aws-sdk-forecastservice 1.1.0 → 1.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/aws-sdk-forecastservice.rb +1 -1
- data/lib/aws-sdk-forecastservice/client.rb +299 -220
- data/lib/aws-sdk-forecastservice/client_api.rb +29 -0
- data/lib/aws-sdk-forecastservice/types.rb +458 -274
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: f8da3863f5e0e4eddab57cafa0590b3bd3b51c3b
|
4
|
+
data.tar.gz: dbc0c9c5fd292007b5981d4b854c27e71db0f6f5
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 136524ae3798ea7e801475212f522b5c7653d428069adc92e8a7fb05e5d4ffb9857edee2f39872812c2e2254a13d8f7e4098e15c269b6b2df1ac1ebd8d1c7385
|
7
|
+
data.tar.gz: 7288da9ef119948f62b2e8463cd1cab996c03ea1af6d05ba2b317a01d6ab95d71775c60d6ba03f2aea8cae180820fda5b08546a8df09be671a5c2e59bc05a0bb
|
@@ -269,8 +269,7 @@ module Aws::ForecastService
|
|
269
269
|
# model training. This includes the following:
|
270
270
|
#
|
271
271
|
# * <i> <code>DataFrequency</code> </i> - How frequently your historical
|
272
|
-
# time-series data is collected.
|
273
|
-
# when training the model and generating a forecast.
|
272
|
+
# time-series data is collected.
|
274
273
|
#
|
275
274
|
# * <i> <code>Domain</code> </i> and <i> <code>DatasetType</code> </i> -
|
276
275
|
# Each dataset has an associated dataset domain and a type within the
|
@@ -279,38 +278,49 @@ module Aws::ForecastService
|
|
279
278
|
# within the domain, Amazon Forecast requires your data to include a
|
280
279
|
# minimum set of predefined fields.
|
281
280
|
#
|
282
|
-
# * <i> <code>Schema</code> </i> - A schema specifies the fields
|
281
|
+
# * <i> <code>Schema</code> </i> - A schema specifies the fields in the
|
283
282
|
# dataset, including the field name and data type.
|
284
283
|
#
|
285
|
-
# After creating a dataset, you import your training data into
|
286
|
-
#
|
287
|
-
#
|
284
|
+
# After creating a dataset, you import your training data into it and
|
285
|
+
# add the dataset to a dataset group. You use the dataset group to
|
286
|
+
# create a predictor. For more information, see
|
288
287
|
# howitworks-datasets-groups.
|
289
288
|
#
|
290
289
|
# To get a list of all your datasets, use the ListDatasets operation.
|
291
290
|
#
|
291
|
+
# For example Forecast datasets, see the [Amazon Forecast Sample GitHub
|
292
|
+
# repository][1].
|
293
|
+
#
|
292
294
|
# <note markdown="1"> The `Status` of a dataset must be `ACTIVE` before you can import
|
293
295
|
# training data. Use the DescribeDataset operation to get the status.
|
294
296
|
#
|
295
297
|
# </note>
|
296
298
|
#
|
299
|
+
#
|
300
|
+
#
|
301
|
+
# [1]: https://github.com/aws-samples/amazon-forecast-samples/tree/master/data
|
302
|
+
#
|
297
303
|
# @option params [required, String] :dataset_name
|
298
304
|
# A name for the dataset.
|
299
305
|
#
|
300
306
|
# @option params [required, String] :domain
|
301
|
-
# The domain associated with the dataset.
|
302
|
-
#
|
303
|
-
#
|
304
|
-
#
|
305
|
-
# `DatasetType
|
306
|
-
#
|
307
|
-
#
|
307
|
+
# The domain associated with the dataset. When you add a dataset to a
|
308
|
+
# dataset group, this value and the value specified for the `Domain`
|
309
|
+
# parameter of the CreateDatasetGroup operation must match.
|
310
|
+
#
|
311
|
+
# The `Domain` and `DatasetType` that you choose determine the fields
|
312
|
+
# that must be present in the training data that you import to the
|
313
|
+
# dataset. For example, if you choose the `RETAIL` domain and
|
314
|
+
# `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
|
315
|
+
# `item_id`, `timestamp`, and `demand` fields to be present in your
|
316
|
+
# data. For more information, see howitworks-datasets-groups.
|
308
317
|
#
|
309
318
|
# @option params [required, String] :dataset_type
|
310
319
|
# The dataset type. Valid values depend on the chosen `Domain`.
|
311
320
|
#
|
312
321
|
# @option params [String] :data_frequency
|
313
|
-
# The frequency of data collection.
|
322
|
+
# The frequency of data collection. This parameter is required for
|
323
|
+
# RELATED\_TIME\_SERIES datasets.
|
314
324
|
#
|
315
325
|
# Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour),
|
316
326
|
# 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5
|
@@ -367,10 +377,9 @@ module Aws::ForecastService
|
|
367
377
|
req.send_request(options)
|
368
378
|
end
|
369
379
|
|
370
|
-
# Creates
|
371
|
-
#
|
372
|
-
#
|
373
|
-
# UpdateDatasetGroup operation.
|
380
|
+
# Creates a dataset group, which holds a collection of related datasets.
|
381
|
+
# You can add datasets to the dataset group when you create the dataset
|
382
|
+
# group, or later by using the UpdateDatasetGroup operation.
|
374
383
|
#
|
375
384
|
# After creating a dataset group and adding datasets, you use the
|
376
385
|
# dataset group when you create a predictor. For more information, see
|
@@ -380,8 +389,8 @@ module Aws::ForecastService
|
|
380
389
|
# operation.
|
381
390
|
#
|
382
391
|
# <note markdown="1"> The `Status` of a dataset group must be `ACTIVE` before you can create
|
383
|
-
#
|
384
|
-
#
|
392
|
+
# use the dataset group to create a predictor. To get the status, use
|
393
|
+
# the DescribeDatasetGroup operation.
|
385
394
|
#
|
386
395
|
# </note>
|
387
396
|
#
|
@@ -389,13 +398,16 @@ module Aws::ForecastService
|
|
389
398
|
# A name for the dataset group.
|
390
399
|
#
|
391
400
|
# @option params [required, String] :domain
|
392
|
-
# The domain associated with the dataset group.
|
393
|
-
#
|
394
|
-
#
|
395
|
-
#
|
396
|
-
#
|
397
|
-
#
|
398
|
-
#
|
401
|
+
# The domain associated with the dataset group. When you add a dataset
|
402
|
+
# to a dataset group, this value and the value specified for the
|
403
|
+
# `Domain` parameter of the CreateDataset operation must match.
|
404
|
+
#
|
405
|
+
# The `Domain` and `DatasetType` that you choose determine the fields
|
406
|
+
# that must be present in training data that you import to a dataset.
|
407
|
+
# For example, if you choose the `RETAIL` domain and
|
408
|
+
# `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires
|
409
|
+
# that `item_id`, `timestamp`, and `demand` fields are present in your
|
410
|
+
# data. For more information, see howitworks-datasets-groups.
|
399
411
|
#
|
400
412
|
# @option params [Array<String>] :dataset_arns
|
401
413
|
# An array of Amazon Resource Names (ARNs) of the datasets that you want
|
@@ -435,35 +447,21 @@ module Aws::ForecastService
|
|
435
447
|
# Access Management (IAM) role that Amazon Forecast can assume to access
|
436
448
|
# the data. For more information, see aws-forecast-iam-roles.
|
437
449
|
#
|
438
|
-
#
|
439
|
-
#
|
440
|
-
# * The delimiter that separates the data fields.
|
441
|
-
#
|
442
|
-
# The default delimiter is a comma (,), which is the only supported
|
443
|
-
# delimiter in this release.
|
444
|
-
#
|
445
|
-
# * The format of timestamps.
|
446
|
-
#
|
447
|
-
# If the format is not specified, Amazon Forecast expects the format
|
448
|
-
# to be "yyyy-MM-dd HH:mm:ss".
|
450
|
+
# The training data must be in CSV format. The delimiter must be a comma
|
451
|
+
# (,).
|
449
452
|
#
|
450
|
-
#
|
451
|
-
#
|
452
|
-
#
|
453
|
-
# howitworks-datasets-groups. Amazon Forecast also verifies the
|
454
|
-
# delimiter and timestamp format.
|
453
|
+
# You can specify the path to a specific CSV file, the S3 bucket, or to
|
454
|
+
# a folder in the S3 bucket. For the latter two cases, Amazon Forecast
|
455
|
+
# imports all files up to the limit of 10,000 files.
|
455
456
|
#
|
456
|
-
#
|
457
|
-
#
|
458
|
-
#
|
459
|
-
# To get a list of all your dataset import jobs, filtered by the
|
460
|
-
# specified criteria, use the ListDatasetGroups operation.
|
457
|
+
# To get a list of all your dataset import jobs, filtered by specified
|
458
|
+
# criteria, use the ListDatasetImportJobs operation.
|
461
459
|
#
|
462
460
|
# @option params [required, String] :dataset_import_job_name
|
463
|
-
# The name for the dataset import job.
|
464
|
-
# current timestamp in the name
|
465
|
-
# `ResourceAlreadyExistsException`
|
466
|
-
#
|
461
|
+
# The name for the dataset import job. We recommend including the
|
462
|
+
# current timestamp in the name, for example, `20190721DatasetImport`.
|
463
|
+
# This can help you avoid getting a `ResourceAlreadyExistsException`
|
464
|
+
# exception.
|
467
465
|
#
|
468
466
|
# @option params [required, String] :dataset_arn
|
469
467
|
# The Amazon Resource Name (ARN) of the Amazon Forecast dataset that you
|
@@ -472,21 +470,30 @@ module Aws::ForecastService
|
|
472
470
|
# @option params [required, Types::DataSource] :data_source
|
473
471
|
# The location of the training data to import and an AWS Identity and
|
474
472
|
# Access Management (IAM) role that Amazon Forecast can assume to access
|
475
|
-
# the data.
|
473
|
+
# the data. The training data must be stored in an Amazon S3 bucket.
|
474
|
+
#
|
475
|
+
# If encryption is used, `DataSource` must include an AWS Key Management
|
476
|
+
# Service (KMS) key and the IAM role must allow Amazon Forecast
|
477
|
+
# permission to access the key. The KMS key and IAM role must match
|
478
|
+
# those specified in the `EncryptionConfig` parameter of the
|
479
|
+
# CreateDataset operation.
|
476
480
|
#
|
477
481
|
# @option params [String] :timestamp_format
|
478
|
-
# The format of timestamps in the dataset.
|
479
|
-
#
|
480
|
-
#
|
482
|
+
# The format of timestamps in the dataset. The format that you specify
|
483
|
+
# depends on the `DataFrequency` specified when the dataset was created.
|
484
|
+
# The following formats are supported
|
481
485
|
#
|
482
486
|
# * "yyyy-MM-dd"
|
483
487
|
#
|
484
|
-
# For data frequencies: Y, M, W, and D
|
488
|
+
# For the following data frequencies: Y, M, W, and D
|
485
489
|
#
|
486
490
|
# * "yyyy-MM-dd HH:mm:ss"
|
487
491
|
#
|
488
|
-
# For data frequencies: H, 30min, 15min, and 1min; and
|
489
|
-
# for: Y, M, W, and D
|
492
|
+
# For the following data frequencies: H, 30min, 15min, and 1min; and
|
493
|
+
# optionally, for: Y, M, W, and D
|
494
|
+
#
|
495
|
+
# If the format isn't specified, Amazon Forecast expects the format to
|
496
|
+
# be "yyyy-MM-dd HH:mm:ss".
|
490
497
|
#
|
491
498
|
# @return [Types::CreateDatasetImportJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
492
499
|
#
|
@@ -524,19 +531,19 @@ module Aws::ForecastService
|
|
524
531
|
# that was used to train the predictor. This is known as inference. To
|
525
532
|
# retrieve the forecast for a single item at low latency, use the
|
526
533
|
# operation. To export the complete forecast into your Amazon Simple
|
527
|
-
# Storage Service (Amazon S3), use the CreateForecastExportJob
|
534
|
+
# Storage Service (Amazon S3) bucket, use the CreateForecastExportJob
|
528
535
|
# operation.
|
529
536
|
#
|
530
|
-
# The range of the forecast is determined by the `ForecastHorizon
|
531
|
-
#
|
532
|
-
# `DataFrequency
|
533
|
-
# query a forecast, you can request a specific date
|
534
|
-
#
|
537
|
+
# The range of the forecast is determined by the `ForecastHorizon`
|
538
|
+
# value, which you specify in the CreatePredictor request, multiplied by
|
539
|
+
# the `DataFrequency` value, which you specify in the CreateDataset
|
540
|
+
# request. When you query a forecast, you can request a specific date
|
541
|
+
# range within the forecast.
|
535
542
|
#
|
536
543
|
# To get a list of all your forecasts, use the ListForecasts operation.
|
537
544
|
#
|
538
|
-
# <note markdown="1"> The forecasts generated by Amazon Forecast are in the same
|
539
|
-
# the dataset that was used to create the predictor.
|
545
|
+
# <note markdown="1"> The forecasts generated by Amazon Forecast are in the same time zone
|
546
|
+
# as the dataset that was used to create the predictor.
|
540
547
|
#
|
541
548
|
# </note>
|
542
549
|
#
|
@@ -549,12 +556,20 @@ module Aws::ForecastService
|
|
549
556
|
# </note>
|
550
557
|
#
|
551
558
|
# @option params [required, String] :forecast_name
|
552
|
-
#
|
559
|
+
# A name for the forecast.
|
553
560
|
#
|
554
561
|
# @option params [required, String] :predictor_arn
|
555
562
|
# The Amazon Resource Name (ARN) of the predictor to use to generate the
|
556
563
|
# forecast.
|
557
564
|
#
|
565
|
+
# @option params [Array<String>] :forecast_types
|
566
|
+
# The quantiles at which probabilistic forecasts are generated. You can
|
567
|
+
# specify up to 5 quantiles per forecast. Accepted values include `0.01
|
568
|
+
# to 0.99` (increments of .01 only) and `mean`. The mean forecast is
|
569
|
+
# different from the median (0.50) when the distribution is not
|
570
|
+
# symmetric (e.g. Beta, Negative Binomial). The default value is
|
571
|
+
# `["0.1", "0.5", "0.9"]`.
|
572
|
+
#
|
558
573
|
# @return [Types::CreateForecastResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
559
574
|
#
|
560
575
|
# * {Types::CreateForecastResponse#forecast_arn #forecast_arn} => String
|
@@ -564,6 +579,7 @@ module Aws::ForecastService
|
|
564
579
|
# resp = client.create_forecast({
|
565
580
|
# forecast_name: "Name", # required
|
566
581
|
# predictor_arn: "Arn", # required
|
582
|
+
# forecast_types: ["ForecastType"],
|
567
583
|
# })
|
568
584
|
#
|
569
585
|
# @example Response structure
|
@@ -580,7 +596,13 @@ module Aws::ForecastService
|
|
580
596
|
end
|
581
597
|
|
582
598
|
# Exports a forecast created by the CreateForecast operation to your
|
583
|
-
# Amazon Simple Storage Service (Amazon S3) bucket.
|
599
|
+
# Amazon Simple Storage Service (Amazon S3) bucket. The forecast file
|
600
|
+
# name will match the following conventions:
|
601
|
+
#
|
602
|
+
# <ForecastExportJobName>\_<ExportTimestamp>\_<PageNumber>
|
603
|
+
#
|
604
|
+
# where the <ExportTimestamp> component is in Java
|
605
|
+
# SimpleDateFormat (yyyy-MM-ddTHH-mm-ssZ).
|
584
606
|
#
|
585
607
|
# You must specify a DataDestination object that includes an AWS
|
586
608
|
# Identity and Access Management (IAM) role that Amazon Forecast can
|
@@ -593,8 +615,8 @@ module Aws::ForecastService
|
|
593
615
|
# ListForecastExportJobs operation.
|
594
616
|
#
|
595
617
|
# <note markdown="1"> The `Status` of the forecast export job must be `ACTIVE` before you
|
596
|
-
# can access the forecast in your Amazon S3 bucket.
|
597
|
-
# DescribeForecastExportJob operation
|
618
|
+
# can access the forecast in your Amazon S3 bucket. To get the status,
|
619
|
+
# use the DescribeForecastExportJob operation.
|
598
620
|
#
|
599
621
|
# </note>
|
600
622
|
#
|
@@ -606,9 +628,14 @@ module Aws::ForecastService
|
|
606
628
|
# export.
|
607
629
|
#
|
608
630
|
# @option params [required, Types::DataDestination] :destination
|
609
|
-
# The
|
610
|
-
# and
|
611
|
-
#
|
631
|
+
# The location where you want to save the forecast and an AWS Identity
|
632
|
+
# and Access Management (IAM) role that Amazon Forecast can assume to
|
633
|
+
# access the location. The forecast must be exported to an Amazon S3
|
634
|
+
# bucket.
|
635
|
+
#
|
636
|
+
# If encryption is used, `Destination` must include an AWS Key
|
637
|
+
# Management Service (KMS) key. The IAM role must allow Amazon Forecast
|
638
|
+
# permission to access the key.
|
612
639
|
#
|
613
640
|
# @return [Types::CreateForecastExportJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
614
641
|
#
|
@@ -659,15 +686,21 @@ module Aws::ForecastService
|
|
659
686
|
# the predictor to generate a forecast.
|
660
687
|
#
|
661
688
|
# Optionally, you can specify a featurization configuration to fill and
|
662
|
-
#
|
689
|
+
# aggregate the data fields in the `TARGET_TIME_SERIES` dataset to
|
663
690
|
# improve model training. For more information, see FeaturizationConfig.
|
664
691
|
#
|
692
|
+
# For RELATED\_TIME\_SERIES datasets, `CreatePredictor` verifies that
|
693
|
+
# the `DataFrequency` specified when the dataset was created matches the
|
694
|
+
# `ForecastFrequency`. TARGET\_TIME\_SERIES datasets don't have this
|
695
|
+
# restriction. Amazon Forecast also verifies the delimiter and timestamp
|
696
|
+
# format. For more information, see howitworks-datasets-groups.
|
697
|
+
#
|
665
698
|
# **AutoML**
|
666
699
|
#
|
667
|
-
# If you
|
668
|
-
#
|
669
|
-
# The `objective function` is defined as the mean of the
|
670
|
-
# p50, and p90 quantile losses. For more information, see
|
700
|
+
# If you want Amazon Forecast to evaluate each algorithm and choose the
|
701
|
+
# one that minimizes the `objective function`, set `PerformAutoML` to
|
702
|
+
# `true`. The `objective function` is defined as the mean of the
|
703
|
+
# weighted p10, p50, and p90 quantile losses. For more information, see
|
671
704
|
# EvaluationResult.
|
672
705
|
#
|
673
706
|
# When AutoML is enabled, the following properties are disallowed:
|
@@ -680,12 +713,12 @@ module Aws::ForecastService
|
|
680
713
|
#
|
681
714
|
# * `TrainingParameters`
|
682
715
|
#
|
683
|
-
# To get a list of all your predictors, use the ListPredictors
|
716
|
+
# To get a list of all of your predictors, use the ListPredictors
|
684
717
|
# operation.
|
685
718
|
#
|
686
|
-
# <note markdown="1">
|
687
|
-
#
|
688
|
-
#
|
719
|
+
# <note markdown="1"> Before you can use the predictor to create a forecast, the `Status` of
|
720
|
+
# the predictor must be `ACTIVE`, signifying that training has
|
721
|
+
# completed. To get the status, use the DescribePredictor operation.
|
689
722
|
#
|
690
723
|
# </note>
|
691
724
|
#
|
@@ -696,13 +729,13 @@ module Aws::ForecastService
|
|
696
729
|
# The Amazon Resource Name (ARN) of the algorithm to use for model
|
697
730
|
# training. Required if `PerformAutoML` is not set to `true`.
|
698
731
|
#
|
699
|
-
# **Supported algorithms
|
732
|
+
# **Supported algorithms:**
|
700
733
|
#
|
701
734
|
# * `arn:aws:forecast:::algorithm/ARIMA`
|
702
735
|
#
|
703
736
|
# * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
|
704
737
|
#
|
705
|
-
#
|
738
|
+
# Supports hyperparameter optimization (HPO)
|
706
739
|
#
|
707
740
|
# * `arn:aws:forecast:::algorithm/ETS`
|
708
741
|
#
|
@@ -719,37 +752,46 @@ module Aws::ForecastService
|
|
719
752
|
# and set the forecast horizon to 10, the model returns predictions for
|
720
753
|
# 10 days.
|
721
754
|
#
|
755
|
+
# The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of
|
756
|
+
# the TARGET\_TIME\_SERIES dataset length.
|
757
|
+
#
|
722
758
|
# @option params [Boolean] :perform_auto_ml
|
723
|
-
# Whether to perform AutoML.
|
724
|
-
#
|
759
|
+
# Whether to perform AutoML. When Amazon Forecast performs AutoML, it
|
760
|
+
# evaluates the algorithms it provides and chooses the best algorithm
|
761
|
+
# and configuration for your training dataset.
|
725
762
|
#
|
726
|
-
#
|
727
|
-
#
|
728
|
-
#
|
729
|
-
#
|
763
|
+
# The default value is `false`. In this case, you are required to
|
764
|
+
# specify an algorithm.
|
765
|
+
#
|
766
|
+
# Set `PerformAutoML` to `true` to have Amazon Forecast perform AutoML.
|
767
|
+
# This is a good option if you aren't sure which algorithm is suitable
|
768
|
+
# for your training data. In this case, `PerformHPO` must be false.
|
730
769
|
#
|
731
770
|
# @option params [Boolean] :perform_hpo
|
732
771
|
# Whether to perform hyperparameter optimization (HPO). HPO finds
|
733
772
|
# optimal hyperparameter values for your training data. The process of
|
734
|
-
# performing HPO is known as a hyperparameter tuning job.
|
773
|
+
# performing HPO is known as running a hyperparameter tuning job.
|
735
774
|
#
|
736
775
|
# The default value is `false`. In this case, Amazon Forecast uses
|
737
776
|
# default hyperparameter values from the chosen algorithm.
|
738
777
|
#
|
739
|
-
# To override the default values, set `PerformHPO` to `true` and
|
740
|
-
# the HyperParameterTuningJobConfig object. The
|
741
|
-
#
|
742
|
-
# for each
|
778
|
+
# To override the default values, set `PerformHPO` to `true` and,
|
779
|
+
# optionally, supply the HyperParameterTuningJobConfig object. The
|
780
|
+
# tuning job specifies a metric to optimize, which hyperparameters
|
781
|
+
# participate in tuning, and the valid range for each tunable
|
782
|
+
# hyperparameter. In this case, you are required to specify an algorithm
|
783
|
+
# and `PerformAutoML` must be false.
|
743
784
|
#
|
744
|
-
# The following
|
785
|
+
# The following algorithm supports HPO:
|
745
786
|
#
|
746
787
|
# * DeepAR+
|
747
788
|
#
|
748
789
|
# ^
|
749
790
|
#
|
750
791
|
# @option params [Hash<String,String>] :training_parameters
|
751
|
-
# The
|
752
|
-
# that you can override are listed in the individual
|
792
|
+
# The hyperparameters to override for model training. The
|
793
|
+
# hyperparameters that you can override are listed in the individual
|
794
|
+
# algorithms. For the list of supported algorithms, see
|
753
795
|
# aws-forecast-choosing-recipes.
|
754
796
|
#
|
755
797
|
# @option params [Types::EvaluationParameters] :evaluation_parameters
|
@@ -765,6 +807,9 @@ module Aws::ForecastService
|
|
765
807
|
# hyperparameter optimization (HPO). For more information, see
|
766
808
|
# aws-forecast-choosing-recipes.
|
767
809
|
#
|
810
|
+
# If you included the `HPOConfig` object, you must set `PerformHPO` to
|
811
|
+
# true.
|
812
|
+
#
|
768
813
|
# @option params [required, Types::InputDataConfig] :input_data_config
|
769
814
|
# Describes the dataset group that contains the data to use to train the
|
770
815
|
# predictor.
|
@@ -867,10 +912,10 @@ module Aws::ForecastService
|
|
867
912
|
req.send_request(options)
|
868
913
|
end
|
869
914
|
|
870
|
-
# Deletes an Amazon Forecast dataset created using the
|
871
|
-
# operation.
|
872
|
-
# or `CREATE_FAILED`.
|
873
|
-
#
|
915
|
+
# Deletes an Amazon Forecast dataset that was created using the
|
916
|
+
# CreateDataset operation. You can only delete datasets that have a
|
917
|
+
# status of `ACTIVE` or `CREATE_FAILED`. To get the status use the
|
918
|
+
# DescribeDataset operation.
|
874
919
|
#
|
875
920
|
# @option params [required, String] :dataset_arn
|
876
921
|
# The Amazon Resource Name (ARN) of the dataset to delete.
|
@@ -893,11 +938,11 @@ module Aws::ForecastService
|
|
893
938
|
end
|
894
939
|
|
895
940
|
# Deletes a dataset group created using the CreateDatasetGroup
|
896
|
-
# operation.
|
897
|
-
# `ACTIVE`, `CREATE_FAILED`, or `UPDATE_FAILED`.
|
898
|
-
# DescribeDatasetGroup operation
|
941
|
+
# operation. You can only delete dataset groups that have a status of
|
942
|
+
# `ACTIVE`, `CREATE_FAILED`, or `UPDATE_FAILED`. To get the status, use
|
943
|
+
# the DescribeDatasetGroup operation.
|
899
944
|
#
|
900
|
-
#
|
945
|
+
# This operation deletes only the dataset group, not the datasets in the
|
901
946
|
# group.
|
902
947
|
#
|
903
948
|
# @option params [required, String] :dataset_group_arn
|
@@ -921,9 +966,9 @@ module Aws::ForecastService
|
|
921
966
|
end
|
922
967
|
|
923
968
|
# Deletes a dataset import job created using the CreateDatasetImportJob
|
924
|
-
# operation.
|
925
|
-
# `ACTIVE` or `CREATE_FAILED`.
|
926
|
-
# operation
|
969
|
+
# operation. You can delete only dataset import jobs that have a status
|
970
|
+
# of `ACTIVE` or `CREATE_FAILED`. To get the status, use the
|
971
|
+
# DescribeDatasetImportJob operation.
|
927
972
|
#
|
928
973
|
# @option params [required, String] :dataset_import_job_arn
|
929
974
|
# The Amazon Resource Name (ARN) of the dataset import job to delete.
|
@@ -945,11 +990,13 @@ module Aws::ForecastService
|
|
945
990
|
req.send_request(options)
|
946
991
|
end
|
947
992
|
|
948
|
-
# Deletes a forecast created using the CreateForecast operation.
|
949
|
-
#
|
950
|
-
# `CREATE_FAILED`.
|
993
|
+
# Deletes a forecast created using the CreateForecast operation. You can
|
994
|
+
# delete only forecasts that have a status of `ACTIVE` or
|
995
|
+
# `CREATE_FAILED`. To get the status, use the DescribeForecast
|
996
|
+
# operation.
|
951
997
|
#
|
952
|
-
# You can't delete a forecast while it is being exported.
|
998
|
+
# You can't delete a forecast while it is being exported. After a
|
999
|
+
# forecast is deleted, you can no longer query the forecast.
|
953
1000
|
#
|
954
1001
|
# @option params [required, String] :forecast_arn
|
955
1002
|
# The Amazon Resource Name (ARN) of the forecast to delete.
|
@@ -972,9 +1019,9 @@ module Aws::ForecastService
|
|
972
1019
|
end
|
973
1020
|
|
974
1021
|
# Deletes a forecast export job created using the
|
975
|
-
# CreateForecastExportJob operation.
|
976
|
-
# have a status of `ACTIVE` or `CREATE_FAILED`.
|
977
|
-
# DescribeForecastExportJob operation
|
1022
|
+
# CreateForecastExportJob operation. You can delete only export jobs
|
1023
|
+
# that have a status of `ACTIVE` or `CREATE_FAILED`. To get the status,
|
1024
|
+
# use the DescribeForecastExportJob operation.
|
978
1025
|
#
|
979
1026
|
# @option params [required, String] :forecast_export_job_arn
|
980
1027
|
# The Amazon Resource Name (ARN) of the forecast export job to delete.
|
@@ -996,12 +1043,10 @@ module Aws::ForecastService
|
|
996
1043
|
req.send_request(options)
|
997
1044
|
end
|
998
1045
|
|
999
|
-
# Deletes a predictor created using the CreatePredictor operation.
|
1000
|
-
#
|
1001
|
-
# `CREATE_FAILED`.
|
1002
|
-
#
|
1003
|
-
#
|
1004
|
-
# Any forecasts generated by the predictor will no longer be available.
|
1046
|
+
# Deletes a predictor created using the CreatePredictor operation. You
|
1047
|
+
# can delete only predictor that have a status of `ACTIVE` or
|
1048
|
+
# `CREATE_FAILED`. To get the status, use the DescribePredictor
|
1049
|
+
# operation.
|
1005
1050
|
#
|
1006
1051
|
# @option params [required, String] :predictor_arn
|
1007
1052
|
# The Amazon Resource Name (ARN) of the predictor to delete.
|
@@ -1026,9 +1071,8 @@ module Aws::ForecastService
|
|
1026
1071
|
# Describes an Amazon Forecast dataset created using the CreateDataset
|
1027
1072
|
# operation.
|
1028
1073
|
#
|
1029
|
-
# In addition to listing the
|
1030
|
-
#
|
1031
|
-
# properties:
|
1074
|
+
# In addition to listing the parameters specified in the `CreateDataset`
|
1075
|
+
# request, this operation includes the following dataset properties:
|
1032
1076
|
#
|
1033
1077
|
# * `CreationTime`
|
1034
1078
|
#
|
@@ -1086,7 +1130,7 @@ module Aws::ForecastService
|
|
1086
1130
|
# Describes a dataset group created using the CreateDatasetGroup
|
1087
1131
|
# operation.
|
1088
1132
|
#
|
1089
|
-
# In addition to listing the
|
1133
|
+
# In addition to listing the parameters provided in the
|
1090
1134
|
# `CreateDatasetGroup` request, this operation includes the following
|
1091
1135
|
# properties:
|
1092
1136
|
#
|
@@ -1140,7 +1184,7 @@ module Aws::ForecastService
|
|
1140
1184
|
# Describes a dataset import job created using the
|
1141
1185
|
# CreateDatasetImportJob operation.
|
1142
1186
|
#
|
1143
|
-
# In addition to listing the
|
1187
|
+
# In addition to listing the parameters provided in the
|
1144
1188
|
# `CreateDatasetImportJob` request, this operation includes the
|
1145
1189
|
# following properties:
|
1146
1190
|
#
|
@@ -1214,9 +1258,8 @@ module Aws::ForecastService
|
|
1214
1258
|
|
1215
1259
|
# Describes a forecast created using the CreateForecast operation.
|
1216
1260
|
#
|
1217
|
-
# In addition to listing the properties provided
|
1218
|
-
#
|
1219
|
-
# properties:
|
1261
|
+
# In addition to listing the properties provided in the `CreateForecast`
|
1262
|
+
# request, this operation lists the following properties:
|
1220
1263
|
#
|
1221
1264
|
# * `DatasetGroupArn` - The dataset group that provided the training
|
1222
1265
|
# data.
|
@@ -1236,6 +1279,7 @@ module Aws::ForecastService
|
|
1236
1279
|
#
|
1237
1280
|
# * {Types::DescribeForecastResponse#forecast_arn #forecast_arn} => String
|
1238
1281
|
# * {Types::DescribeForecastResponse#forecast_name #forecast_name} => String
|
1282
|
+
# * {Types::DescribeForecastResponse#forecast_types #forecast_types} => Array<String>
|
1239
1283
|
# * {Types::DescribeForecastResponse#predictor_arn #predictor_arn} => String
|
1240
1284
|
# * {Types::DescribeForecastResponse#dataset_group_arn #dataset_group_arn} => String
|
1241
1285
|
# * {Types::DescribeForecastResponse#status #status} => String
|
@@ -1253,6 +1297,8 @@ module Aws::ForecastService
|
|
1253
1297
|
#
|
1254
1298
|
# resp.forecast_arn #=> String
|
1255
1299
|
# resp.forecast_name #=> String
|
1300
|
+
# resp.forecast_types #=> Array
|
1301
|
+
# resp.forecast_types[0] #=> String
|
1256
1302
|
# resp.predictor_arn #=> String
|
1257
1303
|
# resp.dataset_group_arn #=> String
|
1258
1304
|
# resp.status #=> String
|
@@ -1273,8 +1319,8 @@ module Aws::ForecastService
|
|
1273
1319
|
# CreateForecastExportJob operation.
|
1274
1320
|
#
|
1275
1321
|
# In addition to listing the properties provided by the user in the
|
1276
|
-
# `CreateForecastExportJob` request, this operation
|
1277
|
-
#
|
1322
|
+
# `CreateForecastExportJob` request, this operation lists the following
|
1323
|
+
# properties:
|
1278
1324
|
#
|
1279
1325
|
# * `CreationTime`
|
1280
1326
|
#
|
@@ -1328,15 +1374,15 @@ module Aws::ForecastService
|
|
1328
1374
|
|
1329
1375
|
# Describes a predictor created using the CreatePredictor operation.
|
1330
1376
|
#
|
1331
|
-
# In addition to listing the properties provided
|
1332
|
-
# `CreatePredictor` request, this operation
|
1377
|
+
# In addition to listing the properties provided in the
|
1378
|
+
# `CreatePredictor` request, this operation lists the following
|
1333
1379
|
# properties:
|
1334
1380
|
#
|
1335
1381
|
# * `DatasetImportJobArns` - The dataset import jobs used to import
|
1336
1382
|
# training data.
|
1337
1383
|
#
|
1338
|
-
# * `AutoMLAlgorithmArns` - If AutoML is performed, the algorithms
|
1339
|
-
# evaluated.
|
1384
|
+
# * `AutoMLAlgorithmArns` - If AutoML is performed, the algorithms that
|
1385
|
+
# were evaluated.
|
1340
1386
|
#
|
1341
1387
|
# * `CreationTime`
|
1342
1388
|
#
|
@@ -1364,6 +1410,7 @@ module Aws::ForecastService
|
|
1364
1410
|
# * {Types::DescribePredictorResponse#input_data_config #input_data_config} => Types::InputDataConfig
|
1365
1411
|
# * {Types::DescribePredictorResponse#featurization_config #featurization_config} => Types::FeaturizationConfig
|
1366
1412
|
# * {Types::DescribePredictorResponse#encryption_config #encryption_config} => Types::EncryptionConfig
|
1413
|
+
# * {Types::DescribePredictorResponse#predictor_execution_details #predictor_execution_details} => Types::PredictorExecutionDetails
|
1367
1414
|
# * {Types::DescribePredictorResponse#dataset_import_job_arns #dataset_import_job_arns} => Array<String>
|
1368
1415
|
# * {Types::DescribePredictorResponse#auto_ml_algorithm_arns #auto_ml_algorithm_arns} => Array<String>
|
1369
1416
|
# * {Types::DescribePredictorResponse#status #status} => String
|
@@ -1418,6 +1465,13 @@ module Aws::ForecastService
|
|
1418
1465
|
# resp.featurization_config.featurizations[0].featurization_pipeline[0].featurization_method_parameters["ParameterKey"] #=> String
|
1419
1466
|
# resp.encryption_config.role_arn #=> String
|
1420
1467
|
# resp.encryption_config.kms_key_arn #=> String
|
1468
|
+
# resp.predictor_execution_details.predictor_executions #=> Array
|
1469
|
+
# resp.predictor_execution_details.predictor_executions[0].algorithm_arn #=> String
|
1470
|
+
# resp.predictor_execution_details.predictor_executions[0].test_windows #=> Array
|
1471
|
+
# resp.predictor_execution_details.predictor_executions[0].test_windows[0].test_window_start #=> Time
|
1472
|
+
# resp.predictor_execution_details.predictor_executions[0].test_windows[0].test_window_end #=> Time
|
1473
|
+
# resp.predictor_execution_details.predictor_executions[0].test_windows[0].status #=> String
|
1474
|
+
# resp.predictor_execution_details.predictor_executions[0].test_windows[0].message #=> String
|
1421
1475
|
# resp.dataset_import_job_arns #=> Array
|
1422
1476
|
# resp.dataset_import_job_arns[0] #=> String
|
1423
1477
|
# resp.auto_ml_algorithm_arns #=> Array
|
@@ -1439,19 +1493,26 @@ module Aws::ForecastService
|
|
1439
1493
|
# Provides metrics on the accuracy of the models that were trained by
|
1440
1494
|
# the CreatePredictor operation. Use metrics to see how well the model
|
1441
1495
|
# performed and to decide whether to use the predictor to generate a
|
1442
|
-
# forecast.
|
1496
|
+
# forecast. For more information, see metrics.
|
1443
1497
|
#
|
1444
|
-
#
|
1445
|
-
#
|
1498
|
+
# This operation generates metrics for each backtest window that was
|
1499
|
+
# evaluated. The number of backtest windows (`NumberOfBacktestWindows`)
|
1500
|
+
# is specified using the EvaluationParameters object, which is
|
1501
|
+
# optionally included in the `CreatePredictor` request. If
|
1502
|
+
# `NumberOfBacktestWindows` isn't specified, the number defaults to
|
1503
|
+
# one.
|
1446
1504
|
#
|
1447
1505
|
# The parameters of the `filling` method determine which items
|
1448
|
-
# contribute to the metrics. If
|
1449
|
-
#
|
1450
|
-
#
|
1451
|
-
# see FeaturizationMethod.
|
1506
|
+
# contribute to the metrics. If you want all items to contribute,
|
1507
|
+
# specify `zero`. If you want only those items that have complete data
|
1508
|
+
# in the range being evaluated to contribute, specify `nan`. For more
|
1509
|
+
# information, see FeaturizationMethod.
|
1510
|
+
#
|
1511
|
+
# <note markdown="1"> Before you can get accuracy metrics, the `Status` of the predictor
|
1512
|
+
# must be `ACTIVE`, signifying that training has completed. To get the
|
1513
|
+
# status, use the DescribePredictor operation.
|
1452
1514
|
#
|
1453
|
-
#
|
1454
|
-
# getting-started.
|
1515
|
+
# </note>
|
1455
1516
|
#
|
1456
1517
|
# @option params [required, String] :predictor_arn
|
1457
1518
|
# The Amazon Resource Name (ARN) of the predictor to get metrics for.
|
@@ -1490,10 +1551,10 @@ module Aws::ForecastService
|
|
1490
1551
|
end
|
1491
1552
|
|
1492
1553
|
# Returns a list of dataset groups created using the CreateDatasetGroup
|
1493
|
-
# operation. For each dataset group, a summary of
|
1494
|
-
# including its Amazon Resource Name (ARN)
|
1495
|
-
# retrieve the complete set of properties by using the
|
1496
|
-
# DescribeDatasetGroup operation.
|
1554
|
+
# operation. For each dataset group, this operation returns a summary of
|
1555
|
+
# its properties, including its Amazon Resource Name (ARN). You can
|
1556
|
+
# retrieve the complete set of properties by using the dataset group ARN
|
1557
|
+
# with the DescribeDatasetGroup operation.
|
1497
1558
|
#
|
1498
1559
|
# @option params [String] :next_token
|
1499
1560
|
# If the result of the previous request was truncated, the response
|
@@ -1534,11 +1595,11 @@ module Aws::ForecastService
|
|
1534
1595
|
end
|
1535
1596
|
|
1536
1597
|
# Returns a list of dataset import jobs created using the
|
1537
|
-
# CreateDatasetImportJob operation. For each import job,
|
1538
|
-
# its properties, including its Amazon Resource
|
1539
|
-
# You can retrieve the complete set of properties by using
|
1540
|
-
# the DescribeDatasetImportJob operation. You can filter
|
1541
|
-
# providing an array of Filter objects.
|
1598
|
+
# CreateDatasetImportJob operation. For each import job, this operation
|
1599
|
+
# returns a summary of its properties, including its Amazon Resource
|
1600
|
+
# Name (ARN). You can retrieve the complete set of properties by using
|
1601
|
+
# the ARN with the DescribeDatasetImportJob operation. You can filter
|
1602
|
+
# the list by providing an array of Filter objects.
|
1542
1603
|
#
|
1543
1604
|
# @option params [String] :next_token
|
1544
1605
|
# If the result of the previous request was truncated, the response
|
@@ -1551,22 +1612,26 @@ module Aws::ForecastService
|
|
1551
1612
|
# @option params [Array<Types::Filter>] :filters
|
1552
1613
|
# An array of filters. For each filter, you provide a condition and a
|
1553
1614
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
1554
|
-
# specifies whether to include or exclude
|
1555
|
-
#
|
1556
|
-
#
|
1557
|
-
# which filters on the `DatasetImportJobName` property.
|
1615
|
+
# specifies whether to include or exclude the datasets that match the
|
1616
|
+
# statement from the list, respectively. The match statement consists of
|
1617
|
+
# a key and a value.
|
1558
1618
|
#
|
1559
|
-
#
|
1619
|
+
# **Filter properties**
|
1560
1620
|
#
|
1561
|
-
# * `
|
1621
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
1622
|
+
# `IS_NOT`. To include the datasets that match the statement, specify
|
1623
|
+
# `IS`. To exclude matching datasets, specify `IS_NOT`.
|
1562
1624
|
#
|
1563
|
-
# * `
|
1625
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
1626
|
+
# `DatasetArn` and `Status`.
|
1564
1627
|
#
|
1565
|
-
#
|
1566
|
-
# *my\_dataset\_import\_job*, you would specify:
|
1628
|
+
# * `Value` - The value to match.
|
1567
1629
|
#
|
1568
|
-
#
|
1569
|
-
#
|
1630
|
+
# For example, to list all dataset import jobs whose status is ACTIVE,
|
1631
|
+
# you specify the following filter:
|
1632
|
+
#
|
1633
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value": "ACTIVE"
|
1634
|
+
# \} ]`
|
1570
1635
|
#
|
1571
1636
|
# @return [Types::ListDatasetImportJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1572
1637
|
#
|
@@ -1612,8 +1677,8 @@ module Aws::ForecastService
|
|
1612
1677
|
|
1613
1678
|
# Returns a list of datasets created using the CreateDataset operation.
|
1614
1679
|
# For each dataset, a summary of its properties, including its Amazon
|
1615
|
-
# Resource Name (ARN), is returned.
|
1616
|
-
# properties
|
1680
|
+
# Resource Name (ARN), is returned. To retrieve the complete set of
|
1681
|
+
# properties, use the ARN with the DescribeDataset operation.
|
1617
1682
|
#
|
1618
1683
|
# @option params [String] :next_token
|
1619
1684
|
# If the result of the previous request was truncated, the response
|
@@ -1656,11 +1721,11 @@ module Aws::ForecastService
|
|
1656
1721
|
end
|
1657
1722
|
|
1658
1723
|
# Returns a list of forecast export jobs created using the
|
1659
|
-
# CreateForecastExportJob operation. For each forecast export job,
|
1660
|
-
# summary of its properties, including its Amazon
|
1661
|
-
#
|
1662
|
-
# the ARN with the DescribeForecastExportJob operation.
|
1663
|
-
#
|
1724
|
+
# CreateForecastExportJob operation. For each forecast export job, this
|
1725
|
+
# operation returns a summary of its properties, including its Amazon
|
1726
|
+
# Resource Name (ARN). To retrieve the complete set of properties, use
|
1727
|
+
# the ARN with the DescribeForecastExportJob operation. You can filter
|
1728
|
+
# the list using an array of Filter objects.
|
1664
1729
|
#
|
1665
1730
|
# @option params [String] :next_token
|
1666
1731
|
# If the result of the previous request was truncated, the response
|
@@ -1673,22 +1738,28 @@ module Aws::ForecastService
|
|
1673
1738
|
# @option params [Array<Types::Filter>] :filters
|
1674
1739
|
# An array of filters. For each filter, you provide a condition and a
|
1675
1740
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
1676
|
-
# specifies whether to include or exclude
|
1677
|
-
# the
|
1678
|
-
# of a key and a value.
|
1679
|
-
#
|
1741
|
+
# specifies whether to include or exclude the forecast export jobs that
|
1742
|
+
# match the statement from the list, respectively. The match statement
|
1743
|
+
# consists of a key and a value.
|
1744
|
+
#
|
1745
|
+
# **Filter properties**
|
1680
1746
|
#
|
1681
|
-
# * `Condition` - `IS`
|
1747
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
1748
|
+
# `IS_NOT`. To include the forecast export jobs that match the
|
1749
|
+
# statement, specify `IS`. To exclude matching forecast export jobs,
|
1750
|
+
# specify `IS_NOT`.
|
1682
1751
|
#
|
1683
|
-
# * `Key` -
|
1752
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
1753
|
+
# `ForecastArn` and `Status`.
|
1684
1754
|
#
|
1685
|
-
# * `Value` -
|
1755
|
+
# * `Value` - The value to match.
|
1686
1756
|
#
|
1687
|
-
# For example, to list all
|
1688
|
-
# *
|
1757
|
+
# For example, to list all jobs that export a forecast named
|
1758
|
+
# *electricityforecast*, specify the following filter:
|
1689
1759
|
#
|
1690
|
-
# `"Filters": [ \{ "Condition": "IS", "Key": "
|
1691
|
-
# "
|
1760
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "ForecastArn", "Value":
|
1761
|
+
# "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast" \}
|
1762
|
+
# ]`
|
1692
1763
|
#
|
1693
1764
|
# @return [Types::ListForecastExportJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1694
1765
|
#
|
@@ -1733,10 +1804,10 @@ module Aws::ForecastService
|
|
1733
1804
|
end
|
1734
1805
|
|
1735
1806
|
# Returns a list of forecasts created using the CreateForecast
|
1736
|
-
# operation. For each forecast, a summary of its
|
1737
|
-
# its Amazon Resource Name (ARN)
|
1738
|
-
# complete set of properties
|
1739
|
-
# operation.
|
1807
|
+
# operation. For each forecast, this operation returns a summary of its
|
1808
|
+
# properties, including its Amazon Resource Name (ARN). To retrieve the
|
1809
|
+
# complete set of properties, specify the ARN with the DescribeForecast
|
1810
|
+
# operation. You can filter the list using an array of Filter objects.
|
1740
1811
|
#
|
1741
1812
|
# @option params [String] :next_token
|
1742
1813
|
# If the result of the previous request was truncated, the response
|
@@ -1749,22 +1820,26 @@ module Aws::ForecastService
|
|
1749
1820
|
# @option params [Array<Types::Filter>] :filters
|
1750
1821
|
# An array of filters. For each filter, you provide a condition and a
|
1751
1822
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
1752
|
-
# specifies whether to include or exclude
|
1753
|
-
#
|
1754
|
-
#
|
1755
|
-
# which filters on the `ForecastName` property.
|
1823
|
+
# specifies whether to include or exclude the forecasts that match the
|
1824
|
+
# statement from the list, respectively. The match statement consists of
|
1825
|
+
# a key and a value.
|
1756
1826
|
#
|
1757
|
-
#
|
1827
|
+
# **Filter properties**
|
1758
1828
|
#
|
1759
|
-
# * `
|
1829
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
1830
|
+
# `IS_NOT`. To include the forecasts that match the statement, specify
|
1831
|
+
# `IS`. To exclude matching forecasts, specify `IS_NOT`.
|
1760
1832
|
#
|
1761
|
-
# * `
|
1833
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
1834
|
+
# `DatasetGroupArn`, `PredictorArn`, and `Status`.
|
1762
1835
|
#
|
1763
|
-
#
|
1764
|
-
# specify:
|
1836
|
+
# * `Value` - The value to match.
|
1765
1837
|
#
|
1766
|
-
#
|
1767
|
-
#
|
1838
|
+
# For example, to list all forecasts whose status is not ACTIVE, you
|
1839
|
+
# would specify:
|
1840
|
+
#
|
1841
|
+
# `"Filters": [ \{ "Condition": "IS_NOT", "Key": "Status", "Value":
|
1842
|
+
# "ACTIVE" \} ]`
|
1768
1843
|
#
|
1769
1844
|
# @return [Types::ListForecastsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1770
1845
|
#
|
@@ -1808,10 +1883,11 @@ module Aws::ForecastService
|
|
1808
1883
|
end
|
1809
1884
|
|
1810
1885
|
# Returns a list of predictors created using the CreatePredictor
|
1811
|
-
# operation. For each predictor, a summary of its
|
1812
|
-
# its Amazon Resource Name (ARN)
|
1813
|
-
# complete set of properties by using the ARN with the
|
1814
|
-
# operation.
|
1886
|
+
# operation. For each predictor, this operation returns a summary of its
|
1887
|
+
# properties, including its Amazon Resource Name (ARN). You can retrieve
|
1888
|
+
# the complete set of properties by using the ARN with the
|
1889
|
+
# DescribePredictor operation. You can filter the list using an array of
|
1890
|
+
# Filter objects.
|
1815
1891
|
#
|
1816
1892
|
# @option params [String] :next_token
|
1817
1893
|
# If the result of the previous request was truncated, the response
|
@@ -1824,22 +1900,26 @@ module Aws::ForecastService
|
|
1824
1900
|
# @option params [Array<Types::Filter>] :filters
|
1825
1901
|
# An array of filters. For each filter, you provide a condition and a
|
1826
1902
|
# match statement. The condition is either `IS` or `IS_NOT`, which
|
1827
|
-
# specifies whether to include or exclude
|
1828
|
-
#
|
1829
|
-
#
|
1830
|
-
#
|
1903
|
+
# specifies whether to include or exclude the predictors that match the
|
1904
|
+
# statement from the list, respectively. The match statement consists of
|
1905
|
+
# a key and a value.
|
1906
|
+
#
|
1907
|
+
# **Filter properties**
|
1831
1908
|
#
|
1832
|
-
# * `Condition` - `IS`
|
1909
|
+
# * `Condition` - The condition to apply. Valid values are `IS` and
|
1910
|
+
# `IS_NOT`. To include the predictors that match the statement,
|
1911
|
+
# specify `IS`. To exclude matching predictors, specify `IS_NOT`.
|
1833
1912
|
#
|
1834
|
-
# * `Key` -
|
1913
|
+
# * `Key` - The name of the parameter to filter on. Valid values are
|
1914
|
+
# `DatasetGroupArn` and `Status`.
|
1835
1915
|
#
|
1836
|
-
# * `Value` -
|
1916
|
+
# * `Value` - The value to match.
|
1837
1917
|
#
|
1838
|
-
# For example, to list all predictors
|
1918
|
+
# For example, to list all predictors whose status is ACTIVE, you would
|
1839
1919
|
# specify:
|
1840
1920
|
#
|
1841
|
-
# `"Filters": [ \{ "Condition": "IS", "Key": "
|
1842
|
-
#
|
1921
|
+
# `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value": "ACTIVE"
|
1922
|
+
# \} ]`
|
1843
1923
|
#
|
1844
1924
|
# @return [Types::ListPredictorsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1845
1925
|
#
|
@@ -1881,11 +1961,10 @@ module Aws::ForecastService
|
|
1881
1961
|
req.send_request(options)
|
1882
1962
|
end
|
1883
1963
|
|
1884
|
-
# Replaces
|
1885
|
-
# datasets.
|
1964
|
+
# Replaces the datasets in a dataset group with the specified datasets.
|
1886
1965
|
#
|
1887
|
-
# <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before
|
1888
|
-
#
|
1966
|
+
# <note markdown="1"> The `Status` of the dataset group must be `ACTIVE` before you can use
|
1967
|
+
# the dataset group to create a predictor. Use the DescribeDatasetGroup
|
1889
1968
|
# operation to get the status.
|
1890
1969
|
#
|
1891
1970
|
# </note>
|
@@ -1894,8 +1973,8 @@ module Aws::ForecastService
|
|
1894
1973
|
# The ARN of the dataset group.
|
1895
1974
|
#
|
1896
1975
|
# @option params [required, Array<String>] :dataset_arns
|
1897
|
-
# An array of Amazon Resource Names (ARNs) of the datasets to add to
|
1898
|
-
# dataset group.
|
1976
|
+
# An array of the Amazon Resource Names (ARNs) of the datasets to add to
|
1977
|
+
# the dataset group.
|
1899
1978
|
#
|
1900
1979
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
1901
1980
|
#
|
@@ -1928,7 +2007,7 @@ module Aws::ForecastService
|
|
1928
2007
|
params: params,
|
1929
2008
|
config: config)
|
1930
2009
|
context[:gem_name] = 'aws-sdk-forecastservice'
|
1931
|
-
context[:gem_version] = '1.
|
2010
|
+
context[:gem_version] = '1.2.0'
|
1932
2011
|
Seahorse::Client::Request.new(handlers, context)
|
1933
2012
|
end
|
1934
2013
|
|