zipline_polygon_bundle 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- zipline_polygon_bundle/__init__.py +28 -1
- zipline_polygon_bundle/adjustments.py +34 -0
- zipline_polygon_bundle/bundle.py +47 -25
- zipline_polygon_bundle/concat_all_aggs.py +17 -32
- zipline_polygon_bundle/concat_all_aggs_partitioned.py +6 -6
- zipline_polygon_bundle/config.py +99 -26
- zipline_polygon_bundle/polygon_file_reader.py +1 -1
- zipline_polygon_bundle/process_all_aggs.py +2 -2
- zipline_polygon_bundle/quotes.py +101 -0
- zipline_polygon_bundle/tickers_and_names.py +1 -37
- zipline_polygon_bundle/trades.py +707 -0
- {zipline_polygon_bundle-0.1.7.dist-info → zipline_polygon_bundle-0.1.8.dist-info}/METADATA +6 -3
- zipline_polygon_bundle-0.1.8.dist-info/RECORD +16 -0
- zipline_polygon_bundle-0.1.7.dist-info/RECORD +0 -14
- {zipline_polygon_bundle-0.1.7.dist-info → zipline_polygon_bundle-0.1.8.dist-info}/LICENSE +0 -0
- {zipline_polygon_bundle-0.1.7.dist-info → zipline_polygon_bundle-0.1.8.dist-info}/WHEEL +0 -0
| @@ -0,0 +1,707 @@ | |
| 1 | 
            +
            from .config import PolygonConfig
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from typing import Iterator, Tuple
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import pyarrow as pa
         | 
| 6 | 
            +
            from pyarrow import dataset as pa_ds
         | 
| 7 | 
            +
            from pyarrow import compute as pa_compute
         | 
| 8 | 
            +
            from pyarrow import compute as pc
         | 
| 9 | 
            +
            from pyarrow import parquet as pa_parquet
         | 
| 10 | 
            +
            from pyarrow import csv as pa_csv
         | 
| 11 | 
            +
            from pyarrow import fs as pa_fs
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from fsspec.implementations.arrow import ArrowFSWrapper
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import datetime
         | 
| 16 | 
            +
            import pandas_market_calendars
         | 
| 17 | 
            +
            import numpy as np
         | 
| 18 | 
            +
            import pandas as pd
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            import pandas_ta as ta
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            # from concurrent.futures import ThreadPoolExecutor
         | 
| 23 | 
            +
            # from concurrent.futures import ProcessPoolExecutor
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            def trades_schema(raw: bool = False) -> pa.Schema:
         | 
| 27 | 
            +
                # There is some problem reading the timestamps as timestamps so we have to read as integer then change the schema.
         | 
| 28 | 
            +
                # Polygon Aggregate flatfile timestamps are in nanoseconds (like trades), not milliseconds as the docs say.
         | 
| 29 | 
            +
                # I make the timestamp timezone-aware because that's how Unix timestamps work and it may help avoid mistakes.
         | 
| 30 | 
            +
                # timestamp_type = pa.timestamp("ns", tz="UTC")
         | 
| 31 | 
            +
                timestamp_type = pa.int64() if raw else pa.timestamp("ns", tz="UTC")
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                # Polygon price scale is 4 decimal places (i.e. hundredths of a penny), but we'll use 10 because we have precision to spare.
         | 
| 34 | 
            +
                # price_type = pa.decimal128(precision=38, scale=10)
         | 
| 35 | 
            +
                # 64bit float a little overkill but avoids any plausible truncation error.
         | 
| 36 | 
            +
                price_type = pa.float64()
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                return pa.schema(
         | 
| 39 | 
            +
                        [
         | 
| 40 | 
            +
                            pa.field("ticker", pa.string(), nullable=False),
         | 
| 41 | 
            +
                            pa.field("conditions", pa.string(), nullable=False),
         | 
| 42 | 
            +
                            pa.field("correction", pa.string(), nullable=False),
         | 
| 43 | 
            +
                            pa.field("exchange", pa.int8(), nullable=False),
         | 
| 44 | 
            +
                            pa.field("id", pa.string(), nullable=False),
         | 
| 45 | 
            +
                            pa.field("participant_timestamp", timestamp_type, nullable=False),
         | 
| 46 | 
            +
                            pa.field("price", price_type, nullable=False),
         | 
| 47 | 
            +
                            pa.field("sequence_number", pa.int64(), nullable=False),
         | 
| 48 | 
            +
                            pa.field("sip_timestamp", timestamp_type, nullable=False),
         | 
| 49 | 
            +
                            pa.field("size", pa.int64(), nullable=False),
         | 
| 50 | 
            +
                            pa.field("tape", pa.int8(), nullable=False),
         | 
| 51 | 
            +
                            pa.field("trf_id", pa.int64(), nullable=False),
         | 
| 52 | 
            +
                            pa.field("trf_timestamp", timestamp_type, nullable=False),
         | 
| 53 | 
            +
                        ]
         | 
| 54 | 
            +
                    )
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            def trades_dataset(config: PolygonConfig) -> pa_ds.Dataset:
         | 
| 58 | 
            +
                """
         | 
| 59 | 
            +
                Create a pyarrow dataset from the trades files.
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                # https://arrow.apache.org/docs/python/filesystems.html#using-arrow-filesystems-with-fsspec
         | 
| 63 | 
            +
                # https://filesystem-spec.readthedocs.io/en/latest/_modules/fsspec/spec.html#AbstractFileSystem.glob.
         | 
| 64 | 
            +
                fsspec = ArrowFSWrapper(config.filesystem)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                # We sort by path because they have the year and month in the dir names and the date in the filename.
         | 
| 67 | 
            +
                paths = sorted(
         | 
| 68 | 
            +
                    fsspec.glob(os.path.join(config.trades_dir, config.csv_paths_pattern))
         | 
| 69 | 
            +
                )
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                return pa_ds.FileSystemDataset.from_paths(paths,
         | 
| 72 | 
            +
                                                          format=pa_ds.CsvFileFormat(),
         | 
| 73 | 
            +
                                                          schema=trades_schema(raw=True),
         | 
| 74 | 
            +
                                                          filesystem=config.filesystem)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
            def cast_strings_to_list(string_array, separator=",", default="0", value_type=pa.uint8()):
         | 
| 78 | 
            +
                """Cast a PyArrow StringArray of comma-separated numbers to a ListArray of values."""
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                # Create a mask to identify empty strings
         | 
| 81 | 
            +
                is_empty = pa_compute.equal(pa_compute.utf8_trim_whitespace(string_array), "")
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                # Use replace_with_mask to replace empty strings with the default ("0")
         | 
| 84 | 
            +
                filled_column = pa_compute.replace_with_mask(string_array, is_empty, pa.scalar(default))
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                # Split the strings by comma
         | 
| 87 | 
            +
                split_array = pa_compute.split_pattern(filled_column, pattern=separator)
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                # Cast each element in the resulting lists to integers
         | 
| 90 | 
            +
                int_list_array = pa_compute.cast(split_array, pa.list_(value_type))
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                return int_list_array
         | 
| 93 | 
            +
             | 
| 94 | 
            +
             | 
| 95 | 
            +
            def cast_trades(trades):
         | 
| 96 | 
            +
                trades = trades.cast(trades_schema())
         | 
| 97 | 
            +
                condition_values = cast_strings_to_list(trades.column("conditions").combine_chunks())
         | 
| 98 | 
            +
                return trades.append_column('condition_values', condition_values)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
             | 
| 101 | 
            +
            def date_to_path(date, ext=".csv.gz"):
         | 
| 102 | 
            +
                # return f"{date.year}/{date.month:02}/{date.isoformat()}{ext}"
         | 
| 103 | 
            +
                return date.strftime("%Y/%m/%Y-%m-%d") + ext
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            def convert_to_custom_aggs_file(config: PolygonConfig,
         | 
| 107 | 
            +
                                            overwrite: bool,
         | 
| 108 | 
            +
                                            timestamp: pd.Timestamp,
         | 
| 109 | 
            +
                                            start_session: pd.Timestamp,
         | 
| 110 | 
            +
                                            end_session: pd.Timestamp):
         | 
| 111 | 
            +
                date = timestamp.to_pydatetime().date()
         | 
| 112 | 
            +
                aggs_date_path = date_to_path(date, ext=".parquet")
         | 
| 113 | 
            +
                aggs_path = f"{config.custom_aggs_dir}/{aggs_date_path}"
         | 
| 114 | 
            +
                # aggs_by_ticker_path = f"{config.custom_aggs_by_ticker_dir}/{aggs_date_path}"
         | 
| 115 | 
            +
                fsspec = ArrowFSWrapper(config.filesystem)
         | 
| 116 | 
            +
                if fsspec.exists(aggs_path) or fsspec.exists(aggs_by_ticker_path):
         | 
| 117 | 
            +
                    if overwrite:
         | 
| 118 | 
            +
                        if fsspec.exists(aggs_path):
         | 
| 119 | 
            +
                            config.filesystem.delete_file(aggs_path)
         | 
| 120 | 
            +
                        if fsspec.exists(aggs_by_ticker_path):
         | 
| 121 | 
            +
                            config.filesystem.delete_file(aggs_by_ticker_path)
         | 
| 122 | 
            +
                    else:
         | 
| 123 | 
            +
                        if fsspec.exists(aggs_path):
         | 
| 124 | 
            +
                            print(f"SKIPPING: {date=} File exists {aggs_path=}")
         | 
| 125 | 
            +
                        if fsspec.exists(aggs_by_ticker_path):
         | 
| 126 | 
            +
                            print(f"SKIPPING: {date=} File exists {aggs_by_ticker_path=}")
         | 
| 127 | 
            +
                        return
         | 
| 128 | 
            +
                fsspec.mkdir(fsspec._parent(aggs_path))
         | 
| 129 | 
            +
                fsspec.mkdir(fsspec._parent(aggs_by_ticker_path))
         | 
| 130 | 
            +
                trades_path = f"{config.trades_dir}/{date_to_path(date)}"
         | 
| 131 | 
            +
                if not fsspec.exists(trades_path):
         | 
| 132 | 
            +
                    print(f"ERROR: Trades file missing.  Skipping {date=}.  {trades_path=}")
         | 
| 133 | 
            +
                    return
         | 
| 134 | 
            +
                print(f"{trades_path=}")
         | 
| 135 | 
            +
                format = pa_ds.CsvFileFormat()
         | 
| 136 | 
            +
                trades_ds = pa_ds.FileSystemDataset.from_paths([trades_path], format=format, schema=trades_schema(raw=True), filesystem=config.filesystem)
         | 
| 137 | 
            +
                fragments = trades_ds.get_fragments()
         | 
| 138 | 
            +
                fragment = next(fragments)
         | 
| 139 | 
            +
                try:
         | 
| 140 | 
            +
                    next(fragments)
         | 
| 141 | 
            +
                    print("ERROR: More than one fragment for {path=}")
         | 
| 142 | 
            +
                except StopIteration:
         | 
| 143 | 
            +
                    pass
         | 
| 144 | 
            +
                trades = fragment.to_table(schema=trades_ds.schema)
         | 
| 145 | 
            +
                trades = trades.cast(trades_schema())
         | 
| 146 | 
            +
                min_timestamp = pa.compute.min(trades.column('sip_timestamp')).as_py()
         | 
| 147 | 
            +
                max_timestamp = pa.compute.max(trades.column('sip_timestamp')).as_py()
         | 
| 148 | 
            +
                if min_timestamp < start_session:
         | 
| 149 | 
            +
                    print(f"ERROR: {min_timestamp=} < {start_session=}")
         | 
| 150 | 
            +
                if max_timestamp >= end_session:
         | 
| 151 | 
            +
                    print(f"ERROR: {max_timestamp=} >= {end_session=}")
         | 
| 152 | 
            +
                trades_df = trades.to_pandas()
         | 
| 153 | 
            +
                trades_df["window_start"] = trades_df["sip_timestamp"].dt.floor(aggregate_timedelta)
         | 
| 154 | 
            +
                aggs_df = trades_df.groupby(["ticker", "window_start"]).agg(
         | 
| 155 | 
            +
                    open=('price', 'first'),
         | 
| 156 | 
            +
                    high=('price', 'max'),
         | 
| 157 | 
            +
                    low=('price', 'min'),
         | 
| 158 | 
            +
                    close=('price', 'last'),
         | 
| 159 | 
            +
                    volume=('size', 'sum'),
         | 
| 160 | 
            +
                )
         | 
| 161 | 
            +
                aggs_df['transactions'] = trades_df.groupby(["ticker", "window_start"]).size()
         | 
| 162 | 
            +
                aggs_df.reset_index(inplace=True)
         | 
| 163 | 
            +
                aggs_table = pa.Table.from_pandas(aggs_df).select(['ticker', 'volume', 'open', 'close', 'high', 'low', 'window_start', 'transactions'])
         | 
| 164 | 
            +
                aggs_table = aggs_table.sort_by([('ticker', 'ascending'), ('window_start', 'ascending')])
         | 
| 165 | 
            +
                print(f"{aggs_by_ticker_path=}")
         | 
| 166 | 
            +
                pa_parquet.write_table(table=aggs_table,
         | 
| 167 | 
            +
                                       where=aggs_by_ticker_path, filesystem=to_config.filesystem) 
         | 
| 168 | 
            +
                aggs_table = aggs_table.sort_by([('window_start', 'ascending'), ('ticker', 'ascending')])
         | 
| 169 | 
            +
                print(f"{aggs_path=}")
         | 
| 170 | 
            +
                pa_parquet.write_table(table=aggs_table,
         | 
| 171 | 
            +
                                       where=aggs_path, filesystem=to_config.filesystem)
         | 
| 172 | 
            +
             | 
| 173 | 
            +
             | 
| 174 | 
            +
            # def convert_to_custom_aggs(config: PolygonConfig,
         | 
| 175 | 
            +
            #                             overwrite: bool,
         | 
| 176 | 
            +
            #                             timestamp: pd.Timestamp,
         | 
| 177 | 
            +
            #                             start_session: pd.Timestamp,
         | 
| 178 | 
            +
            #                             end_session: pd.Timestamp):
         | 
| 179 | 
            +
            #     date = timestamp.to_pydatetime().date()
         | 
| 180 | 
            +
            #     aggs_date_path = date_to_path(date, ext=".parquet")
         | 
| 181 | 
            +
            #     aggs_path = f"{config.custom_aggs_dir}/{aggs_date_path}"
         | 
| 182 | 
            +
            #     # aggs_by_ticker_path = f"{config.custom_aggs_by_ticker_dir}/{aggs_date_path}"
         | 
| 183 | 
            +
            #     fsspec = ArrowFSWrapper(config.filesystem)
         | 
| 184 | 
            +
            #     if fsspec.exists(aggs_path) or fsspec.exists(aggs_by_ticker_path):
         | 
| 185 | 
            +
            #         if overwrite:
         | 
| 186 | 
            +
            #             if fsspec.exists(aggs_path):
         | 
| 187 | 
            +
            #                 config.filesystem.delete_file(aggs_path)
         | 
| 188 | 
            +
            #             if fsspec.exists(aggs_by_ticker_path):
         | 
| 189 | 
            +
            #                 config.filesystem.delete_file(aggs_by_ticker_path)
         | 
| 190 | 
            +
            #         else:
         | 
| 191 | 
            +
            #             if fsspec.exists(aggs_path):
         | 
| 192 | 
            +
            #                 print(f"SKIPPING: {date=} File exists {aggs_path=}")
         | 
| 193 | 
            +
            #             if fsspec.exists(aggs_by_ticker_path):
         | 
| 194 | 
            +
            #                 print(f"SKIPPING: {date=} File exists {aggs_by_ticker_path=}")
         | 
| 195 | 
            +
            #             return
         | 
| 196 | 
            +
            #     fsspec.mkdir(fsspec._parent(aggs_path))
         | 
| 197 | 
            +
            #     fsspec.mkdir(fsspec._parent(aggs_by_ticker_path))
         | 
| 198 | 
            +
            #     trades_path = f"{config.trades_dir}/{date_to_path(date)}"
         | 
| 199 | 
            +
            #     if not fsspec.exists(trades_path):
         | 
| 200 | 
            +
            #         print(f"ERROR: Trades file missing.  Skipping {date=}.  {trades_path=}")
         | 
| 201 | 
            +
            #         return
         | 
| 202 | 
            +
            #     print(f"{trades_path=}")
         | 
| 203 | 
            +
            #     format = pa_ds.CsvFileFormat()
         | 
| 204 | 
            +
            #     trades_ds = pa_ds.FileSystemDataset.from_paths([trades_path], format=format, schema=trades_schema(raw=True), filesystem=config.filesystem)
         | 
| 205 | 
            +
            #     fragments = trades_ds.get_fragments()
         | 
| 206 | 
            +
            #     fragment = next(fragments)
         | 
| 207 | 
            +
            #     try:
         | 
| 208 | 
            +
            #         next(fragments)
         | 
| 209 | 
            +
            #         print("ERROR: More than one fragment for {path=}")
         | 
| 210 | 
            +
            #     except StopIteration:
         | 
| 211 | 
            +
            #         pass
         | 
| 212 | 
            +
            #     trades = fragment.to_table(schema=trades_ds.schema)
         | 
| 213 | 
            +
            #     trades = trades.cast(trades_schema())
         | 
| 214 | 
            +
            #     min_timestamp = pa.compute.min(trades.column('sip_timestamp')).as_py()
         | 
| 215 | 
            +
            #     max_timestamp = pa.compute.max(trades.column('sip_timestamp')).as_py()
         | 
| 216 | 
            +
            #     if min_timestamp < start_session:
         | 
| 217 | 
            +
            #         print(f"ERROR: {min_timestamp=} < {start_session=}")
         | 
| 218 | 
            +
            #     if max_timestamp >= end_session:
         | 
| 219 | 
            +
            #         print(f"ERROR: {max_timestamp=} >= {end_session=}")
         | 
| 220 | 
            +
            #     trades_df = trades.to_pandas()
         | 
| 221 | 
            +
            #     trades_df["window_start"] = trades_df["sip_timestamp"].dt.floor(aggregate_timedelta)
         | 
| 222 | 
            +
            #     aggs_df = trades_df.groupby(["ticker", "window_start"]).agg(
         | 
| 223 | 
            +
            #         open=('price', 'first'),
         | 
| 224 | 
            +
            #         high=('price', 'max'),
         | 
| 225 | 
            +
            #         low=('price', 'min'),
         | 
| 226 | 
            +
            #         close=('price', 'last'),
         | 
| 227 | 
            +
            #         volume=('size', 'sum'),
         | 
| 228 | 
            +
            #     )
         | 
| 229 | 
            +
            #     aggs_df['transactions'] = trades_df.groupby(["ticker", "window_start"]).size()
         | 
| 230 | 
            +
            #     aggs_df.reset_index(inplace=True)
         | 
| 231 | 
            +
            #     aggs_table = pa.Table.from_pandas(aggs_df).select(['ticker', 'volume', 'open', 'close', 'high', 'low', 'window_start', 'transactions'])
         | 
| 232 | 
            +
            #     aggs_table = aggs_table.sort_by([('ticker', 'ascending'), ('window_start', 'ascending')])
         | 
| 233 | 
            +
            #     print(f"{aggs_by_ticker_path=}")
         | 
| 234 | 
            +
            #     pa_parquet.write_table(table=aggs_table,
         | 
| 235 | 
            +
            #                            where=aggs_by_ticker_path, filesystem=to_config.filesystem) 
         | 
| 236 | 
            +
            #     aggs_table = aggs_table.sort_by([('window_start', 'ascending'), ('ticker', 'ascending')])
         | 
| 237 | 
            +
            #     print(f"{aggs_path=}")
         | 
| 238 | 
            +
            #     pa_parquet.write_table(table=aggs_table,
         | 
| 239 | 
            +
            #                            where=aggs_path, filesystem=to_config.filesystem) 
         | 
| 240 | 
            +
            #     pa_ds.write_dataset(
         | 
| 241 | 
            +
            #         generate_batches_from_tables(tables),
         | 
| 242 | 
            +
            #         schema=schema,
         | 
| 243 | 
            +
            #         base_dir=by_ticker_aggs_arrow_dir,
         | 
| 244 | 
            +
            #         partitioning=partitioning,
         | 
| 245 | 
            +
            #         format="parquet",
         | 
| 246 | 
            +
            #         existing_data_behavior="overwrite_or_ignore",
         | 
| 247 | 
            +
            #     )
         | 
| 248 | 
            +
             | 
| 249 | 
            +
             | 
| 250 | 
            +
            # def generate_csv_trades_tables(
         | 
| 251 | 
            +
            #     config: PolygonConfig,
         | 
| 252 | 
            +
            # ) -> Tuple[datetime.date, Iterator[pa.Table]]:
         | 
| 253 | 
            +
            #     """Generator for trades tables from flatfile CSVs."""
         | 
| 254 | 
            +
            #     # Use pandas_market_calendars so we can get extended hours.
         | 
| 255 | 
            +
            #     # NYSE and NASDAQ have extended hours but XNYS does not.
         | 
| 256 | 
            +
            #     calendar = pandas_market_calendars.get_calendar(config.calendar_name)
         | 
| 257 | 
            +
            #     schedule = calendar.schedule(start_date=config.start_timestamp, end_date=config.end_timestamp, start="pre", end="post")
         | 
| 258 | 
            +
            #     for timestamp, session in schedule.iterrows():
         | 
| 259 | 
            +
            #         date = timestamp.to_pydatetime().date()
         | 
| 260 | 
            +
            #         trades_csv_path = f"{config.trades_dir}/{date_to_path(date)}"
         | 
| 261 | 
            +
            #         format = pa_ds.CsvFileFormat()
         | 
| 262 | 
            +
            #         trades_ds = pa_ds.FileSystemDataset.from_paths([trades_csv_path], format=format, schema=trades_schema(raw=True), filesystem=config.filesystem)
         | 
| 263 | 
            +
            #         fragments = trades_ds.get_fragments()
         | 
| 264 | 
            +
            #         fragment = next(fragments)
         | 
| 265 | 
            +
            #         try:
         | 
| 266 | 
            +
            #             next(fragments)
         | 
| 267 | 
            +
            #             print("ERROR: More than one fragment for {path=}")
         | 
| 268 | 
            +
            #         except StopIteration:
         | 
| 269 | 
            +
            #             pass
         | 
| 270 | 
            +
            #         trades = fragment.to_table(schema=trades_ds.schema)
         | 
| 271 | 
            +
            #         trades = trades.cast(trades_schema())
         | 
| 272 | 
            +
            #         min_timestamp = pa.compute.min(trades.column('sip_timestamp')).as_py()
         | 
| 273 | 
            +
            #         max_timestamp = pa.compute.max(trades.column('sip_timestamp')).as_py()
         | 
| 274 | 
            +
            #         start_session = session['pre']
         | 
| 275 | 
            +
            #         end_session = session['post']
         | 
| 276 | 
            +
            #         # print(f"{start_session=} {end_session=}")
         | 
| 277 | 
            +
            #         # print(f"{min_timestamp=} {max_timestamp=}")
         | 
| 278 | 
            +
            #         if min_timestamp < start_session:
         | 
| 279 | 
            +
            #             print(f"ERROR: {min_timestamp=} < {start_session=}")
         | 
| 280 | 
            +
            #         # The end_session is supposed to be a limit but there are many with trades at that second.
         | 
| 281 | 
            +
            #         if max_timestamp >= (end_session + pd.Timedelta(seconds=1)):
         | 
| 282 | 
            +
            #             # print(f"ERROR: {max_timestamp=} >= {end_session=}")
         | 
| 283 | 
            +
            #             print(f"ERROR: {max_timestamp=} > {end_session+pd.Timedelta(seconds=1)=}")
         | 
| 284 | 
            +
            #         yield date, trades
         | 
| 285 | 
            +
            #         del fragment
         | 
| 286 | 
            +
            #         del fragments
         | 
| 287 | 
            +
            #         del trades_ds
         | 
| 288 | 
            +
             | 
| 289 | 
            +
             | 
| 290 | 
            +
            def custom_aggs_schema(raw: bool = False) -> pa.Schema:
         | 
| 291 | 
            +
                timestamp_type = pa.int64() if raw else pa.timestamp("ns", tz="UTC")
         | 
| 292 | 
            +
                price_type = pa.float64()
         | 
| 293 | 
            +
                return pa.schema(
         | 
| 294 | 
            +
                        [
         | 
| 295 | 
            +
                            pa.field("ticker", pa.string(), nullable=False),
         | 
| 296 | 
            +
                            pa.field("volume", pa.int64(), nullable=False),
         | 
| 297 | 
            +
                            pa.field("open", price_type, nullable=False),
         | 
| 298 | 
            +
                            pa.field("close", price_type, nullable=False),
         | 
| 299 | 
            +
                            pa.field("high", price_type, nullable=False),
         | 
| 300 | 
            +
                            pa.field("low", price_type, nullable=False),
         | 
| 301 | 
            +
                            pa.field("window_start", timestamp_type, nullable=False),
         | 
| 302 | 
            +
                            pa.field("transactions", pa.int64(), nullable=False),
         | 
| 303 | 
            +
                            pa.field("date", pa.date32(), nullable=False),
         | 
| 304 | 
            +
                            pa.field("year", pa.uint16(), nullable=False),
         | 
| 305 | 
            +
                            pa.field("month", pa.uint8(), nullable=False),
         | 
| 306 | 
            +
                        ]
         | 
| 307 | 
            +
                    )
         | 
| 308 | 
            +
             | 
| 309 | 
            +
             | 
| 310 | 
            +
            def custom_aggs_partitioning() -> pa.Schema:
         | 
| 311 | 
            +
                return pa_ds.partitioning(
         | 
| 312 | 
            +
                    pa.schema([('year', pa.uint16()), ('month', pa.uint8()), ('date', pa.date32())]), flavor="hive"
         | 
| 313 | 
            +
                )
         | 
| 314 | 
            +
             | 
| 315 | 
            +
             | 
| 316 | 
            +
            def get_custom_aggs_dates(config: PolygonConfig) -> set[datetime.date]:
         | 
| 317 | 
            +
                file_info = config.filesystem.get_file_info(config.custom_aggs_dir)
         | 
| 318 | 
            +
                if file_info.type == pa_fs.FileType.NotFound:
         | 
| 319 | 
            +
                    return set()
         | 
| 320 | 
            +
                aggs_ds = pa_ds.dataset(config.custom_aggs_dir,
         | 
| 321 | 
            +
                                        format="parquet",
         | 
| 322 | 
            +
                                        schema=custom_aggs_schema(),
         | 
| 323 | 
            +
                                        partitioning=custom_aggs_partitioning())
         | 
| 324 | 
            +
                return set([pa_ds.get_partition_keys(fragment.partition_expression).get("date") for fragment in aggs_ds.get_fragments()])
         | 
| 325 | 
            +
             | 
| 326 | 
            +
             | 
| 327 | 
            +
            def generate_csv_trades_tables(
         | 
| 328 | 
            +
                config: PolygonConfig, overwrite: bool = False
         | 
| 329 | 
            +
            ) -> Tuple[datetime.date, Iterator[pa.Table]]:
         | 
| 330 | 
            +
                """Generator for trades tables from flatfile CSVs."""
         | 
| 331 | 
            +
                custom_aggs_dates = set()
         | 
| 332 | 
            +
                if not overwrite:
         | 
| 333 | 
            +
                    custom_aggs_dates = get_custom_aggs_dates(config)
         | 
| 334 | 
            +
                # Use pandas_market_calendars so we can get extended hours.
         | 
| 335 | 
            +
                # NYSE and NASDAQ have extended hours but XNYS does not.
         | 
| 336 | 
            +
                calendar = pandas_market_calendars.get_calendar(config.calendar_name)
         | 
| 337 | 
            +
                schedule = calendar.schedule(start_date=config.start_timestamp, end_date=config.end_timestamp, start="pre", end="post")
         | 
| 338 | 
            +
                for timestamp, session in schedule.iterrows():
         | 
| 339 | 
            +
                    date = timestamp.to_pydatetime().date()
         | 
| 340 | 
            +
                    if date in custom_aggs_dates:
         | 
| 341 | 
            +
                        continue
         | 
| 342 | 
            +
                    trades_csv_path = f"{config.trades_dir}/{date_to_path(date)}"
         | 
| 343 | 
            +
                    convert_options = pa_csv.ConvertOptions(column_types=trades_schema(raw=True))
         | 
| 344 | 
            +
                    trades = pa_csv.read_csv(trades_csv_path, convert_options=convert_options)
         | 
| 345 | 
            +
                    trades = trades.cast(trades_schema())
         | 
| 346 | 
            +
                    # min_timestamp = pa.compute.min(trades.column('sip_timestamp')).as_py()
         | 
| 347 | 
            +
                    # max_timestamp = pa.compute.max(trades.column('sip_timestamp')).as_py()
         | 
| 348 | 
            +
                    # start_session = session['pre']
         | 
| 349 | 
            +
                    # end_session = session['post']
         | 
| 350 | 
            +
                    # # print(f"{start_session=} {end_session=}")
         | 
| 351 | 
            +
                    # # print(f"{min_timestamp=} {max_timestamp=}")
         | 
| 352 | 
            +
                    # if min_timestamp < start_session:
         | 
| 353 | 
            +
                    #     print(f"ERROR: {min_timestamp=} < {start_session=}")
         | 
| 354 | 
            +
                    # # The end_session is supposed to be a limit but there are many with trades at that second.
         | 
| 355 | 
            +
                    # if max_timestamp >= (end_session + pd.Timedelta(seconds=1)):
         | 
| 356 | 
            +
                    #     # print(f"ERROR: {max_timestamp=} >= {end_session=}")
         | 
| 357 | 
            +
                    #     print(f"ERROR: {max_timestamp=} > {end_session+pd.Timedelta(seconds=1)=}")
         | 
| 358 | 
            +
                    yield date, trades
         | 
| 359 | 
            +
                    del trades
         | 
| 360 | 
            +
             | 
| 361 | 
            +
             | 
| 362 | 
            +
            def trades_to_custom_aggs(config: PolygonConfig, date: datetime.date, table: pa.Table, include_trf: bool = False) -> pa.Table:
         | 
| 363 | 
            +
                print(f"{datetime.datetime.now()=} {date=} {pa.default_memory_pool()=}")
         | 
| 364 | 
            +
                # print(f"{resource.getrusage(resource.RUSAGE_SELF).ru_maxrss=}")
         | 
| 365 | 
            +
                table = table.filter(pa_compute.greater(table["size"], 0))
         | 
| 366 | 
            +
                table = table.filter(pa_compute.equal(table["correction"], "0"))
         | 
| 367 | 
            +
                if not include_trf:
         | 
| 368 | 
            +
                    table = table.filter(pa_compute.not_equal(table["exchange"], 4))
         | 
| 369 | 
            +
                table = table.append_column("price_total", pa_compute.multiply(table["price"], table["size"]))
         | 
| 370 | 
            +
                table = table.append_column("window_start", 
         | 
| 371 | 
            +
                                            pa_compute.floor_temporal(table["sip_timestamp"],
         | 
| 372 | 
            +
                                                                      multiple=config.agg_timedelta.seconds, unit="second"))
         | 
| 373 | 
            +
                # TODO: Calculate VWAP.
         | 
| 374 | 
            +
                table = table.group_by(["ticker", "window_start"], use_threads=False).aggregate([
         | 
| 375 | 
            +
                    ('price', 'first'),
         | 
| 376 | 
            +
                    ('price', 'max'),
         | 
| 377 | 
            +
                    ('price', 'min'),
         | 
| 378 | 
            +
                    ('price', 'last'),
         | 
| 379 | 
            +
                    ('price_total', 'sum'),
         | 
| 380 | 
            +
                    ('size', 'sum'),
         | 
| 381 | 
            +
                    ([], "count_all")
         | 
| 382 | 
            +
                ])
         | 
| 383 | 
            +
                table = table.rename_columns({
         | 
| 384 | 
            +
                    'price_first': 'open',
         | 
| 385 | 
            +
                    'price_max': 'high',
         | 
| 386 | 
            +
                    'price_min': 'low',
         | 
| 387 | 
            +
                    'price_last': 'close',
         | 
| 388 | 
            +
                    'size_sum': 'volume',
         | 
| 389 | 
            +
                    'price_total_sum': 'total',
         | 
| 390 | 
            +
                    'count_all': 'transactions'})
         | 
| 391 | 
            +
                table = table.append_column("vwap", pa_compute.divide(table['total'], table['volume']))
         | 
| 392 | 
            +
                # table.append_column('date', pa.array([date] * len(table), type=pa.date32()))
         | 
| 393 | 
            +
                # table.append_column('year', pa.array([date.year] * len(table), type=pa.uint16()))
         | 
| 394 | 
            +
                # table.append_column('month', pa.array([date.month] * len(table), type=pa.uint8()))
         | 
| 395 | 
            +
                table = table.append_column('date', pa.array(np.full(len(table), date)))
         | 
| 396 | 
            +
                table = table.append_column('year', pa.array(np.full(len(table), date.year), type=pa.uint16()))
         | 
| 397 | 
            +
                table = table.append_column('month', pa.array(np.full(len(table), date.month), type=pa.uint8()))
         | 
| 398 | 
            +
                table = table.sort_by([('window_start', 'ascending'), ('ticker', 'ascending')])
         | 
| 399 | 
            +
                return table
         | 
| 400 | 
            +
             | 
| 401 | 
            +
             | 
| 402 | 
            +
            def generate_custom_agg_batches_from_tables(config: PolygonConfig) -> pa.RecordBatch:
         | 
| 403 | 
            +
                for date, trades_table in generate_csv_trades_tables(config):
         | 
| 404 | 
            +
                    for batch in trades_to_custom_aggs(config, date, trades_table).to_batches():
         | 
| 405 | 
            +
                        yield batch
         | 
| 406 | 
            +
                    del trades_table
         | 
| 407 | 
            +
             | 
| 408 | 
            +
             | 
| 409 | 
            +
            def generate_custom_agg_tables(config: PolygonConfig) -> pa.Table:
         | 
| 410 | 
            +
                for date, trades_table in generate_csv_trades_tables(config):
         | 
| 411 | 
            +
                    yield trades_to_custom_aggs(config, date, trades_table)
         | 
| 412 | 
            +
             | 
| 413 | 
            +
             | 
| 414 | 
            +
            def configure_write_custom_aggs_to_dataset(config: PolygonConfig):
         | 
| 415 | 
            +
                def write_custom_aggs_to_dataset(args: Tuple[datetime.date, pa.Table]):
         | 
| 416 | 
            +
                    date, table = args
         | 
| 417 | 
            +
                    pa_ds.write_dataset(
         | 
| 418 | 
            +
                        trades_to_custom_aggs(config, date, table),
         | 
| 419 | 
            +
                        filesystem=config.filesystem,
         | 
| 420 | 
            +
                        base_dir=config.custom_aggs_dir,
         | 
| 421 | 
            +
                        partitioning=custom_aggs_partitioning(),
         | 
| 422 | 
            +
                        format="parquet",
         | 
| 423 | 
            +
                        existing_data_behavior="overwrite_or_ignore",
         | 
| 424 | 
            +
                    )
         | 
| 425 | 
            +
                return write_custom_aggs_to_dataset
         | 
| 426 | 
            +
             | 
| 427 | 
            +
             | 
| 428 | 
            +
            def file_visitor(written_file):
         | 
| 429 | 
            +
                print(f"{written_file.path=}")
         | 
| 430 | 
            +
             | 
| 431 | 
            +
             | 
| 432 | 
            +
            def convert_all_to_custom_aggs(
         | 
| 433 | 
            +
                config: PolygonConfig, overwrite: bool = False
         | 
| 434 | 
            +
            ) -> str:
         | 
| 435 | 
            +
                if overwrite:
         | 
| 436 | 
            +
                    print("WARNING: overwrite not implemented/ignored.")
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                # MAX_FILES_OPEN = 8
         | 
| 439 | 
            +
                # MIN_ROWS_PER_GROUP = 100_000
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                print(f"{config.custom_aggs_dir=}")
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                # pa.set_memory_pool()
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                # pa_ds.write_dataset(
         | 
| 446 | 
            +
                #     generate_custom_agg_batches_from_tables(config),
         | 
| 447 | 
            +
                #     schema=custom_aggs_schema(),
         | 
| 448 | 
            +
                #     filesystem=config.filesystem,
         | 
| 449 | 
            +
                #     base_dir=config.custom_aggs_dir,
         | 
| 450 | 
            +
                #     partitioning=custom_aggs_partitioning(),
         | 
| 451 | 
            +
                #     format="parquet",
         | 
| 452 | 
            +
                #     existing_data_behavior="overwrite_or_ignore",
         | 
| 453 | 
            +
                #     max_open_files = MAX_FILES_OPEN,
         | 
| 454 | 
            +
                #     min_rows_per_group = MIN_ROWS_PER_GROUP,
         | 
| 455 | 
            +
                # )
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                for date, trades_table in generate_csv_trades_tables(config):
         | 
| 458 | 
            +
                    aggs_table = trades_to_custom_aggs(config, date, trades_table)
         | 
| 459 | 
            +
                    pa_ds.write_dataset(
         | 
| 460 | 
            +
                        aggs_table,
         | 
| 461 | 
            +
                        # schema=custom_aggs_schema(),
         | 
| 462 | 
            +
                        filesystem=config.filesystem,
         | 
| 463 | 
            +
                        base_dir=config.custom_aggs_dir,
         | 
| 464 | 
            +
                        partitioning=custom_aggs_partitioning(),
         | 
| 465 | 
            +
                        format="parquet",
         | 
| 466 | 
            +
                        existing_data_behavior="overwrite_or_ignore",
         | 
| 467 | 
            +
                        file_visitor=file_visitor,
         | 
| 468 | 
            +
                        # max_open_files=MAX_FILES_OPEN,
         | 
| 469 | 
            +
                        # min_rows_per_group=MIN_ROWS_PER_GROUP,
         | 
| 470 | 
            +
                    )
         | 
| 471 | 
            +
                    del aggs_table
         | 
| 472 | 
            +
                    del trades_table
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                # with ProcessPoolExecutor(max_workers=1) as executor:
         | 
| 475 | 
            +
                #     executor.map(
         | 
| 476 | 
            +
                #         configure_write_custom_aggs_to_dataset(config),
         | 
| 477 | 
            +
                #         generate_csv_trades_tables(config),
         | 
| 478 | 
            +
                #     )
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                print(f"Generated aggregates to {config.custom_aggs_dir=}")
         | 
| 481 | 
            +
                return config.custom_aggs_dir
         | 
| 482 | 
            +
             | 
| 483 | 
            +
             | 
| 484 | 
            +
            # https://github.com/twopirllc/pandas-ta/issues/731#issuecomment-1766786952
         | 
| 485 | 
            +
             | 
| 486 | 
            +
            # def calculate_mfi(high, low, close, volume, period):
         | 
| 487 | 
            +
            #     typical_price = (high + low + close) / 3
         | 
| 488 | 
            +
            #     money_flow = typical_price * volume
         | 
| 489 | 
            +
            #     mf_sign = np.where(typical_price > np.roll(typical_price, shift=1), 1, -1)
         | 
| 490 | 
            +
            #     signed_mf = money_flow * mf_sign
         | 
| 491 | 
            +
             | 
| 492 | 
            +
            #     # Calculate gain and loss using vectorized operations
         | 
| 493 | 
            +
            #     positive_mf = np.maximum(signed_mf, 0)
         | 
| 494 | 
            +
            #     negative_mf = np.maximum(-signed_mf, 0)
         | 
| 495 | 
            +
             | 
| 496 | 
            +
            #     mf_avg_gain = np.convolve(positive_mf, np.ones(period), mode='full')[:len(positive_mf)] / period
         | 
| 497 | 
            +
            #     mf_avg_loss = np.convolve(negative_mf, np.ones(period), mode='full')[:len(negative_mf)] / period
         | 
| 498 | 
            +
             | 
| 499 | 
            +
            #     epsilon = 1e-10  # Small epsilon value to avoid division by zero
         | 
| 500 | 
            +
            #     mfi = 100 - 100 / (1 + mf_avg_gain / (mf_avg_loss + epsilon))
         | 
| 501 | 
            +
            #     return mfi
         | 
| 502 | 
            +
             | 
| 503 | 
            +
            def calculate_mfi(typical_price: pd.Series, money_flow: pd.Series, period: int):
         | 
| 504 | 
            +
                mf_sign = np.where(typical_price > np.roll(typical_price, shift=1), 1, -1)
         | 
| 505 | 
            +
                signed_mf = money_flow * mf_sign
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                # Calculate gain and loss using vectorized operations
         | 
| 508 | 
            +
                positive_mf = np.maximum(signed_mf, 0)
         | 
| 509 | 
            +
                negative_mf = np.maximum(-signed_mf, 0)
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                mf_avg_gain = np.convolve(positive_mf, np.ones(period), mode='full')[:len(positive_mf)] / period
         | 
| 512 | 
            +
                mf_avg_loss = np.convolve(negative_mf, np.ones(period), mode='full')[:len(negative_mf)] / period
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                epsilon = 1e-10  # Small epsilon value to avoid division by zero
         | 
| 515 | 
            +
                mfi = 100 - (100 / (1 + mf_avg_gain / (mf_avg_loss + epsilon)))
         | 
| 516 | 
            +
                return mfi
         | 
| 517 | 
            +
             | 
| 518 | 
            +
             | 
| 519 | 
            +
            # https://github.com/twopirllc/pandas-ta/blob/main/pandas_ta/momentum/stoch.py
         | 
| 520 | 
            +
            # https://github.com/twopirllc/pandas-ta/blob/development/pandas_ta/momentum/stoch.py
         | 
| 521 | 
            +
            # `k` vs `fast_k` arg names.
         | 
| 522 | 
            +
            # https://github.com/twopirllc/pandas-ta/issues/726
         | 
| 523 | 
            +
            # Results affected by values outside range
         | 
| 524 | 
            +
            # https://github.com/twopirllc/pandas-ta/issues/535
         | 
| 525 | 
            +
             | 
| 526 | 
            +
            def calculate_stoch(high: pd.Series, low: pd.Series, close: pd.Series, k: int = 14, d: int = 3, smooth_k: int = 3, mamode:str = "sma"):
         | 
| 527 | 
            +
                """Indicator: Stochastic Oscillator (STOCH)"""
         | 
| 528 | 
            +
                lowest_low = low.rolling(k).min()
         | 
| 529 | 
            +
                highest_high = high.rolling(k).max()
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                stoch = 100 * (close - lowest_low)
         | 
| 532 | 
            +
                stoch /= ta.utils.non_zero_range(highest_high, lowest_low)
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                stoch_k = ta.overlap.ma(mamode, stoch.loc[stoch.first_valid_index():,], length=smooth_k)
         | 
| 535 | 
            +
                stoch_d = ta.overlap.ma(mamode, stoch_k.loc[stoch_k.first_valid_index():,], length=d) if stoch_k is not None else None
         | 
| 536 | 
            +
                # Histogram
         | 
| 537 | 
            +
                stoch_h = stoch_k - stoch_d if stoch_d is not None else None
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                return stoch_k, stoch_d, stoch_h
         | 
| 540 | 
            +
             | 
| 541 | 
            +
             | 
| 542 | 
            +
            def compute_per_ticker_signals(df: pd.DataFrame, period: int = 14) -> pd.DataFrame:
         | 
| 543 | 
            +
                df = df.set_index('window_start').sort_index()
         | 
| 544 | 
            +
                session_index = pd.date_range(start=df.index[0],
         | 
| 545 | 
            +
                                              end=df.index[-1],
         | 
| 546 | 
            +
                                              freq=pd.Timedelta(seconds=60))
         | 
| 547 | 
            +
                df = df.reindex(session_index)
         | 
| 548 | 
            +
                df.index.rename('window_start', inplace=True)
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                # df["minute_of_day"] = (df.index.hour * 60) + df.index.minute
         | 
| 551 | 
            +
                # df["day_of_week"] = df.index.day_of_week
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                df.transactions = df.transactions.fillna(0)
         | 
| 554 | 
            +
                df.volume = df.volume.fillna(0)
         | 
| 555 | 
            +
                df.total = df.total.fillna(0)
         | 
| 556 | 
            +
                df.close = df.close.ffill()
         | 
| 557 | 
            +
                close = df.close
         | 
| 558 | 
            +
                df.vwap = df.vwap.fillna(close)
         | 
| 559 | 
            +
                df.high = df.high.fillna(close)
         | 
| 560 | 
            +
                df.low = df.low.fillna(close)
         | 
| 561 | 
            +
                df.open = df.open.fillna(close)
         | 
| 562 | 
            +
                price_open = df.open
         | 
| 563 | 
            +
                high = df.high
         | 
| 564 | 
            +
                low = df.low
         | 
| 565 | 
            +
                vwap = df.vwap
         | 
| 566 | 
            +
                # volume = df.volume
         | 
| 567 | 
            +
                total = df.total
         | 
| 568 | 
            +
                next_close = close.shift()
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                # TODO: Odometer rollover signal.  Relative difference to nearest power of 10.
         | 
| 571 | 
            +
                # Something about log10 being a whole number?  When is $50 the rollover vs $100 or $10?
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                # "True (Typical?) Price" which I think is an approximation of VWAP.
         | 
| 574 | 
            +
                # Trouble with both is that if there are no trades in a bar we get NaN.
         | 
| 575 | 
            +
                # That then means we get NaN for averages for the next period-1 bars too.
         | 
| 576 | 
            +
                # Question is whether to ffill the price for these calculations.
         | 
| 577 | 
            +
                df["TP"] = (high + low + close) / 3
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                # Gain/loss in this bar.
         | 
| 580 | 
            +
                df["ret1bar"] = close.div(price_open).sub(1)
         | 
| 581 | 
            +
             | 
| 582 | 
            +
                for t in range(2, period):
         | 
| 583 | 
            +
                    df[f'ret{t}bar'] = close.div(price_open.shift(t-1)).sub(1)
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                # Average True Range (ATR)
         | 
| 586 | 
            +
                true_range = pd.concat([high.sub(low),
         | 
| 587 | 
            +
                                        high.sub(next_close).abs(),
         | 
| 588 | 
            +
                                        low.sub(next_close).abs()], axis=1).max(1)
         | 
| 589 | 
            +
                # Normalized ATR (NATR) or Average of Normalized TR.
         | 
| 590 | 
            +
                # Choice of NATR operations ordering discussion: https://www.macroption.com/normalized-atr/
         | 
| 591 | 
            +
                # He doesn't talk about VWAP but I think that is a better normalizing price for a bar.
         | 
| 592 | 
            +
                # atr = true_range.ewm(span=period).mean()
         | 
| 593 | 
            +
                # df["natr_c"] = atr / close
         | 
| 594 | 
            +
                # df["antr_c"] = (true_range / close).ewm(span=period).mean()
         | 
| 595 | 
            +
                # df["natr_v"] = atr / vwap
         | 
| 596 | 
            +
                # df["antr_v"] = (true_range / vwap).ewm(span=period).mean()
         | 
| 597 | 
            +
                df["NATR"] = (true_range / vwap).ewm(span=period).mean()
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                # True Price as HLC average VS VWAP.
         | 
| 600 | 
            +
                # VWAP is better I think but is quite different than standard CCI.
         | 
| 601 | 
            +
                # Three ways to compute CCI, all give the same value using TP.
         | 
| 602 | 
            +
                # tp = (high + low + close) / 3
         | 
| 603 | 
            +
                # df['SMA'] = ta.sma(tp, length=period)
         | 
| 604 | 
            +
                # df['sma_r'] = tp.rolling(period).mean()
         | 
| 605 | 
            +
                # df['MAD'] = ta.mad(tp, length=period)
         | 
| 606 | 
            +
                # # Series.mad deprecated. mad = (s - s.mean()).abs().mean()
         | 
| 607 | 
            +
                # df['mad_r'] = tp.rolling(period).apply(lambda x: (pd.Series(x) - pd.Series(x).mean()).abs().mean())
         | 
| 608 | 
            +
             | 
| 609 | 
            +
                # df['cci_r'] = (tp - df['sma_r']) / (0.015 * df['mad_r'])
         | 
| 610 | 
            +
                # df['CCI'] = (tp - df['SMA']) / (0.015 * df['MAD'])
         | 
| 611 | 
            +
                # df['cci_ta'] = ta.cci(high=high, low=low, close=close, length=period)
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                df['taCCI'] = ta.cci(high=high, low=low, close=close, length=period)
         | 
| 614 | 
            +
             | 
| 615 | 
            +
                # https://gist.github.com/quantra-go-algo/1b37bfb74d69148f0dfbdb5a2c7bdb25
         | 
| 616 | 
            +
                # https://medium.com/@huzaifazahoor654/how-to-calculate-cci-in-python-a-step-by-step-guide-9a3f61698be6
         | 
| 617 | 
            +
                sma = pd.Series(ta.sma(vwap, length=period))
         | 
| 618 | 
            +
                mad = pd.Series(ta.mad(vwap, length=period))
         | 
| 619 | 
            +
                df['CCI'] = (vwap - sma) / (0.015 * mad)
         | 
| 620 | 
            +
             | 
| 621 | 
            +
                # df['MFI'] = calculate_mfi(high=high, low=low, close=close, volume=volume, period=period)
         | 
| 622 | 
            +
                df['MFI'] = calculate_mfi(typical_price=vwap, money_flow=total, period=period)
         | 
| 623 | 
            +
             | 
| 624 | 
            +
                # We use Stochastic (rather than MACD because we need a ticker independent indicator.
         | 
| 625 | 
            +
                # IOW a percentage price oscillator (PPO) rather than absolute price oscillator (APO).
         | 
| 626 | 
            +
                # https://www.alpharithms.com/moving-average-convergence-divergence-macd-031217/
         | 
| 627 | 
            +
                # We're using 14/3 currently rather than the usual 26/12 popular for MACD though.
         | 
| 628 | 
            +
                stoch_k, stoch_d, stoch_h = calculate_stoch(high, low, close, k=period)
         | 
| 629 | 
            +
                df["STOCHk"] = stoch_k
         | 
| 630 | 
            +
                df["STOCHd"] = stoch_d
         | 
| 631 | 
            +
                df["STOCHh"] = stoch_h
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                return df
         | 
| 634 | 
            +
             | 
| 635 | 
            +
             | 
| 636 | 
            +
            def iterate_all_aggs_tables(config: PolygonConfig, valid_tickers: pa.Array, start_session: str = "pre", end_session: str = "market_open"):
         | 
| 637 | 
            +
                calendar = pandas_market_calendars.get_calendar(config.calendar_name)
         | 
| 638 | 
            +
                schedule = calendar.schedule(start_date=config.start_date,
         | 
| 639 | 
            +
                                             end_date=config.end_date,
         | 
| 640 | 
            +
                                             start="pre",
         | 
| 641 | 
            +
                                             end="post")
         | 
| 642 | 
            +
                for date, sessions in schedule.iterrows():
         | 
| 643 | 
            +
                    # print(f"{date=} {sessions=}")
         | 
| 644 | 
            +
                    start_dt = sessions[start_session]
         | 
| 645 | 
            +
                    end_dt = sessions[end_session]
         | 
| 646 | 
            +
                    # print(f"{date=} {start_dt=} {end_dt=}")
         | 
| 647 | 
            +
                    aggs_ds = pa_ds.dataset(config.custom_aggs_dir,
         | 
| 648 | 
            +
                                            format="parquet",
         | 
| 649 | 
            +
                                            schema=custom_aggs_schema(),
         | 
| 650 | 
            +
                                            partitioning=custom_aggs_partitioning())
         | 
| 651 | 
            +
                    date_filter_expr = ((pc.field('year') == date.year)
         | 
| 652 | 
            +
                                        & (pc.field('month') == date.month)
         | 
| 653 | 
            +
                                        & (pc.field('date') == date.to_pydatetime().date()))
         | 
| 654 | 
            +
                    # print(f"{date_filter_expr=}")
         | 
| 655 | 
            +
                    for fragment in aggs_ds.get_fragments(filter=date_filter_expr):
         | 
| 656 | 
            +
                        session_filter = ((pc.field('window_start') >= start_dt)
         | 
| 657 | 
            +
                                          & (pc.field('window_start') < end_dt)
         | 
| 658 | 
            +
                                          & pc.is_in(pc.field('ticker'), valid_tickers)
         | 
| 659 | 
            +
                                         )
         | 
| 660 | 
            +
                        # Sorting table doesn't seem to avoid needing to sort the df.  Maybe use_threads=False on to_pandas would help?
         | 
| 661 | 
            +
                        # table = fragment.to_table(filter=session_filter).sort_by([('ticker', 'ascending'), ('window_start', 'descending')])
         | 
| 662 | 
            +
                        table = fragment.to_table(filter=session_filter)
         | 
| 663 | 
            +
                        if table.num_rows > 0:
         | 
| 664 | 
            +
                            metadata = dict(table.schema.metadata) if table.schema.metadata else dict()
         | 
| 665 | 
            +
                            metadata["date"] = date.date().isoformat()
         | 
| 666 | 
            +
                            table = table.replace_schema_metadata(metadata)
         | 
| 667 | 
            +
                            yield table
         | 
| 668 | 
            +
             | 
| 669 | 
            +
             | 
| 670 | 
            +
            def iterate_all_aggs_with_signals(config: PolygonConfig):
         | 
| 671 | 
            +
                for table in iterate_all_aggs_tables(config):
         | 
| 672 | 
            +
                    df = table.to_pandas()
         | 
| 673 | 
            +
                    df = df.groupby("ticker").apply(compute_per_ticker_signals, include_groups=False)
         | 
| 674 | 
            +
                    yield pa.Table.from_pandas(df)
         | 
| 675 | 
            +
             | 
| 676 | 
            +
             | 
| 677 | 
            +
            def compute_signals_for_all_custom_aggs(
         | 
| 678 | 
            +
                from_config: PolygonConfig, to_config: PolygonConfig, valid_tickers: pa.Array, overwrite: bool = False
         | 
| 679 | 
            +
            ) -> str:
         | 
| 680 | 
            +
                if overwrite:
         | 
| 681 | 
            +
                    print("WARNING: overwrite not implemented/ignored.")
         | 
| 682 | 
            +
             | 
| 683 | 
            +
                print(f"{to_config.custom_aggs_dir=}")
         | 
| 684 | 
            +
             | 
| 685 | 
            +
                for aggs_table in iterate_all_aggs_tables(from_config, valid_tickers):
         | 
| 686 | 
            +
                    metadata = aggs_table.schema.metadata
         | 
| 687 | 
            +
                    date = datetime.date.fromisoformat(metadata[b'date'].decode('utf-8'))
         | 
| 688 | 
            +
                    print(f"{date=}")
         | 
| 689 | 
            +
                    df = aggs_table.to_pandas()
         | 
| 690 | 
            +
                    df = df.groupby("ticker").apply(compute_per_ticker_signals, include_groups=False)
         | 
| 691 | 
            +
                    table = pa.Table.from_pandas(df)
         | 
| 692 | 
            +
                    if table.num_rows > 0:
         | 
| 693 | 
            +
                        table = table.replace_schema_metadata(metadata)
         | 
| 694 | 
            +
                        table = table.append_column('date', pa.array(np.full(len(table), date)))
         | 
| 695 | 
            +
                        table = table.append_column('year', pa.array(np.full(len(table), date.year), type=pa.uint16()))
         | 
| 696 | 
            +
                        table = table.append_column('month', pa.array(np.full(len(table), date.month), type=pa.uint8()))
         | 
| 697 | 
            +
                        table = table.sort_by([('ticker', 'ascending'), ('window_start', 'ascending')])
         | 
| 698 | 
            +
                        pa_ds.write_dataset(
         | 
| 699 | 
            +
                            table,
         | 
| 700 | 
            +
                            filesystem=to_config.filesystem,
         | 
| 701 | 
            +
                            base_dir=to_config.custom_aggs_dir,
         | 
| 702 | 
            +
                            partitioning=custom_aggs_partitioning(),
         | 
| 703 | 
            +
                            format="parquet",
         | 
| 704 | 
            +
                            existing_data_behavior="overwrite_or_ignore",
         | 
| 705 | 
            +
                            file_visitor=file_visitor,
         | 
| 706 | 
            +
                        )
         | 
| 707 | 
            +
                return to_config.custom_aggs_dir
         |