zyworkflow 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- zyworkflow/__init__.py +0 -0
- zyworkflow/api_server.py +630 -0
- zyworkflow/data/__init__.py +0 -0
- zyworkflow/data/collection.py +1241 -0
- zyworkflow/data/process.py +72 -0
- zyworkflow/doc/api.md +461 -0
- zyworkflow/example/__init__.py +0 -0
- zyworkflow/example/train_client.py +301 -0
- zyworkflow/example/train_client_example.py +43 -0
- zyworkflow/policy/__init__.py +0 -0
- zyworkflow/policy/train_pick_policy.py +834 -0
- zyworkflow/utils/__init__.py +0 -0
- zyworkflow/utils/logger_config.py +50 -0
- zyworkflow/utils/pose.py +131 -0
- zyworkflow/utils/utils.py +264 -0
- zyworkflow-0.0.1.dist-info/METADATA +11 -0
- zyworkflow-0.0.1.dist-info/RECORD +19 -0
- zyworkflow-0.0.1.dist-info/WHEEL +5 -0
- zyworkflow-0.0.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,834 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import time
|
|
3
|
+
import glob
|
|
4
|
+
import torch
|
|
5
|
+
import traceback
|
|
6
|
+
import numpy as np
|
|
7
|
+
import pandas as pd
|
|
8
|
+
import torch.nn as nn
|
|
9
|
+
import torch.nn.functional as F
|
|
10
|
+
import torch.multiprocessing as mp
|
|
11
|
+
from PIL import Image
|
|
12
|
+
from tqdm import tqdm
|
|
13
|
+
from bnn.simulate import Simulate
|
|
14
|
+
from torch.utils.data import Dataset, DataLoader
|
|
15
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
16
|
+
from zyworkflow.utils.logger_config import setup_train_pick_policy_logger
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
logger = setup_train_pick_policy_logger()
|
|
20
|
+
GRIPPER_CLOSE_THRESH = 500.0
|
|
21
|
+
SUCCESS_THRESH = 0.5
|
|
22
|
+
COL_JOINTS = ["j1", "j2", "j3", "j4", "j5", "j6"]
|
|
23
|
+
COL_GRIPPER = "Gripper_Set_Position(‰)"
|
|
24
|
+
COL_SUCCESS = "success_flag"
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def build_success_targets_and_mask(
|
|
28
|
+
raw_success_flags: torch.Tensor,
|
|
29
|
+
t: int,
|
|
30
|
+
traj_len: int,
|
|
31
|
+
chunk_len: int,
|
|
32
|
+
pad_len: int,
|
|
33
|
+
mode: str,
|
|
34
|
+
thr: float,
|
|
35
|
+
):
|
|
36
|
+
device = raw_success_flags.device
|
|
37
|
+
succ = (raw_success_flags > thr).float()
|
|
38
|
+
|
|
39
|
+
if mode == "within_horizon":
|
|
40
|
+
rev = torch.flip(succ, dims=[0])
|
|
41
|
+
rev_cum = torch.cumsum(rev, dim=0)
|
|
42
|
+
suffix_any = (torch.flip(rev_cum, dims=[0]) > 0).float()
|
|
43
|
+
c_s = suffix_any
|
|
44
|
+
c_sm = torch.ones_like(c_s)
|
|
45
|
+
|
|
46
|
+
elif mode == "terminal_only":
|
|
47
|
+
c_s = torch.zeros((chunk_len, 1), dtype=torch.float32, device=device)
|
|
48
|
+
c_sm = torch.zeros((chunk_len, 1), dtype=torch.float32, device=device)
|
|
49
|
+
final_idx = traj_len - 1
|
|
50
|
+
if t <= final_idx < (t + chunk_len):
|
|
51
|
+
off = final_idx - t
|
|
52
|
+
c_s[off, 0] = succ[off, 0]
|
|
53
|
+
c_sm[off, 0] = 1.0
|
|
54
|
+
else:
|
|
55
|
+
c_s = succ
|
|
56
|
+
c_sm = torch.ones_like(c_s)
|
|
57
|
+
|
|
58
|
+
if pad_len > 0:
|
|
59
|
+
if chunk_len > 0:
|
|
60
|
+
last_s = c_s[-1:].repeat(pad_len, 1)
|
|
61
|
+
else:
|
|
62
|
+
last_s = torch.zeros((pad_len, 1), device=device)
|
|
63
|
+
|
|
64
|
+
c_s = torch.cat([c_s, last_s], dim=0)
|
|
65
|
+
pad_zeros = torch.zeros((pad_len, 1), dtype=torch.float32, device=device)
|
|
66
|
+
c_sm = torch.cat([c_sm, pad_zeros], dim=0)
|
|
67
|
+
|
|
68
|
+
return c_s, c_sm
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
class BNNWorker(mp.Process):
|
|
72
|
+
def __init__(self, pipe):
|
|
73
|
+
super().__init__()
|
|
74
|
+
self.pipe = pipe
|
|
75
|
+
self.bnn_instance = None
|
|
76
|
+
|
|
77
|
+
def run(self):
|
|
78
|
+
try:
|
|
79
|
+
os.environ["OMP_NUM_THREADS"] = "1"
|
|
80
|
+
torch.set_num_threads(1)
|
|
81
|
+
|
|
82
|
+
self.bnn_instance = Simulate()
|
|
83
|
+
|
|
84
|
+
while True:
|
|
85
|
+
cmd, data = self.pipe.recv()
|
|
86
|
+
if cmd == "STEP":
|
|
87
|
+
inp = torch.tensor(data, dtype=torch.float32)
|
|
88
|
+
with torch.no_grad():
|
|
89
|
+
out = self.bnn_instance.run_simulation(inp)
|
|
90
|
+
if isinstance(out, torch.Tensor):
|
|
91
|
+
out = out.detach().cpu().numpy()
|
|
92
|
+
self.pipe.send(out)
|
|
93
|
+
elif cmd == "RESET":
|
|
94
|
+
if self.bnn_instance:
|
|
95
|
+
self.bnn_instance.reset_state()
|
|
96
|
+
self.pipe.send("OK")
|
|
97
|
+
elif cmd == "CLOSE":
|
|
98
|
+
break
|
|
99
|
+
except Exception as e:
|
|
100
|
+
logger.error(f"BNN Worker Error: {e}")
|
|
101
|
+
logger.error(traceback.format_exc())
|
|
102
|
+
try:
|
|
103
|
+
self.pipe.send(None)
|
|
104
|
+
except:
|
|
105
|
+
pass
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
class PersistentBNNPool:
|
|
109
|
+
def __init__(self, num_workers):
|
|
110
|
+
self.num_workers = num_workers
|
|
111
|
+
self.workers = []
|
|
112
|
+
self.pipes = []
|
|
113
|
+
logger.info(f"启动 {num_workers} 个 BNN 常驻进程...")
|
|
114
|
+
for _ in range(num_workers):
|
|
115
|
+
parent_conn, child_conn = mp.Pipe()
|
|
116
|
+
p = BNNWorker(child_conn)
|
|
117
|
+
p.daemon = True
|
|
118
|
+
p.start()
|
|
119
|
+
self.workers.append(p)
|
|
120
|
+
self.pipes.append(parent_conn)
|
|
121
|
+
|
|
122
|
+
def reset_all(self, n_used=None):
|
|
123
|
+
if n_used is None:
|
|
124
|
+
n_used = len(self.pipes)
|
|
125
|
+
for p in self.pipes[:n_used]:
|
|
126
|
+
p.send(("RESET", None))
|
|
127
|
+
for p in self.pipes[:n_used]:
|
|
128
|
+
p.recv()
|
|
129
|
+
|
|
130
|
+
def step_batch(self, batch_inputs_np):
|
|
131
|
+
n = len(batch_inputs_np)
|
|
132
|
+
for i, inp in enumerate(batch_inputs_np):
|
|
133
|
+
self.pipes[i].send(("STEP", inp))
|
|
134
|
+
return [self.pipes[i].recv() for i in range(n)]
|
|
135
|
+
|
|
136
|
+
def close(self, timeout: float = 2.0):
|
|
137
|
+
for p in self.pipes:
|
|
138
|
+
try:
|
|
139
|
+
p.send(("CLOSE", None))
|
|
140
|
+
except Exception:
|
|
141
|
+
pass
|
|
142
|
+
|
|
143
|
+
deadline = time.time() + timeout
|
|
144
|
+
for w in self.workers:
|
|
145
|
+
remaining = max(0.0, deadline - time.time())
|
|
146
|
+
try:
|
|
147
|
+
w.join(timeout=remaining)
|
|
148
|
+
except Exception:
|
|
149
|
+
pass
|
|
150
|
+
|
|
151
|
+
for w in self.workers:
|
|
152
|
+
if w.is_alive():
|
|
153
|
+
try:
|
|
154
|
+
logger.warning(f"强制终止残留BNN进程: pid={w.pid}")
|
|
155
|
+
w.terminate()
|
|
156
|
+
w.join(timeout=1.0)
|
|
157
|
+
except Exception as e:
|
|
158
|
+
logger.error(f"强制终止BNN进程失败: pid={w.pid}, err={e}")
|
|
159
|
+
|
|
160
|
+
for p in self.pipes:
|
|
161
|
+
try:
|
|
162
|
+
p.close()
|
|
163
|
+
except Exception:
|
|
164
|
+
pass
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
class SingleViewRobotTrajectoryDataset(Dataset):
|
|
168
|
+
def __init__(self, root_dir, min_frames_per_traj=6, time_round=3, time_tol=1e-3, debug_max_bad=3):
|
|
169
|
+
self.root_dir = root_dir
|
|
170
|
+
self.trajectories = []
|
|
171
|
+
|
|
172
|
+
self.min_frames_per_traj = min_frames_per_traj
|
|
173
|
+
self.time_round = time_round
|
|
174
|
+
self.time_tol = time_tol
|
|
175
|
+
|
|
176
|
+
self.debug_stats = {
|
|
177
|
+
"root_dir_exists": os.path.exists(root_dir),
|
|
178
|
+
"traj_dirs_found": 0,
|
|
179
|
+
"traj_used": 0,
|
|
180
|
+
"skip_missing_csv": 0,
|
|
181
|
+
"skip_missing_imgdir": 0,
|
|
182
|
+
"skip_csv_read_error": 0,
|
|
183
|
+
"skip_missing_cols": 0,
|
|
184
|
+
"skip_no_images": 0,
|
|
185
|
+
"skip_no_parsable_images": 0,
|
|
186
|
+
"skip_no_matched": 0,
|
|
187
|
+
"skip_too_few_images": 0,
|
|
188
|
+
"total_frames_csv": 0,
|
|
189
|
+
"total_images_in_dir": 0,
|
|
190
|
+
"matched_frames": 0,
|
|
191
|
+
}
|
|
192
|
+
self.bad_examples = []
|
|
193
|
+
|
|
194
|
+
traj_dirs = sorted([os.path.join(root_dir, d) for d in os.listdir(root_dir) if d.startswith("traj_")])
|
|
195
|
+
self.debug_stats["traj_dirs_found"] = len(traj_dirs)
|
|
196
|
+
logger.info(f"Dataset: 正在扫描数据集: {root_dir} | traj_dirs={len(traj_dirs)}")
|
|
197
|
+
|
|
198
|
+
num_pos = 0
|
|
199
|
+
num_neg = 0
|
|
200
|
+
all_joints_list = []
|
|
201
|
+
|
|
202
|
+
for traj_path in tqdm(traj_dirs):
|
|
203
|
+
csv_path = os.path.join(traj_path, "actions.csv")
|
|
204
|
+
if not os.path.exists(csv_path):
|
|
205
|
+
self.debug_stats["skip_missing_csv"] += 1
|
|
206
|
+
continue
|
|
207
|
+
|
|
208
|
+
img_dir = None
|
|
209
|
+
for cand in ["images", "image"]:
|
|
210
|
+
p = os.path.join(traj_path, cand)
|
|
211
|
+
if os.path.isdir(p):
|
|
212
|
+
img_dir = p
|
|
213
|
+
break
|
|
214
|
+
if img_dir is None:
|
|
215
|
+
self.debug_stats["skip_missing_imgdir"] += 1
|
|
216
|
+
continue
|
|
217
|
+
|
|
218
|
+
try:
|
|
219
|
+
df = pd.read_csv(csv_path, header=0)
|
|
220
|
+
except Exception:
|
|
221
|
+
self.debug_stats["skip_csv_read_error"] += 1
|
|
222
|
+
continue
|
|
223
|
+
|
|
224
|
+
if "Time(s)" not in df.columns:
|
|
225
|
+
self.debug_stats["skip_missing_cols"] += 1
|
|
226
|
+
if len(self.bad_examples) < debug_max_bad:
|
|
227
|
+
self.bad_examples.append({
|
|
228
|
+
"traj": traj_path,
|
|
229
|
+
"reason": "missing Time(s) col",
|
|
230
|
+
"df_cols": list(df.columns)[:30],
|
|
231
|
+
})
|
|
232
|
+
continue
|
|
233
|
+
|
|
234
|
+
need_cols = [COL_GRIPPER, COL_SUCCESS] + COL_JOINTS
|
|
235
|
+
if any(c not in df.columns for c in need_cols):
|
|
236
|
+
self.debug_stats["skip_missing_cols"] += 1
|
|
237
|
+
if len(self.bad_examples) < debug_max_bad:
|
|
238
|
+
self.bad_examples.append({
|
|
239
|
+
"traj": traj_path,
|
|
240
|
+
"reason": "missing required cols",
|
|
241
|
+
"need_cols": need_cols,
|
|
242
|
+
"df_cols": list(df.columns),
|
|
243
|
+
})
|
|
244
|
+
continue
|
|
245
|
+
|
|
246
|
+
df = df.sort_values("Time(s)").reset_index(drop=True)
|
|
247
|
+
T = len(df)
|
|
248
|
+
self.debug_stats["total_frames_csv"] += T
|
|
249
|
+
|
|
250
|
+
img_files = glob.glob(os.path.join(img_dir, "*.png"))
|
|
251
|
+
self.debug_stats["total_images_in_dir"] += len(img_files)
|
|
252
|
+
if len(img_files) == 0:
|
|
253
|
+
self.debug_stats["skip_no_images"] += 1
|
|
254
|
+
continue
|
|
255
|
+
|
|
256
|
+
img_entries = []
|
|
257
|
+
img_name_examples = []
|
|
258
|
+
for fp in img_files:
|
|
259
|
+
stem = os.path.splitext(os.path.basename(fp))[0]
|
|
260
|
+
if len(img_name_examples) < 8:
|
|
261
|
+
img_name_examples.append(stem)
|
|
262
|
+
try:
|
|
263
|
+
tf = float(stem)
|
|
264
|
+
img_entries.append((tf, fp))
|
|
265
|
+
except Exception:
|
|
266
|
+
pass
|
|
267
|
+
|
|
268
|
+
if len(img_entries) == 0:
|
|
269
|
+
self.debug_stats["skip_no_parsable_images"] += 1
|
|
270
|
+
if len(self.bad_examples) < debug_max_bad:
|
|
271
|
+
self.bad_examples.append({
|
|
272
|
+
"traj": traj_path,
|
|
273
|
+
"reason": "no parsable image filenames (stem->float failed)",
|
|
274
|
+
"img_dir": img_dir,
|
|
275
|
+
"img_stems_sample": img_name_examples,
|
|
276
|
+
})
|
|
277
|
+
continue
|
|
278
|
+
|
|
279
|
+
img_entries.sort(key=lambda x: x[0])
|
|
280
|
+
img_times = np.array([x[0] for x in img_entries], dtype=np.float64)
|
|
281
|
+
img_paths = [x[1] for x in img_entries]
|
|
282
|
+
|
|
283
|
+
img_map = {}
|
|
284
|
+
for tf, fp in img_entries:
|
|
285
|
+
k = round(float(tf), self.time_round)
|
|
286
|
+
if k not in img_map:
|
|
287
|
+
img_map[k] = fp
|
|
288
|
+
|
|
289
|
+
joints_np = df[COL_JOINTS].to_numpy(dtype=np.float32)
|
|
290
|
+
gripper_np = df[COL_GRIPPER].to_numpy(dtype=np.float32)
|
|
291
|
+
success_np = df[COL_SUCCESS].to_numpy(dtype=np.float32)
|
|
292
|
+
times_np = df["Time(s)"].to_numpy(dtype=np.float64)
|
|
293
|
+
|
|
294
|
+
valid_img_paths = []
|
|
295
|
+
valid_targets = []
|
|
296
|
+
|
|
297
|
+
for i in range(T):
|
|
298
|
+
t_csv = float(times_np[i])
|
|
299
|
+
key = round(t_csv, self.time_round)
|
|
300
|
+
|
|
301
|
+
fp = img_map.get(key, None)
|
|
302
|
+
|
|
303
|
+
if fp is None:
|
|
304
|
+
idx = int(np.searchsorted(img_times, t_csv))
|
|
305
|
+
cand = []
|
|
306
|
+
if 0 <= idx < len(img_times):
|
|
307
|
+
cand.append(idx)
|
|
308
|
+
if 0 <= idx - 1 < len(img_times):
|
|
309
|
+
cand.append(idx - 1)
|
|
310
|
+
best_fp = None
|
|
311
|
+
best_dt = 1e9
|
|
312
|
+
for ci in cand:
|
|
313
|
+
dt = abs(float(img_times[ci]) - t_csv)
|
|
314
|
+
if dt < best_dt:
|
|
315
|
+
best_dt = dt
|
|
316
|
+
best_fp = img_paths[ci]
|
|
317
|
+
if best_fp is not None and best_dt <= self.time_tol:
|
|
318
|
+
fp = best_fp
|
|
319
|
+
|
|
320
|
+
if fp is None or (not os.path.exists(fp)):
|
|
321
|
+
continue
|
|
322
|
+
|
|
323
|
+
joints_val = joints_np[i]
|
|
324
|
+
gripper_val = float(gripper_np[i])
|
|
325
|
+
success_val = float(success_np[i])
|
|
326
|
+
|
|
327
|
+
target_vec = np.concatenate([joints_val, [gripper_val], [success_val]]).astype(np.float32)
|
|
328
|
+
valid_img_paths.append(fp)
|
|
329
|
+
valid_targets.append(target_vec)
|
|
330
|
+
|
|
331
|
+
if gripper_val < GRIPPER_CLOSE_THRESH:
|
|
332
|
+
num_pos += 1
|
|
333
|
+
else:
|
|
334
|
+
num_neg += 1
|
|
335
|
+
|
|
336
|
+
self.debug_stats["matched_frames"] += len(valid_img_paths)
|
|
337
|
+
|
|
338
|
+
if len(valid_img_paths) == 0:
|
|
339
|
+
self.debug_stats["skip_no_matched"] += 1
|
|
340
|
+
if len(self.bad_examples) < debug_max_bad:
|
|
341
|
+
self.bad_examples.append({
|
|
342
|
+
"traj": traj_path,
|
|
343
|
+
"reason": "matched_frames=0 (Time(s) vs img filename mismatch)",
|
|
344
|
+
"csv_times_sample": [float(x) for x in times_np[:8]],
|
|
345
|
+
"img_stems_sample": img_name_examples,
|
|
346
|
+
"time_round": self.time_round,
|
|
347
|
+
"time_tol": self.time_tol,
|
|
348
|
+
})
|
|
349
|
+
continue
|
|
350
|
+
|
|
351
|
+
if len(valid_img_paths) < self.min_frames_per_traj:
|
|
352
|
+
self.debug_stats["skip_too_few_images"] += 1
|
|
353
|
+
if len(self.bad_examples) < debug_max_bad:
|
|
354
|
+
self.bad_examples.append({
|
|
355
|
+
"traj": traj_path,
|
|
356
|
+
"reason": f"too few matched frames (<{self.min_frames_per_traj})",
|
|
357
|
+
"matched": len(valid_img_paths),
|
|
358
|
+
"csv_len": T,
|
|
359
|
+
"images_in_dir": len(img_files),
|
|
360
|
+
})
|
|
361
|
+
continue
|
|
362
|
+
|
|
363
|
+
try:
|
|
364
|
+
with Image.open(valid_img_paths[0]) as im:
|
|
365
|
+
exp_hw = (im.height, im.width)
|
|
366
|
+
except Exception:
|
|
367
|
+
exp_hw = (480, 640)
|
|
368
|
+
|
|
369
|
+
self.trajectories.append({
|
|
370
|
+
"traj_id": traj_path,
|
|
371
|
+
"view_paths": valid_img_paths,
|
|
372
|
+
"targets": np.array(valid_targets, dtype=np.float32),
|
|
373
|
+
"length": len(valid_img_paths),
|
|
374
|
+
"exp_hw": exp_hw
|
|
375
|
+
})
|
|
376
|
+
self.debug_stats["traj_used"] += 1
|
|
377
|
+
|
|
378
|
+
all_joints_list.append(np.array(valid_targets, dtype=np.float32)[:, :6])
|
|
379
|
+
|
|
380
|
+
if len(all_joints_list) > 0:
|
|
381
|
+
all_joints_np = np.concatenate(all_joints_list, axis=0)
|
|
382
|
+
self.joint_mean = torch.tensor(np.mean(all_joints_np, axis=0), dtype=torch.float32)
|
|
383
|
+
self.joint_std = torch.tensor(np.std(all_joints_np, axis=0), dtype=torch.float32)
|
|
384
|
+
self.joint_std = torch.where(self.joint_std < 1e-6, torch.ones_like(self.joint_std), self.joint_std)
|
|
385
|
+
else:
|
|
386
|
+
self.joint_mean = torch.zeros(6)
|
|
387
|
+
self.joint_std = torch.ones(6)
|
|
388
|
+
|
|
389
|
+
self.pos_weight = (num_neg / max(num_pos, 1)) if (num_pos + num_neg) > 0 else 1.0
|
|
390
|
+
|
|
391
|
+
logger.success(f"数据加载完毕: {len(self.trajectories)} 条轨迹.")
|
|
392
|
+
logger.info(f"PosWeight={self.pos_weight:.2f}")
|
|
393
|
+
logger.info(f"Joint Mean: {self.joint_mean.numpy().round(3)}")
|
|
394
|
+
|
|
395
|
+
logger.debug("Dataset build summary:")
|
|
396
|
+
for k, v in self.debug_stats.items():
|
|
397
|
+
logger.debug(f" - {k}: {v}")
|
|
398
|
+
if len(self.bad_examples) > 0:
|
|
399
|
+
logger.warning(f"发现 {len(self.bad_examples)} 个错误示例:")
|
|
400
|
+
for ex in self.bad_examples:
|
|
401
|
+
for kk, vv in ex.items():
|
|
402
|
+
logger.debug(f"{kk}: {vv}")
|
|
403
|
+
|
|
404
|
+
def __len__(self):
|
|
405
|
+
return len(self.trajectories)
|
|
406
|
+
|
|
407
|
+
def __getitem__(self, idx):
|
|
408
|
+
return self.trajectories[idx]
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
def traj_collate_fn(batch):
|
|
412
|
+
return batch
|
|
413
|
+
|
|
414
|
+
|
|
415
|
+
class FiLM(nn.Module):
|
|
416
|
+
def __init__(self, dim_in, dim_out, num_layers=2, hidden_dim=128):
|
|
417
|
+
super().__init__()
|
|
418
|
+
self.mlp = nn.Sequential(
|
|
419
|
+
nn.Linear(dim_in, hidden_dim), nn.ReLU(),
|
|
420
|
+
nn.Linear(hidden_dim, dim_out * 2)
|
|
421
|
+
)
|
|
422
|
+
|
|
423
|
+
def forward(self, x, cond):
|
|
424
|
+
cond_flat = cond.reshape(-1, cond.size(-1))
|
|
425
|
+
params = self.mlp(cond_flat)
|
|
426
|
+
gamma, beta = params.chunk(2, dim=-1)
|
|
427
|
+
B, S, D = x.shape
|
|
428
|
+
gamma = gamma.view(B, S, D)
|
|
429
|
+
beta = beta.view(B, S, D)
|
|
430
|
+
return gamma * x + beta
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
class SingleViewBNNActionPolicy(nn.Module):
|
|
434
|
+
def __init__(self, seq_len=4, action_chunk=8, dim_to_bnn=15, dim_bnn_output=80):
|
|
435
|
+
super().__init__()
|
|
436
|
+
self.seq_len = seq_len
|
|
437
|
+
self.action_chunk = action_chunk
|
|
438
|
+
|
|
439
|
+
self.conv_layers = nn.Sequential(
|
|
440
|
+
nn.Conv2d(3, 24, kernel_size=5, stride=2, padding=2), nn.ReLU(),
|
|
441
|
+
nn.Conv2d(24, 36, kernel_size=5, stride=2, padding=2), nn.ReLU(),
|
|
442
|
+
nn.Conv2d(36, 48, kernel_size=3, stride=2, padding=1), nn.ReLU(),
|
|
443
|
+
nn.Conv2d(48, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(),
|
|
444
|
+
nn.Conv2d(64, 1, kernel_size=3, stride=1, padding=1), nn.ReLU()
|
|
445
|
+
)
|
|
446
|
+
|
|
447
|
+
self.before_bnn_mlp = nn.Sequential(
|
|
448
|
+
nn.Linear(80 * 60, 512), nn.ReLU(),
|
|
449
|
+
nn.Linear(512, dim_to_bnn)
|
|
450
|
+
)
|
|
451
|
+
self.bnn_adapter = nn.Sequential(nn.LayerNorm(dim_to_bnn), nn.Tanh())
|
|
452
|
+
|
|
453
|
+
self.film = FiLM(dim_in=dim_to_bnn, dim_out=dim_bnn_output)
|
|
454
|
+
|
|
455
|
+
feature_dim = (dim_to_bnn + dim_bnn_output) * seq_len
|
|
456
|
+
self.shared_backbone = nn.Sequential(
|
|
457
|
+
nn.Linear(feature_dim, 512), nn.ReLU(),
|
|
458
|
+
nn.Linear(512, 256)
|
|
459
|
+
)
|
|
460
|
+
|
|
461
|
+
self.head_joints = nn.Sequential(
|
|
462
|
+
nn.Linear(256, 128), nn.ReLU(),
|
|
463
|
+
nn.Linear(128, 64), nn.ReLU(),
|
|
464
|
+
nn.Linear(64, 6 * action_chunk)
|
|
465
|
+
)
|
|
466
|
+
self.head_gripper = nn.Sequential(
|
|
467
|
+
nn.Linear(256, 64), nn.ReLU(),
|
|
468
|
+
nn.Linear(64, 1 * action_chunk)
|
|
469
|
+
)
|
|
470
|
+
self.head_success = nn.Sequential(
|
|
471
|
+
nn.Linear(256, 64), nn.ReLU(),
|
|
472
|
+
nn.Linear(64, 1 * action_chunk)
|
|
473
|
+
)
|
|
474
|
+
|
|
475
|
+
def encode_visual(self, x):
|
|
476
|
+
B, S, C, H, W = x.shape
|
|
477
|
+
x = x.contiguous().view(B * S, C, H, W)
|
|
478
|
+
x = self.conv_layers(x)
|
|
479
|
+
x = x.view(B, S, -1)
|
|
480
|
+
feat = self.before_bnn_mlp(x)
|
|
481
|
+
return self.bnn_adapter(feat)
|
|
482
|
+
|
|
483
|
+
def decode_action(self, bnn_in, bnn_out):
|
|
484
|
+
bnn_out_film = self.film(bnn_out, bnn_in)
|
|
485
|
+
bnn_out_film = F.layer_norm(bnn_out_film, (bnn_out_film.size(-1),))
|
|
486
|
+
feats = torch.cat([bnn_in, bnn_out_film], dim=-1).view(bnn_in.size(0), -1)
|
|
487
|
+
shared = self.shared_backbone(feats)
|
|
488
|
+
|
|
489
|
+
j = self.head_joints(shared).view(-1, self.action_chunk, 6)
|
|
490
|
+
g = self.head_gripper(shared).view(-1, self.action_chunk, 1)
|
|
491
|
+
s = self.head_success(shared).view(-1, self.action_chunk, 1)
|
|
492
|
+
return j, g, s
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
def _load_single_window(args):
|
|
496
|
+
v_paths, t, seq_len, exp_hw = args
|
|
497
|
+
target_w, target_h = 640, 480
|
|
498
|
+
|
|
499
|
+
v_list = []
|
|
500
|
+
start_idx = t - seq_len + 1
|
|
501
|
+
|
|
502
|
+
for i in range(start_idx, t + 1):
|
|
503
|
+
idx = i if i >= 0 else 0
|
|
504
|
+
try:
|
|
505
|
+
with Image.open(v_paths[idx]) as img:
|
|
506
|
+
arr = np.array(img.resize((target_w, target_h)), dtype=np.float32) / 255.0
|
|
507
|
+
v_list.append(arr.transpose(2, 0, 1))
|
|
508
|
+
except Exception:
|
|
509
|
+
v_list.append(np.zeros((3, target_h, target_w), dtype=np.float32))
|
|
510
|
+
|
|
511
|
+
return np.stack(v_list)
|
|
512
|
+
|
|
513
|
+
|
|
514
|
+
def train_single_view_parallel_chunk(
|
|
515
|
+
task_name,
|
|
516
|
+
root_dir,
|
|
517
|
+
batch_size=50,
|
|
518
|
+
seq_len=4,
|
|
519
|
+
action_chunk=8,
|
|
520
|
+
lr=1e-4,
|
|
521
|
+
num_epochs=500,
|
|
522
|
+
start_epoch=0,
|
|
523
|
+
lambda_joints=10.0, lambda_grip=5.0, lambda_success=2.0,
|
|
524
|
+
log_path=None, ckpt_dir=None, success_mode="within_horizon",
|
|
525
|
+
report_url=None,
|
|
526
|
+
):
|
|
527
|
+
logger.info(f"启动单视角训练 | BS={batch_size} | Chunk={action_chunk} | Mode={success_mode}")
|
|
528
|
+
|
|
529
|
+
bnn_pool = None
|
|
530
|
+
io_pool = None
|
|
531
|
+
device = None
|
|
532
|
+
|
|
533
|
+
last_saved_ckpt_path = None
|
|
534
|
+
try:
|
|
535
|
+
if log_path:
|
|
536
|
+
os.makedirs(os.path.dirname(log_path), exist_ok=True)
|
|
537
|
+
os.makedirs(ckpt_dir, exist_ok=True)
|
|
538
|
+
|
|
539
|
+
dataset = SingleViewRobotTrajectoryDataset(
|
|
540
|
+
root_dir=root_dir,
|
|
541
|
+
min_frames_per_traj=6,
|
|
542
|
+
time_round=3,
|
|
543
|
+
time_tol=1e-3,
|
|
544
|
+
debug_max_bad=3
|
|
545
|
+
)
|
|
546
|
+
|
|
547
|
+
if len(dataset) == 0:
|
|
548
|
+
raise RuntimeError(
|
|
549
|
+
"Dataset size = 0,训练无法开始。\n"
|
|
550
|
+
"请看上面 [DEBUG] 的 bad examples:基本都是 Time(s) 与图片文件名不匹配导致 matched_frames=0。\n"
|
|
551
|
+
)
|
|
552
|
+
|
|
553
|
+
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True,
|
|
554
|
+
collate_fn=traj_collate_fn, drop_last=True)
|
|
555
|
+
|
|
556
|
+
bnn_pool = PersistentBNNPool(num_workers=batch_size)
|
|
557
|
+
io_pool = ThreadPoolExecutor(max_workers=min(64, batch_size * 2))
|
|
558
|
+
|
|
559
|
+
device = torch.device("cuda")
|
|
560
|
+
|
|
561
|
+
joint_mean_gpu = dataset.joint_mean.to(device)
|
|
562
|
+
joint_std_gpu = dataset.joint_std.to(device)
|
|
563
|
+
|
|
564
|
+
model = SingleViewBNNActionPolicy(seq_len, action_chunk).to(device)
|
|
565
|
+
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
|
|
566
|
+
|
|
567
|
+
crit_mse = nn.MSELoss(reduction='none')
|
|
568
|
+
crit_bce_w = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([dataset.pos_weight], device=device), reduction='none')
|
|
569
|
+
crit_bce = nn.BCEWithLogitsLoss(reduction='none')
|
|
570
|
+
|
|
571
|
+
if start_epoch > 0:
|
|
572
|
+
p = os.path.join(ckpt_dir, f"epoch_{start_epoch}.pth")
|
|
573
|
+
if os.path.exists(p):
|
|
574
|
+
checkpoint = torch.load(p, map_location=device)
|
|
575
|
+
if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
|
|
576
|
+
model.load_state_dict(checkpoint['model_state_dict'])
|
|
577
|
+
logger.info(f"Loaded Checkpoint Epoch {checkpoint.get('epoch')}")
|
|
578
|
+
else:
|
|
579
|
+
model.load_state_dict(checkpoint)
|
|
580
|
+
logger.info("Loaded Legacy State Dict")
|
|
581
|
+
|
|
582
|
+
update_freq = 5
|
|
583
|
+
|
|
584
|
+
for epoch in range(start_epoch, num_epochs):
|
|
585
|
+
epoch_start_time = time.time()
|
|
586
|
+
model.train()
|
|
587
|
+
total_loss, steps = 0.0, 0
|
|
588
|
+
real_joint_err_accum = 0.0
|
|
589
|
+
|
|
590
|
+
# pbar = tqdm(loader, desc=f"Ep {epoch+1}")
|
|
591
|
+
for batch_trajs in loader:
|
|
592
|
+
curr_bs = len(batch_trajs)
|
|
593
|
+
bnn_pool.reset_all(curr_bs)
|
|
594
|
+
|
|
595
|
+
optimizer.zero_grad(set_to_none=True)
|
|
596
|
+
accum_steps = 0
|
|
597
|
+
|
|
598
|
+
lengths = [t["length"] for t in batch_trajs]
|
|
599
|
+
max_len = max(lengths)
|
|
600
|
+
exp_hw = batch_trajs[0]["exp_hw"]
|
|
601
|
+
|
|
602
|
+
bnn_hist = torch.zeros(curr_bs, max_len, 80, device=device)
|
|
603
|
+
|
|
604
|
+
for t in range(max_len):
|
|
605
|
+
|
|
606
|
+
futures = [
|
|
607
|
+
io_pool.submit(_load_single_window, (tr["view_paths"], t, seq_len, exp_hw))
|
|
608
|
+
if t < tr["length"] else None
|
|
609
|
+
for tr in batch_trajs
|
|
610
|
+
]
|
|
611
|
+
|
|
612
|
+
imgs, masks = [], []
|
|
613
|
+
for f in futures:
|
|
614
|
+
if f:
|
|
615
|
+
v = f.result()
|
|
616
|
+
imgs.append(torch.from_numpy(v))
|
|
617
|
+
masks.append(True)
|
|
618
|
+
else:
|
|
619
|
+
z = torch.zeros(seq_len, 3, 480, 640)
|
|
620
|
+
imgs.append(z)
|
|
621
|
+
masks.append(False)
|
|
622
|
+
|
|
623
|
+
b_imgs = torch.stack(imgs).to(device, non_blocking=True)
|
|
624
|
+
bnn_in = model.encode_visual(b_imgs)
|
|
625
|
+
|
|
626
|
+
curr_feat = bnn_in[:, -1, :].detach().cpu().numpy() / 10.0
|
|
627
|
+
bnn_outs = bnn_pool.step_batch([curr_feat[b].reshape(1, -1) for b in range(curr_bs)])
|
|
628
|
+
|
|
629
|
+
clean_outs = [
|
|
630
|
+
o.T if o is not None and hasattr(o, "shape") and o.shape == (1, 80)
|
|
631
|
+
else (o if o is not None else np.zeros(80))
|
|
632
|
+
for o in bnn_outs
|
|
633
|
+
]
|
|
634
|
+
clean_outs = [np.array(o).squeeze() for o in clean_outs]
|
|
635
|
+
bnn_curr = torch.tensor(np.stack(clean_outs), device=device, dtype=torch.float32)
|
|
636
|
+
bnn_hist[:, t, :] = bnn_curr
|
|
637
|
+
|
|
638
|
+
s_idx = t - seq_len + 1
|
|
639
|
+
if s_idx >= 0:
|
|
640
|
+
bnn_seq = bnn_hist[:, s_idx:t+1]
|
|
641
|
+
else:
|
|
642
|
+
first = bnn_hist[:, 0:1, :].repeat(1, -s_idx, 1)
|
|
643
|
+
bnn_seq = torch.cat([first, bnn_hist[:, 0:t+1]], dim=1)
|
|
644
|
+
|
|
645
|
+
p_j, p_g, p_s = model.decode_action(bnn_in, bnn_seq)
|
|
646
|
+
|
|
647
|
+
t_j_list, t_g_list, t_s_list, m_list = [], [], [], []
|
|
648
|
+
for b_idx in range(curr_bs):
|
|
649
|
+
if not masks[b_idx]:
|
|
650
|
+
z = torch.zeros(action_chunk, 1, device=device)
|
|
651
|
+
t_j_list.append(torch.zeros(action_chunk, 6, device=device))
|
|
652
|
+
t_g_list.append(z)
|
|
653
|
+
t_s_list.append(z)
|
|
654
|
+
m_list.append(z)
|
|
655
|
+
continue
|
|
656
|
+
|
|
657
|
+
traj = batch_trajs[b_idx]
|
|
658
|
+
real_end = min(t + action_chunk, traj["length"])
|
|
659
|
+
chunk_sz = real_end - t
|
|
660
|
+
pad_sz = action_chunk - chunk_sz
|
|
661
|
+
|
|
662
|
+
raw = torch.from_numpy(traj["targets"][t:real_end]).to(device)
|
|
663
|
+
c_j = raw[:, 0:6]
|
|
664
|
+
c_g = (raw[:, 6:7] < GRIPPER_CLOSE_THRESH).float()
|
|
665
|
+
c_s, _ = build_success_targets_and_mask(
|
|
666
|
+
raw[:, 7:8], t, traj["length"], chunk_sz, pad_sz, success_mode, SUCCESS_THRESH
|
|
667
|
+
)
|
|
668
|
+
c_s = c_s.to(device)
|
|
669
|
+
|
|
670
|
+
if pad_sz > 0:
|
|
671
|
+
c_j = torch.cat([c_j, c_j[-1:].repeat(pad_sz, 1)], 0)
|
|
672
|
+
c_g = torch.cat([c_g, c_g[-1:].repeat(pad_sz, 1)], 0)
|
|
673
|
+
|
|
674
|
+
mask = torch.cat([torch.ones(chunk_sz, 1), torch.zeros(pad_sz, 1)], 0).to(device)
|
|
675
|
+
t_j_list.append(c_j)
|
|
676
|
+
t_g_list.append(c_g)
|
|
677
|
+
t_s_list.append(c_s)
|
|
678
|
+
m_list.append(mask)
|
|
679
|
+
|
|
680
|
+
t_j = torch.stack(t_j_list)
|
|
681
|
+
t_g = torch.stack(t_g_list)
|
|
682
|
+
t_s = torch.stack(t_s_list)
|
|
683
|
+
loss_mask = torch.stack(m_list)
|
|
684
|
+
|
|
685
|
+
t_j_norm = (t_j - joint_mean_gpu) / joint_std_gpu
|
|
686
|
+
|
|
687
|
+
valid = loss_mask.sum()
|
|
688
|
+
if valid > 0:
|
|
689
|
+
l_j = (crit_mse(p_j, t_j_norm).mean(-1, keepdim=True) * loss_mask).sum() / valid
|
|
690
|
+
l_g = (crit_bce_w(p_g, t_g) * loss_mask).sum() / valid
|
|
691
|
+
l_s = (crit_bce(p_s, t_s) * loss_mask).sum() / valid
|
|
692
|
+
|
|
693
|
+
loss = lambda_joints * l_j + lambda_grip * l_g + lambda_success * l_s
|
|
694
|
+
(loss / update_freq).backward()
|
|
695
|
+
|
|
696
|
+
accum_steps += 1
|
|
697
|
+
total_loss += loss.item()
|
|
698
|
+
steps += 1
|
|
699
|
+
|
|
700
|
+
if accum_steps % update_freq == 0:
|
|
701
|
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20.0)
|
|
702
|
+
optimizer.step()
|
|
703
|
+
optimizer.zero_grad(set_to_none=True)
|
|
704
|
+
|
|
705
|
+
with torch.no_grad():
|
|
706
|
+
real_p = p_j[:, 0, :] * joint_std_gpu + joint_mean_gpu
|
|
707
|
+
real_t = t_j[:, 0, :]
|
|
708
|
+
v0 = loss_mask[:, 0, :]
|
|
709
|
+
if v0.sum() > 0:
|
|
710
|
+
err = torch.abs(real_p - real_t).mean(dim=1)
|
|
711
|
+
real_joint_err_accum += (err * v0.squeeze()).sum().item() / (v0.sum().item() + 1e-6)
|
|
712
|
+
|
|
713
|
+
if accum_steps % update_freq != 0:
|
|
714
|
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20.0)
|
|
715
|
+
optimizer.step()
|
|
716
|
+
optimizer.zero_grad(set_to_none=True)
|
|
717
|
+
|
|
718
|
+
# pbar.set_postfix({
|
|
719
|
+
# "Loss": f"{total_loss/steps:.3f}" if steps > 0 else "0",
|
|
720
|
+
# "J_Err": f"{real_joint_err_accum/steps:.3f}" if steps > 0 else "0"
|
|
721
|
+
# })
|
|
722
|
+
|
|
723
|
+
epoch_duration = time.time() - epoch_start_time
|
|
724
|
+
|
|
725
|
+
checkpoint = {
|
|
726
|
+
'model_state_dict': model.state_dict(),
|
|
727
|
+
'optimizer_state_dict': optimizer.state_dict(),
|
|
728
|
+
'joint_mean': dataset.joint_mean,
|
|
729
|
+
'joint_std': dataset.joint_std,
|
|
730
|
+
'epoch': epoch + 1
|
|
731
|
+
}
|
|
732
|
+
last_saved_ckpt_path = os.path.join(ckpt_dir, f"epoch_{epoch+1}.pth")
|
|
733
|
+
torch.save(checkpoint, last_saved_ckpt_path)
|
|
734
|
+
|
|
735
|
+
avg_loss = total_loss / steps if steps > 0 else 0.0
|
|
736
|
+
avg_j_err = real_joint_err_accum / steps if steps > 0 else 0.0
|
|
737
|
+
msg_core = f"Ep {epoch+1} Saved. Time: {epoch_duration:.2f}s, Avg Loss: {avg_loss:.4f}, J_Err: {avg_j_err:.4f}"
|
|
738
|
+
msg = f"[{task_name}] {msg_core}" if task_name else msg_core
|
|
739
|
+
|
|
740
|
+
logger.info(msg)
|
|
741
|
+
# if log_path:
|
|
742
|
+
# with open(log_path, "a") as f:
|
|
743
|
+
# f.write(msg + "\n")
|
|
744
|
+
|
|
745
|
+
if report_url and task_name:
|
|
746
|
+
try:
|
|
747
|
+
import requests
|
|
748
|
+
payload = {
|
|
749
|
+
"task_name": task_name,
|
|
750
|
+
"epoch": epoch + 1,
|
|
751
|
+
"duration_sec": epoch_duration,
|
|
752
|
+
"avg_loss": avg_loss,
|
|
753
|
+
"j_err": avg_j_err,
|
|
754
|
+
"msg": msg_core,
|
|
755
|
+
"is_finished": False if epoch < num_epochs - 1 else True,
|
|
756
|
+
"model_path": last_saved_ckpt_path,
|
|
757
|
+
}
|
|
758
|
+
requests.post(report_url, json=payload, timeout=3)
|
|
759
|
+
except Exception as e:
|
|
760
|
+
logger.warning(f"上报失败: {e}")
|
|
761
|
+
except KeyboardInterrupt:
|
|
762
|
+
logger.warning("训练被用户中断")
|
|
763
|
+
raise
|
|
764
|
+
except Exception as e:
|
|
765
|
+
logger.error(f"训练过程中发生错误: {str(e)}\n{traceback.format_exc()}")
|
|
766
|
+
raise
|
|
767
|
+
finally:
|
|
768
|
+
logger.info("正在清理训练资源...")
|
|
769
|
+
if bnn_pool is not None:
|
|
770
|
+
try:
|
|
771
|
+
bnn_pool.close()
|
|
772
|
+
logger.info("BNN 进程池已关闭")
|
|
773
|
+
except Exception as e:
|
|
774
|
+
logger.error(f"关闭 BNN 进程池时出错: {str(e)}")
|
|
775
|
+
|
|
776
|
+
if io_pool is not None:
|
|
777
|
+
try:
|
|
778
|
+
io_pool.shutdown(wait=True, cancel_futures=True)
|
|
779
|
+
logger.info("IO 线程池已关闭")
|
|
780
|
+
except Exception as e:
|
|
781
|
+
logger.error(f"关闭 IO 线程池时出错: {str(e)}")
|
|
782
|
+
|
|
783
|
+
if device is not None and device.type == 'cuda':
|
|
784
|
+
try:
|
|
785
|
+
torch.cuda.empty_cache()
|
|
786
|
+
torch.cuda.ipc_collect()
|
|
787
|
+
logger.info("已清空 GPU 缓存")
|
|
788
|
+
except Exception as e:
|
|
789
|
+
logger.error(f"清空 GPU 缓存时出错: {str(e)}")
|
|
790
|
+
|
|
791
|
+
logger.info("资源清理完成")
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
if __name__ == "__main__":
|
|
795
|
+
mp.set_start_method('spawn', force=True)
|
|
796
|
+
|
|
797
|
+
import argparse
|
|
798
|
+
|
|
799
|
+
parser = argparse.ArgumentParser(description="单视角训练脚本")
|
|
800
|
+
parser.add_argument("--task_name", type=str, required=False, default=None)
|
|
801
|
+
parser.add_argument("--report_url", type=str, required=False, default=None)
|
|
802
|
+
parser.add_argument("--root_dir", type=str, required=True)
|
|
803
|
+
parser.add_argument("--batch_size", type=int, default=48)
|
|
804
|
+
parser.add_argument("--seq_len", type=int, default=4)
|
|
805
|
+
parser.add_argument("--action_chunk", type=int, default=8)
|
|
806
|
+
parser.add_argument("--lr", type=float, default=1e-4)
|
|
807
|
+
parser.add_argument("--num_epochs", type=int, default=500)
|
|
808
|
+
parser.add_argument("--start_epoch", type=int, default=0)
|
|
809
|
+
parser.add_argument("--lambda_joints", type=float, default=10.0)
|
|
810
|
+
parser.add_argument("--lambda_grip", type=float, default=5.0)
|
|
811
|
+
parser.add_argument("--lambda_success", type=float, default=2.0)
|
|
812
|
+
parser.add_argument("--log_path", type=str, default=None)
|
|
813
|
+
parser.add_argument("--ckpt_dir", type=str, required=True)
|
|
814
|
+
parser.add_argument("--success_mode", type=str, default="within_horizon")
|
|
815
|
+
|
|
816
|
+
args = parser.parse_args()
|
|
817
|
+
|
|
818
|
+
train_single_view_parallel_chunk(
|
|
819
|
+
task_name=args.task_name,
|
|
820
|
+
root_dir=args.root_dir,
|
|
821
|
+
batch_size=args.batch_size,
|
|
822
|
+
seq_len=args.seq_len,
|
|
823
|
+
action_chunk=args.action_chunk,
|
|
824
|
+
lr=args.lr,
|
|
825
|
+
num_epochs=args.num_epochs,
|
|
826
|
+
start_epoch=args.start_epoch,
|
|
827
|
+
log_path=args.log_path,
|
|
828
|
+
ckpt_dir=args.ckpt_dir,
|
|
829
|
+
lambda_joints=args.lambda_joints,
|
|
830
|
+
lambda_grip=args.lambda_grip,
|
|
831
|
+
lambda_success=args.lambda_success,
|
|
832
|
+
success_mode=args.success_mode,
|
|
833
|
+
report_url=args.report_url,
|
|
834
|
+
)
|