zipline_polygon_bundle 0.2.0.dev1__py3-none-any.whl → 0.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- zipline_polygon_bundle/__init__.py +7 -9
- zipline_polygon_bundle/adjustments.py +27 -32
- zipline_polygon_bundle/bundle.py +157 -312
- zipline_polygon_bundle/compute_signals.py +261 -0
- zipline_polygon_bundle/concat_all_aggs.py +130 -25
- zipline_polygon_bundle/config.py +70 -45
- zipline_polygon_bundle/trades.py +197 -606
- {zipline_polygon_bundle-0.2.0.dev1.dist-info → zipline_polygon_bundle-0.2.3.dist-info}/METADATA +90 -8
- zipline_polygon_bundle-0.2.3.dist-info/RECORD +18 -0
- {zipline_polygon_bundle-0.2.0.dev1.dist-info → zipline_polygon_bundle-0.2.3.dist-info}/WHEEL +1 -1
- zipline_polygon_bundle-0.2.0.dev1.dist-info/RECORD +0 -17
- {zipline_polygon_bundle-0.2.0.dev1.dist-info → zipline_polygon_bundle-0.2.3.dist-info}/LICENSE +0 -0
@@ -0,0 +1,261 @@
|
|
1
|
+
from .config import PolygonConfig
|
2
|
+
from .trades import custom_aggs_schema, custom_aggs_partitioning
|
3
|
+
|
4
|
+
import datetime
|
5
|
+
import numpy as np
|
6
|
+
import pyarrow as pa
|
7
|
+
import pyarrow.compute as pa_compute
|
8
|
+
import pyarrow.dataset as pa_ds
|
9
|
+
import pandas_ta as ta
|
10
|
+
import pandas as pd
|
11
|
+
|
12
|
+
|
13
|
+
def calculate_mfi(typical_price: pd.Series, money_flow: pd.Series, period: int):
|
14
|
+
mf_sign = np.where(typical_price > np.roll(typical_price, shift=1), 1, -1)
|
15
|
+
signed_mf = money_flow * mf_sign
|
16
|
+
|
17
|
+
# Calculate gain and loss using vectorized operations
|
18
|
+
positive_mf = np.maximum(signed_mf, 0)
|
19
|
+
negative_mf = np.maximum(-signed_mf, 0)
|
20
|
+
|
21
|
+
mf_avg_gain = (
|
22
|
+
np.convolve(positive_mf, np.ones(period), mode="full")[: len(positive_mf)]
|
23
|
+
/ period
|
24
|
+
)
|
25
|
+
mf_avg_loss = (
|
26
|
+
np.convolve(negative_mf, np.ones(period), mode="full")[: len(negative_mf)]
|
27
|
+
/ period
|
28
|
+
)
|
29
|
+
|
30
|
+
epsilon = 1e-10 # Small epsilon value to avoid division by zero
|
31
|
+
mfi = 100 - (100 / (1 + mf_avg_gain / (mf_avg_loss + epsilon)))
|
32
|
+
return mfi
|
33
|
+
|
34
|
+
|
35
|
+
# https://github.com/twopirllc/pandas-ta/blob/main/pandas_ta/momentum/stoch.py
|
36
|
+
# https://github.com/twopirllc/pandas-ta/blob/development/pandas_ta/momentum/stoch.py
|
37
|
+
# `k` vs `fast_k` arg names.
|
38
|
+
# https://github.com/twopirllc/pandas-ta/issues/726
|
39
|
+
# Results affected by values outside range
|
40
|
+
# https://github.com/twopirllc/pandas-ta/issues/535
|
41
|
+
|
42
|
+
|
43
|
+
def calculate_stoch(
|
44
|
+
high: pd.Series,
|
45
|
+
low: pd.Series,
|
46
|
+
close: pd.Series,
|
47
|
+
k: int = 14,
|
48
|
+
d: int = 3,
|
49
|
+
smooth_k: int = 3,
|
50
|
+
mamode: str = "sma",
|
51
|
+
):
|
52
|
+
"""Indicator: Stochastic Oscillator (STOCH)"""
|
53
|
+
lowest_low = low.rolling(k).min()
|
54
|
+
highest_high = high.rolling(k).max()
|
55
|
+
|
56
|
+
stoch = 100 * (close - lowest_low)
|
57
|
+
stoch /= ta.utils.non_zero_range(highest_high, lowest_low)
|
58
|
+
|
59
|
+
stoch_k = ta.overlap.ma(
|
60
|
+
mamode, stoch.loc[stoch.first_valid_index() :,], length=smooth_k
|
61
|
+
)
|
62
|
+
stoch_d = (
|
63
|
+
ta.overlap.ma(mamode, stoch_k.loc[stoch_k.first_valid_index() :,], length=d)
|
64
|
+
if stoch_k is not None
|
65
|
+
else None
|
66
|
+
)
|
67
|
+
# Histogram
|
68
|
+
stoch_h = stoch_k - stoch_d if stoch_d is not None else None
|
69
|
+
|
70
|
+
return stoch_k, stoch_d, stoch_h
|
71
|
+
|
72
|
+
|
73
|
+
def compute_per_ticker_signals(df: pd.DataFrame, period: int = 14) -> pd.DataFrame:
|
74
|
+
df = df.set_index("window_start").sort_index()
|
75
|
+
session_index = pd.date_range(
|
76
|
+
start=df.index[0], end=df.index[-1], freq=pd.Timedelta(seconds=60)
|
77
|
+
)
|
78
|
+
df = df.reindex(session_index)
|
79
|
+
df.index.rename("window_start", inplace=True)
|
80
|
+
|
81
|
+
# df["minute_of_day"] = (df.index.hour * 60) + df.index.minute
|
82
|
+
# df["day_of_week"] = df.index.day_of_week
|
83
|
+
|
84
|
+
df.transactions = df.transactions.fillna(0)
|
85
|
+
df.volume = df.volume.fillna(0)
|
86
|
+
df.total = df.total.fillna(0)
|
87
|
+
df.close = df.close.ffill()
|
88
|
+
close = df.close
|
89
|
+
df.vwap = df.vwap.fillna(close)
|
90
|
+
df.high = df.high.fillna(close)
|
91
|
+
df.low = df.low.fillna(close)
|
92
|
+
df.open = df.open.fillna(close)
|
93
|
+
price_open = df.open
|
94
|
+
high = df.high
|
95
|
+
low = df.low
|
96
|
+
vwap = df.vwap
|
97
|
+
# volume = df.volume
|
98
|
+
total = df.total
|
99
|
+
next_close = close.shift()
|
100
|
+
|
101
|
+
# TODO: Odometer rollover signal. Relative difference to nearest power of 10.
|
102
|
+
# Something about log10 being a whole number? When is $50 the rollover vs $100 or $10?
|
103
|
+
|
104
|
+
# "True (Typical?) Price" which I think is an approximation of VWAP.
|
105
|
+
# Trouble with both is that if there are no trades in a bar we get NaN.
|
106
|
+
# That then means we get NaN for averages for the next period-1 bars too.
|
107
|
+
# Question is whether to ffill the price for these calculations.
|
108
|
+
df["TP"] = (high + low + close) / 3
|
109
|
+
|
110
|
+
# Gain/loss in this bar.
|
111
|
+
df["ret1bar"] = close.div(price_open).sub(1)
|
112
|
+
|
113
|
+
for t in range(2, period):
|
114
|
+
df[f"ret{t}bar"] = close.div(price_open.shift(t - 1)).sub(1)
|
115
|
+
|
116
|
+
# Average True Range (ATR)
|
117
|
+
true_range = pd.concat(
|
118
|
+
[high.sub(low), high.sub(next_close).abs(), low.sub(next_close).abs()], axis=1
|
119
|
+
).max(1)
|
120
|
+
# Normalized ATR (NATR) or Average of Normalized TR.
|
121
|
+
# Choice of NATR operations ordering discussion: https://www.macroption.com/normalized-atr/
|
122
|
+
# He doesn't talk about VWAP but I think that is a better normalizing price for a bar.
|
123
|
+
# atr = true_range.ewm(span=period).mean()
|
124
|
+
# df["natr_c"] = atr / close
|
125
|
+
# df["antr_c"] = (true_range / close).ewm(span=period).mean()
|
126
|
+
# df["natr_v"] = atr / vwap
|
127
|
+
# df["antr_v"] = (true_range / vwap).ewm(span=period).mean()
|
128
|
+
df["NATR"] = (true_range / vwap).ewm(span=period).mean()
|
129
|
+
|
130
|
+
# True Price as HLC average VS VWAP.
|
131
|
+
# VWAP is better I think but is quite different than standard CCI.
|
132
|
+
# Three ways to compute CCI, all give the same value using TP.
|
133
|
+
# tp = (high + low + close) / 3
|
134
|
+
# df['SMA'] = ta.sma(tp, length=period)
|
135
|
+
# df['sma_r'] = tp.rolling(period).mean()
|
136
|
+
# df['MAD'] = ta.mad(tp, length=period)
|
137
|
+
# # Series.mad deprecated. mad = (s - s.mean()).abs().mean()
|
138
|
+
# df['mad_r'] = tp.rolling(period).apply(lambda x: (pd.Series(x) - pd.Series(x).mean()).abs().mean())
|
139
|
+
|
140
|
+
# df['cci_r'] = (tp - df['sma_r']) / (0.015 * df['mad_r'])
|
141
|
+
# df['CCI'] = (tp - df['SMA']) / (0.015 * df['MAD'])
|
142
|
+
# df['cci_ta'] = ta.cci(high=high, low=low, close=close, length=period)
|
143
|
+
|
144
|
+
df["taCCI"] = ta.cci(high=high, low=low, close=close, length=period)
|
145
|
+
|
146
|
+
# https://gist.github.com/quantra-go-algo/1b37bfb74d69148f0dfbdb5a2c7bdb25
|
147
|
+
# https://medium.com/@huzaifazahoor654/how-to-calculate-cci-in-python-a-step-by-step-guide-9a3f61698be6
|
148
|
+
sma = pd.Series(ta.sma(vwap, length=period))
|
149
|
+
mad = pd.Series(ta.mad(vwap, length=period))
|
150
|
+
df["CCI"] = (vwap - sma) / (0.015 * mad)
|
151
|
+
|
152
|
+
# df['MFI'] = calculate_mfi(high=high, low=low, close=close, volume=volume, period=period)
|
153
|
+
df["MFI"] = calculate_mfi(typical_price=vwap, money_flow=total, period=period)
|
154
|
+
|
155
|
+
# We use Stochastic (rather than MACD because we need a ticker independent indicator.
|
156
|
+
# IOW a percentage price oscillator (PPO) rather than absolute price oscillator (APO).
|
157
|
+
# https://www.alpharithms.com/moving-average-convergence-divergence-macd-031217/
|
158
|
+
# We're using 14/3 currently rather than the usual 26/12 popular for MACD though.
|
159
|
+
stoch_k, stoch_d, stoch_h = calculate_stoch(high, low, close, k=period)
|
160
|
+
df["STOCHk"] = stoch_k
|
161
|
+
df["STOCHd"] = stoch_d
|
162
|
+
df["STOCHh"] = stoch_h
|
163
|
+
|
164
|
+
return df
|
165
|
+
|
166
|
+
|
167
|
+
def iterate_all_aggs_tables(
|
168
|
+
config: PolygonConfig,
|
169
|
+
valid_tickers: pa.Array,
|
170
|
+
):
|
171
|
+
schedule = config.calendar.trading_index(
|
172
|
+
start=config.start_timestamp, end=config.end_timestamp, period="1D"
|
173
|
+
)
|
174
|
+
for timestamp in schedule:
|
175
|
+
date = timestamp.to_pydatetime().date()
|
176
|
+
aggs_ds = pa_ds.dataset(
|
177
|
+
config.aggs_dir,
|
178
|
+
format="parquet",
|
179
|
+
schema=custom_aggs_schema(tz=config.calendar.tz.key),
|
180
|
+
partitioning=custom_aggs_partitioning(),
|
181
|
+
)
|
182
|
+
date_filter_expr = (
|
183
|
+
(pa_compute.field("year") == date.year)
|
184
|
+
& (pa_compute.field("month") == date.month)
|
185
|
+
& (pa_compute.field("date") == date)
|
186
|
+
)
|
187
|
+
# print(f"{date_filter_expr=}")
|
188
|
+
for fragment in aggs_ds.get_fragments(filter=date_filter_expr):
|
189
|
+
session_filter = (
|
190
|
+
(pa_compute.field("window_start") >= start_dt)
|
191
|
+
& (pa_compute.field("window_start") < end_dt)
|
192
|
+
& pa_compute.is_in(pa_compute.field("ticker"), valid_tickers)
|
193
|
+
)
|
194
|
+
# Sorting table doesn't seem to avoid needing to sort the df. Maybe use_threads=False on to_pandas would help?
|
195
|
+
# table = fragment.to_table(filter=session_filter).sort_by([('ticker', 'ascending'), ('window_start', 'descending')])
|
196
|
+
table = fragment.to_table(filter=session_filter)
|
197
|
+
if table.num_rows > 0:
|
198
|
+
metadata = (
|
199
|
+
dict(table.schema.metadata) if table.schema.metadata else dict()
|
200
|
+
)
|
201
|
+
metadata["date"] = date.isoformat()
|
202
|
+
table = table.replace_schema_metadata(metadata)
|
203
|
+
yield table
|
204
|
+
|
205
|
+
|
206
|
+
# def iterate_all_aggs_with_signals(config: PolygonConfig):
|
207
|
+
# for table in iterate_all_aggs_tables(config):
|
208
|
+
# df = table.to_pandas()
|
209
|
+
# df = df.groupby("ticker").apply(
|
210
|
+
# compute_per_ticker_signals, include_groups=False
|
211
|
+
# )
|
212
|
+
# yield pa.Table.from_pandas(df)
|
213
|
+
|
214
|
+
|
215
|
+
def file_visitor(written_file):
|
216
|
+
print(f"{written_file.path=}")
|
217
|
+
|
218
|
+
|
219
|
+
def compute_signals_for_all_aggs(
|
220
|
+
from_config: PolygonConfig,
|
221
|
+
to_config: PolygonConfig,
|
222
|
+
valid_tickers: pa.Array,
|
223
|
+
overwrite: bool = False,
|
224
|
+
) -> str:
|
225
|
+
if overwrite:
|
226
|
+
print("WARNING: overwrite not implemented/ignored.")
|
227
|
+
|
228
|
+
# Need a different aggs_dir for the signals because schema is different.
|
229
|
+
print(f"{to_config.aggs_dir=}")
|
230
|
+
|
231
|
+
for aggs_table in iterate_all_aggs_tables(from_config, valid_tickers):
|
232
|
+
metadata = aggs_table.schema.metadata
|
233
|
+
date = datetime.date.fromisoformat(metadata[b"date"].decode("utf-8"))
|
234
|
+
print(f"{date=}")
|
235
|
+
df = aggs_table.to_pandas()
|
236
|
+
df = df.groupby("ticker").apply(
|
237
|
+
compute_per_ticker_signals, include_groups=False
|
238
|
+
)
|
239
|
+
table = pa.Table.from_pandas(df)
|
240
|
+
if table.num_rows > 0:
|
241
|
+
table = table.replace_schema_metadata(metadata)
|
242
|
+
table = table.append_column("date", pa.array(np.full(len(table), date)))
|
243
|
+
table = table.append_column(
|
244
|
+
"year", pa.array(np.full(len(table), date.year), type=pa.uint16())
|
245
|
+
)
|
246
|
+
table = table.append_column(
|
247
|
+
"month", pa.array(np.full(len(table), date.month), type=pa.uint8())
|
248
|
+
)
|
249
|
+
table = table.sort_by(
|
250
|
+
[("ticker", "ascending"), ("window_start", "ascending")]
|
251
|
+
)
|
252
|
+
pa_ds.write_dataset(
|
253
|
+
table,
|
254
|
+
filesystem=to_config.filesystem,
|
255
|
+
base_dir=to_config.aggs_dir,
|
256
|
+
partitioning=custom_aggs_partitioning(),
|
257
|
+
format="parquet",
|
258
|
+
existing_data_behavior="overwrite_or_ignore",
|
259
|
+
file_visitor=file_visitor,
|
260
|
+
)
|
261
|
+
return to_config.aggs_dir
|
@@ -1,24 +1,43 @@
|
|
1
1
|
from .config import PolygonConfig, PARTITION_COLUMN_NAME, to_partition_key
|
2
2
|
|
3
3
|
import shutil
|
4
|
-
from typing import Iterator, Tuple,
|
4
|
+
from typing import Iterator, Tuple, Union
|
5
5
|
|
6
6
|
import argparse
|
7
7
|
import os
|
8
|
+
import datetime
|
8
9
|
|
9
10
|
import pyarrow as pa
|
10
|
-
|
11
|
-
|
12
|
-
|
11
|
+
import pyarrow.compute as pa_compute
|
12
|
+
import pyarrow.csv as pa_csv
|
13
|
+
import pyarrow.dataset as pa_ds
|
14
|
+
import pyarrow.fs as pa_fs
|
13
15
|
|
14
16
|
import pandas as pd
|
15
17
|
|
16
18
|
|
19
|
+
# def get_by_ticker_dates(config: PolygonConfig, schema) -> set[datetime.date]:
|
20
|
+
# file_info = config.filesystem.get_file_info(config.by_ticker_dir)
|
21
|
+
# if file_info.type == pa_fs.FileType.NotFound:
|
22
|
+
# return set()
|
23
|
+
# partitioning = None
|
24
|
+
# if PARTITION_COLUMN_NAME in schema.names:
|
25
|
+
# partitioning = pa_ds.partitioning(
|
26
|
+
# pa.schema([(PARTITION_COLUMN_NAME, pa.string())]), flavor="hive"
|
27
|
+
# )
|
28
|
+
# by_ticker_aggs_ds = pa_ds.dataset(config.by_ticker_aggs_arrow_dir, schema=schema, partitioning=partitioning)
|
29
|
+
# return set(
|
30
|
+
# [
|
31
|
+
# pa_ds.get_partition_keys(fragment.partition_expression).get("date")
|
32
|
+
# for fragment in by_ticker_aggs_ds.get_fragments()
|
33
|
+
# ]
|
34
|
+
# )
|
35
|
+
|
36
|
+
|
17
37
|
def generate_tables_from_csv_files(
|
18
|
-
|
38
|
+
config: PolygonConfig,
|
19
39
|
schema: pa.Schema,
|
20
|
-
|
21
|
-
limit_timestamp: pd.Timestamp,
|
40
|
+
overwrite: bool = False,
|
22
41
|
) -> Iterator[pa.Table]:
|
23
42
|
empty_table = schema.empty_table()
|
24
43
|
# TODO: Find which column(s) need to be cast to int64 from the schema.
|
@@ -29,16 +48,35 @@ def generate_tables_from_csv_files(
|
|
29
48
|
)
|
30
49
|
csv_schema = empty_table.schema
|
31
50
|
|
51
|
+
existing_by_ticker_dates = set()
|
52
|
+
if not overwrite:
|
53
|
+
# print("Getting existing by_ticker_dates")
|
54
|
+
# existing_by_ticker_dates = get_by_ticker_dates(config, schema)
|
55
|
+
print(f"{len(existing_by_ticker_dates)=}")
|
56
|
+
|
57
|
+
schedule = config.calendar.trading_index(
|
58
|
+
start=config.start_timestamp, end=config.end_timestamp, period="1D"
|
59
|
+
)
|
60
|
+
start_timestamp = config.start_timestamp.tz_localize(config.calendar.tz.key)
|
61
|
+
limit_timestamp = (config.end_timestamp + pd.Timedelta(days=1)).tz_localize(
|
62
|
+
config.calendar.tz.key)
|
63
|
+
# print(f"{start_timestamp=} {limit_timestamp=} {config.calendar.tz=} {schedule[:2]=} {schedule[-2:]=}")
|
64
|
+
|
32
65
|
tables_read_count = 0
|
33
66
|
skipped_table_count = 0
|
34
|
-
for
|
67
|
+
for timestamp in schedule:
|
68
|
+
date: datetime.date = timestamp.tz_localize(config.calendar.tz.key).to_pydatetime().date()
|
69
|
+
# print(f"{date=} {timestamp=}")
|
70
|
+
if date in existing_by_ticker_dates:
|
71
|
+
continue
|
72
|
+
csv_path = config.date_to_csv_file_path(date)
|
35
73
|
convert_options = pa_csv.ConvertOptions(
|
36
74
|
column_types=csv_schema,
|
37
75
|
strings_can_be_null=False,
|
38
76
|
quoted_strings_can_be_null=False,
|
39
77
|
)
|
40
78
|
|
41
|
-
table = pa_csv.read_csv(
|
79
|
+
table = pa_csv.read_csv(csv_path, convert_options=convert_options)
|
42
80
|
tables_read_count += 1
|
43
81
|
table = table.set_column(
|
44
82
|
table.column_names.index("window_start"),
|
@@ -76,18 +114,86 @@ def generate_tables_from_csv_files(
|
|
76
114
|
skipped_table_count += 1
|
77
115
|
continue
|
78
116
|
|
117
|
+
if PARTITION_COLUMN_NAME in schema.names:
|
118
|
+
print(f"{date=}")
|
79
119
|
yield table
|
80
120
|
print(f"{tables_read_count=} {skipped_table_count=}")
|
81
121
|
|
82
122
|
|
123
|
+
# def generate_tables_from_csv_files(
|
124
|
+
# paths: Iterator[Union[str, os.PathLike]],
|
125
|
+
# schema: pa.Schema,
|
126
|
+
# start_timestamp: pd.Timestamp,
|
127
|
+
# limit_timestamp: pd.Timestamp,
|
128
|
+
# ) -> Iterator[pa.Table]:
|
129
|
+
# empty_table = schema.empty_table()
|
130
|
+
# # TODO: Find which column(s) need to be cast to int64 from the schema.
|
131
|
+
# empty_table = empty_table.set_column(
|
132
|
+
# empty_table.column_names.index("window_start"),
|
133
|
+
# "window_start",
|
134
|
+
# empty_table.column("window_start").cast(pa.int64()),
|
135
|
+
# )
|
136
|
+
# csv_schema = empty_table.schema
|
137
|
+
|
138
|
+
# tables_read_count = 0
|
139
|
+
# skipped_table_count = 0
|
140
|
+
# for path in paths:
|
141
|
+
# convert_options = pa_csv.ConvertOptions(
|
142
|
+
# column_types=csv_schema,
|
143
|
+
# strings_can_be_null=False,
|
144
|
+
# quoted_strings_can_be_null=False,
|
145
|
+
# )
|
146
|
+
|
147
|
+
# table = pa_csv.read_csv(path, convert_options=convert_options)
|
148
|
+
# tables_read_count += 1
|
149
|
+
# table = table.set_column(
|
150
|
+
# table.column_names.index("window_start"),
|
151
|
+
# "window_start",
|
152
|
+
# table.column("window_start").cast(schema.field("window_start").type),
|
153
|
+
# )
|
154
|
+
# if PARTITION_COLUMN_NAME in schema.names:
|
155
|
+
# table = table.append_column(
|
156
|
+
# PARTITION_COLUMN_NAME,
|
157
|
+
# pa.array(
|
158
|
+
# [
|
159
|
+
# to_partition_key(ticker)
|
160
|
+
# for ticker in table.column("ticker").to_pylist()
|
161
|
+
# ]
|
162
|
+
# ),
|
163
|
+
# )
|
164
|
+
# expr = (
|
165
|
+
# pa_compute.field("window_start")
|
166
|
+
# >= pa.scalar(start_timestamp, type=schema.field("window_start").type)
|
167
|
+
# ) & (
|
168
|
+
# pa_compute.field("window_start")
|
169
|
+
# < pa.scalar(
|
170
|
+
# limit_timestamp,
|
171
|
+
# type=schema.field("window_start").type,
|
172
|
+
# )
|
173
|
+
# )
|
174
|
+
# table = table.filter(expr)
|
175
|
+
|
176
|
+
# # TODO: Also check that these rows are within range for this file's date (not just the whole session).
|
177
|
+
# # And if we're doing that (figuring date for each file), we can just skip reading the file.
|
178
|
+
# # Might able to do a single comparison using compute.days_between.
|
179
|
+
# # https://arrow.apache.org/docs/python/generated/pyarrow.compute.days_between.html
|
180
|
+
|
181
|
+
# if table.num_rows == 0:
|
182
|
+
# skipped_table_count += 1
|
183
|
+
# continue
|
184
|
+
|
185
|
+
# yield table
|
186
|
+
# print(f"{tables_read_count=} {skipped_table_count=}")
|
187
|
+
|
188
|
+
|
83
189
|
def generate_csv_agg_tables(
|
84
|
-
config: PolygonConfig,
|
190
|
+
config: PolygonConfig, overwrite: bool = False
|
85
191
|
) -> Tuple[pa.Schema, Iterator[pa.Table]]:
|
86
192
|
"""zipline does bundle ingestion one ticker at a time."""
|
87
193
|
|
88
194
|
# Polygon Aggregate flatfile timestamps are in nanoseconds (like trades), not milliseconds as the docs say.
|
89
195
|
# I make the timestamp timezone-aware because that's how Unix timestamps work and it may help avoid mistakes.
|
90
|
-
timestamp_type = pa.timestamp("ns", tz=
|
196
|
+
timestamp_type = pa.timestamp("ns", tz='UTC')
|
91
197
|
|
92
198
|
# But we can't use the timestamp type in the schema here because it's not supported by the CSV reader.
|
93
199
|
# So we'll use int64 and cast it after reading the CSV file.
|
@@ -121,14 +227,12 @@ def generate_csv_agg_tables(
|
|
121
227
|
pa.field(PARTITION_COLUMN_NAME, pa.string(), nullable=False)
|
122
228
|
)
|
123
229
|
|
124
|
-
# TODO: Use generator like os.walk for paths.
|
125
230
|
return (
|
126
231
|
polygon_aggs_schema,
|
127
232
|
generate_tables_from_csv_files(
|
128
|
-
|
233
|
+
config,
|
129
234
|
schema=polygon_aggs_schema,
|
130
|
-
|
131
|
-
limit_timestamp=config.end_timestamp + pd.to_timedelta(1, unit="day"),
|
235
|
+
overwrite=overwrite,
|
132
236
|
),
|
133
237
|
)
|
134
238
|
|
@@ -143,16 +247,17 @@ def concat_all_aggs_from_csv(
|
|
143
247
|
config: PolygonConfig,
|
144
248
|
overwrite: bool = False,
|
145
249
|
) -> str:
|
146
|
-
schema, tables = generate_csv_agg_tables(config)
|
250
|
+
schema, tables = generate_csv_agg_tables(config, overwrite=overwrite)
|
147
251
|
|
148
252
|
by_ticker_aggs_arrow_dir = config.by_ticker_aggs_arrow_dir
|
149
|
-
if os.path.exists(by_ticker_aggs_arrow_dir):
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
253
|
+
# if os.path.exists(by_ticker_aggs_arrow_dir):
|
254
|
+
# if overwrite:
|
255
|
+
# print(f"Removing {by_ticker_aggs_arrow_dir=}")
|
256
|
+
# shutil.rmtree(by_ticker_aggs_arrow_dir)
|
257
|
+
# else:
|
258
|
+
# # TODO: Validate the existing data.
|
259
|
+
# print(f"Found existing {by_ticker_aggs_arrow_dir=}")
|
260
|
+
# return by_ticker_aggs_arrow_dir
|
156
261
|
|
157
262
|
partitioning = None
|
158
263
|
if PARTITION_COLUMN_NAME in schema.names:
|
@@ -160,7 +265,7 @@ def concat_all_aggs_from_csv(
|
|
160
265
|
pa.schema([(PARTITION_COLUMN_NAME, pa.string())]), flavor="hive"
|
161
266
|
)
|
162
267
|
|
163
|
-
|
268
|
+
print(f"Scattering aggregates by ticker to {by_ticker_aggs_arrow_dir=}")
|
164
269
|
pa_ds.write_dataset(
|
165
270
|
generate_batches_from_tables(tables),
|
166
271
|
schema=schema,
|
@@ -169,7 +274,7 @@ def concat_all_aggs_from_csv(
|
|
169
274
|
format="parquet",
|
170
275
|
existing_data_behavior="overwrite_or_ignore",
|
171
276
|
)
|
172
|
-
print(f"
|
277
|
+
print(f"Scattered aggregates by ticker to {by_ticker_aggs_arrow_dir=}")
|
173
278
|
return by_ticker_aggs_arrow_dir
|
174
279
|
|
175
280
|
|