aws-sdk-machinelearning 1.0.0.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/lib/aws-sdk-machinelearning.rb +48 -0
- data/lib/aws-sdk-machinelearning/client.rb +2037 -0
- data/lib/aws-sdk-machinelearning/client_api.rb +1304 -0
- data/lib/aws-sdk-machinelearning/customizations.rb +7 -0
- data/lib/aws-sdk-machinelearning/errors.rb +23 -0
- data/lib/aws-sdk-machinelearning/plugins/predict_endpoint.rb +22 -0
- data/lib/aws-sdk-machinelearning/resource.rb +25 -0
- data/lib/aws-sdk-machinelearning/types.rb +3711 -0
- data/lib/aws-sdk-machinelearning/waiters.rb +190 -0
- metadata +82 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 9ba71ed1db314c4ecc1e9971bc9ad657ea98a71b
|
4
|
+
data.tar.gz: 27b6212254cac811e498620a1602371f12a45755
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: b47aeee82d78fd427d620fdb2d3ee27623893a4001512ef555f5e9825ee30bc0558ae986014b4593ba4a0e11f0ee79f4827c32d54e147166f836a3da03801bbc
|
7
|
+
data.tar.gz: 0bb0dae5ea3dbe0c7ab243b1c8790010ff3292c2f6446981b37bd8483e4c53a4b32ea15f7aaf6df677bcc4dbd8de5fc3571e4293f1e7e82e317cc8c1c1fba1dc
|
@@ -0,0 +1,48 @@
|
|
1
|
+
# WARNING ABOUT GENERATED CODE
|
2
|
+
#
|
3
|
+
# This file is generated. See the contributing for info on making contributions:
|
4
|
+
# https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
|
5
|
+
#
|
6
|
+
# WARNING ABOUT GENERATED CODE
|
7
|
+
|
8
|
+
require 'aws-sdk-core'
|
9
|
+
require 'aws-sigv4'
|
10
|
+
|
11
|
+
require_relative 'aws-sdk-machinelearning/types'
|
12
|
+
require_relative 'aws-sdk-machinelearning/client_api'
|
13
|
+
require_relative 'aws-sdk-machinelearning/client'
|
14
|
+
require_relative 'aws-sdk-machinelearning/errors'
|
15
|
+
require_relative 'aws-sdk-machinelearning/waiters'
|
16
|
+
require_relative 'aws-sdk-machinelearning/resource'
|
17
|
+
require_relative 'aws-sdk-machinelearning/customizations'
|
18
|
+
|
19
|
+
# This module provides support for Amazon Machine Learning. This module is available in the
|
20
|
+
# `aws-sdk-machinelearning` gem.
|
21
|
+
#
|
22
|
+
# # Client
|
23
|
+
#
|
24
|
+
# The {Client} class provides one method for each API operation. Operation
|
25
|
+
# methods each accept a hash of request parameters and return a response
|
26
|
+
# structure.
|
27
|
+
#
|
28
|
+
# See {Client} for more information.
|
29
|
+
#
|
30
|
+
# # Errors
|
31
|
+
#
|
32
|
+
# Errors returned from Amazon Machine Learning all
|
33
|
+
# extend {Errors::ServiceError}.
|
34
|
+
#
|
35
|
+
# begin
|
36
|
+
# # do stuff
|
37
|
+
# rescue Aws::MachineLearning::Errors::ServiceError
|
38
|
+
# # rescues all service API errors
|
39
|
+
# end
|
40
|
+
#
|
41
|
+
# See {Errors} for more information.
|
42
|
+
#
|
43
|
+
# @service
|
44
|
+
module Aws::MachineLearning
|
45
|
+
|
46
|
+
GEM_VERSION = '1.0.0.rc1'
|
47
|
+
|
48
|
+
end
|
@@ -0,0 +1,2037 @@
|
|
1
|
+
# WARNING ABOUT GENERATED CODE
|
2
|
+
#
|
3
|
+
# This file is generated. See the contributing for info on making contributions:
|
4
|
+
# https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
|
5
|
+
#
|
6
|
+
# WARNING ABOUT GENERATED CODE
|
7
|
+
|
8
|
+
require 'seahorse/client/plugins/content_length.rb'
|
9
|
+
require 'aws-sdk-core/plugins/credentials_configuration.rb'
|
10
|
+
require 'aws-sdk-core/plugins/logging.rb'
|
11
|
+
require 'aws-sdk-core/plugins/param_converter.rb'
|
12
|
+
require 'aws-sdk-core/plugins/param_validator.rb'
|
13
|
+
require 'aws-sdk-core/plugins/user_agent.rb'
|
14
|
+
require 'aws-sdk-core/plugins/helpful_socket_errors.rb'
|
15
|
+
require 'aws-sdk-core/plugins/retry_errors.rb'
|
16
|
+
require 'aws-sdk-core/plugins/global_configuration.rb'
|
17
|
+
require 'aws-sdk-core/plugins/regional_endpoint.rb'
|
18
|
+
require 'aws-sdk-core/plugins/response_paging.rb'
|
19
|
+
require 'aws-sdk-core/plugins/stub_responses.rb'
|
20
|
+
require 'aws-sdk-core/plugins/idempotency_token.rb'
|
21
|
+
require 'aws-sdk-core/plugins/signature_v4.rb'
|
22
|
+
require 'aws-sdk-core/plugins/protocols/json_rpc.rb'
|
23
|
+
require 'aws-sdk-machinelearning/plugins/predict_endpoint.rb'
|
24
|
+
|
25
|
+
Aws::Plugins::GlobalConfiguration.add_identifier(:machinelearning)
|
26
|
+
|
27
|
+
module Aws
|
28
|
+
module MachineLearning
|
29
|
+
class Client < Seahorse::Client::Base
|
30
|
+
|
31
|
+
include Aws::ClientStubs
|
32
|
+
|
33
|
+
@identifier = :machinelearning
|
34
|
+
|
35
|
+
set_api(ClientApi::API)
|
36
|
+
|
37
|
+
add_plugin(Seahorse::Client::Plugins::ContentLength)
|
38
|
+
add_plugin(Aws::Plugins::CredentialsConfiguration)
|
39
|
+
add_plugin(Aws::Plugins::Logging)
|
40
|
+
add_plugin(Aws::Plugins::ParamConverter)
|
41
|
+
add_plugin(Aws::Plugins::ParamValidator)
|
42
|
+
add_plugin(Aws::Plugins::UserAgent)
|
43
|
+
add_plugin(Aws::Plugins::HelpfulSocketErrors)
|
44
|
+
add_plugin(Aws::Plugins::RetryErrors)
|
45
|
+
add_plugin(Aws::Plugins::GlobalConfiguration)
|
46
|
+
add_plugin(Aws::Plugins::RegionalEndpoint)
|
47
|
+
add_plugin(Aws::Plugins::ResponsePaging)
|
48
|
+
add_plugin(Aws::Plugins::StubResponses)
|
49
|
+
add_plugin(Aws::Plugins::IdempotencyToken)
|
50
|
+
add_plugin(Aws::Plugins::SignatureV4)
|
51
|
+
add_plugin(Aws::Plugins::Protocols::JsonRpc)
|
52
|
+
add_plugin(Aws::MachineLearning::Plugins::PredictEndpoint)
|
53
|
+
|
54
|
+
# @option options [required, Aws::CredentialProvider] :credentials
|
55
|
+
# Your AWS credentials. This can be an instance of any one of the
|
56
|
+
# following classes:
|
57
|
+
#
|
58
|
+
# * `Aws::Credentials` - Used for configuring static, non-refreshing
|
59
|
+
# credentials.
|
60
|
+
#
|
61
|
+
# * `Aws::InstanceProfileCredentials` - Used for loading credentials
|
62
|
+
# from an EC2 IMDS on an EC2 instance.
|
63
|
+
#
|
64
|
+
# * `Aws::SharedCredentials` - Used for loading credentials from a
|
65
|
+
# shared file, such as `~/.aws/config`.
|
66
|
+
#
|
67
|
+
# * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
|
68
|
+
#
|
69
|
+
# When `:credentials` are not configured directly, the following
|
70
|
+
# locations will be searched for credentials:
|
71
|
+
#
|
72
|
+
# * `Aws.config[:credentials]`
|
73
|
+
# * The `:access_key_id`, `:secret_access_key`, and `:session_token` options.
|
74
|
+
# * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
|
75
|
+
# * `~/.aws/credentials`
|
76
|
+
# * `~/.aws/config`
|
77
|
+
# * EC2 IMDS instance profile - When used by default, the timeouts are
|
78
|
+
# very aggressive. Construct and pass an instance of
|
79
|
+
# `Aws::InstanceProfileCredentails` to enable retries and extended
|
80
|
+
# timeouts.
|
81
|
+
# @option options [required, String] :region
|
82
|
+
# The AWS region to connect to. The configured `:region` is
|
83
|
+
# used to determine the service `:endpoint`. When not passed,
|
84
|
+
# a default `:region` is search for in the following locations:
|
85
|
+
#
|
86
|
+
# * `Aws.config[:region]`
|
87
|
+
# * `ENV['AWS_REGION']`
|
88
|
+
# * `ENV['AMAZON_REGION']`
|
89
|
+
# * `ENV['AWS_DEFAULT_REGION']`
|
90
|
+
# * `~/.aws/credentials`
|
91
|
+
# * `~/.aws/config`
|
92
|
+
# @option options [String] :access_key_id
|
93
|
+
# @option options [Boolean] :convert_params (true)
|
94
|
+
# When `true`, an attempt is made to coerce request parameters into
|
95
|
+
# the required types.
|
96
|
+
# @option options [String] :endpoint
|
97
|
+
# The client endpoint is normally constructed from the `:region`
|
98
|
+
# option. You should only configure an `:endpoint` when connecting
|
99
|
+
# to test endpoints. This should be avalid HTTP(S) URI.
|
100
|
+
# @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
|
101
|
+
# The log formatter.
|
102
|
+
# @option options [Symbol] :log_level (:info)
|
103
|
+
# The log level to send messages to the `:logger` at.
|
104
|
+
# @option options [Logger] :logger
|
105
|
+
# The Logger instance to send log messages to. If this option
|
106
|
+
# is not set, logging will be disabled.
|
107
|
+
# @option options [String] :profile ("default")
|
108
|
+
# Used when loading credentials from the shared credentials file
|
109
|
+
# at HOME/.aws/credentials. When not specified, 'default' is used.
|
110
|
+
# @option options [Integer] :retry_limit (3)
|
111
|
+
# The maximum number of times to retry failed requests. Only
|
112
|
+
# ~ 500 level server errors and certain ~ 400 level client errors
|
113
|
+
# are retried. Generally, these are throttling errors, data
|
114
|
+
# checksum errors, networking errors, timeout errors and auth
|
115
|
+
# errors from expired credentials.
|
116
|
+
# @option options [String] :secret_access_key
|
117
|
+
# @option options [String] :session_token
|
118
|
+
# @option options [Boolean] :simple_json (false)
|
119
|
+
# Disables request parameter conversion, validation, and formatting.
|
120
|
+
# Also disable response data type conversions. This option is useful
|
121
|
+
# when you want to ensure the highest level of performance by
|
122
|
+
# avoiding overhead of walking request parameters and response data
|
123
|
+
# structures.
|
124
|
+
#
|
125
|
+
# When `:simple_json` is enabled, the request parameters hash must
|
126
|
+
# be formatted exactly as the DynamoDB API expects.
|
127
|
+
# @option options [Boolean] :stub_responses (false)
|
128
|
+
# Causes the client to return stubbed responses. By default
|
129
|
+
# fake responses are generated and returned. You can specify
|
130
|
+
# the response data to return or errors to raise by calling
|
131
|
+
# {ClientStubs#stub_responses}. See {ClientStubs} for more information.
|
132
|
+
#
|
133
|
+
# ** Please note ** When response stubbing is enabled, no HTTP
|
134
|
+
# requests are made, and retries are disabled.
|
135
|
+
# @option options [Boolean] :validate_params (true)
|
136
|
+
# When `true`, request parameters are validated before
|
137
|
+
# sending the request.
|
138
|
+
def initialize(*args)
|
139
|
+
super
|
140
|
+
end
|
141
|
+
|
142
|
+
# @!group API Operations
|
143
|
+
|
144
|
+
# Adds one or more tags to an object, up to a limit of 10. Each tag
|
145
|
+
# consists of a key and an optional value. If you add a tag using a key
|
146
|
+
# that is already associated with the ML object, `AddTags` updates the
|
147
|
+
# tag's value.
|
148
|
+
# @option params [required, Array<Types::Tag>] :tags
|
149
|
+
# The key-value pairs to use to create tags. If you specify a key
|
150
|
+
# without specifying a value, Amazon ML creates a tag with the specified
|
151
|
+
# key and a value of null.
|
152
|
+
# @option params [required, String] :resource_id
|
153
|
+
# The ID of the ML object to tag. For example, `exampleModelId`.
|
154
|
+
# @option params [required, String] :resource_type
|
155
|
+
# The type of the ML object to tag.
|
156
|
+
# @return [Types::AddTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
157
|
+
#
|
158
|
+
# * {Types::AddTagsOutput#resource_id #ResourceId} => String
|
159
|
+
# * {Types::AddTagsOutput#resource_type #ResourceType} => String
|
160
|
+
#
|
161
|
+
# @example Request syntax with placeholder values
|
162
|
+
# resp = client.add_tags({
|
163
|
+
# tags: [ # required
|
164
|
+
# {
|
165
|
+
# key: "TagKey",
|
166
|
+
# value: "TagValue",
|
167
|
+
# },
|
168
|
+
# ],
|
169
|
+
# resource_id: "EntityId", # required
|
170
|
+
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
|
171
|
+
# })
|
172
|
+
#
|
173
|
+
# @example Response structure
|
174
|
+
# resp.resource_id #=> String
|
175
|
+
# resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
|
176
|
+
# @overload add_tags(params = {})
|
177
|
+
# @param [Hash] params ({})
|
178
|
+
def add_tags(params = {}, options = {})
|
179
|
+
req = build_request(:add_tags, params)
|
180
|
+
req.send_request(options)
|
181
|
+
end
|
182
|
+
|
183
|
+
# Generates predictions for a group of observations. The observations to
|
184
|
+
# process exist in one or more data files referenced by a `DataSource`.
|
185
|
+
# This operation creates a new `BatchPrediction`, and uses an `MLModel`
|
186
|
+
# and the data files referenced by the `DataSource` as information
|
187
|
+
# sources.
|
188
|
+
#
|
189
|
+
# `CreateBatchPrediction` is an asynchronous operation. In response to
|
190
|
+
# `CreateBatchPrediction`, Amazon Machine Learning (Amazon ML)
|
191
|
+
# immediately returns and sets the `BatchPrediction` status to
|
192
|
+
# `PENDING`. After the `BatchPrediction` completes, Amazon ML sets the
|
193
|
+
# status to `COMPLETED`.
|
194
|
+
#
|
195
|
+
# You can poll for status updates by using the GetBatchPrediction
|
196
|
+
# operation and checking the `Status` parameter of the result. After the
|
197
|
+
# `COMPLETED` status appears, the results are available in the location
|
198
|
+
# specified by the `OutputUri` parameter.
|
199
|
+
# @option params [required, String] :batch_prediction_id
|
200
|
+
# A user-supplied ID that uniquely identifies the `BatchPrediction`.
|
201
|
+
# @option params [String] :batch_prediction_name
|
202
|
+
# A user-supplied name or description of the `BatchPrediction`.
|
203
|
+
# `BatchPredictionName` can only use the UTF-8 character set.
|
204
|
+
# @option params [required, String] :ml_model_id
|
205
|
+
# The ID of the `MLModel` that will generate predictions for the group
|
206
|
+
# of observations.
|
207
|
+
# @option params [required, String] :batch_prediction_data_source_id
|
208
|
+
# The ID of the `DataSource` that points to the group of observations to
|
209
|
+
# predict.
|
210
|
+
# @option params [required, String] :output_uri
|
211
|
+
# The location of an Amazon Simple Storage Service (Amazon S3) bucket or
|
212
|
+
# directory to store the batch prediction results. The following
|
213
|
+
# substrings are not allowed in the `s3 key` portion of the `outputURI`
|
214
|
+
# field: ':', '//', '/./', '/../'.
|
215
|
+
#
|
216
|
+
# Amazon ML needs permissions to store and retrieve the logs on your
|
217
|
+
# behalf. For information about how to set permissions, see the [Amazon
|
218
|
+
# Machine Learning Developer Guide][1].
|
219
|
+
#
|
220
|
+
#
|
221
|
+
#
|
222
|
+
# [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
|
223
|
+
# @return [Types::CreateBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
224
|
+
#
|
225
|
+
# * {Types::CreateBatchPredictionOutput#batch_prediction_id #BatchPredictionId} => String
|
226
|
+
#
|
227
|
+
# @example Request syntax with placeholder values
|
228
|
+
# resp = client.create_batch_prediction({
|
229
|
+
# batch_prediction_id: "EntityId", # required
|
230
|
+
# batch_prediction_name: "EntityName",
|
231
|
+
# ml_model_id: "EntityId", # required
|
232
|
+
# batch_prediction_data_source_id: "EntityId", # required
|
233
|
+
# output_uri: "S3Url", # required
|
234
|
+
# })
|
235
|
+
#
|
236
|
+
# @example Response structure
|
237
|
+
# resp.batch_prediction_id #=> String
|
238
|
+
# @overload create_batch_prediction(params = {})
|
239
|
+
# @param [Hash] params ({})
|
240
|
+
def create_batch_prediction(params = {}, options = {})
|
241
|
+
req = build_request(:create_batch_prediction, params)
|
242
|
+
req.send_request(options)
|
243
|
+
end
|
244
|
+
|
245
|
+
# Creates a `DataSource` object from an [ Amazon Relational Database
|
246
|
+
# Service][1] (Amazon RDS). A `DataSource` references data that can be
|
247
|
+
# used to perform `CreateMLModel`, `CreateEvaluation`, or
|
248
|
+
# `CreateBatchPrediction` operations.
|
249
|
+
#
|
250
|
+
# `CreateDataSourceFromRDS` is an asynchronous operation. In response to
|
251
|
+
# `CreateDataSourceFromRDS`, Amazon Machine Learning (Amazon ML)
|
252
|
+
# immediately returns and sets the `DataSource` status to `PENDING`.
|
253
|
+
# After the `DataSource` is created and ready for use, Amazon ML sets
|
254
|
+
# the `Status` parameter to `COMPLETED`. `DataSource` in the `COMPLETED`
|
255
|
+
# or `PENDING` state can be used only to perform `>CreateMLModel`>,
|
256
|
+
# `CreateEvaluation`, or `CreateBatchPrediction` operations.
|
257
|
+
#
|
258
|
+
# If Amazon ML cannot accept the input source, it sets the `Status`
|
259
|
+
# parameter to `FAILED` and includes an error message in the `Message`
|
260
|
+
# attribute of the `GetDataSource` operation response.
|
261
|
+
#
|
262
|
+
#
|
263
|
+
#
|
264
|
+
# [1]: http://aws.amazon.com/rds/
|
265
|
+
# @option params [required, String] :data_source_id
|
266
|
+
# A user-supplied ID that uniquely identifies the `DataSource`.
|
267
|
+
# Typically, an Amazon Resource Number (ARN) becomes the ID for a
|
268
|
+
# `DataSource`.
|
269
|
+
# @option params [String] :data_source_name
|
270
|
+
# A user-supplied name or description of the `DataSource`.
|
271
|
+
# @option params [required, Types::RDSDataSpec] :rds_data
|
272
|
+
# The data specification of an Amazon RDS `DataSource`\:
|
273
|
+
#
|
274
|
+
# * DatabaseInformation - * `DatabaseName` - The name of the Amazon RDS
|
275
|
+
# database.
|
276
|
+
# * `InstanceIdentifier ` - A unique identifier for the Amazon RDS
|
277
|
+
# database instance.
|
278
|
+
#
|
279
|
+
# * DatabaseCredentials - AWS Identity and Access Management (IAM)
|
280
|
+
# credentials that are used to connect to the Amazon RDS database.
|
281
|
+
#
|
282
|
+
# * ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by
|
283
|
+
# an EC2 instance to carry out the copy task from Amazon RDS to Amazon
|
284
|
+
# Simple Storage Service (Amazon S3). For more information, see [Role
|
285
|
+
# templates][1] for data pipelines.
|
286
|
+
#
|
287
|
+
# * ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS
|
288
|
+
# Data Pipeline service to monitor the progress of the copy task from
|
289
|
+
# Amazon RDS to Amazon S3. For more information, see [Role
|
290
|
+
# templates][1] for data pipelines.
|
291
|
+
#
|
292
|
+
# * SecurityInfo - The security information to use to access an RDS DB
|
293
|
+
# instance. You need to set up appropriate ingress rules for the
|
294
|
+
# security entity IDs provided to allow access to the Amazon RDS
|
295
|
+
# instance. Specify a \[`SubnetId`, `SecurityGroupIds`\] pair for a
|
296
|
+
# VPC-based RDS DB instance.
|
297
|
+
#
|
298
|
+
# * SelectSqlQuery - A query that is used to retrieve the observation
|
299
|
+
# data for the `Datasource`.
|
300
|
+
#
|
301
|
+
# * S3StagingLocation - The Amazon S3 location for staging Amazon RDS
|
302
|
+
# data. The data retrieved from Amazon RDS using `SelectSqlQuery` is
|
303
|
+
# stored in this location.
|
304
|
+
#
|
305
|
+
# * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
|
306
|
+
#
|
307
|
+
# * DataSchema - A JSON string representing the schema. This is not
|
308
|
+
# required if `DataSchemaUri` is specified.
|
309
|
+
#
|
310
|
+
# * DataRearrangement - A JSON string that represents the splitting and
|
311
|
+
# rearrangement requirements for the `Datasource`.
|
312
|
+
#
|
313
|
+
#
|
314
|
+
# Sample - `
|
315
|
+
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
|
316
|
+
#
|
317
|
+
#
|
318
|
+
#
|
319
|
+
# [1]: http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
|
320
|
+
# @option params [required, String] :role_arn
|
321
|
+
# The role that Amazon ML assumes on behalf of the user to create and
|
322
|
+
# activate a data pipeline in the user's account and copy data using
|
323
|
+
# the `SelectSqlQuery` query from Amazon RDS to Amazon S3.
|
324
|
+
# @option params [Boolean] :compute_statistics
|
325
|
+
# The compute statistics for a `DataSource`. The statistics are
|
326
|
+
# generated from the observation data referenced by a `DataSource`.
|
327
|
+
# Amazon ML uses the statistics internally during `MLModel` training.
|
328
|
+
# This parameter must be set to `true` if the ``DataSource`` needs to be
|
329
|
+
# used for `MLModel` training.
|
330
|
+
# @return [Types::CreateDataSourceFromRDSOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
331
|
+
#
|
332
|
+
# * {Types::CreateDataSourceFromRDSOutput#data_source_id #DataSourceId} => String
|
333
|
+
#
|
334
|
+
# @example Request syntax with placeholder values
|
335
|
+
# resp = client.create_data_source_from_rds({
|
336
|
+
# data_source_id: "EntityId", # required
|
337
|
+
# data_source_name: "EntityName",
|
338
|
+
# rds_data: { # required
|
339
|
+
# database_information: { # required
|
340
|
+
# instance_identifier: "RDSInstanceIdentifier", # required
|
341
|
+
# database_name: "RDSDatabaseName", # required
|
342
|
+
# },
|
343
|
+
# select_sql_query: "RDSSelectSqlQuery", # required
|
344
|
+
# database_credentials: { # required
|
345
|
+
# username: "RDSDatabaseUsername", # required
|
346
|
+
# password: "RDSDatabasePassword", # required
|
347
|
+
# },
|
348
|
+
# s3_staging_location: "S3Url", # required
|
349
|
+
# data_rearrangement: "DataRearrangement",
|
350
|
+
# data_schema: "DataSchema",
|
351
|
+
# data_schema_uri: "S3Url",
|
352
|
+
# resource_role: "EDPResourceRole", # required
|
353
|
+
# service_role: "EDPServiceRole", # required
|
354
|
+
# subnet_id: "EDPSubnetId", # required
|
355
|
+
# security_group_ids: ["EDPSecurityGroupId"], # required
|
356
|
+
# },
|
357
|
+
# role_arn: "RoleARN", # required
|
358
|
+
# compute_statistics: false,
|
359
|
+
# })
|
360
|
+
#
|
361
|
+
# @example Response structure
|
362
|
+
# resp.data_source_id #=> String
|
363
|
+
# @overload create_data_source_from_rds(params = {})
|
364
|
+
# @param [Hash] params ({})
|
365
|
+
def create_data_source_from_rds(params = {}, options = {})
|
366
|
+
req = build_request(:create_data_source_from_rds, params)
|
367
|
+
req.send_request(options)
|
368
|
+
end
|
369
|
+
|
370
|
+
# Creates a `DataSource` from a database hosted on an Amazon Redshift
|
371
|
+
# cluster. A `DataSource` references data that can be used to perform
|
372
|
+
# either `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction`
|
373
|
+
# operations.
|
374
|
+
#
|
375
|
+
# `CreateDataSourceFromRedshift` is an asynchronous operation. In
|
376
|
+
# response to `CreateDataSourceFromRedshift`, Amazon Machine Learning
|
377
|
+
# (Amazon ML) immediately returns and sets the `DataSource` status to
|
378
|
+
# `PENDING`. After the `DataSource` is created and ready for use, Amazon
|
379
|
+
# ML sets the `Status` parameter to `COMPLETED`. `DataSource` in
|
380
|
+
# `COMPLETED` or `PENDING` states can be used to perform only
|
381
|
+
# `CreateMLModel`, `CreateEvaluation`, or `CreateBatchPrediction`
|
382
|
+
# operations.
|
383
|
+
#
|
384
|
+
# If Amazon ML can't accept the input source, it sets the `Status`
|
385
|
+
# parameter to `FAILED` and includes an error message in the `Message`
|
386
|
+
# attribute of the `GetDataSource` operation response.
|
387
|
+
#
|
388
|
+
# The observations should be contained in the database hosted on an
|
389
|
+
# Amazon Redshift cluster and should be specified by a `SelectSqlQuery`
|
390
|
+
# query. Amazon ML executes an `Unload` command in Amazon Redshift to
|
391
|
+
# transfer the result set of the `SelectSqlQuery` query to
|
392
|
+
# `S3StagingLocation`.
|
393
|
+
#
|
394
|
+
# After the `DataSource` has been created, it's ready for use in
|
395
|
+
# evaluations and batch predictions. If you plan to use the `DataSource`
|
396
|
+
# to train an `MLModel`, the `DataSource` also requires a recipe. A
|
397
|
+
# recipe describes how each input variable will be used in training an
|
398
|
+
# `MLModel`. Will the variable be included or excluded from training?
|
399
|
+
# Will the variable be manipulated; for example, will it be combined
|
400
|
+
# with another variable or will it be split apart into word
|
401
|
+
# combinations? The recipe provides answers to these questions.
|
402
|
+
#
|
403
|
+
# <?oxy\_insert\_start author="laurama" timestamp="20160406T153842-0700">You can't change an existing datasource, but you can copy and modify
|
404
|
+
# the settings from an existing Amazon Redshift datasource to create a
|
405
|
+
# new datasource. To do so, call `GetDataSource` for an existing
|
406
|
+
# datasource and copy the values to a `CreateDataSource` call. Change
|
407
|
+
# the settings that you want to change and make sure that all required
|
408
|
+
# fields have the appropriate values.
|
409
|
+
#
|
410
|
+
# <?oxy\_insert\_end>
|
411
|
+
# @option params [required, String] :data_source_id
|
412
|
+
# A user-supplied ID that uniquely identifies the `DataSource`.
|
413
|
+
# @option params [String] :data_source_name
|
414
|
+
# A user-supplied name or description of the `DataSource`.
|
415
|
+
# @option params [required, Types::RedshiftDataSpec] :data_spec
|
416
|
+
# The data specification of an Amazon Redshift `DataSource`\:
|
417
|
+
#
|
418
|
+
# * DatabaseInformation - * `DatabaseName` - The name of the Amazon
|
419
|
+
# Redshift database.
|
420
|
+
# * ` ClusterIdentifier` - The unique ID for the Amazon Redshift
|
421
|
+
# cluster.
|
422
|
+
#
|
423
|
+
# * DatabaseCredentials - The AWS Identity and Access Management (IAM)
|
424
|
+
# credentials that are used to connect to the Amazon Redshift
|
425
|
+
# database.
|
426
|
+
#
|
427
|
+
# * SelectSqlQuery - The query that is used to retrieve the observation
|
428
|
+
# data for the `Datasource`.
|
429
|
+
#
|
430
|
+
# * S3StagingLocation - The Amazon Simple Storage Service (Amazon S3)
|
431
|
+
# location for staging Amazon Redshift data. The data retrieved from
|
432
|
+
# Amazon Redshift using the `SelectSqlQuery` query is stored in this
|
433
|
+
# location.
|
434
|
+
#
|
435
|
+
# * DataSchemaUri - The Amazon S3 location of the `DataSchema`.
|
436
|
+
#
|
437
|
+
# * DataSchema - A JSON string representing the schema. This is not
|
438
|
+
# required if `DataSchemaUri` is specified.
|
439
|
+
#
|
440
|
+
# * DataRearrangement - A JSON string that represents the splitting and
|
441
|
+
# rearrangement requirements for the `DataSource`.
|
442
|
+
#
|
443
|
+
# Sample - `
|
444
|
+
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
|
445
|
+
# @option params [required, String] :role_arn
|
446
|
+
# A fully specified role Amazon Resource Name (ARN). Amazon ML assumes
|
447
|
+
# the role on behalf of the user to create the following:
|
448
|
+
#
|
449
|
+
# * A security group to allow Amazon ML to execute the `SelectSqlQuery`
|
450
|
+
# query on an Amazon Redshift cluster
|
451
|
+
#
|
452
|
+
# * An Amazon S3 bucket policy to grant Amazon ML read/write permissions
|
453
|
+
# on the `S3StagingLocation`
|
454
|
+
# @option params [Boolean] :compute_statistics
|
455
|
+
# The compute statistics for a `DataSource`. The statistics are
|
456
|
+
# generated from the observation data referenced by a `DataSource`.
|
457
|
+
# Amazon ML uses the statistics internally during `MLModel` training.
|
458
|
+
# This parameter must be set to `true` if the `DataSource` needs to be
|
459
|
+
# used for `MLModel` training.
|
460
|
+
# @return [Types::CreateDataSourceFromRedshiftOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
461
|
+
#
|
462
|
+
# * {Types::CreateDataSourceFromRedshiftOutput#data_source_id #DataSourceId} => String
|
463
|
+
#
|
464
|
+
# @example Request syntax with placeholder values
|
465
|
+
# resp = client.create_data_source_from_redshift({
|
466
|
+
# data_source_id: "EntityId", # required
|
467
|
+
# data_source_name: "EntityName",
|
468
|
+
# data_spec: { # required
|
469
|
+
# database_information: { # required
|
470
|
+
# database_name: "RedshiftDatabaseName", # required
|
471
|
+
# cluster_identifier: "RedshiftClusterIdentifier", # required
|
472
|
+
# },
|
473
|
+
# select_sql_query: "RedshiftSelectSqlQuery", # required
|
474
|
+
# database_credentials: { # required
|
475
|
+
# username: "RedshiftDatabaseUsername", # required
|
476
|
+
# password: "RedshiftDatabasePassword", # required
|
477
|
+
# },
|
478
|
+
# s3_staging_location: "S3Url", # required
|
479
|
+
# data_rearrangement: "DataRearrangement",
|
480
|
+
# data_schema: "DataSchema",
|
481
|
+
# data_schema_uri: "S3Url",
|
482
|
+
# },
|
483
|
+
# role_arn: "RoleARN", # required
|
484
|
+
# compute_statistics: false,
|
485
|
+
# })
|
486
|
+
#
|
487
|
+
# @example Response structure
|
488
|
+
# resp.data_source_id #=> String
|
489
|
+
# @overload create_data_source_from_redshift(params = {})
|
490
|
+
# @param [Hash] params ({})
|
491
|
+
def create_data_source_from_redshift(params = {}, options = {})
|
492
|
+
req = build_request(:create_data_source_from_redshift, params)
|
493
|
+
req.send_request(options)
|
494
|
+
end
|
495
|
+
|
496
|
+
# Creates a `DataSource` object. A `DataSource` references data that can
|
497
|
+
# be used to perform `CreateMLModel`, `CreateEvaluation`, or
|
498
|
+
# `CreateBatchPrediction` operations.
|
499
|
+
#
|
500
|
+
# `CreateDataSourceFromS3` is an asynchronous operation. In response to
|
501
|
+
# `CreateDataSourceFromS3`, Amazon Machine Learning (Amazon ML)
|
502
|
+
# immediately returns and sets the `DataSource` status to `PENDING`.
|
503
|
+
# After the `DataSource` has been created and is ready for use, Amazon
|
504
|
+
# ML sets the `Status` parameter to `COMPLETED`. `DataSource` in the
|
505
|
+
# `COMPLETED` or `PENDING` state can be used to perform only
|
506
|
+
# `CreateMLModel`, `CreateEvaluation` or `CreateBatchPrediction`
|
507
|
+
# operations.
|
508
|
+
#
|
509
|
+
# If Amazon ML can't accept the input source, it sets the `Status`
|
510
|
+
# parameter to `FAILED` and includes an error message in the `Message`
|
511
|
+
# attribute of the `GetDataSource` operation response.
|
512
|
+
#
|
513
|
+
# The observation data used in a `DataSource` should be ready to use;
|
514
|
+
# that is, it should have a consistent structure, and missing data
|
515
|
+
# values should be kept to a minimum. The observation data must reside
|
516
|
+
# in one or more .csv files in an Amazon Simple Storage Service (Amazon
|
517
|
+
# S3) location, along with a schema that describes the data items by
|
518
|
+
# name and type. The same schema must be used for all of the data files
|
519
|
+
# referenced by the `DataSource`.
|
520
|
+
#
|
521
|
+
# After the `DataSource` has been created, it's ready to use in
|
522
|
+
# evaluations and batch predictions. If you plan to use the `DataSource`
|
523
|
+
# to train an `MLModel`, the `DataSource` also needs a recipe. A recipe
|
524
|
+
# describes how each input variable will be used in training an
|
525
|
+
# `MLModel`. Will the variable be included or excluded from training?
|
526
|
+
# Will the variable be manipulated; for example, will it be combined
|
527
|
+
# with another variable or will it be split apart into word
|
528
|
+
# combinations? The recipe provides answers to these questions.
|
529
|
+
# @option params [required, String] :data_source_id
|
530
|
+
# A user-supplied identifier that uniquely identifies the `DataSource`.
|
531
|
+
# @option params [String] :data_source_name
|
532
|
+
# A user-supplied name or description of the `DataSource`.
|
533
|
+
# @option params [required, Types::S3DataSpec] :data_spec
|
534
|
+
# The data specification of a `DataSource`\:
|
535
|
+
#
|
536
|
+
# * DataLocationS3 - The Amazon S3 location of the observation data.
|
537
|
+
#
|
538
|
+
# * DataSchemaLocationS3 - The Amazon S3 location of the `DataSchema`.
|
539
|
+
#
|
540
|
+
# * DataSchema - A JSON string representing the schema. This is not
|
541
|
+
# required if `DataSchemaUri` is specified.
|
542
|
+
#
|
543
|
+
# * DataRearrangement - A JSON string that represents the splitting and
|
544
|
+
# rearrangement requirements for the `Datasource`.
|
545
|
+
#
|
546
|
+
# Sample - `
|
547
|
+
# "\{"splitting":\{"percentBegin":10,"percentEnd":60\}\}"`
|
548
|
+
# @option params [Boolean] :compute_statistics
|
549
|
+
# The compute statistics for a `DataSource`. The statistics are
|
550
|
+
# generated from the observation data referenced by a `DataSource`.
|
551
|
+
# Amazon ML uses the statistics internally during `MLModel` training.
|
552
|
+
# This parameter must be set to `true` if the ``DataSource`` needs to be
|
553
|
+
# used for `MLModel` training.
|
554
|
+
# @return [Types::CreateDataSourceFromS3Output] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
555
|
+
#
|
556
|
+
# * {Types::CreateDataSourceFromS3Output#data_source_id #DataSourceId} => String
|
557
|
+
#
|
558
|
+
# @example Request syntax with placeholder values
|
559
|
+
# resp = client.create_data_source_from_s3({
|
560
|
+
# data_source_id: "EntityId", # required
|
561
|
+
# data_source_name: "EntityName",
|
562
|
+
# data_spec: { # required
|
563
|
+
# data_location_s3: "S3Url", # required
|
564
|
+
# data_rearrangement: "DataRearrangement",
|
565
|
+
# data_schema: "DataSchema",
|
566
|
+
# data_schema_location_s3: "S3Url",
|
567
|
+
# },
|
568
|
+
# compute_statistics: false,
|
569
|
+
# })
|
570
|
+
#
|
571
|
+
# @example Response structure
|
572
|
+
# resp.data_source_id #=> String
|
573
|
+
# @overload create_data_source_from_s3(params = {})
|
574
|
+
# @param [Hash] params ({})
|
575
|
+
def create_data_source_from_s3(params = {}, options = {})
|
576
|
+
req = build_request(:create_data_source_from_s3, params)
|
577
|
+
req.send_request(options)
|
578
|
+
end
|
579
|
+
|
580
|
+
# Creates a new `Evaluation` of an `MLModel`. An `MLModel` is evaluated
|
581
|
+
# on a set of observations associated to a `DataSource`. Like a
|
582
|
+
# `DataSource` for an `MLModel`, the `DataSource` for an `Evaluation`
|
583
|
+
# contains values for the `Target Variable`. The `Evaluation` compares
|
584
|
+
# the predicted result for each observation to the actual outcome and
|
585
|
+
# provides a summary so that you know how effective the `MLModel`
|
586
|
+
# functions on the test data. Evaluation generates a relevant
|
587
|
+
# performance metric, such as BinaryAUC, RegressionRMSE or
|
588
|
+
# MulticlassAvgFScore based on the corresponding `MLModelType`\:
|
589
|
+
# `BINARY`, `REGRESSION` or `MULTICLASS`.
|
590
|
+
#
|
591
|
+
# `CreateEvaluation` is an asynchronous operation. In response to
|
592
|
+
# `CreateEvaluation`, Amazon Machine Learning (Amazon ML) immediately
|
593
|
+
# returns and sets the evaluation status to `PENDING`. After the
|
594
|
+
# `Evaluation` is created and ready for use, Amazon ML sets the status
|
595
|
+
# to `COMPLETED`.
|
596
|
+
#
|
597
|
+
# You can use the `GetEvaluation` operation to check progress of the
|
598
|
+
# evaluation during the creation operation.
|
599
|
+
# @option params [required, String] :evaluation_id
|
600
|
+
# A user-supplied ID that uniquely identifies the `Evaluation`.
|
601
|
+
# @option params [String] :evaluation_name
|
602
|
+
# A user-supplied name or description of the `Evaluation`.
|
603
|
+
# @option params [required, String] :ml_model_id
|
604
|
+
# The ID of the `MLModel` to evaluate.
|
605
|
+
#
|
606
|
+
# The schema used in creating the `MLModel` must match the schema of the
|
607
|
+
# `DataSource` used in the `Evaluation`.
|
608
|
+
# @option params [required, String] :evaluation_data_source_id
|
609
|
+
# The ID of the `DataSource` for the evaluation. The schema of the
|
610
|
+
# `DataSource` must match the schema used to create the `MLModel`.
|
611
|
+
# @return [Types::CreateEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
612
|
+
#
|
613
|
+
# * {Types::CreateEvaluationOutput#evaluation_id #EvaluationId} => String
|
614
|
+
#
|
615
|
+
# @example Request syntax with placeholder values
|
616
|
+
# resp = client.create_evaluation({
|
617
|
+
# evaluation_id: "EntityId", # required
|
618
|
+
# evaluation_name: "EntityName",
|
619
|
+
# ml_model_id: "EntityId", # required
|
620
|
+
# evaluation_data_source_id: "EntityId", # required
|
621
|
+
# })
|
622
|
+
#
|
623
|
+
# @example Response structure
|
624
|
+
# resp.evaluation_id #=> String
|
625
|
+
# @overload create_evaluation(params = {})
|
626
|
+
# @param [Hash] params ({})
|
627
|
+
def create_evaluation(params = {}, options = {})
|
628
|
+
req = build_request(:create_evaluation, params)
|
629
|
+
req.send_request(options)
|
630
|
+
end
|
631
|
+
|
632
|
+
# Creates a new `MLModel` using the `DataSource` and the recipe as
|
633
|
+
# information sources.
|
634
|
+
#
|
635
|
+
# An `MLModel` is nearly immutable. Users can update only the
|
636
|
+
# `MLModelName` and the `ScoreThreshold` in an `MLModel` without
|
637
|
+
# creating a new `MLModel`.
|
638
|
+
#
|
639
|
+
# `CreateMLModel` is an asynchronous operation. In response to
|
640
|
+
# `CreateMLModel`, Amazon Machine Learning (Amazon ML) immediately
|
641
|
+
# returns and sets the `MLModel` status to `PENDING`. After the
|
642
|
+
# `MLModel` has been created and ready is for use, Amazon ML sets the
|
643
|
+
# status to `COMPLETED`.
|
644
|
+
#
|
645
|
+
# You can use the `GetMLModel` operation to check the progress of the
|
646
|
+
# `MLModel` during the creation operation.
|
647
|
+
#
|
648
|
+
# `CreateMLModel` requires a `DataSource` with computed statistics,
|
649
|
+
# which can be created by setting `ComputeStatistics` to `true` in
|
650
|
+
# `CreateDataSourceFromRDS`, `CreateDataSourceFromS3`, or
|
651
|
+
# `CreateDataSourceFromRedshift` operations.
|
652
|
+
# @option params [required, String] :ml_model_id
|
653
|
+
# A user-supplied ID that uniquely identifies the `MLModel`.
|
654
|
+
# @option params [String] :ml_model_name
|
655
|
+
# A user-supplied name or description of the `MLModel`.
|
656
|
+
# @option params [required, String] :ml_model_type
|
657
|
+
# The category of supervised learning that this `MLModel` will address.
|
658
|
+
# Choose from the following types:
|
659
|
+
#
|
660
|
+
# * Choose `REGRESSION` if the `MLModel` will be used to predict a
|
661
|
+
# numeric value.
|
662
|
+
# * Choose `BINARY` if the `MLModel` result has two possible values.
|
663
|
+
# * Choose `MULTICLASS` if the `MLModel` result has a limited number of
|
664
|
+
# values.
|
665
|
+
#
|
666
|
+
# For more information, see the [Amazon Machine Learning Developer
|
667
|
+
# Guide][1].
|
668
|
+
#
|
669
|
+
#
|
670
|
+
#
|
671
|
+
# [1]: http://docs.aws.amazon.com/machine-learning/latest/dg
|
672
|
+
# @option params [Hash<String,String>] :parameters
|
673
|
+
# A list of the training parameters in the `MLModel`. The list is
|
674
|
+
# implemented as a map of key-value pairs.
|
675
|
+
#
|
676
|
+
# The following is the current set of training parameters:
|
677
|
+
#
|
678
|
+
# * `sgd.maxMLModelSizeInBytes` - The maximum allowed size of the model.
|
679
|
+
# Depending on the input data, the size of the model might affect its
|
680
|
+
# performance.
|
681
|
+
#
|
682
|
+
# The value is an integer that ranges from `100000` to `2147483648`.
|
683
|
+
# The default value is `33554432`.
|
684
|
+
#
|
685
|
+
# * `sgd.maxPasses` - The number of times that the training process
|
686
|
+
# traverses the observations to build the `MLModel`. The value is an
|
687
|
+
# integer that ranges from `1` to `10000`. The default value is `10`.
|
688
|
+
#
|
689
|
+
# * `sgd.shuffleType` - Whether Amazon ML shuffles the training data.
|
690
|
+
# Shuffling the data improves a model's ability to find the optimal
|
691
|
+
# solution for a variety of data types. The valid values are `auto`
|
692
|
+
# and `none`. The default value is `none`. We <?oxy\_insert\_start
|
693
|
+
# author="laurama" timestamp="20160329T131121-0700">strongly
|
694
|
+
# recommend that you shuffle your data.<?oxy\_insert\_end>
|
695
|
+
#
|
696
|
+
# * `sgd.l1RegularizationAmount` - The coefficient regularization L1
|
697
|
+
# norm. It controls overfitting the data by penalizing large
|
698
|
+
# coefficients. This tends to drive coefficients to zero, resulting in
|
699
|
+
# a sparse feature set. If you use this parameter, start by specifying
|
700
|
+
# a small value, such as `1.0E-08`.
|
701
|
+
#
|
702
|
+
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
|
703
|
+
# default is to not use L1 normalization. This parameter can't be
|
704
|
+
# used when `L2` is specified. Use this parameter sparingly.
|
705
|
+
#
|
706
|
+
# * `sgd.l2RegularizationAmount` - The coefficient regularization L2
|
707
|
+
# norm. It controls overfitting the data by penalizing large
|
708
|
+
# coefficients. This tends to drive coefficients to small, nonzero
|
709
|
+
# values. If you use this parameter, start by specifying a small
|
710
|
+
# value, such as `1.0E-08`.
|
711
|
+
#
|
712
|
+
# The value is a double that ranges from `0` to `MAX_DOUBLE`. The
|
713
|
+
# default is to not use L2 normalization. This parameter can't be
|
714
|
+
# used when `L1` is specified. Use this parameter sparingly.
|
715
|
+
# @option params [required, String] :training_data_source_id
|
716
|
+
# The `DataSource` that points to the training data.
|
717
|
+
# @option params [String] :recipe
|
718
|
+
# The data recipe for creating the `MLModel`. You must specify either
|
719
|
+
# the recipe or its URI. If you don't specify a recipe or its URI,
|
720
|
+
# Amazon ML creates a default.
|
721
|
+
# @option params [String] :recipe_uri
|
722
|
+
# The Amazon Simple Storage Service (Amazon S3) location and file name
|
723
|
+
# that contains the `MLModel` recipe. You must specify either the recipe
|
724
|
+
# or its URI. If you don't specify a recipe or its URI, Amazon ML
|
725
|
+
# creates a default.
|
726
|
+
# @return [Types::CreateMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
727
|
+
#
|
728
|
+
# * {Types::CreateMLModelOutput#ml_model_id #MLModelId} => String
|
729
|
+
#
|
730
|
+
# @example Request syntax with placeholder values
|
731
|
+
# resp = client.create_ml_model({
|
732
|
+
# ml_model_id: "EntityId", # required
|
733
|
+
# ml_model_name: "EntityName",
|
734
|
+
# ml_model_type: "REGRESSION", # required, accepts REGRESSION, BINARY, MULTICLASS
|
735
|
+
# parameters: {
|
736
|
+
# "StringType" => "StringType",
|
737
|
+
# },
|
738
|
+
# training_data_source_id: "EntityId", # required
|
739
|
+
# recipe: "Recipe",
|
740
|
+
# recipe_uri: "S3Url",
|
741
|
+
# })
|
742
|
+
#
|
743
|
+
# @example Response structure
|
744
|
+
# resp.ml_model_id #=> String
|
745
|
+
# @overload create_ml_model(params = {})
|
746
|
+
# @param [Hash] params ({})
|
747
|
+
def create_ml_model(params = {}, options = {})
|
748
|
+
req = build_request(:create_ml_model, params)
|
749
|
+
req.send_request(options)
|
750
|
+
end
|
751
|
+
|
752
|
+
# Creates a real-time endpoint for the `MLModel`. The endpoint contains
|
753
|
+
# the URI of the `MLModel`; that is, the location to send real-time
|
754
|
+
# prediction requests for the specified `MLModel`.
|
755
|
+
# @option params [required, String] :ml_model_id
|
756
|
+
# The ID assigned to the `MLModel` during creation.
|
757
|
+
# @return [Types::CreateRealtimeEndpointOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
758
|
+
#
|
759
|
+
# * {Types::CreateRealtimeEndpointOutput#ml_model_id #MLModelId} => String
|
760
|
+
# * {Types::CreateRealtimeEndpointOutput#realtime_endpoint_info #RealtimeEndpointInfo} => Types::RealtimeEndpointInfo
|
761
|
+
#
|
762
|
+
# @example Request syntax with placeholder values
|
763
|
+
# resp = client.create_realtime_endpoint({
|
764
|
+
# ml_model_id: "EntityId", # required
|
765
|
+
# })
|
766
|
+
#
|
767
|
+
# @example Response structure
|
768
|
+
# resp.ml_model_id #=> String
|
769
|
+
# resp.realtime_endpoint_info.peak_requests_per_second #=> Integer
|
770
|
+
# resp.realtime_endpoint_info.created_at #=> Time
|
771
|
+
# resp.realtime_endpoint_info.endpoint_url #=> String
|
772
|
+
# resp.realtime_endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
|
773
|
+
# @overload create_realtime_endpoint(params = {})
|
774
|
+
# @param [Hash] params ({})
|
775
|
+
def create_realtime_endpoint(params = {}, options = {})
|
776
|
+
req = build_request(:create_realtime_endpoint, params)
|
777
|
+
req.send_request(options)
|
778
|
+
end
|
779
|
+
|
780
|
+
# Assigns the DELETED status to a `BatchPrediction`, rendering it
|
781
|
+
# unusable.
|
782
|
+
#
|
783
|
+
# After using the `DeleteBatchPrediction` operation, you can use the
|
784
|
+
# GetBatchPrediction operation to verify that the status of the
|
785
|
+
# `BatchPrediction` changed to DELETED.
|
786
|
+
#
|
787
|
+
# **Caution:** The result of the `DeleteBatchPrediction` operation is
|
788
|
+
# irreversible.
|
789
|
+
# @option params [required, String] :batch_prediction_id
|
790
|
+
# A user-supplied ID that uniquely identifies the `BatchPrediction`.
|
791
|
+
# @return [Types::DeleteBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
792
|
+
#
|
793
|
+
# * {Types::DeleteBatchPredictionOutput#batch_prediction_id #BatchPredictionId} => String
|
794
|
+
#
|
795
|
+
# @example Request syntax with placeholder values
|
796
|
+
# resp = client.delete_batch_prediction({
|
797
|
+
# batch_prediction_id: "EntityId", # required
|
798
|
+
# })
|
799
|
+
#
|
800
|
+
# @example Response structure
|
801
|
+
# resp.batch_prediction_id #=> String
|
802
|
+
# @overload delete_batch_prediction(params = {})
|
803
|
+
# @param [Hash] params ({})
|
804
|
+
def delete_batch_prediction(params = {}, options = {})
|
805
|
+
req = build_request(:delete_batch_prediction, params)
|
806
|
+
req.send_request(options)
|
807
|
+
end
|
808
|
+
|
809
|
+
# Assigns the DELETED status to a `DataSource`, rendering it unusable.
|
810
|
+
#
|
811
|
+
# After using the `DeleteDataSource` operation, you can use the
|
812
|
+
# GetDataSource operation to verify that the status of the `DataSource`
|
813
|
+
# changed to DELETED.
|
814
|
+
#
|
815
|
+
# **Caution:** The results of the `DeleteDataSource` operation are
|
816
|
+
# irreversible.
|
817
|
+
# @option params [required, String] :data_source_id
|
818
|
+
# A user-supplied ID that uniquely identifies the `DataSource`.
|
819
|
+
# @return [Types::DeleteDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
820
|
+
#
|
821
|
+
# * {Types::DeleteDataSourceOutput#data_source_id #DataSourceId} => String
|
822
|
+
#
|
823
|
+
# @example Request syntax with placeholder values
|
824
|
+
# resp = client.delete_data_source({
|
825
|
+
# data_source_id: "EntityId", # required
|
826
|
+
# })
|
827
|
+
#
|
828
|
+
# @example Response structure
|
829
|
+
# resp.data_source_id #=> String
|
830
|
+
# @overload delete_data_source(params = {})
|
831
|
+
# @param [Hash] params ({})
|
832
|
+
def delete_data_source(params = {}, options = {})
|
833
|
+
req = build_request(:delete_data_source, params)
|
834
|
+
req.send_request(options)
|
835
|
+
end
|
836
|
+
|
837
|
+
# Assigns the `DELETED` status to an `Evaluation`, rendering it
|
838
|
+
# unusable.
|
839
|
+
#
|
840
|
+
# After invoking the `DeleteEvaluation` operation, you can use the
|
841
|
+
# `GetEvaluation` operation to verify that the status of the
|
842
|
+
# `Evaluation` changed to `DELETED`.
|
843
|
+
#
|
844
|
+
# <caution markdown="1"><title>Caution</title> The results of the `DeleteEvaluation` operation are irreversible.
|
845
|
+
#
|
846
|
+
# </caution>
|
847
|
+
# @option params [required, String] :evaluation_id
|
848
|
+
# A user-supplied ID that uniquely identifies the `Evaluation` to
|
849
|
+
# delete.
|
850
|
+
# @return [Types::DeleteEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
851
|
+
#
|
852
|
+
# * {Types::DeleteEvaluationOutput#evaluation_id #EvaluationId} => String
|
853
|
+
#
|
854
|
+
# @example Request syntax with placeholder values
|
855
|
+
# resp = client.delete_evaluation({
|
856
|
+
# evaluation_id: "EntityId", # required
|
857
|
+
# })
|
858
|
+
#
|
859
|
+
# @example Response structure
|
860
|
+
# resp.evaluation_id #=> String
|
861
|
+
# @overload delete_evaluation(params = {})
|
862
|
+
# @param [Hash] params ({})
|
863
|
+
def delete_evaluation(params = {}, options = {})
|
864
|
+
req = build_request(:delete_evaluation, params)
|
865
|
+
req.send_request(options)
|
866
|
+
end
|
867
|
+
|
868
|
+
# Assigns the `DELETED` status to an `MLModel`, rendering it unusable.
|
869
|
+
#
|
870
|
+
# After using the `DeleteMLModel` operation, you can use the
|
871
|
+
# `GetMLModel` operation to verify that the status of the `MLModel`
|
872
|
+
# changed to DELETED.
|
873
|
+
#
|
874
|
+
# **Caution:** The result of the `DeleteMLModel` operation is
|
875
|
+
# irreversible.
|
876
|
+
# @option params [required, String] :ml_model_id
|
877
|
+
# A user-supplied ID that uniquely identifies the `MLModel`.
|
878
|
+
# @return [Types::DeleteMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
879
|
+
#
|
880
|
+
# * {Types::DeleteMLModelOutput#ml_model_id #MLModelId} => String
|
881
|
+
#
|
882
|
+
# @example Request syntax with placeholder values
|
883
|
+
# resp = client.delete_ml_model({
|
884
|
+
# ml_model_id: "EntityId", # required
|
885
|
+
# })
|
886
|
+
#
|
887
|
+
# @example Response structure
|
888
|
+
# resp.ml_model_id #=> String
|
889
|
+
# @overload delete_ml_model(params = {})
|
890
|
+
# @param [Hash] params ({})
|
891
|
+
def delete_ml_model(params = {}, options = {})
|
892
|
+
req = build_request(:delete_ml_model, params)
|
893
|
+
req.send_request(options)
|
894
|
+
end
|
895
|
+
|
896
|
+
# Deletes a real time endpoint of an `MLModel`.
|
897
|
+
# @option params [required, String] :ml_model_id
|
898
|
+
# The ID assigned to the `MLModel` during creation.
|
899
|
+
# @return [Types::DeleteRealtimeEndpointOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
900
|
+
#
|
901
|
+
# * {Types::DeleteRealtimeEndpointOutput#ml_model_id #MLModelId} => String
|
902
|
+
# * {Types::DeleteRealtimeEndpointOutput#realtime_endpoint_info #RealtimeEndpointInfo} => Types::RealtimeEndpointInfo
|
903
|
+
#
|
904
|
+
# @example Request syntax with placeholder values
|
905
|
+
# resp = client.delete_realtime_endpoint({
|
906
|
+
# ml_model_id: "EntityId", # required
|
907
|
+
# })
|
908
|
+
#
|
909
|
+
# @example Response structure
|
910
|
+
# resp.ml_model_id #=> String
|
911
|
+
# resp.realtime_endpoint_info.peak_requests_per_second #=> Integer
|
912
|
+
# resp.realtime_endpoint_info.created_at #=> Time
|
913
|
+
# resp.realtime_endpoint_info.endpoint_url #=> String
|
914
|
+
# resp.realtime_endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
|
915
|
+
# @overload delete_realtime_endpoint(params = {})
|
916
|
+
# @param [Hash] params ({})
|
917
|
+
def delete_realtime_endpoint(params = {}, options = {})
|
918
|
+
req = build_request(:delete_realtime_endpoint, params)
|
919
|
+
req.send_request(options)
|
920
|
+
end
|
921
|
+
|
922
|
+
# Deletes the specified tags associated with an ML object. After this
|
923
|
+
# operation is complete, you can't recover deleted tags.
|
924
|
+
#
|
925
|
+
# If you specify a tag that doesn't exist, Amazon ML ignores it.
|
926
|
+
# @option params [required, Array<String>] :tag_keys
|
927
|
+
# One or more tags to delete.
|
928
|
+
# @option params [required, String] :resource_id
|
929
|
+
# The ID of the tagged ML object. For example, `exampleModelId`.
|
930
|
+
# @option params [required, String] :resource_type
|
931
|
+
# The type of the tagged ML object.
|
932
|
+
# @return [Types::DeleteTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
933
|
+
#
|
934
|
+
# * {Types::DeleteTagsOutput#resource_id #ResourceId} => String
|
935
|
+
# * {Types::DeleteTagsOutput#resource_type #ResourceType} => String
|
936
|
+
#
|
937
|
+
# @example Request syntax with placeholder values
|
938
|
+
# resp = client.delete_tags({
|
939
|
+
# tag_keys: ["TagKey"], # required
|
940
|
+
# resource_id: "EntityId", # required
|
941
|
+
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
|
942
|
+
# })
|
943
|
+
#
|
944
|
+
# @example Response structure
|
945
|
+
# resp.resource_id #=> String
|
946
|
+
# resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
|
947
|
+
# @overload delete_tags(params = {})
|
948
|
+
# @param [Hash] params ({})
|
949
|
+
def delete_tags(params = {}, options = {})
|
950
|
+
req = build_request(:delete_tags, params)
|
951
|
+
req.send_request(options)
|
952
|
+
end
|
953
|
+
|
954
|
+
# Returns a list of `BatchPrediction` operations that match the search
|
955
|
+
# criteria in the request.
|
956
|
+
# @option params [String] :filter_variable
|
957
|
+
# Use one of the following variables to filter a list of
|
958
|
+
# `BatchPrediction`\:
|
959
|
+
#
|
960
|
+
# * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
|
961
|
+
# creation date.
|
962
|
+
# * `Status` - Sets the search criteria to the `BatchPrediction` status.
|
963
|
+
# * `Name` - Sets the search criteria to the contents of the
|
964
|
+
# `BatchPrediction`<b> </b> `Name`.
|
965
|
+
# * `IAMUser` - Sets the search criteria to the user account that
|
966
|
+
# invoked the `BatchPrediction` creation.
|
967
|
+
# * `MLModelId` - Sets the search criteria to the `MLModel` used in the
|
968
|
+
# `BatchPrediction`.
|
969
|
+
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
|
970
|
+
# in the `BatchPrediction`.
|
971
|
+
# * `DataURI` - Sets the search criteria to the data file(s) used in the
|
972
|
+
# `BatchPrediction`. The URL can identify either a file or an Amazon
|
973
|
+
# Simple Storage Solution (Amazon S3) bucket or directory.
|
974
|
+
# @option params [String] :eq
|
975
|
+
# The equal to operator. The `BatchPrediction` results will have
|
976
|
+
# `FilterVariable` values that exactly match the value specified with
|
977
|
+
# `EQ`.
|
978
|
+
# @option params [String] :gt
|
979
|
+
# The greater than operator. The `BatchPrediction` results will have
|
980
|
+
# `FilterVariable` values that are greater than the value specified with
|
981
|
+
# `GT`.
|
982
|
+
# @option params [String] :lt
|
983
|
+
# The less than operator. The `BatchPrediction` results will have
|
984
|
+
# `FilterVariable` values that are less than the value specified with
|
985
|
+
# `LT`.
|
986
|
+
# @option params [String] :ge
|
987
|
+
# The greater than or equal to operator. The `BatchPrediction` results
|
988
|
+
# will have `FilterVariable` values that are greater than or equal to
|
989
|
+
# the value specified with `GE`.
|
990
|
+
# @option params [String] :le
|
991
|
+
# The less than or equal to operator. The `BatchPrediction` results will
|
992
|
+
# have `FilterVariable` values that are less than or equal to the value
|
993
|
+
# specified with `LE`.
|
994
|
+
# @option params [String] :ne
|
995
|
+
# The not equal to operator. The `BatchPrediction` results will have
|
996
|
+
# `FilterVariable` values not equal to the value specified with `NE`.
|
997
|
+
# @option params [String] :prefix
|
998
|
+
# A string that is found at the beginning of a variable, such as `Name`
|
999
|
+
# or `Id`.
|
1000
|
+
#
|
1001
|
+
# For example, a `Batch Prediction` operation could have the `Name`
|
1002
|
+
# `2014-09-09-HolidayGiftMailer`. To search for this `BatchPrediction`,
|
1003
|
+
# select `Name` for the `FilterVariable` and any of the following
|
1004
|
+
# strings for the `Prefix`\:
|
1005
|
+
#
|
1006
|
+
# * 2014-09
|
1007
|
+
#
|
1008
|
+
# * 2014-09-09
|
1009
|
+
#
|
1010
|
+
# * 2014-09-09-Holiday
|
1011
|
+
# @option params [String] :sort_order
|
1012
|
+
# A two-value parameter that determines the sequence of the resulting
|
1013
|
+
# list of `MLModel`s.
|
1014
|
+
#
|
1015
|
+
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1016
|
+
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1017
|
+
#
|
1018
|
+
# Results are sorted by `FilterVariable`.
|
1019
|
+
# @option params [String] :next_token
|
1020
|
+
# An ID of the page in the paginated results.
|
1021
|
+
# @option params [Integer] :limit
|
1022
|
+
# The number of pages of information to include in the result. The range
|
1023
|
+
# of acceptable values is `1` through `100`. The default value is `100`.
|
1024
|
+
# @return [Types::DescribeBatchPredictionsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1025
|
+
#
|
1026
|
+
# * {Types::DescribeBatchPredictionsOutput#results #Results} => Array<Types::BatchPrediction>
|
1027
|
+
# * {Types::DescribeBatchPredictionsOutput#next_token #NextToken} => String
|
1028
|
+
#
|
1029
|
+
# @example Request syntax with placeholder values
|
1030
|
+
# resp = client.describe_batch_predictions({
|
1031
|
+
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
|
1032
|
+
# eq: "ComparatorValue",
|
1033
|
+
# gt: "ComparatorValue",
|
1034
|
+
# lt: "ComparatorValue",
|
1035
|
+
# ge: "ComparatorValue",
|
1036
|
+
# le: "ComparatorValue",
|
1037
|
+
# ne: "ComparatorValue",
|
1038
|
+
# prefix: "ComparatorValue",
|
1039
|
+
# sort_order: "asc", # accepts asc, dsc
|
1040
|
+
# next_token: "StringType",
|
1041
|
+
# limit: 1,
|
1042
|
+
# })
|
1043
|
+
#
|
1044
|
+
# @example Response structure
|
1045
|
+
# resp.results #=> Array
|
1046
|
+
# resp.results[0].batch_prediction_id #=> String
|
1047
|
+
# resp.results[0].ml_model_id #=> String
|
1048
|
+
# resp.results[0].batch_prediction_data_source_id #=> String
|
1049
|
+
# resp.results[0].input_data_location_s3 #=> String
|
1050
|
+
# resp.results[0].created_by_iam_user #=> String
|
1051
|
+
# resp.results[0].created_at #=> Time
|
1052
|
+
# resp.results[0].last_updated_at #=> Time
|
1053
|
+
# resp.results[0].name #=> String
|
1054
|
+
# resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
|
1055
|
+
# resp.results[0].output_uri #=> String
|
1056
|
+
# resp.results[0].message #=> String
|
1057
|
+
# resp.results[0].compute_time #=> Integer
|
1058
|
+
# resp.results[0].finished_at #=> Time
|
1059
|
+
# resp.results[0].started_at #=> Time
|
1060
|
+
# resp.results[0].total_record_count #=> Integer
|
1061
|
+
# resp.results[0].invalid_record_count #=> Integer
|
1062
|
+
# resp.next_token #=> String
|
1063
|
+
# @overload describe_batch_predictions(params = {})
|
1064
|
+
# @param [Hash] params ({})
|
1065
|
+
def describe_batch_predictions(params = {}, options = {})
|
1066
|
+
req = build_request(:describe_batch_predictions, params)
|
1067
|
+
req.send_request(options)
|
1068
|
+
end
|
1069
|
+
|
1070
|
+
# Returns a list of `DataSource` that match the search criteria in the
|
1071
|
+
# request.
|
1072
|
+
# @option params [String] :filter_variable
|
1073
|
+
# Use one of the following variables to filter a list of `DataSource`\:
|
1074
|
+
#
|
1075
|
+
# * `CreatedAt` - Sets the search criteria to `DataSource` creation
|
1076
|
+
# dates.
|
1077
|
+
# * `Status` - Sets the search criteria to `DataSource` statuses.
|
1078
|
+
# * `Name` - Sets the search criteria to the contents of `DataSource`
|
1079
|
+
# <b> </b> `Name`.
|
1080
|
+
# * `DataUri` - Sets the search criteria to the URI of data files used
|
1081
|
+
# to create the `DataSource`. The URI can identify either a file or an
|
1082
|
+
# Amazon Simple Storage Service (Amazon S3) bucket or directory.
|
1083
|
+
# * `IAMUser` - Sets the search criteria to the user account that
|
1084
|
+
# invoked the `DataSource` creation.
|
1085
|
+
# @option params [String] :eq
|
1086
|
+
# The equal to operator. The `DataSource` results will have
|
1087
|
+
# `FilterVariable` values that exactly match the value specified with
|
1088
|
+
# `EQ`.
|
1089
|
+
# @option params [String] :gt
|
1090
|
+
# The greater than operator. The `DataSource` results will have
|
1091
|
+
# `FilterVariable` values that are greater than the value specified with
|
1092
|
+
# `GT`.
|
1093
|
+
# @option params [String] :lt
|
1094
|
+
# The less than operator. The `DataSource` results will have
|
1095
|
+
# `FilterVariable` values that are less than the value specified with
|
1096
|
+
# `LT`.
|
1097
|
+
# @option params [String] :ge
|
1098
|
+
# The greater than or equal to operator. The `DataSource` results will
|
1099
|
+
# have `FilterVariable` values that are greater than or equal to the
|
1100
|
+
# value specified with `GE`.
|
1101
|
+
# @option params [String] :le
|
1102
|
+
# The less than or equal to operator. The `DataSource` results will have
|
1103
|
+
# `FilterVariable` values that are less than or equal to the value
|
1104
|
+
# specified with `LE`.
|
1105
|
+
# @option params [String] :ne
|
1106
|
+
# The not equal to operator. The `DataSource` results will have
|
1107
|
+
# `FilterVariable` values not equal to the value specified with `NE`.
|
1108
|
+
# @option params [String] :prefix
|
1109
|
+
# A string that is found at the beginning of a variable, such as `Name`
|
1110
|
+
# or `Id`.
|
1111
|
+
#
|
1112
|
+
# For example, a `DataSource` could have the `Name`
|
1113
|
+
# `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
|
1114
|
+
# select `Name` for the `FilterVariable` and any of the following
|
1115
|
+
# strings for the `Prefix`\:
|
1116
|
+
#
|
1117
|
+
# * 2014-09
|
1118
|
+
#
|
1119
|
+
# * 2014-09-09
|
1120
|
+
#
|
1121
|
+
# * 2014-09-09-Holiday
|
1122
|
+
# @option params [String] :sort_order
|
1123
|
+
# A two-value parameter that determines the sequence of the resulting
|
1124
|
+
# list of `DataSource`.
|
1125
|
+
#
|
1126
|
+
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1127
|
+
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1128
|
+
#
|
1129
|
+
# Results are sorted by `FilterVariable`.
|
1130
|
+
# @option params [String] :next_token
|
1131
|
+
# The ID of the page in the paginated results.
|
1132
|
+
# @option params [Integer] :limit
|
1133
|
+
# The maximum number of `DataSource` to include in the result.
|
1134
|
+
# @return [Types::DescribeDataSourcesOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1135
|
+
#
|
1136
|
+
# * {Types::DescribeDataSourcesOutput#results #Results} => Array<Types::DataSource>
|
1137
|
+
# * {Types::DescribeDataSourcesOutput#next_token #NextToken} => String
|
1138
|
+
#
|
1139
|
+
# @example Request syntax with placeholder values
|
1140
|
+
# resp = client.describe_data_sources({
|
1141
|
+
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, DataLocationS3, IAMUser
|
1142
|
+
# eq: "ComparatorValue",
|
1143
|
+
# gt: "ComparatorValue",
|
1144
|
+
# lt: "ComparatorValue",
|
1145
|
+
# ge: "ComparatorValue",
|
1146
|
+
# le: "ComparatorValue",
|
1147
|
+
# ne: "ComparatorValue",
|
1148
|
+
# prefix: "ComparatorValue",
|
1149
|
+
# sort_order: "asc", # accepts asc, dsc
|
1150
|
+
# next_token: "StringType",
|
1151
|
+
# limit: 1,
|
1152
|
+
# })
|
1153
|
+
#
|
1154
|
+
# @example Response structure
|
1155
|
+
# resp.results #=> Array
|
1156
|
+
# resp.results[0].data_source_id #=> String
|
1157
|
+
# resp.results[0].data_location_s3 #=> String
|
1158
|
+
# resp.results[0].data_rearrangement #=> String
|
1159
|
+
# resp.results[0].created_by_iam_user #=> String
|
1160
|
+
# resp.results[0].created_at #=> Time
|
1161
|
+
# resp.results[0].last_updated_at #=> Time
|
1162
|
+
# resp.results[0].data_size_in_bytes #=> Integer
|
1163
|
+
# resp.results[0].number_of_files #=> Integer
|
1164
|
+
# resp.results[0].name #=> String
|
1165
|
+
# resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
|
1166
|
+
# resp.results[0].message #=> String
|
1167
|
+
# resp.results[0].redshift_metadata.redshift_database.database_name #=> String
|
1168
|
+
# resp.results[0].redshift_metadata.redshift_database.cluster_identifier #=> String
|
1169
|
+
# resp.results[0].redshift_metadata.database_user_name #=> String
|
1170
|
+
# resp.results[0].redshift_metadata.select_sql_query #=> String
|
1171
|
+
# resp.results[0].rds_metadata.database.instance_identifier #=> String
|
1172
|
+
# resp.results[0].rds_metadata.database.database_name #=> String
|
1173
|
+
# resp.results[0].rds_metadata.database_user_name #=> String
|
1174
|
+
# resp.results[0].rds_metadata.select_sql_query #=> String
|
1175
|
+
# resp.results[0].rds_metadata.resource_role #=> String
|
1176
|
+
# resp.results[0].rds_metadata.service_role #=> String
|
1177
|
+
# resp.results[0].rds_metadata.data_pipeline_id #=> String
|
1178
|
+
# resp.results[0].role_arn #=> String
|
1179
|
+
# resp.results[0].compute_statistics #=> Boolean
|
1180
|
+
# resp.results[0].compute_time #=> Integer
|
1181
|
+
# resp.results[0].finished_at #=> Time
|
1182
|
+
# resp.results[0].started_at #=> Time
|
1183
|
+
# resp.next_token #=> String
|
1184
|
+
# @overload describe_data_sources(params = {})
|
1185
|
+
# @param [Hash] params ({})
|
1186
|
+
def describe_data_sources(params = {}, options = {})
|
1187
|
+
req = build_request(:describe_data_sources, params)
|
1188
|
+
req.send_request(options)
|
1189
|
+
end
|
1190
|
+
|
1191
|
+
# Returns a list of `DescribeEvaluations` that match the search criteria
|
1192
|
+
# in the request.
|
1193
|
+
# @option params [String] :filter_variable
|
1194
|
+
# Use one of the following variable to filter a list of `Evaluation`
|
1195
|
+
# objects:
|
1196
|
+
#
|
1197
|
+
# * `CreatedAt` - Sets the search criteria to the `Evaluation` creation
|
1198
|
+
# date.
|
1199
|
+
# * `Status` - Sets the search criteria to the `Evaluation` status.
|
1200
|
+
# * `Name` - Sets the search criteria to the contents of `Evaluation`
|
1201
|
+
# <b> </b> `Name`.
|
1202
|
+
# * `IAMUser` - Sets the search criteria to the user account that
|
1203
|
+
# invoked an `Evaluation`.
|
1204
|
+
# * `MLModelId` - Sets the search criteria to the `MLModel` that was
|
1205
|
+
# evaluated.
|
1206
|
+
# * `DataSourceId` - Sets the search criteria to the `DataSource` used
|
1207
|
+
# in `Evaluation`.
|
1208
|
+
# * `DataUri` - Sets the search criteria to the data file(s) used in
|
1209
|
+
# `Evaluation`. The URL can identify either a file or an Amazon Simple
|
1210
|
+
# Storage Solution (Amazon S3) bucket or directory.
|
1211
|
+
# @option params [String] :eq
|
1212
|
+
# The equal to operator. The `Evaluation` results will have
|
1213
|
+
# `FilterVariable` values that exactly match the value specified with
|
1214
|
+
# `EQ`.
|
1215
|
+
# @option params [String] :gt
|
1216
|
+
# The greater than operator. The `Evaluation` results will have
|
1217
|
+
# `FilterVariable` values that are greater than the value specified with
|
1218
|
+
# `GT`.
|
1219
|
+
# @option params [String] :lt
|
1220
|
+
# The less than operator. The `Evaluation` results will have
|
1221
|
+
# `FilterVariable` values that are less than the value specified with
|
1222
|
+
# `LT`.
|
1223
|
+
# @option params [String] :ge
|
1224
|
+
# The greater than or equal to operator. The `Evaluation` results will
|
1225
|
+
# have `FilterVariable` values that are greater than or equal to the
|
1226
|
+
# value specified with `GE`.
|
1227
|
+
# @option params [String] :le
|
1228
|
+
# The less than or equal to operator. The `Evaluation` results will have
|
1229
|
+
# `FilterVariable` values that are less than or equal to the value
|
1230
|
+
# specified with `LE`.
|
1231
|
+
# @option params [String] :ne
|
1232
|
+
# The not equal to operator. The `Evaluation` results will have
|
1233
|
+
# `FilterVariable` values not equal to the value specified with `NE`.
|
1234
|
+
# @option params [String] :prefix
|
1235
|
+
# A string that is found at the beginning of a variable, such as `Name`
|
1236
|
+
# or `Id`.
|
1237
|
+
#
|
1238
|
+
# For example, an `Evaluation` could have the `Name`
|
1239
|
+
# `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
|
1240
|
+
# select `Name` for the `FilterVariable` and any of the following
|
1241
|
+
# strings for the `Prefix`\:
|
1242
|
+
#
|
1243
|
+
# * 2014-09
|
1244
|
+
#
|
1245
|
+
# * 2014-09-09
|
1246
|
+
#
|
1247
|
+
# * 2014-09-09-Holiday
|
1248
|
+
# @option params [String] :sort_order
|
1249
|
+
# A two-value parameter that determines the sequence of the resulting
|
1250
|
+
# list of `Evaluation`.
|
1251
|
+
#
|
1252
|
+
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1253
|
+
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1254
|
+
#
|
1255
|
+
# Results are sorted by `FilterVariable`.
|
1256
|
+
# @option params [String] :next_token
|
1257
|
+
# The ID of the page in the paginated results.
|
1258
|
+
# @option params [Integer] :limit
|
1259
|
+
# The maximum number of `Evaluation` to include in the result.
|
1260
|
+
# @return [Types::DescribeEvaluationsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1261
|
+
#
|
1262
|
+
# * {Types::DescribeEvaluationsOutput#results #Results} => Array<Types::Evaluation>
|
1263
|
+
# * {Types::DescribeEvaluationsOutput#next_token #NextToken} => String
|
1264
|
+
#
|
1265
|
+
# @example Request syntax with placeholder values
|
1266
|
+
# resp = client.describe_evaluations({
|
1267
|
+
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, MLModelId, DataSourceId, DataURI
|
1268
|
+
# eq: "ComparatorValue",
|
1269
|
+
# gt: "ComparatorValue",
|
1270
|
+
# lt: "ComparatorValue",
|
1271
|
+
# ge: "ComparatorValue",
|
1272
|
+
# le: "ComparatorValue",
|
1273
|
+
# ne: "ComparatorValue",
|
1274
|
+
# prefix: "ComparatorValue",
|
1275
|
+
# sort_order: "asc", # accepts asc, dsc
|
1276
|
+
# next_token: "StringType",
|
1277
|
+
# limit: 1,
|
1278
|
+
# })
|
1279
|
+
#
|
1280
|
+
# @example Response structure
|
1281
|
+
# resp.results #=> Array
|
1282
|
+
# resp.results[0].evaluation_id #=> String
|
1283
|
+
# resp.results[0].ml_model_id #=> String
|
1284
|
+
# resp.results[0].evaluation_data_source_id #=> String
|
1285
|
+
# resp.results[0].input_data_location_s3 #=> String
|
1286
|
+
# resp.results[0].created_by_iam_user #=> String
|
1287
|
+
# resp.results[0].created_at #=> Time
|
1288
|
+
# resp.results[0].last_updated_at #=> Time
|
1289
|
+
# resp.results[0].name #=> String
|
1290
|
+
# resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
|
1291
|
+
# resp.results[0].performance_metrics.properties #=> Hash
|
1292
|
+
# resp.results[0].performance_metrics.properties["PerformanceMetricsPropertyKey"] #=> String
|
1293
|
+
# resp.results[0].message #=> String
|
1294
|
+
# resp.results[0].compute_time #=> Integer
|
1295
|
+
# resp.results[0].finished_at #=> Time
|
1296
|
+
# resp.results[0].started_at #=> Time
|
1297
|
+
# resp.next_token #=> String
|
1298
|
+
# @overload describe_evaluations(params = {})
|
1299
|
+
# @param [Hash] params ({})
|
1300
|
+
def describe_evaluations(params = {}, options = {})
|
1301
|
+
req = build_request(:describe_evaluations, params)
|
1302
|
+
req.send_request(options)
|
1303
|
+
end
|
1304
|
+
|
1305
|
+
# Returns a list of `MLModel` that match the search criteria in the
|
1306
|
+
# request.
|
1307
|
+
# @option params [String] :filter_variable
|
1308
|
+
# Use one of the following variables to filter a list of `MLModel`\:
|
1309
|
+
#
|
1310
|
+
# * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
|
1311
|
+
# * `Status` - Sets the search criteria to `MLModel` status.
|
1312
|
+
# * `Name` - Sets the search criteria to the contents of `MLModel`<b>
|
1313
|
+
# </b> `Name`.
|
1314
|
+
# * `IAMUser` - Sets the search criteria to the user account that
|
1315
|
+
# invoked the `MLModel` creation.
|
1316
|
+
# * `TrainingDataSourceId` - Sets the search criteria to the
|
1317
|
+
# `DataSource` used to train one or more `MLModel`.
|
1318
|
+
# * `RealtimeEndpointStatus` - Sets the search criteria to the `MLModel`
|
1319
|
+
# real-time endpoint status.
|
1320
|
+
# * `MLModelType` - Sets the search criteria to `MLModel` type: binary,
|
1321
|
+
# regression, or multi-class.
|
1322
|
+
# * `Algorithm` - Sets the search criteria to the algorithm that the
|
1323
|
+
# `MLModel` uses.
|
1324
|
+
# * `TrainingDataURI` - Sets the search criteria to the data file(s)
|
1325
|
+
# used in training a `MLModel`. The URL can identify either a file or
|
1326
|
+
# an Amazon Simple Storage Service (Amazon S3) bucket or directory.
|
1327
|
+
# @option params [String] :eq
|
1328
|
+
# The equal to operator. The `MLModel` results will have
|
1329
|
+
# `FilterVariable` values that exactly match the value specified with
|
1330
|
+
# `EQ`.
|
1331
|
+
# @option params [String] :gt
|
1332
|
+
# The greater than operator. The `MLModel` results will have
|
1333
|
+
# `FilterVariable` values that are greater than the value specified with
|
1334
|
+
# `GT`.
|
1335
|
+
# @option params [String] :lt
|
1336
|
+
# The less than operator. The `MLModel` results will have
|
1337
|
+
# `FilterVariable` values that are less than the value specified with
|
1338
|
+
# `LT`.
|
1339
|
+
# @option params [String] :ge
|
1340
|
+
# The greater than or equal to operator. The `MLModel` results will have
|
1341
|
+
# `FilterVariable` values that are greater than or equal to the value
|
1342
|
+
# specified with `GE`.
|
1343
|
+
# @option params [String] :le
|
1344
|
+
# The less than or equal to operator. The `MLModel` results will have
|
1345
|
+
# `FilterVariable` values that are less than or equal to the value
|
1346
|
+
# specified with `LE`.
|
1347
|
+
# @option params [String] :ne
|
1348
|
+
# The not equal to operator. The `MLModel` results will have
|
1349
|
+
# `FilterVariable` values not equal to the value specified with `NE`.
|
1350
|
+
# @option params [String] :prefix
|
1351
|
+
# A string that is found at the beginning of a variable, such as `Name`
|
1352
|
+
# or `Id`.
|
1353
|
+
#
|
1354
|
+
# For example, an `MLModel` could have the `Name`
|
1355
|
+
# `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
|
1356
|
+
# `Name` for the `FilterVariable` and any of the following strings for
|
1357
|
+
# the `Prefix`\:
|
1358
|
+
#
|
1359
|
+
# * 2014-09
|
1360
|
+
#
|
1361
|
+
# * 2014-09-09
|
1362
|
+
#
|
1363
|
+
# * 2014-09-09-Holiday
|
1364
|
+
# @option params [String] :sort_order
|
1365
|
+
# A two-value parameter that determines the sequence of the resulting
|
1366
|
+
# list of `MLModel`.
|
1367
|
+
#
|
1368
|
+
# * `asc` - Arranges the list in ascending order (A-Z, 0-9).
|
1369
|
+
# * `dsc` - Arranges the list in descending order (Z-A, 9-0).
|
1370
|
+
#
|
1371
|
+
# Results are sorted by `FilterVariable`.
|
1372
|
+
# @option params [String] :next_token
|
1373
|
+
# The ID of the page in the paginated results.
|
1374
|
+
# @option params [Integer] :limit
|
1375
|
+
# The number of pages of information to include in the result. The range
|
1376
|
+
# of acceptable values is `1` through `100`. The default value is `100`.
|
1377
|
+
# @return [Types::DescribeMLModelsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1378
|
+
#
|
1379
|
+
# * {Types::DescribeMLModelsOutput#results #Results} => Array<Types::MLModel>
|
1380
|
+
# * {Types::DescribeMLModelsOutput#next_token #NextToken} => String
|
1381
|
+
#
|
1382
|
+
# @example Request syntax with placeholder values
|
1383
|
+
# resp = client.describe_ml_models({
|
1384
|
+
# filter_variable: "CreatedAt", # accepts CreatedAt, LastUpdatedAt, Status, Name, IAMUser, TrainingDataSourceId, RealtimeEndpointStatus, MLModelType, Algorithm, TrainingDataURI
|
1385
|
+
# eq: "ComparatorValue",
|
1386
|
+
# gt: "ComparatorValue",
|
1387
|
+
# lt: "ComparatorValue",
|
1388
|
+
# ge: "ComparatorValue",
|
1389
|
+
# le: "ComparatorValue",
|
1390
|
+
# ne: "ComparatorValue",
|
1391
|
+
# prefix: "ComparatorValue",
|
1392
|
+
# sort_order: "asc", # accepts asc, dsc
|
1393
|
+
# next_token: "StringType",
|
1394
|
+
# limit: 1,
|
1395
|
+
# })
|
1396
|
+
#
|
1397
|
+
# @example Response structure
|
1398
|
+
# resp.results #=> Array
|
1399
|
+
# resp.results[0].ml_model_id #=> String
|
1400
|
+
# resp.results[0].training_data_source_id #=> String
|
1401
|
+
# resp.results[0].created_by_iam_user #=> String
|
1402
|
+
# resp.results[0].created_at #=> Time
|
1403
|
+
# resp.results[0].last_updated_at #=> Time
|
1404
|
+
# resp.results[0].name #=> String
|
1405
|
+
# resp.results[0].status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
|
1406
|
+
# resp.results[0].size_in_bytes #=> Integer
|
1407
|
+
# resp.results[0].endpoint_info.peak_requests_per_second #=> Integer
|
1408
|
+
# resp.results[0].endpoint_info.created_at #=> Time
|
1409
|
+
# resp.results[0].endpoint_info.endpoint_url #=> String
|
1410
|
+
# resp.results[0].endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
|
1411
|
+
# resp.results[0].training_parameters #=> Hash
|
1412
|
+
# resp.results[0].training_parameters["StringType"] #=> String
|
1413
|
+
# resp.results[0].input_data_location_s3 #=> String
|
1414
|
+
# resp.results[0].algorithm #=> String, one of "sgd"
|
1415
|
+
# resp.results[0].ml_model_type #=> String, one of "REGRESSION", "BINARY", "MULTICLASS"
|
1416
|
+
# resp.results[0].score_threshold #=> Float
|
1417
|
+
# resp.results[0].score_threshold_last_updated_at #=> Time
|
1418
|
+
# resp.results[0].message #=> String
|
1419
|
+
# resp.results[0].compute_time #=> Integer
|
1420
|
+
# resp.results[0].finished_at #=> Time
|
1421
|
+
# resp.results[0].started_at #=> Time
|
1422
|
+
# resp.next_token #=> String
|
1423
|
+
# @overload describe_ml_models(params = {})
|
1424
|
+
# @param [Hash] params ({})
|
1425
|
+
def describe_ml_models(params = {}, options = {})
|
1426
|
+
req = build_request(:describe_ml_models, params)
|
1427
|
+
req.send_request(options)
|
1428
|
+
end
|
1429
|
+
|
1430
|
+
# Describes one or more of the tags for your Amazon ML object.
|
1431
|
+
# @option params [required, String] :resource_id
|
1432
|
+
# The ID of the ML object. For example, `exampleModelId`.
|
1433
|
+
# @option params [required, String] :resource_type
|
1434
|
+
# The type of the ML object.
|
1435
|
+
# @return [Types::DescribeTagsOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1436
|
+
#
|
1437
|
+
# * {Types::DescribeTagsOutput#resource_id #ResourceId} => String
|
1438
|
+
# * {Types::DescribeTagsOutput#resource_type #ResourceType} => String
|
1439
|
+
# * {Types::DescribeTagsOutput#tags #Tags} => Array<Types::Tag>
|
1440
|
+
#
|
1441
|
+
# @example Request syntax with placeholder values
|
1442
|
+
# resp = client.describe_tags({
|
1443
|
+
# resource_id: "EntityId", # required
|
1444
|
+
# resource_type: "BatchPrediction", # required, accepts BatchPrediction, DataSource, Evaluation, MLModel
|
1445
|
+
# })
|
1446
|
+
#
|
1447
|
+
# @example Response structure
|
1448
|
+
# resp.resource_id #=> String
|
1449
|
+
# resp.resource_type #=> String, one of "BatchPrediction", "DataSource", "Evaluation", "MLModel"
|
1450
|
+
# resp.tags #=> Array
|
1451
|
+
# resp.tags[0].key #=> String
|
1452
|
+
# resp.tags[0].value #=> String
|
1453
|
+
# @overload describe_tags(params = {})
|
1454
|
+
# @param [Hash] params ({})
|
1455
|
+
def describe_tags(params = {}, options = {})
|
1456
|
+
req = build_request(:describe_tags, params)
|
1457
|
+
req.send_request(options)
|
1458
|
+
end
|
1459
|
+
|
1460
|
+
# Returns a `BatchPrediction` that includes detailed metadata, status,
|
1461
|
+
# and data file information for a `Batch Prediction` request.
|
1462
|
+
# @option params [required, String] :batch_prediction_id
|
1463
|
+
# An ID assigned to the `BatchPrediction` at creation.
|
1464
|
+
# @return [Types::GetBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1465
|
+
#
|
1466
|
+
# * {Types::GetBatchPredictionOutput#batch_prediction_id #BatchPredictionId} => String
|
1467
|
+
# * {Types::GetBatchPredictionOutput#ml_model_id #MLModelId} => String
|
1468
|
+
# * {Types::GetBatchPredictionOutput#batch_prediction_data_source_id #BatchPredictionDataSourceId} => String
|
1469
|
+
# * {Types::GetBatchPredictionOutput#input_data_location_s3 #InputDataLocationS3} => String
|
1470
|
+
# * {Types::GetBatchPredictionOutput#created_by_iam_user #CreatedByIamUser} => String
|
1471
|
+
# * {Types::GetBatchPredictionOutput#created_at #CreatedAt} => Time
|
1472
|
+
# * {Types::GetBatchPredictionOutput#last_updated_at #LastUpdatedAt} => Time
|
1473
|
+
# * {Types::GetBatchPredictionOutput#name #Name} => String
|
1474
|
+
# * {Types::GetBatchPredictionOutput#status #Status} => String
|
1475
|
+
# * {Types::GetBatchPredictionOutput#output_uri #OutputUri} => String
|
1476
|
+
# * {Types::GetBatchPredictionOutput#log_uri #LogUri} => String
|
1477
|
+
# * {Types::GetBatchPredictionOutput#message #Message} => String
|
1478
|
+
# * {Types::GetBatchPredictionOutput#compute_time #ComputeTime} => Integer
|
1479
|
+
# * {Types::GetBatchPredictionOutput#finished_at #FinishedAt} => Time
|
1480
|
+
# * {Types::GetBatchPredictionOutput#started_at #StartedAt} => Time
|
1481
|
+
# * {Types::GetBatchPredictionOutput#total_record_count #TotalRecordCount} => Integer
|
1482
|
+
# * {Types::GetBatchPredictionOutput#invalid_record_count #InvalidRecordCount} => Integer
|
1483
|
+
#
|
1484
|
+
# @example Request syntax with placeholder values
|
1485
|
+
# resp = client.get_batch_prediction({
|
1486
|
+
# batch_prediction_id: "EntityId", # required
|
1487
|
+
# })
|
1488
|
+
#
|
1489
|
+
# @example Response structure
|
1490
|
+
# resp.batch_prediction_id #=> String
|
1491
|
+
# resp.ml_model_id #=> String
|
1492
|
+
# resp.batch_prediction_data_source_id #=> String
|
1493
|
+
# resp.input_data_location_s3 #=> String
|
1494
|
+
# resp.created_by_iam_user #=> String
|
1495
|
+
# resp.created_at #=> Time
|
1496
|
+
# resp.last_updated_at #=> Time
|
1497
|
+
# resp.name #=> String
|
1498
|
+
# resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
|
1499
|
+
# resp.output_uri #=> String
|
1500
|
+
# resp.log_uri #=> String
|
1501
|
+
# resp.message #=> String
|
1502
|
+
# resp.compute_time #=> Integer
|
1503
|
+
# resp.finished_at #=> Time
|
1504
|
+
# resp.started_at #=> Time
|
1505
|
+
# resp.total_record_count #=> Integer
|
1506
|
+
# resp.invalid_record_count #=> Integer
|
1507
|
+
# @overload get_batch_prediction(params = {})
|
1508
|
+
# @param [Hash] params ({})
|
1509
|
+
def get_batch_prediction(params = {}, options = {})
|
1510
|
+
req = build_request(:get_batch_prediction, params)
|
1511
|
+
req.send_request(options)
|
1512
|
+
end
|
1513
|
+
|
1514
|
+
# Returns a `DataSource` that includes metadata and data file
|
1515
|
+
# information, as well as the current status of the `DataSource`.
|
1516
|
+
#
|
1517
|
+
# `GetDataSource` provides results in normal or verbose format. The
|
1518
|
+
# verbose format adds the schema description and the list of files
|
1519
|
+
# pointed to by the DataSource to the normal format.
|
1520
|
+
# @option params [required, String] :data_source_id
|
1521
|
+
# The ID assigned to the `DataSource` at creation.
|
1522
|
+
# @option params [Boolean] :verbose
|
1523
|
+
# Specifies whether the `GetDataSource` operation should return
|
1524
|
+
# `DataSourceSchema`.
|
1525
|
+
#
|
1526
|
+
# If true, `DataSourceSchema` is returned.
|
1527
|
+
#
|
1528
|
+
# If false, `DataSourceSchema` is not returned.
|
1529
|
+
# @return [Types::GetDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1530
|
+
#
|
1531
|
+
# * {Types::GetDataSourceOutput#data_source_id #DataSourceId} => String
|
1532
|
+
# * {Types::GetDataSourceOutput#data_location_s3 #DataLocationS3} => String
|
1533
|
+
# * {Types::GetDataSourceOutput#data_rearrangement #DataRearrangement} => String
|
1534
|
+
# * {Types::GetDataSourceOutput#created_by_iam_user #CreatedByIamUser} => String
|
1535
|
+
# * {Types::GetDataSourceOutput#created_at #CreatedAt} => Time
|
1536
|
+
# * {Types::GetDataSourceOutput#last_updated_at #LastUpdatedAt} => Time
|
1537
|
+
# * {Types::GetDataSourceOutput#data_size_in_bytes #DataSizeInBytes} => Integer
|
1538
|
+
# * {Types::GetDataSourceOutput#number_of_files #NumberOfFiles} => Integer
|
1539
|
+
# * {Types::GetDataSourceOutput#name #Name} => String
|
1540
|
+
# * {Types::GetDataSourceOutput#status #Status} => String
|
1541
|
+
# * {Types::GetDataSourceOutput#log_uri #LogUri} => String
|
1542
|
+
# * {Types::GetDataSourceOutput#message #Message} => String
|
1543
|
+
# * {Types::GetDataSourceOutput#redshift_metadata #RedshiftMetadata} => Types::RedshiftMetadata
|
1544
|
+
# * {Types::GetDataSourceOutput#rds_metadata #RDSMetadata} => Types::RDSMetadata
|
1545
|
+
# * {Types::GetDataSourceOutput#role_arn #RoleARN} => String
|
1546
|
+
# * {Types::GetDataSourceOutput#compute_statistics #ComputeStatistics} => Boolean
|
1547
|
+
# * {Types::GetDataSourceOutput#compute_time #ComputeTime} => Integer
|
1548
|
+
# * {Types::GetDataSourceOutput#finished_at #FinishedAt} => Time
|
1549
|
+
# * {Types::GetDataSourceOutput#started_at #StartedAt} => Time
|
1550
|
+
# * {Types::GetDataSourceOutput#data_source_schema #DataSourceSchema} => String
|
1551
|
+
#
|
1552
|
+
# @example Request syntax with placeholder values
|
1553
|
+
# resp = client.get_data_source({
|
1554
|
+
# data_source_id: "EntityId", # required
|
1555
|
+
# verbose: false,
|
1556
|
+
# })
|
1557
|
+
#
|
1558
|
+
# @example Response structure
|
1559
|
+
# resp.data_source_id #=> String
|
1560
|
+
# resp.data_location_s3 #=> String
|
1561
|
+
# resp.data_rearrangement #=> String
|
1562
|
+
# resp.created_by_iam_user #=> String
|
1563
|
+
# resp.created_at #=> Time
|
1564
|
+
# resp.last_updated_at #=> Time
|
1565
|
+
# resp.data_size_in_bytes #=> Integer
|
1566
|
+
# resp.number_of_files #=> Integer
|
1567
|
+
# resp.name #=> String
|
1568
|
+
# resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
|
1569
|
+
# resp.log_uri #=> String
|
1570
|
+
# resp.message #=> String
|
1571
|
+
# resp.redshift_metadata.redshift_database.database_name #=> String
|
1572
|
+
# resp.redshift_metadata.redshift_database.cluster_identifier #=> String
|
1573
|
+
# resp.redshift_metadata.database_user_name #=> String
|
1574
|
+
# resp.redshift_metadata.select_sql_query #=> String
|
1575
|
+
# resp.rds_metadata.database.instance_identifier #=> String
|
1576
|
+
# resp.rds_metadata.database.database_name #=> String
|
1577
|
+
# resp.rds_metadata.database_user_name #=> String
|
1578
|
+
# resp.rds_metadata.select_sql_query #=> String
|
1579
|
+
# resp.rds_metadata.resource_role #=> String
|
1580
|
+
# resp.rds_metadata.service_role #=> String
|
1581
|
+
# resp.rds_metadata.data_pipeline_id #=> String
|
1582
|
+
# resp.role_arn #=> String
|
1583
|
+
# resp.compute_statistics #=> Boolean
|
1584
|
+
# resp.compute_time #=> Integer
|
1585
|
+
# resp.finished_at #=> Time
|
1586
|
+
# resp.started_at #=> Time
|
1587
|
+
# resp.data_source_schema #=> String
|
1588
|
+
# @overload get_data_source(params = {})
|
1589
|
+
# @param [Hash] params ({})
|
1590
|
+
def get_data_source(params = {}, options = {})
|
1591
|
+
req = build_request(:get_data_source, params)
|
1592
|
+
req.send_request(options)
|
1593
|
+
end
|
1594
|
+
|
1595
|
+
# Returns an `Evaluation` that includes metadata as well as the current
|
1596
|
+
# status of the `Evaluation`.
|
1597
|
+
# @option params [required, String] :evaluation_id
|
1598
|
+
# The ID of the `Evaluation` to retrieve. The evaluation of each
|
1599
|
+
# `MLModel` is recorded and cataloged. The ID provides the means to
|
1600
|
+
# access the information.
|
1601
|
+
# @return [Types::GetEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1602
|
+
#
|
1603
|
+
# * {Types::GetEvaluationOutput#evaluation_id #EvaluationId} => String
|
1604
|
+
# * {Types::GetEvaluationOutput#ml_model_id #MLModelId} => String
|
1605
|
+
# * {Types::GetEvaluationOutput#evaluation_data_source_id #EvaluationDataSourceId} => String
|
1606
|
+
# * {Types::GetEvaluationOutput#input_data_location_s3 #InputDataLocationS3} => String
|
1607
|
+
# * {Types::GetEvaluationOutput#created_by_iam_user #CreatedByIamUser} => String
|
1608
|
+
# * {Types::GetEvaluationOutput#created_at #CreatedAt} => Time
|
1609
|
+
# * {Types::GetEvaluationOutput#last_updated_at #LastUpdatedAt} => Time
|
1610
|
+
# * {Types::GetEvaluationOutput#name #Name} => String
|
1611
|
+
# * {Types::GetEvaluationOutput#status #Status} => String
|
1612
|
+
# * {Types::GetEvaluationOutput#performance_metrics #PerformanceMetrics} => Types::PerformanceMetrics
|
1613
|
+
# * {Types::GetEvaluationOutput#log_uri #LogUri} => String
|
1614
|
+
# * {Types::GetEvaluationOutput#message #Message} => String
|
1615
|
+
# * {Types::GetEvaluationOutput#compute_time #ComputeTime} => Integer
|
1616
|
+
# * {Types::GetEvaluationOutput#finished_at #FinishedAt} => Time
|
1617
|
+
# * {Types::GetEvaluationOutput#started_at #StartedAt} => Time
|
1618
|
+
#
|
1619
|
+
# @example Request syntax with placeholder values
|
1620
|
+
# resp = client.get_evaluation({
|
1621
|
+
# evaluation_id: "EntityId", # required
|
1622
|
+
# })
|
1623
|
+
#
|
1624
|
+
# @example Response structure
|
1625
|
+
# resp.evaluation_id #=> String
|
1626
|
+
# resp.ml_model_id #=> String
|
1627
|
+
# resp.evaluation_data_source_id #=> String
|
1628
|
+
# resp.input_data_location_s3 #=> String
|
1629
|
+
# resp.created_by_iam_user #=> String
|
1630
|
+
# resp.created_at #=> Time
|
1631
|
+
# resp.last_updated_at #=> Time
|
1632
|
+
# resp.name #=> String
|
1633
|
+
# resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
|
1634
|
+
# resp.performance_metrics.properties #=> Hash
|
1635
|
+
# resp.performance_metrics.properties["PerformanceMetricsPropertyKey"] #=> String
|
1636
|
+
# resp.log_uri #=> String
|
1637
|
+
# resp.message #=> String
|
1638
|
+
# resp.compute_time #=> Integer
|
1639
|
+
# resp.finished_at #=> Time
|
1640
|
+
# resp.started_at #=> Time
|
1641
|
+
# @overload get_evaluation(params = {})
|
1642
|
+
# @param [Hash] params ({})
|
1643
|
+
def get_evaluation(params = {}, options = {})
|
1644
|
+
req = build_request(:get_evaluation, params)
|
1645
|
+
req.send_request(options)
|
1646
|
+
end
|
1647
|
+
|
1648
|
+
# Returns an `MLModel` that includes detailed metadata, data source
|
1649
|
+
# information, and the current status of the `MLModel`.
|
1650
|
+
#
|
1651
|
+
# `GetMLModel` provides results in normal or verbose format.
|
1652
|
+
# @option params [required, String] :ml_model_id
|
1653
|
+
# The ID assigned to the `MLModel` at creation.
|
1654
|
+
# @option params [Boolean] :verbose
|
1655
|
+
# Specifies whether the `GetMLModel` operation should return `Recipe`.
|
1656
|
+
#
|
1657
|
+
# If true, `Recipe` is returned.
|
1658
|
+
#
|
1659
|
+
# If false, `Recipe` is not returned.
|
1660
|
+
# @return [Types::GetMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1661
|
+
#
|
1662
|
+
# * {Types::GetMLModelOutput#ml_model_id #MLModelId} => String
|
1663
|
+
# * {Types::GetMLModelOutput#training_data_source_id #TrainingDataSourceId} => String
|
1664
|
+
# * {Types::GetMLModelOutput#created_by_iam_user #CreatedByIamUser} => String
|
1665
|
+
# * {Types::GetMLModelOutput#created_at #CreatedAt} => Time
|
1666
|
+
# * {Types::GetMLModelOutput#last_updated_at #LastUpdatedAt} => Time
|
1667
|
+
# * {Types::GetMLModelOutput#name #Name} => String
|
1668
|
+
# * {Types::GetMLModelOutput#status #Status} => String
|
1669
|
+
# * {Types::GetMLModelOutput#size_in_bytes #SizeInBytes} => Integer
|
1670
|
+
# * {Types::GetMLModelOutput#endpoint_info #EndpointInfo} => Types::RealtimeEndpointInfo
|
1671
|
+
# * {Types::GetMLModelOutput#training_parameters #TrainingParameters} => Hash<String,String>
|
1672
|
+
# * {Types::GetMLModelOutput#input_data_location_s3 #InputDataLocationS3} => String
|
1673
|
+
# * {Types::GetMLModelOutput#ml_model_type #MLModelType} => String
|
1674
|
+
# * {Types::GetMLModelOutput#score_threshold #ScoreThreshold} => Float
|
1675
|
+
# * {Types::GetMLModelOutput#score_threshold_last_updated_at #ScoreThresholdLastUpdatedAt} => Time
|
1676
|
+
# * {Types::GetMLModelOutput#log_uri #LogUri} => String
|
1677
|
+
# * {Types::GetMLModelOutput#message #Message} => String
|
1678
|
+
# * {Types::GetMLModelOutput#compute_time #ComputeTime} => Integer
|
1679
|
+
# * {Types::GetMLModelOutput#finished_at #FinishedAt} => Time
|
1680
|
+
# * {Types::GetMLModelOutput#started_at #StartedAt} => Time
|
1681
|
+
# * {Types::GetMLModelOutput#recipe #Recipe} => String
|
1682
|
+
# * {Types::GetMLModelOutput#schema #Schema} => String
|
1683
|
+
#
|
1684
|
+
# @example Request syntax with placeholder values
|
1685
|
+
# resp = client.get_ml_model({
|
1686
|
+
# ml_model_id: "EntityId", # required
|
1687
|
+
# verbose: false,
|
1688
|
+
# })
|
1689
|
+
#
|
1690
|
+
# @example Response structure
|
1691
|
+
# resp.ml_model_id #=> String
|
1692
|
+
# resp.training_data_source_id #=> String
|
1693
|
+
# resp.created_by_iam_user #=> String
|
1694
|
+
# resp.created_at #=> Time
|
1695
|
+
# resp.last_updated_at #=> Time
|
1696
|
+
# resp.name #=> String
|
1697
|
+
# resp.status #=> String, one of "PENDING", "INPROGRESS", "FAILED", "COMPLETED", "DELETED"
|
1698
|
+
# resp.size_in_bytes #=> Integer
|
1699
|
+
# resp.endpoint_info.peak_requests_per_second #=> Integer
|
1700
|
+
# resp.endpoint_info.created_at #=> Time
|
1701
|
+
# resp.endpoint_info.endpoint_url #=> String
|
1702
|
+
# resp.endpoint_info.endpoint_status #=> String, one of "NONE", "READY", "UPDATING", "FAILED"
|
1703
|
+
# resp.training_parameters #=> Hash
|
1704
|
+
# resp.training_parameters["StringType"] #=> String
|
1705
|
+
# resp.input_data_location_s3 #=> String
|
1706
|
+
# resp.ml_model_type #=> String, one of "REGRESSION", "BINARY", "MULTICLASS"
|
1707
|
+
# resp.score_threshold #=> Float
|
1708
|
+
# resp.score_threshold_last_updated_at #=> Time
|
1709
|
+
# resp.log_uri #=> String
|
1710
|
+
# resp.message #=> String
|
1711
|
+
# resp.compute_time #=> Integer
|
1712
|
+
# resp.finished_at #=> Time
|
1713
|
+
# resp.started_at #=> Time
|
1714
|
+
# resp.recipe #=> String
|
1715
|
+
# resp.schema #=> String
|
1716
|
+
# @overload get_ml_model(params = {})
|
1717
|
+
# @param [Hash] params ({})
|
1718
|
+
def get_ml_model(params = {}, options = {})
|
1719
|
+
req = build_request(:get_ml_model, params)
|
1720
|
+
req.send_request(options)
|
1721
|
+
end
|
1722
|
+
|
1723
|
+
# Generates a prediction for the observation using the specified `ML
|
1724
|
+
# Model`.
|
1725
|
+
#
|
1726
|
+
# <note markdown="1"><title>Note</title> Not all response parameters will be populated. Whether a response
|
1727
|
+
# parameter is populated depends on the type of model requested.
|
1728
|
+
#
|
1729
|
+
# </note>
|
1730
|
+
# @option params [required, String] :ml_model_id
|
1731
|
+
# A unique identifier of the `MLModel`.
|
1732
|
+
# @option params [required, Hash<String,String>] :record
|
1733
|
+
# A map of variable name-value pairs that represent an observation.
|
1734
|
+
# @option params [required, String] :predict_endpoint
|
1735
|
+
# @return [Types::PredictOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1736
|
+
#
|
1737
|
+
# * {Types::PredictOutput#prediction #Prediction} => Types::Prediction
|
1738
|
+
#
|
1739
|
+
# @example Request syntax with placeholder values
|
1740
|
+
# resp = client.predict({
|
1741
|
+
# ml_model_id: "EntityId", # required
|
1742
|
+
# record: { # required
|
1743
|
+
# "VariableName" => "VariableValue",
|
1744
|
+
# },
|
1745
|
+
# predict_endpoint: "VipURL", # required
|
1746
|
+
# })
|
1747
|
+
#
|
1748
|
+
# @example Response structure
|
1749
|
+
# resp.prediction.predicted_label #=> String
|
1750
|
+
# resp.prediction.predicted_value #=> Float
|
1751
|
+
# resp.prediction.predicted_scores #=> Hash
|
1752
|
+
# resp.prediction.predicted_scores["Label"] #=> Float
|
1753
|
+
# resp.prediction.details #=> Hash
|
1754
|
+
# resp.prediction.details["DetailsAttributes"] #=> String
|
1755
|
+
# @overload predict(params = {})
|
1756
|
+
# @param [Hash] params ({})
|
1757
|
+
def predict(params = {}, options = {})
|
1758
|
+
req = build_request(:predict, params)
|
1759
|
+
req.send_request(options)
|
1760
|
+
end
|
1761
|
+
|
1762
|
+
# Updates the `BatchPredictionName` of a `BatchPrediction`.
|
1763
|
+
#
|
1764
|
+
# You can use the `GetBatchPrediction` operation to view the contents of
|
1765
|
+
# the updated data element.
|
1766
|
+
# @option params [required, String] :batch_prediction_id
|
1767
|
+
# The ID assigned to the `BatchPrediction` during creation.
|
1768
|
+
# @option params [required, String] :batch_prediction_name
|
1769
|
+
# A new user-supplied name or description of the `BatchPrediction`.
|
1770
|
+
# @return [Types::UpdateBatchPredictionOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1771
|
+
#
|
1772
|
+
# * {Types::UpdateBatchPredictionOutput#batch_prediction_id #BatchPredictionId} => String
|
1773
|
+
#
|
1774
|
+
# @example Request syntax with placeholder values
|
1775
|
+
# resp = client.update_batch_prediction({
|
1776
|
+
# batch_prediction_id: "EntityId", # required
|
1777
|
+
# batch_prediction_name: "EntityName", # required
|
1778
|
+
# })
|
1779
|
+
#
|
1780
|
+
# @example Response structure
|
1781
|
+
# resp.batch_prediction_id #=> String
|
1782
|
+
# @overload update_batch_prediction(params = {})
|
1783
|
+
# @param [Hash] params ({})
|
1784
|
+
def update_batch_prediction(params = {}, options = {})
|
1785
|
+
req = build_request(:update_batch_prediction, params)
|
1786
|
+
req.send_request(options)
|
1787
|
+
end
|
1788
|
+
|
1789
|
+
# Updates the `DataSourceName` of a `DataSource`.
|
1790
|
+
#
|
1791
|
+
# You can use the `GetDataSource` operation to view the contents of the
|
1792
|
+
# updated data element.
|
1793
|
+
# @option params [required, String] :data_source_id
|
1794
|
+
# The ID assigned to the `DataSource` during creation.
|
1795
|
+
# @option params [required, String] :data_source_name
|
1796
|
+
# A new user-supplied name or description of the `DataSource` that will
|
1797
|
+
# replace the current description.
|
1798
|
+
# @return [Types::UpdateDataSourceOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1799
|
+
#
|
1800
|
+
# * {Types::UpdateDataSourceOutput#data_source_id #DataSourceId} => String
|
1801
|
+
#
|
1802
|
+
# @example Request syntax with placeholder values
|
1803
|
+
# resp = client.update_data_source({
|
1804
|
+
# data_source_id: "EntityId", # required
|
1805
|
+
# data_source_name: "EntityName", # required
|
1806
|
+
# })
|
1807
|
+
#
|
1808
|
+
# @example Response structure
|
1809
|
+
# resp.data_source_id #=> String
|
1810
|
+
# @overload update_data_source(params = {})
|
1811
|
+
# @param [Hash] params ({})
|
1812
|
+
def update_data_source(params = {}, options = {})
|
1813
|
+
req = build_request(:update_data_source, params)
|
1814
|
+
req.send_request(options)
|
1815
|
+
end
|
1816
|
+
|
1817
|
+
# Updates the `EvaluationName` of an `Evaluation`.
|
1818
|
+
#
|
1819
|
+
# You can use the `GetEvaluation` operation to view the contents of the
|
1820
|
+
# updated data element.
|
1821
|
+
# @option params [required, String] :evaluation_id
|
1822
|
+
# The ID assigned to the `Evaluation` during creation.
|
1823
|
+
# @option params [required, String] :evaluation_name
|
1824
|
+
# A new user-supplied name or description of the `Evaluation` that will
|
1825
|
+
# replace the current content.
|
1826
|
+
# @return [Types::UpdateEvaluationOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1827
|
+
#
|
1828
|
+
# * {Types::UpdateEvaluationOutput#evaluation_id #EvaluationId} => String
|
1829
|
+
#
|
1830
|
+
# @example Request syntax with placeholder values
|
1831
|
+
# resp = client.update_evaluation({
|
1832
|
+
# evaluation_id: "EntityId", # required
|
1833
|
+
# evaluation_name: "EntityName", # required
|
1834
|
+
# })
|
1835
|
+
#
|
1836
|
+
# @example Response structure
|
1837
|
+
# resp.evaluation_id #=> String
|
1838
|
+
# @overload update_evaluation(params = {})
|
1839
|
+
# @param [Hash] params ({})
|
1840
|
+
def update_evaluation(params = {}, options = {})
|
1841
|
+
req = build_request(:update_evaluation, params)
|
1842
|
+
req.send_request(options)
|
1843
|
+
end
|
1844
|
+
|
1845
|
+
# Updates the `MLModelName` and the `ScoreThreshold` of an `MLModel`.
|
1846
|
+
#
|
1847
|
+
# You can use the `GetMLModel` operation to view the contents of the
|
1848
|
+
# updated data element.
|
1849
|
+
# @option params [required, String] :ml_model_id
|
1850
|
+
# The ID assigned to the `MLModel` during creation.
|
1851
|
+
# @option params [String] :ml_model_name
|
1852
|
+
# A user-supplied name or description of the `MLModel`.
|
1853
|
+
# @option params [Float] :score_threshold
|
1854
|
+
# The `ScoreThreshold` used in binary classification `MLModel` that
|
1855
|
+
# marks the boundary between a positive prediction and a negative
|
1856
|
+
# prediction.
|
1857
|
+
#
|
1858
|
+
# Output values greater than or equal to the `ScoreThreshold` receive a
|
1859
|
+
# positive result from the `MLModel`, such as `true`. Output values less
|
1860
|
+
# than the `ScoreThreshold` receive a negative response from the
|
1861
|
+
# `MLModel`, such as `false`.
|
1862
|
+
# @return [Types::UpdateMLModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1863
|
+
#
|
1864
|
+
# * {Types::UpdateMLModelOutput#ml_model_id #MLModelId} => String
|
1865
|
+
#
|
1866
|
+
# @example Request syntax with placeholder values
|
1867
|
+
# resp = client.update_ml_model({
|
1868
|
+
# ml_model_id: "EntityId", # required
|
1869
|
+
# ml_model_name: "EntityName",
|
1870
|
+
# score_threshold: 1.0,
|
1871
|
+
# })
|
1872
|
+
#
|
1873
|
+
# @example Response structure
|
1874
|
+
# resp.ml_model_id #=> String
|
1875
|
+
# @overload update_ml_model(params = {})
|
1876
|
+
# @param [Hash] params ({})
|
1877
|
+
def update_ml_model(params = {}, options = {})
|
1878
|
+
req = build_request(:update_ml_model, params)
|
1879
|
+
req.send_request(options)
|
1880
|
+
end
|
1881
|
+
|
1882
|
+
# @!endgroup
|
1883
|
+
|
1884
|
+
# @param params ({})
|
1885
|
+
# @api private
|
1886
|
+
def build_request(operation_name, params = {})
|
1887
|
+
handlers = @handlers.for(operation_name)
|
1888
|
+
context = Seahorse::Client::RequestContext.new(
|
1889
|
+
operation_name: operation_name,
|
1890
|
+
operation: config.api.operation(operation_name),
|
1891
|
+
client: self,
|
1892
|
+
params: params,
|
1893
|
+
config: config)
|
1894
|
+
context[:gem_name] = 'aws-sdk-machinelearning'
|
1895
|
+
context[:gem_version] = '1.0.0.rc1'
|
1896
|
+
Seahorse::Client::Request.new(handlers, context)
|
1897
|
+
end
|
1898
|
+
|
1899
|
+
# Polls an API operation until a resource enters a desired state.
|
1900
|
+
#
|
1901
|
+
# ## Basic Usage
|
1902
|
+
#
|
1903
|
+
# A waiter will call an API operation until:
|
1904
|
+
#
|
1905
|
+
# * It is successful
|
1906
|
+
# * It enters a terminal state
|
1907
|
+
# * It makes the maximum number of attempts
|
1908
|
+
#
|
1909
|
+
# In between attempts, the waiter will sleep.
|
1910
|
+
#
|
1911
|
+
# # polls in a loop, sleeping between attempts
|
1912
|
+
# client.waiter_until(waiter_name, params)
|
1913
|
+
#
|
1914
|
+
# ## Configuration
|
1915
|
+
#
|
1916
|
+
# You can configure the maximum number of polling attempts, and the
|
1917
|
+
# delay (in seconds) between each polling attempt. You can pass
|
1918
|
+
# configuration as the final arguments hash.
|
1919
|
+
#
|
1920
|
+
# # poll for ~25 seconds
|
1921
|
+
# client.wait_until(waiter_name, params, {
|
1922
|
+
# max_attempts: 5,
|
1923
|
+
# delay: 5,
|
1924
|
+
# })
|
1925
|
+
#
|
1926
|
+
# ## Callbacks
|
1927
|
+
#
|
1928
|
+
# You can be notified before each polling attempt and before each
|
1929
|
+
# delay. If you throw `:success` or `:failure` from these callbacks,
|
1930
|
+
# it will terminate the waiter.
|
1931
|
+
#
|
1932
|
+
# started_at = Time.now
|
1933
|
+
# client.wait_until(waiter_name, params, {
|
1934
|
+
#
|
1935
|
+
# # disable max attempts
|
1936
|
+
# max_attempts: nil,
|
1937
|
+
#
|
1938
|
+
# # poll for 1 hour, instead of a number of attempts
|
1939
|
+
# before_wait: -> (attempts, response) do
|
1940
|
+
# throw :failure if Time.now - started_at > 3600
|
1941
|
+
# end
|
1942
|
+
# })
|
1943
|
+
#
|
1944
|
+
# ## Handling Errors
|
1945
|
+
#
|
1946
|
+
# When a waiter is unsuccessful, it will raise an error.
|
1947
|
+
# All of the failure errors extend from
|
1948
|
+
# {Aws::Waiters::Errors::WaiterFailed}.
|
1949
|
+
#
|
1950
|
+
# begin
|
1951
|
+
# client.wait_until(...)
|
1952
|
+
# rescue Aws::Waiters::Errors::WaiterFailed
|
1953
|
+
# # resource did not enter the desired state in time
|
1954
|
+
# end
|
1955
|
+
#
|
1956
|
+
# ## Valid Waiters
|
1957
|
+
#
|
1958
|
+
# The following table lists the valid waiter names, the operations they call,
|
1959
|
+
# and the default `:delay` and `:max_attempts` values.
|
1960
|
+
#
|
1961
|
+
# | waiter_name | params | :delay | :max_attempts |
|
1962
|
+
# | -------------------------- | ----------------------------- | -------- | ------------- |
|
1963
|
+
# | batch_prediction_available | {#describe_batch_predictions} | 30 | 60 |
|
1964
|
+
# | data_source_available | {#describe_data_sources} | 30 | 60 |
|
1965
|
+
# | evaluation_available | {#describe_evaluations} | 30 | 60 |
|
1966
|
+
# | ml_model_available | {#describe_ml_models} | 30 | 60 |
|
1967
|
+
#
|
1968
|
+
# @raise [Errors::FailureStateError] Raised when the waiter terminates
|
1969
|
+
# because the waiter has entered a state that it will not transition
|
1970
|
+
# out of, preventing success.
|
1971
|
+
#
|
1972
|
+
# @raise [Errors::TooManyAttemptsError] Raised when the configured
|
1973
|
+
# maximum number of attempts have been made, and the waiter is not
|
1974
|
+
# yet successful.
|
1975
|
+
#
|
1976
|
+
# @raise [Errors::UnexpectedError] Raised when an error is encounted
|
1977
|
+
# while polling for a resource that is not expected.
|
1978
|
+
#
|
1979
|
+
# @raise [Errors::NoSuchWaiterError] Raised when you request to wait
|
1980
|
+
# for an unknown state.
|
1981
|
+
#
|
1982
|
+
# @return [Boolean] Returns `true` if the waiter was successful.
|
1983
|
+
# @param [Symbol] waiter_name
|
1984
|
+
# @param [Hash] params ({})
|
1985
|
+
# @param [Hash] options ({})
|
1986
|
+
# @option options [Integer] :max_attempts
|
1987
|
+
# @option options [Integer] :delay
|
1988
|
+
# @option options [Proc] :before_attempt
|
1989
|
+
# @option options [Proc] :before_wait
|
1990
|
+
def wait_until(waiter_name, params = {}, options = {})
|
1991
|
+
w = waiter(waiter_name, options)
|
1992
|
+
yield(w.waiter) if block_given? # deprecated
|
1993
|
+
w.wait(params)
|
1994
|
+
end
|
1995
|
+
|
1996
|
+
# @api private
|
1997
|
+
# @deprecated
|
1998
|
+
def waiter_names
|
1999
|
+
waiters.keys
|
2000
|
+
end
|
2001
|
+
|
2002
|
+
private
|
2003
|
+
|
2004
|
+
# @param [Symbol] waiter_name
|
2005
|
+
# @param [Hash] options ({})
|
2006
|
+
def waiter(waiter_name, options = {})
|
2007
|
+
waiter_class = waiters[waiter_name]
|
2008
|
+
if waiter_class
|
2009
|
+
waiter_class.new(options.merge(client: self))
|
2010
|
+
else
|
2011
|
+
raise Aws::Waiters::Errors::NoSuchWaiterError.new(waiter_name, waiters.keys)
|
2012
|
+
end
|
2013
|
+
end
|
2014
|
+
|
2015
|
+
def waiters
|
2016
|
+
{
|
2017
|
+
data_source_available: Waiters::DataSourceAvailable,
|
2018
|
+
ml_model_available: Waiters::MLModelAvailable,
|
2019
|
+
evaluation_available: Waiters::EvaluationAvailable,
|
2020
|
+
batch_prediction_available: Waiters::BatchPredictionAvailable
|
2021
|
+
}
|
2022
|
+
end
|
2023
|
+
|
2024
|
+
class << self
|
2025
|
+
|
2026
|
+
# @api private
|
2027
|
+
attr_reader :identifier
|
2028
|
+
|
2029
|
+
# @api private
|
2030
|
+
def errors_module
|
2031
|
+
Errors
|
2032
|
+
end
|
2033
|
+
|
2034
|
+
end
|
2035
|
+
end
|
2036
|
+
end
|
2037
|
+
end
|