aws-sdk-forecastservice 1.20.0 → 1.21.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-forecastservice.rb +1 -1
- data/lib/aws-sdk-forecastservice/client.rb +13 -1
- data/lib/aws-sdk-forecastservice/client_api.rb +4 -0
- data/lib/aws-sdk-forecastservice/types.rb +29 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 74a8806673eb69e824936781c81d6be28393cea09b5ffb415ccf5814a99122f3
|
4
|
+
data.tar.gz: 76bbd8d1464800534c1d93420bf43cef63abbfefbe6045aa44ae8eca7e9bb3bb
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 757e9ab6daa00f01ee5c38efbf294f6b641c6d5fcbd679200f4ec66a2a73752f36fef3ab531e6b4eeb42e7da8386c223358d80329e43f018a9cffb547da31d13
|
7
|
+
data.tar.gz: ee2c713042268fd9d38e54924b632b9d1c6aa8eecea71f390229dff63e4e4e820b13891b2bb2d9e185beefa93645767686c44fdbaf6f2fab4606e2f53b21ced3
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.21.0 (2021-06-03)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
|
8
|
+
|
4
9
|
1.20.0 (2021-05-21)
|
5
10
|
------------------
|
6
11
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.21.0
|
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
|
|
1077
1077
|
# This is a good option if you aren't sure which algorithm is suitable
|
1078
1078
|
# for your training data. In this case, `PerformHPO` must be false.
|
1079
1079
|
#
|
1080
|
+
# @option params [String] :auto_ml_override_strategy
|
1081
|
+
# Used to overide the default AutoML strategy, which is to optimize
|
1082
|
+
# predictor accuracy. To apply an AutoML strategy that minimizes
|
1083
|
+
# training time, use `LatencyOptimized`.
|
1084
|
+
#
|
1085
|
+
# This parameter is only valid for predictors trained using AutoML.
|
1086
|
+
#
|
1080
1087
|
# @option params [Boolean] :perform_hpo
|
1081
1088
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
1082
1089
|
# optimal hyperparameter values for your training data. The process of
|
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
|
|
1176
1183
|
# forecast_horizon: 1, # required
|
1177
1184
|
# forecast_types: ["ForecastType"],
|
1178
1185
|
# perform_auto_ml: false,
|
1186
|
+
# auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
|
1179
1187
|
# perform_hpo: false,
|
1180
1188
|
# training_parameters: {
|
1181
1189
|
# "ParameterKey" => "ParameterValue",
|
@@ -1942,6 +1950,7 @@ module Aws::ForecastService
|
|
1942
1950
|
# * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
|
1943
1951
|
# * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array<String>
|
1944
1952
|
# * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
|
1953
|
+
# * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
|
1945
1954
|
# * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
|
1946
1955
|
# * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String>
|
1947
1956
|
# * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
|
@@ -1973,6 +1982,7 @@ module Aws::ForecastService
|
|
1973
1982
|
# resp.forecast_types #=> Array
|
1974
1983
|
# resp.forecast_types[0] #=> String
|
1975
1984
|
# resp.perform_auto_ml #=> Boolean
|
1985
|
+
# resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
|
1976
1986
|
# resp.perform_hpo #=> Boolean
|
1977
1987
|
# resp.training_parameters #=> Hash
|
1978
1988
|
# resp.training_parameters["ParameterKey"] #=> String
|
@@ -2124,6 +2134,7 @@ module Aws::ForecastService
|
|
2124
2134
|
# @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
2125
2135
|
#
|
2126
2136
|
# * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array<Types::EvaluationResult>
|
2137
|
+
# * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
|
2127
2138
|
#
|
2128
2139
|
# @example Request syntax with placeholder values
|
2129
2140
|
#
|
@@ -2148,6 +2159,7 @@ module Aws::ForecastService
|
|
2148
2159
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
|
2149
2160
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
|
2150
2161
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
|
2162
|
+
# resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
|
2151
2163
|
#
|
2152
2164
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
|
2153
2165
|
#
|
@@ -2875,7 +2887,7 @@ module Aws::ForecastService
|
|
2875
2887
|
params: params,
|
2876
2888
|
config: config)
|
2877
2889
|
context[:gem_name] = 'aws-sdk-forecastservice'
|
2878
|
-
context[:gem_version] = '1.
|
2890
|
+
context[:gem_version] = '1.21.0'
|
2879
2891
|
Seahorse::Client::Request.new(handlers, context)
|
2880
2892
|
end
|
2881
2893
|
|
@@ -16,6 +16,7 @@ module Aws::ForecastService
|
|
16
16
|
Arn = Shapes::StringShape.new(name: 'Arn')
|
17
17
|
ArnList = Shapes::ListShape.new(name: 'ArnList')
|
18
18
|
AttributeType = Shapes::StringShape.new(name: 'AttributeType')
|
19
|
+
AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
|
19
20
|
Boolean = Shapes::BooleanShape.new(name: 'Boolean')
|
20
21
|
CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
|
21
22
|
CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
|
@@ -261,6 +262,7 @@ module Aws::ForecastService
|
|
261
262
|
CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
|
262
263
|
CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
263
264
|
CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
265
|
+
CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
264
266
|
CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
265
267
|
CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
266
268
|
CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
|
@@ -430,6 +432,7 @@ module Aws::ForecastService
|
|
430
432
|
DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
|
431
433
|
DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
432
434
|
DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
435
|
+
DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
433
436
|
DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
434
437
|
DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
435
438
|
DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
|
@@ -527,6 +530,7 @@ module Aws::ForecastService
|
|
527
530
|
GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
|
528
531
|
|
529
532
|
GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
|
533
|
+
GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
|
530
534
|
GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
|
531
535
|
|
532
536
|
HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
|
@@ -782,6 +782,7 @@ module Aws::ForecastService
|
|
782
782
|
# forecast_horizon: 1, # required
|
783
783
|
# forecast_types: ["ForecastType"],
|
784
784
|
# perform_auto_ml: false,
|
785
|
+
# auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
|
785
786
|
# perform_hpo: false,
|
786
787
|
# training_parameters: {
|
787
788
|
# "ParameterKey" => "ParameterValue",
|
@@ -913,6 +914,14 @@ module Aws::ForecastService
|
|
913
914
|
# false.
|
914
915
|
# @return [Boolean]
|
915
916
|
#
|
917
|
+
# @!attribute [rw] auto_ml_override_strategy
|
918
|
+
# Used to overide the default AutoML strategy, which is to optimize
|
919
|
+
# predictor accuracy. To apply an AutoML strategy that minimizes
|
920
|
+
# training time, use `LatencyOptimized`.
|
921
|
+
#
|
922
|
+
# This parameter is only valid for predictors trained using AutoML.
|
923
|
+
# @return [String]
|
924
|
+
#
|
916
925
|
# @!attribute [rw] perform_hpo
|
917
926
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
918
927
|
# optimal hyperparameter values for your training data. The process of
|
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
|
|
1017
1026
|
:forecast_horizon,
|
1018
1027
|
:forecast_types,
|
1019
1028
|
:perform_auto_ml,
|
1029
|
+
:auto_ml_override_strategy,
|
1020
1030
|
:perform_hpo,
|
1021
1031
|
:training_parameters,
|
1022
1032
|
:evaluation_parameters,
|
@@ -2064,6 +2074,14 @@ module Aws::ForecastService
|
|
2064
2074
|
# Whether the predictor is set to perform AutoML.
|
2065
2075
|
# @return [Boolean]
|
2066
2076
|
#
|
2077
|
+
# @!attribute [rw] auto_ml_override_strategy
|
2078
|
+
# The AutoML strategy used to train the predictor. Unless
|
2079
|
+
# `LatencyOptimized` is specified, the AutoML strategy optimizes
|
2080
|
+
# predictor accuracy.
|
2081
|
+
#
|
2082
|
+
# This parameter is only valid for predictors trained using AutoML.
|
2083
|
+
# @return [String]
|
2084
|
+
#
|
2067
2085
|
# @!attribute [rw] perform_hpo
|
2068
2086
|
# Whether the predictor is set to perform hyperparameter optimization
|
2069
2087
|
# (HPO).
|
@@ -2172,6 +2190,7 @@ module Aws::ForecastService
|
|
2172
2190
|
:forecast_horizon,
|
2173
2191
|
:forecast_types,
|
2174
2192
|
:perform_auto_ml,
|
2193
|
+
:auto_ml_override_strategy,
|
2175
2194
|
:perform_hpo,
|
2176
2195
|
:training_parameters,
|
2177
2196
|
:evaluation_parameters,
|
@@ -2740,10 +2759,19 @@ module Aws::ForecastService
|
|
2740
2759
|
# An array of results from evaluating the predictor.
|
2741
2760
|
# @return [Array<Types::EvaluationResult>]
|
2742
2761
|
#
|
2762
|
+
# @!attribute [rw] auto_ml_override_strategy
|
2763
|
+
# The AutoML strategy used to train the predictor. Unless
|
2764
|
+
# `LatencyOptimized` is specified, the AutoML strategy optimizes
|
2765
|
+
# predictor accuracy.
|
2766
|
+
#
|
2767
|
+
# This parameter is only valid for predictors trained using AutoML.
|
2768
|
+
# @return [String]
|
2769
|
+
#
|
2743
2770
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
|
2744
2771
|
#
|
2745
2772
|
class GetAccuracyMetricsResponse < Struct.new(
|
2746
|
-
:predictor_evaluation_results
|
2773
|
+
:predictor_evaluation_results,
|
2774
|
+
:auto_ml_override_strategy)
|
2747
2775
|
SENSITIVE = []
|
2748
2776
|
include Aws::Structure
|
2749
2777
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-forecastservice
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.21.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-
|
11
|
+
date: 2021-06-03 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|