aws-sdk-forecastservice 1.20.0 → 1.21.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 697d13456570bd791ef364242e9342183ce9e0fdc58035f6113b12557f9bf7a4
4
- data.tar.gz: 544c6abba89f7ad18f8130d70db89d5b2caa527a1fe628c24853abf6360dc3b7
3
+ metadata.gz: 74a8806673eb69e824936781c81d6be28393cea09b5ffb415ccf5814a99122f3
4
+ data.tar.gz: 76bbd8d1464800534c1d93420bf43cef63abbfefbe6045aa44ae8eca7e9bb3bb
5
5
  SHA512:
6
- metadata.gz: b0aca3a9390d06310b672ad60aa5e3ec913b2022e480ecd3f1a2f276f5790f63f7bbce5ba3290d588501f61dab0c616eb8ccc51954b52c3abc5ea302625833b1
7
- data.tar.gz: '013864157c95dcae1627f12bdcc3e38313814f7cfa8705c92967ab1a905bfe7bf875ed12a3404d1fc11ffa004edc421b918cea84bf021772e9cba3ead5eea556'
6
+ metadata.gz: 757e9ab6daa00f01ee5c38efbf294f6b641c6d5fcbd679200f4ec66a2a73752f36fef3ab531e6b4eeb42e7da8386c223358d80329e43f018a9cffb547da31d13
7
+ data.tar.gz: ee2c713042268fd9d38e54924b632b9d1c6aa8eecea71f390229dff63e4e4e820b13891b2bb2d9e185beefa93645767686c44fdbaf6f2fab4606e2f53b21ced3
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.21.0 (2021-06-03)
5
+ ------------------
6
+
7
+ * Feature - Added optional field AutoMLOverrideStrategy to CreatePredictor API that allows users to customize AutoML strategy. If provided in CreatePredictor request, this field is visible in DescribePredictor and GetAccuracyMetrics responses.
8
+
4
9
  1.20.0 (2021-05-21)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.20.0
1
+ 1.21.0
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
48
48
  # @!group service
49
49
  module Aws::ForecastService
50
50
 
51
- GEM_VERSION = '1.20.0'
51
+ GEM_VERSION = '1.21.0'
52
52
 
53
53
  end
@@ -1077,6 +1077,13 @@ module Aws::ForecastService
1077
1077
  # This is a good option if you aren't sure which algorithm is suitable
1078
1078
  # for your training data. In this case, `PerformHPO` must be false.
1079
1079
  #
1080
+ # @option params [String] :auto_ml_override_strategy
1081
+ # Used to overide the default AutoML strategy, which is to optimize
1082
+ # predictor accuracy. To apply an AutoML strategy that minimizes
1083
+ # training time, use `LatencyOptimized`.
1084
+ #
1085
+ # This parameter is only valid for predictors trained using AutoML.
1086
+ #
1080
1087
  # @option params [Boolean] :perform_hpo
1081
1088
  # Whether to perform hyperparameter optimization (HPO). HPO finds
1082
1089
  # optimal hyperparameter values for your training data. The process of
@@ -1176,6 +1183,7 @@ module Aws::ForecastService
1176
1183
  # forecast_horizon: 1, # required
1177
1184
  # forecast_types: ["ForecastType"],
1178
1185
  # perform_auto_ml: false,
1186
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
1179
1187
  # perform_hpo: false,
1180
1188
  # training_parameters: {
1181
1189
  # "ParameterKey" => "ParameterValue",
@@ -1942,6 +1950,7 @@ module Aws::ForecastService
1942
1950
  # * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
1943
1951
  # * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array<String>
1944
1952
  # * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
1953
+ # * {Types::DescribePredictorResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
1945
1954
  # * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
1946
1955
  # * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String>
1947
1956
  # * {Types::DescribePredictorResponse#evaluation_parameters #evaluation_parameters} => Types::EvaluationParameters
@@ -1973,6 +1982,7 @@ module Aws::ForecastService
1973
1982
  # resp.forecast_types #=> Array
1974
1983
  # resp.forecast_types[0] #=> String
1975
1984
  # resp.perform_auto_ml #=> Boolean
1985
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
1976
1986
  # resp.perform_hpo #=> Boolean
1977
1987
  # resp.training_parameters #=> Hash
1978
1988
  # resp.training_parameters["ParameterKey"] #=> String
@@ -2124,6 +2134,7 @@ module Aws::ForecastService
2124
2134
  # @return [Types::GetAccuracyMetricsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2125
2135
  #
2126
2136
  # * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array<Types::EvaluationResult>
2137
+ # * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
2127
2138
  #
2128
2139
  # @example Request syntax with placeholder values
2129
2140
  #
@@ -2148,6 +2159,7 @@ module Aws::ForecastService
2148
2159
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
2149
2160
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
2150
2161
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
2162
+ # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
2151
2163
  #
2152
2164
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
2153
2165
  #
@@ -2875,7 +2887,7 @@ module Aws::ForecastService
2875
2887
  params: params,
2876
2888
  config: config)
2877
2889
  context[:gem_name] = 'aws-sdk-forecastservice'
2878
- context[:gem_version] = '1.20.0'
2890
+ context[:gem_version] = '1.21.0'
2879
2891
  Seahorse::Client::Request.new(handlers, context)
2880
2892
  end
2881
2893
 
@@ -16,6 +16,7 @@ module Aws::ForecastService
16
16
  Arn = Shapes::StringShape.new(name: 'Arn')
17
17
  ArnList = Shapes::ListShape.new(name: 'ArnList')
18
18
  AttributeType = Shapes::StringShape.new(name: 'AttributeType')
19
+ AutoMLOverrideStrategy = Shapes::StringShape.new(name: 'AutoMLOverrideStrategy')
19
20
  Boolean = Shapes::BooleanShape.new(name: 'Boolean')
20
21
  CategoricalParameterRange = Shapes::StructureShape.new(name: 'CategoricalParameterRange')
21
22
  CategoricalParameterRanges = Shapes::ListShape.new(name: 'CategoricalParameterRanges')
@@ -261,6 +262,7 @@ module Aws::ForecastService
261
262
  CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
262
263
  CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
263
264
  CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
265
+ CreatePredictorRequest.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
264
266
  CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
265
267
  CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
266
268
  CreatePredictorRequest.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -430,6 +432,7 @@ module Aws::ForecastService
430
432
  DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
431
433
  DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
432
434
  DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
435
+ DescribePredictorResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
433
436
  DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
434
437
  DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
435
438
  DescribePredictorResponse.add_member(:evaluation_parameters, Shapes::ShapeRef.new(shape: EvaluationParameters, location_name: "EvaluationParameters"))
@@ -527,6 +530,7 @@ module Aws::ForecastService
527
530
  GetAccuracyMetricsRequest.struct_class = Types::GetAccuracyMetricsRequest
528
531
 
529
532
  GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
533
+ GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
530
534
  GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
531
535
 
532
536
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -782,6 +782,7 @@ module Aws::ForecastService
782
782
  # forecast_horizon: 1, # required
783
783
  # forecast_types: ["ForecastType"],
784
784
  # perform_auto_ml: false,
785
+ # auto_ml_override_strategy: "LatencyOptimized", # accepts LatencyOptimized
785
786
  # perform_hpo: false,
786
787
  # training_parameters: {
787
788
  # "ParameterKey" => "ParameterValue",
@@ -913,6 +914,14 @@ module Aws::ForecastService
913
914
  # false.
914
915
  # @return [Boolean]
915
916
  #
917
+ # @!attribute [rw] auto_ml_override_strategy
918
+ # Used to overide the default AutoML strategy, which is to optimize
919
+ # predictor accuracy. To apply an AutoML strategy that minimizes
920
+ # training time, use `LatencyOptimized`.
921
+ #
922
+ # This parameter is only valid for predictors trained using AutoML.
923
+ # @return [String]
924
+ #
916
925
  # @!attribute [rw] perform_hpo
917
926
  # Whether to perform hyperparameter optimization (HPO). HPO finds
918
927
  # optimal hyperparameter values for your training data. The process of
@@ -1017,6 +1026,7 @@ module Aws::ForecastService
1017
1026
  :forecast_horizon,
1018
1027
  :forecast_types,
1019
1028
  :perform_auto_ml,
1029
+ :auto_ml_override_strategy,
1020
1030
  :perform_hpo,
1021
1031
  :training_parameters,
1022
1032
  :evaluation_parameters,
@@ -2064,6 +2074,14 @@ module Aws::ForecastService
2064
2074
  # Whether the predictor is set to perform AutoML.
2065
2075
  # @return [Boolean]
2066
2076
  #
2077
+ # @!attribute [rw] auto_ml_override_strategy
2078
+ # The AutoML strategy used to train the predictor. Unless
2079
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2080
+ # predictor accuracy.
2081
+ #
2082
+ # This parameter is only valid for predictors trained using AutoML.
2083
+ # @return [String]
2084
+ #
2067
2085
  # @!attribute [rw] perform_hpo
2068
2086
  # Whether the predictor is set to perform hyperparameter optimization
2069
2087
  # (HPO).
@@ -2172,6 +2190,7 @@ module Aws::ForecastService
2172
2190
  :forecast_horizon,
2173
2191
  :forecast_types,
2174
2192
  :perform_auto_ml,
2193
+ :auto_ml_override_strategy,
2175
2194
  :perform_hpo,
2176
2195
  :training_parameters,
2177
2196
  :evaluation_parameters,
@@ -2740,10 +2759,19 @@ module Aws::ForecastService
2740
2759
  # An array of results from evaluating the predictor.
2741
2760
  # @return [Array<Types::EvaluationResult>]
2742
2761
  #
2762
+ # @!attribute [rw] auto_ml_override_strategy
2763
+ # The AutoML strategy used to train the predictor. Unless
2764
+ # `LatencyOptimized` is specified, the AutoML strategy optimizes
2765
+ # predictor accuracy.
2766
+ #
2767
+ # This parameter is only valid for predictors trained using AutoML.
2768
+ # @return [String]
2769
+ #
2743
2770
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
2744
2771
  #
2745
2772
  class GetAccuracyMetricsResponse < Struct.new(
2746
- :predictor_evaluation_results)
2773
+ :predictor_evaluation_results,
2774
+ :auto_ml_override_strategy)
2747
2775
  SENSITIVE = []
2748
2776
  include Aws::Structure
2749
2777
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-forecastservice
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.20.0
4
+ version: 1.21.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-05-21 00:00:00.000000000 Z
11
+ date: 2021-06-03 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core