aws-sdk-forecastservice 1.1.0 → 1.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 6bf80ccb9a55b8d0e8abd235841928fe60074e16
4
- data.tar.gz: ba053ee703c2dbfbafc4d969be7d9a501daec0b6
3
+ metadata.gz: f8da3863f5e0e4eddab57cafa0590b3bd3b51c3b
4
+ data.tar.gz: dbc0c9c5fd292007b5981d4b854c27e71db0f6f5
5
5
  SHA512:
6
- metadata.gz: 26584565f0ae2f4275b5cc9f1e0e75e43445dae0cae4ad95a5d96fba1e9888ad5261dc4c1127bf21533e005ee4ce8be765dc706696ac54f930f95d5419ef0744
7
- data.tar.gz: 5f0f51f522d87ecd262711d33c33ace50beef4a44ea85112d6f3db839e05437f81e92bf13814238b863a0189197ea1f4bcd64fef767b1bac16ccd84055615f3f
6
+ metadata.gz: 136524ae3798ea7e801475212f522b5c7653d428069adc92e8a7fb05e5d4ffb9857edee2f39872812c2e2254a13d8f7e4098e15c269b6b2df1ac1ebd8d1c7385
7
+ data.tar.gz: 7288da9ef119948f62b2e8463cd1cab996c03ea1af6d05ba2b317a01d6ab95d71775c60d6ba03f2aea8cae180820fda5b08546a8df09be671a5c2e59bc05a0bb
@@ -42,6 +42,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
42
42
  # @service
43
43
  module Aws::ForecastService
44
44
 
45
- GEM_VERSION = '1.1.0'
45
+ GEM_VERSION = '1.2.0'
46
46
 
47
47
  end
@@ -269,8 +269,7 @@ module Aws::ForecastService
269
269
  # model training. This includes the following:
270
270
  #
271
271
  # * <i> <code>DataFrequency</code> </i> - How frequently your historical
272
- # time-series data is collected. Amazon Forecast uses this information
273
- # when training the model and generating a forecast.
272
+ # time-series data is collected.
274
273
  #
275
274
  # * <i> <code>Domain</code> </i> and <i> <code>DatasetType</code> </i> -
276
275
  # Each dataset has an associated dataset domain and a type within the
@@ -279,38 +278,49 @@ module Aws::ForecastService
279
278
  # within the domain, Amazon Forecast requires your data to include a
280
279
  # minimum set of predefined fields.
281
280
  #
282
- # * <i> <code>Schema</code> </i> - A schema specifies the fields of the
281
+ # * <i> <code>Schema</code> </i> - A schema specifies the fields in the
283
282
  # dataset, including the field name and data type.
284
283
  #
285
- # After creating a dataset, you import your training data into the
286
- # dataset and add the dataset to a dataset group. You then use the
287
- # dataset group to create a predictor. For more information, see
284
+ # After creating a dataset, you import your training data into it and
285
+ # add the dataset to a dataset group. You use the dataset group to
286
+ # create a predictor. For more information, see
288
287
  # howitworks-datasets-groups.
289
288
  #
290
289
  # To get a list of all your datasets, use the ListDatasets operation.
291
290
  #
291
+ # For example Forecast datasets, see the [Amazon Forecast Sample GitHub
292
+ # repository][1].
293
+ #
292
294
  # <note markdown="1"> The `Status` of a dataset must be `ACTIVE` before you can import
293
295
  # training data. Use the DescribeDataset operation to get the status.
294
296
  #
295
297
  # </note>
296
298
  #
299
+ #
300
+ #
301
+ # [1]: https://github.com/aws-samples/amazon-forecast-samples/tree/master/data
302
+ #
297
303
  # @option params [required, String] :dataset_name
298
304
  # A name for the dataset.
299
305
  #
300
306
  # @option params [required, String] :domain
301
- # The domain associated with the dataset. The `Domain` and `DatasetType`
302
- # that you choose determine the fields that must be present in the
303
- # training data that you import to the dataset. For example, if you
304
- # choose the `RETAIL` domain and `TARGET_TIME_SERIES` as the
305
- # `DatasetType`, Amazon Forecast requires `item_id`, `timestamp`, and
306
- # `demand` fields to be present in your data. For more information, see
307
- # howitworks-datasets-groups.
307
+ # The domain associated with the dataset. When you add a dataset to a
308
+ # dataset group, this value and the value specified for the `Domain`
309
+ # parameter of the CreateDatasetGroup operation must match.
310
+ #
311
+ # The `Domain` and `DatasetType` that you choose determine the fields
312
+ # that must be present in the training data that you import to the
313
+ # dataset. For example, if you choose the `RETAIL` domain and
314
+ # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
315
+ # `item_id`, `timestamp`, and `demand` fields to be present in your
316
+ # data. For more information, see howitworks-datasets-groups.
308
317
  #
309
318
  # @option params [required, String] :dataset_type
310
319
  # The dataset type. Valid values depend on the chosen `Domain`.
311
320
  #
312
321
  # @option params [String] :data_frequency
313
- # The frequency of data collection.
322
+ # The frequency of data collection. This parameter is required for
323
+ # RELATED\_TIME\_SERIES datasets.
314
324
  #
315
325
  # Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour),
316
326
  # 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5
@@ -367,10 +377,9 @@ module Aws::ForecastService
367
377
  req.send_request(options)
368
378
  end
369
379
 
370
- # Creates an Amazon Forecast dataset group, which holds a collection of
371
- # related datasets. You can add datasets to the dataset group when you
372
- # create the dataset group, or you can add datasets later with the
373
- # UpdateDatasetGroup operation.
380
+ # Creates a dataset group, which holds a collection of related datasets.
381
+ # You can add datasets to the dataset group when you create the dataset
382
+ # group, or later by using the UpdateDatasetGroup operation.
374
383
  #
375
384
  # After creating a dataset group and adding datasets, you use the
376
385
  # dataset group when you create a predictor. For more information, see
@@ -380,8 +389,8 @@ module Aws::ForecastService
380
389
  # operation.
381
390
  #
382
391
  # <note markdown="1"> The `Status` of a dataset group must be `ACTIVE` before you can create
383
- # a predictor using the dataset group. Use the DescribeDatasetGroup
384
- # operation to get the status.
392
+ # use the dataset group to create a predictor. To get the status, use
393
+ # the DescribeDatasetGroup operation.
385
394
  #
386
395
  # </note>
387
396
  #
@@ -389,13 +398,16 @@ module Aws::ForecastService
389
398
  # A name for the dataset group.
390
399
  #
391
400
  # @option params [required, String] :domain
392
- # The domain associated with the dataset group. The `Domain` and
393
- # `DatasetType` that you choose determine the fields that must be
394
- # present in the training data that you import to the dataset. For
395
- # example, if you choose the `RETAIL` domain and `TARGET_TIME_SERIES` as
396
- # the `DatasetType`, Amazon Forecast requires `item_id`, `timestamp`,
397
- # and `demand` fields to be present in your data. For more information,
398
- # see howitworks-datasets-groups.
401
+ # The domain associated with the dataset group. When you add a dataset
402
+ # to a dataset group, this value and the value specified for the
403
+ # `Domain` parameter of the CreateDataset operation must match.
404
+ #
405
+ # The `Domain` and `DatasetType` that you choose determine the fields
406
+ # that must be present in training data that you import to a dataset.
407
+ # For example, if you choose the `RETAIL` domain and
408
+ # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
409
+ # that `item_id`, `timestamp`, and `demand` fields are present in your
410
+ # data. For more information, see howitworks-datasets-groups.
399
411
  #
400
412
  # @option params [Array<String>] :dataset_arns
401
413
  # An array of Amazon Resource Names (ARNs) of the datasets that you want
@@ -435,35 +447,21 @@ module Aws::ForecastService
435
447
  # Access Management (IAM) role that Amazon Forecast can assume to access
436
448
  # the data. For more information, see aws-forecast-iam-roles.
437
449
  #
438
- # Two properties of the training data are optionally specified:
439
- #
440
- # * The delimiter that separates the data fields.
441
- #
442
- # The default delimiter is a comma (,), which is the only supported
443
- # delimiter in this release.
444
- #
445
- # * The format of timestamps.
446
- #
447
- # If the format is not specified, Amazon Forecast expects the format
448
- # to be "yyyy-MM-dd HH:mm:ss".
450
+ # The training data must be in CSV format. The delimiter must be a comma
451
+ # (,).
449
452
  #
450
- # When Amazon Forecast uploads your training data, it verifies that the
451
- # data was collected at the `DataFrequency` specified when the target
452
- # dataset was created. For more information, see CreateDataset and
453
- # howitworks-datasets-groups. Amazon Forecast also verifies the
454
- # delimiter and timestamp format.
453
+ # You can specify the path to a specific CSV file, the S3 bucket, or to
454
+ # a folder in the S3 bucket. For the latter two cases, Amazon Forecast
455
+ # imports all files up to the limit of 10,000 files.
455
456
  #
456
- # You can use the ListDatasetImportJobs operation to get a list of all
457
- # your dataset import jobs, filtered by specified criteria.
458
- #
459
- # To get a list of all your dataset import jobs, filtered by the
460
- # specified criteria, use the ListDatasetGroups operation.
457
+ # To get a list of all your dataset import jobs, filtered by specified
458
+ # criteria, use the ListDatasetImportJobs operation.
461
459
  #
462
460
  # @option params [required, String] :dataset_import_job_name
463
- # The name for the dataset import job. It is recommended to include the
464
- # current timestamp in the name to guard against getting a
465
- # `ResourceAlreadyExistsException` exception, for example,
466
- # `20190721DatasetImport`.
461
+ # The name for the dataset import job. We recommend including the
462
+ # current timestamp in the name, for example, `20190721DatasetImport`.
463
+ # This can help you avoid getting a `ResourceAlreadyExistsException`
464
+ # exception.
467
465
  #
468
466
  # @option params [required, String] :dataset_arn
469
467
  # The Amazon Resource Name (ARN) of the Amazon Forecast dataset that you
@@ -472,21 +470,30 @@ module Aws::ForecastService
472
470
  # @option params [required, Types::DataSource] :data_source
473
471
  # The location of the training data to import and an AWS Identity and
474
472
  # Access Management (IAM) role that Amazon Forecast can assume to access
475
- # the data.
473
+ # the data. The training data must be stored in an Amazon S3 bucket.
474
+ #
475
+ # If encryption is used, `DataSource` must include an AWS Key Management
476
+ # Service (KMS) key and the IAM role must allow Amazon Forecast
477
+ # permission to access the key. The KMS key and IAM role must match
478
+ # those specified in the `EncryptionConfig` parameter of the
479
+ # CreateDataset operation.
476
480
  #
477
481
  # @option params [String] :timestamp_format
478
- # The format of timestamps in the dataset. Two formats are supported,
479
- # dependent on the `DataFrequency` specified when the dataset was
480
- # created.
482
+ # The format of timestamps in the dataset. The format that you specify
483
+ # depends on the `DataFrequency` specified when the dataset was created.
484
+ # The following formats are supported
481
485
  #
482
486
  # * "yyyy-MM-dd"
483
487
  #
484
- # For data frequencies: Y, M, W, and D
488
+ # For the following data frequencies: Y, M, W, and D
485
489
  #
486
490
  # * "yyyy-MM-dd HH:mm:ss"
487
491
  #
488
- # For data frequencies: H, 30min, 15min, and 1min; and optionally,
489
- # for: Y, M, W, and D
492
+ # For the following data frequencies: H, 30min, 15min, and 1min; and
493
+ # optionally, for: Y, M, W, and D
494
+ #
495
+ # If the format isn't specified, Amazon Forecast expects the format to
496
+ # be "yyyy-MM-dd HH:mm:ss".
490
497
  #
491
498
  # @return [Types::CreateDatasetImportJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
492
499
  #
@@ -524,19 +531,19 @@ module Aws::ForecastService
524
531
  # that was used to train the predictor. This is known as inference. To
525
532
  # retrieve the forecast for a single item at low latency, use the
526
533
  # operation. To export the complete forecast into your Amazon Simple
527
- # Storage Service (Amazon S3), use the CreateForecastExportJob
534
+ # Storage Service (Amazon S3) bucket, use the CreateForecastExportJob
528
535
  # operation.
529
536
  #
530
- # The range of the forecast is determined by the `ForecastHorizon`,
531
- # specified in the CreatePredictor request, multiplied by the
532
- # `DataFrequency`, specified in the CreateDataset request. When you
533
- # query a forecast, you can request a specific date range within the
534
- # complete forecast.
537
+ # The range of the forecast is determined by the `ForecastHorizon`
538
+ # value, which you specify in the CreatePredictor request, multiplied by
539
+ # the `DataFrequency` value, which you specify in the CreateDataset
540
+ # request. When you query a forecast, you can request a specific date
541
+ # range within the forecast.
535
542
  #
536
543
  # To get a list of all your forecasts, use the ListForecasts operation.
537
544
  #
538
- # <note markdown="1"> The forecasts generated by Amazon Forecast are in the same timezone as
539
- # the dataset that was used to create the predictor.
545
+ # <note markdown="1"> The forecasts generated by Amazon Forecast are in the same time zone
546
+ # as the dataset that was used to create the predictor.
540
547
  #
541
548
  # </note>
542
549
  #
@@ -549,12 +556,20 @@ module Aws::ForecastService
549
556
  # </note>
550
557
  #
551
558
  # @option params [required, String] :forecast_name
552
- # The name for the forecast.
559
+ # A name for the forecast.
553
560
  #
554
561
  # @option params [required, String] :predictor_arn
555
562
  # The Amazon Resource Name (ARN) of the predictor to use to generate the
556
563
  # forecast.
557
564
  #
565
+ # @option params [Array<String>] :forecast_types
566
+ # The quantiles at which probabilistic forecasts are generated. You can
567
+ # specify up to 5 quantiles per forecast. Accepted values include `0.01
568
+ # to 0.99` (increments of .01 only) and `mean`. The mean forecast is
569
+ # different from the median (0.50) when the distribution is not
570
+ # symmetric (e.g. Beta, Negative Binomial). The default value is
571
+ # `["0.1", "0.5", "0.9"]`.
572
+ #
558
573
  # @return [Types::CreateForecastResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
559
574
  #
560
575
  # * {Types::CreateForecastResponse#forecast_arn #forecast_arn} => String
@@ -564,6 +579,7 @@ module Aws::ForecastService
564
579
  # resp = client.create_forecast({
565
580
  # forecast_name: "Name", # required
566
581
  # predictor_arn: "Arn", # required
582
+ # forecast_types: ["ForecastType"],
567
583
  # })
568
584
  #
569
585
  # @example Response structure
@@ -580,7 +596,13 @@ module Aws::ForecastService
580
596
  end
581
597
 
582
598
  # Exports a forecast created by the CreateForecast operation to your
583
- # Amazon Simple Storage Service (Amazon S3) bucket.
599
+ # Amazon Simple Storage Service (Amazon S3) bucket. The forecast file
600
+ # name will match the following conventions:
601
+ #
602
+ # &lt;ForecastExportJobName&gt;\_&lt;ExportTimestamp&gt;\_&lt;PageNumber&gt;
603
+ #
604
+ # where the &lt;ExportTimestamp&gt; component is in Java
605
+ # SimpleDateFormat (yyyy-MM-ddTHH-mm-ssZ).
584
606
  #
585
607
  # You must specify a DataDestination object that includes an AWS
586
608
  # Identity and Access Management (IAM) role that Amazon Forecast can
@@ -593,8 +615,8 @@ module Aws::ForecastService
593
615
  # ListForecastExportJobs operation.
594
616
  #
595
617
  # <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
596
- # can access the forecast in your Amazon S3 bucket. Use the
597
- # DescribeForecastExportJob operation to get the status.
618
+ # can access the forecast in your Amazon S3 bucket. To get the status,
619
+ # use the DescribeForecastExportJob operation.
598
620
  #
599
621
  # </note>
600
622
  #
@@ -606,9 +628,14 @@ module Aws::ForecastService
606
628
  # export.
607
629
  #
608
630
  # @option params [required, Types::DataDestination] :destination
609
- # The path to the Amazon S3 bucket where you want to save the forecast
610
- # and an AWS Identity and Access Management (IAM) role that Amazon
611
- # Forecast can assume to access the bucket.
631
+ # The location where you want to save the forecast and an AWS Identity
632
+ # and Access Management (IAM) role that Amazon Forecast can assume to
633
+ # access the location. The forecast must be exported to an Amazon S3
634
+ # bucket.
635
+ #
636
+ # If encryption is used, `Destination` must include an AWS Key
637
+ # Management Service (KMS) key. The IAM role must allow Amazon Forecast
638
+ # permission to access the key.
612
639
  #
613
640
  # @return [Types::CreateForecastExportJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
614
641
  #
@@ -659,15 +686,21 @@ module Aws::ForecastService
659
686
  # the predictor to generate a forecast.
660
687
  #
661
688
  # Optionally, you can specify a featurization configuration to fill and
662
- # aggragate the data fields in the `TARGET_TIME_SERIES` dataset to
689
+ # aggregate the data fields in the `TARGET_TIME_SERIES` dataset to
663
690
  # improve model training. For more information, see FeaturizationConfig.
664
691
  #
692
+ # For RELATED\_TIME\_SERIES datasets, `CreatePredictor` verifies that
693
+ # the `DataFrequency` specified when the dataset was created matches the
694
+ # `ForecastFrequency`. TARGET\_TIME\_SERIES datasets don't have this
695
+ # restriction. Amazon Forecast also verifies the delimiter and timestamp
696
+ # format. For more information, see howitworks-datasets-groups.
697
+ #
665
698
  # **AutoML**
666
699
  #
667
- # If you set `PerformAutoML` to `true`, Amazon Forecast evaluates each
668
- # algorithm and chooses the one that minimizes the `objective function`.
669
- # The `objective function` is defined as the mean of the weighted p10,
670
- # p50, and p90 quantile losses. For more information, see
700
+ # If you want Amazon Forecast to evaluate each algorithm and choose the
701
+ # one that minimizes the `objective function`, set `PerformAutoML` to
702
+ # `true`. The `objective function` is defined as the mean of the
703
+ # weighted p10, p50, and p90 quantile losses. For more information, see
671
704
  # EvaluationResult.
672
705
  #
673
706
  # When AutoML is enabled, the following properties are disallowed:
@@ -680,12 +713,12 @@ module Aws::ForecastService
680
713
  #
681
714
  # * `TrainingParameters`
682
715
  #
683
- # To get a list of all your predictors, use the ListPredictors
716
+ # To get a list of all of your predictors, use the ListPredictors
684
717
  # operation.
685
718
  #
686
- # <note markdown="1"> The `Status` of the predictor must be `ACTIVE`, signifying that
687
- # training has completed, before you can use the predictor to create a
688
- # forecast. Use the DescribePredictor operation to get the status.
719
+ # <note markdown="1"> Before you can use the predictor to create a forecast, the `Status` of
720
+ # the predictor must be `ACTIVE`, signifying that training has
721
+ # completed. To get the status, use the DescribePredictor operation.
689
722
  #
690
723
  # </note>
691
724
  #
@@ -696,13 +729,13 @@ module Aws::ForecastService
696
729
  # The Amazon Resource Name (ARN) of the algorithm to use for model
697
730
  # training. Required if `PerformAutoML` is not set to `true`.
698
731
  #
699
- # **Supported algorithms**
732
+ # **Supported algorithms:**
700
733
  #
701
734
  # * `arn:aws:forecast:::algorithm/ARIMA`
702
735
  #
703
736
  # * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
704
737
  #
705
- # `- supports hyperparameter optimization (HPO)`
738
+ # Supports hyperparameter optimization (HPO)
706
739
  #
707
740
  # * `arn:aws:forecast:::algorithm/ETS`
708
741
  #
@@ -719,37 +752,46 @@ module Aws::ForecastService
719
752
  # and set the forecast horizon to 10, the model returns predictions for
720
753
  # 10 days.
721
754
  #
755
+ # The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of
756
+ # the TARGET\_TIME\_SERIES dataset length.
757
+ #
722
758
  # @option params [Boolean] :perform_auto_ml
723
- # Whether to perform AutoML. The default value is `false`. In this case,
724
- # you are required to specify an algorithm.
759
+ # Whether to perform AutoML. When Amazon Forecast performs AutoML, it
760
+ # evaluates the algorithms it provides and chooses the best algorithm
761
+ # and configuration for your training dataset.
725
762
  #
726
- # If you want Amazon Forecast to evaluate the algorithms it provides and
727
- # choose the best algorithm and configuration for your training dataset,
728
- # set `PerformAutoML` to `true`. This is a good option if you aren't
729
- # sure which algorithm is suitable for your application.
763
+ # The default value is `false`. In this case, you are required to
764
+ # specify an algorithm.
765
+ #
766
+ # Set `PerformAutoML` to `true` to have Amazon Forecast perform AutoML.
767
+ # This is a good option if you aren't sure which algorithm is suitable
768
+ # for your training data. In this case, `PerformHPO` must be false.
730
769
  #
731
770
  # @option params [Boolean] :perform_hpo
732
771
  # Whether to perform hyperparameter optimization (HPO). HPO finds
733
772
  # optimal hyperparameter values for your training data. The process of
734
- # performing HPO is known as a hyperparameter tuning job.
773
+ # performing HPO is known as running a hyperparameter tuning job.
735
774
  #
736
775
  # The default value is `false`. In this case, Amazon Forecast uses
737
776
  # default hyperparameter values from the chosen algorithm.
738
777
  #
739
- # To override the default values, set `PerformHPO` to `true` and supply
740
- # the HyperParameterTuningJobConfig object. The tuning job specifies an
741
- # objective metric, the hyperparameters to optimize, and the valid range
742
- # for each hyperparameter.
778
+ # To override the default values, set `PerformHPO` to `true` and,
779
+ # optionally, supply the HyperParameterTuningJobConfig object. The
780
+ # tuning job specifies a metric to optimize, which hyperparameters
781
+ # participate in tuning, and the valid range for each tunable
782
+ # hyperparameter. In this case, you are required to specify an algorithm
783
+ # and `PerformAutoML` must be false.
743
784
  #
744
- # The following algorithms support HPO:
785
+ # The following algorithm supports HPO:
745
786
  #
746
787
  # * DeepAR+
747
788
  #
748
789
  # ^
749
790
  #
750
791
  # @option params [Hash<String,String>] :training_parameters
751
- # The training parameters to override for model training. The parameters
752
- # that you can override are listed in the individual algorithms in
792
+ # The hyperparameters to override for model training. The
793
+ # hyperparameters that you can override are listed in the individual
794
+ # algorithms. For the list of supported algorithms, see
753
795
  # aws-forecast-choosing-recipes.
754
796
  #
755
797
  # @option params [Types::EvaluationParameters] :evaluation_parameters
@@ -765,6 +807,9 @@ module Aws::ForecastService
765
807
  # hyperparameter optimization (HPO). For more information, see
766
808
  # aws-forecast-choosing-recipes.
767
809
  #
810
+ # If you included the `HPOConfig` object, you must set `PerformHPO` to
811
+ # true.
812
+ #
768
813
  # @option params [required, Types::InputDataConfig] :input_data_config
769
814
  # Describes the dataset group that contains the data to use to train the
770
815
  # predictor.
@@ -867,10 +912,10 @@ module Aws::ForecastService
867
912
  req.send_request(options)
868
913
  end
869
914
 
870
- # Deletes an Amazon Forecast dataset created using the CreateDataset
871
- # operation. To be deleted, the dataset must have a status of `ACTIVE`
872
- # or `CREATE_FAILED`. Use the DescribeDataset operation to get the
873
- # status.
915
+ # Deletes an Amazon Forecast dataset that was created using the
916
+ # CreateDataset operation. You can only delete datasets that have a
917
+ # status of `ACTIVE` or `CREATE_FAILED`. To get the status use the
918
+ # DescribeDataset operation.
874
919
  #
875
920
  # @option params [required, String] :dataset_arn
876
921
  # The Amazon Resource Name (ARN) of the dataset to delete.
@@ -893,11 +938,11 @@ module Aws::ForecastService
893
938
  end
894
939
 
895
940
  # Deletes a dataset group created using the CreateDatasetGroup
896
- # operation. To be deleted, the dataset group must have a status of
897
- # `ACTIVE`, `CREATE_FAILED`, or `UPDATE_FAILED`. Use the
898
- # DescribeDatasetGroup operation to get the status.
941
+ # operation. You can only delete dataset groups that have a status of
942
+ # `ACTIVE`, `CREATE_FAILED`, or `UPDATE_FAILED`. To get the status, use
943
+ # the DescribeDatasetGroup operation.
899
944
  #
900
- # The operation deletes only the dataset group, not the datasets in the
945
+ # This operation deletes only the dataset group, not the datasets in the
901
946
  # group.
902
947
  #
903
948
  # @option params [required, String] :dataset_group_arn
@@ -921,9 +966,9 @@ module Aws::ForecastService
921
966
  end
922
967
 
923
968
  # Deletes a dataset import job created using the CreateDatasetImportJob
924
- # operation. To be deleted, the import job must have a status of
925
- # `ACTIVE` or `CREATE_FAILED`. Use the DescribeDatasetImportJob
926
- # operation to get the status.
969
+ # operation. You can delete only dataset import jobs that have a status
970
+ # of `ACTIVE` or `CREATE_FAILED`. To get the status, use the
971
+ # DescribeDatasetImportJob operation.
927
972
  #
928
973
  # @option params [required, String] :dataset_import_job_arn
929
974
  # The Amazon Resource Name (ARN) of the dataset import job to delete.
@@ -945,11 +990,13 @@ module Aws::ForecastService
945
990
  req.send_request(options)
946
991
  end
947
992
 
948
- # Deletes a forecast created using the CreateForecast operation. To be
949
- # deleted, the forecast must have a status of `ACTIVE` or
950
- # `CREATE_FAILED`. Use the DescribeForecast operation to get the status.
993
+ # Deletes a forecast created using the CreateForecast operation. You can
994
+ # delete only forecasts that have a status of `ACTIVE` or
995
+ # `CREATE_FAILED`. To get the status, use the DescribeForecast
996
+ # operation.
951
997
  #
952
- # You can't delete a forecast while it is being exported.
998
+ # You can't delete a forecast while it is being exported. After a
999
+ # forecast is deleted, you can no longer query the forecast.
953
1000
  #
954
1001
  # @option params [required, String] :forecast_arn
955
1002
  # The Amazon Resource Name (ARN) of the forecast to delete.
@@ -972,9 +1019,9 @@ module Aws::ForecastService
972
1019
  end
973
1020
 
974
1021
  # Deletes a forecast export job created using the
975
- # CreateForecastExportJob operation. To be deleted, the export job must
976
- # have a status of `ACTIVE` or `CREATE_FAILED`. Use the
977
- # DescribeForecastExportJob operation to get the status.
1022
+ # CreateForecastExportJob operation. You can delete only export jobs
1023
+ # that have a status of `ACTIVE` or `CREATE_FAILED`. To get the status,
1024
+ # use the DescribeForecastExportJob operation.
978
1025
  #
979
1026
  # @option params [required, String] :forecast_export_job_arn
980
1027
  # The Amazon Resource Name (ARN) of the forecast export job to delete.
@@ -996,12 +1043,10 @@ module Aws::ForecastService
996
1043
  req.send_request(options)
997
1044
  end
998
1045
 
999
- # Deletes a predictor created using the CreatePredictor operation. To be
1000
- # deleted, the predictor must have a status of `ACTIVE` or
1001
- # `CREATE_FAILED`. Use the DescribePredictor operation to get the
1002
- # status.
1003
- #
1004
- # Any forecasts generated by the predictor will no longer be available.
1046
+ # Deletes a predictor created using the CreatePredictor operation. You
1047
+ # can delete only predictor that have a status of `ACTIVE` or
1048
+ # `CREATE_FAILED`. To get the status, use the DescribePredictor
1049
+ # operation.
1005
1050
  #
1006
1051
  # @option params [required, String] :predictor_arn
1007
1052
  # The Amazon Resource Name (ARN) of the predictor to delete.
@@ -1026,9 +1071,8 @@ module Aws::ForecastService
1026
1071
  # Describes an Amazon Forecast dataset created using the CreateDataset
1027
1072
  # operation.
1028
1073
  #
1029
- # In addition to listing the properties provided by the user in the
1030
- # `CreateDataset` request, this operation includes the following
1031
- # properties:
1074
+ # In addition to listing the parameters specified in the `CreateDataset`
1075
+ # request, this operation includes the following dataset properties:
1032
1076
  #
1033
1077
  # * `CreationTime`
1034
1078
  #
@@ -1086,7 +1130,7 @@ module Aws::ForecastService
1086
1130
  # Describes a dataset group created using the CreateDatasetGroup
1087
1131
  # operation.
1088
1132
  #
1089
- # In addition to listing the properties provided by the user in the
1133
+ # In addition to listing the parameters provided in the
1090
1134
  # `CreateDatasetGroup` request, this operation includes the following
1091
1135
  # properties:
1092
1136
  #
@@ -1140,7 +1184,7 @@ module Aws::ForecastService
1140
1184
  # Describes a dataset import job created using the
1141
1185
  # CreateDatasetImportJob operation.
1142
1186
  #
1143
- # In addition to listing the properties provided by the user in the
1187
+ # In addition to listing the parameters provided in the
1144
1188
  # `CreateDatasetImportJob` request, this operation includes the
1145
1189
  # following properties:
1146
1190
  #
@@ -1214,9 +1258,8 @@ module Aws::ForecastService
1214
1258
 
1215
1259
  # Describes a forecast created using the CreateForecast operation.
1216
1260
  #
1217
- # In addition to listing the properties provided by the user in the
1218
- # `CreateForecast` request, this operation includes the following
1219
- # properties:
1261
+ # In addition to listing the properties provided in the `CreateForecast`
1262
+ # request, this operation lists the following properties:
1220
1263
  #
1221
1264
  # * `DatasetGroupArn` - The dataset group that provided the training
1222
1265
  # data.
@@ -1236,6 +1279,7 @@ module Aws::ForecastService
1236
1279
  #
1237
1280
  # * {Types::DescribeForecastResponse#forecast_arn #forecast_arn} => String
1238
1281
  # * {Types::DescribeForecastResponse#forecast_name #forecast_name} => String
1282
+ # * {Types::DescribeForecastResponse#forecast_types #forecast_types} => Array&lt;String&gt;
1239
1283
  # * {Types::DescribeForecastResponse#predictor_arn #predictor_arn} => String
1240
1284
  # * {Types::DescribeForecastResponse#dataset_group_arn #dataset_group_arn} => String
1241
1285
  # * {Types::DescribeForecastResponse#status #status} => String
@@ -1253,6 +1297,8 @@ module Aws::ForecastService
1253
1297
  #
1254
1298
  # resp.forecast_arn #=> String
1255
1299
  # resp.forecast_name #=> String
1300
+ # resp.forecast_types #=> Array
1301
+ # resp.forecast_types[0] #=> String
1256
1302
  # resp.predictor_arn #=> String
1257
1303
  # resp.dataset_group_arn #=> String
1258
1304
  # resp.status #=> String
@@ -1273,8 +1319,8 @@ module Aws::ForecastService
1273
1319
  # CreateForecastExportJob operation.
1274
1320
  #
1275
1321
  # In addition to listing the properties provided by the user in the
1276
- # `CreateForecastExportJob` request, this operation includes the
1277
- # following properties:
1322
+ # `CreateForecastExportJob` request, this operation lists the following
1323
+ # properties:
1278
1324
  #
1279
1325
  # * `CreationTime`
1280
1326
  #
@@ -1328,15 +1374,15 @@ module Aws::ForecastService
1328
1374
 
1329
1375
  # Describes a predictor created using the CreatePredictor operation.
1330
1376
  #
1331
- # In addition to listing the properties provided by the user in the
1332
- # `CreatePredictor` request, this operation includes the following
1377
+ # In addition to listing the properties provided in the
1378
+ # `CreatePredictor` request, this operation lists the following
1333
1379
  # properties:
1334
1380
  #
1335
1381
  # * `DatasetImportJobArns` - The dataset import jobs used to import
1336
1382
  # training data.
1337
1383
  #
1338
- # * `AutoMLAlgorithmArns` - If AutoML is performed, the algorithms
1339
- # evaluated.
1384
+ # * `AutoMLAlgorithmArns` - If AutoML is performed, the algorithms that
1385
+ # were evaluated.
1340
1386
  #
1341
1387
  # * `CreationTime`
1342
1388
  #
@@ -1364,6 +1410,7 @@ module Aws::ForecastService
1364
1410
  # * {Types::DescribePredictorResponse#input_data_config #input_data_config} => Types::InputDataConfig
1365
1411
  # * {Types::DescribePredictorResponse#featurization_config #featurization_config} => Types::FeaturizationConfig
1366
1412
  # * {Types::DescribePredictorResponse#encryption_config #encryption_config} => Types::EncryptionConfig
1413
+ # * {Types::DescribePredictorResponse#predictor_execution_details #predictor_execution_details} => Types::PredictorExecutionDetails
1367
1414
  # * {Types::DescribePredictorResponse#dataset_import_job_arns #dataset_import_job_arns} => Array&lt;String&gt;
1368
1415
  # * {Types::DescribePredictorResponse#auto_ml_algorithm_arns #auto_ml_algorithm_arns} => Array&lt;String&gt;
1369
1416
  # * {Types::DescribePredictorResponse#status #status} => String
@@ -1418,6 +1465,13 @@ module Aws::ForecastService
1418
1465
  # resp.featurization_config.featurizations[0].featurization_pipeline[0].featurization_method_parameters["ParameterKey"] #=> String
1419
1466
  # resp.encryption_config.role_arn #=> String
1420
1467
  # resp.encryption_config.kms_key_arn #=> String
1468
+ # resp.predictor_execution_details.predictor_executions #=> Array
1469
+ # resp.predictor_execution_details.predictor_executions[0].algorithm_arn #=> String
1470
+ # resp.predictor_execution_details.predictor_executions[0].test_windows #=> Array
1471
+ # resp.predictor_execution_details.predictor_executions[0].test_windows[0].test_window_start #=> Time
1472
+ # resp.predictor_execution_details.predictor_executions[0].test_windows[0].test_window_end #=> Time
1473
+ # resp.predictor_execution_details.predictor_executions[0].test_windows[0].status #=> String
1474
+ # resp.predictor_execution_details.predictor_executions[0].test_windows[0].message #=> String
1421
1475
  # resp.dataset_import_job_arns #=> Array
1422
1476
  # resp.dataset_import_job_arns[0] #=> String
1423
1477
  # resp.auto_ml_algorithm_arns #=> Array
@@ -1439,19 +1493,26 @@ module Aws::ForecastService
1439
1493
  # Provides metrics on the accuracy of the models that were trained by
1440
1494
  # the CreatePredictor operation. Use metrics to see how well the model
1441
1495
  # performed and to decide whether to use the predictor to generate a
1442
- # forecast.
1496
+ # forecast. For more information, see metrics.
1443
1497
  #
1444
- # Metrics are generated for each backtest window evaluated. For more
1445
- # information, see EvaluationParameters.
1498
+ # This operation generates metrics for each backtest window that was
1499
+ # evaluated. The number of backtest windows (`NumberOfBacktestWindows`)
1500
+ # is specified using the EvaluationParameters object, which is
1501
+ # optionally included in the `CreatePredictor` request. If
1502
+ # `NumberOfBacktestWindows` isn't specified, the number defaults to
1503
+ # one.
1446
1504
  #
1447
1505
  # The parameters of the `filling` method determine which items
1448
- # contribute to the metrics. If `zero` is specified, all items
1449
- # contribute. If `nan` is specified, only those items that have complete
1450
- # data in the range being evaluated contribute. For more information,
1451
- # see FeaturizationMethod.
1506
+ # contribute to the metrics. If you want all items to contribute,
1507
+ # specify `zero`. If you want only those items that have complete data
1508
+ # in the range being evaluated to contribute, specify `nan`. For more
1509
+ # information, see FeaturizationMethod.
1510
+ #
1511
+ # <note markdown="1"> Before you can get accuracy metrics, the `Status` of the predictor
1512
+ # must be `ACTIVE`, signifying that training has completed. To get the
1513
+ # status, use the DescribePredictor operation.
1452
1514
  #
1453
- # For an example of how to train a model and review metrics, see
1454
- # getting-started.
1515
+ # </note>
1455
1516
  #
1456
1517
  # @option params [required, String] :predictor_arn
1457
1518
  # The Amazon Resource Name (ARN) of the predictor to get metrics for.
@@ -1490,10 +1551,10 @@ module Aws::ForecastService
1490
1551
  end
1491
1552
 
1492
1553
  # Returns a list of dataset groups created using the CreateDatasetGroup
1493
- # operation. For each dataset group, a summary of its properties,
1494
- # including its Amazon Resource Name (ARN), is returned. You can
1495
- # retrieve the complete set of properties by using the ARN with the
1496
- # DescribeDatasetGroup operation.
1554
+ # operation. For each dataset group, this operation returns a summary of
1555
+ # its properties, including its Amazon Resource Name (ARN). You can
1556
+ # retrieve the complete set of properties by using the dataset group ARN
1557
+ # with the DescribeDatasetGroup operation.
1497
1558
  #
1498
1559
  # @option params [String] :next_token
1499
1560
  # If the result of the previous request was truncated, the response
@@ -1534,11 +1595,11 @@ module Aws::ForecastService
1534
1595
  end
1535
1596
 
1536
1597
  # Returns a list of dataset import jobs created using the
1537
- # CreateDatasetImportJob operation. For each import job, a summary of
1538
- # its properties, including its Amazon Resource Name (ARN), is returned.
1539
- # You can retrieve the complete set of properties by using the ARN with
1540
- # the DescribeDatasetImportJob operation. You can filter the list by
1541
- # providing an array of Filter objects.
1598
+ # CreateDatasetImportJob operation. For each import job, this operation
1599
+ # returns a summary of its properties, including its Amazon Resource
1600
+ # Name (ARN). You can retrieve the complete set of properties by using
1601
+ # the ARN with the DescribeDatasetImportJob operation. You can filter
1602
+ # the list by providing an array of Filter objects.
1542
1603
  #
1543
1604
  # @option params [String] :next_token
1544
1605
  # If the result of the previous request was truncated, the response
@@ -1551,22 +1612,26 @@ module Aws::ForecastService
1551
1612
  # @option params [Array<Types::Filter>] :filters
1552
1613
  # An array of filters. For each filter, you provide a condition and a
1553
1614
  # match statement. The condition is either `IS` or `IS_NOT`, which
1554
- # specifies whether to include or exclude, respectively, from the list,
1555
- # the predictors that match the statement. The match statement consists
1556
- # of a key and a value. In this release, `Name` is the only valid key,
1557
- # which filters on the `DatasetImportJobName` property.
1615
+ # specifies whether to include or exclude the datasets that match the
1616
+ # statement from the list, respectively. The match statement consists of
1617
+ # a key and a value.
1558
1618
  #
1559
- # * `Condition` - `IS` or `IS_NOT`
1619
+ # **Filter properties**
1560
1620
  #
1561
- # * `Key` - `Name`
1621
+ # * `Condition` - The condition to apply. Valid values are `IS` and
1622
+ # `IS_NOT`. To include the datasets that match the statement, specify
1623
+ # `IS`. To exclude matching datasets, specify `IS_NOT`.
1562
1624
  #
1563
- # * `Value` - the value to match
1625
+ # * `Key` - The name of the parameter to filter on. Valid values are
1626
+ # `DatasetArn` and `Status`.
1564
1627
  #
1565
- # For example, to list all dataset import jobs named
1566
- # *my\_dataset\_import\_job*, you would specify:
1628
+ # * `Value` - The value to match.
1567
1629
  #
1568
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
1569
- # "my_dataset_import_job" \} ]`
1630
+ # For example, to list all dataset import jobs whose status is ACTIVE,
1631
+ # you specify the following filter:
1632
+ #
1633
+ # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value": "ACTIVE"
1634
+ # \} ]`
1570
1635
  #
1571
1636
  # @return [Types::ListDatasetImportJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1572
1637
  #
@@ -1612,8 +1677,8 @@ module Aws::ForecastService
1612
1677
 
1613
1678
  # Returns a list of datasets created using the CreateDataset operation.
1614
1679
  # For each dataset, a summary of its properties, including its Amazon
1615
- # Resource Name (ARN), is returned. You can retrieve the complete set of
1616
- # properties by using the ARN with the DescribeDataset operation.
1680
+ # Resource Name (ARN), is returned. To retrieve the complete set of
1681
+ # properties, use the ARN with the DescribeDataset operation.
1617
1682
  #
1618
1683
  # @option params [String] :next_token
1619
1684
  # If the result of the previous request was truncated, the response
@@ -1656,11 +1721,11 @@ module Aws::ForecastService
1656
1721
  end
1657
1722
 
1658
1723
  # Returns a list of forecast export jobs created using the
1659
- # CreateForecastExportJob operation. For each forecast export job, a
1660
- # summary of its properties, including its Amazon Resource Name (ARN),
1661
- # is returned. You can retrieve the complete set of properties by using
1662
- # the ARN with the DescribeForecastExportJob operation. The list can be
1663
- # filtered using an array of Filter objects.
1724
+ # CreateForecastExportJob operation. For each forecast export job, this
1725
+ # operation returns a summary of its properties, including its Amazon
1726
+ # Resource Name (ARN). To retrieve the complete set of properties, use
1727
+ # the ARN with the DescribeForecastExportJob operation. You can filter
1728
+ # the list using an array of Filter objects.
1664
1729
  #
1665
1730
  # @option params [String] :next_token
1666
1731
  # If the result of the previous request was truncated, the response
@@ -1673,22 +1738,28 @@ module Aws::ForecastService
1673
1738
  # @option params [Array<Types::Filter>] :filters
1674
1739
  # An array of filters. For each filter, you provide a condition and a
1675
1740
  # match statement. The condition is either `IS` or `IS_NOT`, which
1676
- # specifies whether to include or exclude, respectively, from the list,
1677
- # the predictors that match the statement. The match statement consists
1678
- # of a key and a value. In this release, `Name` is the only valid key,
1679
- # which filters on the `ForecastExportJobName` property.
1741
+ # specifies whether to include or exclude the forecast export jobs that
1742
+ # match the statement from the list, respectively. The match statement
1743
+ # consists of a key and a value.
1744
+ #
1745
+ # **Filter properties**
1680
1746
  #
1681
- # * `Condition` - `IS` or `IS_NOT`
1747
+ # * `Condition` - The condition to apply. Valid values are `IS` and
1748
+ # `IS_NOT`. To include the forecast export jobs that match the
1749
+ # statement, specify `IS`. To exclude matching forecast export jobs,
1750
+ # specify `IS_NOT`.
1682
1751
  #
1683
- # * `Key` - `Name`
1752
+ # * `Key` - The name of the parameter to filter on. Valid values are
1753
+ # `ForecastArn` and `Status`.
1684
1754
  #
1685
- # * `Value` - the value to match
1755
+ # * `Value` - The value to match.
1686
1756
  #
1687
- # For example, to list all forecast export jobs named
1688
- # *my\_forecast\_export\_job*, you would specify:
1757
+ # For example, to list all jobs that export a forecast named
1758
+ # *electricityforecast*, specify the following filter:
1689
1759
  #
1690
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
1691
- # "my_forecast_export_job" \} ]`
1760
+ # `"Filters": [ \{ "Condition": "IS", "Key": "ForecastArn", "Value":
1761
+ # "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast" \}
1762
+ # ]`
1692
1763
  #
1693
1764
  # @return [Types::ListForecastExportJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1694
1765
  #
@@ -1733,10 +1804,10 @@ module Aws::ForecastService
1733
1804
  end
1734
1805
 
1735
1806
  # Returns a list of forecasts created using the CreateForecast
1736
- # operation. For each forecast, a summary of its properties, including
1737
- # its Amazon Resource Name (ARN), is returned. You can retrieve the
1738
- # complete set of properties by using the ARN with the DescribeForecast
1739
- # operation. The list can be filtered using an array of Filter objects.
1807
+ # operation. For each forecast, this operation returns a summary of its
1808
+ # properties, including its Amazon Resource Name (ARN). To retrieve the
1809
+ # complete set of properties, specify the ARN with the DescribeForecast
1810
+ # operation. You can filter the list using an array of Filter objects.
1740
1811
  #
1741
1812
  # @option params [String] :next_token
1742
1813
  # If the result of the previous request was truncated, the response
@@ -1749,22 +1820,26 @@ module Aws::ForecastService
1749
1820
  # @option params [Array<Types::Filter>] :filters
1750
1821
  # An array of filters. For each filter, you provide a condition and a
1751
1822
  # match statement. The condition is either `IS` or `IS_NOT`, which
1752
- # specifies whether to include or exclude, respectively, from the list,
1753
- # the predictors that match the statement. The match statement consists
1754
- # of a key and a value. In this release, `Name` is the only valid key,
1755
- # which filters on the `ForecastName` property.
1823
+ # specifies whether to include or exclude the forecasts that match the
1824
+ # statement from the list, respectively. The match statement consists of
1825
+ # a key and a value.
1756
1826
  #
1757
- # * `Condition` - `IS` or `IS_NOT`
1827
+ # **Filter properties**
1758
1828
  #
1759
- # * `Key` - `Name`
1829
+ # * `Condition` - The condition to apply. Valid values are `IS` and
1830
+ # `IS_NOT`. To include the forecasts that match the statement, specify
1831
+ # `IS`. To exclude matching forecasts, specify `IS_NOT`.
1760
1832
  #
1761
- # * `Value` - the value to match
1833
+ # * `Key` - The name of the parameter to filter on. Valid values are
1834
+ # `DatasetGroupArn`, `PredictorArn`, and `Status`.
1762
1835
  #
1763
- # For example, to list all forecasts named *my\_forecast*, you would
1764
- # specify:
1836
+ # * `Value` - The value to match.
1765
1837
  #
1766
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
1767
- # "my_forecast" \} ]`
1838
+ # For example, to list all forecasts whose status is not ACTIVE, you
1839
+ # would specify:
1840
+ #
1841
+ # `"Filters": [ \{ "Condition": "IS_NOT", "Key": "Status", "Value":
1842
+ # "ACTIVE" \} ]`
1768
1843
  #
1769
1844
  # @return [Types::ListForecastsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1770
1845
  #
@@ -1808,10 +1883,11 @@ module Aws::ForecastService
1808
1883
  end
1809
1884
 
1810
1885
  # Returns a list of predictors created using the CreatePredictor
1811
- # operation. For each predictor, a summary of its properties, including
1812
- # its Amazon Resource Name (ARN), is returned. You can retrieve the
1813
- # complete set of properties by using the ARN with the DescribePredictor
1814
- # operation. The list can be filtered using an array of Filter objects.
1886
+ # operation. For each predictor, this operation returns a summary of its
1887
+ # properties, including its Amazon Resource Name (ARN). You can retrieve
1888
+ # the complete set of properties by using the ARN with the
1889
+ # DescribePredictor operation. You can filter the list using an array of
1890
+ # Filter objects.
1815
1891
  #
1816
1892
  # @option params [String] :next_token
1817
1893
  # If the result of the previous request was truncated, the response
@@ -1824,22 +1900,26 @@ module Aws::ForecastService
1824
1900
  # @option params [Array<Types::Filter>] :filters
1825
1901
  # An array of filters. For each filter, you provide a condition and a
1826
1902
  # match statement. The condition is either `IS` or `IS_NOT`, which
1827
- # specifies whether to include or exclude, respectively, from the list,
1828
- # the predictors that match the statement. The match statement consists
1829
- # of a key and a value. In this release, `Name` is the only valid key,
1830
- # which filters on the `PredictorName` property.
1903
+ # specifies whether to include or exclude the predictors that match the
1904
+ # statement from the list, respectively. The match statement consists of
1905
+ # a key and a value.
1906
+ #
1907
+ # **Filter properties**
1831
1908
  #
1832
- # * `Condition` - `IS` or `IS_NOT`
1909
+ # * `Condition` - The condition to apply. Valid values are `IS` and
1910
+ # `IS_NOT`. To include the predictors that match the statement,
1911
+ # specify `IS`. To exclude matching predictors, specify `IS_NOT`.
1833
1912
  #
1834
- # * `Key` - `Name`
1913
+ # * `Key` - The name of the parameter to filter on. Valid values are
1914
+ # `DatasetGroupArn` and `Status`.
1835
1915
  #
1836
- # * `Value` - the value to match
1916
+ # * `Value` - The value to match.
1837
1917
  #
1838
- # For example, to list all predictors named *my\_predictor*, you would
1918
+ # For example, to list all predictors whose status is ACTIVE, you would
1839
1919
  # specify:
1840
1920
  #
1841
- # `"Filters": [ \{ "Condition": "IS", "Key": "Name", "Value":
1842
- # "my_predictor" \} ]`
1921
+ # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value": "ACTIVE"
1922
+ # \} ]`
1843
1923
  #
1844
1924
  # @return [Types::ListPredictorsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1845
1925
  #
@@ -1881,11 +1961,10 @@ module Aws::ForecastService
1881
1961
  req.send_request(options)
1882
1962
  end
1883
1963
 
1884
- # Replaces any existing datasets in the dataset group with the specified
1885
- # datasets.
1964
+ # Replaces the datasets in a dataset group with the specified datasets.
1886
1965
  #
1887
- # <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before creating a
1888
- # predictor using the dataset group. Use the DescribeDatasetGroup
1966
+ # <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before you can use
1967
+ # the dataset group to create a predictor. Use the DescribeDatasetGroup
1889
1968
  # operation to get the status.
1890
1969
  #
1891
1970
  # </note>
@@ -1894,8 +1973,8 @@ module Aws::ForecastService
1894
1973
  # The ARN of the dataset group.
1895
1974
  #
1896
1975
  # @option params [required, Array<String>] :dataset_arns
1897
- # An array of Amazon Resource Names (ARNs) of the datasets to add to the
1898
- # dataset group.
1976
+ # An array of the Amazon Resource Names (ARNs) of the datasets to add to
1977
+ # the dataset group.
1899
1978
  #
1900
1979
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
1901
1980
  #
@@ -1928,7 +2007,7 @@ module Aws::ForecastService
1928
2007
  params: params,
1929
2008
  config: config)
1930
2009
  context[:gem_name] = 'aws-sdk-forecastservice'
1931
- context[:gem_version] = '1.1.0'
2010
+ context[:gem_version] = '1.2.0'
1932
2011
  Seahorse::Client::Request.new(handlers, context)
1933
2012
  end
1934
2013