zoomy-core 0.1.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of zoomy-core might be problematic. Click here for more details.
- zoomy_core/__init__.py +7 -0
- zoomy_core/decorators/decorators.py +25 -0
- zoomy_core/fvm/flux.py +52 -0
- zoomy_core/fvm/nonconservative_flux.py +97 -0
- zoomy_core/fvm/ode.py +55 -0
- zoomy_core/fvm/solver_numpy.py +297 -0
- zoomy_core/fvm/timestepping.py +13 -0
- zoomy_core/mesh/mesh.py +1236 -0
- zoomy_core/mesh/mesh_extrude.py +168 -0
- zoomy_core/mesh/mesh_util.py +487 -0
- zoomy_core/misc/custom_types.py +6 -0
- zoomy_core/misc/interpolation.py +140 -0
- zoomy_core/misc/io.py +439 -0
- zoomy_core/misc/logger_config.py +18 -0
- zoomy_core/misc/misc.py +213 -0
- zoomy_core/model/analysis.py +147 -0
- zoomy_core/model/basefunction.py +113 -0
- zoomy_core/model/basemodel.py +512 -0
- zoomy_core/model/boundary_conditions.py +193 -0
- zoomy_core/model/initial_conditions.py +171 -0
- zoomy_core/model/model.py +63 -0
- zoomy_core/model/models/GN.py +70 -0
- zoomy_core/model/models/advection.py +53 -0
- zoomy_core/model/models/basisfunctions.py +181 -0
- zoomy_core/model/models/basismatrices.py +377 -0
- zoomy_core/model/models/core.py +564 -0
- zoomy_core/model/models/coupled_constrained.py +60 -0
- zoomy_core/model/models/poisson.py +41 -0
- zoomy_core/model/models/shallow_moments.py +757 -0
- zoomy_core/model/models/shallow_moments_sediment.py +378 -0
- zoomy_core/model/models/shallow_moments_topo.py +423 -0
- zoomy_core/model/models/shallow_moments_variants.py +1509 -0
- zoomy_core/model/models/shallow_water.py +266 -0
- zoomy_core/model/models/shallow_water_topo.py +111 -0
- zoomy_core/model/models/shear_shallow_flow.py +594 -0
- zoomy_core/model/models/sme_turbulent.py +613 -0
- zoomy_core/model/models/vam.py +455 -0
- zoomy_core/postprocessing/postprocessing.py +72 -0
- zoomy_core/preprocessing/openfoam_moments.py +452 -0
- zoomy_core/transformation/helpers.py +25 -0
- zoomy_core/transformation/to_amrex.py +238 -0
- zoomy_core/transformation/to_c.py +181 -0
- zoomy_core/transformation/to_jax.py +14 -0
- zoomy_core/transformation/to_numpy.py +115 -0
- zoomy_core/transformation/to_openfoam.py +254 -0
- zoomy_core/transformation/to_ufl.py +67 -0
- zoomy_core-0.1.11.dist-info/METADATA +225 -0
- zoomy_core-0.1.11.dist-info/RECORD +51 -0
- zoomy_core-0.1.11.dist-info/WHEEL +5 -0
- zoomy_core-0.1.11.dist-info/licenses/LICENSE +674 -0
- zoomy_core-0.1.11.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,378 @@
|
|
|
1
|
+
from zoomy_core.model.models.shallow_moments import (IC, Matrix, Model, eigenvalue_dict_to_matrix,
|
|
2
|
+
register_sympy_attribute, sympy)
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class ShallowMomentsSediment(Model):
|
|
6
|
+
"""
|
|
7
|
+
Shallow Moments Sediment 1d
|
|
8
|
+
|
|
9
|
+
:gui:
|
|
10
|
+
- tab: model
|
|
11
|
+
- requires: [ 'mesh.dimension': 1 ]
|
|
12
|
+
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
def __init__(
|
|
16
|
+
self,
|
|
17
|
+
boundary_conditions,
|
|
18
|
+
initial_conditions,
|
|
19
|
+
aux_initial_conditions=IC.Constant(),
|
|
20
|
+
dimension=1,
|
|
21
|
+
fields=2,
|
|
22
|
+
aux_variables=0,
|
|
23
|
+
parameters={},
|
|
24
|
+
_default_parameters={"g": 1.0, "ex": 0.0, "ez": 1.0},
|
|
25
|
+
settings={},
|
|
26
|
+
settings_default={"topography": False, "friction": []},
|
|
27
|
+
basis=Basis(),
|
|
28
|
+
):
|
|
29
|
+
self.basis = basis
|
|
30
|
+
self.variables = register_sympy_attribute(fields, "q")
|
|
31
|
+
self.n_variables = self.variables.length()
|
|
32
|
+
self.level = self.n_variables - 2
|
|
33
|
+
self.basis.compute_matrices(self.level)
|
|
34
|
+
super().__init__(
|
|
35
|
+
dimension=dimension,
|
|
36
|
+
fields=fields,
|
|
37
|
+
aux_variables=aux_variables,
|
|
38
|
+
parameters=parameters,
|
|
39
|
+
_default_parameters=_default_parameters,
|
|
40
|
+
boundary_conditions=boundary_conditions,
|
|
41
|
+
initial_conditions=initial_conditions,
|
|
42
|
+
aux_initial_conditions=aux_initial_conditions,
|
|
43
|
+
settings={**settings_default, **settings},
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
def flux(self):
|
|
47
|
+
flux = Matrix([0 for i in range(self.n_variables)])
|
|
48
|
+
h = self.variables[0]
|
|
49
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
50
|
+
p = self.parameters
|
|
51
|
+
flux[0] = ha[0]
|
|
52
|
+
flux[1] = p.g * p.ez * h * h / 2
|
|
53
|
+
for k in range(self.level + 1):
|
|
54
|
+
for i in range(self.level + 1):
|
|
55
|
+
for j in range(self.level + 1):
|
|
56
|
+
flux[k + 1] += (
|
|
57
|
+
ha[i] * ha[j] / h * self.basis.A[k, i, j] / self.basis.M[k, k]
|
|
58
|
+
)
|
|
59
|
+
return [flux]
|
|
60
|
+
|
|
61
|
+
def nonconservative_matrix(self):
|
|
62
|
+
nc = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
63
|
+
h = self.variables[0]
|
|
64
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
65
|
+
p = self.parameters
|
|
66
|
+
um = ha[0] / h
|
|
67
|
+
# nc[1, 0] = - p.g * p.ez * h
|
|
68
|
+
for k in range(1, self.level + 1):
|
|
69
|
+
nc[k + 1, k + 1] += um
|
|
70
|
+
for k in range(self.level + 1):
|
|
71
|
+
for i in range(1, self.level + 1):
|
|
72
|
+
for j in range(1, self.level + 1):
|
|
73
|
+
nc[k + 1, i + 1] -= (
|
|
74
|
+
ha[j] / h * self.basis.B[k, i, j] / self.basis.M[k, k]
|
|
75
|
+
)
|
|
76
|
+
return [nc]
|
|
77
|
+
|
|
78
|
+
def eigenvalues(self):
|
|
79
|
+
A = self.normal[0] * self.sympy_quasilinear_matrix[0]
|
|
80
|
+
for d in range(1, self.dimension):
|
|
81
|
+
A += self.normal[d] * self.sympy_quasilinear_matrix[d]
|
|
82
|
+
alpha_erase = self.variables[2:]
|
|
83
|
+
for alpha_i in alpha_erase:
|
|
84
|
+
A = A.subs(alpha_i, 0)
|
|
85
|
+
return eigenvalue_dict_to_matrix(A.eigenvals())
|
|
86
|
+
|
|
87
|
+
def source(self):
|
|
88
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
89
|
+
return out
|
|
90
|
+
|
|
91
|
+
def topography(self):
|
|
92
|
+
assert "dhdx" in vars(self.aux_variables)
|
|
93
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
94
|
+
h = self.variables[0]
|
|
95
|
+
p = self.parameters
|
|
96
|
+
dhdx = self.aux_variables.dhdx
|
|
97
|
+
out[1] = h * p.g * (p.ex - p.ez * dhdx)
|
|
98
|
+
return out
|
|
99
|
+
|
|
100
|
+
def inclined_plane(self):
|
|
101
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
102
|
+
h = self.variables[0]
|
|
103
|
+
p = self.parameters
|
|
104
|
+
out[1] = h * p.g * (p.ex)
|
|
105
|
+
return out
|
|
106
|
+
|
|
107
|
+
def newtonian(self):
|
|
108
|
+
"""
|
|
109
|
+
:gui:
|
|
110
|
+
- requires_parameter: ('nu', 0.0)
|
|
111
|
+
"""
|
|
112
|
+
assert "nu" in vars(self.parameters)
|
|
113
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
114
|
+
h = self.variables[0]
|
|
115
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
116
|
+
p = self.parameters
|
|
117
|
+
for k in range(1 + self.level):
|
|
118
|
+
for i in range(1 + self.level):
|
|
119
|
+
out[1 + k] += (
|
|
120
|
+
-p.nu / h * ha[i] / h * self.basis.D[i, k] / self.basis.M[k, k]
|
|
121
|
+
)
|
|
122
|
+
return out
|
|
123
|
+
|
|
124
|
+
def slip(self):
|
|
125
|
+
"""
|
|
126
|
+
:gui:
|
|
127
|
+
- requires_parameter: ('lamda', 0.0)
|
|
128
|
+
- requires_parameter: ('rho', 1.0)
|
|
129
|
+
"""
|
|
130
|
+
assert "lamda" in vars(self.parameters)
|
|
131
|
+
assert "rho" in vars(self.parameters)
|
|
132
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
133
|
+
h = self.variables[0]
|
|
134
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
135
|
+
p = self.parameters
|
|
136
|
+
for k in range(1 + self.level):
|
|
137
|
+
for i in range(1 + self.level):
|
|
138
|
+
out[1 + k] += -1.0 / p.lamda / p.rho * ha[i] / h / self.basis.M[k, k]
|
|
139
|
+
return out
|
|
140
|
+
|
|
141
|
+
def chezy(self):
|
|
142
|
+
"""
|
|
143
|
+
:gui:
|
|
144
|
+
- requires_parameter: ('C', 1000.0)
|
|
145
|
+
"""
|
|
146
|
+
assert "C" in vars(self.parameters)
|
|
147
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
148
|
+
h = self.variables[0]
|
|
149
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
150
|
+
p = self.parameters
|
|
151
|
+
tmp = 0
|
|
152
|
+
for i in range(1 + self.level):
|
|
153
|
+
for j in range(1 + self.level):
|
|
154
|
+
tmp += ha[i] * ha[j] / h / h
|
|
155
|
+
sqrt = sympy.sqrt(tmp)
|
|
156
|
+
for k in range(1 + self.level):
|
|
157
|
+
for l in range(1 + self.level):
|
|
158
|
+
out[1 + k] += -1.0 / (p.C**2 * self.basis.M[k, k]) * ha[l] * sqrt / h
|
|
159
|
+
return out
|
|
160
|
+
|
|
161
|
+
def chezy_ssf(self):
|
|
162
|
+
"""
|
|
163
|
+
:gui:
|
|
164
|
+
- requires_parameter: ('C', 1000.0)
|
|
165
|
+
"""
|
|
166
|
+
assert "Cf" in vars(self.parameters)
|
|
167
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
168
|
+
h = self.variables[0]
|
|
169
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
170
|
+
p = self.parameters
|
|
171
|
+
tmp = 0
|
|
172
|
+
for i in range(1 + self.level):
|
|
173
|
+
for j in range(1 + self.level):
|
|
174
|
+
tmp += ha[i] * ha[j] / h / h
|
|
175
|
+
sqrt = sympy.sqrt(tmp)
|
|
176
|
+
for k in range(1 + self.level):
|
|
177
|
+
for l in range(1 + self.level):
|
|
178
|
+
out[1 + k] += -(p.Cf * self.basis.M[k, k]) * ha[l] * sqrt / h
|
|
179
|
+
return out
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
class ShallowMomentsSediment2d(Model):
|
|
183
|
+
def __init__(
|
|
184
|
+
self,
|
|
185
|
+
boundary_conditions,
|
|
186
|
+
initial_conditions,
|
|
187
|
+
dimension=2,
|
|
188
|
+
fields=3,
|
|
189
|
+
aux_variables=0,
|
|
190
|
+
parameters={},
|
|
191
|
+
_default_parameters={"g": 1.0, "ex": 0.0, "ey": 0.0, "ez": 1.0},
|
|
192
|
+
settings={},
|
|
193
|
+
settings_default={"topography": False, "friction": []},
|
|
194
|
+
basis=Basis(),
|
|
195
|
+
):
|
|
196
|
+
self.basis = basis
|
|
197
|
+
self.variables = register_sympy_attribute(fields, "q")
|
|
198
|
+
self.n_variables = self.variables.length()
|
|
199
|
+
self.level = int((self.n_variables - 1) / 2) - 1
|
|
200
|
+
self.basis.compute_matrices(self.level)
|
|
201
|
+
super().__init__(
|
|
202
|
+
dimension=dimension,
|
|
203
|
+
fields=fields,
|
|
204
|
+
aux_variables=aux_variables,
|
|
205
|
+
parameters=parameters,
|
|
206
|
+
_default_parameters=_default_parameters,
|
|
207
|
+
boundary_conditions=boundary_conditions,
|
|
208
|
+
initial_conditions=initial_conditions,
|
|
209
|
+
settings={**settings_default, **settings},
|
|
210
|
+
)
|
|
211
|
+
|
|
212
|
+
def flux(self):
|
|
213
|
+
offset = self.level + 1
|
|
214
|
+
flux_x = Matrix([0 for i in range(self.n_variables)])
|
|
215
|
+
flux_y = Matrix([0 for i in range(self.n_variables)])
|
|
216
|
+
h = self.variables[0]
|
|
217
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
218
|
+
hb = self.variables[1 + self.level + 1 : 1 + 2 * (self.level + 1)]
|
|
219
|
+
p = self.parameters
|
|
220
|
+
flux_x[0] = ha[0]
|
|
221
|
+
flux_x[1] = p.g * p.ez * h * h / 2
|
|
222
|
+
for k in range(self.level + 1):
|
|
223
|
+
for i in range(self.level + 1):
|
|
224
|
+
for j in range(self.level + 1):
|
|
225
|
+
# TODO avoid devision by zero
|
|
226
|
+
flux_x[k + 1] += (
|
|
227
|
+
ha[i] * ha[j] / h * self.basis.A[k, i, j] / self.basis.M[k, k]
|
|
228
|
+
)
|
|
229
|
+
for k in range(self.level + 1):
|
|
230
|
+
for i in range(self.level + 1):
|
|
231
|
+
for j in range(self.level + 1):
|
|
232
|
+
# TODO avoid devision by zero
|
|
233
|
+
flux_x[k + 1 + offset] += (
|
|
234
|
+
hb[i] * ha[j] / h * self.basis.A[k, i, j] / self.basis.M[k, k]
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
flux_y[0] = hb[0]
|
|
238
|
+
flux_y[1 + offset] = p.g * p.ez * h * h / 2
|
|
239
|
+
for k in range(self.level + 1):
|
|
240
|
+
for i in range(self.level + 1):
|
|
241
|
+
for j in range(self.level + 1):
|
|
242
|
+
# TODO avoid devision by zero
|
|
243
|
+
flux_y[k + 1] += (
|
|
244
|
+
hb[i] * ha[j] / h * self.basis.A[k, i, j] / self.basis.M[k, k]
|
|
245
|
+
)
|
|
246
|
+
for k in range(self.level + 1):
|
|
247
|
+
for i in range(self.level + 1):
|
|
248
|
+
for j in range(self.level + 1):
|
|
249
|
+
# TODO avoid devision by zero
|
|
250
|
+
flux_y[k + 1 + offset] += (
|
|
251
|
+
hb[i] * hb[j] / h * self.basis.A[k, i, j] / self.basis.M[k, k]
|
|
252
|
+
)
|
|
253
|
+
return [flux_x, flux_y]
|
|
254
|
+
|
|
255
|
+
def nonconservative_matrix(self):
|
|
256
|
+
offset = self.level + 1
|
|
257
|
+
nc_x = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
258
|
+
nc_y = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
259
|
+
h = self.variables[0]
|
|
260
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
261
|
+
hb = self.variables[1 + offset : 1 + offset + self.level + 1]
|
|
262
|
+
p = self.parameters
|
|
263
|
+
um = ha[0] / h
|
|
264
|
+
vm = hb[0] / h
|
|
265
|
+
for k in range(1, self.level + 1):
|
|
266
|
+
nc_x[k + 1, k + 1] += um
|
|
267
|
+
nc_y[k + 1, k + 1 + offset] += um
|
|
268
|
+
for k in range(self.level + 1):
|
|
269
|
+
for i in range(1, self.level + 1):
|
|
270
|
+
for j in range(1, self.level + 1):
|
|
271
|
+
nc_x[k + 1, i + 1] -= (
|
|
272
|
+
ha[j] / h * self.basis.B[k, i, j] / self.basis.M[k, k]
|
|
273
|
+
)
|
|
274
|
+
nc_y[k + 1, i + 1 + offset] -= (
|
|
275
|
+
ha[j] / h * self.basis.B[k, i, j] / self.basis.M[k, k]
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
for k in range(1, self.level + 1):
|
|
279
|
+
nc_x[k + 1 + offset, k + 1] += vm
|
|
280
|
+
nc_y[k + 1 + offset, k + 1 + offset] += vm
|
|
281
|
+
for k in range(self.level + 1):
|
|
282
|
+
for i in range(1, self.level + 1):
|
|
283
|
+
for j in range(1, self.level + 1):
|
|
284
|
+
nc_x[k + 1 + offset, i + 1] -= (
|
|
285
|
+
hb[j] / h * self.basis.B[k, i, j] / self.basis.M[k, k]
|
|
286
|
+
)
|
|
287
|
+
nc_y[k + 1 + offset, i + 1 + offset] -= (
|
|
288
|
+
hb[j] / h * self.basis.B[k, i, j] / self.basis.M[k, k]
|
|
289
|
+
)
|
|
290
|
+
return [nc_x, nc_y]
|
|
291
|
+
|
|
292
|
+
def eigenvalues(self):
|
|
293
|
+
# we delete heigher order moments (level >= 2) for analytical eigenvalues
|
|
294
|
+
offset = self.level + 1
|
|
295
|
+
A = self.normal[0] * self.sympy_quasilinear_matrix[0]
|
|
296
|
+
for d in range(1, self.dimension):
|
|
297
|
+
A += self.normal[d] * self.sympy_quasilinear_matrix[d]
|
|
298
|
+
alpha_erase = self.variables[2 : 2 + self.level]
|
|
299
|
+
beta_erase = self.variables[2 + offset : 2 + offset + self.level]
|
|
300
|
+
for alpha_i in alpha_erase:
|
|
301
|
+
A = A.subs(alpha_i, 0)
|
|
302
|
+
for beta_i in beta_erase:
|
|
303
|
+
A = A.subs(beta_i, 0)
|
|
304
|
+
return eigenvalue_dict_to_matrix(A.eigenvals())
|
|
305
|
+
|
|
306
|
+
def source(self):
|
|
307
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
308
|
+
return out
|
|
309
|
+
|
|
310
|
+
def topography(self):
|
|
311
|
+
assert "dhdx" in vars(self.aux_variables)
|
|
312
|
+
assert "dhdy" in vars(self.aux_variables)
|
|
313
|
+
offset = self.level + 1
|
|
314
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
315
|
+
h = self.variables[0]
|
|
316
|
+
p = self.parameters
|
|
317
|
+
dhdx = self.aux_variables.dhdx
|
|
318
|
+
dhdy = self.aux_variables.dhdy
|
|
319
|
+
out[1] = h * p.g * (p.ex - p.ez * dhdx)
|
|
320
|
+
out[1 + offset] = h * p.g * (p.ey - p.ez * dhdy)
|
|
321
|
+
return out
|
|
322
|
+
|
|
323
|
+
def newtonian(self):
|
|
324
|
+
assert "nu" in vars(self.parameters)
|
|
325
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
326
|
+
offset = self.level + 1
|
|
327
|
+
h = self.variables[0]
|
|
328
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
329
|
+
hb = self.variables[1 + offset : 1 + self.level + 1 + offset]
|
|
330
|
+
p = self.parameters
|
|
331
|
+
for k in range(1 + self.level):
|
|
332
|
+
for i in range(1 + self.level):
|
|
333
|
+
out[1 + k] += (
|
|
334
|
+
-p.nu / h * ha[i] / h * self.basis.D[i, k] / self.basis.M[k, k]
|
|
335
|
+
)
|
|
336
|
+
out[1 + k + offset] += (
|
|
337
|
+
-p.nu / h * hb[i] / h * self.basis.D[i, k] / self.basis.M[k, k]
|
|
338
|
+
)
|
|
339
|
+
return out
|
|
340
|
+
|
|
341
|
+
def slip(self):
|
|
342
|
+
assert "lamda" in vars(self.parameters)
|
|
343
|
+
assert "rho" in vars(self.parameters)
|
|
344
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
345
|
+
offset = self.level + 1
|
|
346
|
+
h = self.variables[0]
|
|
347
|
+
h = self.variables[0]
|
|
348
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
349
|
+
hb = self.variables[1 + offset : 1 + self.level + 1 + offset]
|
|
350
|
+
p = self.parameters
|
|
351
|
+
for k in range(1 + self.level):
|
|
352
|
+
for i in range(1 + self.level):
|
|
353
|
+
out[1 + k] += -1.0 / p.lamda / p.rho * ha[i] / h / self.basis.M[k, k]
|
|
354
|
+
out[1 + k + offset] += (
|
|
355
|
+
-1.0 / p.lamda / p.rho * hb[i] / h / self.basis.M[k, k]
|
|
356
|
+
)
|
|
357
|
+
return out
|
|
358
|
+
|
|
359
|
+
def chezy(self):
|
|
360
|
+
assert "C" in vars(self.parameters)
|
|
361
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
362
|
+
offset = self.level + 1
|
|
363
|
+
h = self.variables[0]
|
|
364
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
365
|
+
hb = self.variables[1 + offset : 1 + self.level + 1 + offset]
|
|
366
|
+
p = self.parameters
|
|
367
|
+
tmp = 0
|
|
368
|
+
for i in range(1 + self.level):
|
|
369
|
+
for j in range(1 + self.level):
|
|
370
|
+
tmp += ha[i] * ha[j] / h / h + hb[i] * hb[j] / h / h
|
|
371
|
+
sqrt = sympy.sqrt(tmp)
|
|
372
|
+
for k in range(1 + self.level):
|
|
373
|
+
for l in range(1 + self.level):
|
|
374
|
+
out[1 + k] += -1.0 / (p.C**2 * self.basis.M[k, k]) * ha[l] * sqrt / h
|
|
375
|
+
out[1 + k + offset] += (
|
|
376
|
+
-1.0 / (p.C**2 * self.basis.M[k, k]) * hb[l] * sqrt / h
|
|
377
|
+
)
|
|
378
|
+
return out
|