
2874
+ # Define your `DataSchema` as a series of key-value pairs.
2875
+ # `attributes` and `excludedVariableNames` have an array of key-value
2876
+ # pairs for their value. Use the following format to define your
2877
+ # `DataSchema`.
2878
+ #
2879
+ # \\\{ "version": "1.0",
2880
+ #
2881
+ # "recordAnnotationFieldName": "F1",
2882
+ #
2883
+ # "recordWeightFieldName": "F2",
2884
+ #
2885
+ # "targetFieldName": "F3",
2886
+ #
2887
+ # "dataFormat": "CSV",
2888
+ #
2889
+ # "dataFileContainsHeader": true,
2890
+ #
2891
+ # "attributes": \[
2892
+ #
2893
+ # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
2894
+ # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
2895
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
2896
+ # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
2897
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
2898
+ # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
2899
+ # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
2900
+ # \\}, \\\{ "fieldName": "F8", "fieldType":
2901
+ # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
2902
+ #
2903
+ # "excludedVariableNames": \[ "F6" \] \\}
2904
+ #
2905
+ # <?oxy\_insert\_end>
2906
+ # @return [String]
2907
+ #
2908
+ # @!attribute [rw] data_schema_uri
2909
+ # The Amazon S3 location of the `DataSchema`.
2910
+ # @return [String]
2911
+ #
2912
+ # @!attribute [rw] resource_role
2913
+ # The role (DataPipelineDefaultResourceRole) assumed by an Amazon
2914
+ # Elastic Compute Cloud (Amazon EC2) instance to carry out the copy
2915
+ # operation from Amazon RDS to an Amazon S3 task. For more
2916
+ # information, see [Role templates][1] for data pipelines.
2917
+ #
2918
+ #
2919
+ #
2920
+ # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
2921
+ # @return [String]
2922
+ #
2923
+ # @!attribute [rw] service_role
2924
+ # The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline
2925
+ # service to monitor the progress of the copy task from Amazon RDS to
2926
+ # Amazon S3. For more information, see [Role templates][1] for data
2927
+ # pipelines.
2928
+ #
2929
+ #
2930
+ #
2931
+ # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
2932
+ # @return [String]
2933
+ #
2934
+ # @!attribute [rw] subnet_id
2935
+ # The subnet ID to be used to access a VPC-based RDS DB instance. This
2936
+ # attribute is used by Data Pipeline to carry out the copy task from
2937
+ # Amazon RDS to Amazon S3.
2938
+ # @return [String]
2939
+ #
2940
+ # @!attribute [rw] security_group_ids
2941
+ # The security group IDs to be used to access a VPC-based RDS DB
2942
+ # instance. Ensure that there are appropriate ingress rules set up to
2943
+ # allow access to the RDS DB instance. This attribute is used by Data
2944
+ # Pipeline to carry out the copy operation from Amazon RDS to an
2945
+ # Amazon S3 task.
2946
+ # @return [Array<String>]
2947
+ class RDSDataSpec < Struct.new(
2948
+ :database_information,
2949
+ :select_sql_query,
2950
+ :database_credentials,
2951
+ :s3_staging_location,
2952
+ :data_rearrangement,
2953
+ :data_schema,
2954
+ :data_schema_uri,
2955
+ :resource_role,
2956
+ :service_role,
2957
+ :subnet_id,
2958
+ :security_group_ids)
2959
+ include Aws::Structure
2960
+ end
2961
+
2962
+ # The database details of an Amazon RDS database.
2963
+ # @note When making an API call, pass RDSDatabase
2964
+ # data as a hash:
2965
+ #
2966
+ # {
2967
+ # instance_identifier: "RDSInstanceIdentifier", # required
2968
+ # database_name: "RDSDatabaseName", # required
2969
+ # }
2970
+ # @!attribute [rw] instance_identifier
2971
+ # The ID of an RDS DB instance.
2972
+ # @return [String]
2973
+ #
2974
+ # @!attribute [rw] database_name
2975
+ # The name of a database hosted on an RDS DB instance.
2976
+ # @return [String]
2977
+ class RDSDatabase < Struct.new(
2978
+ :instance_identifier,
2979
+ :database_name)
2980
+ include Aws::Structure
2981
+ end
2982
+
2983
+ # The database credentials to connect to a database on an RDS DB
2984
+ # instance.
2985
+ # @note When making an API call, pass RDSDatabaseCredentials
2986
+ # data as a hash:
2987
+ #
2988
+ # {
2989
+ # username: "RDSDatabaseUsername", # required
2990
+ # password: "RDSDatabasePassword", # required
2991
+ # }
2992
+ # @!attribute [rw] username
2993
+ # The username to be used by Amazon ML to connect to database on an
2994
+ # Amazon RDS instance. The username should have sufficient permissions
2995
+ # to execute an `RDSSelectSqlQuery` query.
2996
+ # @return [String]
2997
+ #
2998
+ # @!attribute [rw] password
2999
+ # The password to be used by Amazon ML to connect to a database on an
3000
+ # RDS DB instance. The password should have sufficient permissions to
3001
+ # execute the `RDSSelectQuery` query.
3002
+ # @return [String]
3003
+ class RDSDatabaseCredentials < Struct.new(
3004
+ :username,
3005
+ :password)
3006
+ include Aws::Structure
3007
+ end
3008
+
3009
+ # The datasource details that are specific to Amazon RDS.
3010
+ # @!attribute [rw] database
3011
+ # The database details required to connect to an Amazon RDS.
3012
+ # @return [Types::RDSDatabase]
3013
+ #
3014
+ # @!attribute [rw] database_user_name
3015
+ # The username to be used by Amazon ML to connect to database on an
3016
+ # Amazon RDS instance. The username should have sufficient permissions
3017
+ # to execute an `RDSSelectSqlQuery` query.
3018
+ # @return [String]
3019
+ #
3020
+ # @!attribute [rw] select_sql_query
3021
+ # The SQL query that is supplied during CreateDataSourceFromRDS.
3022
+ # Returns only if `Verbose` is true in `GetDataSourceInput`.
3023
+ # @return [String]
3024
+ #
3025
+ # @!attribute [rw] resource_role
3026
+ # The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2
3027
+ # instance to carry out the copy task from Amazon RDS to Amazon S3.
3028
+ # For more information, see [Role templates][1] for data pipelines.
3029
+ #
3030
+ #
3031
+ #
3032
+ # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3033
+ # @return [String]
3034
+ #
3035
+ # @!attribute [rw] service_role
3036
+ # The role (DataPipelineDefaultRole) assumed by the Data Pipeline
3037
+ # service to monitor the progress of the copy task from Amazon RDS to
3038
+ # Amazon S3. For more information, see [Role templates][1] for data
3039
+ # pipelines.
3040
+ #
3041
+ #
3042
+ #
3043
+ # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
3044
+ # @return [String]
3045
+ #
3046
+ # @!attribute [rw] data_pipeline_id
3047
+ # The ID of the Data Pipeline instance that is used to carry to copy
3048
+ # data from Amazon RDS to Amazon S3. You can use the ID to find
3049
+ # details about the instance in the Data Pipeline console.
3050
+ # @return [String]
3051
+ class RDSMetadata < Struct.new(
3052
+ :database,
3053
+ :database_user_name,
3054
+ :select_sql_query,
3055
+ :resource_role,
3056
+ :service_role,
3057
+ :data_pipeline_id)
3058
+ include Aws::Structure
3059
+ end
3060
+
3061
+ # Describes the real-time endpoint information for an `MLModel`.
3062
+ # @!attribute [rw] peak_requests_per_second
3063
+ # The maximum processing rate for the real-time endpoint for
3064
+ # `MLModel`, measured in incoming requests per second.
3065
+ # @return [Integer]
3066
+ #
3067
+ # @!attribute [rw] created_at
3068
+ # The time that the request to create the real-time endpoint for the
3069
+ # `MLModel` was received. The time is expressed in epoch time.
3070
+ # @return [Time]
3071
+ #
3072
+ # @!attribute [rw] endpoint_url
3073
+ # The URI that specifies where to send real-time prediction requests
3074
+ # for the `MLModel`.
3075
+ #
3076
+ # <note markdown="1"><title>Note</title> The application must wait until the real-time endpoint is ready
3077
+ # before using this URI.
3078
+ #
3079
+ # </note>
3080
+ # @return [String]
3081
+ #
3082
+ # @!attribute [rw] endpoint_status
3083
+ # The current status of the real-time endpoint for the `MLModel`. This
3084
+ # element can have one of the following values:
3085
+ #
3086
+ # * `NONE` - Endpoint does not exist or was previously deleted.
3087
+ # * `READY` - Endpoint is ready to be used for real-time predictions.
3088
+ # * `UPDATING` - Updating/creating the endpoint.
3089
+ # @return [String]
3090
+ class RealtimeEndpointInfo < Struct.new(
3091
+ :peak_requests_per_second,
3092
+ :created_at,
3093
+ :endpoint_url,
3094
+ :endpoint_status)
3095
+ include Aws::Structure
3096
+ end
3097
+
3098
+ # Describes the data specification of an Amazon Redshift `DataSource`.
3099
+ # @note When making an API call, pass RedshiftDataSpec
3100
+ # data as a hash:
3101
+ #
3102
+ # {
3103
+ # database_information: { # required
3104
+ # database_name: "RedshiftDatabaseName", # required
3105
+ # cluster_identifier: "RedshiftClusterIdentifier", # required
3106
+ # },
3107
+ # select_sql_query: "RedshiftSelectSqlQuery", # required
3108
+ # database_credentials: { # required
3109
+ # username: "RedshiftDatabaseUsername", # required
3110
+ # password: "RedshiftDatabasePassword", # required
3111
+ # },
3112
+ # s3_staging_location: "S3Url", # required
3113
+ # data_rearrangement: "DataRearrangement",
3114
+ # data_schema: "DataSchema",
3115
+ # data_schema_uri: "S3Url",
3116
+ # }
3117
+ # @!attribute [rw] database_information
3118
+ # Describes the `DatabaseName` and `ClusterIdentifier` for an Amazon
3119
+ # Redshift `DataSource`.
3120
+ # @return [Types::RedshiftDatabase]
3121
+ #
3122
+ # @!attribute [rw] select_sql_query
3123
+ # Describes the SQL Query to execute on an Amazon Redshift database
3124
+ # for an Amazon Redshift `DataSource`.
3125
+ # @return [String]
3126
+ #
3127
+ # @!attribute [rw] database_credentials
3128
+ # Describes AWS Identity and Access Management (IAM) credentials that
3129
+ # are used connect to the Amazon Redshift database.
3130
+ # @return [Types::RedshiftDatabaseCredentials]
3131
+ #
3132
+ # @!attribute [rw] s3_staging_location
3133
+ # Describes an Amazon S3 location to store the result set of the
3134
+ # `SelectSqlQuery` query.
3135
+ # @return [String]
3136
+ #
3137
+ # @!attribute [rw] data_rearrangement
3138
+ # A JSON string that represents the splitting and rearrangement
3139
+ # processing to be applied to a `DataSource`. If the
3140
+ # `DataRearrangement` parameter is not provided, all of the input data
3141
+ # is used to create the `Datasource`.
3142
+ #
3143
+ # There are multiple parameters that control what data is used to
3144
+ # create a datasource:
3145
+ #
3146
+ # * **`percentBegin`**
3147
+ #
3148
+ # Use `percentBegin` to indicate the beginning of the range of the
3149
+ # data used to create the Datasource. If you do not include
3150
+ # `percentBegin` and `percentEnd`, Amazon ML includes all of the
3151
+ # data when creating the datasource.
3152
+ #
3153
+ # * **`percentEnd`**
3154
+ #
3155
+ # Use `percentEnd` to indicate the end of the range of the data used
3156
+ # to create the Datasource. If you do not include `percentBegin` and
3157
+ # `percentEnd`, Amazon ML includes all of the data when creating the
3158
+ # datasource.
3159
+ #
3160
+ # * **`complement`**
3161
+ #
3162
+ # The `complement` parameter instructs Amazon ML to use the data
3163
+ # that is not included in the range of `percentBegin` to
3164
+ # `percentEnd` to create a datasource. The `complement` parameter is
3165
+ # useful if you need to create complementary datasources for
3166
+ # training and evaluation. To create a complementary datasource, use
3167
+ # the same values for `percentBegin` and `percentEnd`, along with
3168
+ # the `complement` parameter.
3169
+ #
3170
+ # For example, the following two datasources do not share any data,
3171
+ # and can be used to train and evaluate a model. The first
3172
+ # datasource has 25 percent of the data, and the second one has 75
3173
+ # percent of the data.
3174
+ #
3175
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3176
+ # "percentEnd":25\}\}`
3177
+ #
3178
+ # Datasource for training: `\{"splitting":\{"percentBegin":0,
3179
+ # "percentEnd":25, "complement":"true"\}\}`
3180
+ #
3181
+ # * **`strategy`**
3182
+ #
3183
+ # To change how Amazon ML splits the data for a datasource, use the
3184
+ # `strategy` parameter.
3185
+ #
3186
+ # The default value for the `strategy` parameter is `sequential`,
3187
+ # meaning that Amazon ML takes all of the data records between the
3188
+ # `percentBegin` and `percentEnd` parameters for the datasource, in
3189
+ # the order that the records appear in the input data.
3190
+ #
3191
+ # The following two `DataRearrangement` lines are examples of
3192
+ # sequentially ordered training and evaluation datasources:
3193
+ #
3194
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3195
+ # "percentEnd":100, "strategy":"sequential"\}\}`
3196
+ #
3197
+ # Datasource for training: `\{"splitting":\{"percentBegin":70,
3198
+ # "percentEnd":100, "strategy":"sequential",
3199
+ # "complement":"true"\}\}`
3200
+ #
3201
+ # To randomly split the input data into the proportions indicated by
3202
+ # the percentBegin and percentEnd parameters, set the `strategy`
3203
+ # parameter to `random` and provide a string that is used as the
3204
+ # seed value for the random data splitting (for example, you can use
3205
+ # the S3 path to your data as the random seed string). If you choose
3206
+ # the random split strategy, Amazon ML assigns each row of data a
3207
+ # pseudo-random number between 0 and 100, and then selects the rows
3208
+ # that have an assigned number between `percentBegin` and
3209
+ # `percentEnd`. Pseudo-random numbers are assigned using both the
3210
+ # input seed string value and the byte offset as a seed, so changing
3211
+ # the data results in a different split. Any existing ordering is
3212
+ # preserved. The random splitting strategy ensures that variables in
3213
+ # the training and evaluation data are distributed similarly. It is
3214
+ # useful in the cases where the input data may have an implicit sort
3215
+ # order, which would otherwise result in training and evaluation
3216
+ # datasources containing non-similar data records.
3217
+ #
3218
+ # The following two `DataRearrangement` lines are examples of
3219
+ # non-sequentially ordered training and evaluation datasources:
3220
+ #
3221
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3222
+ # "percentEnd":100, "strategy":"random",
3223
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3224
+ #
3225
+ # Datasource for training: `\{"splitting":\{"percentBegin":70,
3226
+ # "percentEnd":100, "strategy":"random",
3227
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3228
+ # "complement":"true"\}\}`
3229
+ # @return [String]
3230
+ #
3231
+ # @!attribute [rw] data_schema
3232
+ # A JSON string that represents the schema for an Amazon Redshift
3233
+ # `DataSource`. The `DataSchema` defines the structure of the
3234
+ # observation data in the data file(s) referenced in the `DataSource`.
3235
+ #
3236
+ # A `DataSchema` is not required if you specify a `DataSchemaUri`.
3237
+ #
3238
+ # Define your `DataSchema` as a series of key-value pairs.
3239
+ # `attributes` and `excludedVariableNames` have an array of key-value
3240
+ # pairs for their value. Use the following format to define your
3241
+ # `DataSchema`.
3242
+ #
3243
+ # \\\{ "version": "1.0",
3244
+ #
3245
+ # "recordAnnotationFieldName": "F1",
3246
+ #
3247
+ # "recordWeightFieldName": "F2",
3248
+ #
3249
+ # "targetFieldName": "F3",
3250
+ #
3251
+ # "dataFormat": "CSV",
3252
+ #
3253
+ # "dataFileContainsHeader": true,
3254
+ #
3255
+ # "attributes": \[
3256
+ #
3257
+ # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3258
+ # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3259
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3260
+ # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3261
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3262
+ # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3263
+ # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3264
+ # \\}, \\\{ "fieldName": "F8", "fieldType":
3265
+ # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3266
+ #
3267
+ # "excludedVariableNames": \[ "F6" \] \\}
3268
+ # @return [String]
3269
+ #
3270
+ # @!attribute [rw] data_schema_uri
3271
+ # Describes the schema location for an Amazon Redshift `DataSource`.
3272
+ # @return [String]
3273
+ class RedshiftDataSpec < Struct.new(
3274
+ :database_information,
3275
+ :select_sql_query,
3276
+ :database_credentials,
3277
+ :s3_staging_location,
3278
+ :data_rearrangement,
3279
+ :data_schema,
3280
+ :data_schema_uri)
3281
+ include Aws::Structure
3282
+ end
3283
+
3284
+ # Describes the database details required to connect to an Amazon
3285
+ # Redshift database.
3286
+ # @note When making an API call, pass RedshiftDatabase
3287
+ # data as a hash:
3288
+ #
3289
+ # {
3290
+ # database_name: "RedshiftDatabaseName", # required
3291
+ # cluster_identifier: "RedshiftClusterIdentifier", # required
3292
+ # }
3293
+ # @!attribute [rw] database_name
3294
+ # The name of a database hosted on an Amazon Redshift cluster.
3295
+ # @return [String]
3296
+ #
3297
+ # @!attribute [rw] cluster_identifier
3298
+ # The ID of an Amazon Redshift cluster.
3299
+ # @return [String]
3300
+ class RedshiftDatabase < Struct.new(
3301
+ :database_name,
3302
+ :cluster_identifier)
3303
+ include Aws::Structure
3304
+ end
3305
+
3306
+ # Describes the database credentials for connecting to a database on an
3307
+ # Amazon Redshift cluster.
3308
+ # @note When making an API call, pass RedshiftDatabaseCredentials
3309
+ # data as a hash:
3310
+ #
3311
+ # {
3312
+ # username: "RedshiftDatabaseUsername", # required
3313
+ # password: "RedshiftDatabasePassword", # required
3314
+ # }
3315
+ # @!attribute [rw] username
3316
+ # A username to be used by Amazon Machine Learning (Amazon ML)to
3317
+ # connect to a database on an Amazon Redshift cluster. The username
3318
+ # should have sufficient permissions to execute the
3319
+ # `RedshiftSelectSqlQuery` query. The username should be valid for an
3320
+ # Amazon Redshift [USER][1].
3321
+ #
3322
+ #
3323
+ #
3324
+ # [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3325
+ # @return [String]
3326
+ #
3327
+ # @!attribute [rw] password
3328
+ # A password to be used by Amazon ML to connect to a database on an
3329
+ # Amazon Redshift cluster. The password should have sufficient
3330
+ # permissions to execute a `RedshiftSelectSqlQuery` query. The
3331
+ # password should be valid for an Amazon Redshift [USER][1].
3332
+ #
3333
+ #
3334
+ #
3335
+ # [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3336
+ # @return [String]
3337
+ class RedshiftDatabaseCredentials < Struct.new(
3338
+ :username,
3339
+ :password)
3340
+ include Aws::Structure
3341
+ end
3342
+
3343
+ # Describes the `DataSource` details specific to Amazon Redshift.
3344
+ # @!attribute [rw] redshift_database
3345
+ # Describes the database details required to connect to an Amazon
3346
+ # Redshift database.
3347
+ # @return [Types::RedshiftDatabase]
3348
+ #
3349
+ # @!attribute [rw] database_user_name
3350
+ # A username to be used by Amazon Machine Learning (Amazon ML)to
3351
+ # connect to a database on an Amazon Redshift cluster. The username
3352
+ # should have sufficient permissions to execute the
3353
+ # `RedshiftSelectSqlQuery` query. The username should be valid for an
3354
+ # Amazon Redshift [USER][1].
3355
+ #
3356
+ #
3357
+ #
3358
+ # [1]: http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html
3359
+ # @return [String]
3360
+ #
3361
+ # @!attribute [rw] select_sql_query
3362
+ # The SQL query that is specified during CreateDataSourceFromRedshift.
3363
+ # Returns only if `Verbose` is true in GetDataSourceInput.
3364
+ # @return [String]
3365
+ class RedshiftMetadata < Struct.new(
3366
+ :redshift_database,
3367
+ :database_user_name,
3368
+ :select_sql_query)
3369
+ include Aws::Structure
3370
+ end
3371
+
3372
+ # Describes the data specification of a `DataSource`.
3373
+ # @note When making an API call, pass S3DataSpec
3374
+ # data as a hash:
3375
+ #
3376
+ # {
3377
+ # data_location_s3: "S3Url", # required
3378
+ # data_rearrangement: "DataRearrangement",
3379
+ # data_schema: "DataSchema",
3380
+ # data_schema_location_s3: "S3Url",
3381
+ # }
3382
+ # @!attribute [rw] data_location_s3
3383
+ # The location of the data file(s) used by a `DataSource`. The URI
3384
+ # specifies a data file or an Amazon Simple Storage Service (Amazon
3385
+ # S3) directory or bucket containing data files.
3386
+ # @return [String]
3387
+ #
3388
+ # @!attribute [rw] data_rearrangement
3389
+ # A JSON string that represents the splitting and rearrangement
3390
+ # processing to be applied to a `DataSource`. If the
3391
+ # `DataRearrangement` parameter is not provided, all of the input data
3392
+ # is used to create the `Datasource`.
3393
+ #
3394
+ # There are multiple parameters that control what data is used to
3395
+ # create a datasource:
3396
+ #
3397
+ # * **`percentBegin`**
3398
+ #
3399
+ # Use `percentBegin` to indicate the beginning of the range of the
3400
+ # data used to create the Datasource. If you do not include
3401
+ # `percentBegin` and `percentEnd`, Amazon ML includes all of the
3402
+ # data when creating the datasource.
3403
+ #
3404
+ # * **`percentEnd`**
3405
+ #
3406
+ # Use `percentEnd` to indicate the end of the range of the data used
3407
+ # to create the Datasource. If you do not include `percentBegin` and
3408
+ # `percentEnd`, Amazon ML includes all of the data when creating the
3409
+ # datasource.
3410
+ #
3411
+ # * **`complement`**
3412
+ #
3413
+ # The `complement` parameter instructs Amazon ML to use the data
3414
+ # that is not included in the range of `percentBegin` to
3415
+ # `percentEnd` to create a datasource. The `complement` parameter is
3416
+ # useful if you need to create complementary datasources for
3417
+ # training and evaluation. To create a complementary datasource, use
3418
+ # the same values for `percentBegin` and `percentEnd`, along with
3419
+ # the `complement` parameter.
3420
+ #
3421
+ # For example, the following two datasources do not share any data,
3422
+ # and can be used to train and evaluate a model. The first
3423
+ # datasource has 25 percent of the data, and the second one has 75
3424
+ # percent of the data.
3425
+ #
3426
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":0,
3427
+ # "percentEnd":25\}\}`
3428
+ #
3429
+ # Datasource for training: `\{"splitting":\{"percentBegin":0,
3430
+ # "percentEnd":25, "complement":"true"\}\}`
3431
+ #
3432
+ # * **`strategy`**
3433
+ #
3434
+ # To change how Amazon ML splits the data for a datasource, use the
3435
+ # `strategy` parameter.
3436
+ #
3437
+ # The default value for the `strategy` parameter is `sequential`,
3438
+ # meaning that Amazon ML takes all of the data records between the
3439
+ # `percentBegin` and `percentEnd` parameters for the datasource, in
3440
+ # the order that the records appear in the input data.
3441
+ #
3442
+ # The following two `DataRearrangement` lines are examples of
3443
+ # sequentially ordered training and evaluation datasources:
3444
+ #
3445
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3446
+ # "percentEnd":100, "strategy":"sequential"\}\}`
3447
+ #
3448
+ # Datasource for training: `\{"splitting":\{"percentBegin":70,
3449
+ # "percentEnd":100, "strategy":"sequential",
3450
+ # "complement":"true"\}\}`
3451
+ #
3452
+ # To randomly split the input data into the proportions indicated by
3453
+ # the percentBegin and percentEnd parameters, set the `strategy`
3454
+ # parameter to `random` and provide a string that is used as the
3455
+ # seed value for the random data splitting (for example, you can use
3456
+ # the S3 path to your data as the random seed string). If you choose
3457
+ # the random split strategy, Amazon ML assigns each row of data a
3458
+ # pseudo-random number between 0 and 100, and then selects the rows
3459
+ # that have an assigned number between `percentBegin` and
3460
+ # `percentEnd`. Pseudo-random numbers are assigned using both the
3461
+ # input seed string value and the byte offset as a seed, so changing
3462
+ # the data results in a different split. Any existing ordering is
3463
+ # preserved. The random splitting strategy ensures that variables in
3464
+ # the training and evaluation data are distributed similarly. It is
3465
+ # useful in the cases where the input data may have an implicit sort
3466
+ # order, which would otherwise result in training and evaluation
3467
+ # datasources containing non-similar data records.
3468
+ #
3469
+ # The following two `DataRearrangement` lines are examples of
3470
+ # non-sequentially ordered training and evaluation datasources:
3471
+ #
3472
+ # Datasource for evaluation: `\{"splitting":\{"percentBegin":70,
3473
+ # "percentEnd":100, "strategy":"random",
3474
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv"\}\}`
3475
+ #
3476
+ # Datasource for training: `\{"splitting":\{"percentBegin":70,
3477
+ # "percentEnd":100, "strategy":"random",
3478
+ # "randomSeed"="s3://my_s3_path/bucket/file.csv",
3479
+ # "complement":"true"\}\}`
3480
+ # @return [String]
3481
+ #
3482
+ # @!attribute [rw] data_schema
3483
+ # A JSON string that represents the schema for an Amazon S3
3484
+ # `DataSource`. The `DataSchema` defines the structure of the
3485
+ # observation data in the data file(s) referenced in the `DataSource`.
3486
+ #
3487
+ # You must provide either the `DataSchema` or the
3488
+ # `DataSchemaLocationS3`.
3489
+ #
3490
+ # Define your `DataSchema` as a series of key-value pairs.
3491
+ # `attributes` and `excludedVariableNames` have an array of key-value
3492
+ # pairs for their value. Use the following format to define your
3493
+ # `DataSchema`.
3494
+ #
3495
+ # \\\{ "version": "1.0",
3496
+ #
3497
+ # "recordAnnotationFieldName": "F1",
3498
+ #
3499
+ # "recordWeightFieldName": "F2",
3500
+ #
3501
+ # "targetFieldName": "F3",
3502
+ #
3503
+ # "dataFormat": "CSV",
3504
+ #
3505
+ # "dataFileContainsHeader": true,
3506
+ #
3507
+ # "attributes": \[
3508
+ #
3509
+ # \\\{ "fieldName": "F1", "fieldType": "TEXT" \\}, \\\{
3510
+ # "fieldName": "F2", "fieldType": "NUMERIC" \\}, \\\{
3511
+ # "fieldName": "F3", "fieldType": "CATEGORICAL" \\}, \\\{
3512
+ # "fieldName": "F4", "fieldType": "NUMERIC" \\}, \\\{
3513
+ # "fieldName": "F5", "fieldType": "CATEGORICAL" \\}, \\\{
3514
+ # "fieldName": "F6", "fieldType": "TEXT" \\}, \\\{
3515
+ # "fieldName": "F7", "fieldType": "WEIGHTED\_INT\_SEQUENCE"
3516
+ # \\}, \\\{ "fieldName": "F8", "fieldType":
3517
+ # "WEIGHTED\_STRING\_SEQUENCE" \\} \],
3518
+ #
3519
+ # "excludedVariableNames": \[ "F6" \] \\}
3520
+ #
3521
+ # <?oxy\_insert\_end>
3522
+ # @return [String]
3523
+ #
3524
+ # @!attribute [rw] data_schema_location_s3
3525
+ # Describes the schema location in Amazon S3. You must provide either
3526
+ # the `DataSchema` or the `DataSchemaLocationS3`.
3527
+ # @return [String]
3528
+ class S3DataSpec < Struct.new(
3529
+ :data_location_s3,
3530
+ :data_rearrangement,
3531
+ :data_schema,
3532
+ :data_schema_location_s3)
3533
+ include Aws::Structure
3534
+ end
3535
+
3536
+ # A custom key-value pair associated with an ML object, such as an ML
3537
+ # model.
3538
+ # @note When making an API call, pass Tag
3539
+ # data as a hash:
3540
+ #
3541
+ # {
3542
+ # key: "TagKey",
3543
+ # value: "TagValue",
3544
+ # }
3545
+ # @!attribute [rw] key
3546
+ # A unique identifier for the tag. Valid characters include Unicode
3547
+ # letters, digits, white space, \_, ., /, =, +, -, %, and @.
3548
+ # @return [String]
3549
+ #
3550
+ # @!attribute [rw] value
3551
+ # An optional string, typically used to describe or define the tag.
3552
+ # Valid characters include Unicode letters, digits, white space, \_,
3553
+ # ., /, =, +, -, %, and @.
3554
+ # @return [String]
3555
+ class Tag < Struct.new(
3556
+ :key,
3557
+ :value)
3558
+ include Aws::Structure
3559
+ end
3560
+
3561
+ # @note When making an API call, pass UpdateBatchPredictionInput
3562
+ # data as a hash:
3563
+ #
3564
+ # {
3565
+ # batch_prediction_id: "EntityId", # required
3566
+ # batch_prediction_name: "EntityName", # required
3567
+ # }
3568
+ # @!attribute [rw] batch_prediction_id
3569
+ # The ID assigned to the `BatchPrediction` during creation.
3570
+ # @return [String]
3571
+ #
3572
+ # @!attribute [rw] batch_prediction_name
3573
+ # A new user-supplied name or description of the `BatchPrediction`.
3574
+ # @return [String]
3575
+ class UpdateBatchPredictionInput < Struct.new(
3576
+ :batch_prediction_id,
3577
+ :batch_prediction_name)
3578
+ include Aws::Structure
3579
+ end
3580
+
3581
+ # Represents the output of an `UpdateBatchPrediction` operation.
3582
+ #
3583
+ # You can see the updated content by using the `GetBatchPrediction`
3584
+ # operation.
3585
+ # @!attribute [rw] batch_prediction_id
3586
+ # The ID assigned to the `BatchPrediction` during creation. This value
3587
+ # should be identical to the value of the `BatchPredictionId` in the
3588
+ # request.
3589
+ # @return [String]
3590
+ class UpdateBatchPredictionOutput < Struct.new(
3591
+ :batch_prediction_id)
3592
+ include Aws::Structure
3593
+ end
3594
+
3595
+ # @note When making an API call, pass UpdateDataSourceInput
3596
+ # data as a hash:
3597
+ #
3598
+ # {
3599
+ # data_source_id: "EntityId", # required
3600
+ # data_source_name: "EntityName", # required
3601
+ # }
3602
+ # @!attribute [rw] data_source_id
3603
+ # The ID assigned to the `DataSource` during creation.
3604
+ # @return [String]
3605
+ #
3606
+ # @!attribute [rw] data_source_name
3607
+ # A new user-supplied name or description of the `DataSource` that
3608
+ # will replace the current description.
3609
+ # @return [String]
3610
+ class UpdateDataSourceInput < Struct.new(
3611
+ :data_source_id,
3612
+ :data_source_name)
3613
+ include Aws::Structure
3614
+ end
3615
+
3616
+ # Represents the output of an `UpdateDataSource` operation.
3617
+ #
3618
+ # You can see the updated content by using the `GetBatchPrediction`
3619
+ # operation.
3620
+ # @!attribute [rw] data_source_id
3621
+ # The ID assigned to the `DataSource` during creation. This value
3622
+ # should be identical to the value of the `DataSourceID` in the
3623
+ # request.
3624
+ # @return [String]
3625
+ class UpdateDataSourceOutput < Struct.new(
3626
+ :data_source_id)
3627
+ include Aws::Structure
3628
+ end
3629
+
3630
+ # @note When making an API call, pass UpdateEvaluationInput
3631
+ # data as a hash:
3632
+ #
3633
+ # {
3634
+ # evaluation_id: "EntityId", # required
3635
+ # evaluation_name: "EntityName", # required
3636
+ # }
3637
+ # @!attribute [rw] evaluation_id
3638
+ # The ID assigned to the `Evaluation` during creation.
3639
+ # @return [String]
3640
+ #
3641
+ # @!attribute [rw] evaluation_name
3642
+ # A new user-supplied name or description of the `Evaluation` that
3643
+ # will replace the current content.
3644
+ # @return [String]
3645
+ class UpdateEvaluationInput < Struct.new(
3646
+ :evaluation_id,
3647
+ :evaluation_name)
3648
+ include Aws::Structure
3649
+ end
3650
+
3651
+ # Represents the output of an `UpdateEvaluation` operation.
3652
+ #
3653
+ # You can see the updated content by using the `GetEvaluation`
3654
+ # operation.
3655
+ # @!attribute [rw] evaluation_id
3656
+ # The ID assigned to the `Evaluation` during creation. This value
3657
+ # should be identical to the value of the `Evaluation` in the request.
3658
+ # @return [String]
3659
+ class UpdateEvaluationOutput < Struct.new(
3660
+ :evaluation_id)
3661
+ include Aws::Structure
3662
+ end
3663
+
3664
+ # @note When making an API call, pass UpdateMLModelInput
3665
+ # data as a hash:
3666
+ #
3667
+ # {
3668
+ # ml_model_id: "EntityId", # required
3669
+ # ml_model_name: "EntityName",
3670
+ # score_threshold: 1.0,
3671
+ # }
3672
+ # @!attribute [rw] ml_model_id
3673
+ # The ID assigned to the `MLModel` during creation.
3674
+ # @return [String]
3675
+ #
3676
+ # @!attribute [rw] ml_model_name
3677
+ # A user-supplied name or description of the `MLModel`.
3678
+ # @return [String]
3679
+ #
3680
+ # @!attribute [rw] score_threshold
3681
+ # The `ScoreThreshold` used in binary classification `MLModel` that
3682
+ # marks the boundary between a positive prediction and a negative
3683
+ # prediction.
3684
+ #
3685
+ # Output values greater than or equal to the `ScoreThreshold` receive
3686
+ # a positive result from the `MLModel`, such as `true`. Output values
3687
+ # less than the `ScoreThreshold` receive a negative response from the
3688
+ # `MLModel`, such as `false`.
3689
+ # @return [Float]
3690
+ class UpdateMLModelInput < Struct.new(
3691
+ :ml_model_id,
3692
+ :ml_model_name,
3693
+ :score_threshold)
3694
+ include Aws::Structure
3695
+ end
3696
+
3697
+ # Represents the output of an `UpdateMLModel` operation.
3698
+ #
3699
+ # You can see the updated content by using the `GetMLModel` operation.
3700
+ # @!attribute [rw] ml_model_id
3701
+ # The ID assigned to the `MLModel` during creation. This value should
3702
+ # be identical to the value of the `MLModelID` in the request.
3703
+ # @return [String]
3704
+ class UpdateMLModelOutput < Struct.new(
3705
+ :ml_model_id)
3706
+ include Aws::Structure
3707
+ end
3708
+
3709
+ end
3710
+ end
3711
+ end