aws-sdk-forecastservice 1.20.0 → 1.21.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 697d13456570bd791ef364242e9342183ce9e0fdc58035f6113b12557f9bf7a4
4
- data.tar.gz: 544c6abba89f7ad18f8130d70db89d5b2caa527a1fe628c24853abf6360dc3b7
3
+ metadata.gz: 74a8806673eb69e824936781c81d6be28393cea09b5ffb415ccf5814a99122f3
4
+ data.tar.gz: 76bbd8d1464800534c1d93420bf43cef63abbfefbe6045aa44ae8eca7e9bb3bb
5
5
  SHA512:
6
- metadata.gz: b0aca3a9390d06310b672ad60aa5e3ec913b2022e480ecd3f1a2f276f5790f63f7bbce5ba3290d588501f61dab0c616eb8ccc51954b52c3abc5ea302625833b1
7
- data.tar.gz: '013864157c95dcae1627f12bdcc3e38313814f7cfa8705c92967ab1a905bfe7bf875ed12a3404d1fc11ffa004edc421b918cea84bf021772e9cba3ead5eea556'
6
+ metadata.gz: 757e9ab6daa00f01ee5c38efbf294f6b641c6d5fcbd679200f4ec66a2a73752f36fef3ab531e6b4eeb42e7da8386c223358d80329e43f018a9cffb547da31d13
7
+ data.tar.gz: ee2c713042268fd9d38e54924b632b9d1c6aa8eecea71f390229dff63e4e4e820b13891b2bb2d9e185beefa93645767686c44fdbaf6f2fab4606e2f53b21ced3
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.21.0 (2021-06-03)
5
+ ------------------
6
+
7
+ * Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
8
+
4
9
  1.20.0 (2021-05-21)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.20.0
1
+ 1.21.0
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
48
48
  # @!group service
49
49
  module Aws::ForecastService
50
50
 
51
- GEM_VERSION = '1.20.0'
51
+ GEM_VERSION = '1.21.0'
52
52
 
53
53
  end
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
1077
1077
  # This is a good option if you aren't sure which algorithm is suitable
1078
1078
  # for your training data. In this case, `PerformHPO` must be false.
1079
1079
  #
1080
+ # @option params [String] :auto_ml_override_strategy
1081
+ # Used to overide the default AutoML strategy, which is to optimize
1082
+ # predictor accuracy. To apply an AutoML strategy that minimizes
1083
+ # training time, use `LatencyOptimized`.
1084
+ #
1085
+ # This parameter is only valid for predictors trained using AutoML.
1086
+ #
1080
1087
  # @option params [Boolean] :perform_hpo
1081
1088
  # Whether to perform hyperparameter optimization (HPO). HPO finds
1082
1089
  # optimal hyperparameter values for your training data. The process of
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
1176
1183
  # forecast_horizon: 1, # required
1177
1184
  # forecast_types: ["ForecastType"],
1178
1185
  # perform_auto_ml: false,
1186
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
1179
1187
  # perform_hpo: false,
1180
1188
  # training_parameters: {
1181
1189
  # "ParameterKey" => "ParameterValue",
@@ -1942,6 +1950,7 @@ module Aws::ForecastService
1942
1950
  # * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
1943
1951
  # * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array<String>
1944
1952
  # * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
1953
+ # * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
1945
1954
  # * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
1946
1955
  # * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String>
1947
1956
  # * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
@@ -1973,6 +1982,7 @@ module Aws::ForecastService
1973
1982
  # resp.forecast_types #=> Array
1974
1983
  # resp.forecast_types[0] #=> String
1975
1984
  # resp.perform_auto_ml #=> Boolean
1985
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
1976
1986
  # resp.perform_hpo #=> Boolean
1977
1987
  # resp.training_parameters #=> Hash
1978
1988
  # resp.training_parameters["ParameterKey"] #=> String
@@ -2124,6 +2134,7 @@ module Aws::ForecastService
2124
2134
  # @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2125
2135
  #
2126
2136
  # * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array<Types::EvaluationResult>
2137
+ # * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
2127
2138
  #
2128
2139
  # @example Request syntax with placeholder values
2129
2140
  #
@@ -2148,6 +2159,7 @@ module Aws::ForecastService
2148
2159
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
2149
2160
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
2150
2161
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
2162
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
2151
2163
  #
2152
2164
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
2153
2165
  #
@@ -2875,7 +2887,7 @@ module Aws::ForecastService
2875
2887
  params: params,
2876
2888
  config: config)
2877
2889
  context[:gem_name] = 'aws-sdk-forecastservice'
2878
- context[:gem_version] = '1.20.0'
2890
+ context[:gem_version] = '1.21.0'
2879
2891
  Seahorse::Client::Request.new(handlers, context)
2880
2892
  end
2881
2893
 
@@ -16,6 +16,7 @@ module Aws::ForecastService
16
16
  Arn = Shapes::StringShape.new(name: 'Arn')
17
17
  ArnList = Shapes::ListShape.new(name: 'ArnList')
18
18
  AttributeType = Shapes::StringShape.new(name: 'AttributeType')
19
+ AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
19
20
  Boolean = Shapes::BooleanShape.new(name: 'Boolean')
20
21
  CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
21
22
  CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
@@ -261,6 +262,7 @@ module Aws::ForecastService
261
262
  CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
262
263
  CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
263
264
  CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
265
+ CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
264
266
  CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
265
267
  CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
266
268
  CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -430,6 +432,7 @@ module Aws::ForecastService
430
432
  DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
431
433
  DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
432
434
  DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
435
+ DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
433
436
  DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
434
437
  DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
435
438
  DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -527,6 +530,7 @@ module Aws::ForecastService
527
530
  GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
528
531
 
529
532
  GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
533
+ GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
530
534
  GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
531
535
 
532
536
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -782,6 +782,7 @@ module Aws::ForecastService
782
782
  # forecast_horizon: 1, # required
783
783
  # forecast_types: ["ForecastType"],
784
784
  # perform_auto_ml: false,
785
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
785
786
  # perform_hpo: false,
786
787
  # training_parameters: {
787
788
  # "ParameterKey" => "ParameterValue",
@@ -913,6 +914,14 @@ module Aws::ForecastService
913
914
  # false.
914
915
  # @return [Boolean]
915
916
  #
917
+ # @!attribute [rw] auto_ml_override_strategy
918
+ # Used to overide the default AutoML strategy, which is to optimize
919
+ # predictor accuracy. To apply an AutoML strategy that minimizes
920
+ # training time, use `LatencyOptimized`.
921
+ #
922
+ # This parameter is only valid for predictors trained using AutoML.
923
+ # @return [String]
924
+ #
916
925
  # @!attribute [rw] perform_hpo
917
926
  # Whether to perform hyperparameter optimization (HPO). HPO finds
918
927
  # optimal hyperparameter values for your training data. The process of
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
1017
1026
  :forecast_horizon,
1018
1027
  :forecast_types,
1019
1028
  :perform_auto_ml,
1029
+ :auto_ml_override_strategy,
1020
1030
  :perform_hpo,
1021
1031
  :training_parameters,
1022
1032
  :evaluation_parameters,
@@ -2064,6 +2074,14 @@ module Aws::ForecastService
2064
2074
  # Whether the predictor is set to perform AutoML.
2065
2075
  # @return [Boolean]
2066
2076
  #
2077
+ # @!attribute [rw] auto_ml_override_strategy
2078
+ # The AutoML strategy used to train the predictor. Unless
2079
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2080
+ # predictor accuracy.
2081
+ #
2082
+ # This parameter is only valid for predictors trained using AutoML.
2083
+ # @return [String]
2084
+ #
2067
2085
  # @!attribute [rw] perform_hpo
2068
2086
  # Whether the predictor is set to perform hyperparameter optimization
2069
2087
  # (HPO).
@@ -2172,6 +2190,7 @@ module Aws::ForecastService
2172
2190
  :forecast_horizon,
2173
2191
  :forecast_types,
2174
2192
  :perform_auto_ml,
2193
+ :auto_ml_override_strategy,
2175
2194
  :perform_hpo,
2176
2195
  :training_parameters,
2177
2196
  :evaluation_parameters,
@@ -2740,10 +2759,19 @@ module Aws::ForecastService
2740
2759
  # An array of results from evaluating the predictor.
2741
2760
  # @return [Array<Types::EvaluationResult>]
2742
2761
  #
2762
+ # @!attribute [rw] auto_ml_override_strategy
2763
+ # The AutoML strategy used to train the predictor. Unless
2764
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2765
+ # predictor accuracy.
2766
+ #
2767
+ # This parameter is only valid for predictors trained using AutoML.
2768
+ # @return [String]
2769
+ #
2743
2770
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
2744
2771
  #
2745
2772
  class GetAccuracyMetricsResponse < Struct.new(
2746
- :predictor_evaluation_results)
2773
+ :predictor_evaluation_results,
2774
+ :auto_ml_override_strategy)
2747
2775
  SENSITIVE = []
2748
2776
  include Aws::Structure
2749
2777
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-forecastservice
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.20.0
4
+ version: 1.21.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-05-21 00:00:00.000000000 Z
11
+ date: 2021-06-03 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core