aws-sdk-machinelearning 1.0.0.rc1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: 9ba71ed1db314c4ecc1e9971bc9ad657ea98a71b
4
+ data.tar.gz: 27b6212254cac811e498620a1602371f12a45755
5
+ SHA512:
6
+ metadata.gz: b47aeee82d78fd427d620fdb2d3ee27623893a4001512ef555f5e9825ee30bc0558ae986014b4593ba4a0e11f0ee79f4827c32d54e147166f836a3da03801bbc
7
+ data.tar.gz: 0bb0dae5ea3dbe0c7ab243b1c8790010ff3292c2f6446981b37bd8483e4c53a4b32ea15f7aaf6df677bcc4dbd8de5fc3571e4293f1e7e82e317cc8c1c1fba1dc
@@ -0,0 +1,48 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing for info on making contributions:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ require 'aws-sdk-core'
9
+ require 'aws-sigv4'
10
+
11
+ require_relative 'aws-sdk-machinelearning/types'
12
+ require_relative 'aws-sdk-machinelearning/client_api'
13
+ require_relative 'aws-sdk-machinelearning/client'
14
+ require_relative 'aws-sdk-machinelearning/errors'
15
+ require_relative 'aws-sdk-machinelearning/waiters'
16
+ require_relative 'aws-sdk-machinelearning/resource'
17
+ require_relative 'aws-sdk-machinelearning/customizations'
18
+
19
+ # This module provides support for Amazon Machine Learning. This module is available in the
20
+ # `aws-sdk-machinelearning` gem.
21
+ #
22
+ # # Client
23
+ #
24
+ # The {Client} class provides one method for each API operation. Operation
25
+ # methods each accept a hash of request parameters and return a response
26
+ # structure.
27
+ #
28
+ # See {Client} for more information.
29
+ #
30
+ # # Errors
31
+ #
32
+ # Errors returned from Amazon Machine Learning all
33
+ # extend {Errors::ServiceError}.
34
+ #
35
+ # begin
36
+ # # do stuff
37
+ # rescue Aws::MachineLearning::Errors::ServiceError
38
+ # # rescues all service API errors
39
+ # end
40
+ #
41
+ # See {Errors} for more information.
42
+ #
43
+ # @service
44
+ module Aws::MachineLearning
45
+
46
+ GEM_VERSION = '1.0.0.rc1'
47
+
48
+ end
@@ -0,0 +1,2037 @@
1
+ # WARNING ABOUT GENERATED CODE
2
+ #
3
+ # This file is generated. See the contributing for info on making contributions:
4
+ # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
5
+ #
6
+ # WARNING ABOUT GENERATED CODE
7
+
8
+ require 'seahorse/client/plugins/content_length.rb'
9
+ require 'aws-sdk-core/plugins/credentials_configuration.rb'
10
+ require 'aws-sdk-core/plugins/logging.rb'
11
+ require 'aws-sdk-core/plugins/param_converter.rb'
12
+ require 'aws-sdk-core/plugins/param_validator.rb'
13
+ require 'aws-sdk-core/plugins/user_agent.rb'
14
+ require 'aws-sdk-core/plugins/helpful_socket_errors.rb'
15
+ require 'aws-sdk-core/plugins/retry_errors.rb'
16
+ require 'aws-sdk-core/plugins/global_configuration.rb'
17
+ require 'aws-sdk-core/plugins/regional_endpoint.rb'
18
+ require 'aws-sdk-core/plugins/response_paging.rb'
19
+ require 'aws-sdk-core/plugins/stub_responses.rb'
20
+ require 'aws-sdk-core/plugins/idempotency_token.rb'
21
+ require 'aws-sdk-core/plugins/signature_v4.rb'
22
+ require 'aws-sdk-core/plugins/protocols/json_rpc.rb'
23
+ require 'aws-sdk-machinelearning/plugins/predict_endpoint.rb'
24
+
25
+ Aws::Plugins::GlobalConfiguration.add_identifier(:machinelearning)
26
+
27
+ module Aws
28
+ module MachineLearning
29
+ class Client < Seahorse::Client::Base
30
+
31
+ include Aws::ClientStubs
32
+
33
+ @identifier = :machinelearning
34
+
35
+ set_api(ClientApi::API)
36
+
37
+ add_plugin(Seahorse::Client::Plugins::ContentLength)
38
+ add_plugin(Aws::Plugins::CredentialsConfiguration)
39
+ add_plugin(Aws::Plugins::Logging)
40
+ add_plugin(Aws::Plugins::ParamConverter)
41
+ add_plugin(Aws::Plugins::ParamValidator)
42
+ add_plugin(Aws::Plugins::UserAgent)
43
+ add_plugin(Aws::Plugins::HelpfulSocketErrors)
44
+ add_plugin(Aws::Plugins::RetryErrors)
45
+ add_plugin(Aws::Plugins::GlobalConfiguration)
46
+ add_plugin(Aws::Plugins::RegionalEndpoint)
47
+ add_plugin(Aws::Plugins::ResponsePaging)
48
+ add_plugin(Aws::Plugins::StubResponses)
49
+ add_plugin(Aws::Plugins::IdempotencyToken)
50
+ add_plugin(Aws::Plugins::SignatureV4)
51
+ add_plugin(Aws::Plugins::Protocols::JsonRpc)
52
+ add_plugin(Aws::MachineLearning::Plugins::PredictEndpoint)
53
+
54
+ # @option options [required, Aws::CredentialProvider] :credentials
55
+ # Your AWS credentials. This can be an instance of any one of the
56
+ # following classes:
57
+ #
58
+ # * `Aws::Credentials` - Used for configuring static, non-refreshing
59
+ # credentials.
60
+ #
61
+ # * `Aws::InstanceProfileCredentials` - Used for loading credentials
62
+ # from an EC2 IMDS on an EC2 instance.
63
+ #
64
+ # * `Aws::SharedCredentials` - Used for loading credentials from a
65
+ # shared file, such as `~/.aws/config`.
66
+ #
67
+ # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
68
+ #
69
+ # When `:credentials` are not configured directly, the following
70
+ # locations will be searched for credentials:
71
+ #
72
+ # * `Aws.config[:credentials]`
73
+ # * The `:access_key_id`, `:secret_access_key`, and `:session_token` options.
74
+ # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
75
+ # * `~/.aws/credentials`
76
+ # * `~/.aws/config`
77
+ # * EC2 IMDS instance profile - When used by default, the timeouts are
78
+ # very aggressive. Construct and pass an instance of
79
+ # `Aws::InstanceProfileCredentails` to enable retries and extended
80
+ # timeouts.
81
+ # @option options [required, String] :region
82
+ # The AWS region to connect to. The configured `:region` is
83
+ # used to determine the service `:endpoint`. When not passed,
84
+ # a default `:region` is search for in the following locations:
85
+ #
86
+ # * `Aws.config[:region]`
87
+ # * `ENV['AWS_REGION']`
88
+ # * `ENV['AMAZON_REGION']`
89
+ # * `ENV['AWS_DEFAULT_REGION']`
90
+ # * `~/.aws/credentials`
91
+ # * `~/.aws/config`
92
+ # @option options [String] :access_key_id
93
+ # @option options [Boolean] :convert_params (true)
94
+ # When `true`, an attempt is made to coerce request parameters into
95
+ # the required types.
96
+ # @option options [String] :endpoint
97
+ # The client endpoint is normally constructed from the `:region`
98
+ # option. You should only configure an `:endpoint` when connecting
99
+ # to test endpoints. This should be avalid HTTP(S) URI.
100
+ # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
101
+ # The log formatter.
102
+ # @option options [Symbol] :log_level (:info)
103
+ # The log level to send messages to the `:logger` at.
104
+ # @option options [Logger] :logger
105
+ # The Logger instance to send log messages to. If this option
106
+ # is not set, logging will be disabled.
107
+ # @option options [String] :profile ("default")
108
+ # Used when loading credentials from the shared credentials file
109
+ # at HOME/.aws/credentials. When not specified, 'default' is used.
110
+ # @option options [Integer] :retry_limit (3)
111
+ # The maximum number of times to retry failed requests. Only
112
+ # ~ 500 level server errors and certain ~ 400 level client errors
113
+ # are retried. Generally, these are throttling errors, data
114
+ # checksum errors, networking errors, timeout errors and auth
115
+ # errors from expired credentials.
116
+ # @option options [String] :secret_access_key
117
+ # @option options [String] :session_token
118
+ # @option options [Boolean] :simple_json (false)
119
+ # Disables request parameter conversion, validation, and formatting.
120
+ # Also disable response data type conversions. This option is useful
121
+ # when you want to ensure the highest level of performance by
122
+ # avoiding overhead of walking request parameters and response data
123
+ # structures.
124
+ #
125
+ # When `:simple_json` is enabled, the request parameters hash must
126
+ # be formatted exactly as the DynamoDB API expects.
127
+ # @option options [Boolean] :stub_responses (false)
128
+ # Causes the client to return stubbed responses. By default
129
+ # fake responses are generated and returned. You can specify
130
+ # the response data to return or errors to raise by calling
131
+ # {ClientStubs#stub_responses}. See {ClientStubs} for more information.
132
+ #
133
+ # ** Please note ** When response stubbing is enabled, no HTTP
134
+ # requests are made, and retries are disabled.
135
+ # @option options [Boolean] :validate_params (true)
136
+ # When `true`, request parameters are validated before
137
+ # sending the request.
138
+ def initialize(*args)
139
+ super
140
+ end
141
+
142
+ # @!group API Operations
143
+
144
+ # Adds one or more tags to an object, up to a limit of 10. Each tag
145
+ # consists of a key and an optional value. If you add a tag using a key
146
+ # that is already associated with the ML object, `AddTags` updates the
147
+ # tag's value.
148
+ # @option params [required, Array<Types::Tag>] :tags
149
+ # The key-value pairs to use to create tags. If you specify a key
150
+ # without specifying a value, Amazon ML creates a tag with the specified
151
+ # key and a value of null.
152
+ # @option params [required, String] :resource_id
153
+ # The ID of the ML object to tag. For example, `exampleModelId`.
154
+ # @option params [required, String] :resource_type
155
+ # The type of the ML object to tag.
156
+ # @return [Types::AddTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
157
+ #
158
+ # * {Types::AddTagsOutput#resource_id #ResourceId} => String
159
+ # * {Types::AddTagsOutput#resource_type #ResourceType} => String
160
+ #
161
+ # @example Request syntax with placeholder values
162
+ # resp = client.add_tags({
163
+ # tags: [ # required
164
+ # {
165
+ # key: "TagKey",
166
+ # value: "TagValue",
167
+ # },
168
+ # ],
169
+ # resource_id: "EntityId", # required
170
+ # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
171
+ # })
172
+ #
173
+ # @example Response structure
174
+ # resp.resource_id #=> String
175
+ # resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
176
+ # @overload add_tags(params = {})
177
+ # @param [Hash] params ({})
178
+ def add_tags(params = {}, options = {})
179
+ req = build_request(:add_tags, params)
180
+ req.send_request(options)
181
+ end
182
+
183
+ # Generates predictions for a group of observations. The observations to
184
+ # process exist in one or more data files referenced by a `DataSource`.
185
+ # This operation creates a new `BatchPrediction`, and uses an `MLModel`
186
+ # and the data files referenced by the `DataSource` as information
187
+ # sources.
188
+ #
189
+ # `CreateBatchPrediction` is an asynchronous operation. In response to
190
+ # `CreateBatchPrediction`, Amazon Machine Learning (Amazon ML)
191
+ # immediately returns and sets the `BatchPrediction` status to
192
+ # `PENDING`. After the `BatchPrediction` completes, Amazon ML sets the
193
+ # status to `COMPLETED`.
194
+ #
195
+ # You can poll for status updates by using the GetBatchPrediction
196
+ # operation and checking the `Status` parameter of the result. After the
197
+ # `COMPLETED` status appears, the results are available in the location
198
+ # specified by the `OutputUri` parameter.
199
+ # @option params [required, String] :batch_prediction_id
200
+ # A user-supplied ID that uniquely identifies the `BatchPrediction`.
201
+ # @option params [String] :batch_prediction_name
202
+ # A user-supplied name or description of the `BatchPrediction`.
203
+ # `BatchPredictionName` can only use the UTF-8 character set.
204
+ # @option params [required, String] :ml_model_id
205
+ # The ID of the `MLModel` that will generate predictions for the group
206
+ # of observations.
207
+ # @option params [required, String] :batch_prediction_data_source_id
208
+ # The ID of the `DataSource` that points to the group of observations to
209
+ # predict.
210
+ # @option params [required, String] :output_uri
211
+ # The location of an Amazon Simple Storage Service (Amazon S3) bucket or
212
+ # directory to store the batch prediction results. The following
213
+ # substrings are not allowed in the `s3 key` portion of the `outputURI`
214
+ # field: ':', '//', '/./', '/../'.
215
+ #
216
+ # Amazon ML needs permissions to store and retrieve the logs on your
217
+ # behalf. For information about how to set permissions, see the [Amazon
218
+ # Machine Learning Developer Guide][1].
219
+ #
220
+ #
221
+ #
222
+ # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
223
+ # @return [Types::CreateBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
224
+ #
225
+ # * {Types::CreateBatchPredictionOutput#batch_prediction_id #BatchPredictionId} => String
226
+ #
227
+ # @example Request syntax with placeholder values
228
+ # resp = client.create_batch_prediction({
229
+ # batch_prediction_id: "EntityId", # required
230
+ # batch_prediction_name: "EntityName",
231
+ # ml_model_id: "EntityId", # required
232
+ # batch_prediction_data_source_id: "EntityId", # required
233
+ # output_uri: "S3Url", # required
234
+ # })
235
+ #
236
+ # @example Response structure
237
+ # resp.batch_prediction_id #=> String
238
+ # @overload create_batch_prediction(params = {})
239
+ # @param [Hash] params ({})
240
+ def create_batch_prediction(params = {}, options = {})
241
+ req = build_request(:create_batch_prediction, params)
242
+ req.send_request(options)
243
+ end
244
+
245
+ # Creates a `DataSource` object from an [ Amazon Relational Database
246
+ # Service][1] (Amazon RDS). A `DataSource` references data that can be
247
+ # used to perform `CreateMLModel`, `CreateEvaluation`, or
248
+ # `CreateBatchPrediction` operations.
249
+ #
250
+ # `CreateDataSourceFromRDS` is an asynchronous operation. In response to
251
+ # `CreateDataSourceFromRDS`, Amazon Machine Learning (Amazon ML)
252
+ # immediately returns and sets the `DataSource` status to `PENDING`.
253
+ # After the `DataSource` is created and ready for use, Amazon ML sets
254
+ # the `Status` parameter to `COMPLETED`. `DataSource` in the `COMPLETED`
255
+ # or `PENDING` state can be used only to perform `>CreateMLModel`&gt;,
256
+ # `CreateEvaluation`, or `CreateBatchPrediction` operations.
257
+ #
258
+ # If Amazon ML cannot accept the input source, it sets the `Status`
259
+ # parameter to `FAILED` and includes an error message in the `Message`
260
+ # attribute of the `GetDataSource` operation response.
261
+ #
262
+ #
263
+ #
264
+ # [1]: http://aws.amazon.com/rds/
265
+ # @option params [required, String] :data_source_id
266
+ # A user-supplied ID that uniquely identifies the `DataSource`.
267
+ # Typically, an Amazon Resource Number (ARN) becomes the ID for a
268
+ # `DataSource`.
269
+ # @option params [String] :data_source_name
270
+ # A user-supplied name or description of the `DataSource`.
271
+ # @option params [required, Types::RDSDataSpec] :rds_data
272
+ # The data specification of an Amazon RDS `DataSource`\:
273
+ #
274
+ # * DatabaseInformation - * `DatabaseName` - The name of the Amazon RDS
275
+ # database.
276
+ # * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
277
+ # database instance.
278
+ #
279
+ # * DatabaseCredentials - AWS Identity and Access Management (IAM)
280
+ # credentials that are used to connect to the Amazon RDS database.
281
+ #
282
+ # * ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by
283
+ # an EC2 instance to carry out the copy task from Amazon RDS to Amazon
284
+ # Simple Storage Service (Amazon S3). For more information, see [Role
285
+ # templates][1] for data pipelines.
286
+ #
287
+ # * ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS
288
+ # Data Pipeline service to monitor the progress of the copy task from
289
+ # Amazon RDS to Amazon S3. For more information, see [Role
290
+ # templates][1] for data pipelines.
291
+ #
292
+ # * SecurityInfo - The security information to use to access an RDS DB
293
+ # instance. You need to set up appropriate ingress rules for the
294
+ # security entity IDs provided to allow access to the Amazon RDS
295
+ # instance. Specify a \[`SubnetId`, `SecurityGroupIds`\] pair for a
296
+ # VPC-based RDS DB instance.
297
+ #
298
+ # * SelectSqlQuery - A query that is used to retrieve the observation
299
+ # data for the `Datasource`.
300
+ #
301
+ # * S3StagingLocation - The Amazon S3 location for staging Amazon RDS
302
+ # data. The data retrieved from Amazon RDS using `SelectSqlQuery` is
303
+ # stored in this location.
304
+ #
305
+ # * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
306
+ #
307
+ # * DataSchema - A JSON string representing the schema. This is not
308
+ # required if `DataSchemaUri` is specified.
309
+ #
310
+ # * DataRearrangement - A JSON string that represents the splitting and
311
+ # rearrangement requirements for the `Datasource`.
312
+ #
313
+ #
314
+ # Sample - `
315
+ # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
316
+ #
317
+ #
318
+ #
319
+ # [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
320
+ # @option params [required, String] :role_arn
321
+ # The role that Amazon ML assumes on behalf of the user to create and
322
+ # activate a data pipeline in the user's account and copy data using
323
+ # the `SelectSqlQuery` query from Amazon RDS to Amazon S3.
324
+ # @option params [Boolean] :compute_statistics
325
+ # The compute statistics for a `DataSource`. The statistics are
326
+ # generated from the observation data referenced by a `DataSource`.
327
+ # Amazon ML uses the statistics internally during `MLModel` training.
328
+ # This parameter must be set to `true` if the ``DataSource`` needs to be
329
+ # used for `MLModel` training.
330
+ # @return [Types::CreateDataSourceFromRDSOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
331
+ #
332
+ # * {Types::CreateDataSourceFromRDSOutput#data_source_id #DataSourceId} => String
333
+ #
334
+ # @example Request syntax with placeholder values
335
+ # resp = client.create_data_source_from_rds({
336
+ # data_source_id: "EntityId", # required
337
+ # data_source_name: "EntityName",
338
+ # rds_data: { # required
339
+ # database_information: { # required
340
+ # instance_identifier: "RDSInstanceIdentifier", # required
341
+ # database_name: "RDSDatabaseName", # required
342
+ # },
343
+ # select_sql_query: "RDSSelectSqlQuery", # required
344
+ # database_credentials: { # required
345
+ # username: "RDSDatabaseUsername", # required
346
+ # password: "RDSDatabasePassword", # required
347
+ # },
348
+ # s3_staging_location: "S3Url", # required
349
+ # data_rearrangement: "DataRearrangement",
350
+ # data_schema: "DataSchema",
351
+ # data_schema_uri: "S3Url",
352
+ # resource_role: "EDPResourceRole", # required
353
+ # service_role: "EDPServiceRole", # required
354
+ # subnet_id: "EDPSubnetId", # required
355
+ # security_group_ids: ["EDPSecurityGroupId"], # required
356
+ # },
357
+ # role_arn: "RoleARN", # required
358
+ # compute_statistics: false,
359
+ # })
360
+ #
361
+ # @example Response structure
362
+ # resp.data_source_id #=> String
363
+ # @overload create_data_source_from_rds(params = {})
364
+ # @param [Hash] params ({})
365
+ def create_data_source_from_rds(params = {}, options = {})
366
+ req = build_request(:create_data_source_from_rds, params)
367
+ req.send_request(options)
368
+ end
369
+
370
+ # Creates a `DataSource` from a database hosted on an Amazon Redshift
371
+ # cluster. A `DataSource` references data that can be used to perform
372
+ # either `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction`
373
+ # operations.
374
+ #
375
+ # `CreateDataSourceFromRedshift` is an asynchronous operation. In
376
+ # response to `CreateDataSourceFromRedshift`, Amazon Machine Learning
377
+ # (Amazon ML) immediately returns and sets the `DataSource` status to
378
+ # `PENDING`. After the `DataSource` is created and ready for use, Amazon
379
+ # ML sets the `Status` parameter to `COMPLETED`. `DataSource` in
380
+ # `COMPLETED` or `PENDING` states can be used to perform only
381
+ # `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction`
382
+ # operations.
383
+ #
384
+ # If Amazon ML can't accept the input source, it sets the `Status`
385
+ # parameter to `FAILED` and includes an error message in the `Message`
386
+ # attribute of the `GetDataSource` operation response.
387
+ #
388
+ # The observations should be contained in the database hosted on an
389
+ # Amazon Redshift cluster and should be specified by a `SelectSqlQuery`
390
+ # query. Amazon ML executes an `Unload` command in Amazon Redshift to
391
+ # transfer the result set of the `SelectSqlQuery` query to
392
+ # `S3StagingLocation`.
393
+ #
394
+ # After the `DataSource` has been created, it's ready for use in
395
+ # evaluations and batch predictions. If you plan to use the `DataSource`
396
+ # to train an `MLModel`, the `DataSource` also requires a recipe. A
397
+ # recipe describes how each input variable will be used in training an
398
+ # `MLModel`. Will the variable be included or excluded from training?
399
+ # Will the variable be manipulated; for example, will it be combined
400
+ # with another variable or will it be split apart into word
401
+ # combinations? The recipe provides answers to these questions.
402
+ #
403
+ # <?oxy\_insert\_start author="laurama" timestamp="20160406T153842-0700">You can't change an existing datasource, but you can copy and modify
404
+ # the settings from an existing Amazon Redshift datasource to create a
405
+ # new datasource. To do so, call `GetDataSource` for an existing
406
+ # datasource and copy the values to a `CreateDataSource` call. Change
407
+ # the settings that you want to change and make sure that all required
408
+ # fields have the appropriate values.
409
+ #
410
+ # <?oxy\_insert\_end>
411
+ # @option params [required, String] :data_source_id
412
+ # A user-supplied ID that uniquely identifies the `DataSource`.
413
+ # @option params [String] :data_source_name
414
+ # A user-supplied name or description of the `DataSource`.
415
+ # @option params [required, Types::RedshiftDataSpec] :data_spec
416
+ # The data specification of an Amazon Redshift `DataSource`\:
417
+ #
418
+ # * DatabaseInformation - * `DatabaseName` - The name of the Amazon
419
+ # Redshift database.
420
+ # * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
421
+ # cluster.
422
+ #
423
+ # * DatabaseCredentials - The AWS Identity and Access Management (IAM)
424
+ # credentials that are used to connect to the Amazon Redshift
425
+ # database.
426
+ #
427
+ # * SelectSqlQuery - The query that is used to retrieve the observation
428
+ # data for the `Datasource`.
429
+ #
430
+ # * S3StagingLocation - The Amazon Simple Storage Service (Amazon S3)
431
+ # location for staging Amazon Redshift data. The data retrieved from
432
+ # Amazon Redshift using the `SelectSqlQuery` query is stored in this
433
+ # location.
434
+ #
435
+ # * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
436
+ #
437
+ # * DataSchema - A JSON string representing the schema. This is not
438
+ # required if `DataSchemaUri` is specified.
439
+ #
440
+ # * DataRearrangement - A JSON string that represents the splitting and
441
+ # rearrangement requirements for the `DataSource`.
442
+ #
443
+ # Sample - `
444
+ # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
445
+ # @option params [required, String] :role_arn
446
+ # A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
447
+ # the role on behalf of the user to create the following:
448
+ #
449
+ # * A security group to allow Amazon ML to execute the `SelectSqlQuery`
450
+ # query on an Amazon Redshift cluster
451
+ #
452
+ # * An Amazon S3 bucket policy to grant Amazon ML read/write permissions
453
+ # on the `S3StagingLocation`
454
+ # @option params [Boolean] :compute_statistics
455
+ # The compute statistics for a `DataSource`. The statistics are
456
+ # generated from the observation data referenced by a `DataSource`.
457
+ # Amazon ML uses the statistics internally during `MLModel` training.
458
+ # This parameter must be set to `true` if the `DataSource` needs to be
459
+ # used for `MLModel` training.
460
+ # @return [Types::CreateDataSourceFromRedshiftOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
461
+ #
462
+ # * {Types::CreateDataSourceFromRedshiftOutput#data_source_id #DataSourceId} => String
463
+ #
464
+ # @example Request syntax with placeholder values
465
+ # resp = client.create_data_source_from_redshift({
466
+ # data_source_id: "EntityId", # required
467
+ # data_source_name: "EntityName",
468
+ # data_spec: { # required
469
+ # database_information: { # required
470
+ # database_name: "RedshiftDatabaseName", # required
471
+ # cluster_identifier: "RedshiftClusterIdentifier", # required
472
+ # },
473
+ # select_sql_query: "RedshiftSelectSqlQuery", # required
474
+ # database_credentials: { # required
475
+ # username: "RedshiftDatabaseUsername", # required
476
+ # password: "RedshiftDatabasePassword", # required
477
+ # },
478
+ # s3_staging_location: "S3Url", # required
479
+ # data_rearrangement: "DataRearrangement",
480
+ # data_schema: "DataSchema",
481
+ # data_schema_uri: "S3Url",
482
+ # },
483
+ # role_arn: "RoleARN", # required
484
+ # compute_statistics: false,
485
+ # })
486
+ #
487
+ # @example Response structure
488
+ # resp.data_source_id #=> String
489
+ # @overload create_data_source_from_redshift(params = {})
490
+ # @param [Hash] params ({})
491
+ def create_data_source_from_redshift(params = {}, options = {})
492
+ req = build_request(:create_data_source_from_redshift, params)
493
+ req.send_request(options)
494
+ end
495
+
496
+ # Creates a `DataSource` object. A `DataSource` references data that can
497
+ # be used to perform `CreateMLModel`, `CreateEvaluation`, or
498
+ # `CreateBatchPrediction` operations.
499
+ #
500
+ # `CreateDataSourceFromS3` is an asynchronous operation. In response to
501
+ # `CreateDataSourceFromS3`, Amazon Machine Learning (Amazon ML)
502
+ # immediately returns and sets the `DataSource` status to `PENDING`.
503
+ # After the `DataSource` has been created and is ready for use, Amazon
504
+ # ML sets the `Status` parameter to `COMPLETED`. `DataSource` in the
505
+ # `COMPLETED` or `PENDING` state can be used to perform only
506
+ # `CreateMLModel`, `CreateEvaluation` or `CreateBatchPrediction`
507
+ # operations.
508
+ #
509
+ # If Amazon ML can't accept the input source, it sets the `Status`
510
+ # parameter to `FAILED` and includes an error message in the `Message`
511
+ # attribute of the `GetDataSource` operation response.
512
+ #
513
+ # The observation data used in a `DataSource` should be ready to use;
514
+ # that is, it should have a consistent structure, and missing data
515
+ # values should be kept to a minimum. The observation data must reside
516
+ # in one or more .csv files in an Amazon Simple Storage Service (Amazon
517
+ # S3) location, along with a schema that describes the data items by
518
+ # name and type. The same schema must be used for all of the data files
519
+ # referenced by the `DataSource`.
520
+ #
521
+ # After the `DataSource` has been created, it's ready to use in
522
+ # evaluations and batch predictions. If you plan to use the `DataSource`
523
+ # to train an `MLModel`, the `DataSource` also needs a recipe. A recipe
524
+ # describes how each input variable will be used in training an
525
+ # `MLModel`. Will the variable be included or excluded from training?
526
+ # Will the variable be manipulated; for example, will it be combined
527
+ # with another variable or will it be split apart into word
528
+ # combinations? The recipe provides answers to these questions.
529
+ # @option params [required, String] :data_source_id
530
+ # A user-supplied identifier that uniquely identifies the `DataSource`.
531
+ # @option params [String] :data_source_name
532
+ # A user-supplied name or description of the `DataSource`.
533
+ # @option params [required, Types::S3DataSpec] :data_spec
534
+ # The data specification of a `DataSource`\:
535
+ #
536
+ # * DataLocationS3 - The Amazon S3 location of the observation data.
537
+ #
538
+ # * DataSchemaLocationS3 - The Amazon S3 location of the `DataSchema`.
539
+ #
540
+ # * DataSchema - A JSON string representing the schema. This is not
541
+ # required if `DataSchemaUri` is specified.
542
+ #
543
+ # * DataRearrangement - A JSON string that represents the splitting and
544
+ # rearrangement requirements for the `Datasource`.
545
+ #
546
+ # Sample - `
547
+ # "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
548
+ # @option params [Boolean] :compute_statistics
549
+ # The compute statistics for a `DataSource`. The statistics are
550
+ # generated from the observation data referenced by a `DataSource`.
551
+ # Amazon ML uses the statistics internally during `MLModel` training.
552
+ # This parameter must be set to `true` if the ``DataSource`` needs to be
553
+ # used for `MLModel` training.
554
+ # @return [Types::CreateDataSourceFromS3Output] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
555
+ #
556
+ # * {Types::CreateDataSourceFromS3Output#data_source_id #DataSourceId} => String
557
+ #
558
+ # @example Request syntax with placeholder values
559
+ # resp = client.create_data_source_from_s3({
560
+ # data_source_id: "EntityId", # required
561
+ # data_source_name: "EntityName",
562
+ # data_spec: { # required
563
+ # data_location_s3: "S3Url", # required
564
+ # data_rearrangement: "DataRearrangement",
565
+ # data_schema: "DataSchema",
566
+ # data_schema_location_s3: "S3Url",
567
+ # },
568
+ # compute_statistics: false,
569
+ # })
570
+ #
571
+ # @example Response structure
572
+ # resp.data_source_id #=> String
573
+ # @overload create_data_source_from_s3(params = {})
574
+ # @param [Hash] params ({})
575
+ def create_data_source_from_s3(params = {}, options = {})
576
+ req = build_request(:create_data_source_from_s3, params)
577
+ req.send_request(options)
578
+ end
579
+
580
+ # Creates a new `Evaluation` of an `MLModel`. An `MLModel` is evaluated
581
+ # on a set of observations associated to a `DataSource`. Like a
582
+ # `DataSource` for an `MLModel`, the `DataSource` for an `Evaluation`
583
+ # contains values for the `Target Variable`. The `Evaluation` compares
584
+ # the predicted result for each observation to the actual outcome and
585
+ # provides a summary so that you know how effective the `MLModel`
586
+ # functions on the test data. Evaluation generates a relevant
587
+ # performance metric, such as BinaryAUC, RegressionRMSE or
588
+ # MulticlassAvgFScore based on the corresponding `MLModelType`\:
589
+ # `BINARY`, `REGRESSION` or `MULTICLASS`.
590
+ #
591
+ # `CreateEvaluation` is an asynchronous operation. In response to
592
+ # `CreateEvaluation`, Amazon Machine Learning (Amazon ML) immediately
593
+ # returns and sets the evaluation status to `PENDING`. After the
594
+ # `Evaluation` is created and ready for use, Amazon ML sets the status
595
+ # to `COMPLETED`.
596
+ #
597
+ # You can use the `GetEvaluation` operation to check progress of the
598
+ # evaluation during the creation operation.
599
+ # @option params [required, String] :evaluation_id
600
+ # A user-supplied ID that uniquely identifies the `Evaluation`.
601
+ # @option params [String] :evaluation_name
602
+ # A user-supplied name or description of the `Evaluation`.
603
+ # @option params [required, String] :ml_model_id
604
+ # The ID of the `MLModel` to evaluate.
605
+ #
606
+ # The schema used in creating the `MLModel` must match the schema of the
607
+ # `DataSource` used in the `Evaluation`.
608
+ # @option params [required, String] :evaluation_data_source_id
609
+ # The ID of the `DataSource` for the evaluation. The schema of the
610
+ # `DataSource` must match the schema used to create the `MLModel`.
611
+ # @return [Types::CreateEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
612
+ #
613
+ # * {Types::CreateEvaluationOutput#evaluation_id #EvaluationId} => String
614
+ #
615
+ # @example Request syntax with placeholder values
616
+ # resp = client.create_evaluation({
617
+ # evaluation_id: "EntityId", # required
618
+ # evaluation_name: "EntityName",
619
+ # ml_model_id: "EntityId", # required
620
+ # evaluation_data_source_id: "EntityId", # required
621
+ # })
622
+ #
623
+ # @example Response structure
624
+ # resp.evaluation_id #=> String
625
+ # @overload create_evaluation(params = {})
626
+ # @param [Hash] params ({})
627
+ def create_evaluation(params = {}, options = {})
628
+ req = build_request(:create_evaluation, params)
629
+ req.send_request(options)
630
+ end
631
+
632
+ # Creates a new `MLModel` using the `DataSource` and the recipe as
633
+ # information sources.
634
+ #
635
+ # An `MLModel` is nearly immutable. Users can update only the
636
+ # `MLModelName` and the `ScoreThreshold` in an `MLModel` without
637
+ # creating a new `MLModel`.
638
+ #
639
+ # `CreateMLModel` is an asynchronous operation. In response to
640
+ # `CreateMLModel`, Amazon Machine Learning (Amazon ML) immediately
641
+ # returns and sets the `MLModel` status to `PENDING`. After the
642
+ # `MLModel` has been created and ready is for use, Amazon ML sets the
643
+ # status to `COMPLETED`.
644
+ #
645
+ # You can use the `GetMLModel` operation to check the progress of the
646
+ # `MLModel` during the creation operation.
647
+ #
648
+ # `CreateMLModel` requires a `DataSource` with computed statistics,
649
+ # which can be created by setting `ComputeStatistics` to `true` in
650
+ # `CreateDataSourceFromRDS`, `CreateDataSourceFromS3`, or
651
+ # `CreateDataSourceFromRedshift` operations.
652
+ # @option params [required, String] :ml_model_id
653
+ # A user-supplied ID that uniquely identifies the `MLModel`.
654
+ # @option params [String] :ml_model_name
655
+ # A user-supplied name or description of the `MLModel`.
656
+ # @option params [required, String] :ml_model_type
657
+ # The category of supervised learning that this `MLModel` will address.
658
+ # Choose from the following types:
659
+ #
660
+ # * Choose `REGRESSION` if the `MLModel` will be used to predict a
661
+ # numeric value.
662
+ # * Choose `BINARY` if the `MLModel` result has two possible values.
663
+ # * Choose `MULTICLASS` if the `MLModel` result has a limited number of
664
+ # values.
665
+ #
666
+ # For more information, see the [Amazon Machine Learning Developer
667
+ # Guide][1].
668
+ #
669
+ #
670
+ #
671
+ # [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
672
+ # @option params [Hash<String,String>] :parameters
673
+ # A list of the training parameters in the `MLModel`. The list is
674
+ # implemented as a map of key-value pairs.
675
+ #
676
+ # The following is the current set of training parameters:
677
+ #
678
+ # * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the model.
679
+ # Depending on the input data, the size of the model might affect its
680
+ # performance.
681
+ #
682
+ # The value is an integer that ranges from `100000` to `2147483648`.
683
+ # The default value is `33554432`.
684
+ #
685
+ # * `sgd.maxPasses` - The number of times that the training process
686
+ # traverses the observations to build the `MLModel`. The value is an
687
+ # integer that ranges from `1` to `10000`. The default value is `10`.
688
+ #
689
+ # * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
690
+ # Shuffling the data improves a model's ability to find the optimal
691
+ # solution for a variety of data types. The valid values are `auto`
692
+ # and `none`. The default value is `none`. We <?oxy\_insert\_start
693
+ # author="laurama" timestamp="20160329T131121-0700">strongly
694
+ # recommend that you shuffle your data.<?oxy\_insert\_end>
695
+ #
696
+ # * `sgd.l1RegularizationAmount` - The coefficient regularization L1
697
+ # norm. It controls overfitting the data by penalizing large
698
+ # coefficients. This tends to drive coefficients to zero, resulting in
699
+ # a sparse feature set. If you use this parameter, start by specifying
700
+ # a small value, such as `1.0E-08`.
701
+ #
702
+ # The value is a double that ranges from `0` to `MAX_DOUBLE`. The
703
+ # default is to not use L1 normalization. This parameter can't be
704
+ # used when `L2` is specified. Use this parameter sparingly.
705
+ #
706
+ # * `sgd.l2RegularizationAmount` - The coefficient regularization L2
707
+ # norm. It controls overfitting the data by penalizing large
708
+ # coefficients. This tends to drive coefficients to small, nonzero
709
+ # values. If you use this parameter, start by specifying a small
710
+ # value, such as `1.0E-08`.
711
+ #
712
+ # The value is a double that ranges from `0` to `MAX_DOUBLE`. The
713
+ # default is to not use L2 normalization. This parameter can't be
714
+ # used when `L1` is specified. Use this parameter sparingly.
715
+ # @option params [required, String] :training_data_source_id
716
+ # The `DataSource` that points to the training data.
717
+ # @option params [String] :recipe
718
+ # The data recipe for creating the `MLModel`. You must specify either
719
+ # the recipe or its URI. If you don't specify a recipe or its URI,
720
+ # Amazon ML creates a default.
721
+ # @option params [String] :recipe_uri
722
+ # The Amazon Simple Storage Service (Amazon S3) location and file name
723
+ # that contains the `MLModel` recipe. You must specify either the recipe
724
+ # or its URI. If you don't specify a recipe or its URI, Amazon ML
725
+ # creates a default.
726
+ # @return [Types::CreateMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
727
+ #
728
+ # * {Types::CreateMLModelOutput#ml_model_id #MLModelId} => String
729
+ #
730
+ # @example Request syntax with placeholder values
731
+ # resp = client.create_ml_model({
732
+ # ml_model_id: "EntityId", # required
733
+ # ml_model_name: "EntityName",
734
+ # ml_model_type: "REGRESSION", # required, accepts REGRESSION, BINARY, MULTICLASS
735
+ # parameters: {
736
+ # "StringType" => "StringType",
737
+ # },
738
+ # training_data_source_id: "EntityId", # required
739
+ # recipe: "Recipe",
740
+ # recipe_uri: "S3Url",
741
+ # })
742
+ #
743
+ # @example Response structure
744
+ # resp.ml_model_id #=> String
745
+ # @overload create_ml_model(params = {})
746
+ # @param [Hash] params ({})
747
+ def create_ml_model(params = {}, options = {})
748
+ req = build_request(:create_ml_model, params)
749
+ req.send_request(options)
750
+ end
751
+
752
+ # Creates a real-time endpoint for the `MLModel`. The endpoint contains
753
+ # the URI of the `MLModel`; that is, the location to send real-time
754
+ # prediction requests for the specified `MLModel`.
755
+ # @option params [required, String] :ml_model_id
756
+ # The ID assigned to the `MLModel` during creation.
757
+ # @return [Types::CreateRealtimeEndpointOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
758
+ #
759
+ # * {Types::CreateRealtimeEndpointOutput#ml_model_id #MLModelId} => String
760
+ # * {Types::CreateRealtimeEndpointOutput#realtime_endpoint_info #RealtimeEndpointInfo} => Types::RealtimeEndpointInfo
761
+ #
762
+ # @example Request syntax with placeholder values
763
+ # resp = client.create_realtime_endpoint({
764
+ # ml_model_id: "EntityId", # required
765
+ # })
766
+ #
767
+ # @example Response structure
768
+ # resp.ml_model_id #=> String
769
+ # resp.realtime_endpoint_info.peak_requests_per_second #=> Integer
770
+ # resp.realtime_endpoint_info.created_at #=> Time
771
+ # resp.realtime_endpoint_info.endpoint_url #=> String
772
+ # resp.realtime_endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
773
+ # @overload create_realtime_endpoint(params = {})
774
+ # @param [Hash] params ({})
775
+ def create_realtime_endpoint(params = {}, options = {})
776
+ req = build_request(:create_realtime_endpoint, params)
777
+ req.send_request(options)
778
+ end
779
+
780
+ # Assigns the DELETED status to a `BatchPrediction`, rendering it
781
+ # unusable.
782
+ #
783
+ # After using the `DeleteBatchPrediction` operation, you can use the
784
+ # GetBatchPrediction operation to verify that the status of the
785
+ # `BatchPrediction` changed to DELETED.
786
+ #
787
+ # **Caution:** The result of the `DeleteBatchPrediction` operation is
788
+ # irreversible.
789
+ # @option params [required, String] :batch_prediction_id
790
+ # A user-supplied ID that uniquely identifies the `BatchPrediction`.
791
+ # @return [Types::DeleteBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
792
+ #
793
+ # * {Types::DeleteBatchPredictionOutput#batch_prediction_id #BatchPredictionId} => String
794
+ #
795
+ # @example Request syntax with placeholder values
796
+ # resp = client.delete_batch_prediction({
797
+ # batch_prediction_id: "EntityId", # required
798
+ # })
799
+ #
800
+ # @example Response structure
801
+ # resp.batch_prediction_id #=> String
802
+ # @overload delete_batch_prediction(params = {})
803
+ # @param [Hash] params ({})
804
+ def delete_batch_prediction(params = {}, options = {})
805
+ req = build_request(:delete_batch_prediction, params)
806
+ req.send_request(options)
807
+ end
808
+
809
+ # Assigns the DELETED status to a `DataSource`, rendering it unusable.
810
+ #
811
+ # After using the `DeleteDataSource` operation, you can use the
812
+ # GetDataSource operation to verify that the status of the `DataSource`
813
+ # changed to DELETED.
814
+ #
815
+ # **Caution:** The results of the `DeleteDataSource` operation are
816
+ # irreversible.
817
+ # @option params [required, String] :data_source_id
818
+ # A user-supplied ID that uniquely identifies the `DataSource`.
819
+ # @return [Types::DeleteDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
820
+ #
821
+ # * {Types::DeleteDataSourceOutput#data_source_id #DataSourceId} => String
822
+ #
823
+ # @example Request syntax with placeholder values
824
+ # resp = client.delete_data_source({
825
+ # data_source_id: "EntityId", # required
826
+ # })
827
+ #
828
+ # @example Response structure
829
+ # resp.data_source_id #=> String
830
+ # @overload delete_data_source(params = {})
831
+ # @param [Hash] params ({})
832
+ def delete_data_source(params = {}, options = {})
833
+ req = build_request(:delete_data_source, params)
834
+ req.send_request(options)
835
+ end
836
+
837
+ # Assigns the `DELETED` status to an `Evaluation`, rendering it
838
+ # unusable.
839
+ #
840
+ # After invoking the `DeleteEvaluation` operation, you can use the
841
+ # `GetEvaluation` operation to verify that the status of the
842
+ # `Evaluation` changed to `DELETED`.
843
+ #
844
+ # <caution markdown="1"><title>Caution</title> The results of the `DeleteEvaluation` operation are irreversible.
845
+ #
846
+ # </caution>
847
+ # @option params [required, String] :evaluation_id
848
+ # A user-supplied ID that uniquely identifies the `Evaluation` to
849
+ # delete.
850
+ # @return [Types::DeleteEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
851
+ #
852
+ # * {Types::DeleteEvaluationOutput#evaluation_id #EvaluationId} => String
853
+ #
854
+ # @example Request syntax with placeholder values
855
+ # resp = client.delete_evaluation({
856
+ # evaluation_id: "EntityId", # required
857
+ # })
858
+ #
859
+ # @example Response structure
860
+ # resp.evaluation_id #=> String
861
+ # @overload delete_evaluation(params = {})
862
+ # @param [Hash] params ({})
863
+ def delete_evaluation(params = {}, options = {})
864
+ req = build_request(:delete_evaluation, params)
865
+ req.send_request(options)
866
+ end
867
+
868
+ # Assigns the `DELETED` status to an `MLModel`, rendering it unusable.
869
+ #
870
+ # After using the `DeleteMLModel` operation, you can use the
871
+ # `GetMLModel` operation to verify that the status of the `MLModel`
872
+ # changed to DELETED.
873
+ #
874
+ # **Caution:** The result of the `DeleteMLModel` operation is
875
+ # irreversible.
876
+ # @option params [required, String] :ml_model_id
877
+ # A user-supplied ID that uniquely identifies the `MLModel`.
878
+ # @return [Types::DeleteMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
879
+ #
880
+ # * {Types::DeleteMLModelOutput#ml_model_id #MLModelId} => String
881
+ #
882
+ # @example Request syntax with placeholder values
883
+ # resp = client.delete_ml_model({
884
+ # ml_model_id: "EntityId", # required
885
+ # })
886
+ #
887
+ # @example Response structure
888
+ # resp.ml_model_id #=> String
889
+ # @overload delete_ml_model(params = {})
890
+ # @param [Hash] params ({})
891
+ def delete_ml_model(params = {}, options = {})
892
+ req = build_request(:delete_ml_model, params)
893
+ req.send_request(options)
894
+ end
895
+
896
+ # Deletes a real time endpoint of an `MLModel`.
897
+ # @option params [required, String] :ml_model_id
898
+ # The ID assigned to the `MLModel` during creation.
899
+ # @return [Types::DeleteRealtimeEndpointOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
900
+ #
901
+ # * {Types::DeleteRealtimeEndpointOutput#ml_model_id #MLModelId} => String
902
+ # * {Types::DeleteRealtimeEndpointOutput#realtime_endpoint_info #RealtimeEndpointInfo} => Types::RealtimeEndpointInfo
903
+ #
904
+ # @example Request syntax with placeholder values
905
+ # resp = client.delete_realtime_endpoint({
906
+ # ml_model_id: "EntityId", # required
907
+ # })
908
+ #
909
+ # @example Response structure
910
+ # resp.ml_model_id #=> String
911
+ # resp.realtime_endpoint_info.peak_requests_per_second #=> Integer
912
+ # resp.realtime_endpoint_info.created_at #=> Time
913
+ # resp.realtime_endpoint_info.endpoint_url #=> String
914
+ # resp.realtime_endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
915
+ # @overload delete_realtime_endpoint(params = {})
916
+ # @param [Hash] params ({})
917
+ def delete_realtime_endpoint(params = {}, options = {})
918
+ req = build_request(:delete_realtime_endpoint, params)
919
+ req.send_request(options)
920
+ end
921
+
922
+ # Deletes the specified tags associated with an ML object. After this
923
+ # operation is complete, you can't recover deleted tags.
924
+ #
925
+ # If you specify a tag that doesn't exist, Amazon ML ignores it.
926
+ # @option params [required, Array<String>] :tag_keys
927
+ # One or more tags to delete.
928
+ # @option params [required, String] :resource_id
929
+ # The ID of the tagged ML object. For example, `exampleModelId`.
930
+ # @option params [required, String] :resource_type
931
+ # The type of the tagged ML object.
932
+ # @return [Types::DeleteTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
933
+ #
934
+ # * {Types::DeleteTagsOutput#resource_id #ResourceId} => String
935
+ # * {Types::DeleteTagsOutput#resource_type #ResourceType} => String
936
+ #
937
+ # @example Request syntax with placeholder values
938
+ # resp = client.delete_tags({
939
+ # tag_keys: ["TagKey"], # required
940
+ # resource_id: "EntityId", # required
941
+ # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
942
+ # })
943
+ #
944
+ # @example Response structure
945
+ # resp.resource_id #=> String
946
+ # resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
947
+ # @overload delete_tags(params = {})
948
+ # @param [Hash] params ({})
949
+ def delete_tags(params = {}, options = {})
950
+ req = build_request(:delete_tags, params)
951
+ req.send_request(options)
952
+ end
953
+
954
+ # Returns a list of `BatchPrediction` operations that match the search
955
+ # criteria in the request.
956
+ # @option params [String] :filter_variable
957
+ # Use one of the following variables to filter a list of
958
+ # `BatchPrediction`\:
959
+ #
960
+ # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
961
+ # creation date.
962
+ # * `Status` - Sets the search criteria to the `BatchPrediction` status.
963
+ # * `Name` - Sets the search criteria to the contents of the
964
+ # `BatchPrediction`<b> </b> `Name`.
965
+ # * `IAMUser` - Sets the search criteria to the user account that
966
+ # invoked the `BatchPrediction` creation.
967
+ # * `MLModelId` - Sets the search criteria to the `MLModel` used in the
968
+ # `BatchPrediction`.
969
+ # * `DataSourceId` - Sets the search criteria to the `DataSource` used
970
+ # in the `BatchPrediction`.
971
+ # * `DataURI` - Sets the search criteria to the data file(s) used in the
972
+ # `BatchPrediction`. The URL can identify either a file or an Amazon
973
+ # Simple Storage Solution (Amazon S3) bucket or directory.
974
+ # @option params [String] :eq
975
+ # The equal to operator. The `BatchPrediction` results will have
976
+ # `FilterVariable` values that exactly match the value specified with
977
+ # `EQ`.
978
+ # @option params [String] :gt
979
+ # The greater than operator. The `BatchPrediction` results will have
980
+ # `FilterVariable` values that are greater than the value specified with
981
+ # `GT`.
982
+ # @option params [String] :lt
983
+ # The less than operator. The `BatchPrediction` results will have
984
+ # `FilterVariable` values that are less than the value specified with
985
+ # `LT`.
986
+ # @option params [String] :ge
987
+ # The greater than or equal to operator. The `BatchPrediction` results
988
+ # will have `FilterVariable` values that are greater than or equal to
989
+ # the value specified with `GE`.
990
+ # @option params [String] :le
991
+ # The less than or equal to operator. The `BatchPrediction` results will
992
+ # have `FilterVariable` values that are less than or equal to the value
993
+ # specified with `LE`.
994
+ # @option params [String] :ne
995
+ # The not equal to operator. The `BatchPrediction` results will have
996
+ # `FilterVariable` values not equal to the value specified with `NE`.
997
+ # @option params [String] :prefix
998
+ # A string that is found at the beginning of a variable, such as `Name`
999
+ # or `Id`.
1000
+ #
1001
+ # For example, a `Batch Prediction` operation could have the `Name`
1002
+ # `2014-09-09-HolidayGiftMailer`. To search for this `BatchPrediction`,
1003
+ # select `Name` for the `FilterVariable` and any of the following
1004
+ # strings for the `Prefix`\:
1005
+ #
1006
+ # * 2014-09
1007
+ #
1008
+ # * 2014-09-09
1009
+ #
1010
+ # * 2014-09-09-Holiday
1011
+ # @option params [String] :sort_order
1012
+ # A two-value parameter that determines the sequence of the resulting
1013
+ # list of `MLModel`s.
1014
+ #
1015
+ # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1016
+ # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1017
+ #
1018
+ # Results are sorted by `FilterVariable`.
1019
+ # @option params [String] :next_token
1020
+ # An ID of the page in the paginated results.
1021
+ # @option params [Integer] :limit
1022
+ # The number of pages of information to include in the result. The range
1023
+ # of acceptable values is `1` through `100`. The default value is `100`.
1024
+ # @return [Types::DescribeBatchPredictionsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1025
+ #
1026
+ # * {Types::DescribeBatchPredictionsOutput#results #Results} => Array&lt;Types::BatchPrediction&gt;
1027
+ # * {Types::DescribeBatchPredictionsOutput#next_token #NextToken} => String
1028
+ #
1029
+ # @example Request syntax with placeholder values
1030
+ # resp = client.describe_batch_predictions({
1031
+ # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
1032
+ # eq: "ComparatorValue",
1033
+ # gt: "ComparatorValue",
1034
+ # lt: "ComparatorValue",
1035
+ # ge: "ComparatorValue",
1036
+ # le: "ComparatorValue",
1037
+ # ne: "ComparatorValue",
1038
+ # prefix: "ComparatorValue",
1039
+ # sort_order: "asc", # accepts asc, dsc
1040
+ # next_token: "StringType",
1041
+ # limit: 1,
1042
+ # })
1043
+ #
1044
+ # @example Response structure
1045
+ # resp.results #=> Array
1046
+ # resp.results[0].batch_prediction_id #=> String
1047
+ # resp.results[0].ml_model_id #=> String
1048
+ # resp.results[0].batch_prediction_data_source_id #=> String
1049
+ # resp.results[0].input_data_location_s3 #=> String
1050
+ # resp.results[0].created_by_iam_user #=> String
1051
+ # resp.results[0].created_at #=> Time
1052
+ # resp.results[0].last_updated_at #=> Time
1053
+ # resp.results[0].name #=> String
1054
+ # resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
1055
+ # resp.results[0].output_uri #=> String
1056
+ # resp.results[0].message #=> String
1057
+ # resp.results[0].compute_time #=> Integer
1058
+ # resp.results[0].finished_at #=> Time
1059
+ # resp.results[0].started_at #=> Time
1060
+ # resp.results[0].total_record_count #=> Integer
1061
+ # resp.results[0].invalid_record_count #=> Integer
1062
+ # resp.next_token #=> String
1063
+ # @overload describe_batch_predictions(params = {})
1064
+ # @param [Hash] params ({})
1065
+ def describe_batch_predictions(params = {}, options = {})
1066
+ req = build_request(:describe_batch_predictions, params)
1067
+ req.send_request(options)
1068
+ end
1069
+
1070
+ # Returns a list of `DataSource` that match the search criteria in the
1071
+ # request.
1072
+ # @option params [String] :filter_variable
1073
+ # Use one of the following variables to filter a list of `DataSource`\:
1074
+ #
1075
+ # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1076
+ # dates.
1077
+ # * `Status` - Sets the search criteria to `DataSource` statuses.
1078
+ # * `Name` - Sets the search criteria to the contents of `DataSource`
1079
+ # <b> </b> `Name`.
1080
+ # * `DataUri` - Sets the search criteria to the URI of data files used
1081
+ # to create the `DataSource`. The URI can identify either a file or an
1082
+ # Amazon Simple Storage Service (Amazon S3) bucket or directory.
1083
+ # * `IAMUser` - Sets the search criteria to the user account that
1084
+ # invoked the `DataSource` creation.
1085
+ # @option params [String] :eq
1086
+ # The equal to operator. The `DataSource` results will have
1087
+ # `FilterVariable` values that exactly match the value specified with
1088
+ # `EQ`.
1089
+ # @option params [String] :gt
1090
+ # The greater than operator. The `DataSource` results will have
1091
+ # `FilterVariable` values that are greater than the value specified with
1092
+ # `GT`.
1093
+ # @option params [String] :lt
1094
+ # The less than operator. The `DataSource` results will have
1095
+ # `FilterVariable` values that are less than the value specified with
1096
+ # `LT`.
1097
+ # @option params [String] :ge
1098
+ # The greater than or equal to operator. The `DataSource` results will
1099
+ # have `FilterVariable` values that are greater than or equal to the
1100
+ # value specified with `GE`.
1101
+ # @option params [String] :le
1102
+ # The less than or equal to operator. The `DataSource` results will have
1103
+ # `FilterVariable` values that are less than or equal to the value
1104
+ # specified with `LE`.
1105
+ # @option params [String] :ne
1106
+ # The not equal to operator. The `DataSource` results will have
1107
+ # `FilterVariable` values not equal to the value specified with `NE`.
1108
+ # @option params [String] :prefix
1109
+ # A string that is found at the beginning of a variable, such as `Name`
1110
+ # or `Id`.
1111
+ #
1112
+ # For example, a `DataSource` could have the `Name`
1113
+ # `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
1114
+ # select `Name` for the `FilterVariable` and any of the following
1115
+ # strings for the `Prefix`\:
1116
+ #
1117
+ # * 2014-09
1118
+ #
1119
+ # * 2014-09-09
1120
+ #
1121
+ # * 2014-09-09-Holiday
1122
+ # @option params [String] :sort_order
1123
+ # A two-value parameter that determines the sequence of the resulting
1124
+ # list of `DataSource`.
1125
+ #
1126
+ # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1127
+ # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1128
+ #
1129
+ # Results are sorted by `FilterVariable`.
1130
+ # @option params [String] :next_token
1131
+ # The ID of the page in the paginated results.
1132
+ # @option params [Integer] :limit
1133
+ # The maximum number of `DataSource` to include in the result.
1134
+ # @return [Types::DescribeDataSourcesOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1135
+ #
1136
+ # * {Types::DescribeDataSourcesOutput#results #Results} => Array&lt;Types::DataSource&gt;
1137
+ # * {Types::DescribeDataSourcesOutput#next_token #NextToken} => String
1138
+ #
1139
+ # @example Request syntax with placeholder values
1140
+ # resp = client.describe_data_sources({
1141
+ # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, DataLocationS3, IAMUser
1142
+ # eq: "ComparatorValue",
1143
+ # gt: "ComparatorValue",
1144
+ # lt: "ComparatorValue",
1145
+ # ge: "ComparatorValue",
1146
+ # le: "ComparatorValue",
1147
+ # ne: "ComparatorValue",
1148
+ # prefix: "ComparatorValue",
1149
+ # sort_order: "asc", # accepts asc, dsc
1150
+ # next_token: "StringType",
1151
+ # limit: 1,
1152
+ # })
1153
+ #
1154
+ # @example Response structure
1155
+ # resp.results #=> Array
1156
+ # resp.results[0].data_source_id #=> String
1157
+ # resp.results[0].data_location_s3 #=> String
1158
+ # resp.results[0].data_rearrangement #=> String
1159
+ # resp.results[0].created_by_iam_user #=> String
1160
+ # resp.results[0].created_at #=> Time
1161
+ # resp.results[0].last_updated_at #=> Time
1162
+ # resp.results[0].data_size_in_bytes #=> Integer
1163
+ # resp.results[0].number_of_files #=> Integer
1164
+ # resp.results[0].name #=> String
1165
+ # resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
1166
+ # resp.results[0].message #=> String
1167
+ # resp.results[0].redshift_metadata.redshift_database.database_name #=> String
1168
+ # resp.results[0].redshift_metadata.redshift_database.cluster_identifier #=> String
1169
+ # resp.results[0].redshift_metadata.database_user_name #=> String
1170
+ # resp.results[0].redshift_metadata.select_sql_query #=> String
1171
+ # resp.results[0].rds_metadata.database.instance_identifier #=> String
1172
+ # resp.results[0].rds_metadata.database.database_name #=> String
1173
+ # resp.results[0].rds_metadata.database_user_name #=> String
1174
+ # resp.results[0].rds_metadata.select_sql_query #=> String
1175
+ # resp.results[0].rds_metadata.resource_role #=> String
1176
+ # resp.results[0].rds_metadata.service_role #=> String
1177
+ # resp.results[0].rds_metadata.data_pipeline_id #=> String
1178
+ # resp.results[0].role_arn #=> String
1179
+ # resp.results[0].compute_statistics #=> Boolean
1180
+ # resp.results[0].compute_time #=> Integer
1181
+ # resp.results[0].finished_at #=> Time
1182
+ # resp.results[0].started_at #=> Time
1183
+ # resp.next_token #=> String
1184
+ # @overload describe_data_sources(params = {})
1185
+ # @param [Hash] params ({})
1186
+ def describe_data_sources(params = {}, options = {})
1187
+ req = build_request(:describe_data_sources, params)
1188
+ req.send_request(options)
1189
+ end
1190
+
1191
+ # Returns a list of `DescribeEvaluations` that match the search criteria
1192
+ # in the request.
1193
+ # @option params [String] :filter_variable
1194
+ # Use one of the following variable to filter a list of `Evaluation`
1195
+ # objects:
1196
+ #
1197
+ # * `CreatedAt` - Sets the search criteria to the `Evaluation` creation
1198
+ # date.
1199
+ # * `Status` - Sets the search criteria to the `Evaluation` status.
1200
+ # * `Name` - Sets the search criteria to the contents of `Evaluation`
1201
+ # <b> </b> `Name`.
1202
+ # * `IAMUser` - Sets the search criteria to the user account that
1203
+ # invoked an `Evaluation`.
1204
+ # * `MLModelId` - Sets the search criteria to the `MLModel` that was
1205
+ # evaluated.
1206
+ # * `DataSourceId` - Sets the search criteria to the `DataSource` used
1207
+ # in `Evaluation`.
1208
+ # * `DataUri` - Sets the search criteria to the data file(s) used in
1209
+ # `Evaluation`. The URL can identify either a file or an Amazon Simple
1210
+ # Storage Solution (Amazon S3) bucket or directory.
1211
+ # @option params [String] :eq
1212
+ # The equal to operator. The `Evaluation` results will have
1213
+ # `FilterVariable` values that exactly match the value specified with
1214
+ # `EQ`.
1215
+ # @option params [String] :gt
1216
+ # The greater than operator. The `Evaluation` results will have
1217
+ # `FilterVariable` values that are greater than the value specified with
1218
+ # `GT`.
1219
+ # @option params [String] :lt
1220
+ # The less than operator. The `Evaluation` results will have
1221
+ # `FilterVariable` values that are less than the value specified with
1222
+ # `LT`.
1223
+ # @option params [String] :ge
1224
+ # The greater than or equal to operator. The `Evaluation` results will
1225
+ # have `FilterVariable` values that are greater than or equal to the
1226
+ # value specified with `GE`.
1227
+ # @option params [String] :le
1228
+ # The less than or equal to operator. The `Evaluation` results will have
1229
+ # `FilterVariable` values that are less than or equal to the value
1230
+ # specified with `LE`.
1231
+ # @option params [String] :ne
1232
+ # The not equal to operator. The `Evaluation` results will have
1233
+ # `FilterVariable` values not equal to the value specified with `NE`.
1234
+ # @option params [String] :prefix
1235
+ # A string that is found at the beginning of a variable, such as `Name`
1236
+ # or `Id`.
1237
+ #
1238
+ # For example, an `Evaluation` could have the `Name`
1239
+ # `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
1240
+ # select `Name` for the `FilterVariable` and any of the following
1241
+ # strings for the `Prefix`\:
1242
+ #
1243
+ # * 2014-09
1244
+ #
1245
+ # * 2014-09-09
1246
+ #
1247
+ # * 2014-09-09-Holiday
1248
+ # @option params [String] :sort_order
1249
+ # A two-value parameter that determines the sequence of the resulting
1250
+ # list of `Evaluation`.
1251
+ #
1252
+ # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1253
+ # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1254
+ #
1255
+ # Results are sorted by `FilterVariable`.
1256
+ # @option params [String] :next_token
1257
+ # The ID of the page in the paginated results.
1258
+ # @option params [Integer] :limit
1259
+ # The maximum number of `Evaluation` to include in the result.
1260
+ # @return [Types::DescribeEvaluationsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1261
+ #
1262
+ # * {Types::DescribeEvaluationsOutput#results #Results} => Array&lt;Types::Evaluation&gt;
1263
+ # * {Types::DescribeEvaluationsOutput#next_token #NextToken} => String
1264
+ #
1265
+ # @example Request syntax with placeholder values
1266
+ # resp = client.describe_evaluations({
1267
+ # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
1268
+ # eq: "ComparatorValue",
1269
+ # gt: "ComparatorValue",
1270
+ # lt: "ComparatorValue",
1271
+ # ge: "ComparatorValue",
1272
+ # le: "ComparatorValue",
1273
+ # ne: "ComparatorValue",
1274
+ # prefix: "ComparatorValue",
1275
+ # sort_order: "asc", # accepts asc, dsc
1276
+ # next_token: "StringType",
1277
+ # limit: 1,
1278
+ # })
1279
+ #
1280
+ # @example Response structure
1281
+ # resp.results #=> Array
1282
+ # resp.results[0].evaluation_id #=> String
1283
+ # resp.results[0].ml_model_id #=> String
1284
+ # resp.results[0].evaluation_data_source_id #=> String
1285
+ # resp.results[0].input_data_location_s3 #=> String
1286
+ # resp.results[0].created_by_iam_user #=> String
1287
+ # resp.results[0].created_at #=> Time
1288
+ # resp.results[0].last_updated_at #=> Time
1289
+ # resp.results[0].name #=> String
1290
+ # resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
1291
+ # resp.results[0].performance_metrics.properties #=> Hash
1292
+ # resp.results[0].performance_metrics.properties["PerformanceMetricsPropertyKey"] #=> String
1293
+ # resp.results[0].message #=> String
1294
+ # resp.results[0].compute_time #=> Integer
1295
+ # resp.results[0].finished_at #=> Time
1296
+ # resp.results[0].started_at #=> Time
1297
+ # resp.next_token #=> String
1298
+ # @overload describe_evaluations(params = {})
1299
+ # @param [Hash] params ({})
1300
+ def describe_evaluations(params = {}, options = {})
1301
+ req = build_request(:describe_evaluations, params)
1302
+ req.send_request(options)
1303
+ end
1304
+
1305
+ # Returns a list of `MLModel` that match the search criteria in the
1306
+ # request.
1307
+ # @option params [String] :filter_variable
1308
+ # Use one of the following variables to filter a list of `MLModel`\:
1309
+ #
1310
+ # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1311
+ # * `Status` - Sets the search criteria to `MLModel` status.
1312
+ # * `Name` - Sets the search criteria to the contents of `MLModel`<b>
1313
+ # </b> `Name`.
1314
+ # * `IAMUser` - Sets the search criteria to the user account that
1315
+ # invoked the `MLModel` creation.
1316
+ # * `TrainingDataSourceId` - Sets the search criteria to the
1317
+ # `DataSource` used to train one or more `MLModel`.
1318
+ # * `RealtimeEndpointStatus` - Sets the search criteria to the `MLModel`
1319
+ # real-time endpoint status.
1320
+ # * `MLModelType` - Sets the search criteria to `MLModel` type: binary,
1321
+ # regression, or multi-class.
1322
+ # * `Algorithm` - Sets the search criteria to the algorithm that the
1323
+ # `MLModel` uses.
1324
+ # * `TrainingDataURI` - Sets the search criteria to the data file(s)
1325
+ # used in training a `MLModel`. The URL can identify either a file or
1326
+ # an Amazon Simple Storage Service (Amazon S3) bucket or directory.
1327
+ # @option params [String] :eq
1328
+ # The equal to operator. The `MLModel` results will have
1329
+ # `FilterVariable` values that exactly match the value specified with
1330
+ # `EQ`.
1331
+ # @option params [String] :gt
1332
+ # The greater than operator. The `MLModel` results will have
1333
+ # `FilterVariable` values that are greater than the value specified with
1334
+ # `GT`.
1335
+ # @option params [String] :lt
1336
+ # The less than operator. The `MLModel` results will have
1337
+ # `FilterVariable` values that are less than the value specified with
1338
+ # `LT`.
1339
+ # @option params [String] :ge
1340
+ # The greater than or equal to operator. The `MLModel` results will have
1341
+ # `FilterVariable` values that are greater than or equal to the value
1342
+ # specified with `GE`.
1343
+ # @option params [String] :le
1344
+ # The less than or equal to operator. The `MLModel` results will have
1345
+ # `FilterVariable` values that are less than or equal to the value
1346
+ # specified with `LE`.
1347
+ # @option params [String] :ne
1348
+ # The not equal to operator. The `MLModel` results will have
1349
+ # `FilterVariable` values not equal to the value specified with `NE`.
1350
+ # @option params [String] :prefix
1351
+ # A string that is found at the beginning of a variable, such as `Name`
1352
+ # or `Id`.
1353
+ #
1354
+ # For example, an `MLModel` could have the `Name`
1355
+ # `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
1356
+ # `Name` for the `FilterVariable` and any of the following strings for
1357
+ # the `Prefix`\:
1358
+ #
1359
+ # * 2014-09
1360
+ #
1361
+ # * 2014-09-09
1362
+ #
1363
+ # * 2014-09-09-Holiday
1364
+ # @option params [String] :sort_order
1365
+ # A two-value parameter that determines the sequence of the resulting
1366
+ # list of `MLModel`.
1367
+ #
1368
+ # * `asc` - Arranges the list in ascending order (A-Z, 0-9).
1369
+ # * `dsc` - Arranges the list in descending order (Z-A, 9-0).
1370
+ #
1371
+ # Results are sorted by `FilterVariable`.
1372
+ # @option params [String] :next_token
1373
+ # The ID of the page in the paginated results.
1374
+ # @option params [Integer] :limit
1375
+ # The number of pages of information to include in the result. The range
1376
+ # of acceptable values is `1` through `100`. The default value is `100`.
1377
+ # @return [Types::DescribeMLModelsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1378
+ #
1379
+ # * {Types::DescribeMLModelsOutput#results #Results} => Array&lt;Types::MLModel&gt;
1380
+ # * {Types::DescribeMLModelsOutput#next_token #NextToken} => String
1381
+ #
1382
+ # @example Request syntax with placeholder values
1383
+ # resp = client.describe_ml_models({
1384
+ # filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, TrainingDataSourceId, RealtimeEndpointStatus, MLModelType, Algorithm, TrainingDataURI
1385
+ # eq: "ComparatorValue",
1386
+ # gt: "ComparatorValue",
1387
+ # lt: "ComparatorValue",
1388
+ # ge: "ComparatorValue",
1389
+ # le: "ComparatorValue",
1390
+ # ne: "ComparatorValue",
1391
+ # prefix: "ComparatorValue",
1392
+ # sort_order: "asc", # accepts asc, dsc
1393
+ # next_token: "StringType",
1394
+ # limit: 1,
1395
+ # })
1396
+ #
1397
+ # @example Response structure
1398
+ # resp.results #=> Array
1399
+ # resp.results[0].ml_model_id #=> String
1400
+ # resp.results[0].training_data_source_id #=> String
1401
+ # resp.results[0].created_by_iam_user #=> String
1402
+ # resp.results[0].created_at #=> Time
1403
+ # resp.results[0].last_updated_at #=> Time
1404
+ # resp.results[0].name #=> String
1405
+ # resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
1406
+ # resp.results[0].size_in_bytes #=> Integer
1407
+ # resp.results[0].endpoint_info.peak_requests_per_second #=> Integer
1408
+ # resp.results[0].endpoint_info.created_at #=> Time
1409
+ # resp.results[0].endpoint_info.endpoint_url #=> String
1410
+ # resp.results[0].endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
1411
+ # resp.results[0].training_parameters #=> Hash
1412
+ # resp.results[0].training_parameters["StringType"] #=> String
1413
+ # resp.results[0].input_data_location_s3 #=> String
1414
+ # resp.results[0].algorithm #=> String, one of "sgd"
1415
+ # resp.results[0].ml_model_type #=> String, one of "REGRESSION", "BINARY", "MULTICLASS"
1416
+ # resp.results[0].score_threshold #=> Float
1417
+ # resp.results[0].score_threshold_last_updated_at #=> Time
1418
+ # resp.results[0].message #=> String
1419
+ # resp.results[0].compute_time #=> Integer
1420
+ # resp.results[0].finished_at #=> Time
1421
+ # resp.results[0].started_at #=> Time
1422
+ # resp.next_token #=> String
1423
+ # @overload describe_ml_models(params = {})
1424
+ # @param [Hash] params ({})
1425
+ def describe_ml_models(params = {}, options = {})
1426
+ req = build_request(:describe_ml_models, params)
1427
+ req.send_request(options)
1428
+ end
1429
+
1430
+ # Describes one or more of the tags for your Amazon ML object.
1431
+ # @option params [required, String] :resource_id
1432
+ # The ID of the ML object. For example, `exampleModelId`.
1433
+ # @option params [required, String] :resource_type
1434
+ # The type of the ML object.
1435
+ # @return [Types::DescribeTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1436
+ #
1437
+ # * {Types::DescribeTagsOutput#resource_id #ResourceId} => String
1438
+ # * {Types::DescribeTagsOutput#resource_type #ResourceType} => String
1439
+ # * {Types::DescribeTagsOutput#tags #Tags} => Array&lt;Types::Tag&gt;
1440
+ #
1441
+ # @example Request syntax with placeholder values
1442
+ # resp = client.describe_tags({
1443
+ # resource_id: "EntityId", # required
1444
+ # resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
1445
+ # })
1446
+ #
1447
+ # @example Response structure
1448
+ # resp.resource_id #=> String
1449
+ # resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
1450
+ # resp.tags #=> Array
1451
+ # resp.tags[0].key #=> String
1452
+ # resp.tags[0].value #=> String
1453
+ # @overload describe_tags(params = {})
1454
+ # @param [Hash] params ({})
1455
+ def describe_tags(params = {}, options = {})
1456
+ req = build_request(:describe_tags, params)
1457
+ req.send_request(options)
1458
+ end
1459
+
1460
+ # Returns a `BatchPrediction` that includes detailed metadata, status,
1461
+ # and data file information for a `Batch Prediction` request.
1462
+ # @option params [required, String] :batch_prediction_id
1463
+ # An ID assigned to the `BatchPrediction` at creation.
1464
+ # @return [Types::GetBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1465
+ #
1466
+ # * {Types::GetBatchPredictionOutput#batch_prediction_id #BatchPredictionId} => String
1467
+ # * {Types::GetBatchPredictionOutput#ml_model_id #MLModelId} => String
1468
+ # * {Types::GetBatchPredictionOutput#batch_prediction_data_source_id #BatchPredictionDataSourceId} => String
1469
+ # * {Types::GetBatchPredictionOutput#input_data_location_s3 #InputDataLocationS3} => String
1470
+ # * {Types::GetBatchPredictionOutput#created_by_iam_user #CreatedByIamUser} => String
1471
+ # * {Types::GetBatchPredictionOutput#created_at #CreatedAt} => Time
1472
+ # * {Types::GetBatchPredictionOutput#last_updated_at #LastUpdatedAt} => Time
1473
+ # * {Types::GetBatchPredictionOutput#name #Name} => String
1474
+ # * {Types::GetBatchPredictionOutput#status #Status} => String
1475
+ # * {Types::GetBatchPredictionOutput#output_uri #OutputUri} => String
1476
+ # * {Types::GetBatchPredictionOutput#log_uri #LogUri} => String
1477
+ # * {Types::GetBatchPredictionOutput#message #Message} => String
1478
+ # * {Types::GetBatchPredictionOutput#compute_time #ComputeTime} => Integer
1479
+ # * {Types::GetBatchPredictionOutput#finished_at #FinishedAt} => Time
1480
+ # * {Types::GetBatchPredictionOutput#started_at #StartedAt} => Time
1481
+ # * {Types::GetBatchPredictionOutput#total_record_count #TotalRecordCount} => Integer
1482
+ # * {Types::GetBatchPredictionOutput#invalid_record_count #InvalidRecordCount} => Integer
1483
+ #
1484
+ # @example Request syntax with placeholder values
1485
+ # resp = client.get_batch_prediction({
1486
+ # batch_prediction_id: "EntityId", # required
1487
+ # })
1488
+ #
1489
+ # @example Response structure
1490
+ # resp.batch_prediction_id #=> String
1491
+ # resp.ml_model_id #=> String
1492
+ # resp.batch_prediction_data_source_id #=> String
1493
+ # resp.input_data_location_s3 #=> String
1494
+ # resp.created_by_iam_user #=> String
1495
+ # resp.created_at #=> Time
1496
+ # resp.last_updated_at #=> Time
1497
+ # resp.name #=> String
1498
+ # resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
1499
+ # resp.output_uri #=> String
1500
+ # resp.log_uri #=> String
1501
+ # resp.message #=> String
1502
+ # resp.compute_time #=> Integer
1503
+ # resp.finished_at #=> Time
1504
+ # resp.started_at #=> Time
1505
+ # resp.total_record_count #=> Integer
1506
+ # resp.invalid_record_count #=> Integer
1507
+ # @overload get_batch_prediction(params = {})
1508
+ # @param [Hash] params ({})
1509
+ def get_batch_prediction(params = {}, options = {})
1510
+ req = build_request(:get_batch_prediction, params)
1511
+ req.send_request(options)
1512
+ end
1513
+
1514
+ # Returns a `DataSource` that includes metadata and data file
1515
+ # information, as well as the current status of the `DataSource`.
1516
+ #
1517
+ # `GetDataSource` provides results in normal or verbose format. The
1518
+ # verbose format adds the schema description and the list of files
1519
+ # pointed to by the DataSource to the normal format.
1520
+ # @option params [required, String] :data_source_id
1521
+ # The ID assigned to the `DataSource` at creation.
1522
+ # @option params [Boolean] :verbose
1523
+ # Specifies whether the `GetDataSource` operation should return
1524
+ # `DataSourceSchema`.
1525
+ #
1526
+ # If true, `DataSourceSchema` is returned.
1527
+ #
1528
+ # If false, `DataSourceSchema` is not returned.
1529
+ # @return [Types::GetDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1530
+ #
1531
+ # * {Types::GetDataSourceOutput#data_source_id #DataSourceId} => String
1532
+ # * {Types::GetDataSourceOutput#data_location_s3 #DataLocationS3} => String
1533
+ # * {Types::GetDataSourceOutput#data_rearrangement #DataRearrangement} => String
1534
+ # * {Types::GetDataSourceOutput#created_by_iam_user #CreatedByIamUser} => String
1535
+ # * {Types::GetDataSourceOutput#created_at #CreatedAt} => Time
1536
+ # * {Types::GetDataSourceOutput#last_updated_at #LastUpdatedAt} => Time
1537
+ # * {Types::GetDataSourceOutput#data_size_in_bytes #DataSizeInBytes} => Integer
1538
+ # * {Types::GetDataSourceOutput#number_of_files #NumberOfFiles} => Integer
1539
+ # * {Types::GetDataSourceOutput#name #Name} => String
1540
+ # * {Types::GetDataSourceOutput#status #Status} => String
1541
+ # * {Types::GetDataSourceOutput#log_uri #LogUri} => String
1542
+ # * {Types::GetDataSourceOutput#message #Message} => String
1543
+ # * {Types::GetDataSourceOutput#redshift_metadata #RedshiftMetadata} => Types::RedshiftMetadata
1544
+ # * {Types::GetDataSourceOutput#rds_metadata #RDSMetadata} => Types::RDSMetadata
1545
+ # * {Types::GetDataSourceOutput#role_arn #RoleARN} => String
1546
+ # * {Types::GetDataSourceOutput#compute_statistics #ComputeStatistics} => Boolean
1547
+ # * {Types::GetDataSourceOutput#compute_time #ComputeTime} => Integer
1548
+ # * {Types::GetDataSourceOutput#finished_at #FinishedAt} => Time
1549
+ # * {Types::GetDataSourceOutput#started_at #StartedAt} => Time
1550
+ # * {Types::GetDataSourceOutput#data_source_schema #DataSourceSchema} => String
1551
+ #
1552
+ # @example Request syntax with placeholder values
1553
+ # resp = client.get_data_source({
1554
+ # data_source_id: "EntityId", # required
1555
+ # verbose: false,
1556
+ # })
1557
+ #
1558
+ # @example Response structure
1559
+ # resp.data_source_id #=> String
1560
+ # resp.data_location_s3 #=> String
1561
+ # resp.data_rearrangement #=> String
1562
+ # resp.created_by_iam_user #=> String
1563
+ # resp.created_at #=> Time
1564
+ # resp.last_updated_at #=> Time
1565
+ # resp.data_size_in_bytes #=> Integer
1566
+ # resp.number_of_files #=> Integer
1567
+ # resp.name #=> String
1568
+ # resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
1569
+ # resp.log_uri #=> String
1570
+ # resp.message #=> String
1571
+ # resp.redshift_metadata.redshift_database.database_name #=> String
1572
+ # resp.redshift_metadata.redshift_database.cluster_identifier #=> String
1573
+ # resp.redshift_metadata.database_user_name #=> String
1574
+ # resp.redshift_metadata.select_sql_query #=> String
1575
+ # resp.rds_metadata.database.instance_identifier #=> String
1576
+ # resp.rds_metadata.database.database_name #=> String
1577
+ # resp.rds_metadata.database_user_name #=> String
1578
+ # resp.rds_metadata.select_sql_query #=> String
1579
+ # resp.rds_metadata.resource_role #=> String
1580
+ # resp.rds_metadata.service_role #=> String
1581
+ # resp.rds_metadata.data_pipeline_id #=> String
1582
+ # resp.role_arn #=> String
1583
+ # resp.compute_statistics #=> Boolean
1584
+ # resp.compute_time #=> Integer
1585
+ # resp.finished_at #=> Time
1586
+ # resp.started_at #=> Time
1587
+ # resp.data_source_schema #=> String
1588
+ # @overload get_data_source(params = {})
1589
+ # @param [Hash] params ({})
1590
+ def get_data_source(params = {}, options = {})
1591
+ req = build_request(:get_data_source, params)
1592
+ req.send_request(options)
1593
+ end
1594
+
1595
+ # Returns an `Evaluation` that includes metadata as well as the current
1596
+ # status of the `Evaluation`.
1597
+ # @option params [required, String] :evaluation_id
1598
+ # The ID of the `Evaluation` to retrieve. The evaluation of each
1599
+ # `MLModel` is recorded and cataloged. The ID provides the means to
1600
+ # access the information.
1601
+ # @return [Types::GetEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1602
+ #
1603
+ # * {Types::GetEvaluationOutput#evaluation_id #EvaluationId} => String
1604
+ # * {Types::GetEvaluationOutput#ml_model_id #MLModelId} => String
1605
+ # * {Types::GetEvaluationOutput#evaluation_data_source_id #EvaluationDataSourceId} => String
1606
+ # * {Types::GetEvaluationOutput#input_data_location_s3 #InputDataLocationS3} => String
1607
+ # * {Types::GetEvaluationOutput#created_by_iam_user #CreatedByIamUser} => String
1608
+ # * {Types::GetEvaluationOutput#created_at #CreatedAt} => Time
1609
+ # * {Types::GetEvaluationOutput#last_updated_at #LastUpdatedAt} => Time
1610
+ # * {Types::GetEvaluationOutput#name #Name} => String
1611
+ # * {Types::GetEvaluationOutput#status #Status} => String
1612
+ # * {Types::GetEvaluationOutput#performance_metrics #PerformanceMetrics} => Types::PerformanceMetrics
1613
+ # * {Types::GetEvaluationOutput#log_uri #LogUri} => String
1614
+ # * {Types::GetEvaluationOutput#message #Message} => String
1615
+ # * {Types::GetEvaluationOutput#compute_time #ComputeTime} => Integer
1616
+ # * {Types::GetEvaluationOutput#finished_at #FinishedAt} => Time
1617
+ # * {Types::GetEvaluationOutput#started_at #StartedAt} => Time
1618
+ #
1619
+ # @example Request syntax with placeholder values
1620
+ # resp = client.get_evaluation({
1621
+ # evaluation_id: "EntityId", # required
1622
+ # })
1623
+ #
1624
+ # @example Response structure
1625
+ # resp.evaluation_id #=> String
1626
+ # resp.ml_model_id #=> String
1627
+ # resp.evaluation_data_source_id #=> String
1628
+ # resp.input_data_location_s3 #=> String
1629
+ # resp.created_by_iam_user #=> String
1630
+ # resp.created_at #=> Time
1631
+ # resp.last_updated_at #=> Time
1632
+ # resp.name #=> String
1633
+ # resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
1634
+ # resp.performance_metrics.properties #=> Hash
1635
+ # resp.performance_metrics.properties["PerformanceMetricsPropertyKey"] #=> String
1636
+ # resp.log_uri #=> String
1637
+ # resp.message #=> String
1638
+ # resp.compute_time #=> Integer
1639
+ # resp.finished_at #=> Time
1640
+ # resp.started_at #=> Time
1641
+ # @overload get_evaluation(params = {})
1642
+ # @param [Hash] params ({})
1643
+ def get_evaluation(params = {}, options = {})
1644
+ req = build_request(:get_evaluation, params)
1645
+ req.send_request(options)
1646
+ end
1647
+
1648
+ # Returns an `MLModel` that includes detailed metadata, data source
1649
+ # information, and the current status of the `MLModel`.
1650
+ #
1651
+ # `GetMLModel` provides results in normal or verbose format.
1652
+ # @option params [required, String] :ml_model_id
1653
+ # The ID assigned to the `MLModel` at creation.
1654
+ # @option params [Boolean] :verbose
1655
+ # Specifies whether the `GetMLModel` operation should return `Recipe`.
1656
+ #
1657
+ # If true, `Recipe` is returned.
1658
+ #
1659
+ # If false, `Recipe` is not returned.
1660
+ # @return [Types::GetMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1661
+ #
1662
+ # * {Types::GetMLModelOutput#ml_model_id #MLModelId} => String
1663
+ # * {Types::GetMLModelOutput#training_data_source_id #TrainingDataSourceId} => String
1664
+ # * {Types::GetMLModelOutput#created_by_iam_user #CreatedByIamUser} => String
1665
+ # * {Types::GetMLModelOutput#created_at #CreatedAt} => Time
1666
+ # * {Types::GetMLModelOutput#last_updated_at #LastUpdatedAt} => Time
1667
+ # * {Types::GetMLModelOutput#name #Name} => String
1668
+ # * {Types::GetMLModelOutput#status #Status} => String
1669
+ # * {Types::GetMLModelOutput#size_in_bytes #SizeInBytes} => Integer
1670
+ # * {Types::GetMLModelOutput#endpoint_info #EndpointInfo} => Types::RealtimeEndpointInfo
1671
+ # * {Types::GetMLModelOutput#training_parameters #TrainingParameters} => Hash&lt;String,String&gt;
1672
+ # * {Types::GetMLModelOutput#input_data_location_s3 #InputDataLocationS3} => String
1673
+ # * {Types::GetMLModelOutput#ml_model_type #MLModelType} => String
1674
+ # * {Types::GetMLModelOutput#score_threshold #ScoreThreshold} => Float
1675
+ # * {Types::GetMLModelOutput#score_threshold_last_updated_at #ScoreThresholdLastUpdatedAt} => Time
1676
+ # * {Types::GetMLModelOutput#log_uri #LogUri} => String
1677
+ # * {Types::GetMLModelOutput#message #Message} => String
1678
+ # * {Types::GetMLModelOutput#compute_time #ComputeTime} => Integer
1679
+ # * {Types::GetMLModelOutput#finished_at #FinishedAt} => Time
1680
+ # * {Types::GetMLModelOutput#started_at #StartedAt} => Time
1681
+ # * {Types::GetMLModelOutput#recipe #Recipe} => String
1682
+ # * {Types::GetMLModelOutput#schema #Schema} => String
1683
+ #
1684
+ # @example Request syntax with placeholder values
1685
+ # resp = client.get_ml_model({
1686
+ # ml_model_id: "EntityId", # required
1687
+ # verbose: false,
1688
+ # })
1689
+ #
1690
+ # @example Response structure
1691
+ # resp.ml_model_id #=> String
1692
+ # resp.training_data_source_id #=> String
1693
+ # resp.created_by_iam_user #=> String
1694
+ # resp.created_at #=> Time
1695
+ # resp.last_updated_at #=> Time
1696
+ # resp.name #=> String
1697
+ # resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
1698
+ # resp.size_in_bytes #=> Integer
1699
+ # resp.endpoint_info.peak_requests_per_second #=> Integer
1700
+ # resp.endpoint_info.created_at #=> Time
1701
+ # resp.endpoint_info.endpoint_url #=> String
1702
+ # resp.endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
1703
+ # resp.training_parameters #=> Hash
1704
+ # resp.training_parameters["StringType"] #=> String
1705
+ # resp.input_data_location_s3 #=> String
1706
+ # resp.ml_model_type #=> String, one of "REGRESSION", "BINARY", "MULTICLASS"
1707
+ # resp.score_threshold #=> Float
1708
+ # resp.score_threshold_last_updated_at #=> Time
1709
+ # resp.log_uri #=> String
1710
+ # resp.message #=> String
1711
+ # resp.compute_time #=> Integer
1712
+ # resp.finished_at #=> Time
1713
+ # resp.started_at #=> Time
1714
+ # resp.recipe #=> String
1715
+ # resp.schema #=> String
1716
+ # @overload get_ml_model(params = {})
1717
+ # @param [Hash] params ({})
1718
+ def get_ml_model(params = {}, options = {})
1719
+ req = build_request(:get_ml_model, params)
1720
+ req.send_request(options)
1721
+ end
1722
+
1723
+ # Generates a prediction for the observation using the specified `ML
1724
+ # Model`.
1725
+ #
1726
+ # <note markdown="1"><title>Note</title> Not all response parameters will be populated. Whether a response
1727
+ # parameter is populated depends on the type of model requested.
1728
+ #
1729
+ # </note>
1730
+ # @option params [required, String] :ml_model_id
1731
+ # A unique identifier of the `MLModel`.
1732
+ # @option params [required, Hash<String,String>] :record
1733
+ # A map of variable name-value pairs that represent an observation.
1734
+ # @option params [required, String] :predict_endpoint
1735
+ # @return [Types::PredictOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1736
+ #
1737
+ # * {Types::PredictOutput#prediction #Prediction} => Types::Prediction
1738
+ #
1739
+ # @example Request syntax with placeholder values
1740
+ # resp = client.predict({
1741
+ # ml_model_id: "EntityId", # required
1742
+ # record: { # required
1743
+ # "VariableName" => "VariableValue",
1744
+ # },
1745
+ # predict_endpoint: "VipURL", # required
1746
+ # })
1747
+ #
1748
+ # @example Response structure
1749
+ # resp.prediction.predicted_label #=> String
1750
+ # resp.prediction.predicted_value #=> Float
1751
+ # resp.prediction.predicted_scores #=> Hash
1752
+ # resp.prediction.predicted_scores["Label"] #=> Float
1753
+ # resp.prediction.details #=> Hash
1754
+ # resp.prediction.details["DetailsAttributes"] #=> String
1755
+ # @overload predict(params = {})
1756
+ # @param [Hash] params ({})
1757
+ def predict(params = {}, options = {})
1758
+ req = build_request(:predict, params)
1759
+ req.send_request(options)
1760
+ end
1761
+
1762
+ # Updates the `BatchPredictionName` of a `BatchPrediction`.
1763
+ #
1764
+ # You can use the `GetBatchPrediction` operation to view the contents of
1765
+ # the updated data element.
1766
+ # @option params [required, String] :batch_prediction_id
1767
+ # The ID assigned to the `BatchPrediction` during creation.
1768
+ # @option params [required, String] :batch_prediction_name
1769
+ # A new user-supplied name or description of the `BatchPrediction`.
1770
+ # @return [Types::UpdateBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1771
+ #
1772
+ # * {Types::UpdateBatchPredictionOutput#batch_prediction_id #BatchPredictionId} => String
1773
+ #
1774
+ # @example Request syntax with placeholder values
1775
+ # resp = client.update_batch_prediction({
1776
+ # batch_prediction_id: "EntityId", # required
1777
+ # batch_prediction_name: "EntityName", # required
1778
+ # })
1779
+ #
1780
+ # @example Response structure
1781
+ # resp.batch_prediction_id #=> String
1782
+ # @overload update_batch_prediction(params = {})
1783
+ # @param [Hash] params ({})
1784
+ def update_batch_prediction(params = {}, options = {})
1785
+ req = build_request(:update_batch_prediction, params)
1786
+ req.send_request(options)
1787
+ end
1788
+
1789
+ # Updates the `DataSourceName` of a `DataSource`.
1790
+ #
1791
+ # You can use the `GetDataSource` operation to view the contents of the
1792
+ # updated data element.
1793
+ # @option params [required, String] :data_source_id
1794
+ # The ID assigned to the `DataSource` during creation.
1795
+ # @option params [required, String] :data_source_name
1796
+ # A new user-supplied name or description of the `DataSource` that will
1797
+ # replace the current description.
1798
+ # @return [Types::UpdateDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1799
+ #
1800
+ # * {Types::UpdateDataSourceOutput#data_source_id #DataSourceId} => String
1801
+ #
1802
+ # @example Request syntax with placeholder values
1803
+ # resp = client.update_data_source({
1804
+ # data_source_id: "EntityId", # required
1805
+ # data_source_name: "EntityName", # required
1806
+ # })
1807
+ #
1808
+ # @example Response structure
1809
+ # resp.data_source_id #=> String
1810
+ # @overload update_data_source(params = {})
1811
+ # @param [Hash] params ({})
1812
+ def update_data_source(params = {}, options = {})
1813
+ req = build_request(:update_data_source, params)
1814
+ req.send_request(options)
1815
+ end
1816
+
1817
+ # Updates the `EvaluationName` of an `Evaluation`.
1818
+ #
1819
+ # You can use the `GetEvaluation` operation to view the contents of the
1820
+ # updated data element.
1821
+ # @option params [required, String] :evaluation_id
1822
+ # The ID assigned to the `Evaluation` during creation.
1823
+ # @option params [required, String] :evaluation_name
1824
+ # A new user-supplied name or description of the `Evaluation` that will
1825
+ # replace the current content.
1826
+ # @return [Types::UpdateEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1827
+ #
1828
+ # * {Types::UpdateEvaluationOutput#evaluation_id #EvaluationId} => String
1829
+ #
1830
+ # @example Request syntax with placeholder values
1831
+ # resp = client.update_evaluation({
1832
+ # evaluation_id: "EntityId", # required
1833
+ # evaluation_name: "EntityName", # required
1834
+ # })
1835
+ #
1836
+ # @example Response structure
1837
+ # resp.evaluation_id #=> String
1838
+ # @overload update_evaluation(params = {})
1839
+ # @param [Hash] params ({})
1840
+ def update_evaluation(params = {}, options = {})
1841
+ req = build_request(:update_evaluation, params)
1842
+ req.send_request(options)
1843
+ end
1844
+
1845
+ # Updates the `MLModelName` and the `ScoreThreshold` of an `MLModel`.
1846
+ #
1847
+ # You can use the `GetMLModel` operation to view the contents of the
1848
+ # updated data element.
1849
+ # @option params [required, String] :ml_model_id
1850
+ # The ID assigned to the `MLModel` during creation.
1851
+ # @option params [String] :ml_model_name
1852
+ # A user-supplied name or description of the `MLModel`.
1853
+ # @option params [Float] :score_threshold
1854
+ # The `ScoreThreshold` used in binary classification `MLModel` that
1855
+ # marks the boundary between a positive prediction and a negative
1856
+ # prediction.
1857
+ #
1858
+ # Output values greater than or equal to the `ScoreThreshold` receive a
1859
+ # positive result from the `MLModel`, such as `true`. Output values less
1860
+ # than the `ScoreThreshold` receive a negative response from the
1861
+ # `MLModel`, such as `false`.
1862
+ # @return [Types::UpdateMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1863
+ #
1864
+ # * {Types::UpdateMLModelOutput#ml_model_id #MLModelId} => String
1865
+ #
1866
+ # @example Request syntax with placeholder values
1867
+ # resp = client.update_ml_model({
1868
+ # ml_model_id: "EntityId", # required
1869
+ # ml_model_name: "EntityName",
1870
+ # score_threshold: 1.0,
1871
+ # })
1872
+ #
1873
+ # @example Response structure
1874
+ # resp.ml_model_id #=> String
1875
+ # @overload update_ml_model(params = {})
1876
+ # @param [Hash] params ({})
1877
+ def update_ml_model(params = {}, options = {})
1878
+ req = build_request(:update_ml_model, params)
1879
+ req.send_request(options)
1880
+ end
1881
+
1882
+ # @!endgroup
1883
+
1884
+ # @param params ({})
1885
+ # @api private
1886
+ def build_request(operation_name, params = {})
1887
+ handlers = @handlers.for(operation_name)
1888
+ context = Seahorse::Client::RequestContext.new(
1889
+ operation_name: operation_name,
1890
+ operation: config.api.operation(operation_name),
1891
+ client: self,
1892
+ params: params,
1893
+ config: config)
1894
+ context[:gem_name] = 'aws-sdk-machinelearning'
1895
+ context[:gem_version] = '1.0.0.rc1'
1896
+ Seahorse::Client::Request.new(handlers, context)
1897
+ end
1898
+
1899
+ # Polls an API operation until a resource enters a desired state.
1900
+ #
1901
+ # ## Basic Usage
1902
+ #
1903
+ # A waiter will call an API operation until:
1904
+ #
1905
+ # * It is successful
1906
+ # * It enters a terminal state
1907
+ # * It makes the maximum number of attempts
1908
+ #
1909
+ # In between attempts, the waiter will sleep.
1910
+ #
1911
+ # # polls in a loop, sleeping between attempts
1912
+ # client.waiter_until(waiter_name, params)
1913
+ #
1914
+ # ## Configuration
1915
+ #
1916
+ # You can configure the maximum number of polling attempts, and the
1917
+ # delay (in seconds) between each polling attempt. You can pass
1918
+ # configuration as the final arguments hash.
1919
+ #
1920
+ # # poll for ~25 seconds
1921
+ # client.wait_until(waiter_name, params, {
1922
+ # max_attempts: 5,
1923
+ # delay: 5,
1924
+ # })
1925
+ #
1926
+ # ## Callbacks
1927
+ #
1928
+ # You can be notified before each polling attempt and before each
1929
+ # delay. If you throw `:success` or `:failure` from these callbacks,
1930
+ # it will terminate the waiter.
1931
+ #
1932
+ # started_at = Time.now
1933
+ # client.wait_until(waiter_name, params, {
1934
+ #
1935
+ # # disable max attempts
1936
+ # max_attempts: nil,
1937
+ #
1938
+ # # poll for 1 hour, instead of a number of attempts
1939
+ # before_wait: -> (attempts, response) do
1940
+ # throw :failure if Time.now - started_at > 3600
1941
+ # end
1942
+ # })
1943
+ #
1944
+ # ## Handling Errors
1945
+ #
1946
+ # When a waiter is unsuccessful, it will raise an error.
1947
+ # All of the failure errors extend from
1948
+ # {Aws::Waiters::Errors::WaiterFailed}.
1949
+ #
1950
+ # begin
1951
+ # client.wait_until(...)
1952
+ # rescue Aws::Waiters::Errors::WaiterFailed
1953
+ # # resource did not enter the desired state in time
1954
+ # end
1955
+ #
1956
+ # ## Valid Waiters
1957
+ #
1958
+ # The following table lists the valid waiter names, the operations they call,
1959
+ # and the default `:delay` and `:max_attempts` values.
1960
+ #
1961
+ # | waiter_name | params | :delay | :max_attempts |
1962
+ # | -------------------------- | ----------------------------- | -------- | ------------- |
1963
+ # | batch_prediction_available | {#describe_batch_predictions} | 30 | 60 |
1964
+ # | data_source_available | {#describe_data_sources} | 30 | 60 |
1965
+ # | evaluation_available | {#describe_evaluations} | 30 | 60 |
1966
+ # | ml_model_available | {#describe_ml_models} | 30 | 60 |
1967
+ #
1968
+ # @raise [Errors::FailureStateError] Raised when the waiter terminates
1969
+ # because the waiter has entered a state that it will not transition
1970
+ # out of, preventing success.
1971
+ #
1972
+ # @raise [Errors::TooManyAttemptsError] Raised when the configured
1973
+ # maximum number of attempts have been made, and the waiter is not
1974
+ # yet successful.
1975
+ #
1976
+ # @raise [Errors::UnexpectedError] Raised when an error is encounted
1977
+ # while polling for a resource that is not expected.
1978
+ #
1979
+ # @raise [Errors::NoSuchWaiterError] Raised when you request to wait
1980
+ # for an unknown state.
1981
+ #
1982
+ # @return [Boolean] Returns `true` if the waiter was successful.
1983
+ # @param [Symbol] waiter_name
1984
+ # @param [Hash] params ({})
1985
+ # @param [Hash] options ({})
1986
+ # @option options [Integer] :max_attempts
1987
+ # @option options [Integer] :delay
1988
+ # @option options [Proc] :before_attempt
1989
+ # @option options [Proc] :before_wait
1990
+ def wait_until(waiter_name, params = {}, options = {})
1991
+ w = waiter(waiter_name, options)
1992
+ yield(w.waiter) if block_given? # deprecated
1993
+ w.wait(params)
1994
+ end
1995
+
1996
+ # @api private
1997
+ # @deprecated
1998
+ def waiter_names
1999
+ waiters.keys
2000
+ end
2001
+
2002
+ private
2003
+
2004
+ # @param [Symbol] waiter_name
2005
+ # @param [Hash] options ({})
2006
+ def waiter(waiter_name, options = {})
2007
+ waiter_class = waiters[waiter_name]
2008
+ if waiter_class
2009
+ waiter_class.new(options.merge(client: self))
2010
+ else
2011
+ raise Aws::Waiters::Errors::NoSuchWaiterError.new(waiter_name, waiters.keys)
2012
+ end
2013
+ end
2014
+
2015
+ def waiters
2016
+ {
2017
+ data_source_available: Waiters::DataSourceAvailable,
2018
+ ml_model_available: Waiters::MLModelAvailable,
2019
+ evaluation_available: Waiters::EvaluationAvailable,
2020
+ batch_prediction_available: Waiters::BatchPredictionAvailable
2021
+ }
2022
+ end
2023
+
2024
+ class << self
2025
+
2026
+ # @api private
2027
+ attr_reader :identifier
2028
+
2029
+ # @api private
2030
+ def errors_module
2031
+ Errors
2032
+ end
2033
+
2034
+ end
2035
+ end
2036
+ end
2037
+ end