aws-sdk-forecastservice 1.20.0 → 1.21.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-forecastservice.rb +1 -1
- data/lib/aws-sdk-forecastservice/client.rb +13 -1
- data/lib/aws-sdk-forecastservice/client_api.rb +4 -0
- data/lib/aws-sdk-forecastservice/types.rb +29 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 74a8806673eb69e824936781c81d6be28393cea09b5ffb415ccf5814a99122f3
|
4
|
+
data.tar.gz: 76bbd8d1464800534c1d93420bf43cef63abbfefbe6045aa44ae8eca7e9bb3bb
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 757e9ab6daa00f01ee5c38efbf294f6b641c6d5fcbd679200f4ec66a2a73752f36fef3ab531e6b4eeb42e7da8386c223358d80329e43f018a9cffb547da31d13
|
7
|
+
data.tar.gz: ee2c713042268fd9d38e54924b632b9d1c6aa8eecea71f390229dff63e4e4e820b13891b2bb2d9e185beefa93645767686c44fdbaf6f2fab4606e2f53b21ced3
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.21.0 (2021-06-03)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
|
8
|
+
|
4
9
|
1.20.0 (2021-05-21)
|
5
10
|
------------------
|
6
11
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.21.0
|
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
|
|
1077
1077
|
# This is a good option if you aren't sure which algorithm is suitable
|
1078
1078
|
# for your training data. In this case, `PerformHPO` must be false.
|
1079
1079
|
#
|
1080
|
+
# @option params [String] :auto_ml_override_strategy
|
1081
|
+
# Used to overide the default AutoML strategy, which is to optimize
|
1082
|
+
# predictor accuracy. To apply an AutoML strategy that minimizes
|
1083
|
+
# training time, use `LatencyOptimized`.
|
1084
|
+
#
|
1085
|
+
# This parameter is only valid for predictors trained using AutoML.
|
1086
|
+
#
|
1080
1087
|
# @option params [Boolean] :perform_hpo
|
1081
1088
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
1082
1089
|
# optimal hyperparameter values for your training data. The process of
|
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
|
|
1176
1183
|
# forecast_horizon: 1, # required
|
1177
1184
|
# forecast_types: ["ForecastType"],
|
1178
1185
|
# perform_auto_ml: false,
|
1186
|
+
# auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
|
1179
1187
|
# perform_hpo: false,
|
1180
1188
|
# training_parameters: {
|
1181
1189
|
# "ParameterKey" => "ParameterValue",
|
@@ -1942,6 +1950,7 @@ module Aws::ForecastService
|
|
1942
1950
|
# * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
|
1943
1951
|
# * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array<String>
|
1944
1952
|
# * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
|
1953
|
+
# * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
|
1945
1954
|
# * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
|
1946
1955
|
# * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String>
|
1947
1956
|
# * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
|
@@ -1973,6 +1982,7 @@ module Aws::ForecastService
|
|
1973
1982
|
# resp.forecast_types #=> Array
|
1974
1983
|
# resp.forecast_types[0] #=> String
|
1975
1984
|
# resp.perform_auto_ml #=> Boolean
|
1985
|
+
# resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
|
1976
1986
|
# resp.perform_hpo #=> Boolean
|
1977
1987
|
# resp.training_parameters #=> Hash
|
1978
1988
|
# resp.training_parameters["ParameterKey"] #=> String
|
@@ -2124,6 +2134,7 @@ module Aws::ForecastService
|
|
2124
2134
|
# @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
2125
2135
|
#
|
2126
2136
|
# * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array<Types::EvaluationResult>
|
2137
|
+
# * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
|
2127
2138
|
#
|
2128
2139
|
# @example Request syntax with placeholder values
|
2129
2140
|
#
|
@@ -2148,6 +2159,7 @@ module Aws::ForecastService
|
|
2148
2159
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
|
2149
2160
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
|
2150
2161
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
|
2162
|
+
# resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
|
2151
2163
|
#
|
2152
2164
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
|
2153
2165
|
#
|
@@ -2875,7 +2887,7 @@ module Aws::ForecastService
|
|
2875
2887
|
params: params,
|
2876
2888
|
config: config)
|
2877
2889
|
context[:gem_name] = 'aws-sdk-forecastservice'
|
2878
|
-
context[:gem_version] = '1.
|
2890
|
+
context[:gem_version] = '1.21.0'
|
2879
2891
|
Seahorse::Client::Request.new(handlers, context)
|
2880
2892
|
end
|
2881
2893
|
|
@@ -16,6 +16,7 @@ module Aws::ForecastService
|
|
16
16
|
Arn = Shapes::StringShape.new(name: 'Arn')
|
17
17
|
ArnList = Shapes::ListShape.new(name: 'ArnList')
|
18
18
|
AttributeType = Shapes::StringShape.new(name: 'AttributeType')
|
19
|
+
AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
|
19
20
|
Boolean = Shapes::BooleanShape.new(name: 'Boolean')
|
20
21
|
CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
|
21
22
|
CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
|
@@ -261,6 +262,7 @@ module Aws::ForecastService
|
|
261
262
|
CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
|
262
263
|
CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
263
264
|
CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
265
|
+
CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
264
266
|
CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
265
267
|
CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
266
268
|
CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
|
@@ -430,6 +432,7 @@ module Aws::ForecastService
|
|
430
432
|
DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
|
431
433
|
DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
432
434
|
DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
435
|
+
DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
433
436
|
DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
434
437
|
DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
435
438
|
DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
|
@@ -527,6 +530,7 @@ module Aws::ForecastService
|
|
527
530
|
GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
|
528
531
|
|
529
532
|
GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
|
533
|
+
GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
530
534
|
GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
|
531
535
|
|
532
536
|
HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
|
@@ -782,6 +782,7 @@ module Aws::ForecastService
|
|
782
782
|
# forecast_horizon: 1, # required
|
783
783
|
# forecast_types: ["ForecastType"],
|
784
784
|
# perform_auto_ml: false,
|
785
|
+
# auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
|
785
786
|
# perform_hpo: false,
|
786
787
|
# training_parameters: {
|
787
788
|
# "ParameterKey" => "ParameterValue",
|
@@ -913,6 +914,14 @@ module Aws::ForecastService
|
|
913
914
|
# false.
|
914
915
|
# @return [Boolean]
|
915
916
|
#
|
917
|
+
# @!attribute [rw] auto_ml_override_strategy
|
918
|
+
# Used to overide the default AutoML strategy, which is to optimize
|
919
|
+
# predictor accuracy. To apply an AutoML strategy that minimizes
|
920
|
+
# training time, use `LatencyOptimized`.
|
921
|
+
#
|
922
|
+
# This parameter is only valid for predictors trained using AutoML.
|
923
|
+
# @return [String]
|
924
|
+
#
|
916
925
|
# @!attribute [rw] perform_hpo
|
917
926
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
918
927
|
# optimal hyperparameter values for your training data. The process of
|
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
|
|
1017
1026
|
:forecast_horizon,
|
1018
1027
|
:forecast_types,
|
1019
1028
|
:perform_auto_ml,
|
1029
|
+
:auto_ml_override_strategy,
|
1020
1030
|
:perform_hpo,
|
1021
1031
|
:training_parameters,
|
1022
1032
|
:evaluation_parameters,
|
@@ -2064,6 +2074,14 @@ module Aws::ForecastService
|
|
2064
2074
|
# Whether the predictor is set to perform AutoML.
|
2065
2075
|
# @return [Boolean]
|
2066
2076
|
#
|
2077
|
+
# @!attribute [rw] auto_ml_override_strategy
|
2078
|
+
# The AutoML strategy used to train the predictor. Unless
|
2079
|
+
# `LatencyOptimized` is specified, the AutoML strategy optimizes
|
2080
|
+
# predictor accuracy.
|
2081
|
+
#
|
2082
|
+
# This parameter is only valid for predictors trained using AutoML.
|
2083
|
+
# @return [String]
|
2084
|
+
#
|
2067
2085
|
# @!attribute [rw] perform_hpo
|
2068
2086
|
# Whether the predictor is set to perform hyperparameter optimization
|
2069
2087
|
# (HPO).
|
@@ -2172,6 +2190,7 @@ module Aws::ForecastService
|
|
2172
2190
|
:forecast_horizon,
|
2173
2191
|
:forecast_types,
|
2174
2192
|
:perform_auto_ml,
|
2193
|
+
:auto_ml_override_strategy,
|
2175
2194
|
:perform_hpo,
|
2176
2195
|
:training_parameters,
|
2177
2196
|
:evaluation_parameters,
|
@@ -2740,10 +2759,19 @@ module Aws::ForecastService
|
|
2740
2759
|
# An array of results from evaluating the predictor.
|
2741
2760
|
# @return [Array<Types::EvaluationResult>]
|
2742
2761
|
#
|
2762
|
+
# @!attribute [rw] auto_ml_override_strategy
|
2763
|
+
# The AutoML strategy used to train the predictor. Unless
|
2764
|
+
# `LatencyOptimized` is specified, the AutoML strategy optimizes
|
2765
|
+
# predictor accuracy.
|
2766
|
+
#
|
2767
|
+
# This parameter is only valid for predictors trained using AutoML.
|
2768
|
+
# @return [String]
|
2769
|
+
#
|
2743
2770
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
|
2744
2771
|
#
|
2745
2772
|
class GetAccuracyMetricsResponse < Struct.new(
|
2746
|
-
:predictor_evaluation_results
|
2773
|
+
:predictor_evaluation_results,
|
2774
|
+
:auto_ml_override_strategy)
|
2747
2775
|
SENSITIVE = []
|
2748
2776
|
include Aws::Structure
|
2749
2777
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-forecastservice
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.21.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-
|
11
|
+
date: 2021-06-03 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|