zrb 1.8.9__py3-none-any.whl → 1.8.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,6 +4,7 @@ import os
4
4
  from zrb.builtin.llm.tool.file import DEFAULT_EXCLUDED_PATTERNS, is_excluded
5
5
  from zrb.builtin.llm.tool.sub_agent import create_sub_agent_tool
6
6
  from zrb.context.any_context import AnyContext
7
+ from zrb.llm_rate_limitter import llm_rate_limitter
7
8
 
8
9
  _EXTRACT_INFO_FROM_REPO_SYSTEM_PROMPT = """
9
10
  You are an extraction info agent.
@@ -81,8 +82,8 @@ async def analyze_repo(
81
82
  goal: str,
82
83
  extensions: list[str] = _DEFAULT_EXTENSIONS,
83
84
  exclude_patterns: list[str] = DEFAULT_EXCLUDED_PATTERNS,
84
- extraction_char_limit: int = 150000,
85
- summarization_char_limit: int = 150000,
85
+ extraction_token_limit: int = 30000,
86
+ summarization_token_limit: int = 30000,
86
87
  ) -> str:
87
88
  """
88
89
  Extract and summarize information from a directory that probably
@@ -101,9 +102,9 @@ async def analyze_repo(
101
102
  while reading resources. Defaults to common programming languages and config files.
102
103
  exclude_patterns(Optional[list[str]]): List of patterns to exclude from analysis.
103
104
  Common patterns like '.venv', 'node_modules' should be excluded by default.
104
- extraction_char_limit(Optional[int]): Max resource content char length
105
+ extraction_token_limit(Optional[int]): Max resource content char length
105
106
  the extraction assistant able to handle. Defaults to 150000
106
- summarization_char_limit(Optional[int]): Max resource content char length
107
+ summarization_token_limit(Optional[int]): Max resource content char length
107
108
  the summarization assistant able to handle. Defaults to 150000
108
109
  Returns:
109
110
  str: The analysis result
@@ -117,22 +118,19 @@ async def analyze_repo(
117
118
  ctx,
118
119
  file_metadatas=file_metadatas,
119
120
  goal=goal,
120
- char_limit=extraction_char_limit,
121
+ token_limit=extraction_token_limit,
121
122
  )
123
+ if len(extracted_infos) == 1:
124
+ return extracted_infos[0]
122
125
  ctx.print("Summarization")
123
- summarized_infos = await _summarize_info(
124
- ctx,
125
- extracted_infos=extracted_infos,
126
- goal=goal,
127
- char_limit=summarization_char_limit,
128
- )
126
+ summarized_infos = extracted_infos
129
127
  while len(summarized_infos) > 1:
130
128
  ctx.print("Summarization")
131
129
  summarized_infos = await _summarize_info(
132
130
  ctx,
133
131
  extracted_infos=summarized_infos,
134
132
  goal=goal,
135
- char_limit=summarization_char_limit,
133
+ token_limit=summarization_token_limit,
136
134
  )
137
135
  return summarized_infos[0]
138
136
 
@@ -165,7 +163,7 @@ async def _extract_info(
165
163
  ctx: AnyContext,
166
164
  file_metadatas: list[dict[str, str]],
167
165
  goal: str,
168
- char_limit: int,
166
+ token_limit: int,
169
167
  ) -> list[str]:
170
168
  extract = create_sub_agent_tool(
171
169
  tool_name="extract",
@@ -174,27 +172,31 @@ async def _extract_info(
174
172
  )
175
173
  extracted_infos = []
176
174
  content_buffer = []
177
- current_char_count = 0
175
+ current_token_count = 0
178
176
  for metadata in file_metadatas:
179
177
  path = metadata.get("path", "")
180
178
  content = metadata.get("content", "")
181
179
  file_obj = {"path": path, "content": content}
182
180
  file_str = json.dumps(file_obj)
183
- if current_char_count + len(file_str) > char_limit:
181
+ if current_token_count + llm_rate_limitter.count_token(file_str) > token_limit:
184
182
  if content_buffer:
185
183
  prompt = _create_extract_info_prompt(goal, content_buffer)
186
- extracted_info = await extract(ctx, prompt)
184
+ extracted_info = await extract(
185
+ ctx, llm_rate_limitter.clip_prompt(prompt, token_limit)
186
+ )
187
187
  extracted_infos.append(extracted_info)
188
188
  content_buffer = [file_obj]
189
- current_char_count = len(file_str)
189
+ current_token_count = llm_rate_limitter.count_token(file_str)
190
190
  else:
191
191
  content_buffer.append(file_obj)
192
- current_char_count += len(file_str)
192
+ current_token_count += llm_rate_limitter.count_token(file_str)
193
193
 
194
194
  # Process any remaining content in the buffer
195
195
  if content_buffer:
196
196
  prompt = _create_extract_info_prompt(goal, content_buffer)
197
- extracted_info = await extract(ctx, prompt)
197
+ extracted_info = await extract(
198
+ ctx, llm_rate_limitter.clip_prompt(prompt, token_limit)
199
+ )
198
200
  extracted_infos.append(extracted_info)
199
201
  return extracted_infos
200
202
 
@@ -212,7 +214,7 @@ async def _summarize_info(
212
214
  ctx: AnyContext,
213
215
  extracted_infos: list[str],
214
216
  goal: str,
215
- char_limit: int,
217
+ token_limit: int,
216
218
  ) -> list[str]:
217
219
  summarize = create_sub_agent_tool(
218
220
  tool_name="extract",
@@ -222,10 +224,13 @@ async def _summarize_info(
222
224
  summarized_infos = []
223
225
  content_buffer = ""
224
226
  for extracted_info in extracted_infos:
225
- if len(content_buffer) + len(extracted_info) > char_limit:
227
+ new_prompt = content_buffer + extracted_info
228
+ if llm_rate_limitter.count_token(new_prompt) > token_limit:
226
229
  if content_buffer:
227
230
  prompt = _create_summarize_info_prompt(goal, content_buffer)
228
- summarized_info = await summarize(ctx, prompt)
231
+ summarized_info = await summarize(
232
+ ctx, llm_rate_limitter.clip_prompt(prompt, token_limit)
233
+ )
229
234
  summarized_infos.append(summarized_info)
230
235
  content_buffer = extracted_info
231
236
  else:
@@ -234,7 +239,9 @@ async def _summarize_info(
234
239
  # Process any remaining content in the buffer
235
240
  if content_buffer:
236
241
  prompt = _create_summarize_info_prompt(goal, content_buffer)
237
- summarized_info = await summarize(ctx, prompt)
242
+ summarized_info = await summarize(
243
+ ctx, llm_rate_limitter.clip_prompt(prompt, token_limit)
244
+ )
238
245
  summarized_infos.append(summarized_info)
239
246
  return summarized_infos
240
247
 
@@ -6,6 +6,7 @@ from typing import Any, Optional
6
6
 
7
7
  from zrb.builtin.llm.tool.sub_agent import create_sub_agent_tool
8
8
  from zrb.context.any_context import AnyContext
9
+ from zrb.llm_rate_limitter import llm_rate_limitter
9
10
  from zrb.util.file import read_file, read_file_with_line_numbers, write_file
10
11
 
11
12
  _EXTRACT_INFO_FROM_FILE_SYSTEM_PROMPT = """
@@ -464,7 +465,9 @@ def apply_diff(
464
465
  raise RuntimeError(f"Unexpected error applying diff to {path}: {e}")
465
466
 
466
467
 
467
- async def analyze_file(ctx: AnyContext, path: str, query: str) -> str:
468
+ async def analyze_file(
469
+ ctx: AnyContext, path: str, query: str, token_limit: int = 30000
470
+ ) -> str:
468
471
  """Analyze file using LLM capability to reduce context usage.
469
472
  Use this tool for:
470
473
  - summarization
@@ -474,6 +477,7 @@ async def analyze_file(ctx: AnyContext, path: str, query: str) -> str:
474
477
  Args:
475
478
  path (str): File path to be analyze. Pass exactly as provided, including '~'.
476
479
  query(str): Instruction to analyze the file
480
+ token_limit(Optional[int]): Max token length to be taken from file
477
481
  Returns:
478
482
  str: The analysis result
479
483
  Raises:
@@ -489,9 +493,8 @@ async def analyze_file(ctx: AnyContext, path: str, query: str) -> str:
489
493
  system_prompt=_EXTRACT_INFO_FROM_FILE_SYSTEM_PROMPT,
490
494
  tools=[read_from_file, search_files],
491
495
  )
492
- return await _analyze_file(
493
- ctx,
494
- json.dumps(
495
- {"instruction": query, "file_path": abs_path, "file_content": file_content}
496
- ),
496
+ payload = json.dumps(
497
+ {"instruction": query, "file_path": abs_path, "file_content": file_content}
497
498
  )
499
+ clipped_payload = llm_rate_limitter.clip_prompt(payload, token_limit)
500
+ return await _analyze_file(ctx, clipped_payload)
@@ -1,7 +1,7 @@
1
1
  import json
2
2
  from collections.abc import Callable
3
3
  from textwrap import dedent
4
- from typing import TYPE_CHECKING, Any
4
+ from typing import TYPE_CHECKING, Any, Coroutine
5
5
 
6
6
  if TYPE_CHECKING:
7
7
  from pydantic_ai import Tool
@@ -33,7 +33,7 @@ def create_sub_agent_tool(
33
33
  model_settings: ModelSettings | None = None,
34
34
  tools: list[ToolOrCallable] = [],
35
35
  mcp_servers: list[MCPServer] = [],
36
- ) -> Callable[[AnyContext, str], str]:
36
+ ) -> Callable[[AnyContext, str], Coroutine[Any, Any, str]]:
37
37
  """
38
38
  Create an LLM "sub-agent" tool function for use by a main LLM agent.
39
39
 
@@ -97,6 +97,8 @@ def create_sub_agent_tool(
97
97
  tools=tools,
98
98
  mcp_servers=mcp_servers,
99
99
  )
100
+
101
+ sub_agent_run = None
100
102
  # Run the sub-agent iteration
101
103
  # Start with an empty history for the sub-agent
102
104
  sub_agent_run = await run_agent_iteration(
@@ -1,5 +1,5 @@
1
- fastapi[standard]~=0.115.12
2
- alembic~=1.15.2
1
+ fastapi[standard]~=0.115.14
2
+ alembic~=1.16.2
3
3
  sqlmodel~=0.0.24
4
4
  ulid-py~=1.1.0
5
5
  passlib~=1.7.4
zrb/config.py CHANGED
@@ -245,12 +245,12 @@ class Config:
245
245
  @property
246
246
  def LLM_MAX_TOKENS_PER_MINUTE(self) -> int:
247
247
  """Maximum number of LLM tokens allowed per minute."""
248
- return int(os.getenv("ZRB_LLM_MAX_TOKENS_PER_MINUTE", "120000"))
248
+ return int(os.getenv("ZRB_LLM_MAX_TOKENS_PER_MINUTE", "200000"))
249
249
 
250
250
  @property
251
251
  def LLM_MAX_TOKENS_PER_REQUEST(self) -> int:
252
252
  """Maximum number of tokens allowed per individual LLM request."""
253
- return int(os.getenv("ZRB_LLM_MAX_TOKENS_PER_REQUEST", "30000"))
253
+ return int(os.getenv("ZRB_LLM_MAX_TOKENS_PER_REQUEST", "50000"))
254
254
 
255
255
  @property
256
256
  def LLM_THROTTLE_SLEEP(self) -> float:
zrb/llm_rate_limitter.py CHANGED
@@ -3,9 +3,16 @@ import time
3
3
  from collections import deque
4
4
  from typing import Callable
5
5
 
6
+ import tiktoken
7
+
6
8
  from zrb.config import CFG
7
9
 
8
10
 
11
+ def _estimate_token(text: str) -> int:
12
+ enc = tiktoken.encoding_for_model("gpt-4o")
13
+ return len(enc.encode(text))
14
+
15
+
9
16
  class LLMRateLimiter:
10
17
  """
11
18
  Helper class to enforce LLM API rate limits and throttling.
@@ -53,10 +60,10 @@ class LLMRateLimiter:
53
60
  return CFG.LLM_THROTTLE_SLEEP
54
61
 
55
62
  @property
56
- def token_counter_fn(self) -> Callable[[str], int]:
63
+ def count_token(self) -> Callable[[str], int]:
57
64
  if self._token_counter_fn is not None:
58
65
  return self._token_counter_fn
59
- return lambda x: len(x.split())
66
+ return _estimate_token
60
67
 
61
68
  def set_max_requests_per_minute(self, value: int):
62
69
  self._max_requests_per_minute = value
@@ -73,9 +80,22 @@ class LLMRateLimiter:
73
80
  def set_token_counter_fn(self, fn: Callable[[str], int]):
74
81
  self._token_counter_fn = fn
75
82
 
83
+ def clip_prompt(self, prompt: str, limit: int) -> str:
84
+ token_count = self.count_token(prompt)
85
+ if token_count <= limit:
86
+ return prompt
87
+ while token_count > limit:
88
+ prompt_parts = prompt.split(" ")
89
+ last_part_index = len(prompt_parts) - 2
90
+ clipped_prompt = " ".join(prompt_parts[:last_part_index])
91
+ token_count = self.count_token(clipped_prompt)
92
+ if token_count < limit:
93
+ return clipped_prompt
94
+ return prompt[:limit]
95
+
76
96
  async def throttle(self, prompt: str):
77
97
  now = time.time()
78
- tokens = self.token_counter_fn(prompt)
98
+ tokens = self.count_token(prompt)
79
99
  # Clean up old entries
80
100
  while self.request_times and now - self.request_times[0] > 60:
81
101
  self.request_times.popleft()
zrb/task/llm/agent.py CHANGED
@@ -16,6 +16,8 @@ else:
16
16
  Model = Any
17
17
  ModelSettings = Any
18
18
 
19
+ import json
20
+
19
21
  from zrb.context.any_context import AnyContext
20
22
  from zrb.context.any_shared_context import AnySharedContext
21
23
  from zrb.llm_rate_limitter import LLMRateLimiter, llm_rate_limitter
@@ -113,6 +115,7 @@ async def run_agent_iteration(
113
115
  user_prompt: str,
114
116
  history_list: ListOfDict,
115
117
  rate_limitter: LLMRateLimiter | None = None,
118
+ max_retry: int = 2,
116
119
  ) -> AgentRun:
117
120
  """
118
121
  Runs a single iteration of the agent execution loop.
@@ -129,13 +132,40 @@ async def run_agent_iteration(
129
132
  Raises:
130
133
  Exception: If any error occurs during agent execution.
131
134
  """
135
+ if max_retry < 0:
136
+ raise ValueError("Max retry cannot be less than 0")
137
+ attempt = 0
138
+ while attempt < max_retry:
139
+ try:
140
+ return await _run_single_agent_iteration(
141
+ ctx=ctx,
142
+ agent=agent,
143
+ user_prompt=user_prompt,
144
+ history_list=history_list,
145
+ rate_limitter=rate_limitter,
146
+ )
147
+ except BaseException:
148
+ attempt += 1
149
+ if attempt == max_retry:
150
+ raise
151
+ raise Exception("Max retry exceeded")
152
+
153
+
154
+ async def _run_single_agent_iteration(
155
+ ctx: AnyContext,
156
+ agent: Agent,
157
+ user_prompt: str,
158
+ history_list: ListOfDict,
159
+ rate_limitter: LLMRateLimiter | None = None,
160
+ ) -> AgentRun:
132
161
  from openai import APIError
133
162
  from pydantic_ai.messages import ModelMessagesTypeAdapter
134
163
 
164
+ agent_payload = estimate_request_payload(agent, user_prompt, history_list)
135
165
  if rate_limitter:
136
- await rate_limitter.throttle(user_prompt)
166
+ await rate_limitter.throttle(agent_payload)
137
167
  else:
138
- await llm_rate_limitter.throttle(user_prompt)
168
+ await llm_rate_limitter.throttle(agent_payload)
139
169
 
140
170
  async with agent.run_mcp_servers():
141
171
  async with agent.iter(
@@ -159,6 +189,19 @@ async def run_agent_iteration(
159
189
  return agent_run
160
190
 
161
191
 
192
+ def estimate_request_payload(
193
+ agent: Agent, user_prompt: str, history_list: ListOfDict
194
+ ) -> str:
195
+ system_prompts = agent._system_prompts if hasattr(agent, "_system_prompts") else ()
196
+ return json.dumps(
197
+ [
198
+ {"role": "system", "content": "\n".join(system_prompts)},
199
+ *history_list,
200
+ {"role": "user", "content": user_prompt},
201
+ ]
202
+ )
203
+
204
+
162
205
  def _get_plain_printer(ctx: AnyContext):
163
206
  def printer(*args, **kwargs):
164
207
  if "plain" not in kwargs:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: zrb
3
- Version: 1.8.9
3
+ Version: 1.8.10
4
4
  Summary: Your Automation Powerhouse
5
5
  Home-page: https://github.com/state-alchemists/zrb
6
6
  License: AGPL-3.0-or-later
@@ -19,18 +19,19 @@ Provides-Extra: rag
19
19
  Requires-Dist: beautifulsoup4 (>=4.13.3,<5.0.0)
20
20
  Requires-Dist: black (>=25.1.0,<25.2.0)
21
21
  Requires-Dist: chromadb (>=0.6.3,<0.7.0) ; extra == "rag" or extra == "all"
22
- Requires-Dist: fastapi[standard] (>=0.115.12,<0.116.0)
22
+ Requires-Dist: fastapi[standard] (>=0.115.14,<0.116.0)
23
23
  Requires-Dist: isort (>=6.0.1,<6.1.0)
24
24
  Requires-Dist: libcst (>=1.7.0,<2.0.0)
25
- Requires-Dist: openai (>=1.76.0,<2.0.0) ; extra == "rag" or extra == "all"
25
+ Requires-Dist: openai (>=1.86.0,<2.0.0) ; extra == "rag" or extra == "all"
26
26
  Requires-Dist: pdfplumber (>=0.11.6,<0.12.0) ; extra == "rag" or extra == "all"
27
- Requires-Dist: playwright (>=1.51.0,<2.0.0) ; extra == "playwright" or extra == "all"
27
+ Requires-Dist: playwright (>=1.53.0,<2.0.0) ; extra == "playwright" or extra == "all"
28
28
  Requires-Dist: psutil (>=7.0.0,<8.0.0)
29
- Requires-Dist: pydantic-ai (>=0.2.18,<0.3.0)
29
+ Requires-Dist: pydantic-ai (>=0.3.4,<0.4.0)
30
30
  Requires-Dist: pyjwt (>=2.10.1,<3.0.0)
31
- Requires-Dist: python-dotenv (>=1.1.0,<2.0.0)
31
+ Requires-Dist: python-dotenv (>=1.1.1,<2.0.0)
32
32
  Requires-Dist: python-jose[cryptography] (>=3.4.0,<4.0.0)
33
33
  Requires-Dist: requests (>=2.32.4,<3.0.0)
34
+ Requires-Dist: tiktoken (>=0.8.0,<0.9.0)
34
35
  Requires-Dist: ulid-py (>=1.1.0,<2.0.0)
35
36
  Project-URL: Documentation, https://github.com/state-alchemists/zrb
36
37
  Project-URL: Repository, https://github.com/state-alchemists/zrb
@@ -81,9 +82,11 @@ Or run our installation script to set up Zrb along with all prerequisites:
81
82
  bash -c "$(curl -fsSL https://raw.githubusercontent.com/state-alchemists/zrb/main/install.sh)"
82
83
  ```
83
84
 
85
+ You can also [run Zrb as container](https://github.com/state-alchemists/zrb?tab=readme-ov-file#-run-zrb-as-a-container)
86
+
84
87
  # 🍲 Quick Start: Build Your First Automation Workflow
85
88
 
86
- Zrb empowers you to create custom automation tasks using Python. This guide shows you how to define two simple tasks: one to generate a PlantUML script from your source code and another to convert that script into a PNG image.
89
+ Zrb empowers you to create custom automation tasks using Python. This guide shows you how to define two simple tasks: one to generate a Mermaid script from your source code and another to convert that script into a PNG image.
87
90
 
88
91
  ## 1. Create Your Task Definition File
89
92
 
@@ -92,59 +95,61 @@ Place a file named `zrb_init.py` in a directory that's accessible from your proj
92
95
  Add the following content to your zrb_init.py:
93
96
 
94
97
  ```python
95
- import os
96
98
  from zrb import cli, LLMTask, CmdTask, StrInput, Group
97
- from zrb.builtin.llm.tool.file import (
98
- list_files, read_from_file, search_files, write_to_file
99
- )
100
-
99
+ from zrb.builtin.llm.tool.code import analyze_repo
100
+ from zrb.builtin.llm.tool.file import write_to_file
101
101
 
102
- CURRENT_DIR = os.getcwd()
103
102
 
104
- # Create a group for UML-related tasks
105
- uml_group = cli.add_group(Group(name="uml", description="UML related tasks"))
103
+ # Create a group for Mermaid-related tasks
104
+ mermaid_group = cli.add_group(Group(name="mermaid", description="🧜 Mermaid diagram related tasks"))
106
105
 
107
- # Task 1: Generate a PlantUML script from your source code
108
- make_uml_script = uml_group.add_task(
106
+ # Task 1: Generate a Mermaid script from your source code
107
+ make_mermaid_script = mermaid_group.add_task(
109
108
  LLMTask(
110
109
  name="make-script",
111
- description="Creating plantuml diagram based on source code in current directory",
112
- input=StrInput(name="diagram", default="state diagram"),
110
+ description="Creating mermaid diagram based on source code in current directory",
111
+ input=[
112
+ StrInput(name="dir", default="./"),
113
+ StrInput(name="diagram", default="state-diagram"),
114
+ ],
113
115
  message=(
114
- f"Read all necessary files in {CURRENT_DIR}, "
115
- "make a {ctx.input.diagram} in plantuml format. "
116
- f"Write the script into {CURRENT_DIR}/{{ctx.input.diagram}}.uml"
116
+ "Read all necessary files in {ctx.input.dir}, "
117
+ "make a {ctx.input.diagram} in mermaid format. "
118
+ "Write the script into `{ctx.input.dir}/{ctx.input.diagram}.mmd`"
117
119
  ),
118
120
  tools=[
119
- list_files, read_from_file, search_files, write_to_file
121
+ analyze_repo, write_to_file
120
122
  ],
121
123
  )
122
124
  )
123
125
 
124
- # Task 2: Convert the PlantUML script into a PNG image
125
- make_uml_image = uml_group.add_task(
126
+ # Task 2: Convert the Mermaid script into a PNG image
127
+ make_mermaid_image = mermaid_group.add_task(
126
128
  CmdTask(
127
129
  name="make-image",
128
130
  description="Creating png based on source code in current directory",
129
- input=StrInput(name="diagram", default="state diagram"),
130
- cmd="plantuml -tpng '{ctx.input.diagram}.uml'",
131
- cwd=CURRENT_DIR,
131
+ input=[
132
+ StrInput(name="dir", default="./"),
133
+ StrInput(name="diagram", default="state-diagram"),
134
+ ],
135
+ cmd="mmdc -i '{ctx.input.diagram}.mmd' -o '{ctx.input.diagram}.png'",
136
+ cwd="{ctx.input.dir}",
132
137
  )
133
138
  )
134
139
 
135
140
  # Set up the dependency: the image task runs after the script is created
136
- make_uml_script >> make_uml_image
141
+ make_mermaid_script >> make_mermaid_image
137
142
  ```
138
143
 
139
144
  **What This Does**
140
145
 
141
146
  - **Task 1 – make-script**:
142
147
 
143
- Uses an LLM to read all files in your current directory and generate a PlantUML script (e.g., `state diagram.uml`).
148
+ Uses an LLM to read all files in your current directory and generate a Mermaid script (e.g., `state diagram.mmd`).
144
149
 
145
150
  - **Task 2 – make-image**:
146
151
 
147
- Executes a command that converts the PlantUML script into a PNG image (e.g., `state diagram.png`). This task will run only after the script has been generated.
152
+ Executes a command that converts the Mermaid script into a PNG image (e.g., `state diagram.png`). This task will run only after the script has been generated.
148
153
 
149
154
 
150
155
  ## 2. Run Your Tasks
@@ -161,18 +166,19 @@ After setting up your tasks, you can execute them from any project. For example:
161
166
  - Create a state diagram:
162
167
 
163
168
  ```bash
164
- zrb uml make-image --diagram "state diagram"
169
+ zrb mermaid make-image --diagram "state diagram" --dir ./
165
170
  ```
166
171
 
167
172
  - Or use the interactive mode:
168
173
 
169
174
  ```bash
170
- zrb uml make-image
175
+ zrb mermaid make-image
171
176
  ```
172
177
 
173
178
  Zrb will prompt:
174
179
 
175
180
  ```bash
181
+ dir [./]:
176
182
  diagram [state diagram]:
177
183
  ```
178
184
 
@@ -194,7 +200,7 @@ Then open your browser and visit `http://localhost:21213`
194
200
  ![Zrb Web UI](https://raw.githubusercontent.com/state-alchemists/zrb/main/_images/zrb-web-ui.png)
195
201
 
196
202
 
197
- # 🐋 Running Zrb as a Container
203
+ # 🐋 Run Zrb as a Container
198
204
 
199
205
  Zrb can be run in a containerized environment, offering two distinct versions to suit different needs:
200
206
 
@@ -17,10 +17,10 @@ zrb/builtin/llm/previous-session.js,sha256=xMKZvJoAbrwiyHS0OoPrWuaKxWYLoyR5sgueP
17
17
  zrb/builtin/llm/tool/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  zrb/builtin/llm/tool/api.py,sha256=yR9I0ZsI96OeQl9pgwORMASVuXsAL0a89D_iPS4C8Dc,1699
19
19
  zrb/builtin/llm/tool/cli.py,sha256=_CNEmEc6K2Z0i9ppYeM7jGpqaEdT3uxaWQatmxP3jKE,858
20
- zrb/builtin/llm/tool/code.py,sha256=k-IaJCnr8sgfcGJXLF4CGKpUD64GyzN8QpnkLaIrda8,7703
21
- zrb/builtin/llm/tool/file.py,sha256=nPSl086ZwURfzysy8pA76zhlpABn4X9bR_NDW9eUwoM,18259
20
+ zrb/builtin/llm/tool/code.py,sha256=gvRnimUh5kWqmpiYtJvEm6KDZhQArqhwAAkKI1_UapY,8133
21
+ zrb/builtin/llm/tool/file.py,sha256=ufLCAaHB0JkEAqQS4fbM9OaTfLluqlCuSyMmnYhI0rY,18491
22
22
  zrb/builtin/llm/tool/rag.py,sha256=yqx7vXXyrOCJjhQJl4s0TnLL-2uQUTuKRnkWlSQBW0M,7883
23
- zrb/builtin/llm/tool/sub_agent.py,sha256=_ItDE5MV_RZtnY_-IUsSMmm6mYaDY3YRINT0hVNsGkA,4702
23
+ zrb/builtin/llm/tool/sub_agent.py,sha256=GPHD8hLlIfme0h1Q0zzMUuAc2HiKl8CRqWGNcgE_H1Q,4764
24
24
  zrb/builtin/llm/tool/web.py,sha256=pXRLhcB_Y6z-2w4C4WezH8n-pg3PSMgt_bwn3aaqi6g,5479
25
25
  zrb/builtin/md5.py,sha256=690RV2LbW7wQeTFxY-lmmqTSVEEZv3XZbjEUW1Q3XpE,1480
26
26
  zrb/builtin/project/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -170,7 +170,7 @@ zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/module/gateway/view
170
170
  zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/module/gateway/view/static/pico-css/pico.yellow.min.css,sha256=_UXLKrhEsXonQ-VthBNB7zHUEcV67KDAE-SiDR1SrlU,83371
171
171
  zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/module/gateway/view/static/pico-css/pico.zinc.min.css,sha256=C9KHUa2PomYXZg2-rbpDPDYkuL_ZZTwFS-uj1Zo7azE,83337
172
172
  zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/module/gateway/view/template/default.html,sha256=Lg4vONCLOx8PSORFitg8JZa-4dp-pyUvKSVzCJEFsB8,4048
173
- zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/requirements.txt,sha256=jSLXX-ZOElSG69qjx5yVcpg6X_QJoisNDUYpCv2ldH8,195
173
+ zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/requirements.txt,sha256=cV16jm4MpHK020eLm9ityrVBEZgJw0WvwrphOA-2lAE,195
174
174
  zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/schema/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
175
175
  zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/schema/permission.py,sha256=q66LXdZ-QTb30F1VTXNLnjyYBlK_ThVLiHgavtJy4LY,1424
176
176
  zrb/builtin/project/add/fastapp/fastapp_template/my_app_name/schema/role.py,sha256=7USbuhHhPc3xXkmwiqTVKsN8-eFWS8Q7emKxCGNGPw0,3244
@@ -217,7 +217,7 @@ zrb/callback/callback.py,sha256=PFhCqzfxdk6IAthmXcZ13DokT62xtBzJr_ciLw6I8Zg,4030
217
217
  zrb/cmd/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
218
218
  zrb/cmd/cmd_result.py,sha256=L8bQJzWCpcYexIxHBNsXj2pT3BtLmWex0iJSMkvimOA,597
219
219
  zrb/cmd/cmd_val.py,sha256=7Doowyg6BK3ISSGBLt-PmlhzaEkBjWWm51cED6fAUOQ,1014
220
- zrb/config.py,sha256=XJCJl3u6fo9OlL8V1HNLn5iKcSJjIICQk87CkBrA7IU,10222
220
+ zrb/config.py,sha256=qFtVVme30fMyi5x_mgvvULczNbORqK8ZEN8agXokXO4,10222
221
221
  zrb/content_transformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
222
222
  zrb/content_transformer/any_content_transformer.py,sha256=v8ZUbcix1GGeDQwB6OKX_1TjpY__ksxWVeqibwa_iZA,850
223
223
  zrb/content_transformer/content_transformer.py,sha256=STl77wW-I69QaGzCXjvkppngYFLufow8ybPLSyAvlHs,2404
@@ -247,7 +247,7 @@ zrb/input/password_input.py,sha256=szBojWxSP9QJecgsgA87OIYwQrY2AQ3USIKdDZY6snU,1
247
247
  zrb/input/str_input.py,sha256=NevZHX9rf1g8eMatPyy-kUX3DglrVAQpzvVpKAzf7bA,81
248
248
  zrb/input/text_input.py,sha256=6T3MngWdUs0u0ZVs5Dl11w5KS7nN1RkgrIR_zKumzPM,3695
249
249
  zrb/llm_config.py,sha256=7xp4mhre3ULSzfyuqinXXMigNOYNcemVEgPIiWTNdMk,16875
250
- zrb/llm_rate_limitter.py,sha256=RXdtPreMcmoYSE2Ab2StyHH95F0bD2pGmyySXs4gRio,3725
250
+ zrb/llm_rate_limitter.py,sha256=rFYJU2ngo1Hk3aSODsgFIpANI95qZydUvZ4WHOmdbHQ,4376
251
251
  zrb/runner/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
252
252
  zrb/runner/cli.py,sha256=AbLTNqFy5FuyGQOWOjHZGaBC8e2yuE_Dx1sBdnisR18,6984
253
253
  zrb/runner/common_util.py,sha256=JDMcwvQ8cxnv9kQrAoKVLA40Q1omfv-u5_d5MvvwHeE,1373
@@ -337,7 +337,7 @@ zrb/task/base_trigger.py,sha256=WSGcmBcGAZw8EzUXfmCjqJQkz8GEmi1RzogpF6A1V4s,6902
337
337
  zrb/task/cmd_task.py,sha256=irGi0txTcsvGhxjfem4_radR4csNXhgtfcxruSF1LFI,10853
338
338
  zrb/task/http_check.py,sha256=Gf5rOB2Se2EdizuN9rp65HpGmfZkGc-clIAlHmPVehs,2565
339
339
  zrb/task/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
340
- zrb/task/llm/agent.py,sha256=pLldTsXzdaPs07WIw6DbpLpe-y6xIPU5MAPQ0fRA8Bk,5526
340
+ zrb/task/llm/agent.py,sha256=pwGFkRSQ-maH92QaJr2dgfQhEiwFVK5XnyK4OYBJm4c,6782
341
341
  zrb/task/llm/config.py,sha256=Gb0lSHCgGXOAr7igkU7k_Ew5Yp_wOTpNQyZrLrtA7oc,3521
342
342
  zrb/task/llm/context.py,sha256=U9a8lxa2ikz6my0Sd5vpO763legHrMHyvBjbrqNmv0Y,3838
343
343
  zrb/task/llm/context_enrichment.py,sha256=BlW2CjSUsKJT8EZBXYxOE4MEBbRCoO34PlQQdzA-zBM,7201
@@ -390,7 +390,7 @@ zrb/util/string/name.py,sha256=SXEfxJ1-tDOzHqmSV8kvepRVyMqs2XdV_vyoh_9XUu0,1584
390
390
  zrb/util/todo.py,sha256=VGISej2KQZERpornK-8X7bysp4JydMrMUTnG8B0-liI,20708
391
391
  zrb/xcom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
392
392
  zrb/xcom/xcom.py,sha256=o79rxR9wphnShrcIushA0Qt71d_p3ZTxjNf7x9hJB78,1571
393
- zrb-1.8.9.dist-info/METADATA,sha256=G_-feyacEpMw7vswtr-alUn8Jgo4BD09fzbpyXZbsqU,9761
394
- zrb-1.8.9.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
395
- zrb-1.8.9.dist-info/entry_points.txt,sha256=-Pg3ElWPfnaSM-XvXqCxEAa-wfVI6BEgcs386s8C8v8,46
396
- zrb-1.8.9.dist-info/RECORD,,
393
+ zrb-1.8.10.dist-info/METADATA,sha256=cFdiCmF4a4s7-jxcMZtXxhjG8L4hZO8-YBw_DecGSQQ,10108
394
+ zrb-1.8.10.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
395
+ zrb-1.8.10.dist-info/entry_points.txt,sha256=-Pg3ElWPfnaSM-XvXqCxEAa-wfVI6BEgcs386s8C8v8,46
396
+ zrb-1.8.10.dist-info/RECORD,,
File without changes