zombie-squirrel 0.4.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- zombie_squirrel/__init__.py +14 -0
- zombie_squirrel/acorns.py +81 -0
- zombie_squirrel/squirrels.py +323 -0
- zombie_squirrel/sync.py +18 -0
- zombie_squirrel/utils.py +12 -0
- zombie_squirrel-0.4.4.dist-info/METADATA +58 -0
- zombie_squirrel-0.4.4.dist-info/RECORD +10 -0
- zombie_squirrel-0.4.4.dist-info/WHEEL +5 -0
- zombie_squirrel-0.4.4.dist-info/licenses/LICENSE +21 -0
- zombie_squirrel-0.4.4.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
"""Zombie-squirrel: caching and synchronization for AIND metadata.
|
|
2
|
+
|
|
3
|
+
Provides functions to fetch and cache project names, subject IDs, and asset
|
|
4
|
+
metadata from the AIND metadata database with support for multiple backends."""
|
|
5
|
+
|
|
6
|
+
__version__ = "0.4.4"
|
|
7
|
+
|
|
8
|
+
from zombie_squirrel.squirrels import ( # noqa: F401
|
|
9
|
+
asset_basics,
|
|
10
|
+
raw_to_derived,
|
|
11
|
+
source_data,
|
|
12
|
+
unique_project_names,
|
|
13
|
+
unique_subject_ids,
|
|
14
|
+
)
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
"""Storage backend interfaces for caching data."""
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
import os
|
|
5
|
+
from abc import ABC, abstractmethod
|
|
6
|
+
|
|
7
|
+
import pandas as pd
|
|
8
|
+
from aind_data_access_api.rds_tables import Client, RDSCredentials
|
|
9
|
+
|
|
10
|
+
from zombie_squirrel.utils import prefix_table_name
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class Acorn(ABC):
|
|
14
|
+
"""Base class for a storage backend (the cache)."""
|
|
15
|
+
|
|
16
|
+
def __init__(self) -> None:
|
|
17
|
+
"""Initialize the Acorn."""
|
|
18
|
+
super().__init__()
|
|
19
|
+
|
|
20
|
+
@abstractmethod
|
|
21
|
+
def hide(self, table_name: str, data: pd.DataFrame) -> None:
|
|
22
|
+
"""Store records in the cache."""
|
|
23
|
+
pass # pragma: no cover
|
|
24
|
+
|
|
25
|
+
@abstractmethod
|
|
26
|
+
def scurry(self, table_name: str) -> pd.DataFrame:
|
|
27
|
+
"""Fetch records from the cache."""
|
|
28
|
+
pass # pragma: no cover
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class RedshiftAcorn(Acorn):
|
|
32
|
+
"""Stores and retrieves caches using aind-data-access-api
|
|
33
|
+
Redshift Client"""
|
|
34
|
+
|
|
35
|
+
def __init__(self) -> None:
|
|
36
|
+
"""Initialize RedshiftAcorn with Redshift credentials."""
|
|
37
|
+
REDSHIFT_SECRETS = os.getenv("REDSHIFT_SECRETS", "/aind/prod/redshift/credentials/readwrite")
|
|
38
|
+
self.rds_client = Client(
|
|
39
|
+
credentials=RDSCredentials(aws_secrets_name=REDSHIFT_SECRETS),
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
def hide(self, table_name: str, data: pd.DataFrame) -> None:
|
|
43
|
+
"""Store DataFrame in Redshift table."""
|
|
44
|
+
self.rds_client.overwrite_table_with_df(
|
|
45
|
+
df=data,
|
|
46
|
+
table_name=prefix_table_name(table_name),
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
def scurry(self, table_name: str) -> pd.DataFrame:
|
|
50
|
+
"""Fetch DataFrame from Redshift table."""
|
|
51
|
+
return self.rds_client.read_table(table_name=prefix_table_name(table_name))
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class MemoryAcorn(Acorn):
|
|
55
|
+
"""A simple in-memory backend for testing or local development."""
|
|
56
|
+
|
|
57
|
+
def __init__(self) -> None:
|
|
58
|
+
"""Initialize MemoryAcorn with empty store."""
|
|
59
|
+
super().__init__()
|
|
60
|
+
self._store: dict[str, pd.DataFrame] = {}
|
|
61
|
+
|
|
62
|
+
def hide(self, table_name: str, data: pd.DataFrame) -> None:
|
|
63
|
+
"""Store DataFrame in memory."""
|
|
64
|
+
self._store[table_name] = data
|
|
65
|
+
|
|
66
|
+
def scurry(self, table_name: str) -> pd.DataFrame:
|
|
67
|
+
"""Fetch DataFrame from memory."""
|
|
68
|
+
return self._store.get(table_name, pd.DataFrame())
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def rds_get_handle_empty(acorn: Acorn, table_name: str) -> pd.DataFrame:
|
|
72
|
+
"""Helper for handling errors when loading from redshift, because
|
|
73
|
+
there's no helper function"""
|
|
74
|
+
try:
|
|
75
|
+
logging.info(f"Fetching from cache: {table_name}")
|
|
76
|
+
df = acorn.scurry(table_name)
|
|
77
|
+
except Exception as e:
|
|
78
|
+
logging.warning(f"Error fetching from cache: {e}")
|
|
79
|
+
df = pd.DataFrame()
|
|
80
|
+
|
|
81
|
+
return df
|
|
@@ -0,0 +1,323 @@
|
|
|
1
|
+
"""Squirrels: functions to fetch and cache data from MongoDB."""
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
import os
|
|
5
|
+
from collections.abc import Callable
|
|
6
|
+
from typing import Any
|
|
7
|
+
|
|
8
|
+
import pandas as pd
|
|
9
|
+
from aind_data_access_api.document_db import MetadataDbClient
|
|
10
|
+
|
|
11
|
+
from zombie_squirrel.acorns import (
|
|
12
|
+
MemoryAcorn,
|
|
13
|
+
RedshiftAcorn,
|
|
14
|
+
rds_get_handle_empty,
|
|
15
|
+
)
|
|
16
|
+
|
|
17
|
+
# --- Backend setup ---------------------------------------------------
|
|
18
|
+
|
|
19
|
+
API_GATEWAY_HOST = "api.allenneuraldynamics.org"
|
|
20
|
+
|
|
21
|
+
tree_type = os.getenv("TREE_SPECIES", "memory").lower()
|
|
22
|
+
|
|
23
|
+
if tree_type == "redshift": # pragma: no cover
|
|
24
|
+
logging.info("Using Redshift acorn for caching")
|
|
25
|
+
ACORN = RedshiftAcorn()
|
|
26
|
+
else:
|
|
27
|
+
logging.info("Using in-memory acorn for caching")
|
|
28
|
+
ACORN = MemoryAcorn()
|
|
29
|
+
|
|
30
|
+
# --- Squirrel registry -----------------------------------------------------
|
|
31
|
+
|
|
32
|
+
SQUIRREL_REGISTRY: dict[str, Callable[[], Any]] = {}
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def register_squirrel(name: str):
|
|
36
|
+
"""Decorator for registering new squirrels."""
|
|
37
|
+
|
|
38
|
+
def decorator(func):
|
|
39
|
+
"""Register function in squirrel registry."""
|
|
40
|
+
SQUIRREL_REGISTRY[name] = func
|
|
41
|
+
return func
|
|
42
|
+
|
|
43
|
+
return decorator
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
# --- Squirrels -----------------------------------------------------
|
|
47
|
+
|
|
48
|
+
NAMES = {
|
|
49
|
+
"upn": "unique_project_names",
|
|
50
|
+
"usi": "unique_subject_ids",
|
|
51
|
+
"basics": "asset_basics",
|
|
52
|
+
"d2r": "source_data",
|
|
53
|
+
"r2d": "raw_to_derived",
|
|
54
|
+
}
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
@register_squirrel(NAMES["upn"])
|
|
58
|
+
def unique_project_names(force_update: bool = False) -> list[str]:
|
|
59
|
+
"""Fetch unique project names from metadata database.
|
|
60
|
+
|
|
61
|
+
Returns cached results if available, fetches from database if cache is empty
|
|
62
|
+
or force_update is True.
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
force_update: If True, bypass cache and fetch fresh data from database.
|
|
66
|
+
|
|
67
|
+
Returns:
|
|
68
|
+
List of unique project names."""
|
|
69
|
+
df = rds_get_handle_empty(ACORN, NAMES["upn"])
|
|
70
|
+
|
|
71
|
+
if df.empty or force_update:
|
|
72
|
+
# If cache is missing, fetch data
|
|
73
|
+
logging.info("Updating cache for unique project names")
|
|
74
|
+
client = MetadataDbClient(
|
|
75
|
+
host=API_GATEWAY_HOST,
|
|
76
|
+
version="v2",
|
|
77
|
+
)
|
|
78
|
+
unique_project_names = client.aggregate_docdb_records(
|
|
79
|
+
pipeline=[
|
|
80
|
+
{"$group": {"_id": "$data_description.project_name"}},
|
|
81
|
+
{"$project": {"project_name": "$_id", "_id": 0}},
|
|
82
|
+
]
|
|
83
|
+
)
|
|
84
|
+
df = pd.DataFrame(unique_project_names)
|
|
85
|
+
ACORN.hide(NAMES["upn"], df)
|
|
86
|
+
|
|
87
|
+
return df["project_name"].tolist()
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
@register_squirrel(NAMES["usi"])
|
|
91
|
+
def unique_subject_ids(force_update: bool = False) -> list[str]:
|
|
92
|
+
"""Fetch unique subject IDs from metadata database.
|
|
93
|
+
|
|
94
|
+
Returns cached results if available, fetches from database if cache is empty
|
|
95
|
+
or force_update is True.
|
|
96
|
+
|
|
97
|
+
Args:
|
|
98
|
+
force_update: If True, bypass cache and fetch fresh data from database.
|
|
99
|
+
|
|
100
|
+
Returns:
|
|
101
|
+
List of unique subject IDs."""
|
|
102
|
+
df = rds_get_handle_empty(ACORN, NAMES["usi"])
|
|
103
|
+
|
|
104
|
+
if df.empty or force_update:
|
|
105
|
+
# If cache is missing, fetch data
|
|
106
|
+
logging.info("Updating cache for unique subject IDs")
|
|
107
|
+
client = MetadataDbClient(
|
|
108
|
+
host=API_GATEWAY_HOST,
|
|
109
|
+
version="v2",
|
|
110
|
+
)
|
|
111
|
+
unique_subject_ids = client.aggregate_docdb_records(
|
|
112
|
+
pipeline=[
|
|
113
|
+
{"$group": {"_id": "$subject.subject_id"}},
|
|
114
|
+
{"$project": {"subject_id": "$_id", "_id": 0}},
|
|
115
|
+
]
|
|
116
|
+
)
|
|
117
|
+
df = pd.DataFrame(unique_subject_ids)
|
|
118
|
+
ACORN.hide(NAMES["usi"], df)
|
|
119
|
+
|
|
120
|
+
return df["subject_id"].tolist()
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
@register_squirrel(NAMES["basics"])
|
|
124
|
+
def asset_basics(force_update: bool = False) -> pd.DataFrame:
|
|
125
|
+
"""Fetch basic asset metadata including modalities, projects, and subject info.
|
|
126
|
+
|
|
127
|
+
Returns a DataFrame with columns: _id, _last_modified, modalities,
|
|
128
|
+
project_name, data_level, subject_id, acquisition_start_time, and
|
|
129
|
+
acquisition_end_time. Uses incremental updates based on _last_modified
|
|
130
|
+
timestamps to avoid re-fetching unchanged records.
|
|
131
|
+
|
|
132
|
+
Args:
|
|
133
|
+
force_update: If True, bypass cache and fetch fresh data from database.
|
|
134
|
+
|
|
135
|
+
Returns:
|
|
136
|
+
DataFrame with basic asset metadata."""
|
|
137
|
+
df = rds_get_handle_empty(ACORN, NAMES["basics"])
|
|
138
|
+
|
|
139
|
+
FIELDS = [
|
|
140
|
+
"data_description.modalities",
|
|
141
|
+
"data_description.project_name",
|
|
142
|
+
"data_description.data_level",
|
|
143
|
+
"subject.subject_id",
|
|
144
|
+
"acquisition.acquisition_start_time",
|
|
145
|
+
"acquisition.acquisition_end_time",
|
|
146
|
+
]
|
|
147
|
+
|
|
148
|
+
if df.empty or force_update:
|
|
149
|
+
logging.info("Updating cache for asset basics")
|
|
150
|
+
df = pd.DataFrame(
|
|
151
|
+
columns=[
|
|
152
|
+
"_id",
|
|
153
|
+
"_last_modified",
|
|
154
|
+
"modalities",
|
|
155
|
+
"project_name",
|
|
156
|
+
"data_level",
|
|
157
|
+
"subject_id",
|
|
158
|
+
"acquisition_start_time",
|
|
159
|
+
"acquisition_end_time",
|
|
160
|
+
]
|
|
161
|
+
)
|
|
162
|
+
client = MetadataDbClient(
|
|
163
|
+
host=API_GATEWAY_HOST,
|
|
164
|
+
version="v2",
|
|
165
|
+
)
|
|
166
|
+
# It's a bit complex to get multiple fields that aren't indexed in a database
|
|
167
|
+
# as large as DocDB. We'll also try to limit ourselves to only updating fields
|
|
168
|
+
# that are necessary
|
|
169
|
+
record_ids = client.retrieve_docdb_records(
|
|
170
|
+
filter_query={},
|
|
171
|
+
projection={"_id": 1, "_last_modified": 1},
|
|
172
|
+
limit=0,
|
|
173
|
+
)
|
|
174
|
+
keep_ids = []
|
|
175
|
+
# Drop all _ids where _last_modified matches cache
|
|
176
|
+
for record in record_ids:
|
|
177
|
+
cached_row = df[df["_id"] == record["_id"]]
|
|
178
|
+
if cached_row.empty or cached_row["_last_modified"].values[0] != record["_last_modified"]:
|
|
179
|
+
keep_ids.append(record["_id"])
|
|
180
|
+
|
|
181
|
+
# Now batch by 100 IDs at a time to avoid overloading server, and fetch all the fields
|
|
182
|
+
BATCH_SIZE = 100
|
|
183
|
+
asset_records = []
|
|
184
|
+
for i in range(0, len(keep_ids), BATCH_SIZE):
|
|
185
|
+
logging.info(f"Fetching asset basics batch {i // BATCH_SIZE + 1}...")
|
|
186
|
+
batch_ids = keep_ids[i : i + BATCH_SIZE]
|
|
187
|
+
batch_records = client.retrieve_docdb_records(
|
|
188
|
+
filter_query={"_id": {"$in": batch_ids}},
|
|
189
|
+
projection={field: 1 for field in FIELDS + ["_id", "_last_modified"]},
|
|
190
|
+
limit=0,
|
|
191
|
+
)
|
|
192
|
+
asset_records.extend(batch_records)
|
|
193
|
+
|
|
194
|
+
# Unwrap nested fields
|
|
195
|
+
records = []
|
|
196
|
+
for record in asset_records:
|
|
197
|
+
modalities = record.get("data_description", {}).get("modalities", [])
|
|
198
|
+
modality_abbreviations = [modality["abbreviation"] for modality in modalities if "abbreviation" in modality]
|
|
199
|
+
modality_abbreviations_str = ", ".join(modality_abbreviations)
|
|
200
|
+
flat_record = {
|
|
201
|
+
"_id": record["_id"],
|
|
202
|
+
"_last_modified": record.get("_last_modified", None),
|
|
203
|
+
"modalities": modality_abbreviations_str,
|
|
204
|
+
"project_name": record.get("data_description", {}).get("project_name", None),
|
|
205
|
+
"data_level": record.get("data_description", {}).get("data_level", None),
|
|
206
|
+
"subject_id": record.get("subject", {}).get("subject_id", None),
|
|
207
|
+
"acquisition_start_time": record.get("acquisition", {}).get("acquisition_start_time", None),
|
|
208
|
+
"acquisition_end_time": record.get("acquisition", {}).get("acquisition_end_time", None),
|
|
209
|
+
}
|
|
210
|
+
records.append(flat_record)
|
|
211
|
+
|
|
212
|
+
# Combine new records with the old df and store in cache
|
|
213
|
+
new_df = pd.DataFrame(records)
|
|
214
|
+
df = pd.concat([df[~df["_id"].isin(keep_ids)], new_df], ignore_index=True)
|
|
215
|
+
|
|
216
|
+
ACORN.hide(NAMES["basics"], df)
|
|
217
|
+
|
|
218
|
+
return df
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
@register_squirrel(NAMES["d2r"])
|
|
222
|
+
def source_data(force_update: bool = False) -> pd.DataFrame:
|
|
223
|
+
"""Fetch source data references for derived records.
|
|
224
|
+
|
|
225
|
+
Returns a DataFrame mapping record IDs to their upstream source data
|
|
226
|
+
dependencies as comma-separated lists.
|
|
227
|
+
|
|
228
|
+
Args:
|
|
229
|
+
force_update: If True, bypass cache and fetch fresh data from database.
|
|
230
|
+
|
|
231
|
+
Returns:
|
|
232
|
+
DataFrame with _id and source_data columns."""
|
|
233
|
+
df = rds_get_handle_empty(ACORN, NAMES["d2r"])
|
|
234
|
+
|
|
235
|
+
if df.empty or force_update:
|
|
236
|
+
logging.info("Updating cache for source data")
|
|
237
|
+
client = MetadataDbClient(
|
|
238
|
+
host=API_GATEWAY_HOST,
|
|
239
|
+
version="v2",
|
|
240
|
+
)
|
|
241
|
+
records = client.retrieve_docdb_records(
|
|
242
|
+
filter_query={},
|
|
243
|
+
projection={"_id": 1, "data_description.source_data": 1},
|
|
244
|
+
limit=0,
|
|
245
|
+
)
|
|
246
|
+
data = []
|
|
247
|
+
for record in records:
|
|
248
|
+
source_data_list = record.get("data_description", {}).get("source_data", [])
|
|
249
|
+
source_data_str = ", ".join(source_data_list) if source_data_list else ""
|
|
250
|
+
data.append(
|
|
251
|
+
{
|
|
252
|
+
"_id": record["_id"],
|
|
253
|
+
"source_data": source_data_str,
|
|
254
|
+
}
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
df = pd.DataFrame(data)
|
|
258
|
+
ACORN.hide(NAMES["d2r"], df)
|
|
259
|
+
|
|
260
|
+
return df
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
@register_squirrel(NAMES["r2d"])
|
|
264
|
+
def raw_to_derived(force_update: bool = False) -> pd.DataFrame:
|
|
265
|
+
"""Fetch mapping of raw records to their derived records.
|
|
266
|
+
|
|
267
|
+
Returns a DataFrame mapping raw record IDs to lists of derived record IDs
|
|
268
|
+
that depend on them as source data.
|
|
269
|
+
|
|
270
|
+
Args:
|
|
271
|
+
force_update: If True, bypass cache and fetch fresh data from database.
|
|
272
|
+
|
|
273
|
+
Returns:
|
|
274
|
+
DataFrame with _id and derived_records columns."""
|
|
275
|
+
df = rds_get_handle_empty(ACORN, NAMES["r2d"])
|
|
276
|
+
|
|
277
|
+
if df.empty or force_update:
|
|
278
|
+
logging.info("Updating cache for raw to derived mapping")
|
|
279
|
+
client = MetadataDbClient(
|
|
280
|
+
host=API_GATEWAY_HOST,
|
|
281
|
+
version="v2",
|
|
282
|
+
)
|
|
283
|
+
|
|
284
|
+
# Get all raw record IDs
|
|
285
|
+
raw_records = client.retrieve_docdb_records(
|
|
286
|
+
filter_query={"data_description.data_level": "raw"},
|
|
287
|
+
projection={"_id": 1},
|
|
288
|
+
limit=0,
|
|
289
|
+
)
|
|
290
|
+
raw_ids = {record["_id"] for record in raw_records}
|
|
291
|
+
|
|
292
|
+
# Get all derived records with their _id and source_data
|
|
293
|
+
derived_records = client.retrieve_docdb_records(
|
|
294
|
+
filter_query={"data_description.data_level": "derived"},
|
|
295
|
+
projection={"_id": 1, "data_description.source_data": 1},
|
|
296
|
+
limit=0,
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
# Build mapping: raw_id -> list of derived _ids
|
|
300
|
+
raw_to_derived_map = {raw_id: [] for raw_id in raw_ids}
|
|
301
|
+
for derived_record in derived_records:
|
|
302
|
+
source_data_list = derived_record.get("data_description", {}).get("source_data", [])
|
|
303
|
+
derived_id = derived_record["_id"]
|
|
304
|
+
# Add this derived record to each raw record it depends on
|
|
305
|
+
for source_id in source_data_list:
|
|
306
|
+
if source_id in raw_to_derived_map:
|
|
307
|
+
raw_to_derived_map[source_id].append(derived_id)
|
|
308
|
+
|
|
309
|
+
# Convert to DataFrame
|
|
310
|
+
data = []
|
|
311
|
+
for raw_id, derived_ids in raw_to_derived_map.items():
|
|
312
|
+
derived_ids_str = ", ".join(derived_ids)
|
|
313
|
+
data.append(
|
|
314
|
+
{
|
|
315
|
+
"_id": raw_id,
|
|
316
|
+
"derived_records": derived_ids_str,
|
|
317
|
+
}
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
df = pd.DataFrame(data)
|
|
321
|
+
ACORN.hide(NAMES["r2d"], df)
|
|
322
|
+
|
|
323
|
+
return df
|
zombie_squirrel/sync.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
"""Synchronization utilities for updating all cached data."""
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
|
|
5
|
+
from .squirrels import SQUIRREL_REGISTRY
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def hide_acorns():
|
|
9
|
+
"""Trigger force update of all registered squirrel functions.
|
|
10
|
+
|
|
11
|
+
Calls each squirrel function with force_update=True to refresh
|
|
12
|
+
all cached data in the acorn backend."""
|
|
13
|
+
logging.basicConfig(
|
|
14
|
+
level=logging.INFO,
|
|
15
|
+
format="%(asctime)s %(levelname)s %(message)s"
|
|
16
|
+
)
|
|
17
|
+
for squirrel in SQUIRREL_REGISTRY.values():
|
|
18
|
+
squirrel(force_update=True)
|
zombie_squirrel/utils.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
"""Utility functions for zombie-squirrel package."""
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def prefix_table_name(table_name: str) -> str:
|
|
5
|
+
"""Add zombie-squirrel prefix to table names.
|
|
6
|
+
|
|
7
|
+
Args:
|
|
8
|
+
table_name: The base table name.
|
|
9
|
+
|
|
10
|
+
Returns:
|
|
11
|
+
Table name with 'zs_' prefix."""
|
|
12
|
+
return "zs_" + table_name
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: zombie-squirrel
|
|
3
|
+
Version: 0.4.4
|
|
4
|
+
Summary: Generated from aind-library-template
|
|
5
|
+
Author: Allen Institute for Neural Dynamics
|
|
6
|
+
License: MIT
|
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
|
8
|
+
Requires-Python: >=3.10
|
|
9
|
+
Description-Content-Type: text/markdown
|
|
10
|
+
License-File: LICENSE
|
|
11
|
+
Requires-Dist: aind-data-access-api[docdb,rds]
|
|
12
|
+
Dynamic: license-file
|
|
13
|
+
|
|
14
|
+
# zombie-squirrel
|
|
15
|
+
|
|
16
|
+
[](LICENSE)
|
|
17
|
+

|
|
18
|
+
[](https://github.com/semantic-release/semantic-release)
|
|
19
|
+

|
|
20
|
+

|
|
21
|
+

|
|
22
|
+
|
|
23
|
+
<img src="zombie-squirrel_logo.png" width="400" alt="Logo (image from ChatGPT)">
|
|
24
|
+
|
|
25
|
+
## Installation
|
|
26
|
+
|
|
27
|
+
```bash
|
|
28
|
+
pip install zombie-squirrel
|
|
29
|
+
|
|
30
|
+
```bash
|
|
31
|
+
uv sync
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
## Usage
|
|
35
|
+
|
|
36
|
+
### Set backend
|
|
37
|
+
|
|
38
|
+
```bash
|
|
39
|
+
export REDSHIFT_SECRETS='/aind/prod/redshift/credentials/readwrite'
|
|
40
|
+
export TREE_SPECIES='REDSHIFT'
|
|
41
|
+
```
|
|
42
|
+
|
|
43
|
+
Options are 'REDSHIFT', 'MEMORY'.
|
|
44
|
+
|
|
45
|
+
### Scurry (fetch) data
|
|
46
|
+
|
|
47
|
+
```python
|
|
48
|
+
import zombie_squirrel as zs
|
|
49
|
+
|
|
50
|
+
unique_project_names = zs.scurry_project_names()
|
|
51
|
+
```
|
|
52
|
+
|
|
53
|
+
### Hide the acorns
|
|
54
|
+
|
|
55
|
+
```python
|
|
56
|
+
from zombie_squirrel.sync import hide_acorns
|
|
57
|
+
hide_acorns()
|
|
58
|
+
```
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
zombie_squirrel/__init__.py,sha256=DNpLCiGI7ruzugujNWAtYUCsCZOaTmlzf3Mjd5jQUek,409
|
|
2
|
+
zombie_squirrel/acorns.py,sha256=4uBzYtYgW2oD5sOohNQUw4qfjmNjmAIK2RlL1Ge1Udo,2597
|
|
3
|
+
zombie_squirrel/squirrels.py,sha256=b1kQ2itTBo4o0e0r8Fg56YcJsiJAIqxzs86CSv0ExXE,11181
|
|
4
|
+
zombie_squirrel/sync.py,sha256=84Ta5beHiPuGBVzp9SCo7G1b4McTUohcUIf_TJbNIV8,518
|
|
5
|
+
zombie_squirrel/utils.py,sha256=woPxU4vYMUv-T0XOjV5ieViksU_q7It_n_5Ll4zpocA,289
|
|
6
|
+
zombie_squirrel-0.4.4.dist-info/licenses/LICENSE,sha256=U0Y7B3gZJHXpjJVLgTQjM8e_c8w4JJpLgGhIdsoFR1Y,1092
|
|
7
|
+
zombie_squirrel-0.4.4.dist-info/METADATA,sha256=DJ7Ai_ZPSRlnDzoUw2QZdSzmza3RieZXwe1I1mgnJts,1464
|
|
8
|
+
zombie_squirrel-0.4.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
9
|
+
zombie_squirrel-0.4.4.dist-info/top_level.txt,sha256=FmM0coe4AangURZLjM4JwwRv2B8H6oINYCoZLKLDCKA,16
|
|
10
|
+
zombie_squirrel-0.4.4.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2022 Allen Institute for Neural Dynamics
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
zombie_squirrel
|